
Clarion Magazine

Clarion News

�❍ » C7 To Support ClearType, Unicode

�❍ » EasyOpenOffice 1.04

�❍ » List Format Manager Video

�❍ » CapeSoft World Tour Early Bird Registration Ends This Week

�❍ » CapeSoft FeMail Client

�❍ » NetTalk 4.22

�❍ » ClassAnatomy Updated

�❍ » BackItUp Updated

�❍ » Clarion Newsgroups On The Web

�❍ » CoolFrames 1.10 Beta

�❍ » Evolution Clarion Manager 1.0 Beta

�❍ » Clarion Desktop 3.02

�❍ » FileTuner 0.15

�❍ » CoolButtons 1.00 Beta Pricing

�❍ » SimTabTree Demo

�❍ » CapeSoft World Tour Johannesburg/Pretoria

�❍ » AmazingGUI Demo

�❍ » FullRecord 1.81

�❍ » Code Commentor 2.0.4

�❍ » NetTalk 4.19

�❍ » Clarion Desktop 3.0

�❍ » Tracker Software Hosting Change

�❍ » AmazingGUI 1.0.5

�❍ » ClarionMag Source Code Library 2007.02.28 Available

�❍ » Dr.Explain 2.5

�❍ » Clarion Desktop 3 Beta 1

�❍ » FullRecord 1.80

�❍ » CapeSoft World Tour: Johannesburg/Pretoria

�❍ » CapeSoft World Tour: Americas & Europe

�❍ » NeatMessage 2.12

[More news]

[More Clarion 101]

Latest Free Content

�❍ » Source Code Library 2007.02.28 Available

[More free articles]

Clarion Sites

Latest Subscriber Content

Vista-Compliant INI Files

The release of Microsoft Windows Vista introduced a new set of challenges for programmers, particularly
in the area of Vista's enhanced security. Randy Rogers introduces a derived INIClass that stores INI files
in Vista-standard locations.
Posted Thursday, March 29, 2007

Interprocess Communication: Receiving Messages

Larry Sand continues his series on interprocess communication with some code to receive messages.
Posted Wednesday, March 28, 2007

C7 Alpha Bits Part 2

The latest alpha build adds user-defined comments for code completion tooltips.
Posted Tuesday, March 27, 2007

Embed Analysis Part 3

Dave Harms concludes the ABC embed analysis series with a look at browse, process and report embeds,
as well as embed usage by procedure type.
Posted Thursday, March 22, 2007

Embed Analysis Part 2

Which embed points do Clarion developers really use? Dave Harms analyzes ABC embed data from
hundreds of TXAs sent in by Clarion developers.
Posted Wednesday, March 21, 2007

Using the SQL Advanced Tab

The C6 browse template's SQL Advanced tab introduces a number of new capabilities to SQL browses.
Bjarne Havnen explains how to use this tab and elaborates on the related SQL PROP: syntax.
Posted Friday, March 16, 2007

Interprocess Communication: Sending Messages

Larry Sand kicks of a series on inter-process communication with a look at how to send messages
using PostMessage and RegisterWindowMessage.
Posted Wednesday, March 14, 2007

C7 Alpha Bits Part 1

Dave Harms tours some of the new editor features, including code folding and code completion.
Posted Saturday, March 10, 2007

Source Code Library 2007.02.28 Available

The Clarion Magazine Source Code Library has been updated to include the February source. Also new in
this release: A category/subcategory tree view of all the articles. Locate articles of interest in the tree and
click on the link to go to the summary, which has links to the source code (on disk) and the
original ClarionMag article. Source code subscribers can download the update from the My ClarionMag page.
Posted Wednesday, March 07, 2007

[Last 10 articles] [Last 25 articles] [All content]

Source Code

The ClarionMag Source Code Library

Clarion Magazine is more than just a great place to learn about Clarion development techniques, it's also
home to a massive collection of Clarion source code. Clarion subscribers already know this, but now
we've made it easier for subscribers and non-subscribers alike to find the code they need.
The Clarion Magazine Source Library is a single point download of all article source code, complete with
an article cross-reference.
More info • Subscribe now

http://www.clarionmag.com/index.html?year=2007&month...imit=1000&desc=true&pFriendlySession=true&login=true (1 of 2) [11/04/2007 2:23:46 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/clarion101.html
http://www.clarionmag.com/cmag/sourcelib.html#
http://www.clarionmag.com/cmag/freearticles.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/sourcelib.html#
http://www.clarionmag.com/cmag/myclarionmag.html
http://www.clarionmag.com/index.html?limit=10
http://www.clarionmag.com/index.html?limit=25
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/sourcelib.html
http://www.clarionmag.com/cmag/sourcelib.html
http://www.clarionmag.com/cmag/store.html?action=shop

Clarion Magazine

Clarion Blogs
Printed Books & E-Books

E-Books

E-books are another great way to get the information you want from Clarion Magazine. Your time is
valuable; with our e-books, you spend less time hunting down the information you need. We're
constantly collecting the best Clarion Magazine articles by top developers into themed PDFs, so you'll
always have a ready reference for your favorite Clarion development topics.

Printed Books

As handy as the Clarion Magazine web site is, sometimes you just want to read articles in print.
We've collected some of the best ClarionMag articles into the following print books:

�❍ » Clarion 6 Tips & Techniques Volume 3 - ISBN: 0-9689553-9-8

�❍ » Clarion 6 Tips & Techniques Volume 1 - ISBN: 0-9689553-8-X

�❍ » Clarion 5.x Tips and Techniques, Volume 1 - ISBN: 0-9689553-5-5

�❍ » Clarion 5.x Tips and Techniques, Volume 2 - ISBN: 0-9689553-6-3

�❍ » Clarion Databases & SQL - ISBN: 0-9689553-3-9

We also publish Russ Eggen's widely-acclaimed Programming Objects in Clarion, an introduction to OOP
and ABC.

From The Publisher

About Clarion Magazine

Clarion Magazine is your premier source for news about, and in-depth articles on Clarion
software development. We publish articles by many of the leading developers in the Clarion
community, covering subjects from everyday programming tasks to specialized techniques you won't
learn anywhere else. Whether you're just getting started with Clarion, or are a seasoned veteran,
Clarion Magazine has the information you need.

Subscriptions

While we do publish some free content, most Clarion Magazine articles are for subscribers only.
Your subscription not only gets you premium content in the form of new articles, it also includes all the
back issues. Our search engine lets you do simple or complex searches on both articles and news
items. Subscribers can also post questions and comments directly to articles.

Satisfaction Guaranteed

For just pennies per day you can have this wealth of Clarion development information at your fingertips.
Your Clarion magazine subscription will more than pay for itself - you have my personal guarantee.

Dave Harms

ISSN

Clarion Magazine's ISSN

Clarion Magazine's International Standard Serial Number (ISSN) is 1718-9942.

About ISSN

The ISSN is the standardized international code which allows the identification of any serial
publication, including electronic serials, independently of its country of publication, of its language
or alphabet, of its frequency, medium, etc.

http://www.clarionmag.com/index.html?year=2007&month...imit=1000&desc=true&pFriendlySession=true&login=true (2 of 2) [11/04/2007 2:23:47 PM]

http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/books/index.html
http://www.clarionmag.com/books/tips/index.html
http://www.clarionmag.com/books/tips3/index.html
http://www.clarionmag.com/books/tipsc6/index.html
http://www.clarionmag.com/books/tips/index.html
http://www.clarionmag.com/books/tips/index.html
http://www.clarionmag.com/books/dbsql/index.html
http://www.clarionmag.com/books/poic/index.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/cmag/refund.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.issn.org/
http://www.issn.org/

Clarion News

Clarion News

Search the news archive

Australian QuickBooks/MYOB Accounting Interface Wanted

Richard Bryce is looking for a software interface to MYOB or Quickbooks, preferably written by someone
in Australia or New Zealand. If you happen to have some code that does this then Richard wants to talk to
you. The requirement is for full source code, no black boxes. Contact Richard at 0403 892880.
Posted Tuesday, April 03, 2007

C7 To Support ClearType, Unicode

Phase 1 of the C7 alpha test will be wrapping up shortly with a build which includes support for Unicode and
ClearType. Also check the blog entry for links to videos on the new project system and visual styles.
Posted Thursday, March 29, 2007

EasyOpenOffice 1.04

EasyOpenOffice 1.04 is now available. EasyOpenOffice is a set of classes and templates allowing you
to exchange data between Clarion applications and OpenOffice Calc and Writer.
Posted Thursday, March 29, 2007

List Format Manager Video

Eberto Barrios Romo has posted a YouTube video on using the List Format Manager.
Posted Thursday, March 29, 2007

CapeSoft World Tour Early Bird Registration Ends This Week

Early Bird Registration for the CapeSoft World Tour closes this week. Of course normal registrations remain
open until May 10. (Registrations for Johannesburg close on April 15). So if you're planning to attend,
save yourself some dollars, euros, pounds and/or rands by registering early. Australians take note: There
are only a very limited number of spaces left for the CapeSoft Training / Aussie Devcon combo, although
there are a few more spaces for those attending only the CapeSoft Training (in Sydney). So if you plan
to attend the Australia leg, register as soon as possible to avoid disappointment. Registrations for the
other events have been brisk, so registering earlier rather than later is recommended. (If you intend
attending, but cannot yet register, drop CapeSoft a line.)
Posted Thursday, March 29, 2007

http://www.clarionmag.com/cmag/news.html (1 of 6) [11/04/2007 2:24:19 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/searchnews.frm
http://www.northshoreit.com.au/
http://www.softvelocity.net/community/blogs/clarion_news/archive/2007/03/28/1560.aspx
http://ingasoftplus.com/id123.htm
http://www.youtube.com/watch?v=hO2mfSz7VHc
http://www.capesoft.com/WorldTour.Htm

Clarion News

CapeSoft FeMail Client

CapeSoft FeMail is a full-featured Email client, also available as source code. Features include: HTML
and Text mail support, viewing of HTML and text mail, and GUI HTML editing; Supports
attachments, automatic image embedding, saving and opening of attachments etc.; An easy to use
address book, or plug in your own using your own data table;Drag and drop support throughout the
application; Import mail from Outlook Express (Microsoft Outlook and Windows Mail import/export
support coming soon); Flexible mail rules allow you to perform actions on collected emails that match one
or more conditions that you specify; And much more.
Posted Thursday, March 29, 2007

NetTalk 4.22

NetTalk 4.22 is now available for download.
Posted Thursday, March 22, 2007

ClassAnatomy Updated

ClassAnatomy changes: The generate export file option would add the methods in alphabetical order instead
of logic order.
Posted Thursday, March 22, 2007

BackItUp Updated

New in this release of BackItUp: A new Preview Matches option give syou a preview of files matching
a specific profile.
Posted Thursday, March 22, 2007

Clarion Newsgroups On The Web

ClarionDesktop now offers a web interface to some of the Clarion newsgroups on SoftVelocity's server.
Posted Thursday, March 22, 2007

CoolFrames 1.10 Beta

CoolFrames 1.10 Beta is now available for download.
Posted Thursday, March 22, 2007

Evolution Clarion Manager 1.0 Beta

Clarion Manager helps manage multi-DLL/multi-APP development. Features include: Viewing
relationships between apps; Embed code manager; test DCT or template changes; Evaluate application
design; Document applications; Manage large projects with several applications; Manage multiple
projects, with multiple apps; Navigate the map of calls between procedures from different DLLs;

http://www.clarionmag.com/cmag/news.html (2 of 6) [11/04/2007 2:24:19 PM]

http://www.capesoft.com/utilities/feMail.htm
http://www.capesoft.com/accessories/downloads.htm#nettalk
http://clarion.abspoel.nl/
http://clarion.abspoel.nl/
http://www.clariondesktop.com/newsgroups.htm
http://www.purpleswift.com/tools/CoolFrames/CoolFramesInstall.exe
http://www.evolutionconsulting.com.ar/ClarionManager/ClarionManagerVIDEO.zip

Clarion News

Evaluate dependencies between DLLs. Price is US$139 during the beta, $199 after gold release.
Posted Thursday, March 22, 2007

Clarion Desktop 3.02

Clarion Desktop 3.02 has been released. Changes include: A new menu on the local homepage called
"Blogs"; Product "Buy Now" links were not working correctly in the previous release - this has been
fixed; Several new features / improvements for suppliers.
Posted Thursday, March 22, 2007

FileTuner 0.15

FileTuner 0.15 is now available. Changes include: Press Enter on the list to select the current file; Tag
only button (added to Tag and down); Improved file usage checking to see if file is opened by other
users; Copy procedure (to temporal folder) now with progress bar; TPS files without name specified in
the DCT now handled properly; Changes to general layout.
Posted Thursday, March 22, 2007

CoolButtons 1.00 Beta Pricing

CoolButtons is now for sale at a reduced price of US$49 during the beta stage and US$99 once it goes gold.
Posted Thursday, March 22, 2007

SimTabTree Demo

A demo of SimTabTree is now available for download. SimTabTree is available from www.clarionshop.
com for US $29.
Posted Thursday, March 22, 2007

CapeSoft World Tour Johannesburg/Pretoria

The CapeSoft World Tour will be stopping in Johannesburg/Pretoria.
Posted Thursday, March 22, 2007

AmazingGUI Demo

A 3:30 length video of AmazingGUI is now available for download. This video applies AmazingGUI to the
example School application.
Posted Thursday, March 22, 2007

FullRecord 1.81

FullRecord 1.81 divides template prompts into Basic and Advanced interfaces. Demo available. In the
demo press Ctrl-Shift-A on any field to see the history log of that particular field.
Posted Thursday, March 22, 2007

http://www.clarionmag.com/cmag/news.html (3 of 6) [11/04/2007 2:24:19 PM]

http://www.clariondesktop.com/
http://www.huenuleufu.com/FileTuner_e.html#Downloads
https://www.clarionshop.com/secure/checkout.cfm?pid=1020&q=1
http://www.simsoft.co.za/downloads/tabtreedemo.zip
http://www.capesoft.com/WorldTourAfrica.htm
http://www.amazinggui.com/component/option,com_docman/task,cat_view/gid,9/Itemid,4/
http://www.huenuleufu.com/FullRecord_e.html

Clarion News

Code Commentor 2.0.4

Code Commentor 2.0.4 is now available. This release fixes the "after midnight" bug. When the
Code Commentor was started and used and then left running overnight it would no longer be responsive
when you came in the next day. You would have to exit and restart the Code Commentor.
Posted Thursday, March 22, 2007

NetTalk 4.19

NetTalk 4.19 is now available. Numerous changes and fixes, including: WYSIWYG HTML editing (in
your text boxes on your forms); Multiple form fields on a row; HTML compliant pages; "Wizard" form
type; Multiple selects in selection lists, and much more.
Posted Saturday, March 10, 2007

Clarion Desktop 3.0

Clarion Desktop v3.00 Gold has been released. This release is much faster than previous releases. Clarion
Desktop now has 400 users and is supported by 136 products from 31 suppliers.
Posted Saturday, March 10, 2007

Tracker Software Hosting Change

Tracker Software is updating its server this weekend and will have a new IP address.
Posted Saturday, March 10, 2007

AmazingGUI 1.0.5

AmazingGUI 1.0.5 is now available. The web site has been reorganized and now you do not need to register
in order to download the demo program.
Posted Saturday, March 10, 2007

ClarionMag Source Code Library 2007.02.28 Available

The Clarion Magazine Source Code Library has been updated to include the February source. Also new in
this release: A category/subcategory tree view of all the articles. Locate articles of interest in the tree and
click on the link to go to the summary, which has links to the source code (on disk) and the
original ClarionMag article. Source code subscribers can download the update from the My ClarionMag page.
Posted Wednesday, March 07, 2007

Dr.Explain 2.5

Dr.Explain is a help authoring tool that captures windows, dialogs, forms, and menus from live
application, makes screenshots, and automatically adds references to all controls. The program can produce
CHM, RTF and HTML help files with interactive screenshots, dynamic menus, cross-references,

http://www.clarionmag.com/cmag/news.html (4 of 6) [11/04/2007 2:24:19 PM]

http://www.ripleysoftware.com/ccdown.html
http://www.capesoft.com/docs/NetTalk/NetTalkHistory.htm
http://www.clariondesktop.com/
http://www.docu-track.com/news/show/60
http://www.amazinggui.com/
http://www.clarionmag.com/cmag/sourcelib.html
http://www.clarionmag.com/cmag/myclarionmag.html
http://www.drexplain.com/

Clarion News

and navigation. This release has many new features, including: Menu capturing and auto-capturing:
document all your menus with a couple of clicks; Dynamic menu for online manuals: navigate easily
through your manual; Validation tool to find all issues in your project in just seconds; Screenshot editor:
Add text to your screenshots; Context Help ID support: integrate help files into your applications
fast; Command line mode: automate your help compiling processes; Windows Vista support: Run your
favorite tool on the new OS; and many more.
Posted Tuesday, March 06, 2007

Clarion Desktop 3 Beta 1

Clarion Desktop 3 (Beta 1) has been released as a free download. This version loads the initial home
page almost twice as fast as version 2 did, and subsequent page loads are between 2 and 4 times faster.
The Download Manager now also supports installation patches as used by CapeSoft. If you download FM3
for example, Clarion Desktop will download the primary installer, after which it will check what version
of Clarion you are running, and it will then automatically download the correct patch installer for you.
Both installers are then automatically archived and then launched (in the correct sequence), and the
installer passwords are automatically entered for you. There are numerous other improvements.
Posted Tuesday, March 06, 2007

FullRecord 1.80

New in FullRecord 1.80: a Field Inspector window that can be activated on request (with a button), or in
the whole system with a global hot-key. Press the hot-key on any field of any window and you will see
the history of changes on that particular field for that particular record. As of Clarion 7 alpha 1, FullRecord
is fully code-compatible with C7.
Posted Tuesday, March 06, 2007

CapeSoft World Tour: Johannesburg/Pretoria

If you are interested in attending a world tour warm-up event in the Jo'burg/Pretoria area, on May 3,4 and
5 please send Bruce an email. If there is sufficient interest then CapeSoft would be keen to drop in there. Cost
would be about R1950 per person for three days, and would include lunch. Current front-runner for the
venue would be the St George Hotel in Irene (http://www.stgeorgehotel.co.za).
Posted Tuesday, March 06, 2007

CapeSoft World Tour: Americas & Europe

Registrations are now open. There is early-bird pricing in effect, until March 30. Las Vegas: $750 early
bird ($900 after that). On the down side, lunch is not included (the hotel wants $40 per person for lunch)
but there are plenty of eateries nearby. Cambridge: $1175 (approximately ~£600 / ~?890) early bird,
$1375 (approximately £700 / ?1050) after that. Unfortunately it's a bit more expensive than the US, but
that's a side effect of the overall expenses in Europe. On the up side, lunch is included in the price. Five
days. Three class rooms. Eighteen topics. Fifty hours. This is the most intensive Clarion event ever.

http://www.clarionmag.com/cmag/news.html (5 of 6) [11/04/2007 2:24:19 PM]

http://www.clariondesktop.com/ftp/public/beta/clariondesktopsetup.exe
http://www.clariontemplates.com/
http://www.capesoft.com/WorldTour.htm
http://www.capesoft.com/worldtour.htm

Clarion News

Posted Tuesday, March 06, 2007

http://www.clarionmag.com/cmag/news.html (6 of 6) [11/04/2007 2:24:19 PM]

Vista-Compliant INI Files

Vista-Compliant INI Files

by Randy Rogers

Published 2007-03-29

The release of Microsoft Windows Vista introduced a new set of challenges for programmers, particularly
in the area of Vista’s enhanced security. Vista provides some remedies including XP compatibility modes
and the use of virtual folders. This may work in the short term, but in the longer term it will be better if
your program is Vista compliant. The location of application data, temporary files, and other files that
are shared by multiple users of the computer should be reviewed and changed as necessary.

Special folders used frequently by applications, but which may not have the same name or location on
any given system, are identified by unique system-independent Constant Special Item ID List, or
CSIDL, values. In this article I’ll demonstrate a derived INIClass called VistaINIClass that uses
the SHGetFolderPath API call to translate the CSIDL constants into folder locations. You simply specify
the constant for the desired location, and the class takes care of storing the INI file in that folder. I’ve
also included a small template to make it even easier to implement the class in your applications.

My solution does not deal with the GETINI / PUTINI built in procedures. They could be overridden
by modifying the builtins.clw file and providing replacement procedures. I have an aversion to modifying
any files shipped by SoftVelocity, so I decided to convert any GETINI / PUTINI procedure calls in my code
to INIClass (or, in my case, VistaINIClass) method calls instead.

The class deals strictly with INI file types; INI registry value types are passed through to the
PARENT unchanged.

INI folders

INI files provide a particular challenge because they normally reside in the Windows folder. Under Vista
the Windows folder is protected so the INI file gets copied to a virtual folder. This means that every user of
the computer will have a copy of the INI file located in a virtual folder. In other words, the INI file is no
longer shared and changes made by one user are not seen by other users. This behavior may be just what
you want; if so I would suggest using a "MyCompanyName" subfolder of the CSIDL_PERSONAL
(My Documents) folder to store the INI files.

If you want to share an INI file between multiple users then a "MyCompanyName" subfolder of
the CSIDL_COMMON_APPDATA folder seems to be the preferred location. This is a protected folder
under Vista, so you need to grant access rights to your subfolder to the appropriate users / group. This could
be handled by your install program or by using the cacls.exe command line program that comes with

http://www.clarionmag.com/cmag/v9/v9n03vistaini.html (1 of 6) [11/04/2007 2:24:22 PM]

http://www.clarionmag.com/index.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/shell/reference/enums/csidl.asp

Vista-Compliant INI Files

Windows. A good article on using cacls.exe can be found at TechRepublic.

I have a large number of DLL and EXE applications that require modification to make them Vista
compliant. Since the Clarion IDE and ABC Templates do not recognize CSIDL values it seemed, at first,
like this was going to be a daunting task. After thinking about the problem for a while I finally decided
that deriving the INIClass and providing my own Init method would be a simple, elegant, and
easily maintainable solution.

The VistaINIClass

The downloadable source contains the class files and a sample application that uses the class. Here’s
the declaration from vistaINIClass.inc:

!ABCIncludeFile(ABC)

!==

!Copyright ©2007 Keystone Computer Resources

!Creation Date: 2007/02/20

!==

 COMPILE('ENDCOMPILE',_ABCLinkMode_)

 PRAGMA ('link (shfolder.lib)')

 !ENDCOMPILE

OMIT('_EndOfInclude_',_vistaINIClassPresent_)

vistaINIClassPresent EQUATE(1)

 INCLUDE('ABUTIL.INC'),ONCE

CSIDL_PERSONAL EQUATE(00005h) !My Documents

CSIDL_COMMON_APPDATA EQUATE(00023h) !All Users\Application Data

vistaINIClass CLASS(INIClass), TYPE, MODULE('vistaINIClass.clw'), |

 LINK('vistaINIClass.clw',_ABCLinkMode_), |

 DLL(_ABCDllMode_)

Init PROCEDURE(STRING FileName, UNSIGNED nvType, |

 LONG extraData = 0) !,EXTENDS

 END

!_EndOfInclude_

The class needs the SHGetFolderPath API call which is in Windows’ shfolder.dll. The PRAGMA
statement causes the shfolder.lib file to be linked in. You will need to create the LIB file from the DLL

http://www.clarionmag.com/cmag/v9/v9n03vistaini.html (2 of 6) [11/04/2007 2:24:22 PM]

http://articles.techrepublic.com.com/5100-1035_11-1050976.html

Vista-Compliant INI Files

with LibMaker.exe.

There are many CSIDL values; this example only declares the ones I intend to use. The downloadable
source contains equates for all documented CSIDL values.

The vistaINIClass is derived from INIClass and only needs to override one of the Init methods:

vistaINIClass.clw

 MEMBER

!==

!Copyright ©2007 Keystone Computer Resources

!Creation Date: 2007/02/20

!==

HANDLE EQUATE(LONG)

HWND EQUATE(HANDLE)

HRESULT EQUATE(HANDLE)

DWORD EQUATE(LONG)

S_OK EQUATE(0)

 INCLUDE('vistaINIClass.inc'),ONCE

 MAP

 MODULE('kernel32.dll')

 kcr_CreateDirectory(*CSTRING szPath, LONG lpSecurityAttributes)|

 ,BOOL,PASCAL,RAW,NAME('CreateDirectoryA')

 kcr_GetLastError(),LONG,PASCAL,NAME('GetLastError')

 END

 MODULE('Shfolder.dll')

 kcr_SHGetFolderPath(HWND hwnd, LONG csidl, HANDLE hToken, |

 DWORD dwFlags, *CSTRING szPath),HRESULT,RAW,|

 PASCAL,NAME('SHGetFolderPathA')

 END

 END

vistaINIClass.Init PROCEDURE(STRING FileName, UNSIGNED nvType, |

 LONG extraData = 0) !,EXTENDS

hr HRESULT

hFile HANDLE

http://www.clarionmag.com/cmag/v9/v9n03vistaini.html (3 of 6) [11/04/2007 2:24:22 PM]

Vista-Compliant INI Files

szPath CSTRING(File:MaxFilePath)

CSIDL LONG

 CODE

 !check for INI file type

 IF nvType = NVD_INI

 !check for simple filename

 IF ~INSTRING('\',FileName)

 ! Use the following to place ini files in user's

 ! "My Documents\YourCompanyName" folder

 CSIDL = CSIDL_PERSONAL

 ! Use the following to place ini files in the

 ! "All Users\Application Data\YourCompanyName" folder

 !CSIDL = CSIDL_COMMON_APPDATA

 hr = kcr_SHGetFolderPath(0,CSIDL,0,0,szPath)

 IF hr = S_OK

 !TODO: change 'MyCompanyName' to the name

 ! you want to call the subfolder

 szPath = LONGPATH(szPath) & '\MyCompanyName'

 IF kcr_CreateDirectory(szPath,0)

 PARENT.Init(szPath & '\' & FileName, nvType, extraData)

 ELSE

 IF kcr_GetLastError() = ERROR_ALREADY_EXISTS

 PARENT.Init(szPath & '\' & FileName, nvType, extraData)

 ELSE

 PARENT.Init(FileName, nvType, extraData)

 END

 END

 ELSE

 PARENT.Init(FileName, nvType, extraData)

 END

 ELSE

 PARENT.Init(FileName, nvType, extraData)

 END

 ELSE

http://www.clarionmag.com/cmag/v9/v9n03vistaini.html (4 of 6) [11/04/2007 2:24:22 PM]

Vista-Compliant INI Files

 PARENT.Init(FileName, nvType, extraData)

 END

 RETURN

The first few lines of code declare some equates, include the class declaration file, and prototype the API
calls needed by the class.

This example uses the CSIDL_PERSONAL folder as the location to store the INI files. Comment this line
and uncomment the following line to use the CSIDL_COMMON_APPDATA folder instead. Remember
to grant users access rights to your subfolder.

The class has the path hard coded so remember to change it in the source before using the class in a
production environment.

Next the code creates the path, checks for errors, and calls the PARENT method to complete the work.

All that remains is to replace the INIClass in the application Global Properties|Classes|General|INI
Manager with VistaINIClass. That’s pretty easy to do, but takes a lot of clicking if you have many
applications to convert. I decided to create a small extension template to do a lot of the work for me.

The template

The VistaINIClass.tpl template file contains one global extension, as follows:

#!===

#! Keystone vistaINIClass Template

#! Author: Randy Rogers (KCR) <rrogers@keystonecr.com>

#! Copyright: ©2007 Keystone Computer Resources

#! ALL RIGHTS RESERVED

#!===

#TEMPLATE(vistaINIClass,'vistaINIClass Template'),FAMILY('ABC')

#!

#!

#! --

#EXTENSION(vistaINIClassGlobal,'Add vistaINIClass to app'),APPLICATION

#! --

#DISPLAY('This template adds the vistaINIClass.')

#DISPLAY('')

#DISPLAY('There are no prompts for this template')

#AT(%BeforeGenerateApplication)

 #CALL(%SetClassDefaults(ABC), 'INIManager', 'INIMgr', 'vistaINIClass')

#ENDAT

http://www.clarionmag.com/cmag/v9/v9n03vistaini.html (5 of 6) [11/04/2007 2:24:22 PM]

Vista-Compliant INI Files

The template sets the default value for the ABC INIManager to VistaINIClass. To use the template
simply register vistaINIClass.tpl and then add the global extension to each application.

Viewing CSIDL values

The downloadable source includes a small application that displays the paths associated with the
various CSIDL values. You’ll need to register the vistaINIClass.tpl file first, or else ignore the
template warning and change the INI Manager class manually. You may need to click on the
Refresh Application Builder Class Information button on the Global Properties window, Classes tab.

Summary

Microsoft Vista introduces a number of security-related problems, and one of these is the need to use
virtual folders rather than the Windows folder for INI file locations. With this class and template you can
store your INI files in Vista-friendly locations.

Download the source

Randy Rogers is a data processing professional with over 35 years of experience in a wide variety of
industries including accounting, municipal government, insurance, printing, and pharmacoeconomics. He has
a degree in Mathematics from Florida State University and is the president of Keystone Computer
Resources. Randy is the author of ClassViewer, a utility for browsing the Clarion class hierarchies. He is
also the creator of NetTools, Queue Edit-in-Place, and Screen Capture Tools for Clarion application developers.

Reader Comments

Add a comment

http://www.clarionmag.com/cmag/v9/v9n03vistaini.html (6 of 6) [11/04/2007 2:24:22 PM]

http://www.clarionmag.com/cmag/v9/files/v9n03vistaini.zip
mailto:RROGERS@keystonecr.com
http://www.keystonecr.com/
http://www.keystonecr.com/
http://www.keystonecr.com/classviewer.htm
http://www.clarionmag.com/cmag/comments.frm?articleID=14912

Interprocess Communication: Receiving Messages

Interprocess Communication: Receiving Messages

by Larry Sand

Published 2007-03-28

In the first installment in this series I covered the basics of interprocess communication and looked at how
to send messages. Now it's time to write some code to receive messages.

Sending messages is simple using the Windows API, but receiving the message in a Clarion program requires
a little more work. Clarion doesn't provide a direct way to "see" the messages being processed by
your window. To have a chance to process these messages, you must subclass the window event
handler. Subclassing the window procedure involves inserting your own event handling procedure into a
chain of event handling procedures called by Windows. Your window procedure must have the prototype
as follows (see Part 1 for more information).

WinProc Procedure(UNSIGNED hWnd, UNSIGNED uMsg,|

 UNSIGNED wParam, Long lParam),Long,Pascal

You may not change this prototype because it's called directly by Windows to process the messages in
the message queue.

There are three main steps in subclassing a window procedure.

1. Get and save the address of the existing window procedure

2. Tell your window to use your replacement window procedure to process its messages

3. In the replacement window procedure that you specified in step 2, process the messages that you're

interested in and pass all others to the original window procedure that you saved the address of in step one.

The code that accompanies this article is a class called InterprocessComs. The requirement that you not
change the prototype of the window procedure presents a special problem when using a class. All methods of
a class have an implicit first parameter that's a reference to Self (the instance of the class). Because of this,
you cannot use a method for a window procedure. To get around this restriction, the class module contains
a window procedure that's shared by all instances of the class. Because this window procedure is shared
you have to have a method to allow it access the instance of your class that's attached to your window and
its old window procedure address. To do this, you'll use two more Windows API functions, SetProp
and GetProp, to set and get a property attached to a window. SetProp and GetProp use the handle to
the window to access a window's property list and your replacement window procedure always knows
the handle to the window for the current message it's processing.

SetProp allows you to assign a 32 bit value to a hWnd designated by a constant string. Later you'll use

GetProp to retrieve the 32 bit value attached to your window. GetProp and SetProp are prototyped in

Clarion like this:

Larry
Sand
is
an

http://www.clarionmag.com/cmag/v9/v9n03ipc2.html (1 of 8) [11/04/2007 2:24:26 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/v2/v2n3subclass.html
mailto:Larry@sand-associates.com
mailto:Larry@sand-associates.com

Interprocess Communication: Receiving Messages

CMAG_SetProp(UNSIGNED hWnd, *? lpString, UNSIGNED hData),|

 BOOL,Pascal,Raw,Name('SetPropA') ,DLL(1)

CMAG_GetProp(UNSIGNED hWnd, *? lpString),UNSIGNED,Pascal,|

 Raw,Name('GetPropA') ,DLL(1)

There's one more property function that's very important; RemoveProp is called when you're done with
the property to free the resources it consumed. It's prototyped like this:

CMAG_RemoveProp(UNSIGNED hWnd, *? lpString),UNSIGNED,|

 Pascal,Raw,Name('RemovePropA'),DLL(1),PROC

In each of these functions the string parameter is prototyped as a void pointer. A *? parameter with the
RAW attribute passes the address of the datum to the external function. Normally you prototype a long

pointer to a string as *CString with the RAW attribute. However, these three functions accept either a
constant null terminated string or an atom. Atoms are created by calling AddAtom or GlobalAddAtom and
can be used in place of constant strings. They are slightly more efficient to look up than a constant string
using GetProp. Converting the code to use atoms is left to you; as written it will still function perfectly well.

The class declares a window procedure to use in subclassing your window procedure like this:

IpcScWndProc Procedure(UNSIGNED hWnd, UNSIGNED uMsg, |

 UNSIGNED wParam, Long lParam)

To accomplish the subclassing from the class, an Init method is declared that accepts the Window and a
String as parameters. Here's the code for the Init method:

InterprocessComs.Init Procedure(Window W, |

 String sLinkMessageId)!,BOOL

bResult BOOL,Auto

szLinkMessageId &CString

 Code

 bResult = False

 If W{PROP:Mdi} = '1'

 Self.TakeError(IPC_ERROR_INVALIDUSE, 'Not valid for MDI windows')

 Return bResult

 End

 szLinkMessageId &= New CString(Len(Clip(sLinkMessageId)) +1)

 If szLinkMessageId &= Null

 Self.TakeError(IPC_ERROR_OUTOFMEMORY, 'Not enough memory')

 Return bResult

 End

 szLinkMessageId = Clip(sLinkMessageId)

 Self.LinkMessage = CMAG_RegisterWindowMessage(szLinkMessageId)

http://www.clarionmag.com/cmag/v9/v9n03ipc2.html (2 of 8) [11/04/2007 2:24:26 PM]

Interprocess Communication: Receiving Messages

 If self.LinkMessage = 0

 Self.TakeError(CMAG_GetLastError(),'Register link message')

 End

 Dispose(szLinkMessageId)

 Self.hWnd = W{Prop:Handle}

 bResult = Self.SubclassMe(Self.hWnd)

 If bResult = True

 Self.BroadcastLinkMessage()

 End

 Return bResult

This form of interprocess communication is not meant to communicate between MDI child windows, so
the first thing the code does is to return if you pass in an MDI child window as the Window parameter.
You must use caution when sending messages to threaded MDI child windows. Windows is not thread
safe when dealing with MDI windows. One problem is that Windows uses SendMessage to communicate
and it's possible to have an MDI window's thread execution suspended while it's waiting for SendMessage
to return. The Clarion runtime library has implemented code to help prevent this type of problem, but the
best way is to use Clarion's POST/EVENT and NOTIFY/NOTIFICATION message processing functions.

Next, you need to register the string with Windows to obtain the registered message identifier that you'll use
to communicate with the other process. RegisterWindowMessage requires that you pass a Cstring, and
the prototype for the Init method allows you to pass a Clarion string. To convert the message string the
code declares a CString reference and uses New to make it one byte larger than the string passed into
the method (the extra byte is to accommodate the terminating null (Chr(0))). The String is clipped as
it's assigned to the szLinkMessageId CString to remove any trailing spaces. RegisterWindowMessage is
then called and if the return value is <> 0 you have successfully registered or retrieved the message
id associated with the string. After RegisterWindowMessage is called, you no longer need
the szLinkMessageId CString, and the class frees the memory with Dispose.

The handle to the window to be subclassed is stored in a class property. Later, when processing the
broadcast message it's necessary to know if the message is from yourself. The class compares the hWnd
it receives and the value stored in the property.

Now that the class has the registered message, it can subclass the window procedure. This is done in
the SubclassMe method.

InterprocessComs.SubclassMe Procedure(UNSIGNED hWnd)|!,BOOL,Protected

OldWndProc Long,Auto

bResult BOOL,Auto

 Code

 bResult = False

 If CMAG_GetProp(hwnd, WPROP_IPC_WINDOWPROC) <> 0

 Self.TakeError(IPC_ERROR_OUTOFMEMORY, 'Window is already subclassed')

 Return bResult

http://www.clarionmag.com/cmag/v9/v9n03ipc2.html (3 of 8) [11/04/2007 2:24:26 PM]

Interprocess Communication: Receiving Messages

 End

 OldWndProc = CMAG_GetWindowLong(hwnd, CMAG_GWL_WNDPROC)

 If CMAG_SetProp(hWnd, WPROP_IPC_WINDOWPROC, OldWndProc) <> 0

 If CMAG_SetProp(hWnd, WPROP_IPC_CLASSINST, Address(Self)) <> 0

 CMAG_SetLastError(0)

 If CMAG_SetWindowLong(hwnd, CMAG_GWL_WNDPROC, |

 Address(IpcScWndProc)) <> 0

 bResult = True

 Else

 Self.TakeError(CMAG_GetLastError(), 'SWL Subclass')

 End

 Else

 Self.TakeError(CMAG_GetLastError(), 'SetProp Class Instance')

 End

 Else

 Self.TakeError(CMAG_GetLastError(), 'SetProp Window Proc')

 End

 If bResult = False

 CMAG_RemoveProp(hWnd, WPROP_IPC_WINDOWPROC)

 CMAG_RemoveProp(hWnd, WPROP_IPC_CLASSINST)

 End

 Return bResult

This method is responsible for getting the address of the existing window procedure and then setting
the window properties necessary for the replacement window procedure to call the correct instance of the
class and the original window procedure. The property identifiers are constant CStrings declared in the
member module. Notice that they are registry style GUIDs , without the opening and closing "{}", and
were generated with guidgen.exe described earlier.

WPROP_IPC_WINDOWPROC CString('E6B2022E-76B9-44cc-931F-7B14F1299CC9'),Static

WPROP_IPC_CLASSINST CString('9D80FCDA-90F3-4c3e-9201-D0F8B48229CE'),Static

If the window property WPROP_IPC_WINDOWPROC property is already set, then this window has
already been subclassed. It doesn't make sense to have two instances of this class managing one window.

Next the Windows GetWindowLong function is called with the GWL_WNDPROC constant to retrieve
the address of the existing window procedure. Remember that the new window procedure requires this
address to return control to the original window procedure for messages you don't want to process. SetProp
is called to attempt to set the WPROP_IPC_WINDOWPROC property. Then the address of the class is
stored in the WPROP_IPC_CLASSINST property. This property is used to access the correct instance of
the class from the window procedure. Next, SetWindowLong is called to change the address of the
window's window procedure. As soon as this line of code executes Windows will begin passing messages
for the window to this procedure. Finally, if any of the subclassing steps fails, the method removes

http://www.clarionmag.com/cmag/v9/v9n03ipc2.html (4 of 8) [11/04/2007 2:24:26 PM]

Interprocess Communication: Receiving Messages

the properties and returns false.

The Init method has one more task to perform if everything up until this point was successful. It will
now attempt to broadcast the registered window message to see if a partner is already out there listening.
This is done by calling the BroadcastLinkMessage method.

InterprocessComs.BroadcastLinkMessage Procedure()

 Code

 If Self.LinkMessage and Self.hWnd

 CMAG_PostMessage(CMAG_HWND_BROADCAST, Self.LinkMessage, |

 Self.hWnd, WMU_IPC_LINKME)

 End

 Return

BroadcastLinkMessage calls PostMessage with the broadcast message window handle

HWND_BROADCAST so the message is sent to all top level windows. The message it sends is the

registered window message that was saved in the LinkMessage property, and the hWnd of this window is
sent as the wParam of the message. Remember that PostMessage does not wait for a response from any
other window procedures. It posts the message and returns control immediately. As a result the
sender's window procedure will receive the broadcast message within a few milliseconds.

When either the sending or the receiving program receives the broadcast link message it's processed by
the window procedure, which receives the hWnd, message, wParam and lParam as parameters. Here's
the window procedure that the class implements:

IpcScWndProc Procedure(UNSIGNED hWnd, UNSIGNED uMsg, |

 UNSIGNED wParam, Long lParam)!,Long,Pascal

OldWndProc UNSIGNED,AUTO

Me &InterprocessComs

 Code

 OldWndProc = CMAG_GetProp(hWnd, WPROP_IPC_WINDOWPROC)

 If NOT OldWndProc

 Return 0

 End

 !Get the reference to this instance of the class

 Me &= CMAG_GetProp(hWnd, WPROP_IPC_CLASSINST)

 If Me &= NULL

 Return CMAG_CallWindowProc(OldWndProc, hWnd, |

 uMsg, wParam, lParam)

 End

 Case uMsg

 Of CMAG_WM_COPYDATA

http://www.clarionmag.com/cmag/v9/v9n03ipc2.html (5 of 8) [11/04/2007 2:24:26 PM]

Interprocess Communication: Receiving Messages

 Of CMAG_WM_DESTROY

 Me.RemoveLink()

 Of CMAG_WM_NCDESTROY

 !This is the last message received when window is destroyed

 !remove the properties added to the window in the

 !subclassme() method

 CMAG_RemoveProp(hWnd, WPROP_IPC_CLASSINST)

 CMAG_RemoveProp(hWnd, WPROP_IPC_WINDOWPROC)

 Of Me.LinkMessage()

 If wParam <> hWnd !don't process broadcast message for self

 Me.OnLinkMessage(wParam, lParam)

 End

 Of Me.UserMessage()

 If Me.UserMessage() <> 0

 Me.OnUserMessage(wParam, lParam)

 Return 0

 End

 Return CMAG_CallWindowProc(OldWndProc, hWnd, uMsg, |

 wParam, lParam)

Two variables are declared, one to hold the address of the old window procedure and an
InterprocessComs class reference variable. These two variables need their values set to those stored in

the window properties before any messages are processed by the window procedure.

GetProp is called to retrieve the OldWndProc variable from the window property list. This was set with

the WPROP_IPC_WINDOWPROC constant string in the SubclassMe method. After the call to GetProp,
the OldWndProc variable should contain the address of the window procedure that will process all the
message not handled by this procedure. You pass control to the original window procedure by calling
the Windows CallWindowProc function.

GetProp is called again, this time with the WPROP_IPC_CLASSINST constant string to retrieve the

instance of the class. This address is cast to the reference variable allowing you to access all methods
and properties of the instance of the class associated with this window. If for some reason the reference is
null then the message is passed to the original window procedure by calling CallWindowProc and returning
its return value.

After these two properties are retrieved from the window's property list, you can process messages. Some
of the messages that this window procedure processes are constants defined in the Windows SDK, and
the others are generated by calls to RegisterWindowMessage and are only known at runtime. For a
complete list of the constant messages you should download the platform SDK from Microsoft. The
most recent one was published in November 2006 and it covers Windows Vista. The .h files contained in
the platform SDK are the definitive reference to the Windows SDK.

Five messages are processed by the window procedure. They are: WM_COPYDATA,

http://www.clarionmag.com/cmag/v9/v9n03ipc2.html (6 of 8) [11/04/2007 2:24:26 PM]

Interprocess Communication: Receiving Messages

WM_NCDESTROY, WM_DESTROY, the registered link message, and an optional registered user

message. The window procedure doesn't do anything with WM_COPYDATA in the code shown; this
message is used to pass more complex data like strings, groups, and record structures between processes.
I'll show code for those tasks in a later installment.

WM_DESTROY and WM_NCDESTROY are sent to the window procedure by Windows when the window

is being destroyed. WM_DESTROY is sent before the window is destroyed. WM_NCDESTROY is sent to
the window after it's destroyed and is the last message your window procedure will receive. In response
to WM_NCDESTROY the window procedure removes the two properties, WPROP_IPC_CLASSINST
and WPROP_IPC_WINDOWPROC from the window's property list by calling the Windows
RemoveProp function. Failure to remove the properties causes a resource leak.

On the other hand, when the window procedure receives the WM_DESTROY message, you know that
the window is about to be destroyed and the class uses this opportunity to disassociate itself from its
partner process. It does this by calling the RemoveLink method.

InterprocessComs.RemoveLink Procedure()

 Code

 If Self.hWndPartner And Self.LinkMessage And Self.hWnd

 CMAG_PostMessage(Self.hWndPartner, Self.LinkMessage, |

 Self.hWnd, WMU_IPC_REMOVEME)

 End

 Self.hWndPartner = 0

 Return

RemoveLink simply posts the registered link message to the other process it's been partnered with in the

initial link exchange, with the wParam containing the hWnd of this window and the lParam containing
the constant WMU_IPC_REMOVEME.

Processing one of the registered messages requires that the window procedure call a class method to
retrieve the value that Windows assigned to your message. When the Case statement executes this line of code:

Of Me.LinkMessage()

the current instance of class's LinkMessage simply returns the value stored in the LinkMessage property so
it may be compared with the current value of uMsg. The window procedure then needs to determine if
this window sent the broadcast message. This is true when the hWnd and wParam are equal. Remember
that the link message defines the wParam as the hWnd of the window that sent the link message. The
window procedure's hWnd parameter is the handle to this window. Only when the two window handles
are different is the message processed by calling the OnLinkMessage handler method. This method
processes the receipt of all link messages for the window procedure.

InterprocessComs.OnLinkMessage Procedure(UNSIGNED wParam, |

 Long lParam)

 Code

 Case lParam

 Of WMU_IPC_LINKME

http://www.clarionmag.com/cmag/v9/v9n03ipc2.html (7 of 8) [11/04/2007 2:24:26 PM]

Interprocess Communication: Receiving Messages

 If Self.hWndPartner Then Return; End

 Self.hWndPartner = wParam

 CMAG_PostMessage(wParam, Self.LinkMessage, |

 Self.hWnd, WMU_IPC_ACKLINK)

 Of WMU_IPC_ACKLINK

 Self.hWndPartner = wParam

 Of WMU_IPC_REMOVEME

 Self.hWndPartner = 0

 End

 Return

OnLinkMessage accepts two parameters, wParam and lParam. These values are forwarded by the

window procedure. Remember that the link message defines the lParam as containing the action and
the wParam contains the handle of the window that sent the message.

When OnLinkMessage receives an WMU_IPC_LINKME request, it saves the handle to the sending window
in the hWndPartner property and then posts the link message back to the sending process with
an WMU_IPC_ACKLINK to acknowledge the receipt of the link message. When the initiating
process receives the WMU_IPC_ACKLINK request in the link message, it saves the transmitted
window handle in its hWndPartner property. After the link and acknowledgement requests are processed,
the two processes may send messages to each other via the window handle saved in the hWndPartner property.

When one of the processes destroys the window whose window procedure is processing the
Interprocess communication messages, it notifies the other process by sending the link message with

the WMU_IPC_REMOVEME action in the lParam. When received, OnLinkMessage sets the hWndPartner
to zero to prevent messages from being sent; this also allows the process to establish a new link upon receipt
of the link message with the WMU_IPC_LINKME action.

That's the code required to establish the link. Next time I'll show how to exchange messages
between processes.

Download the source

independent software developer who began programming with Clarion in 1987. In addition to normal
database development, he specializes in connecting Clarion to external devices like SCUBA diving
computers, kilns, and satellite transceivers used in medical helicopters. In other lives, he sailed Lake
Superior as the owner/operator of shipwreck SCUBA diving tours and later as a Master for the Vista
Fleet. When Larry is not programming you'll find him messing about in boats, or with boats.

Reader Comments

Add a comment

http://www.clarionmag.com/cmag/v9/v9n03ipc2.html (8 of 8) [11/04/2007 2:24:26 PM]

http://www.clarionmag.com/cmag/v9/files/v9n03ipcAandB.zip
http://www.clarionmag.com/cmag/comments.frm?articleID=14911

C7 Alpha Bits Part 2

C7 Alpha Bits Part 2

by Dave Harms

Published 2007-03-27

In Alpha Bits Part 1 I mentioned C7's code completion, which pops up information about procedures
and classes as you type. The latest Alpha 1 build extends this capability with user-defined text in popups.

Consider the following test program created with C7. It contains a class definition, cust, which has
FirstName and LastName properties, and methods to set those values as well as return the combined first

and last name:

 PROGRAM

OMIT('***')

 * Created by Clarion 7.0

 * User: Dave Harms

 * Date: 23/03/2007

 * Time: 7:12 AM

 *

 * To change this template use Tools | Options | Coding | Edit Standard Headers.

 MAP

 END

cust class

FirstName string(30) !!!Customer's first name

LastName string(30) !!!Customer's last name

SetFirstName procedure(string FirstName)

SetLastName procedure(string LastName)

SetName procedure(string FirstName,String LastName)

GetName procedure(),string

http://www.clarionmag.com/cmag/v9/v9n03alphabits2.html (1 of 7) [11/04/2007 2:24:30 PM]

http://www.clarionmag.com/index.html

C7 Alpha Bits Part 2

 end

 CODE

 cust.SetName('Dave','Harms')

 message(cust.GetName())

!!! <summary>The customer's full name</summary>

!!! <returns>The first and last name separated by a space. </returns>

cust.GetName procedure

 code

 return(clip(self.FirstName) & ' ' & clip(self.LastName))

!!! <summary>Set the first name</summary>

!!! <param name="FirstName">The customer's first name</param>

!!! <remarks>This method doesn't do any formatting or

!!! case checking - it just assigns the value.</remarks>

cust.SetFirstName procedure(string FirstName)

 code

 self.FirstName = FirstName

!!! <summary>Set the last name</summary>

!!! <param name="LastName">The customer's first name</param>

!!! <remarks>This method doesn't do any formatting or

!!! case checking - it just assigns the value.</remarks>

cust.SetLastName procedure(string LastName)

 code

 self.LastName = LastName

!!! <summary>Set the first and last name</summary>

!!! <param name="FirstName">The customer's first name</param>

!!! <param name="LastName">The customer's last name</param>

!!! <remarks>This method calls the

!!! SetFirstName and SetLastName methods.</remarks>

cust.SetName procedure(string FirstName,string LastName)

 code

http://www.clarionmag.com/cmag/v9/v9n03alphabits2.html (2 of 7) [11/04/2007 2:24:30 PM]

C7 Alpha Bits Part 2

 self.SetFirstName(FirstName)

 self.SetLastName(LastName)

Note the comments preceding each method declaration. Figure 1 shows each of the method code
completion popups.

Figure 1. User-defined code completion tips

These popups also appear if you hover the mouse over the any code or declaration with an associated
comment block.

The IDE parses all text to the right of the !!! marker as XML, which means that the comment format may
use only the specified XML tags. If you use different tags, or if the XML is otherwise badly formed,
the comment block will be displayed unformatted.

Comments can be placed before the method declaration (inside the CLASS) or before the
implementation. Comments in the declaration take precedence.

Class comments

http://www.clarionmag.com/cmag/v9/v9n03alphabits2.html (3 of 7) [11/04/2007 2:24:30 PM]

C7 Alpha Bits Part 2

You can associate comments with classes using the above approach. For example:

!!! <summary>Customer class</summary>

!!! <remarks>Models a single customer</remarks>

cust class

...

end

If you hover your mouse over cust anywhere in your code you'll see the tooltip, as in Figure 2.

Figure 2. The class comment.

Single line comments

There is an alternate single-line way to add comments: simply follow the declaration with !!! followed by
the comment text:

FirstName string(30) !!!Customer's first name

LastName string(30) !!!Customer's last name

Figure 3 shows the comment as displayed for the FirstName variable.

Figure 3. Single line comments

This is a handy way to document variables. But with methods, be careful: as I mentioned earlier, comments
in the prototype supercede any comments in the method implementation. A quick, convenient comment
inside the CLASS means more detailed comments in the implementation won't show.

This is a good thing, right?

I realize that not everyone likes code completion. Some think it encourages laziness: programmers rely on
the tips instead of on their knowledge of the code base. Others are distracted by the popups (even though
you don't have to respond to code completion - you can just keep typing).

http://www.clarionmag.com/cmag/v9/v9n03alphabits2.html (4 of 7) [11/04/2007 2:24:30 PM]

C7 Alpha Bits Part 2

If you're not a fan, you can turn code completion off. But I suspect that many Clarion developers will find
it enormously useful. By documenting your own code with comments you'll reduce the likelihood of
errors, and, I believe, make it easier for new employees to get up to speed on your code base. I also expect
that some enterprising third party developer will take the opportunity to create a documentation tool
that extracts and formats comments.

One final note: As always, keep in mind that this is alpha code, and there may be changes/enhancements to
this functionality before gold release.

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He
is also co-author with Ross Santos of Developing Clarion for Windows Applications, published by
SAMS (1995), and has written or co-written several Java books. David is a member of the American Society
of Journalists and Authors (ASJA).

Reader Comments

Posted on Sunday, March 25, 2007 by Carl Barnes

XML comments in C# code can be extracted by the compiler into an XML file and "transformed" into HTML documentation pages for

the API. Should eventually be possible in Clarion.

Examples:

XML Comments Let You Build Documentation Directly From Your Visual Studio .NET Source Files

http://msdn.microsoft.com/msdnmag/issues/02/06/XMLC/

example: http://msdn.microsoft.com/msdnmag/issues/02/06/XMLC/figures.asp#fig8

How to: Use the XML Documentation Features (C# Programming Guide)

http://msdn2.microsoft.com/en-us/library/z04awywx.aspx

Posted on Wednesday, March 28, 2007 by Ubaidullah Nubar

Is the !!! part configurable, i.e. can it be changed to use !!> as the comment identifier?

Posted on Wednesday, March 28, 2007 by Mark Goldberg

Very nice feature. I'm looking forward to being enticed away from UltraEdit.

This may already be in place, but it seems to me that it would be nice to ignore an entry if it's if empty or all white space

!!! <summary></summary>

!!! <summary> </summary>

This would encourage preset, fill in the blank, comments.

I suppose we could simply alter the !!! symbol for our pre-set comments. Fill in the value, and correct the symbol

for example:

!! <summary></summary>

http://www.clarionmag.com/cmag/v9/v9n03alphabits2.html (5 of 7) [11/04/2007 2:24:30 PM]

mailto:david.harms@clarionmag.com
http://asja.org/

C7 Alpha Bits Part 2

Will there be any control over formatting of the popups? For example it seems like the remarks tag has an implied CRLF. This is a

personal preference, but I found myself wishing that there was a blank line above the "remark:" tag, and no CRLF after it. I also mused

over wanting the tag to be highlighted differently from it's content.

Will there be any support for BOLD, ITALIC, UNDERLINE, Color etc.?

There's a conversation on the skype chat regarding the choice of !!! for the magic symbol. A number of us have existing code which

uses varying levels of comments. In my case I use it to indicate different sets of remmed source. We're wondering if it would be better

to have a different symbol to introduce the magic comments. Brainstorming: !p! for popup, or !d! for documentation. !@! - 'cause it's

easy to type (at least it is on a US layout keyboard).

Posted on Wednesday, March 28, 2007 by Viggo Kleven

The !!! may not be very practical, I have that already <g>. Especially when commenting sections of code it tend to increase the number

of !!s

!@! is terrible on Norwegian keyboards, requires the AltGr key for the @.

!*! however is very quick and easy.

As Mark Goldberg suggested elsewhere, this could also be !P! for the PopUp and then allow for !D! for lines intended for

Documentation parsing. (and !B! for Both).

Posted on Wednesday, March 28, 2007 by Dermot Herron

All I can say is WOW

I have a terrible memory so code completion as powerful as this will be a major godsend for me - I was looking forward to C7 because

I could have more than one app open and copy and paste! But this is much better.

Posted on Thursday, March 29, 2007 by Dave Harms

Thanks guys. I've passed along your suggestions to the alpha group for discussion.

Posted on Thursday, March 29, 2007 by Edin Cahtarevic

I think that plain old one "!" should be used.

There is always "<" sign before <summary> or <whatever> and it can be recognized. Like this:

! <summary>Set the first name</summary>

! <param name="FirstName">The customer's first name</param>

! <remarks>This method doesn't do any formatting or

! case checking - it just assigns the value.</remarks>

So, if there is "! <" sequence, it should be used as start of popup comment, until the closing "</xxxxx>"

It is easier to type and all old comments would be skipped without consequences:

! Set the first name

! FirstName: The customer's first name

http://www.clarionmag.com/cmag/v9/v9n03alphabits2.html (6 of 7) [11/04/2007 2:24:30 PM]

C7 Alpha Bits Part 2

! This method doesn't do any formatting or

! case checking - it just assigns the value.

Regards,

Edin

Posted on Monday, April 09, 2007 by Russell Eggen

There was a confusion about the choice of !!! symbols that started the conversation into this direction. Due to a misduplication of

something I said on the Skype chat, more than one person thought the !!! symbols could be changed, they cannot and should not

IMNSHO.

This confusion is now cleared up and anyone who uses !!! currently won't affect anything in C7. To make this work you ALSO need

the XML tags as Dave described in his article. If those are missing, the !!! is just another comment in your source code. Confirmed by

actual tests.

You may now resume your regular coding <bg>.

Add a comment

http://www.clarionmag.com/cmag/v9/v9n03alphabits2.html (7 of 7) [11/04/2007 2:24:30 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=14927

Embed Analysis Part 3

Embed Analysis Part 3

by Dave Harms

Published 2007-03-22

Last time I showed the basis for my expanded analysis of Clarion embed usage, and I covered some
common embed usage including event handling and window initialization. Now it's time to look at
browse/process/report embeds and embed usage by procedure type, and I'll wrap up with some conclusions
on the use of embeds.

Browse embeds

Here’s the code to extract the browse embed usage data. As with window events, browse events are
really places to insert code into class methods.

select count(*),param2 from Embed

 where embed = '%BrowserMethodCodeSection'

 group by param2 order by count desc, param2;

480 SetQueueRecord

123 TakeNewSelection

92 ValidateRecord

75 ApplyFilter

50 TakeKey

35 PrimeRecord

20 ResetFromView

13 Init

13 UpdateWindow

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (1 of 22) [11/04/2007 2:24:34 PM]

http://www.clarionmag.com/index.html

Embed Analysis Part 3

8 Ask

5 ApplyRange

5 ResetFromAsk

5 ResetQueue

4 TakeEvent

4 UpdateBuffer

3 SetAlerts

2 Open

2 Reset

2 ResetSort

2 ScrollOne

2 SetFilter

1 SetSort

As you probably know, when Clarion displays data in a browse, it’s really showing you the data it has in
a queue, the structure of which corresponds to the fields you’ve defined in the browse. The
SetQueueRecord method is called whenever the code retrieves a row of data and populates the queue record,

so inserting your own code here is a good way to set up calculated fields.

A handful of method calls make up the majority of browse embeds. TakeNewSelection is called whenever
the user selects a new record; ValidateRecord is called for each record which is to be loaded into the queue -
if you have a filter condition that can't easily be set in the templates you can add it here, and return one
of Record:OK, Record:Filtered, or Record:OutOfRange. ApplyFilter is typically used to update the
browse filter based on various other conditions such as the value of local variables. TakeKey is used to
process alerted keystrokes, including mouse clicks.

Process/Report embeds

There are several ABC classes involved in processes and reports. ProcessClass is derived from
ViewManager, as is BrowseClass. And that makes sense since processes, browses and reports all deal

in sequential processing of records. The ReportManager class is derived from WindowManager and adds

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (2 of 22) [11/04/2007 2:24:34 PM]

Embed Analysis Part 3

the code needed to run a process and generate a report. Consequently, reports use many of the same
embed points as windows and browses.

Embeds by procedure type

I have one last list of embeds, organized by procedure type. Here’s the SQL:

select ProcFromABC, count(*) as count, embed

 from EmbedProc p left join Embed e

 on (p.embedprocid=e.embedprocid)

 group by ProcFromABC, embed

 order by ProcFromABC, count desc, embed;

This list includes embeds generated by third party and custom products, so all of these won’t necessarily
be available in your application. But if you stick to the embeds with the highest occurrences in each
procedure type you’re most likely looking at ABC embeds.

Procedure Type Count Embed

Browse 89 %ControlEventHandling

Browse 49 %WindowManagerMethodCodeSection

Browse 40 %ProcedureRoutines

Browse 14 %TagMethodCode

Browse 10 %BrowserMethodCodeSection

Browse 10 %ControlHandling

Browse 7 %UltraTreeMethodCodeSection

Browse 5 %DataSection

Browse 3 %WindowEventHandling

Browse 1 %EditInPlaceManagerMethodCodeSection

Browse 1 %WindowManagerMethodDataSection

Form 43 %WindowManagerMethodCodeSection

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (3 of 22) [11/04/2007 2:24:34 PM]

Embed Analysis Part 3

Form 37 %ControlEventHandling

Form 7 %ProcedureRoutines

Form 6 %EditInPlaceManagerMethodCodeSection

Form 4 %BrowserMethodCodeSection

Form 2 %DataSection

Form 1 %BrowserEIPManagerMethodCodeSection

Form 1 %GlobalMap

Form 1 %LocalDataAfterClasses

Form 1 %LocalProcedures

Frame 187 %WindowManagerMethodCodeSection

Frame 134 %ControlEventHandling

Frame 84 %WindowEventHandling

Frame 28 %DataSection

Frame 27 %ProcedureRoutines

Frame 7 %LocalDataAfterClasses

Frame 6 %ToolbarDropItemAction

Frame 4 %GlobalMap

Frame 3 %ControlPostEventCaseHandling

Frame 3 %ControlPostEventHandling

Frame 3 %GlobalData

Frame 3 %ProcedureSetup

Frame 3 %ProgramSetup

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (4 of 22) [11/04/2007 2:24:34 PM]

Embed Analysis Part 3

Frame 3 %ToolbarAction

Frame 3 %WindowManagerMethodDataSection

Frame 2 %FileDropMethodCodeSection

Frame 2 %ProgramEnd

Frame 1 %AfterFileClose

Frame 1 %AfterFileDeclarations

Frame 1 %AfterFileOpen

Frame 1 %AfterGlobalIncludes

Frame 1 %AfterWindowOpening

Frame 1 %AnyFontABCDisable

Frame 1 %AnyFontABCEnable

Frame 1 %BeforeGlobalIncludes

Frame 1 %BeforeWindowClosing

Frame 1 %BeforeWindowOpening

Frame 1 %BeginningExports

Frame 1 %BrowserMethodCodeSection

Frame 1 %ControlPreEventHandling

Frame 1 %DLLExportList

Frame 1 %DataSetupSection

Frame 1 %FM2Init

Frame 1 %ListboxStyleAfterDefine

Frame 1 %LocalProcedures

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (5 of 22) [11/04/2007 2:24:34 PM]

Embed Analysis Part 3

Frame 1 %ToolbarInitBeforeCode

Frame 1 %ToolbarMethodCodeSection

Frame 1 %ValidateSelection

Menu 4 %ProcedureRoutines

Menu 3 %WindowEventHandling

Menu 1 %WindowManagerMethodCodeSection

Process 702 %WindowManagerMethodCodeSection

Process 500 %ProcessManagerMethodCodeSection

Process 132 %ProcedureRoutines

Process 86 %ProcessActivity

Process 37 %AfterFileOpen

Process 36 %DataSection

Process 34 %BeforeFileClose

Process 32

Process 29 %WindowEventHandling

Process 25 %ControlEventHandling

Process 12 %ProcedureSetup

Process 11 %LocalDataAfterClasses

Process 10 %ControlPostEventHandling

Process 9 %ProgramSetup

Process 6 %BeforeFileOpen

Process 5 %AfterFileClose

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (6 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Process 5 %ControlPreEventHandling

Process 4 %AfterGlobalIncludes

Process 4 %DataSectionBeforeWindow

Process 3 %DataSectionAfterWindow

Process 3 %EndOfProcedure

Process 3 %GlobalData

Process 3 %GlobalMap

Process 3 %ProcedureInitialize

Process 3 %ProcessManagerMethodDataSection

Process 2 %AfterFileDeclarations

Process 2 %AfterProgramCode

Process 2 %BeforeWindowOpening

Process 2 %ProgramEnd

Process 1 %AfterTurnQuickScanOn

Process 1 %BeforeWindowMakeover

Process 1 %LocalProcedures

Process 1 %NetTalkRefreshCode

Process 1 %WindowEventOpenWindowBefore

Report 730 %WindowManagerMethodCodeSection

Report 584 %ProcessManagerMethodCodeSection

Report 126 %BeforePrint

Report 113 %ProcedureRoutines

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (7 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Report 68 %AfterFileOpen

Report 56 %AfterPrint

Report 45 %WindowEventHandling

Report 42 %ControlEventHandling

Report 40 %PreviewerManagerMethodCodeSection

Report 32 %BeforeFileOpen

Report 31 %BreakManagerManagerMethodCodeSectionLevelAction

Report 26 %AfterInitialGet

Report 21 %DataSection

Report 20

Report 18 %AfterOpeningReport

Report 16 %LSiBeforeEndpage

Report 12 %ProcedureSetup

Report 12 %ProcessManagerMethodDataSection

Report 9 %BeforeInitialGet

Report 9 %BeforePrintPreview

Report 7 %LSiAfterOpeningFiles

Report 6 %LSiAfterOpeningReport

Report 6 %ProgramSetup

Report 5 %LSiEndOfReport

Report 4 %DataSectionBeforeReport

Report 4 %GlobalMap

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (8 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Report 3 %AfterOpeningWindow

Report 3 %ControlPostEventHandling

Report 3 %GetNextRecordNextSucceeds

Report 3 %GlobalData

Report 3 %LocalDataAfterClasses

Report 3 %ProgressCancel

Report 2 %AfterFileClose

Report 2 %BeforeKeySet

Report 2 %ChildViewManagerMethodCodeSection

Report 2 %ControlPreEventHandling

Report 2 %HandCodedViewStatements

Report 2 %LSiAfterPrintingDetail

Report 2 %LSiBeforePrintingDetail

Report 2 %NewMethodCodeSection

Report 2 %ReportTargetMethodCodeSection

Report 2 %TargetSelectorManagerMethodCodeSection

Report 1 %AfterFileDeclarations

Report 1 %AfterGlobalIncludes

Report 1 %AfterTurnQuickScanOff

Report 1 %BeforeClosingReport

Report 1 %BeforeLevel1HdrPrt

Report 1 %BeforeOpeningWindow

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (9 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Report 1 %FileDropComboMethodCodeSection

Report 1 %LSiBeforeOpeningFiles

Report 1 %LSiReportCanceled

Report 1 %NewMethodDataSection

Report 1 %PostPrintFromQueue

Report 1 %ProcedureInitialize

Report 1 %ProgramEnd

Report 1 %ReportAfterLookups

Report 1 %mhViewValidate

Source 1275 %ProcessedCode

Source 829 %DataSection

Source 342

Source 76 %ProcedureRoutines

Source 26 %ProgramSetup

Source 23 %AfterFileDeclarations

Source 20 %GlobalMap

Source 19 %GlobalData

Source 12 %FM2Init

Source 12 %LocalProcedures

Source 9 %AfterGlobalIncludes

Source 9 %BeforeGlobalIncludes

Source 7 %AfterProgramCode

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (10 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Source 7 %ProcRoutines

Source 7 %WindowManagerMethodCodeSection

Source 6 %FileManagerCodeSection

Source 5 %ProgramEnd

Source 5 %RelationManagerCodeSection

Source 3 %BeforeFileOpen

Source 3 %EndOfReportGeneration

Source 3 %RecordFilter

Source 3 %RelationManagerDataSection

Source 2 %AdditionalDebugHooks

Source 2 %AfterEntryPointCodeStatement

Source 2 %AfterFileClose

Source 2 %AfterOpeningReport

Source 2 %BeforeFileClose

Source 2 %ProcessActivity

Source 2 %ProgramProcedures

Source 2 %ProgramRoutines

Source 2 %mhViewInit

Source 1 %AfterClosingExports

Source 1 %AfterDctDestruction

Source 1 %AfterDctInitialization

Source 1 %AfterFileOpen

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (11 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Source 1 %AfterLevel1FtrPrt

Source 1 %AfterPrint

Source 1 %BeforeFileDeclarations

Source 1 %BeforeInitialGet

Source 1 %BeforeLevel1HdrPrt

Source 1 %BeforeWindowOpening

Source 1 %EndOfProcedure

Source 1 %ErrorManagerCodeSection

Source 1 %ErrorManagerDataSection

Source 1 %FieldLevelValidation

Source 1 %FileManagerDataSection

Source 1 %LocalDataAfterClasses

Source 1 %ProcedureSetup

Splash 17 %WindowManagerMethodCodeSection

Splash 4 %ControlEventHandling

Splash 2 %EventCaseBeforeGenerated

Splash 1 %AfterFileOpen

Splash 1 %AfterGlobalIncludes

Splash 1 %BeforeWindowOpening

Splash 1 %GlobalMap

Splash 1 %ProcedureRoutines

Splash 1 %WindowManagerMethodDataSection

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (12 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Splash 1

Window 7061 %ControlEventHandling

Window 4557 %WindowManagerMethodCodeSection

Window 1241 %BrowserMethodCodeSection

Window 1160 %ProcedureRoutines

Window 569 %WindowEventHandling

Window 414 %ControlPostEventHandling

Window 273 %LocalDataAfterClasses

Window 262 %DataSection

Window 169 %ControlHandling

Window 144 %TreeSectionMethodCodeSection

Window 128 %UltraTreeMethodCodeSection

Window 127 %ControlPreEventHandling

Window 114 %NewMethodCodeSection

Window 106 %FormatBrowse

Window 95 %WindowManagerMethodDataSection

Window 85 %AfterWindowOpening

Window 77

Window 68 %LocalProcedures

Window 61 %FileDropMethodCodeSection

Window 61 %UTVMMethodCodeSection

Window 57 %EditInPlaceManagerMethodCodeSection

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (13 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Window 54 %TagMethodCode

Window 52 %AfterFileOpen

Window 42 %GlobalData

Window 40 %BrowseBoxEmpty

Window 35 %BeforeWindowOpening

Window 35 %BrowseBoxNotEmpty

Window 35 %ProcedureSetup

Window 34 %BrowserEIPManagerMethodCodeSection

Window 30 %FileLookupMethodCodeSection

Window 30 %RecordFilter

Window 28 %ProcedureInitialize

Window 27 %GlobalMap

Window 27 %ProgramSetup

Window 26 %NetTalkMethodCodeSection

Window 23 %XPTaskPanelTaskClickedAfterCode

Window 21 %BrowseBoxDoubleClickHandler

Window 21 %BrowserMethodDataSection

Window 20 %AfterGlobalIncludes

Window 17 %XPTaskPanelTaskLogicAfterCode

Window 16 %DataSectionAfterWindow

Window 16 %FileManagerCodeSection

Window 15 %AfterPrimaryNext

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (14 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Window 15 %BeforeGlobalIncludes

Window 15 %NewMethodDataSection

Window 13 %AfterFileDeclarations

Window 13 %DataSectionBeforeWindow

Window 13 %EndOfProcedure

Window 12 %BeforeFileClose

Window 12 %BeforeFileOpen

Window 12 %BeforePrimaryNext

Window 12 %OnInsertAfterPriming

Window 12 %PostWindowEventHandling

Window 11 %ListboxStyleAfterDefine

Window 10 %NetTalkMethodRoutineSection

Window 9 %FM2Init

Window 9 %NextTabEmbed

Window 8 %AfterFileClose

Window 8 %BeforeSecondaryDisplay

Window 8 %FileDropComboMethodCodeSection

Window 8 %XPThemeWindowAfterInit

Window 7 %AfterCallingUpdateOnAdd

Window 7 %AlertKeyCaseKEYCODE

Window 6 %BeforeAccept

Window 6 %BeforeCallingUpdateOnRemove

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (15 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Window 6 %BeforeFileAction

Window 6 %BeforeSecondaryDisplayCreate

Window 6 %BeginAddEntryRoutine

Window 6 %DasTagAfterTagOnOff

Window 6 %FinishWizard

Window 6 %ProcessedCode

Window 5 %AfterProgramCode

Window 5 %BackTabEmbed

Window 5 %BeforeCallingUpdateOnEdit

Window 5 %BrowseBeforeDelete

Window 5 %LocatorMethodCodeSection

Window 5 %ResizerMethodCodeSection

Window 5 %TreeSectionMethodDataSection

Window 4 %AfterEntryPointCodeStatement

Window 4 %BeforePreparingRecordOnAdd

Window 4 %BrowseAfterChange

Window 4 %BrowseAfterInsert

Window 4 %DasTagAfterTagAll

Window 4 %DasTagBeforeKillTaging

Window 4 %FormAllow

Window 4 %UltraTreeMethodDataSection

Window 3 %AfterCallingUpdateOnEdit

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (16 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Window 3 %AfterCallingUpdateOnRemove

Window 3 %AfterSecondaryNext

Window 3 %AfterTagOp

Window 3 %BCSIfSelect

Window 3 %BeforePrimaryDisplayCreate

Window 3 %BeforeUntagAll

Window 3 %BrowseBeforeChange

Window 3 %BrowseBeforeInsert

Window 3 %ControlOtherEventHandling

Window 3 %CustomAlertEmbed

Window 3 %DasTagBeforeTagAll

Window 3 %FileLookupMethodDataSection

Window 3 %ListboxStyleBeforeDefine

Window 3 %PrimeFields

Window 3 %TEBrowseDropHandlingAfter

Window 3 %TEDropIDOk

Window 3 %XPTaskPanelTaskLogicBeforeCode

Window 2 %AcceptLoopAfterEventHandling

Window 2 %AcceptLoopBeforeEventHandling

Window 2 %AdditionalDebugHooks

Window 2 %AfterImportExcel

Window 2 %BCSLicenseEmbed

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (17 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Window 2 %BeforeCallingUpdateOnAdd

Window 2 %BeforePrimaryDisplay

Window 2 %BeforeWindowClosing

Window 2 %BreakManagerManagerMethodCodeSectionLevelAction

Window 2 %BrowseAfterDelete

Window 2 %DasTagAfterInitTaging

Window 2 %DasTagBeforeTagOnOff

Window 2 %FieldLevelValidation

Window 2 %LookupRelated

Window 2 %NetTalkAfterInitSection

Window 2 %NetTalkMethodDataSection

Window 2 %OnInsertBeforePriming

Window 2 %ProcessManagerMethodCodeSection

Window 2 %TETreeDropHandlingAfter

Window 2 %VerResourceValueList

Window 2 %WindowInitializationCode

Window 1 %AcceptLoopBeforeFieldHandling

Window 1 %AfterFileNext

Window 1 %AfterInsertRecord

Window 1 %AfterOpeningReport

Window 1 %AfterTotalLoop

Window 1 %AfterTurnQuickScanOff

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (18 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Window 1 %AfterWindowClosing

Window 1 %AuditData

Window 1 %BeforeAddingStyles

Window 1 %BeforeFlipAll

Window 1 %BeforeFlipOne

Window 1 %BeforeInlineFileAction

Window 1 %BeforePrint

Window 1 %BeforeSecondaryNext

Window 1 %BeforeTagAll

Window 1 %BeforeTagOne

Window 1 %BeforeUntagOne

Window 1 %BrowseBoxAfterUpdate

Window 1 %BrowsePrepNormal

Window 1 %BrowsePrepSelectRecord

Window 1 %DasTagAfterUnTagAll

Window 1 %DasTagBeforeUnTagAll

Window 1 %EIPClickAccepted

Window 1 %EIPEventSelected

Window 1 %EndOfFormatBrowse

Window 1 %FEPreCodeSection

Window 1 %FileDropMethodDataSection

Window 1 %HandyInterNetFtpBeforeInit

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (19 of 22) [11/04/2007 2:24:35 PM]

Embed Analysis Part 3

Window 1 %HandyInterNetFtpULAborted

Window 1 %HyperActivePostCodeSection

Window 1 %HyperActivePreCodeSection

Window 1 %INIManagerCodeSection

Window 1 %JSTokenTextSelected

Window 1 %MCRTAfterSetQueueRecord

Window 1 %PDFXCDriverDocSaved

Window 1 %PXCDV3PBeforeRunEmbed

Window 1 %ProgramEnd

Window 1 %RefreshWindowBeforeLookup

Window 1 %TaskbarIconEmbed

Window 1 %TaskbarIconMessageProcessing

Window 1 %WinEventTaskBarPopupItems

Window 1 %WindowOtherEventHandling

Conclusions and recommendations

Clarion ABC applications present a bewildering array of embed points, but as this analysis shows, the
vast majority of embeds are in just a few areas, including window initialization, event handling,
browse display, and source code procedure code and data.

There are still a lot of developers using legacy embed names, which suggests a lack of familiarity with
ABC. While legacy embeds have the lure of familiarity they mask the real workings of ABC, and that
can make it more difficult to use ABC to its fullest. If you're using ABC but you're not sure what's
really happening behind the scenes, it's time to start reading. Resources include the Clarion ABC help,
and ClarionMag's ABC Internals and Using ABC topics. You may also want to take a look at a couple
of books: Bruce Johnson's Programming in Clarion ABC is available from CapeSoft, and Russ
Eggen's Programming Objects in Clarion is available in the ClarionMag store in print and PDF versions.

There is also clearly a lot of code in source procedures. While this is better than having that same

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (20 of 22) [11/04/2007 2:24:35 PM]

http://www.clarionmag.com/cmag/topics.html?subcategoryid=71
http://www.clarionmag.com/cmag/topics.html?subcategoryid=45
http://clarionshop.com/pdetail.cfm?id=440
http://www.clarionmag.com/cmag/store.html?action=shop

Embed Analysis Part 3

code sprinkled throughout embeds, a lot of it can probably be converted to classes (see CLASSy ASCII
File Importing for an example), particularly where several source procedures work on common data.

For further information on using embeds see the list of Related Articles on this page, or go to the
Embeds topical index page.

I hope this analysis provides some useful insight. If you have a favorite embed point or two which I
haven't covered (or haven't adequately explained), let me know.

My thanks again to all who contributed TXAs.

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He
is also co-author with Ross Santos of Developing Clarion for Windows Applications, published by
SAMS (1995), and has written or co-written several Java books. David is a member of the American Society
of Journalists and Authors (ASJA).

Reader Comments

Posted on Thursday, March 22, 2007 by Tony Tetley

Dave,

This was an interesting and informative series. I wish these articles had been present when I first started into ABC. It takes some

time to get over the overwhelming number of embed points and realize that you don't need to use them all.

Thanks,

Tony

Posted on Thursday, March 22, 2007 by Dave Harms

Tony,

Thanks, I'm glad you've found it helpful.

Dave

Posted on Tuesday, April 03, 2007 by Dave Harms

The following people contributed TXAs for analysis. My thanks to all of you!

- Anonymous

- Paul Blais

- Cliff Cady

- Tom Carswell

- Andrew Crockett

- Rick Dafler

- Ben Dell

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (21 of 22) [11/04/2007 2:24:35 PM]

http://www.clarionmag.com/cmag/v4/v4n12classyascii.html
http://www.clarionmag.com/cmag/v4/v4n12classyascii.html
http://www.clarionmag.com/cmag/topics.html?subcategoryid=52
mailto:david.harms@clarionmag.com
mailto:david.harms@clarionmag.com
http://asja.org/

Embed Analysis Part 3

- Peter Gysegem

- Jim Halpin

- Jorge Herrera

- Terry Hill

- Lynn Howard

- Doug Johnson

- Jeffrey Kolker

- James Lishman

- John Morter

- Geoff Prudames

- Steffen Rasmussen

- Ned Reiter

- Tony Tetley

- Vido Vouk

- Bill Wilson

- Des Yaxley

If I've missed anyone please let me know.

Dave

Add a comment

http://www.clarionmag.com/cmag/v9/v9n03embeds3.html (22 of 22) [11/04/2007 2:24:35 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=14910

Embed Analysis Part 2

Embed Analysis Part 2

by Dave Harms

Published 2007-03-21

Embed points are Clarion's great strength: they let you embed custom code within generated code so you
get the best of both worlds. But there are a bazillion embed points. How do you know which ones to use?
One way is to study the documentation and make educated guesses. Another is to ask experienced Clarion
developers which embeds they favor.

A while ago I decided to automate the latter approach. Clarion APPs can be exported as TXAs, which are
text files containing all of the APP's information, including embed points. I wrote some code to parse
TXAs looking for the embeds, and I published some preliminary results in January. I also asked developers
to send me their TXAs for analysis. The response was better than I expected, and I now have over 300 TXAs in
hand. In this article I’ll go over some of my findings, and I'll show the SQL statements I used to extract
the data.

A storage problem

In my original analysis I stored embed data on the Clarion Magazine server, which is physically about
1500 miles (2400km) from my office. As I only had a handful of TXAs to process, the slowdown induced
by inserting records across the Internet was only a minor inconvenience. But with over 300 TXAs to process
I needed to set up a local database.

This seemed like an excellent opportunity to reacquaint myself with PostgreSQL, which is one of the few
truly free open source SQL databases (the other major player being Firebird; MySQL, contrary to
popular perception, is not free for commercial use). I’ll have more on installing and running PostgreSQL in
another article; for now I’ll just say that I installed PostgreSQL without difficulty and I’ve been pleased
with its performance in my limited testing to date.

The schema

Here’s my database schema as described by psql, the PostgreSQL command line interpreter. First, the list
of tables and sequences (a.k.a. autonumbering keys):

embeds=# \d

 List of relations

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (1 of 21) [11/04/2007 2:24:39 PM]

http://www.clarionmag.com/index.html
http://www.postgresql.org/
http://www.firebirdsql.org/
http://www.mysql.com/

Embed Analysis Part 2

 Schema | Name | Type | Owner

--------+-----------------------------+----------+----------

 public | embed | table | postgres

 public | embed_embedid_seq | sequence | postgres

 public | embedapp | table | postgres

 public | embedapp_embedappid_seq | sequence | postgres

public | embedproc | table | postgres

 public | embedproc_embedprocid_seq | sequence | postgres

And here are the details for each of the three tables: embedapp, embedproc, and embed:

embeds=# \d embedapp;

 Table "public.embedapp"

 Column | Type | Modifiers

--------------+---------------+---------------------------------------

 embedappid | integer | not null default nextval

 ('embedapp_embedappid_seq'::regclass)

 txa | character(60) |

 embedchainid | integer | not null

Indexes:

 "embedapp_pkey" PRIMARY KEY, btree (embedappid)

embeds=# \d embedproc;

 Table "public.embedproc"

 Column | Type | Modifiers

--------------+---------------+---------------------------------------

 embedprocid | integer | not null default nextval

 ('embedproc_embedprocid_seq'::regclass)

 embedappid | integer | not null

 embedchainid | integer |

 procname | character(60) |

 procfromabc | character(60) |

 proccategory | character(60) |

Indexes:

 "embedproc_pkey" PRIMARY KEY, btree (embedprocid)

embeds=# \d embed

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (2 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

 Table "public.embed"

 Column | Type | Modifiers

--------------+---------------+---------------------------------------

 embedid | integer | not null default nextval

 ('embed_embedid_seq'::regclass)

 embedchainid | integer |

 embedprocid | integer | not null

 embed | character(100) |

 param1 | character(60) |

 param2 | character(60) |

 param3 | character(60) |

 priority | integer |

 linesofcode | integer |

Indexes:

 "embed_pkey" PRIMARY KEY, btree (embedid)

The embedapp table corresponds to the TXA; the embedproc table stores procedure embed information;
and the embed table holds the data for each embed, including the embed name, the parameters, the
priority number, and the number of lines of code (although at present I’m not tracking lines).

Parsing TXAs

I very briefly covered the process of parsing TXAs in the first embeds analysis article, so I won’t go into
that here except to note that I’m now also filtering based on template type. For this article I’m only looking at
TXAs from ABC applications.

And once again I feel compelled to note that this task would be a heck of a lot easier of TXAs were XML
files because of what I perceive as inconsistent tag usage. That’s just one more example of the virtues of
XML over ad-hoc text file formats.

Procedure types

The first useful bit of information I extract after processing the TXAs is a summary of the procedure
types represented in the database. Here’s the SQL statement:

select count(*) as count, ProcFromABC,ProcCategory

 from EmbedProc group by ProcFromABC,ProcCategory

 order by count desc, ProcFromABC, ProcCategory;

And here are the first fifty records:

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (3 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

Count Procedure Template

1457 Source

1272 Window

1174 Window Browse

932 Window Form

538 Report

430 Process

101 Process Process

92 Window Window

85 Frame

72 Source Source Window

71 Report Report

25 Browse

20 Window Assign

18 Splash

17 Window ReverseEngineer

17 Source Library

15 Window Browse Tree

14 Window SFR

14 Source Global

13 Window assign

13 Window UT BOM - Select

13 Window UT BOM

13 Report Invoices

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (4 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

11 Form

10 Process MapMaker

10 Source Source

9 Source Source Report

8 Window Select

7 Browse Reallocate

7 Window ReverseEngineering

6 Window Menu

6 Window re-assign

6 Window Analyses

5 Window UTBOM

5 Window Actions

5 Window Import

5 Window SQL

4 Source Function

4 Source Generic Function

4 Window New

4 Window Generic Window Dialog

4 Source Holder

4 Window Import-Export

3 Form Form

3 Window Library - Window

3 Process Actions

3 Window Viewer

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (5 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

3 GENERATED

This list can be a bit confusing to read at first. The Procedure column is the procedure type, and for the
most part this is limited to one of Frame, Window, Report, Process and Source. Generally speaking only
the first few rows are of much significance, as most procedures with 25 or fewer instances are
custom templates.

I was a bit surprised to see Source procedures in the number one spot. These are hand coded procedures,
but created within the AppGen. It’s a good thing to see; almost any application will have some code that
lends itself to a custom function, and placing this code in a source procedure makes it more maintainable.

Window procedures are a bit of a catch-all, since browses and forms are both built on top of generic
windows. This statement retrieves all the Window procedure subtypes:

select count(*) as count, ProcCategory from EmbedProc

 where ProcFromABC = 'Window' group by ProcCategory

 order by count desc, ProcCategory;

And here are the results:

Count Category

1272 not specified – generic window

1174 Browse

932 Form

92 Window

20 Assign

17 ReverseEngineer

15 Browse Tree

14 SFR

13 UT BOM

13 UT BOM - Select

13 assign

8 Select

7 ReverseEngineering

6 Analyses

6 Menu

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (6 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

6 re-assign

5 Actions

5 Import

5 SQL

5 UTBOM

4 New

4 Generic Window Dialog

4 Import-Export

3 Library - Window

3 Promote

3 Viewer

2 Assign UT - H

2 BrowseTree

2 CODE window

2 Calendar

2 Fields

2 Generate

2 Global

2 Graphs

2 H-T and H-T

2 Invoices

2 Materials

2 Moisture

2 Ruddscale

2 Tag

2 UT-H Tag

2 Wizard

1 Diary

1 FTP

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (7 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

1 Groups

1 MapMaker

1 Reallocate

1 Remove/Reassign

1 ReportManager

1 SFR-T and H-T

1 SFRTag

1 SFRTag and H-T

1 Selects

1 Setup - E

1 Solace VariView

1 Source

1 UT Tag

Again, only the first few rows are really valuable for analysis as the custom templates make their
appearance soon afterward. Window procedures without a specific subtype are generic windows, on
which developers populate their own controls. Browse, Form and Window subtypes are procedures
created with their respective wizards.

The embeds

Now on to the embeds. In ABC, embed points are for the most part locations within virtual methods, which
is itself a topic well beyond the scope of this article. But in short, ABC applications rely heavily on the
ABC class library, and most of the code that does the work is contained in those classes. Whereas
legacy applications generate all the code your application needs, ABC applications generate derived
classes that add the functionality you specify in the templates, along with any code you place in embed points.

This is the statement I use to retrieve the list of most-used embed points:

select count(*),embed from embed group by embed order by count desc,embed;

And here are the results:

Count Embed Description

7392 %ControlEventHandling Events for controls on the

window

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (8 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

6293 %WindowManagerMethodCodeSection WindowManager methods, code

section – one for each method

1560 %ProcedureRoutines Local routines

1281 %ProcessedCode After the CODE statement in a

Source procedure

1256 %BrowserMethodCodeSection BrowseManager methods

1183 %DataSection Before the CODE statement in a

Source procedure

1086 %ProcessManagerMethodCodeSection Process/Report methods

733 %WindowEventHandling General window events

430 %ControlPostEventHandling Code to execute after window

control event handling

296 %LocalDataAfterClasses Procedure data, after class

declarations

179 %ControlHandling General control handling

160 %AfterFileOpen After files are opened

144 %TreeSectionMethodCodeSection Third party

135 %ControlPreEventHandling Code to execute before window

control event handling

135 %UltraTreeMethodCodeSection Third party

127 %BeforePrint Legacy embed – same as

TakeRecord, before printing

116 %NewMethodCodeSection At end of procedure, before

routines

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (9 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

106 %FormatBrowse Legacy embed, same as

SetQueueRecord

100 %WindowManagerMethodDataSection Window manager methods, data

section – one for each method

88 %ProcessActivity Legacy embed, same as process/

report TakeRecord method

86 %AfterWindowOpening Legacy embed, same as

WindowManager.Init priority

8100

83 %LocalProcedures After %LocalRoutines embed

71 %GlobalData For global data declarations

71 %ProgramSetup Program setup, after dictionary

is initialized

The following embeds are not annotated

68 %TagMethodCode

64 %EditInPlaceManagerMethodCodeSection

63 %FileDropMethodCodeSection

63 %ProcedureSetup

61 %UTVMMethodCodeSection

60 %GlobalMap

57 %AfterPrint

53 %BeforeFileOpen

48 %BeforeFileClose

41 %ModuleDataSection

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (10 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

40 %AfterFileDeclarations

40 %BeforeWindowOpening

40 %BrowseBoxEmpty

40 %PreviewerManagerMethodCodeSection

36 %AfterGlobalIncludes

35 %BrowseBoxNotEmpty

35 %BrowserEIPManagerMethodCodeSection

33 %BreakManagerManagerMethod

CodeSectionLevelAction

33 %RecordFilter

32 %ProcedureInitialize

30 %FileLookupMethodCodeSection

26 %AfterInitialGet

26 %NetTalkMethodCodeSection

25 %BeforeGlobalIncludes

23 %XPTaskPanelTaskClickedAfterCode

22 %FM2Init

22 %FileManagerCodeSection

21 %AfterOpeningReport

21 %BrowseBoxDoubleClickHandler

21 %BrowserMethodDataSection

19 %DataSectionAfterWindow

18 %AfterFileClose

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (11 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

17 %DataSectionBeforeWindow

17 %EndOfProcedure

17 %XPTaskPanelTaskLogicAfterCode

16 %LSiBeforeEndpage

16 %NewMethodDataSection

15 %AfterPrimaryNext

15 %ProcessManagerMethodDataSection

14 %AfterProgramCode

12 %BeforePrimaryNext

12 %ListboxStyleAfterDefine

12 %OnInsertAfterPriming

12 %PostWindowEventHandling

11 %ProgramEnd

10 %BeforeInitialGet

10 %NetTalkMethodRoutineSection

9 %BeforePrintPreview

9 %FileDropComboMethodCodeSection

9 %NextTabEmbed

8 %BeforeSecondaryDisplay

8 %XPThemeWindowAfterInit

7 %AfterCallingUpdateOnAdd\

7 %AlertKeyCaseKEYCODE

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (12 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

7 %LSiAfterOpeningFiles

7 %ProcRoutines

6 %AfterEntryPointCodeStatement

6 %BeforeAccept

6 %BeforeCallingUpdateOnRemove

6 %BeforeFileAction

6 %BeforeSecondaryDisplayCreate

6 %BeginAddEntryRoutine

6 %DasTagAfterTagOnOff

6 %FinishWizard

6 %LSiAfterOpeningReport

6 %ToolbarDropItemAction

5 %BackTabEmbed

5 %BeforeCallingUpdateOnEdit

5 %BrowseBeforeDelete

5 %LSiEndOfReport

5 %LocatorMethodCodeSection

5 %RelationManagerCodeSection

5 %ResizerMethodCodeSection

5 %TreeSectionMethodDataSection

and a bunch more…

There are obviously some third party embed points in this list, such as those for NetTalk, DAS Tools,
and Clarion Handy Tools. Some of these embeds (such as %ProcedureRoutines and %BeforePrint are

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (13 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

single embeds; others represent multiple embeds, such as %ControlEventHandling. Also note that there are still
quite a few developers using the Legacy embed view – this view in the embed list shows the familiar Legacy
names which eases the transition to the ABC classes.

Event embeds

The first parameter to the %ControlEventHandling embed is the field equate, and the second is the event, so
to get the list of commonly used event equates I use this statement:

select count(*),param2 from Embed

 where embed = '%ControlEventHandling'

 group by param2 order by count desc, param2;

And here is the data:

Priority Event

2777 Accepted

90 AlertKey

88 Selected

72 NewSelection

15 PreAlertKey

10 Drop

9 Drag

7 TabChanging

3 MouseIn

2 Expanded

1 MouseUp

No big surprises on the event handling, except maybe that so few coders use drag/drop or other
mouse movement events.

WindowManager method embeds

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (14 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

How about the WindowManager method embeds? Here’s the SQL (note that I’m back to param1 again):

select count(*),param1 from Embed

 where embed = '%WindowManagerMethodCodeSection'

 group by param1 order by count desc, param1;

And the data:

Count Method

4944 Init

160 Kill

91 Reset

87 Open

83 AskPreview

78 Update

74 TakeCompleted

66 Run

56 PrimeFields

50 OpenReport

35 TakeNoRecords

28 TakeFieldEvent

26 TakeWindowEvent

17 SetControlProperties

14 Ask

14 PrimeUpdate

13 InitControlProperties

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (15 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

12 TakeEvent

11 TakeAccepted

5 InsertAction

5 TakeSelected

4 EndReport

4 TakeRecord

3 TakeCloseEvent

3 TakeNewSelection

2 SetControlValues

1 SetAlerts

Clarion programmers love that WindowManager.Init method. And why not? It’s a great place to
prime variables, create controls, and do all sorts of other setup tasks. Here’s a closer look the
preferred priorities:

select count(*),priority from Embed

 where embed = '%WindowManagerMethodCodeSection'

 and param1 = 'Init' group by priority order by priority;

Count Priority

6 1

1 2

1 5

1 10

35 50

35 300

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (16 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

34 450

45 500

234 501

1 1000

4 1300

8 1500

11 1700

7 1800

1 2000

4 2001

2 2250

3 2300

89 2500

7 2501

 hang on a sec…

Okay, I could go on with that list for a few more pages. Here’s something more sensible – priorities grouped
by thousands:

select count(*),floor(priority/1000)*1000 as floor from Embed

 where embed = '%WindowManagerMethodCodeSection'

 and param1 = 'Init'

 group by floor order by floor;

Count Priority

392 0

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (17 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

31 1000

133 2000

50 3000

440 4000

615 5000

325 6000

1158 7000

1238 8000

554 9000

8 10000

Ah, that’s a bit more useful. The data now shows the number of embed points at priority 0-999, 1000-
1999, and so forth. (As an aside, this is one of the reasons I love working in SQL. I didn’t have to write
any fancy code to process the list of embeds and do sums – I just employed a server side function (floor,
in this case) and let the server do the work. I’m far from an SQL expert but I often use statements like these
to generate ad-hoc reports.)

But what do these priorities mean? Embed priorities simply let you assign code at various places in the
Init code. Here’s an example of Init code taken from the Embeditor:

ThisWindow.Init PROCEDURE

ReturnValue BYTE,AUTO

! Start of "WindowManager Method Data Section"

! [Priority 5000]

! End of "WindowManager Method Data Section"

 CODE

 ! Start of "WindowManager Method Executable Code Section"

 ! [Priority 300]

 ! Enter procedure scope

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (18 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

 GlobalErrors.SetProcedureName('ImportTXAs')

 ! [Priority 2700]

 ! Snap-shot GlobalRequest

 SELF.Request = GlobalRequest

 ! [Priority 4950]

 ! Parent Call

 ReturnValue = PARENT.Init()

 ! [Priority 5050]

 ! Set options from global values

 IF ReturnValue THEN RETURN ReturnValue.

 SELF.FirstField = ?List1

 SELF.VCRRequest &= VCRRequest

 SELF.Errors &= GlobalErrors

 ! [Priority 5300]

 ! BIND variables

 ! [Priority 5800]

 ! Setup Toolbar Object

 SELF.AddItem(Toolbar)

 ! Initialize the procedure

 CLEAR(GlobalRequest)

 CLEAR(GlobalResponse)

 ! [Priority 6500]

 ! Procedure setup standard formulas

 IF SELF.Request = SelectRecord

 SELF.AddItem(?Close,RequestCancelled)

 ELSE

 SELF.AddItem(?Close,RequestCompleted)

 END

 ! [Priority 7300]

! Open Files

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (19 of 21) [11/04/2007 2:24:39 PM]

Embed Analysis Part 2

 Relate:TextFile.Open

 Relate:embed.Open

 Relate:embedapp.Open

 Relate:embedchain.Open

 Relate:embedproc.Open

 SELF.FilesOpened = True

 ! [Priority 7800]

 ! Open the window

 SELF.Open(Window)

 ! [Priority 8005]

 ! Call ListBoxStyle Define Routine

 Do DefineListboxStyle

 ! [Priority 8080]

 ! Restore from INI file

 INIMgr.Fetch('ImportTXAs',Window)

 ! [Priority 8400]

 ! Process field templates

 ! [Priority 8800]

 ! Prepare Alert Keys

 SELF.SetAlerts()

 ! [Priority 9500]

 DIRECTORY(txaq,'*.TXA',ff_:NORMAL) !Get all files and directories

 ! End of "WindowManager Method Executable Code Section"

 RETURN ReturnValue

Files are opened later on in the process; since embed code often uses file data, it’s no surprise the majority
of the embed points in use are later on in the Init method.

In the next installment I'll continue with a look at browse/process/report embeds and embed usage
by procedure type, and I'll wrap up with some conclusions on the use of embeds.

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (20 of 21) [11/04/2007 2:24:39 PM]

mailto:david.harms@clarionmag.com

Embed Analysis Part 2

is also co-author with Ross Santos of Developing Clarion for Windows Applications, published by
SAMS (1995), and has written or co-written several Java books. David is a member of the American Society
of Journalists and Authors (ASJA).

Reader Comments

Add a comment

http://www.clarionmag.com/cmag/v9/v9n03embeds2.html (21 of 21) [11/04/2007 2:24:39 PM]

http://asja.org/
http://www.clarionmag.com/cmag/comments.frm?articleID=14909

Using the SQL Advanced Tab

Using the SQL Advanced Tab

by Bjarne Havnen

Published 2007-03-16

In Clarion 6 a SQL Advanced tab was introduced to the Browse Box Behaviour window. The tab's
primary purpose appears to be to display calculated fields, for example SUM, AVG, COUNT, but these
fields can display any kind of information, such as from stored procedures and lookups in unrelated tables.
In this article I'll explain the usage of this tab and the related SQL properties (PROP:Name, PROP:
Where, PROP:Order ,and PROP:GroupBy), and I'll give a demonstration of highly effective totalling on

a regular Clarion ABC browse.

Figure 1. The SQL Advanced tab

The basic idea of these template changes is rather simple: You set up a list of fields for the view engine
and you specify the field values.

Field SQL statement Meaning

http://www.clarionmag.com/cmag/v9/v9n03sqladvanced.html (1 of 8) [11/04/2007 2:24:42 PM]

http://www.clarionmag.com/index.html

Using the SQL Advanced Tab

Ord:Field1 Sum(b.Total) Sum itemlines

Ord:Field2 (Select CustNo from Customers Where

CustomerId = a.CustomerId)

Display non linked field

instead of linked field

Ord:Field3 1 1

If you have a VIEW with the above fields (for now ignoring the Value column), the runtime library will
create a SELECT statement like this:

Select a.Field1,A.Field2, A.Field3 From Orders A Join,Where etc….

With the values specified above, however, the templates will generate some code to assign the SQL
statements (where specified) to each field. I'll explain the syntax of that code a little later, but the basic idea
is to use the new PROP:Name syntax to replace a field in the SELECT statement with a custom
SQL statement. In this way you can embed sub-selects and aggregate functions in the SQL statement that's
sent to the back end.

Here's a simple example. My challenge is a quite common one: I like to display the total sales per product.
For this example I'll use the Order_details table from the Northwind sample database. This table does not
store the totals, so I can't just do a SUM(TOTAL) which I otherwise would have done.

The syntax to get the sum per product is:

SELECT a.ProductID, b.ProductName, SUM(a.UnitPrice * a.Quantity -

 a.UnitPrice * a.Quantity * a.Discount) AS Total

 FROM [Order Details] a INNER JOIN

 Products b ON b.ProductID = a.ProductID

 GROUP BY a.ProductID, b.ProductName

Figure 1 shows Clarion 6's SQL Advanced tab with several custom field assignments. The reason for
assigning a value of 1 to ORDERID and PRODUCTID is the way Clarion projects fields when linking
other tables - the linking fields in both tables are projected and the SQL engine won't allow this. Assigning
a value of 1 to the field makes the query look like:

Select Sum etc, 1,1, b.productId, b.productname group by ...

which is legal. More on this later.

The example in Figure 1 won't work, however. Most queries are illegal because the primary key field
is projected into the view structure. This has since been fixed with a checkbox to suppress the primary key
field (look on the Extended options tab), but there are still quite a few pitfalls. The primary key field is also
the preferred ORDER BY field, unless PROP:ORDER is overridden in the Additional Sort field. Also,
when browsing the result of a total query not related to a particular record you will need to set the browse
to File Loaded since there is no means for Clarion to refresh without refreshing the entire browse.

What

http://www.clarionmag.com/cmag/v9/v9n03sqladvanced.html (2 of 8) [11/04/2007 2:24:42 PM]

Using the SQL Advanced Tab

MS SQL Server and Sample Database

If you don't already have SQL Server and the Northwind database, you may wish to install Microsoft's freely available SQL Server 2005
Express Edition.

The Northwind example database is not included with SQL Sever Express but is available as a separate download.

properties?

The SQL
Advanced tab
involves PROP:
NAME, PROP:

GROUPBY and PROP:HAVING, which all require correct SQL syntax just like PROP:SQL. Initially I

didn't understand the importance of these properties, as I'd been using PROP:SQL for all my custom SQL
code. My enlightenment came later – and I'll get back these properties in a bit. First, here's a real
world example.

Regular Totaling - retiring ResetFromView

In Clarion's standard (non-SQL Advanced) approach getting a total means scanning the records in the
view. This is okay for most parent-child relations, but it is a performance killer in unfiltered browses
and likewise when a filter is applied that cannot be evaluated on the server. I can make the
totalling conditional, but unfortunately I can't change the filter from, say, this month's orders to all
orders without toggling the totalling variable. I doubt I have to demonstrate that scanning a million records
on every reset results in a big performance hit. One day I made that mistake with my customer's data, which
set me on a quest to solve the problem.

What I wanted to do was to make a VIEW similar to the browse view but with a minimum of fields, using
the browse's filter and retrieving the total on the filtered view. In order for the filters to be valid I also had
to join some related tables, which immediately caused a failure due to Clarion's JOIN implementation.

When you use JOIN Clarion projects all fields in a table, unless you specify individual fields with
PROJECT(field). When combined with PROP:NAME using an aggregate function, the SELECT statement

is invalid. Consider this view:

View:Orders View(Orders)

 Project(Ord:Total)

 JOIN(Cus:K_CustomerId,Ord:CustomerId)

 Project(Cus:Name)

 End

End

Say I use PROP:Name to replace Ord:Total with a SUM statement:

View:Orders{'Ord:Total',Prop:Name}='Sum(Total)'

This code will result in a select statement such as:

Select Sum(Total),b.Name from orders ...

This SQL is invalid because it combines an aggregate function with a non-aggregate field (b.Name) and

http://www.clarionmag.com/cmag/v9/v9n03sqladvanced.html (3 of 8) [11/04/2007 2:24:42 PM]

http://msdn.microsoft.com/vstudio/express/sql/
http://msdn.microsoft.com/vstudio/express/sql/
http://www.microsoft.com/downloads/details.aspx?familyid=06616212-0356-46a0-8da2-eebc53a68034&displaylang=en

Using the SQL Advanced Tab

there is no Group By clause. If, however, I add this statement:

View:Orders{'Cus:Name',Prop:Name}=1

then the SQL sent to the backend will be:

Select Sum(Total),1 From Orders Join Customers on ...

which turns out to be perfectly valid SQL.

Below is some sample code that overrides the ResetFromView method to total some fields in a related table.
I also do a count on the resultset in order to display the number to the user. Invalid filters will report the
totals on the entire table, and this way I can take appropriate action if the number of records totalled is equal
to the total number of records in the table. This is based on my own tables; I'll leave it up to you to make
it work in yours.

BRWOrders.ResetFromView PROCEDURE

!variable to hold file status

LStat Ushort

!Declare view, same joins as the browse view, but less fields

View:Orders View(Orders)

 Project(Ord:OrderId)

 Project(Ord:Total)

 JOIN(Cus:K_CustomerId,Ord:CustomerId)

 Project(Cus:Name)

 End

End

 CODE

 LStat = Self.Primary.me.SaveFile() !save pointer View:Orders{Prop:Filter}=Self.View{Prop:Filter} !

Copy Filter

 View:Orders{Prop:Order}='SQL(1)' !order by first field to suppress the Primary field

 Open(View:Orders) !open view

 View:Orders{'Ord:Total',Prop:Name}='Sum(Total)'

 View:Orders{'Ord:OrderId',Prop:Name}='Count(OrderId)'

 View:Orders{'Cus:Name',Prop:Name}=1

http://www.clarionmag.com/cmag/v9/v9n03sqladvanced.html (4 of 8) [11/04/2007 2:24:42 PM]

Using the SQL Advanced Tab

 Set(View:Orders)

 Next(View:Orders)

 Recs = Ord:OrderId

 Total = Ord:Total

 Close(View:Orders)

 Self.Primary.Me.RestoreFile(lStat)

 Return

This override gives me the total opposite of an application hang – it results in an immediate response. The
one thing it does not do is handle the conditional totalling. This can be solved by repeating the sequence
per condition and appending the filter to the regular filter.

PROP:Name

PROP:Name is not a new property, but in good Clarion spirit it is extended to the VIEW structure.

Consider this VIEW:

View:Orders VIEW(Orders)

 PROJECT(Ord:Total)

End

As I indicated earlier, with PROP:NAME I can change the value retrieved from the backend:

View:Orders{‘Ord:Total',PROP:NAME} = ‘Sum(Total)'

This will transform the query from:

Select Total From Orders

to

Select Sum(Total) From Orders

PROP:Name can be used with any value, as long as that value is valid SQL.

PROP:GROUPBY

This property sets the SQL Group By clause. If I extend the view from above to include a customer number
the query will fail with the error "column is invalid in the select list because it is not contained in a
aggregate function and there is no GROUP BY clause".

I can use PROP:GroupBy to show totals per customer:

View::Orders{Prop:GROUPBY}='customerid'

http://www.clarionmag.com/cmag/v9/v9n03sqladvanced.html (5 of 8) [11/04/2007 2:24:42 PM]

Using the SQL Advanced Tab

PROP:HAVING

HAVING is a filtering query element; it can be used to narrow the result set to match any criteria. For example:

! show only customers having at least

! 10000 dollars worth of orders.

View:Orders{PROP:HAVING}='Sum(Total)>10000'

This is a basic example, and it might not work. SQL is a beast, and it is not tamed by Clarion alone –
a developer needs to know both his SQL and his Clarion to have any fun. When using PROP:HAVING
you have to evaluate one of the fields in the query list, and sometimes you have to remember to prefix
the fields with A, B,C, D etc based on their position in the file (this can be changed with PROP:
ALIAS). Recently I have made an habit of prefixing every field regardless of the number of tables in the

view; that way the code won't break if I join more tables.

SQL() and PROP:ORDER

SQL() is a new function in Clarion 6. It is a replacement for PROP:SQLFILTER and PROP:SQLORDER

that can be used to concatenate a regular Clarion expression with a SQL expression. Thus, it can be used in
the filter and order field of any Clarion VIEW. I've used it extensively to do table lookups with EXISTS or
IN instead of linking all possible tables. Typically, when I needed to email my Clarion customers I used

a query to runtime filter the customer list to only those who had purchased some of my Clarion-
related products.

PROP:ORDER has existed for ever, right? Yes it has, but if you try to use PROP:NAME without a valid

order part, the query will fail. The reason is that Clarion expects an ORDER clause as part of any
view processing statement. If you don't provide one, Clarion will by adding the primary key field as
the ORDER BY part. This will cause a similar "column is invalid" error. One solution is to set the
additional sort order to the same as the PROP:GROUPBY columns, where that applies. Another solution that
I stumbled over is to use the SQL() function and set:

View:Orders{Prop:Order}='SQL(1)'

With MSSQL the number refers to the select list, so the server will group by the first query element, in
this case SUM(Total), ordering with the lowest value first. This simplifies the coding in some circumstances.
It is also considered by SoftVelocity development team to be the best workaround for a missing
PROP:ORDER.

Why not just use PROP:SQL then?

Now, what's the point of using these properties instead of the more common PROP:SQL approach? The
answer is, believe it or not, simplicity. These properties can be used together with all the different
VIEW properties, so I can combine a Sum(), AVG(), COUNT() with, for example, PROP:FILTER, using

http://www.clarionmag.com/cmag/v9/v9n03sqladvanced.html (6 of 8) [11/04/2007 2:24:42 PM]

Using the SQL Advanced Tab

the best of both worlds.

I tend to make errors with date filtering in my PROP:SQL statements. If I choose to filter on the Clarion
date using PROP:FILTER, the RTL will translate for me. My code looks like this:

View:Orders{Prop:Filter}='Ord:CustomerId=1 And '|

 & 'Ord:OrderDate_Date>=Date(1,1,Year(Today()))'

View:Orders{‘Ord:Total',Prop:Name}='Sum(Total)'

What the two approaches have in common is that the filter that is sent to the backend is valid SQL.
Clarion doesn't translate everything, but the view engine will handle invalid filters on the client. This
can't work with aggregate functions, as they are evaluated at the server. Recently, one of my customers made
a filter using MONTH() and YEAR() and TODAY(). It was rather clever, but the combination resulted in
a client side filter, effectively reporting the grand total of the entire table instead of the filtered result. I
changed the filter to something like

Ord:OrderDate>=Date(Month(Today()),1,Year(Today()))

and the Clarion RTL translated it correctly.

Another important difference is that when using PROP:SQL I can't use SET(view) as I would otherwise.
This difference is one more thing to think of and I like my code to follow certain conventions. The old
PROP:SQL approach and the new properties share one common problem: because you're using string

constants for the field names, changes in the dictionary aren't automatically carried forward to your hand-
coded SQL statements.

PROP:WHERE

PROP:WHERE is actually a file property, not a VIEW property. It works just the way PROP:SQLFilter

does on a view. The practical use of this can best be seen in conjunction with a LOOP NEXT (FILE)
structure. Everywhere you would use a CYCLE within such a loop, you can use a PROP:WHERE instead;
the difference is that you leave the evaluation on the server thus reducing network traffic. PROP:WHERE
can also be set in the dictionary as a driver string, but since it does not affect the VIEW engine it doesn't
seems to be very useful.

Clear(File)

Ord:CustomerId = Cus:CustomerId

Set(Ord:K_CustomerId,Ord:K_CustomerId)

!get this year's orders

Orders{Prop:Where}='Year(OrderDate)=Year(GetDate())'

Loop Until Access:Orders.Next()

 !obsolete code block

 If Year(Ord:OrderDate_Date)<>Year(Today())

 Cycle

http://www.clarionmag.com/cmag/v9/v9n03sqladvanced.html (7 of 8) [11/04/2007 2:24:42 PM]

Using the SQL Advanced Tab

 End

 !End obsolete

 Do ActionPerRecord

End

Summary

The SQL Advanced tab is one of the new features in Clarion that seemed unnecessarily complicated when
it was first introduced, in part because the template implementation was not complete, and because it
looked like it just provide another way to solve old problems. However, the properties involved provide
a common interface to the SQL engine. Since they can all be combined, the developer can easily
expand existing code without a complete rewrite. When used in handcode, the code is easy to follow and as
a consequence, easy to alter when needed. My conclusion after exploring the SQL Advanced tab is that
it represents yet another Clarion feature which is commonly underestimated.

Download the source

Reader Comments

Add a comment

http://www.clarionmag.com/cmag/v9/v9n03sqladvanced.html (8 of 8) [11/04/2007 2:24:42 PM]

http://www.clarionmag.com/cmag/v9/files/v9n03sqladvanced.zip
http://www.clarionmag.com/cmag/comments.frm?articleID=14907

Interprocess Communication: Sending Messages

Interprocess Communication: Sending Messages

by Larry Sand

Published 2007-03-14

Interprocess communication, or IPC, is the communication between two or more programs or processes.
There are a variety of ways to accomplish this, including the use of a shared INI or data file,
information passed on the command line, named pipes, mail slots, TCP/IP, RPC, or memory mapped
files. They all have their place; some are best suited for communication between computers, and others
for communication within the local machine.

This article series discusses interprocess communication on the local machine using Windows messaging
and the "copy data" technique. You’ll learn how to register messages with windows and use them to set
up communication between two processes. Then you’ll see how to use this messaging protocol to pass
data between the processes. I’ll begin with a simple message with a 32 bit value and progress to passing data
in a user defined structure.

Please note that this type of protocol is not suitable for communication between a service and a program with
a user interface in Windows Vista. Windows Vista isolates session zero, which is the session that Vista uses
to run services, and you cannot send messages to a process with a user interface running in another session.
For complete information on the session zero isolation, see this article on Microsoft’s web site.

Windows Messages

As you may know, Windows uses messages to communicate events and data to the processes that it
manages. For example, every time you move the mouse, Windows generates a WM_MOUSEMOVE
message. This message is sent to the window that the mouse cursor is moving over. The message contains
the handle to the window, a constant message identifier (WM_MOUSEMOVE) , the keys and mouse
buttons pressed, and the x, y coordinates of the mouse pointer. Windows messages are received by a
procedure attached to your window class called a "window procedure ". You can prototype the
window procedure like this in Clarion:

WinProc Procedure(UNSIGNED hWnd, UNSIGNED uMsg,|

 UNSIGNED wParam, Long lParam),Long,Pascal

In this prototype hWnd is the handle to the window receiving the message, uMsg is the message, and
wParam and lParam are optional parameters (in the case of the WM_MOUSEMOVE message they are used

to pass the keys and pointer position). The WM_MOUSEMOVE message belongs to a class of
messages reserved for use by Windows. That is, you only receive these messages with your window
procedure, you usually don’t send them to a window.

http://www.clarionmag.com/cmag/v9/v9n03ipc1.html (1 of 5) [11/04/2007 2:24:45 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/v7/v7n11memorymapped.html
http://www.clarionmag.com/cmag/v7/v7n11memorymapped.html
http://www.microsoft.com/whdc/system/vista/services.mspx

Interprocess Communication: Sending Messages

Sending messages

In Clarion you can use the POST() and NOTIFY() functions to send a message (event) to a window, and
you read the message with the ACCEPT loop. The ACCEPT loop is analogous to the Windows
window procedure; that is, it’s used to read and dispatch messages (events). This is a useful similarity, as
I’ll show later.

In Clarion you can declare a user defined event (a message) in the range 1024 (EVENT:User, or WM_User
in Windows parlance) to 32767 decimal, or 0400 to 7FFF hex. After defining an event (message) in this
range you can POST() it to your ACCEPT loop or use the NOTIFY/NOTIFICATION functions to send
and receive the message in a thread safe manner within your process. POST only allows you to send
a message, while NOTIFY/NOTIFICATION allow you to send a message and a 32 bit parameter. These
user messages are designed for you to send within your application to a known window, not
between processes. They’re also the cause of some contention because window controls also use messages
in this range. For example, a textbox with the RTF attribute, also known as a Richedit control in the
Windows SDK, uses several messages in this range. One of these is WM_CANPASTE which is defined
as WM_USER + 50.

Microsoft advises that you use the base WM_APP (32768 decimal or 8000 hex) for your user
defined application level messages. The following table lists the message ranges and uses:

Range Description of message range

From 0 through WM_USER –1 Messages reserved for use by the system.

From WM_USER (0400 hex) through

07FFF hex

Integer messages for use by private window classes.

WM_APP (8000 hex) through 0BFFF hex Messages available for use by applications.

0C000 hex through 0FFFF hex String messages for use by applications.

Greater than 0FFFF hex Reserved by the system for future use.

While the Clarion documentation notes that messages sent with POST and NOTIFY/NOTIFICATION
should be in the range EVENT:User to 07FFFh, there’s no problem using them to send messages in
the application range (8000h to 0BFFFh).

Messages in the fourth range (0C000h to 0FFFFh) are not defined by the programmer. Instead, you pass
a string to the RegisterWindowMessage Windows API function which returns an integer in that 0C000h
to 0FFFFh range. RegisterWindowMessage is prototyped in Clarion as follows (note that Windows
API functions in this article series are prototyped with a CMAG_ prefix to prevent name collisions in
your application):

CMAG_RegisterWindowMessage(*CSTRING lpString),UNSIGNED, |

 Raw,Pascal,Name('RegisterWindowMessageA'),DLL(1)

All applications that call RegisterWindowMessage with an identical string receive the same message

http://www.clarionmag.com/cmag/v9/v9n03ipc1.html (2 of 5) [11/04/2007 2:24:45 PM]

Interprocess Communication: Sending Messages

identifier. There’s nothing to clean up when you’re done because there is no way to unregister the
window message. This is how you’ll communicate between your applications. Both applications
call RegisterWindowMessage and they’ll use the returned message to communicate with each other.

Sending Messages

Windows provides synchronous and asynchronous messaging functions for sending the message
between applications. This article series will discuss three of the message functions: SendMessage,
and SendMessageTimeout are the synchronous functions that may return a value; PostMessage is
the asynchronous function.

The first messaging function I’ll cover is PostMessage and it is prototyped like this:

CMAG_PostMessage(UNSIGNED hWnd, |

 UNSIGNED nMsg, |

 UNSIGNED wParam, |

 Long lParam |

),BOOL,Pascal,Proc,Name('PostMessageA') ,DLL(1)

If you compare this prototype to the prototype of the window procedure above you’ll notice that they
have identical parameters. The reason for this is that the window procedure receives an exact copy of
the message sent by PostMessage. PostMessage does this by placing your message on the end of the
message queue for the destination window and returning immediately. It does not wait for the
window procedure to process the message, and the window procedure processes the messages out of
its message queue in the order they were received.

You now have a method to create a message that’s safe to pass across process boundaries, and a way to
send that message. The one thing that you still need is the handle of the window (hWnd) you want to send
the message to. A window handle uniquely identifies every window in every process on the local machine.
The problem is that with interprocess communication you don’t necessarily have a way to know the
window handle in your other process. To help solve this, Windows has a broadcast handle that
instructs PostMessage to send your message to all top level windows. The constant is
HWND_BROADCAST and has a value of 0FFFFFFFFh.

This is where the registered window message comes into use. If you were to broadcast a message in
the WM_USER or WM_APP range there’s a distinct possibility that another application would respond to
that message in an unpredictable way, such as hanging or crashing. With a registered window message
there’s no chance that the message can be misinterpreted by another process provided that you used
a completely unique (to your application) string to register the message.

You can use a program called guidgen.exe to create a Globally Unique IDentifier (GUID) which will
function nicely as a unique string. Guidgen.exe is provided with Visual Studio and other development tools,
so you may have it on your computer. If not, you can download it from Microsoft. If that page has moved
just search for "guidgen download" and you should find a new link to the file.

Once you have Guidgen.exe on your computer, run the program and you’ll see something like Figure 1.

http://www.clarionmag.com/cmag/v9/v9n03ipc1.html (3 of 5) [11/04/2007 2:24:45 PM]

http://www.microsoft.com/downloads/details.aspx?FamilyID=94551F58-484F-4A8C-BB39-ADB270833AFC&displaylang=en

Interprocess Communication: Sending Messages

Figure 1. Creating a GUID with Guidgen.exe

Select the Registry Format option and click the Copy button to copy the string to the clipboard. Every time
you run the program or click the New GUID button, you’ll get a different GUID.

Now you have a way to create a unique message that’s safe to send across process boundaries with
the PostMessage function.

Next, you’ll need a framework for establishing communication. When your application wants to establish
a link with a partner application it will send a registered message using the HWND_BROADCAST
constant for the handle to the window. If the partner application is already running it will receive the
broadcast message and then respond by posting the same registered message back to the initiating
application. In the process, each application will learn the handle to the other’s window. If no other
application responds to the broadcast message, you just wait and listen for another application to broadcast
the message.

When the partner application is already running, the link conversation is something like this:

Request:
Hello is anyone there? …. (sent to all top level windows)

Response:
Yes, I’m here, and here’s my hWnd.

The link message is defined as:

hWnd The window handle of the window that receives the message (may be HWND_BROADCAST)

uMsg Self.LinkMessage , the return value from the RegisterWindowMessage for the GUID received in the

Init method.

wParam The window handle of the window sending the message

lParam The action to take on receipt of message, this may be one of the following:

WMU_IPC_LINKME Setup the link between the two processes

http://www.clarionmag.com/cmag/v9/v9n03ipc1.html (4 of 5) [11/04/2007 2:24:45 PM]

Interprocess Communication: Sending Messages

WMU_IPC_ACKLINK Acknowledge the receipt of the link message

WMU_IPC_REMOVEME Disassociate the link between the processes

Returns Zero

That’s how you send messages. Next time I’ll look at receiving messages sent by a Clarion program.

Larry Sand is an independent software developer who began programming with Clarion in 1987. In addition
to normal database development, he specializes in connecting Clarion to external devices like SCUBA
diving computers, kilns, and satellite transceivers used in medical helicopters. In other lives, he sailed
Lake Superior as the owner/operator of shipwreck SCUBA diving tours and later as a Master for the
Vista Fleet. When Larry is not programming you'll find him messing about in boats, or with boats.

Reader Comments

Add a comment

http://www.clarionmag.com/cmag/v9/v9n03ipc1.html (5 of 5) [11/04/2007 2:24:45 PM]

mailto:Larry@sand-associates.com
http://www.clarionmag.com/cmag/comments.frm?articleID=14906

C7 Alpha Bits Part 1

C7 Alpha Bits Part 1

by Dave Harms

Published 2007-03-10

This article begins a new series in Clarion Magazine. The "Alpha Bits" articles will be shorter pieces
covering one or more interesting aspects of the new IDE. The breadth of the new IDE, and the fact that it's
still in alpha, presents some special reporting problems. First, some things you see here may change
before final release. Second, both the size of the IDE and the continuing improvements make any
exhaustive treatment almost impossible. Once C7 goes gold Clarion Magazine will compile and update
this information into a comprehensive reference.

One of the pillars of the new C7 IDE is the source editor. Essentially this is the SharpDevelop code editor
with some Clarion-specific functionality added, such as code folding, code completion/intellisense and
the structure formatters (I’ll have more about the formatters in another article).

The editor comes with a some standard functionality that’s been sorely lacking in the 16 bit Clarion IDE,
such as multi-level undo, drag/drop, code folding, navigation options, code formatting, and
configuration options, most of which I'll touch on in this article. But as nice as these features are, there's
much, much more to the editor; in future articles in this series I'll look at the structure designers, the
context menu, code macros, and extending the editor with add-ins, to name a few topics.

Undo

It is so nice to have an editor with real multi-level undo capability. The old editor has an undo capability
all right – it will completely undo your code, given half a chance, especially if you move the cursor to a
new location before pressing Ctrl-Z. I haven’t yet encountered any limitations or bugs with undo or redo in
the new editor – it’s worked flawlessly.

Drag/drop

You can drag and drop text in the new editor, something that isn’t supported at all in the old editor. That
may not be a huge factor for most developers but it’s definitely nice to have standard functionality.

Code folding

One of the very first features of C7 ever announced is code folding in the editor. Figure 1 shows a
MAP structure with markers indicating which areas can be folded.

http://www.clarionmag.com/cmag/v9/v9n03alphabits1.html (1 of 9) [11/04/2007 2:24:52 PM]

http://www.clarionmag.com/index.html

C7 Alpha Bits Part 1

Figure 1. A MAP structure in C7

Click on the top level box and the map collapses, as shown in Figure 2.

Figure 2. The folded MAP

Hover your mouse over the ellipsis box and you'll see a popup showing the folded code (Figure 3). If there's
a lot of hidden code then the contents will be truncated for display.

Figure 3. The popup showing folded code

Code completion

Last year word came down that code completion would not be in C7, but it is there in the alpha release after
all. Consider the following class declaration:

TestClass class

Capitalize byte(0)

FirstName string(30),private

MiddleName string(30),private

LastName string(30),private

http://www.clarionmag.com/cmag/v9/v9n03alphabits1.html (2 of 9) [11/04/2007 2:24:52 PM]

C7 Alpha Bits Part 1

SetFirstName procedure(string firstName)

SetLastName procedure(string lastName)

SetName procedure(string firstName,string lastName)

SetName procedure(string firstName,string middleName,string lastName)

GetName procedure,string

 end

Let's say you want to use this class in your code. Type

TestClass.

and after you type the period, code completion looks up the available properties and methods for TestClass
(see Figure 4).

Figure 4. Code completion

In Figure 4 I've clicked onthe SetName method, which causes the prototype to appear in a box to the right
of the method list. This method is overloaded; that is, there are two methods by the same name, and this
is noted in the prototype by the text (+1 overloads).

There are several ways I can use code completion to select a method or property. In Figure 4 I
selected SetName with the mouse, but I can also simply type the method (or property) name. The list
functions like an incremental locator. In Figure 5 I've typed TestClass.setf and SetFirstName is selected.

Figure 5. Typing until the desired item is selected.

Once I have the name I want I simply press Enter. Or I can finish typing the method name and the popup
will disappear when I'm done.

If you're typing a method that takes parameters, as soon as you press the opening parenthesis the
method prototype appears, as in Figure 6.

http://www.clarionmag.com/cmag/v9/v9n03alphabits1.html (3 of 9) [11/04/2007 2:24:52 PM]

C7 Alpha Bits Part 1

Figure 6. The method prototype

In the case of Figure 6 there are two possible prototypes, and you can use the mouse or the arrow keys to
scroll through the available options. This popup will stay active while you fill in the parameters, as in Figure
7. As soon as you type the closing parenthesis, the popup disappears.

Figure 7. Typing the parameters

Configuring the editor

Without going into a lot of detail, here are the various editor configuration windows, some of which
have further options.

Figure 8. General editor options

Figure 9. XML Options

http://www.clarionmag.com/cmag/v9/v9n03alphabits1.html (4 of 9) [11/04/2007 2:24:52 PM]

C7 Alpha Bits Part 1

Figure 10. Markers and Rulers

One option I particularly like here is Show column ruler. This places a faint gray vertical line at the
specified column, which is a handy indicator for those of us who tend to write overly long lines of code.
This doesn't affect your code formatting at all; it's simply a reminder of where you might want to put a
line break.

Figure 11. Editor behavior options

The option to move the caret, or cursor, behind EOL makes the editor behave like the Clarion editor,
where you can put the cursor anywhere on the line, not just in used space.

http://www.clarionmag.com/cmag/v9/v9n03alphabits1.html (5 of 9) [11/04/2007 2:24:52 PM]

C7 Alpha Bits Part 1

Figure 12. Code completion options

Figure 13. XML schemas associated with file extensions

http://www.clarionmag.com/cmag/v9/v9n03alphabits1.html (6 of 9) [11/04/2007 2:24:52 PM]

C7 Alpha Bits Part 1

Figure 14. Highlighting options

As Figure 14 indicates, C7 is capable of displaying a variety of programming languages (you should also
be able to use the gold release to compile code in a number of languages, but I haven't begun to look at
that yet). You can modify the highlighting to suit your own tastes. Figure 15 shows a partial view of
the available options.

Figure 15. Code highlighting options (view full size image)

http://www.clarionmag.com/cmag/v9/v9n03alphabits1.html (7 of 9) [11/04/2007 2:24:52 PM]

C7 Alpha Bits Part 1

As Figure 15 suggests the rule set for syntax highlighting can get pretty complex. I've played a bit and
have added some rudimentary template language highlighting, but I'm sure much more can be done.
Further details on the syntax highlighting rules can be had from the e-book Dissecting a C# Application:
Inside SharpDevelop, available as a free download from APress.

Once again, I feel as though I've barely scratched the surface of the new IDE. In upcoming Alpha
Bits installments I'll look at the new screen and report structure designers (some very nice stuff there),
the context menu, and of course extending the editor with addins.

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He
is also co-author with Ross Santos of Developing Clarion for Windows Applications, published by
SAMS (1995), and has written or co-written several Java books. David is a member of the American Society
of Journalists and Authors (ASJA).

Reader Comments

Posted on Sunday, March 11, 2007 by John Morter

Dave, One feature of the old Editor I really appreciated was its configurability (via C60EDT.INI) 'cos it enabled me to assign most of

the main edit commands to same keystrokes as my favourite TextEditor of many, many years. Do you know whether this feature will

be available with the new editor too? Rgds, JohnM

Posted on Monday, March 12, 2007 by Dave Harms

John,

Yes, you can assign hot keys by editing the binaddinsclarion.addin file. But these are single hotkey combinations only - the IDE

doesn't support multiple key combinations (a hot key followed by another command keystroke). That isn't to say that it can't be done -

seems to me you could create an add-in that would respond to a hotkey and wait for an additional command string.

It also seems to me that it would be possible to create an add-in to more easily customize hotkeys...

Dave

Posted on Monday, March 12, 2007 by Loren Gregg LaBaw

Off the subject, I see BString in the base data type. Do you know if it will be selectable data type in C7?

Thanks

Loren Gregg LaBaw

Posted on Tuesday, March 13, 2007 by Dave Harms

Loren,

Do you mean in AppGen? If so I'll be able to answer more intelligently when it's out<g> (in phase four).

http://www.clarionmag.com/cmag/v9/v9n03alphabits1.html (8 of 9) [11/04/2007 2:24:52 PM]

http://apress.com/free/
mailto:david.harms@clarionmag.com
http://asja.org/

C7 Alpha Bits Part 1

Dave

Posted on Wednesday, March 14, 2007 by Rick Martin

Hi Dave,

Does Phase I have the ability to do command line compilation? Either for a project or solution?

Thanks,

Rick

Posted on Wednesday, March 14, 2007 by Dave Harms

Rick,

Yes, you can do command line compiles with Alpha 1. The project system is built on MSBuild and retains that product's command

line capability.

Dave

Posted on Wednesday, March 14, 2007 by Rick Martin

Thanks, Dave.

If I had thought about it I would have realized that <g>.

I had originally started to ask about using a command line to build an APP from TXA (or XML?). But it dawned on me you don't have

AppGen yet so it would be pretty hard to build an APP file in any way.

Rick

Add a comment

http://www.clarionmag.com/cmag/v9/v9n03alphabits1.html (9 of 9) [11/04/2007 2:24:52 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=14899

The ClarionMag Blog

The ClarionMag Blog

Get automatic notification of new items! RSS feeds are available for:

 All blog entries
 All new items, including blogs

Blog Categories

�❍ »All Blog Entries

�❍ »Clarion 7 Clarion.NET

�❍ »Future Articles

�❍ »News flashes

�❍ »Nifty Stuff

Greenbar tutorial on YouTube

Direct link

Posted Tuesday, March 20, 2007 by Dave Harms

http://www.clarionmag.com/blog/?year=2007&month=3&limit=1000&desc=true&pFriendlySession=true&login=true (1 of 3) [11/04/2007 2:47:32 PM]

http://www.clarionmag.com/index.html
http://blogspace.com/rss/readers
http://www.clarionmag.com/blog.rss
http://www.clarionmag.com/blog.rss
http://www.clarionmag.com/all.rss
http://www.clarionmag.com/all.rss
http://www.clarionmag.com/blog/All Blog Entries.html
http://www.clarionmag.com/blog/Clarion 7 Clarion.NET.html
http://www.clarionmag.com/blog/Future Articles.html
http://www.clarionmag.com/blog/News flashes.html
http://www.clarionmag.com/blog/Nifty Stuff.html
http://www.clarionmag.com/blog/20070320GreenbartutorialonYouTube.html

The ClarionMag Blog

Eberto Barrios Romo posted a link in the SV newsgroups to this Clarion greenbar tutorial on YouTube.

Search engine maintenance

Direct link

Posted Monday, March 12, 2007 by Dave Harms

I'm doing some maintenance on the ClarionMag search engine so results may be erratic for a while.

WinHlp32.exe for Windows Vista

Direct link

Posted Monday, March 12, 2007 by Dave Harms

If you or your customers are running Vista you've probably noticed that WinHlp32.EXE, the program
that displays .HLP files, is not included with the operating system. A download of WinHlp32.exe is
now available from Microsoft:

Windows Help (WinHlp32.exe) is a Help program that has been included with Microsoft Windows versions
starting with the Microsoft Windows 3.1 operating system. However, the Windows Help program has not had
a major update for many releases and no longer meets Microsoft's standards. Therefore, starting with the
release of Windows Vista, the Windows Help program will not ship as a feature of Windows. If you want to
view 32-bit .hlp files, you must download and install the program (WinHlp32.exe) from the Microsoft
Download Center.

Unfortunately, this KB article indicates that you amy not distribute WinHlp32.exe to your customers;
they'll have to download it themselves:

Also, third-party programs that include .hlp files are prohibited from redistributing the Windows Help
program together with their products. Users who want to view 32-bit .hlp files must download the program
from the Microsoft Download Center, and then install it on their computers. The download for Windows
Help is still in development and will be available in early 2007.

Thanks to Dave Troxell and Jim Kane for the info.

First C7 IDE add-in created

Direct link

Posted Monday, March 05, 2007 by Dave Harms

One of the more intriguing aspects of the new Clarion IDE (which is a superset of the SharpDevelop IDE) is

http://www.clarionmag.com/blog/?year=2007&month=3&limit=1000&desc=true&pFriendlySession=true&login=true (2 of 3) [11/04/2007 2:47:32 PM]

http://www.clarionmag.com/blog/20070312Searchenginemaintenance.html
http://www.clarionmag.com/blog/20070312WinHlpexeforWindowsVista.html
http://www.microsoft.com/downloads/details.aspx?familyid=6ebcfad9-d3f5-4365-8070-334cd175d4bb&displaylang=en
http://support.microsoft.com/kb/917607/en-us
http://www.clarionmag.com/blog/20070303FirstCIDEaddincreated.html

The ClarionMag Blog

its extensibility. This raises the possibility of third party vendors (and individual developers) not just
adding features to the application generator via templates, but actually modifying the IDE's
internal functionality. And now it's been done. Last week there was some discussion in the alpha
newsgroup about the Clarion editor's Ctrl-\ feature, which toggles the case of text. While the
SharpDevelop IDE already has this capability built in, it only operates on selected text or, if no text is
selected, on the entire file! What to do? If you're Carlos Gutierrez, you get your hands on SharpDevelop
and you create an add-in to supply the missing functionality.

I'll have more on how Carlos created the add-in (and how you can do likewise) in an upcoming
article. Meanwhile, think of all the things that could be done with the text editor (like correcting keyword
case, indenting code, etc). And then remind yourself that this isn't just about the editor.

The possibilities are mind-boggling.

Changes to comments

Direct link

Posted Thursday, March 01, 2007 by Dave Harms

I don't usually enable comments on public-access articles because the comment system requires a login, i.e.
it does not allow anonymous comments. I finally got around to making a couple of changes to the code, and
as a result the Add a Comment link only appears if you are logged in. I've also changed the display to show
all comment text on each article. This means that comments will also appear in the monthly PDF (at least as
of the date of PDF creation).

http://www.clarionmag.com/blog/?year=2007&month=3&limit=1000&desc=true&pFriendlySession=true&login=true (3 of 3) [11/04/2007 2:47:32 PM]

http://www.clarionmag.com/blog/20070301Changestocomments.html

	clarionmag.com
	Clarion Magazine
	Clarion News
	Vista-Compliant INI Files
	Interprocess Communication: Receiving Messages
	C7 Alpha Bits Part 2
	Embed Analysis Part 3
	Embed Analysis Part 2
	Using the SQL Advanced Tab
	Interprocess Communication: Sending Messages
	C7 Alpha Bits Part 1
	The ClarionMag Blog

