
Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

Clarion Magazine

This edition includes all articles, news items and blog posts from February 1 2011 to
February 28 2011.

Clarion News
Read 16 Clarion news items.

Articles

February 1 2011

Phil Will wraps up the SQL Query class and template and explains the class methods in
more detail.

February 2 2011

Sometimes you need just a little more real estate for the code completion window. It's easily
done.

February 8 2011

Is your code crap? How would you know? How can you easily test your code and have
confidence that it's doing what you expect it to do? How can you automate your tests? This
Friday Dave Harms will be the guest presenter at ClarionLive, where he'll answer these
questions and others as applies unit testing to the ClarionLive Class Bash code.

February 11 2011

Creating an SQL Query Class and Template, Part 3

Tip of the Week #9: Code Completion Window Width

Webinar this Friday: If you can't test your code, how do
you know it isn't crap?

Tip of the Week #10: Speed Up Source Navigation With
Bookmarks

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 1 of 59

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home
http://www.clarionmag.com/cmag/news.html?startDate=2/1/2011&endDate=2/28/2011&authToken=6343508160079242129137057123171195099232238135109008067064

If you ever find yourself jumping around between a few different places in source (or in the
embeditor), you'll appreciate this week's tip.

February 16 2011

If you're handling credit card numbers, here's a way to check for bad data before you submit
the card for processing.

February 17 2011

Let Keystate() give you administrator access to program features without requiring a special
login.

February 18 2011

The C7 Task List is yet another way to navigate around your source code. But there are a
couple of things to watch out for.

February 18 2011

Automatic browse refreshing may not be earthshattering news for many in the Clarion
community, but it is one of John Morter's favorite techniques for simplifying complex
browse interactions.

February 22 2011

Yes, Clarion has a CAP attribute. But it's not very smart. Here's the code you need to handle
capitalization the right way.

February 24 2011

Does your app have more string data than you realize? Are there better ways to handle those
strings? Almost certainly. If you deal with strings (and who doesn't) you really need to read
this article.

MagGem: Validating Credit Card Numbers

MagGem: Backdoors and Other Tricks

Tip of the Week #11: The Task List

Automagical Browse Refreshing

MagGem: Capitalize The Right Way

MagGem: Everything You Ever Wanted To Know About
Strings

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 2 of 59

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

February 27 2011

Both Clarion 6 and Clarion 7 make use of the redirection file to help you find your own
source, but Clarion 6's approach still wins.

February 28 2011

Dave Harms builds on a MagGem by Stephen Bottomley, and creates a class that makes it
easy to display color highlighted text using the RTF control. Part 1 of 2.

Tip of the Week #12: Searching/Finding Files Using
Redirection

Highlighting Text With RTF The Easy Way, Part 1

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 3 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

Clarion News

Clarion QuickBooks Connect 1.25
Clarion QuickBooks Connect 1.25 is available for download.

Posted February 4 2011 (permanent link)

Clarion QuickBooks Connect Video Training
Video training is available for Clarion QuickBooks Connect. The first two videos show how
to import file definitions from the qbc_Helper program.

Posted February 4 2011 (permanent link)

JS Mailmerge for Clarion7.3.7900
Jeff Slarve has updated the JS MailMerge templates for C7.3.7900. Please private email Jeff
if you are a licensed user and need the password.

Posted February 4 2011 (permanent link)

ClarionEditorContextHelp AddIn
Brahn Patridge's has released an early version of an addin that adds context help to the IDE.
Download the addin, install it with the Addin Manager, and start using Shift-F1 for context
help.

Posted February 5 2011 (permanent link)

Clarion 7.3.7949 Released
SoftVelocity has released Clarion 7 build 7949. This release includes a number fixes for IDE
crashes, TXA exporting, and the Report Writer.

Posted February 5 2011 (permanent link)

DMC Flash Special - Up To 50% Off
Because of an unexpected family emergency JP needs to raise cash very quickly and is
holding a DMC Flash Sale. From Saturday Feb 12 until Sunday Feb 20 2011 DMC is 50%
off the regular price. From Monday Feb 21 until Sunday, Feb 26 2011 DMC is 25% off, and
from Monday Feb 27 till Tuesday Feb 28 2011 DMC is 10% off. Discounts end at midnight
GMT on the date specified and apply to updates or renewals. Use this coupon code on the
SWREG payment portal: DMC-45K2D46627. The prices onsite do not reflect the discounts

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 4 of 59

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home
http://www.wybatap.com/qbconnect
http://www.clarionmag.com/Page/24004
http://www.wybatap.com/qbconnect/videos.html
http://www.clarionmag.com/Page/24005
http://www.jssoftware.com/
http://www.clarionmag.com/Page/24006
http://www.clarionedge.com/clarion/addins/clarioneditorcontexthelp-addin-v0-1-now-available.html
http://www.clarionmag.com/Page/24007
http://softvelocity.cachefly.net/C73/readme_7.3.7949.txt
http://www.clarionmag.com/Page/24008
http://www.dmc-fr.com/boutique_en.php

- they are applied only when you purchase with this coupon code.
Posted February 12 2011 (permanent link)

Clarion 7.3.7989 Released
A new build of Clarion 7.3 is now available. Changes include fixes to RUN and #RUN, TXA
exporting, and the visual appearance of some controls.

Posted February 15 2011 (permanent link)

iQ-XML, iQ-Sync Updated
New versions of iQ-XML and iQ-Sync are now available. iQ-Xml is compiled in C7.3.7949
and has a fix to handling XML comments inside XML Comments, within valid XML
sections. iQ-Sync is compiled in C7.3.7949 and has corrections to handle backing up more
than 32,768 files (SHORT) as well as enhancements to the ZIP options.

Posted February 18 2011 (permanent link)

IQ-SQL Beta Released
A beta of IQ-SQL is now available. This release works only with Sybase and PostgreSQL.
This is a developer tool, but designed to plug into a Clarion application. This program has
been in production for more than 700 users for the last three years on Sybase SQL
Anywhere. It hasn't been used at all for PostGreSQL, so that is where the testing is needed.
For PostGres, the the ANSI or UNICODE driver must be installed. This is a first release of
this product outside of InnQuest. To get started, look at the online help, SQL Syntax to learn
how to use the Extensions or use the Wizard to write them for you. Automatic JOINS is not
documented yet. Robert Paresi isn't looking for enhancement requests, just testing. Do not
install this at an end-user site, nor do you have a license to do so. This is for testing purposes
only.

Posted February 18 2011 (permanent link)

CHT Videos
Gus has posted new videos to illustrate and teach about some of the new work going on at
CHT. Topics include: CHT Web Scripter Example Exercises; CHT Web Servers and
Blackberry Smartphones, Blackberry PlayPad; CHT Compile Manager For Clarion 7.

Posted February 18 2011 (permanent link)

SetupBuilder 7.3 Build 3228
LinderSoft has released SetupBuilder 7.3 Build 3228. This release is available, free of
charge, to all SetupBuilder customers who have an active SetupBuilder maintenance and
support plan subscription.

Posted February 18 2011 (permanent link)

Clarion QB Connect Debugging Video

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 5 of 59

http://www.clarionmag.com/Page/24011
http://softvelocity.cachefly.net/C73/readme_7.3.7989.txt
http://www.clarionmag.com/Page/24012
http://www.paresi.net/
http://www.clarionmag.com/Page/24015
http://www.paresi.net/iqsql/iqsql.exe
http://www.clarionmag.com/Page/24016
http://www.cwhandy.ca/february2011.htm
http://www.clarionmag.com/Page/24017
http://www.lindersoft.com/HISTORYSB7.TXT
http://www.clarionmag.com/Page/24018
http://www.wybatap.com/qbconnect/videos.html

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

Bob Roos has added a new video to the collection for Clarion QB Connect. It shows the
steps to add the debugging option and what output that produces.

Posted February 18 2011 (permanent link)

Charles Edmonds Takes Over ClarionDesktop
StrategyOnline has announced it is handing off the ClarionDesktop product to Charles
Edmonds of LANSRAD.

Posted February 18 2011 (permanent link)

J-Spell 2.21
J-Spell 2.21 is now available. this release includes a regression fix related to address
handling.

Posted February 18 2011 (permanent link)

Clarion 7.3.7995 Released
SoftVelocity has released Clarion 7.3.7995, with a fix for a regression introduced in the
previous release that caused an IDE hang related to the embeditor.

Posted February 18 2011 (permanent link)

RPM/AFE Subscription Intro Pricing Ends March 12 2011
On 01-Jan-2009 Lodestar Software adopted an annual subscription plan for RPM and AFE.
Introduction pricing for current users, who are not already enrolled, will end March 12.

Posted February 25 2011 (permanent link)

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 6 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/Page/24019
http://www.strategyonline.co.za/blog/?p=2065
http://www.clarionmag.com/Page/24020
http://www.strategyonline.co.za/jspell
http://www.clarionmag.com/Page/24021
http://softvelocity.cachefly.net/C73/readme_7.3.7995.txt
http://www.clarionmag.com/Page/24022
http://www.cwaddons.com/orderform.html
http://www.clarionmag.com/Page/24023

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

The ClarionMag Blog

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 7 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

Creating an SQL Query Class and
Template, Part 3

By Phil Will
Posted February 1 2011

In Part I of this series showed a process for developing a class shell and Control Template
that are ABC-compliant, and I developed a general specification based on an example of a
procedure-based set of SQL Query controls. These included code from a procedure with a
browse box with a set of query controls originally developed by Bob Huff.

In Part II I showed an approach to handling the many controls and events in the context of a
class library. In this part I will look at modifying the procedure code into a generic class
library.

So far I have created only one property for the class – a queue of the control field field
equates that includes a field number identifier and a string field. This queue is used to add

specific function calls to the query filter (‘BETWEEN’, ‘CONTAINS’, etc.). I also created
some methods for handling events – TakeEvent, TakeAccepted, TakeDropEvent. I've
also crreated a wrapper template that will instantiate an instance of the class and populate
the controls on a window. And finally, there is a test application in place with the controls
populated and class instantiated.

Adding property references
To get started with the next phase, it is apparent from reviewing the procedure code that

certain properties would be useful for the class. A reference to the BrowseClass used by
the related browse control will clearly have some helpful items – the view and methods for
filtering and refreshing the browse among them. References to the Browse Queue and

QueryBuilder field will be needed. Since part of the spec calls for loading and saving
queries, a reference to the query file manager will be helpful along with references to its
keys and fields. A queue of fields that populate the drop down list of file fields that can be

used in the query is needed – I prefer this to the string FROM property built in the procedure
example. The spec also calls for lists of files and fields that should be excluded from the
queue of filter fields.

The queues all have TYPE attribute and will be created in the Construct method and
Disposed in the Destruct method. Hopefully the names are self explanatory.

QueryFieldQT QUEUE,TYPE
QueryField CSTRING(250)
 END
ExcludeFilesQT QUEUE,TYPE
ExcludeFile STRING(250)
 END
ExcludeFieldsQT QUEUE,TYPE
ExcludeField STRING(80)
 END
QueryQT QUEUE,TYPE
QueryName STRING(250)
QueryID ANY
 END

The properties also include a group that can be passed to the class in the init method that

identifies the FileManager for the saved queries and the field used for categorizing the
queries.

SavedQueryGT GROUP,TYPE
FM &FileManager
Category ANY
 END

Class properties
References for these are then added to the class properties list.

!-- Query controls
FieldQ &FieldQT
!-- Browse Class.
BC &BrowseClass
ListQueue &QUEUE
!-- Query
Query &STRING
QueryFieldQ &QueryFieldQT
ExcludeFilesQ &ExcludeFilesQT
ExcludeFieldsQ &ExcludeFieldsQT
!-- Saved Query File References
QueryG GROUP(SavedQueryGT)
 END
QueryfileIDKey &KEY
QueryFileID ANY
QueryFileCategoryKey &KEY
QueryfileCategory ANY
QueryFileName ANY
QueryFileQuery ANY

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 8 of 59

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home
http://www.clarionmag.com/cmag/v13/v13n01sqlclass1.html
http://www.clarionmag.com/cmag/v13/v13n01sqlclass2.html

!—For drag and drop from the query field list.
QueryFieldRegion LONG

Some of the references can easily be passed as parameters in the Init method. Others can
be handled using view and file properties. The next step is to modify the Init method to
take the Browse Class, the Browse Queue, and the SavedQuery Group as parameters.

The template code to generate and assign references to the SavedQuery Group and identify
the browse class object and queue requires some prompts and some additions to the %
AfterOpeningWindow embed. Note that this is a Legacy and ABC embed which would be
important if I were developing a template that applied to both ABC and Legacy applications.

These are the instance prompts:

 #TAB('General')
 #BUTTON('Browse Info')
 #PROMPT('Browse Class',@s20),%SqlBrowse,REQ
 #PROMPT('Query FielD',FIELD),%SqlQueryFld,REQ
 #PROMPT('Browse Queue',@S80),%BrowseListQueue,REQ
 #ENDBUTTON
 #BUTTON('Query Info')
 #PROMPT('Saved Query File',FILE),%SqlSavedQueryFile,REQ
 #PROMPT('Saved Query Category',@s20),%SqlSavedQueryCategory,REQ,DEFAULT('%Procedure')
 #BUTTON('Exclude Files'),MULTI(%ExcludeFiles,%ExcludeFile)
 #PROMPT('File to Exclude:',FILE),%ExcludeFile,REQ
 #ENDBUTTON
 #BUTTON('Exclude Fields'),MULTI(%ExcludeFields,%ExcludeField)
 #PROMPT('Field to Exclude:',FIELD),%ExcludeField,REQ
 #ENDBUTTON
 #ENDBUTTON
 #ENDTAB

And this is the generated code:

#AT(%AfterOpeningWindow)
#!--
_QueryG.FM &= %QueryFM
_QueryG.Category=%SqlSavedQueryCategory
%ThisObjectName.Init(%SqlBrowse,%SqlQueryFld,%BrowseListQueue,_QueryG)
SELF.AddItem(%ThisObjectName.WindowComponent)
#ENDAT
#!--
#AT(%PDSQLFILTERMethodCodeSection,%ActiveTemplateInstance),PRIORITY(2500),WHERE(%pClassMethod='Init')
#!--
 #FOR(%ExcludeFiles)
 #FIND(%File,%ExcludeFile)
 #IF(%FileName)
SELF.AddExcludeFile(%FileName)
 #ELSE
SELF.AddExcludeFile('%ExcludeFile')
 #ENDIF
 #ENDFOR
 #FOR(%ExcludeFields)
SELF.AddExcludeField('%ExcludeField')
 #ENDFOR
#ENDAT

Using the test application, I can make some template entries, look at the generated code, and
compile. This still won’t have any functionality, but I'm making progress...

Figure 1. Sample template entries.

Checking the generated code, the following generated code can be found in the

WindowManager.Init embeds. Note that eCategory has itemized equates in the
translation file as a convenient place for the developer to add and edit them.

_QueryG.FM &= Access:Que_File
 _QueryG.Category=eCategory:TestWindow
 PDSQLFilterC4.Init(BRW2,QueryBuilder,Queue:Browse,_QueryG)
 SELF.AddItem(PDSQLFilterC4.WindowComponent)

In the query class instance Init method embed has the following generated:

PDSQLFilterC4.Init PROCEDURE(BrowseClass pBC,*STRING pQuery,*QUEUE pListQueue,SavedQueryGT pQueryG)
 CODE
 SELF.AddExcludeField('QDH:UserID')
 SELF.AddExcludeField('QDC:USERID')
 PARENT.Init(pBC,pQuery,pListQueue,pQueryG)

SetAlerts

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 9 of 59

Earlier I created a SetAlerts method and called this from the WindowComponent
SetAlerts. This is a good place to set any runtime properties. At this point at runtime, the
class has been initialized and the window is open.

While implementing Drag and Drop from the Query Field Drop List, I discovered that I

could not drop from the drop list to the QueryBuilder field; instead I had to create a
region with a DragId. Rather than making the region a control that is part of the control
template, I added a property for the region’s field equate (QueryFieldRegion) and create
the control in the SetAlerts method. I also use the FieldQ.FieldFEQ to set drag and
drop IDs for the list, the text field, and the QueryBuilder fields.

!--
PDSQLFilterCT.SetAlerts PROCEDURE()
!--
 CODE
 !-- Create the Drag region above the QueryField Drop List.
 IF ~SELF.GetFieldFEQ(eFld:QueryField)
 SELF.QueryFieldRegion=CREATE(0,CREATE:region,SELF.FieldQ.FieldFEQ{PROP:Parent})
 SELF.QueryFieldRegion{PROP:Width}=SELF.FieldQ.FieldFEQ{PROP:Width}
 SELF.QueryFieldRegion{PROP:XPos}=SELF.FieldQ.FieldFEQ{PROP:Xpos}
 SELF.QueryFieldRegion{PROP:YPos}=SELF.FieldQ.FieldFEQ{PROP:Ypos}-12
 SELF.QueryFieldRegion{PROP:Height}=12
 SELF.QueryFieldRegion{PROP:TRN}=TRUE
 SELF.QueryFieldRegion{PROP:DragID}='QUERYFIELD'
 UNHIDE(SELF.QueryFieldRegion)
 END
 !-- Set Other Drag and Drop ID's
 SELF.BC.ILC.GetControl(){PROP:DragId}='PDFILTERLIST'
 IF ~SELF.GetFieldFEQ(eFld:QueryField)
 SELf.FieldQ.FieldFEQ{PROP:From} = SELF.QueryFieldQ
 END
 IF ~SELF.GetFieldFEQ(eFld:QueryAction)
 SELF.GetQueryActions
 END
 IF ~SELF.GetFieldFEQ(eFld:Alpha)
 SELf.FieldQ.FieldFEQ{PROP:DropID}='PDFILTERLIST'
 END
 IF ~SELF.GetFieldFEQ(eFld:QueryBuilder)
 SELf.FieldQ.FieldFEQ{PROP:DropID}='QUERYFIELD'
 END

Note that the BC property is the BrowseClass for the parent browse and its “ILC”
interface GetControl method returns the field equate for the browse list. The
QueryField Queue also gets assign to the FROM property of the Query Field Drop List.

This also introduces a new method for getting retrieving the FieldQ record that contains a
specific Field Number. Like IF ERRORCODE(), this method returns a positive value if there
is an error getting the FieldQ record or if the FieldQ record has no FieldFEQ value.

!--
PDSQLFilterCT.GetFieldFEQ PROCEDURE(SIGNED pFld)
!--
RV BYTE
 CODE
 SELF.FieldQ.FieldNo=pFld
 GET(SELF.FieldQ,SELF.FieldQ.FieldNo)
 !-- return true if a valid field control value is found
 RETURN CHOOSE(SELF.FieldQ.FieldFEQ=0 OR ERRORCODE(),TRUE,FALSE)

One advantage of the methodology being used here is that if controls were removed from
the window, the class library would not make any assignments for that control. The control
template uses a major piece of window real estate. It is possible to remove everything but

the QueryBuilder, Execute, and Reset controls and still retain query functionality. You
might also derive a class that puts most of the controls on a separate window.

Extracting view, file and field information
When Bob Huff developed the original procedures and routines he knew what files were in
the view, external file names, and file prefixes. An example of this is sown in the

GetQueryFields routine.

GetQueryFields Routine
GetQueryFields ROUTINE
 DATA
FieldCount LONG
Counter LONG
FromString STRING(5000)
TempString STRING(250)
PrefixLen LONG
 CODE

 FieldCount = QD_Hold{PROP:Fields}
 PrefixLen = LEN('QDH:')
 LOOP FieldCount TIMES
 Counter += 1
 TempString = WHO(QDH:Record,Counter)
 FromString = CLIP(FromString) & 'QD_Hold.[' & TempString[PrefixLen + 1 : LEN(CLIP(TempString))] & ']|'
 END

 CLEAR(Counter)
 FieldCount = ID_Lot{PROP:Fields}

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 10 of 59

 PrefixLen = LEN('ID_L:')
 LOOP FieldCount TIMES
 Counter += 1
 TempString = WHO(ID_L:Record,Counter)
 FromString = CLIP(FromString) & 'ID_Lot.[' & TempString[PrefixLen + 1 : LEN(CLIP(TempString))] & ']|'
 END

 IF CLIP(FromString) THEN FromString = FromString[1 : LEN(CLIP(FromString)) - 1].
 ?LOC:QueryField{PROP:From} = UPPER(CLIP(FromString))

AddQueryFields
In the class, all that is known is the name of the view. The information will have to be
extracted using properties. I also specified that I wanted to put the values in a queue rather

than creating a long FROM string and that I wanted the developer to be able to exclude
specific files and fields. The routine is helpful in showing a workable use of WHO and
PROP:Fields, something that can be confusing. It also shows how the fields should be
formatted for use in SQL.

I changed the method name to AddQueryFields (my preference), and started with three
lines of code to get the number of files in the view and then add fields from each file.

!--
PDSQLFilterCT.AddQueryFields PROCEDURE()
!--
FileCount LONG
FieldCount LONG
FieldLabel STRING(255)
Counter LONG
FieldCounter LONG
TempString STRING(250)
ThisLabel STRING(250)
FileLabel STRING(250)
ThisPrefixLen LONG
ThisFile &FILE
PrefixFound BYTE
 CODE
 FileCount = SELF.BC.View{PROP:Files,0}
 LOOP Counter=1 TO FileCount
 DO AddFiles
 END

To break this method down into workable blocks, the first part of the method simply gets the
file count from the view and the calls a routine to take it from there.

AddFiles ROUTINE
 ThisFile &= SELF.BC.View{PROP:File,Counter}
 SELF.ExcludeFilesQ.ExcludeFile = UPPER(ThisFile{PROP:Name})
 !-- Check exclude file list.
 GET(SELF.ExcludeFilesQ,SELF.ExcludeFilesQ.ExcludeFile)
 IF NOT ERRORCODE()
 EXIT
 END
 DO AddFile

This routine gets the file and its name and then checks to see if it is an exclude file. If it is an
exclude file, processing returns to the loop.

AddFile ROUTINE
 FieldCount = ThisFile{PROP:Fields}
 ThisLabel = ThisFile{PROP:Name}
 IF ThisLabel=''
 ThisLabel = ThisFile{PROP:label,0}
 END
 SELF.ParseLabel(ThisLabel)
 IF Counter=1
 SELF.AddJoin(ThisFile,'')
 END
 ThisFile{PROP:Alias}=Thislabel
 DO AddFileFields

The AddFile routine gets the label for the file, calling another method for parsing the name
string. This basically removes dbo. if it’s there.

The AddJoin call was developed later when coding the CheckQuery method. It adds files
and their relation statements to the JOIN statement in the view used to check queries. The
first file has no join statement. The PROP:Alias is needed by SQL to recognize file names
rather the default aliases of “a,b,c,etc.” I learned that the hard way as it was not in any of
the sample code.

AddFileFields ROUTINE
 PrefixFound=FALSE
 LOOP FieldCounter=1 TO FieldCount
 FieldLabel=ThisFile{PROP:Label,FieldCounter}
 !-- Check for excluded field
 SELF.ExcludeFieldsQ.ExcludeField = UPPER(FieldLabel)
 GET(SELF.ExcludeFieldsQ,SELF.ExcludeFieldsQ.ExcludeField)
 IF NOT ERRORCODE()
 EXIT
 END
 !-- Add to list of query fields and queue of prefix cross references.
 CLEAR(TempString)

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 11 of 59

 TempString=ThisFile{PROP:Name,FieldCounter}
 IF TempString=''
 TempString = ThisFile{PROP:Label,FieldCounter}
 END
 IF TempString<>''
 IF ~PrefixFound
 PrefixFound=TRUE
 ThisPrefixLen=INSTRING(':',FieldLabel,1,1)
 SELF.DebugOut('PrefixLen: '&ThisPrefixLen,'Filter.AddQueryFields')
 IF ThisPrefixLen
 SELF.LabelQ.Prefix=FieldLabel[1: ThisPrefixLen]
 SELF.LabelQ.Label=ThisLabel
 SELF.DebugOut('Add Prefix: '&SELF.LabelQ.Prefix,'Filter.AddQueryFields')
 ADD(SELF.LabelQ,SELF.LabelQ.Prefix)
 END
 END
 SELF.ParseField(TempString,ThisLabel)
 SELF.AddQueryField(CLIP(TempString))
 END
 END

The AddFileFields routine, which does several tasks, is a good candidate for further
factoring, but it is what it is. It first check s whether the field is in the list of exclude fields
and exits if it finds it there. It then gets the field’s name. In later development of dragging

fields from the browse, I found the need for a new queue (labelQ) that related the file
prefix with the file name. This queue was created the same way as other, coding a queue

with the TYPE attribute, adding a property for the queue, and then creating and disposing it
in the Construct and Destruct methods. The routine then calls a method (ParseField)
to format the field and combine it with the label. Finally, it calls a method to add it the
Query Field queue. The developer could use this method to add other fields or to abort the
add if there were conditions where the field should not be added. An example would be a
field that is available with only certain security rights.

The DropData routine
As in the GetQueryFields routine, the DropData routine (which is called when dragging
from the browse to the text field (Alpha)) assumes knowledge of the specific browse and
the prefixes. It gets the column and row choices and changes to field choice to SQL syntax.
It also displays dates and times in a readable format and assigns the results to the

QueryField and Alpha fields and sets the QueryAction field to “=”. It uses a local
queue (QCopy) to get the field labels.

DropData ROUTINE
 DATA
RowChoice LONG
ColumnChoice LONG
FieldChoice STRING(250)
PrefixLen LONG
QCopy QUEUE,BINDABLE
HSITE LONG
HPalletNum LONG
HHoldTicket LONG
HPONumber LONG
HDate LONG
HTime LONG
HStatus LONG
LType LONG
LVendorID LONG !Bob
HOraclePallet LONG
LStatus LONG
LSite LONG
LPalletNum LONG
 END
ValPic STRING(20)
 CODE
 RowChoice = ?HoldList{PROPLIST:MouseDownRow}
 ColumnChoice = ?HoldList{PROPLIST:MouseDownField}
 GET(Queue:Browse,RowChoice) ; IF ERRORCODE() THEN EXIT.
 LOC:Alpha = WHAT(Queue:Browse,ColumnChoice)
 ValPic = ?HoldList{PROPLIST:Picture,ColumnChoice}
 CASE UPPER(ValPic[2])
 OF 'S'
 LOC:Alpha = '''' & CLIP(LOC:Alpha) & ''''
 OF 'D'
 LOC:Alpha = 'DATE<' & FORMAT(LOC:Alpha,@D01) & '>'
 OF 'T'
 LOC:Alpha = 'TIME<' & FORMAT(LOC:Alpha,@T04) & '>'
 END
 FieldChoice = WHO(QCopy,ColumnChoice)
! stop(FieldChoice)
 PrefixLen = LEN('f')
 LOC:QueryField = UPPER(FieldChoice[PrefixLen + 1 : LEN(CLIP(FieldChoice))]) & ']'

 IF UPPER(FieldChoice[1]) = 'H'
 LOC:QueryField = 'QD_HOLD.[' & CLIP(LOC:QueryField)
 ELSE
 LOC:QueryField = 'ID_LOT.[' & CLIP(LOC:QueryField)
 END
 LOC:QueryAction = '='

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 12 of 59

 DISPLAY(?LOC:QueryField)
 DISPLAY(?LOC:Alpha)

TakeDropEvent
The TakeDropEvent method renames the original DropData routine and handles both the
drop to the Alpha field from the browse and the drop to the QueryBuilder field from the
QueryField drop list. The handling of these two drops is put into separate routines to make
it more readable. The CopyQ has been eliminated as file labels and field names can be
extracted from the browse queue properties.

!--
PDSQLFilterCT.TakeDropEvent PROCEDURE()
!--
RowChoice LONG
ColumnChoice LONG
FieldChoice STRING(250)
PrefixLen LONG
ValPic STRING(20)
TempString STRING(250)
lAlpha ANY
 CODE
 SELF.DebugOut('DragID: '&DRAGID(),'Filter.TakeDropEvent')
 UPDATE()
 CASE DRAGID()
 OF eBrowseDragID
 DO GetBrowseItem
 OF eQueryFieldDragID
 DO GetQueryFieldItem
 END

The GetBrowseItem routine
The new routine echoes the coding of the original DropData routine, using properties rather
than routine specific information. Needed values are retrieved from the browse class (BC)
ListQueue. Because the file name is not available from the ListQueue, I use the
previously populated LabelQ to retrieve the file name by using the prefix as a lookup.

Some of the debug code has been left in here to illustrate my testing approach.

GetBrowseItem ROUTINE
 RowChoice = SELF.BC.ILC.GetControl(){PROPLIST:MouseDownRow}
 ColumnChoice = SELF.BC.ILC.GetControl(){PROPLIST:MouseDownField}
 GET(SELF.ListQueue,RowChoice)
 IF ERRORCODE()
 RETURN
 END
 lAlpha = WHAT(SELF.ListQueue,ColumnChoice)
 ValPic = SELF.BC.ILC.GetControl(){PROPLIST:Picture,ColumnChoice}
 CASE UPPER(ValPic[2])
 OF 'S'
 lAlpha = '''' & CLIP(LAlpha) & ''''
 OF 'D'
 lAlpha = 'DATE<<' & FORMAT(lAlpha,@D01) & '>'
 OF 'T'
 lAlpha = 'TIME<<' & FORMAT(LAlpha,@T04) & '>'
 END
 IF ~SELF.GetFieldFeq(eFld:Alpha)
 CHANGE(SELF.FieldQ.FieldFEQ,lAlpha)
 END
 FieldChoice = WHO(SELF.ListQueue,ColumnChoice)
 SELF.DebugOut('FieldChoice: '&CLIP(FieldChoice),'Filter.TakeDropEvent')
 PrefixLen = INSTRING(':',FieldChoice,1,1) !LEN('f')
 IF PreFixLen
 SELF.LabelQ.Prefix=FieldChoice[1 : PrefixLen]
 GET(SELF.LabelQ,SELF.LabelQ.Prefix)
 IF NOT ERRORCODE()
 SELF.ParseField(FieldChoice,SELF.LabelQ.Label)
 ELSE
 SELF.DebugOut('Error getting label: '&ERROR(),'Filter.TakeDropEvent')
 EXIT
 END
 END
 SELF.DebugOut('Field: '&CLIP(FieldChoice),'Filter.TakeDropEvent')
 IF ~SELF.GetFieldFeq(eFld:QueryField)
 CHANGE(SELF.FieldQ.FieldFEQ,FieldChoice) | !UPPER(FieldChoice[PrefixLen + 1 : LEN(CLIP(FieldChoice))]) & ']')
 ELSE
 SELF.DebugOut('Error getting FieldFEQ','Filter.TakeDropEvent')
 END
 IF ~SELF.GetFieldFEQ(eFld:QueryAction)
 CHANGE(SELF.FieldQ.FieldFEQ, '=')
 END
 DISPLAY

The GetQueryFieldItem routine
This routine appends the contents of the QueryField to the QueryBuilder field by first
getting the field equate for the QueryField and then calling the BuildAction method
which handles the concatenation.

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 13 of 59

GetQueryFieldItem ROUTINE
 IF ~SELF.GetFieldFEQ(eFld:QueryField)
 SELF.BuildAction(CONTENTS(SELF.FieldQ.FieldFEQ))
 DISPLAY(SELF.FieldQ.FieldFEQ)
 END

Building and checking the query
The original BuildAction procedure has the following code:

BuildAction PROCEDURE(pAct)
 CODE
 IF CLIP(LOC:QueryBuilder)
 LOC:QueryBuilder = CLIP(LOC:QueryBuilder) & ' ' & pAct
 ELSE
 LOC:QueryBuilder = pAct
 END

 DISPLAY(?LOC:QueryBuilder)

 IF CheckQuery(LOC:QueryBuilder) THEN DO GoGreen ELSE DO GoRed.
 RETURN

The BuildAction method is essentially the same as the local procedure in the example.
The calls to GoGreen and GoRed have been moved to the CheckQuery method to be
discussed below as they need to be implemented whenever the CheckQuery method is
called. The CheckQuery method also uses the SELF.Query property of the class, so the
parameter is no longer needed. The assignment to SELF.Query has been reduced to one
line of code.

!--
PDSQLFilterCT.BuildAction PROCEDURE(STRING pAction)
!--
 CODE
 SELF.Query=LEFT(CLIP(SELF.Query) & ' ' & pAction)
 DISPLAY
 SELF.CheckQuery()

Each time the QueryBuilder field (SELF.Query property) is changed, it is checked by
executing an SQL statement. The sample procedure uses a locally declared view and a hand

coded SELECT query, returning true or false depending on whether there is an error.

Here is a generic view:

QCheckView VIEW(A_GenericValues)
 PROJECT(GV:String1)
 END

Because the query is not actually executing (SET NOEXEC ON), the new CheckQuery
method uses the existing Browse view rather than creating a separate test view. The

GoGreen and GoRed procedures are called depending on whether the query succeeds or
fails. A new class property is introduced to display the Query Error when an attempt is
made to actually execute the query and the test fails.

CheckQuery PROCEDURE(pQuery)
LocalReturnValue BYTE
 CODE
 OPEN(QCheckView)
 QCheckView{PROP:SQL} = 'SET NOEXEC ON SELECT * FROM ' & NAME(QD_Hold) & |
 ' JOIN ' & NAME(ID_Lot) & ' ON QD_Hold.[PalletNum] = ID_Lot.[PalletNum] ' & |
 ' WHERE ' & CLIP(DecodeQuery(pQuery)) & ' SET NOEXEC OFF'
 IF ERRORCODE() = 0 THEN LocalReturnValue = TRUE.
 CLOSE(QCheckView)
 DO EndLocalProcedure
EndLocalProcedure ROUTINE
 RETURN(LocalReturnValue)

The CheckQuery procedure calls a DecodeQuery procedure that converts the Date and
Time entries in the query to SQL formats.

CheckQuery PROCEDURE(pQuery)
LocalReturnValue BYTE
 CODE
 OPEN(QCheckView)
 QCheckView{PROP:SQL} = 'SET NOEXEC ON SELECT * FROM ' & NAME(QD_Hold) & |
 ' JOIN ' & NAME(ID_Lot) & ' ON QD_Hold.[PalletNum] = ID_Lot.[PalletNum] ' & |
 ' WHERE ' & CLIP(DecodeQuery(pQuery)) & ' SET NOEXEC OFF'
 IF ERRORCODE() = 0 THEN LocalReturnValue = TRUE.
 CLOSE(QCheckView)
 DO EndLocalProcedure
EndLocalProcedure ROUTINE
 RETURN(LocalReturnValue)

The DecodeQuery method and local routine are exactly the same except for doubling the
left angle brackets.

DecodeQuery PROCEDURE(pCodedQuery) ! From local procedure.
LocalReturnValue STRING(10000)
StringPos LONG
EndBracket LONG
CodeLen LONG

 CODE

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 14 of 59

 CodeLen = LEN('DATE<')
 ! Fix Dates
 LOOP
 StringPos = INSTRING('DATE<',pCodedQuery,1,1)
 EndBracket = INSTRING('>',pCodedQuery,1,StringPos)
 IF StringPos AND EndBracket
 pCodedQuery = pCodedQuery[1 : StringPos - 1] & |
 DEFORMAT(pCodedQuery[StringPos + CodeLen : EndBracket - 1],@D01) & |
 pCodedQuery[EndBracket + 1 : LEN(CLIP(pCodedQuery))]
 ELSE
 BREAK
 END
 END

 ! Fix Times
 CodeLen = LEN('TIME<')
 LOOP
 StringPos = INSTRING('TIME<',pCodedQuery,1,1)
 EndBracket = INSTRING('>',pCodedQuery,1,StringPos)
 IF StringPos AND EndBracket
 pCodedQuery = pCodedQuery[1 : StringPos - 1] & |
 DEFORMAT(pCodedQuery[StringPos + CodeLen : EndBracket - 1],@D04) & |
 pCodedQuery[EndBracket + 1 : LEN(CLIP(pCodedQuery))]
 ELSE
 BREAK
 END
 END

 LocalReturnValue = pCodedQuery
 RETURN(pCodedQuery)

The GetJoin method returns a string with all the files required by the query and their join
statements. It requires a new queue of file names and their join statements, a method to add

files based on template entries, and the GetJoin method to build the string from the queue.
The queue property is created and disposed in the Construct and Destruct methods.
Shown below are the queue definition and the two methods.

ViewQT QUEUE,TYPE
ViewFile &FILE
ViewJoin CSTRING(255)
 END
!--
PDSQLFilterCT.AddJoin PROCEDURE(FILE pFile,STRING pJoin)
!--
 CODE
 SELF.ViewQ.ViewFile &= pFile
 SELF.ViewQ.ViewJoin=pJoin
 ADD(SELF.ViewQ)
!--
PDSQLFilterCT.GetJoin PROCEDURE()
!--
RV STRING(5000)
 CODE
 LOOP I#=1 TO RECORDS(SELF.ViewQ)
 GET(SELF.ViewQ,I#)
 RV = LEFT(CLIP(RV)&CHOOSE(SELF.ViewQ.ViewJoin<>'',' JOIN','')&' '&NAME(SELF.ViewQ.ViewFile)&' '&CLIP(SELF.ViewQ.ViewJoin))
 END
 SELF.DebugOut('Join: '&CLIP(RV),'Filter.GetJoin')
 RETURN CLIP(RV)

The template prompts use a button with the MULTI attribute. Note that the class code adds
the primary file to the queue in the AddQueryFields method.

 #BUTTON('Test View Joins'),MULTI(%Joins,%joinFile)
 #PROMPT('Join File',FILE),%JoinFile,REQ
 #PROMPT('Join Expression',TEXT),%JoinExpression
 #ENDBUTTON

The template then adds the joins at the end of the init method.

#!--
#AT(%PDSQLFILTERMethodCodeSection,%ActiveTemplateInstance),PRIORITY(7500),WHERE(%pClassMethod='Init')
#!--
 #FOR(%FilterField)
SELF.AddField(%FilterFieldNo,%FilterField)
 #ENDFOR
 #FOR(%Joins)
SELF.AddJoin(%JoinFile,'%JoinExpression')
 #ENDFOR
#ENDAT

Here is a sample entry.

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 15 of 59

Firgure 2. Template entries for joins.

Executing queries
The ExecQuery routine in procedure code checks the query, then sets the
PROP:SqlFilter, and calls two browse class method to redisplay the query.

ExecQuery Routine
ExecQuery ROUTINE
 IF ~CheckQuery(LOC:QueryBuilder)
 MESSAGE('Your query statement contains errors. Please correct these errors first.','Query Not Executed..')
 EXIT
 END

 BRW4::View:Browse{PROP:SQLFilter} = CLIP(DecodeQuery(LOC:QueryBuilder))
 BRW4.ResetFromBuffer
 BRW4.PostNewSelection

The ExecQuery method makes a couple of small changes. The first is to display the
QueryError if one exists after a failed call to CheckQuery.

!--
PDSQLFilterCT.ExecQuery PROCEDURE()
!--
 CODE
 IF ~SELF.CheckQuery()
 MESSAGE(SELF.TranslateString(eExecQueryMsga)&':<13,10,13,10>'&|
 CLIP(SELF.QueryError)&'<13,10><13,10> '&SELF.TranslateString(eExecQueryMsgB),|
 SELF.TranslateString(eExecQueryMsgTitle),|
 ICON:Exclamation)
 CLEAR(SELF.QueryError)
 ELSE
 SELF.SetSqlFilter()
 SELF.BC.ResetFromBuffer
 SELF.BC.PostNewSelection
 END

The second is to translate the strings in the MESSAGE. Note that PD Translator Plus will
automatically translate messages using PROP:MessageHook, but would not translate a
variable message like this one. Because it is a variable message, the message text is put into
an equate which in turn is put in the Translation (TRN) file. These strings are then put into a

TranslateString method call.

eExecQueryMsgA EQUATE('Your query statement contains errors')
eExecQueryMsgB EQUATE('Please correct these errors first.')
eExecQueryMsgTitle EQUATE('Query Not Executed..')

A final change is to call a new SetSqlFilter method. Rather than assigning the filter
string the view SQLFilter property, wiping out any filters that may exist within the browse
class, it uses the browse classes SetFilter method with a second parameter to identify the
filter name. The ResetFromBuffer browse class method builds the filter internally.

!--
PDSQLFilterCT.SetSQLFilter PROCEDURE()
!--
 CODE
 IF SELF.Query<>''
 SELF.BC.SetFilter('(SQL(' & SELF.DecodeQuery(SELF.Query) & '))','PDSQLFILTER')
 ELSE
 SELF.BC.SetFilter('','PDSQLFILTER')
 END

Saving and loading queries
In the Init method I have covered passing the FileManager for saved queries and the
field used for query categories. Some additional minimum properties are necessary for
loading and saving queries. The class library assumes a simple structure for this file and then
extracts needed information from file, key, and file record. It also adds virtual methods that
that can be used to override assumptions if the developer file has a different structure. The

expanded list of class properties to handle saved queries is shown below. The QueryQ is
used to display a list of saved queries when the user selects the Load Query button.

QueryfileIDKey &KEY
QueryFileID ANY
QueryFileCategoryKey &KEY
QueryfileCategory ANY
QueryFileName ANY
QueryFileQuery ANY
QueryQ &QueryQT

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 16 of 59

The GetQueryFileInfo method declares reference to a TheFile which is the file
associated with the FileManager class, AKey which can be used to examine its keys, and
ThisGroup which can be used to examine the fields in the file’s record structure.

!--
PDSQLFilterCT.GetQueryFileInfo PROCEDURE()
!--
TheFile &FILE
AKey &KEY
ThisGroup &GROUP
 CODE
 IF SELF.QueryG.FM &= NULL THEN RETURN.
 DO r_GetKeysandFields

r_GetKeysAndFields ROUTINE
 DATA
Keys SIGNED
CategoryKey &KEY
 CODE
 TheFile &= SELF.QueryG.FM.File
 Keys=TheFile{PROP:Keys}
 ASSERT(NOT Keys < 2,'The Saved Query file needs at least two keys, one a primary id key, the other a category key.')
 LOOP I# = 1 TO Keys
 AKey &= TheFile{PROP:Key, I#}
 CASE AKey{PROP:Components}
 OF 1
 IF SELF.QueryFileIDKey &= NULL
 ASSERT(AKey{PROP:Primary}=1,'Single component key is not primary.')
 ASSERT(AKey{PROP:Dup}<>1,'Primary key must not allowd duplicates.')
 SELF.QueryfileIDKey &= TheFile{PROP:Key, I#}
 END
 IF SELF.QueryFileID &= NULL
 SELF.QueryFileID &= SELF.QueryG.FM.GetField(AKey,1)
 END
 OF 2
 IF SELF.QueryFileCategoryKey &= NULL
 ASSERT(AKey{PROP:Primary}='','Single component key is not primary.')
 ASSERT(AKey{PROP:Dup}<>1,'Named query key must not allowd duplicates.')
 SELF.QueryFileCategoryKey &= TheFile{PROP:Key, I#}
 END
 IF SELF.QueryFileCategory &= NULL
 SELF.QueryfileCategory &=SELF.QueryG.FM.GetField(AKey,1)
 END
 IF SELF.QueryFileName &= NULL
 SELF.QueryFileName &= SELF.QueryG.FM.GetField(AKey,2)
 END
 ELSE
 !-- If there are keys that do not meet this spec, they you'll have to do some hand coding in the app embed.
 END
 END
 IF SELF.QueryFileQuery &= NULL
 ThisGroup &= TheFile{PROP:Record}
 SELF.QueryFileQuery &= WHAT(ThisGroup,eQueryPosition)
 END

The method gets the number of keys in the file and then looks for a primary key with a
single ID field and one with two fields, one for the category and one for the name. It then

assumes the query field itself is in a position eQueryPostion, an equate in the Translation
file that can easily be changed by the developer. As series of assert statements, show below,
checks whether these fields and assumptions hold true.

 !-- If you get an error on one of these, you need to hand code missing field
 ! references. Use the GetQueryFileInfo method before the parent call embed.
 ! Assign the following:
 ! SELF.QueryFileIDKey
 ! SELF.QueryFileID
 ! QueryFileCategoryKey
 ! QueryFileCategory
 ! QueryFileFileName
 ! Values can be set in the SetQueryFile method for loading.
 ! When Saving, values can be primed in the QueryFilePrimeUpdate method.
 ASSERT(NOT SELF.QueryFileName &= NULL,'Query field was not found. See notes above')
 ASSERT(NOT SELF.queryFileID &= NULL,'Primay field not found. See notes above')
 ASSERT(NOT SELF.QueryG.Category &= NULL,'Category not found. See notes above')
 ASSERT(NOT SELF.QueryFileQuery &= NULL,'The query field in the query file not found. See notes above')

If the file has a different structure then the developer will need to modify the class or use the
virtual embed before the parent call to assign reference variables. If a field has been
assigned, the method will not override it. As an example, this would accommodate having
queries segregated by user or security level.

Now that the query FileManager, fields, and keys are known, it is possible to load the
query queue with saved queries. To handle fields that may have been added and allow the
developer to filter records if needed, two methods are added, one for priming key fields
before setting the file, and one for validating records.

!--
PDSQLFilterCT.LoadQueryQ PROCEDURE()
!--
RV BYTE

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 17 of 59

 CODE
 IF SELF.QueryG.FM &= NULL
 RV=1
 ELSIF SELF.QueryG.FM.Open()
 RV=1
 ELSE
 SELF.QueryG.FM.UseFile()
 SELF.QueryG.FM.ClearKey(SELF.QueryFileCategoryKey)
 SELF.SetQueryFile()
 LOOP UNTIL SELF.QueryG.FM.Next()
 SELF.Debugout('Category '&SELF.QueryFileCategory,'Filter.loadQueryQ')
 IF SELF.QueryFileCategory<>SELF.QueryG.Category
 BREAK
 END
 CASE SELF.ValidateQueryRecord()
 OF 1 !Record Filtered
 CYCLE
 OF 2 !Out of Range
 BREAK
 END
 ASSERT(NOT SELF.QueryFileName&=NULL,'Query File name is NULL')
 ASSERT(NOT SELF.QueryQ &= NULL,'QueryQ is null')
 CLEAR(SELF.QueryQ)
 SELF.QueryQ.QueryName=SELF.QueryFileName
 SELF.QueryQ.QueryID=SELF.QueryFileID
 ADD(SELF.QueryQ,SELF.QueryQ.QueryName)
 END
 SELF.QueryG.FM.Close
 END
 RETURN RV

Without embed code, the ValidateQueryRecord method simply returns 0. The
SetQueryFile sets the file for record processing.

!--
PDSQLFilterCT.SetQueryFile PROCEDURE()
!--
 CODE
 ASSERT(NOT SELF.QueryG.Category &= NULL OR NOT SELF.QueryG.Category='','Query category must be specified')
 SELF.QueryFileCategory=SELF.QueryG.Category
 SET(SELF.QueryFileCategoryKey,SELF.QueryFileCategoryKey)
LoadQueryAction
!--
PDSQLFilterCT.LoadQueryAction PROCEDURE()
!--
 CODE
 SELF.Query=SELF.LoadQuery()
 IF ~CLIP(SELF.Query) THEN RETURN.
 DISPLAY
 IF SELF.CheckQuery()
 SELF.ExecQuery
 END

The LoadQuery method is called when the Load Query button is pressed. It calls the
window procedure previously discussed. If a query is loaded, it checks it and then executes
it if the check succeeds.

!--
PDSQLFilterCT.LoadQuery PROCEDURE()
!--
 INCLUDE('PDSQLFILTER.TRN','LOADQUERY')
RV STRING(10000)
 CODE
 RV=SELF.Query
 OPEN(LoadQueryW)
 GET(SELF.QueryQ,1)
 SELECT(?List,1)
 SELF.Translate(LoadQueryW)
 SELF.DebugOut('QueryQ Records: '&RECORDS(SELF.QueryQ),'Filter.LoadQuery')
 ACCEPT
 CASE EVENT()
 OF EVENT:Accepted
 CASE FIELD()
 OF ?DeleteBtn
 GET(SELF.QueryQ,CHOICE(?List))
 IF NOT ERRORCODE()
 SELF.QueryFileID=SELF.QueryQ.QueryID
 IF ~SELF.QueryG.FM.TryFetch(SELF.QueryFileIDKey)
 SELF.QueryQ.QueryID=SELF.QueryFileID
 IF ~SELF.QueryG.FM.DeleteRecord()
 GET(SELF.QueryQ,SELF.QueryQ.QueryID)
 IF NOT ERRORCODE()
 DELETE(SELF.QueryQ)
 END
 END
 END
 END
 OF ?SelectBtn
 GET(SELF.QueryQ,CHOICE(?List))

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 18 of 59

 IF NOT ERRORCODE()
 SELF.QueryFileID=SELF.QueryQ.QueryID
 IF ~SELF.QueryG.FM.TryFetch(SELF.QueryFileIDKey)
 RV= SELF.QueryFileQuery
 SELF.LastQueryID=SELF.QueryFileID
 BREAK
 END
 END
 END
 END
 END
 RETURN CLIP(RV)

The LoadQuery method, called LoadQueryAction, opens a window displaying a list of
saved queries. These may be Selected, Deleted, or the window may be closed without a

selection. The queue handling is quite simple. The FileManager does all the work of
handling the file.

Note that there is an INCLUDE statement referencing a section in the Translation file. This
section contains the window definition. The Translate(WINDOW pWin) method is called
immediately before the ACCEPT loop after opening the window. This allows for multi-
language development. You can modify the appearance of this window to suit your own
standards and translate it to the language used in your application. You could also add a
Help ID.

SECTION('LOADQUERY')
LoadQueryW WINDOW('Load Query'),AT(,,205,203),|
FONT('MS Sans Serif',8,,FONT:regular),CENTER,GRAY
 LIST,AT(8,8,145,180),USE(?List),VSCROLL,|
 FORMAT('480L(2)|_M~Saved Queries~@s120@#1#'),FROM(SELF.QueryQ)
 BUTTON('&Select'),AT(164,132,35,14),USE(?SelectBtn),DEFAULT
 BUTTON('&Delete'),AT(164,152,35,14),USE(?DeleteBTN)
 BUTTON('Cl&ose'),AT(164,176,35,14),LEFT,STD(STD:Close)
 END

Figure 3. Load query window.

Like the LoadQuery method, SaveQuery has a window that is declared in the Translation
file. It is called from the Save Query button which is enabled only if the QueryBuilder
field contains a valid query.

!--
PDSQLFilterCT.SaveQuery PROCEDURE()
!--
Overwrite BYTE
ThisName STRING(250)
SavName STRING(250)
 INCLUDE('PDSQLFILTER.TRN','SAVEQUERY')
 CODE
 OPEN(SaveQueryW)
 SELF.Translate(SaveQueryW)
 IF NOT SELF.LastQueryID &= NULL
 SELF.DebugOut('Last Query ID: '&SELF.LastQueryID,'Filter.SaveQuery')
 SELF.QueryFileID=SELF.lastQueryID
 IF ~SELF.QueryG.FM.TryFetch(SELF.QueryFileIDKey)
 SELF.DebugOut('Last Query ID Found','Filter.SaveQuery')
 ?LastQueryName{PROP:Text}=SELF.TranslateString(_Query_LastName)&|
 ': '&SELF.QueryFileName
 SavName=SELF.QueryFileName
 ThisName=SELf.QueryFileName
 Overwrite=TRUE
 UNHIDE(?Overwrite)
 UNHIDE(?LastQueryName)
 DISPLAY
 ELSE
 SELF.DebugOut('Last Query ID NOT Found','Filter.SaveQuery')
 SELF.LastQueryID &= NULL
 END
 END

If the user previously loaded a query using the Load Query button, the LastQueryID
property will have been set (will not be null) and the last query loaded. The user is then also
given an option to overwrite the last query or save the current query as a new one. The
name of the last query is displayed in a string on the window along with a title that is
translated.

SECTION('SAVEQUERY')
SaveQueryW WINDOW('Save Query'),AT(,,279,73),FONT('MS Sans Serif',8,,FONT:regular),CENTER,GRAY
 PROMPT('Query &Name:'),AT(14,8),USE(?Prompt1)
 ENTRY(@s120),AT(66,8,193,10),USE(ThisName)

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 19 of 59

 CHECK('Overwrite last loaded query?'),AT(66,20),USE(OverWrite),HIDE
 STRING('***'),AT(66,32),USE(?LastQueryName),HIDE
 BUTTON('&OK'),AT(97,52,41,14),USE(?OkButton),DEFAULT
 BUTTON('&Cancel'),AT(141,52,41,14),USE(?CancelButton),STD(STD:Close)
 END
_Query_LastName EQUATE('Last Name')

The window contains hidden fields that are displayed only if a query was previously loaded.
The section also contains an equate for a string the developer can modify.

 ACCEPT
 CASE ACCEPTED()
 OF ?OKButton
 IF Overwrite
 SELF.QueryFileName=ThisName
 SELF.QueryFileQuery=SELF.Query
 SELF.QueryFilePrimeUpdate()
 IF NOT SELF.QueryG.FM.Update()
 SELF.QueryQ.QueryName=SavName
 GET(SELf.QueryQ,SELF.QueryQ.QueryName)
 IF NOT ERRORCODE()
 SELF.QueryQ.QueryName=ThisName
 PUT(SELF.QueryQ)
 SORT(SELF.QueryQ,SELF.QueryQ.QueryName)
 ELSE
 SELF.DebugOut('Error Getting Prior Queue '&CLIP(SELF.QueryQ.QueryName)&' '&ERROR(),'FILTER.SaveQuery')
 END
 ELSE
 CYCLE
 END
 ELSE
 SELF.QueryFileName=ThisName
 SELF.QueryFileQuery=SELF.Query
 SELF.QueryFileCategory=SELf.QueryG.Category
 SELF.QueryFilePrimeInsert()
 IF NOT SELF.QueryG.FM.Insert()
 SELF.QueryQ.QueryName = ThisName
 SELF.QueryQ.QueryID = SELF.QueryFileID
 ADD(SELF.QueryQ,SELF.QueryQ.QueryName)
 ELSE
 CYCLE
 END
 END
 SELF.LastQueryID &= NULL
 POST(EVENT:CloseWindow)
 END
 END

The method also calls two place holder methods that the developer can user to assign other

fields on an update or insert: QueryFilePrimeUpdate and QueryFilePrimeInsert.
The Figure 4 shows the method in action.

Figure 4. Save query window.

Other methods
The reset method clears the filter, clears the Alpha field and the LastQueryID, applies the
filter, and resets the browse using the browse class methods.

!--
PDSQLFilterCT.Reset PROCEDURE()
!--
 CODE
 SELF.Query=''
 SELF.SetSQLFilter()
 IF ~SELF.GetFieldFEQ(eFld:Alpha)
 CHANGE(SELF.FieldQ.FieldFEQ,'')
 END
 SELF.LastQueryID &= NULL
 DISPLAY()
 SELF.Bc.ApplyFilter()
 IF SELF.CheckQuery()
 SELF.BC.ResetFromBuffer
 SELF.BC.PostNewSelection
 END

The BuildText method copies the contents of the text entry to the QueryBuilder field
and then clears the text field.

!--
PDSQLFilterCT.BuildText PROCEDURE()
!--
 CODE
 IF SELF.GetFieldFEQ(eFld:Alpha) THEN RETURN.
 IF CONTENTS(SELF.FieldQ.FieldFEQ) = '' THEN RETURN.
 SELF.BuildAction(CLIP(CONTENTS(SELF.FieldQ.FieldFEQ)))

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 20 of 59

 CHANGE(SELF.FieldQ.fieldFEQ,'')
 DISPLAY
 SELF.CheckQuery()

The BuildField method copies the current selection in the QueryFieldQ to the
QueryBuilder field. The procedure example did this with every new selection. This could
be duplicated by calling BuildField from the TakeNewSelection method which is
otherwise an empty shell virtual procedure.

!--
PDSQLFilterCT.BuildField PROCEDURE()
!--
 CODE
 IF SELF.GetFieldFEQ(eFld:QueryField) THEN RETURN.
 GET(SELF.QueryFieldQ,CHOICE(SELF.FieldQ.FieldFEQ))
 SELF.BuildAction(SELF.QueryFieldQ.QueryField)
 DISPLAY
 SELF.CheckQuery()

Concluding thoughts
At this point the class is working with separate class INC, CLW, TRN, and TPL files. It is
worth cleaning up and organizing the files according a bit. Copying revisions back into the
PD Class Generator template can be helpful in doing this, but is certainly not necessary.

It can, for example, be helpful to list the class methods in some order. I usually list the

Construct/Destruct methods first, followed by private methods, and then all other
methods alphabetically. Using the Class Generator, they can easily be put in order in both
the INC and CLW files.

Figure 5. An ordered list of methods.

Class data - global and local includes

Data and typed definitions, such as queues and groups, can go in into the CLW file event
though they may be referenced as parameters or property definitions in the INC file. If an
item needs to be referenced in the application outside of the classes, then they need to go
into the INC file. In this example, all the typed queues are in the CLW file. The

SavedQueryGT is declared in the INC file because an instance of it needs to be declared in
the procedure so it can be passed as a parameter to the Init method.

If the class is to implement something, then the file declaring the implementation needs to be
in the INC file. An example in this case is the ABWINDOW.INC file because the

WindowComponent is implemented is implemented by the class. The ABBROWSE.INC file
can be in the CLW file.

Translation file

Translation files should contain all the items that can be modified by developer. They are
designed to be copied to the application directory so they will not be overwritten by new
installs. Third party providers sometimes change these files, so they should be checked when
a new install is done.

Class files with sections can easily be included in many locations as was done here.

Figure 6. Translation (TRN) file sections and locations.

Overview
Creating shell class templates that instantiate your class object, INC, CLW, and Translation
(TRN) is a useful first step in developing a new class. From there you can hand code and
test in incremental steps, reworking names and code as needed. The PD Class Generator is a
good tool for doing this, but it can and has been will done by taking a sent of shell files and
replacing about a dozen interrelated labels across the set of files.

A working procedure is a good starting point, but often presents tough challenges which
changing from procedure specific code to more generic class code. As you develop
procedures, it is important to think about places where other developers might want to
modify your methods and provide virtual methods that appear in the embed list for them to

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 21 of 59

http://www.prodomus.com/PD%20Class%20Generator/PDClaGen.htm

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

do this. If your class is going to be used by other developers for applications in other
languages or in an international market, it is important to provide for customization and
multi-language translation. A method for debugging can be quite handy. Fortunately,
Clarion, with the way it handles classes and the many properties available, offers a great
environment for doing this.

If you like the idea of the SQL filter class, but are concerned about the amount of real estate
it takes up, you might consider a derived class that populates a load and reset button and

maybe a single line QueryBuilder field that could be the target of the Browse drag and
drop. Other controls could be put on a class window. At first blush, this seems like it would
be easy and a nice challenge to test your class writing skills. If you succeed, send Dave
Harms an article with code.

Writing this class and template was a interesting challenge keeping me busy over the
holidays. I was concerned about working with SQL in Clarion, but this turned into a

relatively small issue. Discovering that PROP:Alias let me use the file names in queries was
an important early find. Unexpectedly, probably the greatest challenge was getting view,
file, and field properties, as the label, field, and fields properties and the entities to which
they can be applied and their indexing are difficult to sort out. The PDClass Generator was
extremely helpful in the first stage of creating the set of coordinated and ready-to-compile
shell files.

One final caveat – the specific SQL filter control template appears to be working but has not
been tested with a large database or more than a very simple view and application. It also
not been user tested, so there may be issues. If you plan to use it, do some more testing.

Download the source

Article comments

Philip S. Will is President of ProDomus, Inc, a SoftVelocity Third Party Accessories Partner and Clarion applications developer. He has been a
presenter at several Clarion conferences, and has published articles on Internationalization and template writing. His principal third party products
include PD Lookups, PD Translator Plus, and PD 1-Touch Date Tools. Philip has been coding in Clarion since 1991.

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 22 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/cmag/v13/files/v13n01sqlclass1.zip
http://www.prodomus.com/

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

Tip of the Week #9: Code Completion
Window Width

By Dave Harms
Posted February 2 2011

Code completion is an enormously popular feature in modern programming IDEs; I've
quickly become as dependent on it in C7 as I am in Visual Studio.

Not everyone is a fan of having the editor's help when it comes to writing code. Some argue
that code completion (or Intellisense, to use Microsoft's name for this feature) makes
developers more dependent on the IDE and less dependent on their own memories.

That's probably true. And ideally we'd all be so brilliant and have such retentive minds that
we could write pages of code without referring to documentation.

But apps and the APIs they call are getting so big that most of us benefit from a little help.

C7's code completion can be a little wonky at times (when calling class methods I often find
myself backing up and pressing "." a second time) but I've already become quite attached to
it. And a few days ago I came across a little feature that makes me like it even more.

I was looking through the IDE options when I noticed something under Text Editor | Clarion
for Windows (Figure 1).

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 23 of 59

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home

Figure 1. The Clarion text editor options

For the first time I noticed a checkbox for "Remember completion list width".

It had never occurred to me that I could change the code completion popup window's width.
So I gave it a try. Figure 2 shows the code completion list; in Figure 3 I've dragged the
window so it's quite a lot wider.

Figure 2. Narrow list

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 24 of 59

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

Figure 3. Wide list

I'm not convinced that the checkbox does anything, because on my machine the IDE seems
to remember the last width I set whether the option is checked or not. But that doesn't
matter a whole lot - I just like being able to choose the width of the window.

Now if I could only adjust the width of the first column....

Article comments

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He is also co-author with Ross Santos of
Developing Clarion for Windows Applications, published by SAMS (1995), and has written or co-written several Java books. David is a member of the
American Society of Journalists and Authors (ASJA).

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 25 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://asja.org/

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

Webinar this Friday: If you can't test
your code, how do you know it isn't
crap?

By Dave Harms
Posted February 8 2011

Most Clarion developers use Clarion because of the AppGen; they let it do the grunt work,
and they slot their own code into various embed points.

But it's possible to overuse embeds. Put all your source code there and you can't really reuse
it, short of copying and pasting.

So what's the answer?

The first step is to start pulling that embed code out into reusable procedures or, even better,
classes.

But that's just the first step.

The next, and absolutely vital, step is to create automated tests you can execute against that
code.

Most of us don't really test our code. We write some embed code, and then we run the app
and we click some buttons and type some text and check to see if everything's running as
expected. Or worse, we let our customers do the testing.

That's little more than throwing code up against the wall to see what sticks. It's not
systematic, it's not easily repeatable, and above all it isn't automated.

If you want your applications to be competitive, they have to be reliable. And the first step
to ensuring the reliability of your entire application is to begin verifying the reliability of the
code you write.

The webinar
On Friday, February 11 2011 join me in a ClarionLive webinar on unit testing. During the
webinar I will take the ClarionLive Class Bash ASCII file reading/writing classes and submit
them to unit testing, using the ClarionTest framework. I'll show how to write tests for the

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 26 of 59

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home
http://clarionlive.com/

existing classes and I'll explore a number of refactorings to make those classes more testable
and reusable.

The webinar starts at 9 a.m. PST (GMT-8). Please register ahead of time.

Article comments

by Andrew Barnham on February 8 2011 (comment link)

Shame I am in such an ungodly timezone. Will watch once vid is online.

Clarion language syntactically has a powerful advantage for providing supporting tools
for a comprehensive test framework: the ACCEPT loop and a restricted number of GUI
widgets. On my TODO list, I will hopefully have lots of free time in a month or two, is
to hook a test framework into Clarion2Java. The runtime/compiler itself has a test suite
of over 2000+ test cases; but not framework yet to write tests for clarion code itself;
and having done unit testing for years now I am very eager to throw some test code
around the apps I look after.

Automated testing of GUI apps, even webapps to some extent, is painful. Simulating KB
and mouse gestures is highly brittle process (as evidenced in test cases in clarion2java
runtime). But with ACCEPT loop you only need to record event list + a little bit of logic
to track implied behaviour/state of some of the controls. i.e. ACCEPT on entry control
changes value of the variable the ENTRY USE() wraps. The beauty of it is that on your
test runner playback you don't need to startup an actual GUI environment. You could
have a test running ACCEPT loop that is GUI-less and whose primary purpose is to test
behaviour/logic of the application. The test obviously doesn't provide 100% coverage,
but the resulting test code will be simple and easy to manage, non-brittle and exercises
the truly important bits: a good trade off in my mind.

Also the work effort should not be substantial; a few weeks only. Part of that would
involve writing a recorder; like recorder in Selenium. The recorder will monitor your
app as you manually use it, automatically write the clarion (or java) test code and you
only need tweak it to iron out non obvious bits, such test conditions that may change:
like todays date etc.

by Dave Harms on February 8 2011 (comment link)

Andrew,

Those are some very interesting suggestions.

I won't actualy be dealing with the GUI at all - I'll be focusing on testing the business

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He is also co-author with Ross Santos of
Developing Clarion for Windows Applications, published by SAMS (1995), and has written or co-written several Java books. David is a member of the
American Society of Journalists and Authors (ASJA).

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 27 of 59

https://www2.gotomeeting.com/register/184781398
http://www.clarionmag.com/Page/24009#comment2662
http://www.clarionmag.com/Page/24009#comment2663
http://asja.org/

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

logic. I'll also be touching on some of the differences between test-first and test-after
development.

Dave

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 28 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

Tip of the Week #10: Speed Up Source
Navigation With Bookmarks

By Dave Harms
Posted February 11 2011

Clarion 7 has a couple of nice navigation aids that can really speed up your coding, one of
which is the Bookmarks pad.

Bookmarks are useful both inside and outside of the AppGen, but they're most helpful when
you're working with source files.

Open a source file, put the cursor on a line where you want the bookmark, and press Ctrl-
F2. Two things will happen. First, you'll see a bookmark icon appear next to the line of text,
and second, on the bookmarks pad you'll see the same line of text and the source file name
(Figure 1).

Figure 1. Adding a bookmark

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 29 of 59

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home

Obviously you want to select some meaningful text for your bookmark - if you press Ctrl-F2
you'll get a blank line in the Bookmarks pad. You'll still see the name of the file containing
the bookmark, and the line number, but the whole point of bookmarks is to help you
navigate source code. If there isn't any descriptive code where you want to leave the
bookmark, add a comment and bookmark that.

Bookmarks float with the line they're on, so if you insert some text above, the bookmark
moves down. You can use F2 to move to the next bookmark in the file, or Alt-F2 to move to
the previous bookmark. To go to a bookmark in another document you need to actually click
on that bookmark.

Saving bookmarks
Bookmarks are saved between sessions, sometimes. It depends.

Bookmarks in non-generated source files that are part of a project will still be there if you
restart Clarion and reopen the project/solution. So for a hand-coded project, bookmarks
work great.

If you add a bookmark to some generated code, and leave Clarion and come back, that
bookmark will be there. But if you regenerate the file (and only changed files are actually
regenerated) any bookmarks in that file will be lost.

If you have source files in a solution folder, that is a folder that you create under the
solution, bookmarks in those files are not saved. You'll have to add these files to your
project if you want to preserve bookmarks.

This last situation describes how I do almost all my class development: I set up a solution
folder for the class files and open them from there. I've posted a feature request (PTSS
37658) to preserve bookmarks for these files as well.

Bookmarks do work in the embeditor, but they're even more transient than they are in
solution folder source files. As soon as you close the embeditor any bookmarks you've
created in the embeditor go away. It probably shouldn't be too surprising that these
bookmarks vanish, however, since the AppGen actually generates the displayed source each
time you use the embeditor.

On the other hand you can close a source file with a bookmark and the bookmark remains.
Double-click on the bookmark and the IDE will open the file and display the bookmarked
position.

You can also use the Bookmarks pad to navigate between bookmarks inside the embeditor
and bookmarks in source files.

The next time you find yourself shuffling back and forth between different points in source
files or within the embeditor, take a moment to drop in a couple of bookmarks.

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He is also co-author with Ross Santos of

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 30 of 59

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

Article comments

by William Tetley on February 17 2011 (comment link)

Dave,

Another great tip that made me slap my forehead and say "I had no idea". Keep them
coming sir.

by Dave Harms on February 18 2011 (comment link)

Thanks Tony, I'm glad you're finding them useful!

Developing Clarion for Windows Applications, published by SAMS (1995), and has written or co-written several Java books. David is a member of the
American Society of Journalists and Authors (ASJA).

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 31 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/Page/24010#comment2666
http://www.clarionmag.com/Page/24010#comment2667
http://asja.org/

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

MagGem: Validating Credit Card
Numbers

Posted February 16 2011

Credit card validation is one of those things that you don't pay much attention to until you
need to do it. I'm not talking about processing payments - most of us use services for that -
but about that first check that verifies the card number itself is valid, as a guard against
incorrectly entered data.

There is a standard methodology for card number validation: it's called the Luhn algorithm.
It's basically a checksum formula, and is used for credit card numbers, US National Provider
Identifier numbers and Canadian Social Insurance numbers.

Back in 2004 Abe Jimenez needed to do that kind of validation, and to his surprise he
couldn't find a Clarion version of the code. So he wrote one.

Read the article now

Watch the MagGem in ClarionLive Webinar #94

Article comments

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 32 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home
http://en.wikipedia.org/wiki/Luhn_algorithm
http://www.clarionmag.com/cmag/v6/v6n03ccvalidate.html
http://clarionlive.com/index.php?option=com_content&view=article&id=178:webinar-94-craig-ransom-and-using-the-pdf-viewer-activex-control&catid=1:latest-news&Itemid=76

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

MagGem: Backdoors and Other Tricks

Posted February 17 2011

Carl Barnes is one of the most technical Clarion developers I know. His knowledge of
Clarion is encyclopedic; his code is precise. He's written quite a few articles for Clarion
Magazine over the years, including Using KEYSTATE For Backdoors And Other Tricks.
From Carl's introduction:

The Clarion KEYSTATE function returns the status of the "shift type" keys (Shift,
Ctrl, Alt), the lock keys (Caps Lock, Num Lock, Scroll Lock), and the Insert key
(overwrite or insert). These keys are different from the rest of the keys on the
keyboard in that they don't return a KEYCODE value to Clarion when pressed. It
might sound like KEYSTATE isn't good for much more than displaying information
on the status bar, but in fact this function is a great tool for detecting unusual
keystroke combinations (including when the numeric keypad has been used), which
you can use to implement hidden features in your applications. In this article I'll
walk you through detecting key states, and I'll give some examples of useful hidden
behaviors.

Carl goes on to explain in detail how you can use KeyState() and Band() to enable
various non-obvious key combinations for things like security back doors.

Read the article now

Watch the MagGem in ClarionLive Webinar #95

Article comments

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 33 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home
http://www.clarionmag.com/search/find?searchTerm=author%3Abarnes
http://www.clarionmag.com/cmag/v4/v4n01keystate.html
http://www.clarionmag.com/cmag/v4/v4n01keystate.html
http://clarionlive.com/index.php?option=com_content&view=article&id=180:webinar-95-mike-hanson-and-understanding-clarion-templates&catid=1:latest-news&Itemid=76

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

Tip of the Week #11: The Task List

By Dave Harms
Posted February 18 2011

Last week's tip was about using bookmarks to navigate around source files. But as I pointed
out in that article, there are some limitations to bookmarks. They don't persist in the
embeditor, and they don't persist if the file you're editing isn't part of a project.

But there's another way to track specific locations in files that works with any open file and
with the embeditor, and that's the task list.

Figure 1 shows the IDE options window with the General | Task List entry highlighted.

Figure 1. Task list options

The items in the task list are completely arbitrary - they're magic strings, if you like. Magic
because, if you put them in text as a comment, the IDE will see that text as a bookmark. In

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 34 of 59

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home

Figure 2 I've added a couple of !TODO comments and a !HACK comment. These task list
items show up in the Task List pad.

Figure 2. Adding task list items

You can add your own task list items, as Figure 1 indicates. For bookmarks you could use !
BOOKMARK or just !BKMRK. Or use any other text you like. Just enter that text preceded
by an exclamation mark, followed by some comment text.

Task list items are persisted in the embeditor. In Figure 3 I've created a !BKMRK task list
item and have added a corresponding comment.

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 35 of 59

Figure 3. Adding a task list item in the embeditor.

There are two wrinkles to using task list items with the AppGen. One is that after you
generate and come back into the embeditor, you'll see the task list item twice, once for the
automatically generated embeditor temp file, and once for the permanent generated source
file (Figure 4).

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 36 of 59

Figure 4. Duplicate task list items

Double-clicking on the temp file task takes you to the appropriate point in the embeditor.
Clicking on the generated source file task takes you to that line in the generated source file.

The second problem with the task list is that whenever you generate code, the task list is
cleared. If you have task list items in source files you have to close and reopen those files.
I've reported this as PTSS 37689.

Until the task clearing bug is fixed there are really just two main cases for using bookmarks.
One is within the embeditor, especially when you find yourself jumping around between
different embed locations. The other is when you're doing hand code only and not generating
apps.

Even with these restrictions, the task list can be a useful tool.

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He is also co-author with Ross Santos of
Developing Clarion for Windows Applications, published by SAMS (1995), and has written or co-written several Java books. David is a member of the
American Society of Journalists and Authors (ASJA).

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 37 of 59

http://asja.org/

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

Article comments

by Mark Riffey on February 18 2011 (comment link)

This. Is. AWESOME.

by Dave Harms on February 22 2011 (comment link)

Cool - glad you like it, Mark!

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 38 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/Page/24013#comment2668
http://www.clarionmag.com/Page/24013#comment2671

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

Automagical Browse Refreshing

By John Morter
Posted February 18 2011

Automatic browse refreshing perhaps isn't groundbreaking for many in the Clarion
community, but it is one of my favourite nifty tips that make developing apps with Clarion
just so much easier (aka, automagical).

Automatic BrowseBox refreshing may be required when some event has occurred that the
standard template logic is not naturally aware of. Some such examples are:

1. Making a CheckBox selection that is supposed to limit the contents of the BrowseBox
2. Making a FileDrop/Combo selection that is supposed to act as a filter for the BrowseBox
3. Taking some action on an entry/row in the BrowseBox, other than via one of the Update

buttons, where you need the subsequent update to be reflected in the BrowseBox.

In Figure 1, the purpose of the FileDrop and CheckBox selections is to change the contents
of the BrowseBox; The FileDrop selection is supposed to limit the List to only those records
in the table related to a specified Publisher, and the CheckBox selection is supposed to
override the Publisher selection to list all Brandings, regardless of Publisher.

Figure 1. BrowseBox with non-standard influencing “events”

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 39 of 59

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home

This being an SQL-based application, I’m applying these selections via a Filter on the
browse, which will be converted by the ABC templates (version 6.73, in my case, but that's

another story altogether!) into an SQL WHERE clause for server-side SELECTion.

Figure 2. Filter expression to apply CheckBox & FileDrop selections

ListALL is a local variable that’s set to True or False depending on whether the
CheckBox is ticked (or “checked”, in USA-speak) or not.

PubRID is another local variable that receives the record ID (RID) of the Publisher (Pub)
that was selected via the FileDrop.

Figure 3. Action specified for when FileDrop selection completes

If the application is compiled at this point then everything works fine, except … the
BrowseBox is not refreshed whenever the FileDrop or CheckBox selections change.

Consulting the ABC Library Reference results in the following suggestion;

Tip: Use the ResetSort method followed by UpdateWindow to refresh and
redisplay your ABC BrowseBoxes. Or, use the WindowManager.Reset method.

This may sound straightforward, but there are a couple of catches involved.

Firstly, there’s the requirement to get the syntax right, and if you want an efficient result
you’ll need to choose the right embed-point(s) in which to call

ResetSort+UpdateWindow.

Secondly, the ResetSort+UpdateWindow method is a sledgehammer approach.

As a dip back into the ABC Library Reference reveals: “The Reset method calls the
ResetSort and UpdateWindow methods for each BrowseClass object registered by the
AddItem method [and it] calls the ResetQueue method for each FileDropClass object
registered by the AddItem method.” (emphasis added).

This gets the job done, but it means that all BrowseBoxes and all drop lists on the window
are updated … not just and only the one that is the subject of your request to be updated.

Now, this may not be a problem because very often there is only one BrowseBox on the

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 40 of 59

window, such as in my simple example. So what you get is what you wanted … assuming

you’ve placed your calls to ResetSort+UpdateWindow in the correct embed-point(s).

However, there are also times when you have more than one BrowseBox on the window.
And refreshing all BrowseBoxes, when you intended to update one of them, is wasteful of
resources … especially when you’re working with SQL tables.

You can avoid these inefficiencies by calling BrowseClassName.Reset instead, because
that will limit the refresh to only the BrowseBox that belongs to the BrowseClassName …
but there are still the syntax quirks and embed-point placement issues to contend with.

Fortunately, there is a better way and a much easier (this being the part I like best) way to
force a refresh on a BrowseBox.

Before I reveal the punch-line though, yet another check of the ABC Library Reference for

the BrowseClass reveals that; “The AddResetField method specifies a field that the
browse object monitors for changes, then, when the contents of the field changes, refreshes
the browse list.”

What this means is that I can simply use the BrowseClassName.AddResetField method
to declare a field that will be monitored for any change (of that field), and when any change
is detected then the related BrowseBox will be refreshed. Brilliant !

Initially, it may seem that there are much the same syntactical and embed-selection

challenges in applying this method as there is with using BrowseClassName.Reset … and
you’d be right. However, the ABC Templates can handle all this automagically. There's a
[Reset Fields] option on the BrowseBox template. Just add the appropriate field(s) to the
list.

Figure 4. Specifying Reset “triggers” to force BrowseBox refresh

That’s all I need to do: the ABC Templates will call the

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 41 of 59

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

BrowseClassName.AddResetField method for me … using its “knowledge” of where
calls to this method should be placed, with the correct syntax, and with reference to the

same BrowseClassName that’s managing the specific BrowseBox that I want to be
refreshed.

Thereby, whenever any change to either of these variables is detected, the BrowseBox will
be refreshed in the most efficient way possible … because monitoring for these changes is

handled in standard BrowseClass and WindowManager logic (rather than depending on
me to put some syntactically correct code into the right embed-point).

This same approach can be used any other time I need the BrowseBox to be refreshed, such
as when some other action has changed the content of row(s) in the List.

My typical approach, in this case, is to use a simple BYTE variable as the Reset Field, and to
“bump” the value of this variable whenever that “other action” has been, well, actioned.

(eg. ResetTrigger += 1). This works fine, even if actioned more than 255 times (where
255 is the maximum value of a BYTE), because, for a BYTE variable, 255+1=0.

Nifty, eh ?

Article comments

by Lisa Daugherty on February 21 2011 (comment link)

This is a great article... and nicely written. I've always done it the
BrowseClassName.Reset way, so I can't wait to try this new easier method on my next
browse. Thanks!

by John Morter on February 22 2011 (comment link)

Thanks for the kind words, Lisa.

It's a funny thing, isn't it ... how we use a tool without necessarily using all its
features/capabilities - as per my use of Excel. One day I noticed the "Reset" button and
thought; "I wonder what that's for" (?!).

John Morter is Asia Pacific IT Manager for a brand-name multi-national and he's supposed to leave all the fun technical stuff
for others to do. As a result, his Clarion work is developed under the nom-de-keyboard Flat Chat Solutions, where "flat chat" is
an Australian expression meaning doing something at top speed / high velocity.

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 42 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/Page/24014#comment2669
http://www.clarionmag.com/Page/24014#comment2670

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

MagGem: Capitalize The Right Way

Posted February 22 2011

As Mike Hanson pointed out a couple of years ago in Formatting Names Using Proper Case,

Clarion's text capitalization is rudimentary at best. The CAP attribute arbitrarily forces the
first letter of each word to uppercase, which isn't always what you want. Type john smith

and CAP gives you John Smith, but john smith md becomes John Smith Md, von richtoven
becomes Von Richtoven (the 'von' should remain lowercase), and mcdowell becomes
Mcdowell rather than McDowell.

While there are some rules that can be applied to this problem, there are also many special
cases. Happily, Mike has written a class that applies both rules and exceptions to the
problem of capitalization, so if his code doesn't cover some situation you can easily rectify
that with a method call or two.

Read the article now

Watch the MagGem in ClarionLive Webinar #97

Article comments

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 43 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home
http://www.clarionmag.com/cmag/v10/v10n12proper.html
http://www.clarionmag.com/cmag/v10/v10n12proper.html
http://clarionlive.com/index.php?option=com_content&view=article&id=183:webinar-97-bruce-johnson-and-using-css&catid=1:latest-news&Itemid=76

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

MagGem: Everything You Ever Wanted
To Know About Strings

Posted February 24 2011

Strings. Business applications are loaded with them. You could say that we spend a good
chunk of our time as software developers simply dealing with strings: creating them, copying
them, moving them, evaluating them, retrieving and storing them.

A lot of the time we're using a lot more string data than is necessary. That's because most of
the time we're not passing strings to procedures, we're passing copies if strings. That's not a
big deal if the calls are few or the strings are small, but even in the age of the desktop
supercomputer copying too much string data can slow down your app and cause excessive
memory usage.

Back in 2003 Jim Gambon wrote String Flinging, a two part series on the basics of string
handling in Clarion. Among other things Jim covers string references, string slicing, String vs
CString, casting, and returning strings.

This is a must read for anyone wanting to get the most out of their string handling.

Read the article now

Watch the MagGem in ClarionLive Webinar #96

Article comments

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 44 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home
http://www.clarionmag.com/cmag/v5/v5n07strings1.html
http://www.clarionmag.com/cmag/v5/v5n07strings1.html
http://clarionlive.com/index.php?option=com_content&view=article&id=179:webinar-96-dave-harms-from-clarion-magazine-on-practical-unit-testing&catid=1:latest-news&Itemid=76

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

Tip of the Week #12: Searching/Finding
Files Using Redirection

By Dave Harms
Posted February 27 2011

Many of the recent Tips of the Week have focused on C7. This week's tip is a feature that's
actually more fully implemented in C6.

You probably know all about Clarion's redirection (.RED) files. These are used by the IDE
to locate files required by your project. Without a redirection file you'd have to have all of
your application's source and other required files in one big directory. That would be a real
pain, particularly since those files would include everything that's currently in your libsrc
directory, like the ABC classes.

Redirection files are also used to determine where you generate files, which is a good
subject for a future tip. But this week's tip is about using redirection to find the files you are
interested in.

On Clarion 6's File menu there's an option called Search Files (Figure 1).

Figure 1. Search Files

Select this option and you'll see the File Search dialog (Figure 2).

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 45 of 59

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home

Figure 2. The File Search dialog

Note that in Figure 2 I've selected the Use Redirection file checkbox. That disables the
Directory field, so rather than search a specific directory (which is useful it itself) Clarion
will search through all of the directories specified in the redirection file. You also have the
option of using either regular expressions or wild cards in the search.

There are a few limitations in the search. Clarion 6 will list all of the files that match your
search term, but will only take you to the first instance in each file. Also the regular
expression support seems a bit doubtful. Searching for ^FileManager, where the ^ means the
beginning of the line, doesn't work. Actually start and end of line regex characters don't in
C7 either (unlike, say, Visual Studio).

But File Search is still a very handy tool in Clarion 6. And the IDE keeps the last search
results on hand, so you don't have to redo the search if you close the results window.

Clarion 7 has several features that loosely correspond to the Clarion 6 functionality. As
Figure 3 shows, there are some different text search options, including the current
document, the current selection, all open documents, the project, the solution, and a folder.
Searching across multiple documents is still a bit flaky, in my experience. When it works, it's
great.

Figure 3. Clarion 7 search options

If you specify a folder (Figure 4) you can also specify the file extensions to search. And in

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 46 of 59

both cases you can do standard, wildcard and regular expression searches.

Figure 4. File search options

There's also a way to open files via redirection via the File menu (Figure 5).

Figure 5. Opening a file using redirection

This is a loss of functionality in that, to my knowledge, you can't search via the redirection
file in Clarion 7. Also when you open a file using redirection you may not know where that
file comes from. Happily there's a solution to that problem. Just hover your mouse over the
file's tab (Figure 6).

Figure 6. Checking a file's path

You can also right-click on the tab and either copy the path to the clipboard or open the
file's folder.

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 47 of 59

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

Figure 7. File tab options

There are some important differences between Clarion 6 and Clarion 7 when it comes to
searching and opening files via redirection. Clarion 7 is actually better in some respects, but
I still wish I had the ability to search via the redirection file.

Article comments

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He is also co-author with Ross Santos of
Developing Clarion for Windows Applications, published by SAMS (1995), and has written or co-written several Java books. David is a member of the
American Society of Journalists and Authors (ASJA).

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 48 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://asja.org/

Home Subscribe E-Books News Blog Store My ClarionMag My Lists Contact

Highlighting Text With RTF The Easy
Way, Part 1

By Dave Harms
Posted February 28 2011

If you've attended a ClarionLive webinar recently (and if you haven't, you should) you'll
know that John and Arnold asked me to do a weekly special called MagGems, in which I
talk about an article from a past issue of ClarionMag. Recently I mentioned Steve
Bottomley's article Enriching The User's Experience With RTF Displays. Steve's idea was to
use the Clarion RTF control to display color highlighted text to the user, something that isn't
possible with a regular text control.

I remember thinking at the time that I really liked Steve's approach. But it wasn't until just
recently that I needed similar functionality for my own work.

Like a great many of Clarion examples, especially from the early years, the original RTF
code is embed code. There's nothing wrong with embed code per se, except that it's stuck in
an embed. And because it's in an embed you can't easily test the code or reuse the code.

There's a saying that to a man with a hammer, everything looks like a nail. I'm discovering
that to a developer with unit testing tools, everything looks like an opportunity for test-
driven development.

In this article I'll walk you through my approach to turning Steve's RTF idea into a class
using that test-driven development process.

The tools
I do Test-Driven Development (TDD) using ClarionTest, a unit testing framework I
originally wrote based loosely on some of the experiences I've had with unit testing in .NET.
Recently John Hickey and I have made a number of improvements to ClarionTest, and I'll be
writing more about those changes in the near future. For right now, if you want to follow
along go to the Google Code repository and download the latest version of ClarionTest.
There are two zips, one of just source and the other complete with the ClarionTest
executable. You'll also find several files you need to copy to your libsrc directory as well as
a template to copy to your template directory (and you need to register the template). Once
you've done all that you're ready to go.

Getting started
I've written about test-driven development before, so I won't go into the rationale in any

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 49 of 59

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/news
http://www.clarionmag.com/blog/index.html
http://www.clarionmag.com/store
http://www.clarionmag.com/myclarionmag
http://www.clarionmag.com/myclarionmag/lists
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/home
http://clarionlive.com/
http://www.clarionmag.com/cmag/v7/v7n03rtf.html
http://code.google.com/p/clariontest/
http://code.google.com/p/clariontest/
http://www.clarionmag.com/cmag/v11/v11n12problemwithembeds4.html

detail here. But as with all TDD, the starting point is the test. And that means doing a little
bit of setup first.

The first thing I need to do is create a DLL that will contain my unit test procedures. And a
DLL needs a name. I generally create one test DLL for each class I create, and I gave the
DLL the same name as the class followed by _Tests. So before I do anything (and this is
only because of my naming convention) I need to know the name of the class I haven't yet
created.

A class naming digression
Up until recently I didn't have any kind of strategy for naming my Clarion classes. I tended
to keep the names fairly short, and that's fine when you only have a few classes to worry
about. But once you start accumulating dozens of classes, or hundreds, short, cryptic file and
class names are a hindrance.

I've taken a cue from .NET namespaces. Namespaces are a bit like prefixes. In Clarion, two
files can have fields with the same name, and the names don't conflict because each file has
its own prefix. But namespaces are more than a way to avoid naming conflicts - they
provide for a hierarchy of prefixes that you can use to organize your classes by their
functionality or area of concern.

I really wish Clarion Win32 had namespaces, but it doesn't so I have to fake them. I thought

about using names with colons (like System:String), but I prefer to have class names that
exactly match the filenames, and colons aren't legal in filenames. After discussing this with
several other developers I settled on an underscore as a separator. And I further decided to

prefix all the ClarionMag classes with CM_.

A few of the classes I've created under this scheme are:

CM_System_Diagnostics_Debugger
CM_System_Diagnostics_Profiler
CM_System_IO_File
CM_System_IO_FileInfo
CM_System_String
CM_Text_Address

These may seem like very long class names, and they're definitely clunkier than namespaces,
but Clarion 7's code completion pretty much takes the sting out.

Choosing namespaces is a tricky business, and I've already come to regret some of my

choices. But as I already have a CM_Text_Address class, I'm going to go ahead and call
this class CM_Text_RTF. So that will make my test dll CM_Text_RTF_Tests.

In Figure 1 I'm creating my apps in the directory of the same name, and I have Auto create
project subdir turned off.

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 50 of 59

Figure 1. Creating the test DLL, step 1

I'll create this as a DLL (Figure 2) but in fact I'll need to update the project data or C7 will
try to compile it as an EXE.

Figure 2. Creating the test DLL, step 2

In Figure 3 I've opened the project's properties from the solution explorer and have set the
target to DLL instead of EXE.

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 51 of 59

Figure 3. Setting the target to DLL.

While I'm in the project data I might as well set the post-build event. I want the ClarionTest
application to automatically load this DLL and execute any tests. I always have
ClarionTest.exe in my UnitTests directory, above the directories for the individual test DLLs

so it's readily accessible. The /run parameter tells ClarionTest to run the tests immediately.

Figure 4. Setting the post-build task

I'll need to configure this DLL as a test DLL recognizable by ClarionTest. To do that I go to
the global extensions tab and add the ClarionTest TestSupportIncludes extension (Figure 5).

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 52 of 59

Figure 5. Enabling ClarionTest support

That may seem like a lot of work to prepare the test DLL, but it's really not that bad. It
could be made even easier by a utility template. There's one more item for the Todo list.

I'm ready to create my first test procedure. Now, what do I want to test?

The requirement
My requirement is simple: I want to be able to take some plain text, convert it to RTF, and
specify which words in that text should be shown with a specified foreground and/or

background color. I'll call my first test AddText_HighlightWord_VerifyRTF.

In Figure 6 I've chosen the Test Procedure default (note that I'm on the Defaults tab).

Figure 6. Choosing the test procedure default

The test doesn't do anything yet, but I'll go ahead and make it to make sure everything's fine.
After the make completes the post-build tasks loads up ClarionTest and runs my test
procedure (Figure 7).

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 53 of 59

Figure 7. Running the test

Now it's time to add some code, which will break the test.

Starting with broken code
In test-driven development (TDD) you write the test first, even before you write the code.
Not only will that break the test, but the code isn't even going to compile at first. That seems
a bit counter-intuitive, but in fact it can be a powerful tool because it forces you to think
about how you want to use your code before you think about how to write your code.

I try to make my initial test code (well, all my test code) as expressive as possible. I want to
be able to read that code and know instantly what it's doing. So if I have an RTF object
called, oh, rtf, I might write this code:

rtf.SetText('The word red should be displayed in red.')
rtf.HighlightText('red',color:red)

That seems pretty straightforward. But I'm not really testing anything - I need to verify that
the RTF class contains the right text so I can place it in an RTF control. I'll need something
like:

AssertThat(rtf.GetText(),IsEqualTo('dunno what should go here yet'))

AssertThat and IsEqualTo are utility methods provided by the ClarionTest framework.
When you load up a DLL in ClarionTest and run the tests, the ClarionTest window will
display either a Pass message for that test or the results of the first AssertThat that failed.

Something to test against
The bit that's still missing from my unit test is what the expected text should look actually
like. I can generate RTF with the Clarion RTFNotepad example application. In Figure 8 I've
created the text I want.

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 54 of 59

Figure 8. Creating the RTF text

If I save that text to a file and open the file with notepad I see the following (some line
breaks added):

{\rtf1\ansi\ansicpg1252\deff0\deflang4105
{\fonttbl{\f0\fnil\fcharset0 MS Sans Serif;}}
{\colortbl ;\red0\green0\blue0;\red255\green0\blue0;\red8\green0\blue0;}
{*\generator Msftedit 5.41.21.2509;}\viewkind4\uc1\pard\cf1
\highlight0\f0\fs17
The word \cf2 red \cf1 should be displayed in \cf2 red\cf1 .\cf3\par
}

That may look like gibberish, but it's really not too difficult to follow (although if you want
entertainment, try saving that text as a Word RTF doc).

Among other things, RTF files contain groups of characters defined by braces. Another way
to view the document is like this:

{\rtf1\ansi\ansicpg1252\deff0\deflang4105
 {\fonttbl
 {\f0\fnil\fcharset0 MS Sans Serif;}
 }
 {\colortbl ;\red0\green0\blue0;\red255\green0\blue0;\red8\green0\blue0;}
 {*\generator Msftedit 5.41.21.2509;}
 \viewkind4\uc1\pard\cf1
 \highlight0\f0\fs17
 The word \cf2 red \cf1 should be displayed in \cf2 red\cf1 .\cf3\par
}

You can see that the document begins with an \rtf keyword followed by 1, which is the
version number. The character set is ANSI code page 1252, followed by default font and

language indicators. The default font is font 0 which is defined in the \fonttbl section.

The critical feature for this RTF class is the \colortbl section:

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 55 of 59

{\colortbl ;\red0\green0\blue0;\red255\green0\blue0;\red8\green0\blue0;}

The color table contains one or more RGB color values, which correspond to color indexes
starting with 0. Color table entries are followed by a semicolon, and can be omitted in which
case they are assumed to be the default color. In the above example the first color is
omitted. If red, green and blue are all zero the color is black. If all are 255 the color is white.

The *\generator group is, I suspect, unnecessary, but I'll include it anyway.

After the last of the groups comes the document area:

 \viewkind4\uc1\pard\cf1
 \highlight0\f0\fs17
 The word \cf2 red \cf1 should be displayed in \cf2 red\cf1 .\cf3\par

The \viewkind keyword indicates the view mode, and 4 means normal. Other views are
none, page layout, outline, master document and online layout.

The \uc keyword indicates the number of bytes used for Unicode characters. That's not
going to be an issue for my usage, but perhaps it would be for other languages.

The \pard keyword resets the paragraph properties so they are not inherited from the
previous paragraph. The \cf1 keywords sets the character foreground color to index 1.
That's followed by \highlight0 to set text highlight to color 0, which I don't believe has
any affect in this example because \highlight is not used in text itself. Then comes the
font number, \f0 (referring to the font table) and the font size in half points (\fs17 = 8.5
points).

The displayed text begins at the first non-keyword value, and thereafter keywords affect the

display of the following text. So \cf2 preceding the word "red" means set the foreground
color to color table entry 2 (remember this is zero based and the first entry is omitted),
followed by a reset to color table entry 1. Following the text "red" there's a color switch
back to color table entry 1, which has a value of black.

The \par keyword at the end really isn't needed as it indicates a new paragraph, but there is
no following text.

Beginning to code
It's time to take a first stab at some code. Figure 1 shows the code as added to the test
procedure in the embeditor.

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 56 of 59

Figure 9. The initial test code

Just for fun I press compile, and of course the compile fails dismally.

Figure 10. Compile failure

Writing the class
The first thing I need to do is to get a successful compile, and to do that I need to write a
class with some stub methods. I create two files, CM_Text_RTF.inc and
CM_Text_RTF.clw. And I create a new solution folder called Classes and add these two
files so I'll have ready access to them while I'm working on my tests.

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 57 of 59

Figure 11. Adding the class files to the solution

CM_Text_RTF.inc initially looks like this:

 OMIT('_EndOfInclude_',_CM_Text_RTF_)
_CM_Text_RTF_ EQUATE(1)

CM_Text_RTF CLASS,TYPE,MODULE('CM_Text_RTF.clw'),LINK('CM_Text_RTF.clw')
GetText procedure,STRING
HighlightText procedure(string text,long foregroundColor)
SetText procedure(string text)
 End

 EndOfInclude

The Omit statement is simply insurance against someone forgetting to use ,Once on the
Include statement for this file.

CM_Text_RTF.clw initially looks like this:

 MEMBER

 MAP
 END

 INCLUDE('CM_Text_RTF.inc')

CM_Text_RTF.GetText procedure !,STRING
 code
 return ''

CM_Text_RTF.HighlightText procedure(string text,long foregroundColor)
 CODE

CM_Text_RTF.SetText procedure(string text)
 code

The class methods are just stubs.

I also add this line to the application's After Global Includes embed:

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 58 of 59

Copyright © 1999-2010 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

 include('CM_Text_RTF.inc'),once

On compiling I get the errors shown in Figure 12, not on the class but on my test code.

Figure 12. Compile errors

I forgot to double up my braces, which have special meaning in Clarion strings and must be

escaped. After replacing { with {{ (only the opening brace matters) I get a successful
compile. But predictably the test fails (Figure 13). After all, GetText() is just returning an
empty string.

Figure 13. The failed test.

With a compiling, but failed test in hand I'm ready to start some serious coding. In the
second instalment I'll walk through that process and show the finished class.

Download the source

Download ClarionTest

Article comments

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He is also co-author with Ross Santos of
Developing Clarion for Windows Applications, published by SAMS (1995), and has written or co-written several Java books. David is a member of the
American Society of Journalists and Authors (ASJA).

DevRoadmaps - www.clarionmag.com - for subscriber use only

Page 59 of 59

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/cmag/v13/v13n03rtf2.html
http://www.clarionmag.com/cmag/v13/files/v13n02rtf.zip
http://code.google.com/p/clariontest/
http://asja.org/

	DevRoadmaps Issue Contents
	News Items
	Blog Posts
	Creating an SQL Query Class and Template, Part 3
	Tip of the Week #9: Code Completion Window Width
	Webinar this Friday: If you can't test your code, how do you know it isn't crap?
	Tip of the Week #10: Speed Up Source Navigation With Bookmarks
	MagGem: Validating Credit Card Numbers
	MagGem: Backdoors and Other Tricks
	Tip of the Week #11: The Task List
	Automagical Browse Refreshing
	MagGem: Capitalize The Right Way
	MagGem: Everything You Ever Wanted To Know About Strings
	Tip of the Week #12: Searching/Finding Files Using Redirection
	Highlighting Text With RTF The Easy Way, Part 1

