Clarion Magazine

Clarion News

o »iQ-Notes 3.61
o »Year End Tax Sale

» Data Equity 50% Sale

» Lodestar Software Moving Sale
o » Australian Clarion Users Group Web Site
» Clarion 6.3.9058 Released
» SetupBuilder 6.7 Build 2083
» CHT 11D1.04
» }Medial.l5
» TDC Version Control, Issue Tracking
» 1st Logo Design Three Day Sale
o » Free Goodies From 1st Icon Design
» StrategyOnline Christmas Schedule
o » Organize365 7.04
» J-Cal 2.06
o »GTL 6.36

o » SetupBuilder Build 2077

» HyperBrowZe

» Data Interoperabilty Community of Interest Handbook, 2nd Edition

o » Free Metabase 6.9.6
o » DMC 1.102
» DMC Price Reduction
» Clarion Mappoint Templates 2.0.300
» SV Updates Coming
» Handy Tools Clarion# Zip Application
»iQ-XML 1.27d
» DynaLib Source 4.0.9
» Data Management Center Updated
o » EasyExcel 4.04

» New lcon Set

» Free Organize365 SDK

o »JSpell 153

» African CHT Dealer

o »vuLimiter Limits Concurrent Users
» 1st Logo Design New Look

o » Organize365 7.0
» Clarion-Made Text Analytics Suite
» Clarion.NET Game Of Life
» Free Beginning SQL Server 2005 for Developers
» Keystone Sample Clarion# Apps
» JMedial.10
» CHT Free ZipN EMail Utility

o » Free Wallpaper

» .NET Reflection App

o » AFE + RPM Discount Sweetened and Extended

[More news]

http:/Awww.clarionmag.com/month=128. year=2007&limit=2008 pFriendly

i

Clarion Magazine

Save up to 50% off ebooks.

CLARION
Subscription has its rewards. e

Latest Subscriber Content

Testing Clarion# Libraries With NUnit

So you've started building your Clarion# code library (or libraries). How do you ensure that everthing's working the way
it should? With automated unit testing, of course.
Posted Thursday, December 27, 2007

A Simple Clarion# PDA Application
Skip Williams shows how easy it is to create asimple PDA application in Clarion#.
Posted Wednesday, December 26, 2007

Merry Christmas, a Happy New Year, and a Holiday Schedule!

A Merry Christmas to al who celebrate the season! Clarion Magazine will be mostly closed between now and January 2,
but we still have some articles on the way...

Posted Friday, December 21, 2007

Designing Clarion# Libraries

Creating code libraries is considerably easier in Clarion# than in Clarion, in part because you no longer need to

declare prototypes to use library code. And .NET's namespaces make it easy to organize your code into a meaningful hierarchy.

Posted Thursday, December 20, 2007

Clarion# And The Google Calendar API

Randy Rogers shows how to use the Google Calendar AP! to add public and private calendars to your Clarion# applications.
Posted Monday, December 17, 2007

Clarion# Language Comparison

Mike Hanson has prepared a cross-reference showing Clarion# equivaents to VB.NET and C# statements. Topics
include program structure, comments, data types, constants, enumerations, operators, choices, loops, arrays, functions,
strings, exceptions, namespaces, classes, interfaces, construtors, using object, structs, properties, delegates, events, and I/
O. Based on a VB.NET/C# document by Frank McCown. Updated Dec 17 with latest USING/NAMESPACE syntax.
Posted Monday, December 17, 2007

Should Clarion# Drop Automatic | nstantiation?

Dave Harms argues that Clarion# would be a clearer, easier-to-use language if it no longer permitted automatic instantiation
of classes. Thisarticleis available to subscribers and to anyone who has registered at ClarionMag.com.

Posted Thursday, December 13, 2007

TheClarion.NET FAQ - Updated Dec 13

A list of frequently-asked questions about Clarion.NET/Clarion#, and some hopefully informative answers. Latest
update: "Why should | choose Clarion# over VB.NET or C#?"

Posted Wednesday, December 12, 2007

Understanding Clarion# Strings

There are some significant differences between Clarion strings and .NET strings. Clarion# introduces the ClaString

class, which for the most part allows Clarion# to use strings the same way classic Clarion uses strings. Here's what you need
to know about this new data type.

Posted Monday, December 10, 2007

Source Code Library 2007.11.30 Available

The Clarion Magazine Source Code Library has been updated to include the November source. Source code subscribers
can download the Jan-November 2007 update from the My ClarionMag page. If you're on Vista please run Lindersoft's
Clarion detection patch first.

Posted Friday, December 07, 2007

[Last 10 articles] [Last 25 articles] [All content]

Source Code

The ClarionMag Source Code Library

Clarion Magazine is more than just agreat place to learn about Clarion development techniques, it's also hometo a
massive collection of Clarion source code. Clarion subscribers already know this, but now we've made it easier for
subscribers and non-subscribers alike to find the code they need.

The Clarion Magazine Source Library isasingle point download of al article source code, complete with an article
cross-reference.

More info « Subscribe now

Printed Books & E-Books

1 of 2) [09/01/2008 11:58:34 AM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/blog/#15396
http://www.clarionmag.com/cmag/sourcelib.html#
http://www.clarionmag.com/cmag/myclarionmag.html
http://lindersoft.com/c6_vista_fix.exe
http://www.clarionmag.com/?limit=10
http://www.clarionmag.com/?limit=25
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/sourcelib.html
http://www.clarionmag.com/cmag/sourcelib.html
http://www.clarionmag.com/cmag/store.html?action=shop

Clarion Magazine

M

M

» Clarion.NET FAQ

o

» Clarion# Language Comparison
» Testing Clarion# Libraries With NUnit
» A Simple Clarion# PDA Application

o

o

o

» Designing Clarion# Libraries
» Clarion# And The Google Calendar API
» Clarion# Language Comparison

o

o

o

oreClarion & .NET]

ore Clarion 101]

Latest Free Content

™

» Merry Christmas, a Happy New Y ear, and a Holiday Schedule!
» Clarion# Language Comparison

» Should Clarion# Drop Automatic Instantiation?

» The Clarion.NET FAQ - Updated Dec 13

» Source Code Library 2007.11.30 Available

orefreearticles]

Clarion Sites

» Clarion Australian Users Group

Clarion Blogs

E-Books

E-books are another great way to get the information you want from Clarion Magazine. Y our time is valuable; with our
e-books, you spend |ess time hunting down the information you need. We're constantly collecting the best Clarion
Magazine articles by top developers into themed PDFs, so you'll always have aready reference for your favorite
Clarion development topics.

Printed Books
As handy as the Clarion Magazine web site is, sometimes you just want to read articlesin print. We've collected some of
the best ClarionMag articles into the following print books:

» Clarion Tips & Techniques Volume 4 - ISBN 978-0-9784034-09

o » Clarion Tips & Techniques Volume 3 - ISBN: 0-9689553-9-8

» Clarion 6 Tips & Techniques Volume 1 - ISBN: 0-9689553-8-X

» Clarion 5.x Tips and Techniques, Volume 1 - ISBN: 0-9689553-5-5
o » Clarion 5.x Tips and Techniques, Volume 2 - ISBN: 0-9689553-6-3
o » Clarion Databases & SQL - ISBN: 0-9689553-3-9

We also publish Russ Eggen's widely-acclaimed Programming Objects in Clarion, an introduction to OOP and ABC.

From The Publisher

About Clarion Magazine

Clarion Magazine is your premier source for news about, and in-depth articles on Clarion software development. We
publish articles by many of the leading developers in the Clarion community, covering subjects from everyday
programming tasks to specialized techniques you won't learn anywhere else. Whether you're just getting started with
Clarion, or are a seasoned veteran, Clarion Magazine has the information you need.

Subscriptions

While we do publish some free content, most Clarion Magazine articles are for subscribers only. Y our subscription not
only gets you premium content in the form of new articles, it also includes all the back issues. Our search engine lets you
do simple or complex searches on both articles and news items. Subscribers can also post questions and comments directly
to articles.

Satisfaction Guaranteed
For just pennies per day you can have this wealth of Clarion development information at your fingertips. Y our
Clarion magazine subscription will more than pay for itself - you have my personal guarantee.

Dave Harms

ISSN

Clarion Magazine's | SSN
Clarion Magazine's International Standard Serial Number (ISSN) is 1718-9942.

About | SSN

The ISSN isthe standardized international code which allows the identification of any serial publication, including
electronic serials, independently of its country of publication, of its language or alphabet, of its frequency, medium, etc.

Copyright © 1999-2007 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http:/Awww.clarionmag.com/amonth=128. year=2007&|] logi of 2) [09/01/2008 11:58:34 AM]

http://www.clarionmag.com/cmag/topics.html?subcategoryid=319
http://www.clarionmag.com/cmag/clarion101.html
http://www.clarionmag.com/blog/#15396
http://www.clarionmag.com/cmag/sourcelib.html#
http://www.clarionmag.com/cmag/freearticles.html
http://www.clarionmag.com/cmag/sites.html#15383
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/cmag/ebooks.html
http://www.clarionmag.com/books/index.html
http://www.clarionmag.com/books/tips4/index.html
http://www.clarionmag.com/books/tips3/index.html
http://www.clarionmag.com/books/tipsc6/index.html
http://www.clarionmag.com/books/tips/index.html
http://www.clarionmag.com/books/tips/index.html
http://www.clarionmag.com/books/dbsql/index.html
http://www.clarionmag.com/books/poic/index.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/cmag/refund.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.issn.org/
http://www.issn.org/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Clarion News

Clarion Magazine

Clarion News

Search the news archive

PostgreSQL Security Releases

The PostgreSQL Global Devel opment Group has released updated versions which patch five security vulnerabilities.

These releases update all current PostgreSQL versions, including 8.2, 8.1, 8.0, 7.4 and 7.3. They are considered CRITICAL and
PostgreSQL DBAs and sysadmins should install the update as soon as they reasonably can. All security fixes will be

included in the upcoming version 8.3 release candidate.

Posted Monday, January 07, 2008

PiFolio Word Reporter In Clarion.NET

Hanspeter Stutz has a PiFolio Word Reporter example built with Clarion.NET. Y ou don't need to have Clarion.NET to run it
but you need MS Word (of course) and the .NET Framework 2.0 installed. If you don't have clarion.net yet but

you're interested in the source code open Main.cln and/or Mainform.cln and/or PiFolio.cin in an editor.

Posted Monday, January 07, 2008

J-Skype 2.0

J-Skype 2.0 has been released. If you already own J-Skype 1, you can upgrade to J-Skype 2 for an extra $29. J-Skype 1

will still be supported, but no new features will be added to it. If you don't own J-Skype 1, you can purchase J-Skype 2 at
adiscounted price of $108 until the end of January, at which time the price will increase to $149. ($108 is what it would have
cost if you had purchased J-Skype 1, and then upgraded to J-Skype 2.)

Posted Monday, January 07, 2008

WindowID 2.00

WindowID 2.00 is now available. This release not only identifies where you are, but also how you got there. Y ou will see

the menu call sequence plus the buttons pressed afterwards in the Window!D information. The upgrade to this version is free of
charge for users with a current valid maintenance plan for WindowID 1.x.

Posted Monday, January 07, 2008

iQ-Notes 3.61

iQ-Notes 3.61 is now available. Changesinclude: Ability to switch/change the printer when printing notes; Ability to set
next Sync time when working offline for long periods of time; Ability to recover automatically from a corrupted notes
file; Added Dutch Language Set; When notes were Password Protected, an orphan Checkbox would appear in the popup
menu item.

Posted Monday, December 31, 2007

Year End Tax Sale
Yes, Lee Whiteis having atax sae... asin he'd love to pay MORE income taxes for 2007. Only afew days left. 25%

http://www.clarionmag.com/cmag/news.html (1 of 5) [09/01/2008 11:59:05 AM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/searchnews.frm
http://www.postgresql.org/about/news.905
http://www.arcosoftware.com/cw/pwrcis.zip
http://www.strategyonline.co.za/blog/?p=602
https://www.clarionshop.com/secure/checkout.cfm?pid=936&q=1
http://www.paresi.net/iqnotes
http://www.developerplus.com/publishers/order/p-8-000.asp

Clarion News

discount: Fax enable your App and save $100.00; 28% discount: Preview your reports and save $79.00; 100% discount:
Get PNet free with any new order of AFE or RPM. Discount coupon for PNet will be sent by email within 1-2 business
days after your order is processed.

Posted Sunday, December 30, 2007

Data Equity 50% Sale

Data Equity (www.DataEquity.com) hopes that their fellow Clarion devel opers have had an awesome year and have much

to be thankful for. Itisin the spirit of the season that they would like to take this opportunity to offer a 50% discount on al of
their products. Thisis alimited time offer; take advantage by using coupon code HOLIDAY 07. Merry Christmas and Happy
Holidays from the Stockstill Family to Y ours!

Posted Saturday, December 22, 2007

L odestar Software Moving Sale

No, Lodestar Software is not moving. But our web servers have moved. Due to a change in policy by our ISP (no more high
speed servicein our areal), we've had to relocate our web sitesto offsite servers. To offset thisincreased cost we're moving
product! Through the end of 2007 you can get a 25% discount on AFE and fax enable your application or a 28% discount on
previewing your reports with RPM. And with any new purchase you get a 100% discount on PNet so you can add

postnet barcodes to your reports.

Posted Friday, December 21, 2007

Australian Clarion Users Group Web Site

The new Australian Clarion Users Group web site by is an initiative Geoff Spillane (current Australian Distributor of all things
Clarion and Lindersoft) and Tony Y ork (who has run the last couple of DevCons).
Posted Thursday, December 20, 2007

Clarion 6.3.9058 Released

The latest release of Clarion 6.3 is how shipping.
Posted Thursday, December 20, 2007

SetupBuilder 6.7 Build 2083

Lindersoft has released maintenance build 2083 of SetupBuilder 6.7. This build has been successfully tested on

Windows Server 2008 RC1. Get the latest version by selecting "Check for Updates' from within the SetupBuilder 6 IDE or
the "Check for SetupBuilder 6 Updates" shortcut found in the Start Menu for SetupBuilder 6.

Posted Thursday, December 20, 2007

CHT 11D1.04

Clarion Handy Tools has released its fourth-quarter build, sub-update 11D1.04. It has been download-tested and compile-
tested in both Windows XP and VISTA. Subscribers with current subscriptions please use your WEBUPDATER installer
to download and install all new and revised classes, templates, applications and utilities.

Posted Thursday, December 20, 2007

J-Media 1.15

JMedia1l.15 isnow available. Several users have reported problems with certain video formats under Windows Vista, and
this release should fix those issues.

http://www.clarionmag.com/cmag/news.html (2 of 5) [09/01/2008 11:59:05 AM]

http://www.dataequity.com/
http://www.cwaddons.com/
http://clarion.net.au/index.php?option=com_content&task=view&id=15&Itemid=29
http://www.softvelocity.net/community/blogs/clarion_news/archive/2007/12/19/2243.aspx
http://www.lindersoft.com/
http://www.cwhandy.ca/december2007.htm
http://www.strategyonline.co.za/blog/index.php/?p=594

Clarion News

Posted Thursday, December 20, 2007

TDC Version Control, I ssue Tracking

TDC letsyou keep all your valuable information and resources in a centralized repository, and generates historical
information of all changes not only for developers but also for customers. Includes issue tracking (bugs, improvements, new
functionality, queries, tasks, etc) to ease software project management. Fully functional demo version of TDC available.
Posted Thursday, December 20, 2007

1st Logo Design Three Day Sale

1st Logo Design has a variety of products on sale, including the Mallorca Collection (Reg. $349 - 3 day sale $99), the
LNS Collection (Reg. $199 - 3 day sale $99), the Webmaster Collection (Reg. $69 - 3 day sale $49) and Bundle
Collections. This offer expires on Saturday December 22, 2007

Posted Thursday, December 20, 2007

Free Goodies From 1st | con Design

1st Icon Design has made all the pixel icon collections available free as well as some screen savers and
wallpapers (1680x1050).
Posted Thursday, December 20, 2007

StrategyOnline Christmas Schedule

The StrategyOnline office will be closed from Dec 20-26, 2007.
Posted Thursday, December 20, 2007

Organize365 7.04

Organize365 version 7.04 has been released. A 60-day trial version is available, asisafree SDK.
Posted Thursday, December 20, 2007

J-Cal 2.06

J-Cal 2.06 supports English, Afrikaans, Danish, Dutch, French, German and Itaian. If you would like other languages added
to J-Cal, please send Gary the days of the week and the months of the year in your language of choice.
Posted Thursday, December 20, 2007

GTL 6.36

GTL 6.36 is now available from the Par2 download page. This release offers a " Generate Only" option and revised docs
(such asthey are).
Posted Wednesday, December 19, 2007

SetupBuilder Build 2077

Lindersoft has released build 2077 of SetupBuilder 6.7. Get the latest version by selecting "Check for Updates" from within the
SetupBuilder 6 IDE or the "Check for SetupBuilder 6 Updates’ shortcut found in the Start Menu for SetupBuilder 6.
Posted Friday, December 14, 2007

HyperBrowZe

http://www.clarionmag.com/cmag/news.html (3 of 5) [09/01/2008 11:59:05 AM]

http://www.tdcsoftware.com/
http://1stlogodesign.com/
http://www.1sticondesign.com/free.htm
http://strategyonline.co.za/
http://www.organize365.com/
http://www.strategyonline.co.za/jcal
http://par2.com/
http://www.lindersoft.com/
http://www.hyperbrowze.com/

Clarion News

HyperBrowZeis a new paradigm for browsing relational databases from Enabling Simplicity, publishers of UltraTree. Demo
available.
Posted Friday, December 14, 2007

Data I nteroper abilty Community of Interest Handbook, 2nd Edition

The Data I nteroperability Community of Interest Handbook has been released in a second edition. Added to the book are
Problems and Exercises at the end of every chapter. Also added is a comprehensive Return on Investment model that
shows that the COI approach costs 50% of the Stove Pipe approach, and when adding one additional community and/

or significant database to the interoperability environment, the cost is only about 10% the cost of the Stove Pipe
approach. Also, check out a good review of the COI book.

Posted Friday, December 14, 2007

Free M etabase 6.9.6

Metabase Version 6.9.6 has been released. If you want a free copy please go to the Whitemarsh website and ask for one.
There is also anew short paper, Quality Data-Centric Engineering and Management.
Posted Friday, December 14, 2007

DMC 1.102

DMC 1.102 has been released. Changes include: Added process cancellation on data transfers; Changed main frame
to resizable and updated inner screens to 1024x768 compatibility; Fixed transfer to XL S bug.
Posted Friday, December 14, 2007

DMC Price Reduction

The price of DMC has been reduced during the beta period. Those who have aready purchased will receive lifetime updates.
The beta price is now €69.
Posted Friday, December 14, 2007

Clarion Mappoint Templates 2.0.300

WC Software Development Inc. has released the Clarion Mappoint Templates 2.0.300. Clarion for Mappoint Templates
allows developersto add MS Mappoint 2004/2006 to their applications. Full Source code, No DLLs, supports Clarion 5.5, 6.
X, ABC and Legacy. Current users of the Clarion Mappoint templates can download the update for free. Complied

Demo available for download, requires Mappoint(tm) 2004 or Mappoint(tm) 2006 to be installed.

Posted Wednesday, December 12, 2007

SV Updates Coming

SoftVelocity has a numer of updates staged for release next week. Clarion 6.3 9058 will be released to third party vendors.
Clarion 7 and Clarion.Net beta refreshes will go out, with lots of new features and fixes. There are also updates and

new lessons coming for the Clarion# by Example Course.

Posted Friday, December 07, 2007

Handy Tools Clarion# Zip Application

The zip file containing this Clarion# project contains all the necessary DLLs, .EXE and sourcefilesin order to both run the
example application, even if you don't own Clarion.NET, and of course, to compileit if you do own Clarion.NET.

http://www.clarionmag.com/cmag/news.html (4 of 5) [09/01/2008 11:59:05 AM]

http://www.wiscorp.com/
http://www.wiscorp.com/
http://www.dm8.fr/HTML/introduction.htm
http://www.dm8.fr/boutique.php?ref=259&cat=19&lang=en
http://www.softwc.com/
http://www.softvelocity.net/community/blogs/clarion_news/archive/2007/12/07/2208.aspx
http://www.cwhandy.ca/december2007.htm

Clarion News

Posted Friday, December 07, 2007

iQ-XML 1.27d

iQ-XML 1.27d contains Corrections to some online help examples, and writer functions were made more efficient.
Thisincludes afix to aregressionin 1.27c.
Posted Friday, December 07, 2007

http://www.clarionmag.com/cmag/news.html (5 of 5) [09/01/2008 11:59:05 AM]

http://www.paresi.net/clarion

Testing Clarion# Libraries With NUnit

Clarion Magazine

Testing Clarion# Libraries With NUnit
by Dave Harms

Published 2007-12-27

In Designing Clarion# Libraries | explained how the structure of code libraries has changed in Clarion#. The need
for INCLUDE statements and separate prototypesis gone, thanksto .NET reflection. And NAMESPACE and USING make
it easy to organize your code into a meaningful hierarchy.

Creating and using class librariesis much easier in Clarion# than it isin Clarion; not only that, but you can also quite
easily create comprehensive test suites to make sure your libraries are doing exactly what they're supposed to do. In this
article I'll walk you through the process of creating a small library and testing its methods with NUNit.

Creating alibrary

Clarion.NET comes with a number of preset project types for Clarion#, including one called Class Library. Choose Fil€]
New Solution, select Clarion.NET and Windows Applications, then choose Class Library.

Navigate to a suitable directory on your hard drive (you can set the default in Tools | Options | General | Projects

and Solutions). My base directory for Clarion Magazine library code is (at least for now) c:\dev\Clarion.NET\ClarionMag. As
| indicated in Designing Clarion# Libraries, you have alot of flexibility in how you can structure your directoriesto align
them with your namespaces. I'm experimenting with creating directories to match the first two levels, but I'm naming

each solution after the complete namespace.

For example, the source accompanying this article demonstrates creating a library and testing it with the NUnit utility. I'll
call the solution ClarionMag.NUnit.DemoLibrary, and I'll place it in ClarionMag\NUnit. Figure 1 shows the new
solution settings.

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (1 of 16) [09/01/2008 11:59:18 AM]

http://www.clarionmag.com/index.html
http://nunit.org/

Testing Clarion# Libraries With NUnit

New Project | PG |
Cateqgornies: Quick Starts:
H-3 CH u = =
-3 Clarion. Nt =
-~ ASP.NET Class Library Console Windows User Windows
-1 Compact Frameworl Application Cortral Library Application

-3 ILAsm

- VBNet

-5 Windows Applications

i ShampDevelop

A project for creating classes which are used in other Applications.

Mame: ClarionMag.MUnit.Demolibrany

Location: C:dev’\Clarion. MNET\ClarionMag NUnit

Mew Project Name: ClarionMag. N Unit. DemoLibrary [] Create directory for Sources

Auto create project subdir
Project will be created at C:\dev\Clarion NET%ClarionMag“MNUnit*ClarionMag . NUnit. DemaLibrany

]

Create

] [Cancel

Figure 1. Creating the solution.

Figure 2 shows the project pad for the just-created class library, with the default set of files.

Projects

EEX:

Y,

Elﬁ Solution ClarionMag.NUnit.DemoLlibrary
=-38 ClarionMag.NUnit.DemoLibrary

MY e

3 System

3 System.Data

[Lad System.Xml

.48 AssemblyInfo.cin

.42 Mernber.cln

i &3] Projects | [flToclbox | \Eilasses

Figure 2. The project pane

Note that the References node lists three .NET namespaces. System, System.Data, and System.Xml. System contains
support for core application functionality, various basic data types, writing to the console, and the like. System.Data
contains ADO.NET classes (the .NET successor to ADO, which itself replaced ODBC some years ago), and System.

Xml contains standard XML handling classes. Y ou can remove the references you don't need, and add any new references

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (2 of 16) [09/01/2008 11:59:18 AM]

Testing Clarion# Libraries With NUnit

you do need. I'll leave this section untouched for now.

There are two source files: Assemblylnfo.cln and Member.cln, which I'll cover in that order.

Assemblylnfo.cln

AssemblylInfo.cln is preconfigured and looks like this:

MEMBER(")

NAMESPACE('ClarionMag.NUnit.DemoL ibrary")
USING('System.Reflection’)
USING('System.Runtime.CompilerServices)
USING('System.Runtime.InteropServices)

I Information about this assembly is defined by the following
I attributes.

[

I change them to the information which is

| associated with the assembly you compile.

[assembly: AssemblyTitle('ClarionMag.NUnit.DemoLibrary")]
[assembly: AssemblyDescription(")]

[assembly: AssemblyConfiguration(™)]

[assembly: AssemblyCompany(™)]

[assembly: AssemblyProduct('ClarionMag.NUnit.DemoL.ibrary")]
[assembly: AssemblyCopyright(")]

[assembly: AssemblyTrademark(")]

[assembly: AssemblyCulture(")]

! This setsthe default COM visibility of typesin the

! assembly to invisible.

I'If you need to expose atypeto COM, use [ComVisible(true)]
! on that type.

[assembly: ComVisible(false)]

I The assembly version has following format :
!

I Maor.Minor.Build.Revision

!

1 Y ou can specify al values by your own or you can
! build default build and revision

I numbers with the *' character (the default):

[assembly: AssemblyVersion('1.0.*")]

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (3 of 16) [09/01/2008 11:59:18 AM]

Testing Clarion# Libraries With NUnit

All those lines enclosed in square brackets are attributes, and represent attribute values that will be added to the assembly.
In .NET an assembly is either an EXE or aDLL which contains code and data (in IL format), information about the
assembly (attributes) and can contain resources.

The attribute fields in AssemblylInfo.cln are pretty much free form, with the notable exception of AssemblyCulture. In
most cases AssemblyCulture will be empty, indicating a neutral culture; if you specify aculture, such as 'en’ for English or
'de’ for German, this assembly will be seen as a satellite assembly containing alternate resources for that culture, rather
than executable code.

It'sagood ideato fill in the other attribute fields with your company info etc, but none of thisis necessary to make
the assembly function. I'll have a bit more to say about attributes later on, when it comes to unit testing.

Member.cln

Member.cln is the default source file for your class library, and you should probably rename it right away to something
more meaningful. | right-clicked on Member.cln in the Project pad and renamed it to DemoL.ibrary.cln.

DemoL.ibrary.cin (formerly Member.cln) looks like this:

~ Created by Clarion.
~ User: Dave

~ Date: 17/12/2007
~Time: 7:.53 PM

MEMBER()

NAMESPACE('ClarionMag.NUnit.DemoLibrary’)
MAP
END

Thefirst line of DemoLibrary.clnisthe familiar MEMBER statement, which has a couple of new attributesin
Clarion#: INTERNAL and PUBLIC. These indicate the default access modifier for any structures declared in this source
file. These don't appear to be supported by the compiler in the first beta.

INTERNAL vsPUBLIC

As| mentioned in Designing Clarion# Libraries, Classesin .NET have two possible visibilities. A CLASS with no
modifier (and no overriding MEMBER attribute) has INTERNAL visibility; it can be seen by any code anywhere elsein
the assembly (in other words, by any other code in the project). While it's possible you'll want all your declarationsto
be public, it's more likely you'll have amix. Although you can use MEMBER(),PUBLIC to default to public, it's
generally safer to begin with the assumption that everything is INTERNAL (the default state) and only expose those
classes, methods and properties you really want to expose.

The next lineisthe NAMESPACE directive; al classes| declarein thisfile will automatically have ClarionMag.
NUnit.DemoL.ibrary. prepended to their name.

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (4 of 16) [09/01/2008 11:59:18 AM]

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemReflectionAssemblyCultureAttributeClassTopic.asp?frame=true

Testing Clarion# Libraries With NUnit

Finally, there'sa MAP/END statement. In Clarion, MAP implicitly includes the Clarion runtime library definitions, but here
it doesn't seem to have that effect, since you can use Clarion# RTL statements even if thereisno MAP.

A test class

I've created asimple library class to do simple math operations. It's a pointless class because it doesn't add any
useful functionality, so I've called it PointlessMathClass. It's only purpose isto demonstrate alibrary and provide abasis
for testing with NUnit.

Here's the complete source listing for DemoLibrary.cln:

MEMBER()
NAMESPACE('ClarionMag.NUnit.DemoL.ibrary")
MAP

END

PointlessMathLibrary class,public,type

Add procedure(long a,long b),long

Subtract procedure(long a,long b),long

DoMath procedure(long a,ClaString oper,long b),long
end

PointlessMathLibrary.Add procedure(long a,long b)
code
return(a-b)

PointlessMathL ibrary.Subtract procedure(long a,long b)
code
return(a-b)

PointlessMathLibrary.DoMath procedure(long a,ClaString oper,long b)
code
if oper ='+'
return(self.add(a,b))
elsif oper ="'
return(self.subtract(a,b))
else
throw new System.AccessViolationException
End

If at this point you hit the compile and run button, the class will compile, successfully, but you'll see the error message
in Figure 3.

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (5 of 16) [09/01/2008 11:59:18 AM]

Testing Clarion# Libraries With NUnit

| Error | P |

. 1 Project is configured as dil and no execution cormmand is specified.

S ‘ou can specifiy an execution command in the project aptions.

Figure 3. AttemptingtorunaDLL.

The reason for the error isthat thisisaDLL, not an EXE. Instead of pressing the green compile and run button, choose
Build|Build Solution or press F8. The IDE will compile the project without trying to run it as an application.

Now, how do you go about testing this class, short of creating an application? Simply, you create atest class, and then you
run that test class using afreetool unit testing tool called NUnit.

Unit testing

The idea behind unit testing is that you exhaustively test all of the individual pieces of your application, rooting out bugs,
and then when you stitch those pieces together you're much less likely to run into problems. Not only that, but you maintain
atest suite, and any time you introduce some new functionality into the system, or upgrade some component, you run the
entire suite of tests. If anything's happened to affect your code, it should show up in the test results.

Thefirst thing you'll need is a unit testing framework. Perhaps the most-used unit testing tool for .NET is NUnit, which is
aport of the JUnit Javatool. There are many toolsin the xUnit family, including specialized versions of NUnit for
Windows Forms and ASP.NET.

Y ou can download zipped binaries or MS| installers for both .NET 1.1 and 2.0 (you'll want the 2.0 version for Clarion.
NET). Installation follows the typical process, when complete, you can run NUnit from your Start Menu. But before you
run NUnit you'll need to set up atest class.

Creating a test class

When setting up atest class you need to consider whether how your class will typically be used. If the class will be used
only from within its own assembly, you'll want to set up atest class that is part of that assembly, and you won't need to

be concerned with making the library classes public. But if your class will expose some of its methods to other assemblies,
you may want to create your test class in a different project so the test code is duplicating the typical environment.

Inthiscase I'll simply add atest classto my current project. | right-click on the Project name in the Project pad and choose
Add | New Item (Figure 4).

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (6 of 16) [09/01/2008 11:59:18 AM]

http://nunit.org/
http://nunit.org/index.php?p=download

Testing Clarion# Libraries With NUnit

ijacls R X .- Demolibrary.cln™] Assemblylnfo.cln |_
B g PointiessMathLibrary
Bi:-l'.ﬁ %Iutlon ClaricnMag.MUnit.DemoLibrary | |1 ™
= Build (reated by Clarion.
1 L Ref ui
=S Rebuild ser: Dave
soul bate: 17/12/2007
Clean [ime: 7:53 PM
Add v New Itenp |
Add Reference Existing Item...
Add Web Reference Mew Dataset..,
. E
,ﬂ Run Praject 4 Mew Folder I (
Set as Startlp Project END
Convert
))) ssMathLibrary class,pu
Build decumentation with MDoc proced
Check with FxCop t proced
| proced
X Cut end
Paste
3 Remove ssMathLibrary.Add
Rename F2 pe
urn(at+b+1)
Edit Redirection File
Create Redirection File in the project directory ssMathLibrary.Subtract
e
Properties urn{a-b)

|||4

27"

Figure 4. Adding a new item

Figure 5 shows the New File dialog. |'ve chosen the Clarion.Net category and the Member File quick sStart.

Mew File

|

Categories:

Quick Staris:

-1 #Develop

-0 i

]l et

P,

Empty File

8)

Member File

u

Program File

|Create Sample Member File

File Mame DemolibraryTests.cln

| Creste || Cancel

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (7 of 16) [09/01/2008 11:59:18 AM]

Testing Clarion# Libraries With NUnit

Figure5. Adding a new member file

The new member file, which I've called DemoLibraryTests.cln, looks the same as the original Member.cin file (which
| renamed to DemoL.ibrary.cln). | want to make one change, however, before adding my test class, and that's to change
the NAMESPA CE directive from

NAMESPACE('ClarionMag.NUnit.DemoL ibrary")

to

NAMESPACE('ClarionMag.NUnit.DemoLibrary.Tests)

Now, both of these files are in the same assembly, so they classes they contain are going to be visible to each other. The
only reason I'm changing the namespace is to indicate more clearly the purpose of the new class. Y our namespaces
should always say something meaningful about the classes they contain.

The code for my DemoL ibraryTests class starts off in the usual fashion. Note the two USING statements, one for
the DemoL.ibrary code, and the other for the NUnit.Framework library.

MEMBER()

NAMESPACE('ClarionMag.NUnit.DemoL.ibrary.Tests)
MAP
END

Using('ClarionMag.NUnit.DemoL.ibrary")
using('NUnit.Framework'")

Theimportance of attributes

I mentioned earlier that .NET assemblies can contain a variety of attributes, and NUnit relies on these attributes to know
which methods it should call and in what order. Think for a moment about how you'd go about setting up a testing
framework for your applications. You'll need at least two things; test code, and away to call that test code.

In the simplest arrangement you can create an EXE with one or more menu items calling test procedures, whether in that
EXE or in another DLL. But you'll also need some standardized way of reporting back the results of those tests. Creating
test suites this way isabit tedious, and if you're calling test proceduresin a DLL you not only need to create the DLL, you
need to update your test EXE with theright callsto the DLL. And what if you forget to include atest in your EXE? Ina
large application, you may have hundreds of tests; it's easy for one to be forgotten.

Wouldn't it be nice if you could use just one standardized testing utility that would examine all your EXEs and
DLLs, automatically extract any tests, allow you to run them all at once or selectively, and report the errorsin a
standardized way? That is, of course, exactly what NUnit does, and the secret to using NUnit isto selectively place
attributes, which are contained in square brackets, at suitable locations in your source.

For example, the [TestFixture] attribute tells NUnit that DemoLibraryTestsis atest class. Y ou have to mark this class
as PUBLIC, along with any methods you want NUnit to call.

[TestFixture(Description = 'A simple test class)]

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (8 of 16) [09/01/2008 11:59:18 AM]

Testing Clarion# Libraries With NUnit

DemoLibraryTest class,public
math & PointlessMathLibrary

Any attributes you add to your source code are included in the compiled code; other code, in the same application or in
another application, an examine these attributes at runtime. And that's just what NUnit does; you tell it which DLLs or
EXEsyou want it to test, and NUnit loads up that code and searches for the TestFixture attribute on all the public classes;
when it finds that attribute it looks for other attributes that will tell it how to run the actua tests.

DemoL ibraryTests contains a reference to an instance of the PointlessMathLibrary class. This reference hasto be
initialized, and while | could have done it with a constructor I've chosen to use the [Setup] attribute, which tells NUnit to
call this method first before any test methods.

[Setup]

Init procedure,public

The remainder of the methods have the [Test] attribute, and will be listed by NUnit as runnable tests. The final method also
has an [ExpectedException] attribute, which means that it will fail if the wrong exception (or no exception) is thrown.

[Test]
AddTest procedure,public
[Test]
SubtractTest procedure,public
[Test]
DoMathTest procedure,public
[Test]
[ExpectedException('System.ArithmeticException',|
'System.ArithmeticException')]
DoMathExceptionTest procedure,public

end

Here's the source for the individual methods. I'm using NUnit assertionsto test for various conditions. If the assertion
fails, NUnit reports an error. NUnit lets you test equality, identity, conditions, comparisons, expected types, thrown
exceptions, strings and substrings, collections, and more. In this example I'm using a simple equality test to determine if
areturned value is the expected value. Also note that I'm using the classic syntax, which employs a different Assert
class method for each type of test. There is also anewer constraint-based syntax which uses just one method, Assert.
That, combined with different constraints.

DemoLibraryTest. AddTest procedure
code
NUnit.Framework.Assert. AreEqual (5,

self.math.Add(2,3),'Error adding’)

DemoLibraryTest.SubtractTest procedure
code
NUnit.Framework.Assert.AreEqual (2,

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (9 of 16) [09/01/2008 11:59:18 AM]

http://nunit.com/index.php?p=classicModel&r=2.4.4
http://nunit.com/index.php?p=classicModel&r=2.4.4
http://nunit.com/index.php?p=constraintModel&r=2.4.4

Testing Clarion# Libraries With NUnit

self.math.Subtract(15,13),'Error subtracting’)

DemoLibraryTest.DoMathTest procedure
code
NUnit.Framework.Assert. AreEqual (2,

self.math.doMath(15,'-',13),]|

'Invalid result with - operator’)
NUnit.Framework.Assert. AreEqual (5,

self.math.doMath(2,'+',3),|

'Invalid result with + operator’)

DemoLibraryTest.DoMathExceptionTest procedure
i long

code

i = self.math.doMath(15,'/',23)

DemoLibraryTest.Init procedure
code
self.math &= new PointlessMathL ibrary

Clearly thisis pretty basic testing; even on asimple class like this you'd want to something a bit more exhaustive. Think of
all the possible ways the methods could be called. What happens when you use negative numbers? When you pass null
values? Think about unusual usage and boundary conditions, and don't assume that your methods will only be called the
way they should be called. Y our job is to make the class as bulletproof as possible, and able to respond gracefully to errors.

Running the tests

If you attempt to compile the class at this point you'll get numerous errors, as the compiler can't resolve either the
NUnit attributes or the NUnit.Framework classes. Y ou'll need to find away to add the necessary assembly reference.

In the Project pad right-click on References and choose Add Reference. You'll see the window in Figure 6.

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (10 of 16) [09/01/2008 11:59:18 AM]

Testing Clarion# Libraries With NUnit

Add Reference ﬁ

GAC | Projects | .NET Assembly Browser | COM |

[7] Choose specific assembly version Salact
Reference Mame Version Fath -
napsnap 6.00.0
Napsnap fesources 6.0.00
Mamataor 6.0.00
nunit.core 2420
o
office 12000 m
Policy.1.0. Microsoft. Ink 6.00.0
Policy. 1.0 Microsoft Interop Secur... 6.0.6000.... 1l
Prlirs 1 Micmnenft Intarn Sacod & 0 EDAA

Selected References

Reference Mame Type Location Remove

[ok | [caesl | | Heb

Figure 6. Adding the nunit.framework reference

When you installed NUnit, the install program placed a copy of the DLL containing the NUnit.Framework namespace in
the global assembly cache. On the GAC tab, navigate to the nunit.framework line and click on Select, then OK. Y ou will
now see nunit.framework listed in the Project pad, under the References node. Y ou should now be able to compile the source.

You have alibrary, and you have atest class, and you're ready to do some actual unit testing. Fire up NUnit and from the
File menu choose Open Project. Navigate to DemoLibrary's build directory; if you've compiled the application in Debug
mode, as | have, the EXE will be in bin\debug. Select ClarionMag.NUnit.DemoLibrary.dll and click Open. NUnit will load
the class and show you something like Figure 7.

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (11 of 16) [09/01/2008 11:59:18 AM]

Testing Clarion# Libraries With NUnit

I ClarionMag.NUnit. DemoLibrary.dll - NUnit =[E] % |
File View Project Test Tools Help
Tests ICategnriesI
Chdev\Clarion NETClarionMag N Unit\ClaronMag. Run | Stop |
_' ClarionMag
= ~ MUnit
=0 DemoLibrary
- Tests
=1 Demolibrarny Test
L AddTest Ermors and Failures | Tests Not Run | Console.Ou ¢ | *
DoMathBxception Test -
DoMath Test
 Subtract Test
< [3
Ready Test Cases | 4
A

Figure 7. Thetest classloaded in NUnit.

Now click on the Run button. NUnit will run whichever of the test methods you've selected; click on DemoLibraryTest or
any higher node to run all the tests. Y ou'll see output similar to Figure 8.

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (12 of 16) [09/01/2008 11:59:18 AM]

Testing Clarion# Libraries With NUnit

Obvioudly there are a couple of problems with my class. Three of the four methods have failed! Looking back through

. I ClarionMag.NUnit.Demolibrary.dll - MUnit

= | 5 [|

File View Project Test Tools
Tests lCategnries]
CAadeviClarion. NET ClarionMag NUnit"ClarionMag.
W ClarionMag
=48 MUnit
=M DemoLibrary
- Tests
= M DemolibraryTest
B AddTest

M DoMathException Test
M DoMathTest
‘@ SubtractTest

Help

Bun

C\deviClario
n.MET\Clario

lestLases 4 lestsHun:4 Failures: 3 ignored:
N Skinnad-ll Bun Tima- 1 1776715

] Tests Mot Run] Console Ou 4 | ¥

ClariomMag _NUnit Demolibrary Tests_ 0 =

emoLibraryTest.RddTest : Error
adding

expected: <i»

but was: <-1»

ClariomMag NUnit _Demolibrary Tests_ D
emoLibraryTest . DoMathExceptionTest :
Ln unexpected exception type wWas
thrown
Expected:
but was:
System_RcecessViolationException
ClarionMag.NUnit _Demolibrary.Tests.D

System ArithmeticException

emolLibraryTest.DaMathTest : Inwvalid
result with + operator
expected: <i»
but was: <-1»
4 3
i
4 | m | 3 A
Completed | Test Cases : 4 Tests Run : 4 Failures : 3 Time : 0.1279215

Figure 8. NUnit test results

the source code | see that some lazy programmer has the add math all wrong. This code:

return(a-b)

should be:

return(a+b)

I make the changes and compile. Conveniently, NUnit notices that the DLL has changed and it rel oads the file from disk.
Thistime when | press Run | get a better result. Since the DoMath method called the Add method, I've fixed two errors at

once (Figure 9).

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (13 of 16) [09/01/2008 11:59:18 AM]

Testing Clarion# Libraries With NUnit

|1 ClarionMag.NUnit.Demolibrary.dll - NUnit =NAC X

File View Project Test Tools Help
Tests lCategnries]
CAadeviClarion. NET ClarionMag NUnit"ClarionMag. Run ‘ ‘ C:"de':".CIar_io
! ClarionMag n.MET\Clario
=8 NUnit

2 B DemoLbrary ERERRERRREEREEN

E! Tests lest L.an5|'!:5lr4 Ilfls_tgrl(}un:_-ir ra-"n“:ﬁ'):mlgm:

=M DemoLibranyTest
@ AddTest
8 DoMathBxceptionTest
88 DoMathTest
) Subtract Test

Tests Mot Run] Console Ou 4 | ¥

ClariomMag _NUnit Demolibrary Tests_ 0 =
emoLibraryTest . DoMathExceptionTest :
Ln unexpected exception type WasS

thrown

Expected: System. lrithmeticException
but was:

System_RcecessViolationException

€ 3

Completed | Test Cases : 4 Tests Run : 4 Failures : 1 Time : 0.195206

Figure 9. After fixing the Add error

There's till one problem. NUnit is telling me that the DoMathExceptionTest is returning a different value than
expected. Actually thisis dueto abug in the attribute implementation in the first beta rel ease of Clarion#.

My DoMathException method isin fact throwing an ArthmeticException, but I'm not testing for the type of exception,
I'm testing for the actual exception message. Testing for the type of an exception requires this kind of test attribute:

[ExpectedException(typeof (System.ArithmeticException),|
'Expected System.ArithmeticException’)]

The typeof syntax is fixed for the second Clarion.NET release, but even without that capability the test caseis easy to fix:
| change

throw new System.ArithmeticException
to
throw new System.Arithmeti cException('System.ArithmeticException’)

and run the test again. As Figure 10 shows, all tests now pass.

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (14 of 16) [09/01/2008 11:59:18 AM]

Testing Clarion# Libraries With NUnit

Mu ClarionMag.NUnit.DemoLibrary.dil - NUnit =[3] = |
File View Project Test Tools Help
Tests ICategnriesI
EI' ChdevClarion NETClarionMag M Unit\Clar Run | Stop | C3;?E"'"'C||ar_i°
EI' ClarionMag n.MET\Claro
=@ Nunit
=@ Demolibrary
E""g‘ :ﬁ; - e Siihnor 0 Run Tima f 1201320
emoLibrary Te
@ AddTest Emors and Failures |Tests Net Run | Console. Out_4 [+]
4@ DoMathException T B
@ DoMathTest
‘i) SubtractTest
« [r
‘ 1 P -
Completed | Test Cases : 4 Tests Run : 4 Failures : D Time : 0.119133 y
2

Figure 10. Success!

Testing for a specific exception type is generally more useful than testing for an exception string, since thereis no
type checking on the exception string. If this were production code, I'd change it to typeof as soon as possible. But in any
case, NUnit not only informed me of the error in my code, it alerted me to a problem with my test case declaration.

Summary

The process of creating class libraries has become simpler and more effective in Clarion#. Y ou no longer need prototypes
to use library code, and namespaces make it easier to create and maintain a useful class hierarchy.

But creating a class library is only half the battle; you also want it to be as bug-free as possible, particularly when you
make changes to core classes or receive new code from other sources. Unit testing is a methodology for ensuring that the
code you write not only is bug-free, but stays bug-free. Regular, comprehensive testing can pay big dividends in the long run.

Download the source

Download NUnit

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (15 of 16) [09/01/2008 11:59:18 AM]

http://www.clarionmag.com/cmag/v9/files/v9n12nunit.zip
http://nunit.org/index.php?p=download

Testing Clarion# Libraries With NUnit

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He is also co-author
with Ross Santos of Developing Clarion for Windows Applications, published by SAMS (1995), and has written or co-
written several Java books. David is a member of the American Society of Journalists and Authors (ASJA).

Reader Comments

Posted on Tuesday, January 01, 2008 by Mark Sarson

Great article Dave, and now Russ has something to get his teeth into :)
Happy New Year dl Clarion Mag Readers.

Mark

Posted on Wednesday, January 02, 2008 by Dave Harms

Thanks Mark, and a Happy New Y ear to you too!

Dave

Add acomment

http://www.clarionmag.com/cmag/v9/vOnl2unittesting.html (16 of 16) [09/01/2008 11:59:18 AM]

mailto:david.harms@clarionmag.com
http://asja.org/
http://www.clarionmag.com/cmag/comments.frm?articleID=15381

A Simple Clarion# PDA Application

Clarion Magazine

A Simple Clarion# PDA Application
by Skip Williams

Published 2007-12-26

I have been intrigued with PDAs for quite awhile. | bought a Palm many years ago and did a little programming for it
using NSBasic, which worked pretty well. Five years ago, Microsoft was giving away Viewsonic V37 PDAswhich

had Compact Framework (CF) 1.1 built in to the ROM to entice developers into the .NET Compact Framework world. |
was able to get one and tried writing afew programs for it using Visua Studio. My programs worked okay. Still my
main interest was Clarion, and | never got into VSin abig way. | realy wanted Clarion queues, ISAM files, and the
many other benefits of the Clarion language over what the Microsoft .Net languages offered.

Then Soft Velocity introduced their pre-release version of Clarion.Net which supports Compact Framework 2.0, so | had to
at least giveit atry.

This article chronicles my build of avery simple example Clarion# program for a PDA using CF 2.0.

All the necessary prerequisites

As | mentioned, my old Viewsonic PDA had CF 1.1 installed and PPC 2002 as the operating system. Clarion# requires CF
2.0 which in turn requires the PPC 2003 operating system. Fortunately, a couple of years ago, | had purchased the PPC
2003 firmware for the Viewsonic on Ebay, but had never installed it. It was now time.

After the PDA firmware upgrade, the next step was to upgrade Activesync to version 3.7 and install CF 2.0 on the PDA.
| already had .Net Framework 2.0 installed on my PC, but | also had to install the .Net Compact Framework 2.0 in order to
do CF development. It also helps to have the.Net Framework 2.0 SDK installed on your PC.

Here'saquick recap of what you need:

On the PDA:

. Atleast PPC 2003
. Compact Framework 2.0 redistributable (I used CF2.0 sp2)

On the PC:

. .Net Framework 2.0 redistributable
. ,Net Framework 2.0 SDK
. Activesync 3.7 minimum

. And of course, Clarion.Net

| found that al of the prerequisites were the most time consuming part of the whole process. | ended up having to
completely uninstall Compact Framework on my PC before | could install the updated SP2 version. Building the test app

was pretty easy.

http://www.clarionmag.com/cmag/v9/V 9n12compact.html (1 of 11) [09/01/2008 11:59:59 AM]

http://www.clarionmag.com/index.html

A Simple Clarion# PDA Application

Now to build the application

Launch Clarion.Net and select New/Solution from the menu. Select Compact Framework from the list and highlight
PocketPC Forms Application. Give the application aname, CFTEST, and alocation, C:\CFTest pgms (see Figure 1).

New Project ﬁ
Categories: Quick Starts:

o o o 2 =
Clarion. Met = =
-~ ASP.NET PEEE WindowsCE
i-{iZr Compact Framework Forms Forms Ap...
‘.03 Windows Applications || [agalsz ey
{3 ILAsm

-0 VBNet

PocketPC Windows Forms Application Project

Mame: CFTest
Location: CCFTest pgms [:]
New Project Name: CFTest [[] Create directory for Sources

Auto create project subdir
Project will be created at C:\CFTest poms“CFTest

Create | | Cancel

Figure 1. Creating a new project

Press the Create button for the magic to happen. A blank PDA screen appears along with atoolbox and a property box
(Figure 2).

http://www.clarionmag.com/cmag/v9/V 9n12compact.html (2 of 11) [09/01/2008 11:59:59 AM]

A Simple Clarion# PDA Application

A OFTen [Clanca NET 2.02684) (Debug) - Clanee =
Ble Edt Wew Byld [Debug Gewch Fgemst Josh Mindew Hep _

Bis S 05 WU RD DX S D [mames FBRETOARS
T BX]| maetormacar | - | [Frop 9 x|
peie Iﬁn & B o E oo = s 1| dateTimePichoerl SystemWindowsForms.Dv »
g | R | L1 EAT

o | @ :g-' [| B Appeanance A
Mtwm] E - i - .
R 2 B ot Tibona
gﬂuﬂm Formmat Long
B theckiion | dDerember-22-07 B g ShowlipDiown False
¥ Comboien F :m
. DataGnd : CustemFPoemat
= __,,,.,, I Enskied Trae e
(R Cu b MasDiate A2
£ Documentinn e i oot

: - Tablndex 3
ol = ue o || Tobsep Trow
[Vulue T2NE00T §:59 AM
L agelist - T
[nputPanel E:m..]
A Lsbel -

el B Diiign
I::ll.'-m- 1 (Harre) dateTimePickerl
£i Listibew Gemeratehember Trot

: Locked False
& MainMeny = Fake N
" MorthCatendar e
E o The curment date/time value for this control,

3 HumesicUpDown

o 1o [o T@C] Ps. [T
Crena = e
il PictuntBon .
ED PregressBar N " -

EJProjects | T Testnas Ei:T_,M,uw| _

— LA
- ‘5.3
ko | Doutpur] search Resuis
Buitd finished successhully. ind% ool chl NS

Figure 2. The new application in the IDE (view full sizeimage)
While you weren't looking, | added a DateTime Picker control, alabel, and two buttons by simply dragging and dropping

the controls on the screen (Figure 3). Using the mouse, the controls can be resized and moved around quite easily, just like
the familiar Clarion windows formatter.

http://www.clarionmag.com/cmag/v9/V 9n12compact.html (3 of 11) [09/01/2008 11:59:59 AM]

http://www.clarionmag.com/cmag/v9/images/v9n12compact-fig2.png

A Simple Clarion# PDA Application

[Covtont |

B portat B0

Figure 3. Adding the controls

If you have Clarion 7, or have used Visua Studio or #Develop, you will be familiar with the properties window on the
right side of the Clarion.Net IDE. Thisis where the control's properties are modified.

Using the properties window, | quickly changed the screen name, the text in the label field and both buttons (Figure 4).

http://www.clarionmag.com/cmag/v9/V 9n12compact.html (4 of 11) [09/01/2008 11:59:59 AM]

A Simple Clarion# PDA Application

@« e

CMag CF Test Program

%December—lz—n?

Chosen Date will be here

Test Button

-' " |t B

Figure 4. The updated controls

Notice the two tabs below the PDA screen on Figure 2: Source and Design. Selecting the Source tab allows you to see
the underlying code for the window, which, at this point isn't very exciting.

I~

~ Created by Clarion.
~ User: Skip Williams
~ Date: 12/11/2007
~Time: 8:12 AM

MEMBER(")
NAMESPACE('CFTest')

USING('System’)
USING('System.Datal)
USING('System.Drawing')
USING('System. Text')
USING('System.Windows.Forms))

http://www.clarionmag.com/cmag/v9/V 9n12compact.html (5 of 11) [09/01/2008 11:59:59 AM]

A Simple Clarion# PDA Application

111 Description of ${ ClassName} .
1

MainForm CLASS(Form), TYPE, PUBLIC, PARTIAL
CONSTRUCT PROCEDURE(), PUBLIC
END

Now it's time to make the controls actually do something useful. | will use the Date Picker to choose a date and placeit in
the label field. The Test Button will display a message that the button has been pressed, and the Close button will do what
al good close buttons do: close the application.

To add underlying code to each control, return to the designer mode and simply double click on each control. Clarion.
Net inserts the following code for each control.

MainForm.DateTimePickerl VaueChanged PROCEDURE(System.Object sender,|
System.EventArgs €)
CODE

MainForm.Buttonl_Click PROCEDURE(System.Object sender,|
System.EventArgs €)
CODE

MainForm.Button2_Click PROCEDURE(System.Object sender,|
System.EventArgs €)
CODE

Now all | haveto do is add code to make the controls work.

MainForm.DateTimePickerl VaueChanged PROCEDURE(System.Object sender, |
System.EventArgs €)
CODE
str' = SELF.dateTimePickerl.text
MessageBox.Show('The new dateis' & str")
Self.label1.Text = str"

MainForm.Buttonl_Click PROCEDURE(System.Object sender,|
System.EventArgs €)
CODE
Message('Y ou pressed the button','Hell0")

MainForm.Button2_Click PROCEDURE(System.Object sender,|
CODE

http://www.clarionmag.com/cmag/v9/V 9n12compact.html (6 of 11) [09/01/2008 11:59:59 AM]

A Simple Clarion# PDA Application

self.Close()

When adate is chosen, | display a message box displaying the date and move it to the Label 1 field. | know, | know,
implicit variables are bad. | only used the str" implicit variable to seeif it still worked in Clarion#.

For buttonl | used the Clarion Message statement, both to seeif it still worked and to see the difference between the two
ways of presenting a message. Button2 closes the application.

Now | was ready to do a"compile and go" for this new CF application. Pressing the little green arrow on the toolbar causes
the application to be built and executed. The result is shown in Figure x:

| o CMag CF Test Program |ﬂl

| December-24-07 ﬂ
4 | December. 2007 |

26 27 28 29 30 1
3 4 5 & 7 8
0 11 12 13 14 15
16 17 18 19 20 21 22
@B % T B D
w31 1 2 3 4 5

=5 Today: 24/12/2007

Test Button
Close

P
[T- % R

Figure5.

Before this screen shot, | selected the DatePicker control that caused the calendar to open. When | pick a date, a .Net
message box is opened, indicating the date that | picked.

| Hello =]

The new date is December-12-07

0K

Figure®6.

Press OK to close the message box, and then press Test Button; the following Clarion message box opens. Thereisa
dlight difference between the two.

http://www.clarionmag.com/cmag/v9/V 9n12compact.html (7 of 11) [09/01/2008 11:59:59 AM]

A Simple Clarion# PDA Application

Hello [=]

fou pressed the button

Figure7

Pressing the Close button ends the application.

So far | have been running the application under the IDE. | understand that there are emulators available that can be installed
to enhance the testing experience. Y ou also have several optionsin the IDE to match your emulator screen more closely to
your device. These options are available for your selection from the properties window, under Design | Form Factor.

| Properties o x|
MainForm ScftVelocity.ClaricnMet.Binding. CFForm «

Bl Appearance o
BackColor |:| Window

Font Tahoma, 9pt
ForeColor - ControlText
FormBorderStyle FixedSingle
Text CMag CF Test Program

B Behavior
AutoValidate EnablePreventFocusChang|
Enabled True 1
ToolBar (nong)

B Data
Tag

B Design
(Mame) MainForm
FormFactor Pocket PC 2003 [~

Pocket PC 2003 i

9Pocket PC 2003 Square

B llPocket PC 2003 VGA

APocket PC 2003 VGA Square

JAPocket PC Phone Edition 2003
APocket PC Phone Edition 2003 Square
|| Pocket PC Phone Edition 2003 VGA
;. dPocket PC Phone Edition 2003 VGA Square -

Show Skin, Rotate Left, Rofate Right

FormFactor

1epr. [@0y...| @co...| F]Ind..] O Sse.. | Find..

Figure 8. Changing the form factor

http://www.clarionmag.com/cmag/v9/V 9n12compact.html (8 of 11) [09/01/2008 11:59:59 AM]

A Simple Clarion# PDA Application

Y ou can also enable/disable the display of the skin, and set the width and height of the screen to specific values.

Now comes the real test.

Deployment to the PDA!

If the application isworking, deployment should be pretty simple, right? Actually, in my caseit was, but there are instances
of others having problems assembling all of the necessary components to make it happen. | understand that Soft Velocity is
in the process of writing a white paper on the process, and that SetupBuilder version 7 from Lindersoft will support

deployment to the Compact Framework devices.
| simply wanted to copy the executable to my PDA and see it work.

As part of the build process, Clarion.Net creates a\bin directory under your project. Here you'll find the executable, along
with three runtime DL L s that need to be copied to the Activesync directory as well.

24/12/2007 11:42 AM 10,752 CFTest.exe

24/12/2007 11:42 AM 28,160 CFTest.pdb

14/11/2007 07:00 PM 40,448 SoftVelocity.Clarion.Filel OCF.dl

14/11/2007 07:00 PM 152,576 SoftVelocity.Clarion.Runtime.ClassesCF.dl|
14/11/2007 07:00 PM 176,128 SoftVelocity.Clarion.Runtime.ProceduresCF.dl

PPC2003 has a directory called Programs which seemed like a good location. In the directory that Activesync usesto send
stuff to the PDA | created a subdirectory of Programs called CFTest, and copied my executable there.

I ran Activesync, which created the /PCTest subdirectory on the device and copied my program and DLLS. | didn't create
aprogram icon or shortcut on the device, so it was necessary to use the PDA's File Explorer to navigate to the
\Programs\CFTest directory and select CFTest.exe with the stylus. | then selected the DatePicker control; you can see the

result in Figure 9.

http://www.clarionmag.com/cmag/v9/V 9n12compact.html (9 of 11) [09/01/2008 11:59:59 AM]

http://lindersoft.com/

A Simple Clarion# PDA Application

f/4|CMag CF Test Progr ¢, % 9:52 e

OO b=k LY

W
n
Ch

I
H l\ ‘.‘.I ! ‘*'1

R ——
Wl

-y
o

[
| S
p ™ I8 s R
0
WOopowh

0]
1)

-

1
A
E
i =
!_.

2/11/07

Test Button

|
| PN

1 Close |

Figure 9. Running on a PDA

Now, for several final observations.

Remember that in the code | used two different message statements, the Clarion one and the .Net one? Both worked
as expected in the emulator on the desktop. On the PDA, however, the Clarion message statement opened a full
window, covering the main window completely. The .Net message statement opened a normal message box, but, because

the calendar was still dropped down, the message box opened behind it. Remember that an emulator is no substitute for
testing on the real device.

Also, please note that this application will not work with Windows Mobile devices such as SmartPhones. This example and
the example program provided by Soft Velocity both throw a System.NotSupportedException. The problem is that
Windows Mobile (at least as of version 5) does not support button controls; you are supposed to use the device's soft

keysinstead. Y ou can create Clarion# applications that run on SmartPhones, you just have to keep to the allowed set
of controls.

http://www.clarionmag.com/cmag/v9/V 9n12compact.html (10 of 11) [09/01/2008 11:59:59 AM]

A Simple Clarion# PDA Application

Summary

I've demonstrated a very simple Clarion# application for .Net Compact Framework. It only has afew controls and doesn't
do much, but it demonstrates how easy it can be to create Compact Framework applications in hand code;
SoftVelocity's upcoming templates will make mobile development that much simpler.

Download the source

Skip Williams' first job was programming mainframes for abank. He did that for 10+ years then became a VP of
Technical Services and moved into a management job. After several bank mergers, Skip became a programmer again
and helped start Global Trade Information Servicesin Columbia, SC, using Clarion programming tools. Skip has been
using Clarion since 1986, when he was persuaded by Bruce Barrington, at Comdex, to try this new language Bruce
had developed.

Reader Comments

Posted on Monday, December 31, 2007 by Devan Sabaratnam

Great article Skip! Keep them coming. Thisisthe sort of thing that motivates me to forge ahead and experiment with Clarion7/Clarion.Net myself.
Cheers, Devan.

Add acomment

http://www.clarionmag.com/cmag/v9/V 9n12compact.html (11 of 11) [09/01/2008 11:59:59 AM]

http://www.clarionmag.com/cmag/v9/files/v9n12compact.zip
mailto:SkipWill@bellsouth.net
http://www.clarionmag.com/cmag/comments.frm?articleID=15399

Designing Clarion# Libraries

Clarion Magazine

Designing Clarion# Libraries
by Dave Harms

Published 2007-12-20

Code re-use is essential to maintaining high productivity, as aimost all applications use alot of the same code (or the same
kind of code) over and over. Clarion programmers accomplish code re-use two ways. with code libraries, and with
templates. As SV hasn't yet shipped any Clarion# templates, it's not possible to say with certainty how much the

template approach to code re-use will change. But .NET class libraries are a known quantity, and in this article I'll look at
how to structure your own Clarion# class libraries (I'll save the specifics of creating class libraries for another time).

But why talk about libraries? Wouldn't it make more sense to talk about full-blown Clarion# applications first?

It's certainly possible to start building Clarion# applications, but because the AppGen isn't done yet, and there are no
shipping Clarion# templates, al Clarion# application development at present must be done by hand. Okay, there's

one exception: Clarion.NET ships with a C6 wizard that will generate a rudimentary Clarion# app from your dictionary.
But that code really isn't (by SoftVelocity's own admission) agood example of how to write .NET applications; it's more of
a convenience to get developers used to .NET concepts.

Writing Clarion# applications by hand isn't abad thing, and it's certainly atopic that will get coverage in Clarion Magazine
in the future. But most Clarion developers will use the AppGen for the bones of their applications.

So what can you do while you're waiting for AppGen? Start writing and testing libraries, of course.

Now, that may seem like an odd statement. After all, most of us who write code libraries test them in context; we plug the
code into our applications and we seeiif it works. But in .NET you don't always have to build your application to test the
library code; you can use a process called unit testing to ensure that your code works properly even before you plug it into
your application.

Inthisarticle I'll cover some of the concepts you need to have in hand before you start building your .NET libraries, and
next time I'll show how to use the freely available NUnit utility to test those libraries.

But first abit of history....

The Clarion approach

In Clarion (not Clarion#) you have two kinds of code libraries, procedural and object-oriented.

Procedural libraries are simply collections of PROCEDUREs; typically you'll compiletheseinto LIBsor DLLs.

Clarion Magazine has a number of articles on creating libraries; two you might want to check out are Alan Telford's My
First Function Library and Jeff Slarve's DLLs and Reusable Code: Divide and Simplify. Y ou don't necessarily have to
compile procedural library source ahead of time - you can aso keep it as source code and just include it as necessary in
your application, but that adds to compile time. In most casesusing aLIB or DLL is preferable.

Object-oriented libraries are much like procedural libraries, except that all the code is contained inside classes. If you're new
to object-oriented programming, | suggest you take a moment to read The ABCs of OOP. Although it's possible to
create procedural code in Clarion#, for the most part you'll want to be conversant with object-oriented programming.

While procedura libraries are often precompiled, in Clarion (not Clarion#) it's quite common to see object-oriented code
that's compiled each time along with the application source. The ABC class library, for instance, is all source code;
Clarion compilesin the classes referenced by your application's source code.

http://www.clarionmag.com/cmag/v9/vOnl2codelib.html (1 of 8) [09/01/2008 12:00:06 PM]

http://www.clarionmag.com/index.html
http://nunit.org/
http://www.clarionmag.com/cmag/v5/v5n03myfunclib.html
http://www.clarionmag.com/cmag/v5/v5n03myfunclib.html
http://www.clarionmag.com/cmag/v7/v7n04dllbyhand.html
http://www.clarionmag.com/cmag/v1/v1n2abcsofoop_part1.html

Designing Clarion# Libraries

In Clarion, the norm isto use class libraries as source; in .NET, however, the norm is to use compiled class libraries.

Theneed for prototypes and declarations

Whether you're talking procedural or OOP Clarion code, any time you use a compiled library you need some sort of
source code that describes what's in the library. In the case of procedural code, you need a prototype of the method.
In particular, Clarion devel opers run into this when using the Windows API. Here's an example of a prototype for a
WinAPI function contained in Kernel32.DLL:

CloseHandle(HANDLE hObject),BOOL,PASCAL ,PROC

In this example, the prototype | use for CloseHandle has to be compatible with the code that the author of the
CloseHandle function used.

A similar situation exists for compiled libraries. Clarion programmers don't encounter this very often, since Clarion
classes tend to be supplied as source code. For instance, | have a utility class called CClAddressClass, and whenever | want
to useit in one of my apps | need to add thisline of code at an appropriate data embed point:

INCLUDE('CCIAddr.INC"),ONCE

In this example CCIAddrINC contains a CLASS definition and a QUEUE declaration, while the CLASS's source code is
in CCIAddr.clw. Here's the source for CCIAddr.INC:

IABClncludeFile

OMIT('_EndOfInclude ',_cciAddressPresent)
_cciAddressPresent EQUATE(L)

AddressQueue queuetype
Line cstring(100)
end

cciAddressClass CLASS, TY PE,MODULE(‘cciaddr.clw'),|
LINK (‘cciaddr.clw',_ABCLinkMode),DLL(_ABCDIIMode)

AddressQ & AddressQueue

AddLine procedure(string Part1,<string Part2>,|
<string Part3>,<string Part4>,<string Part5>)

AddOneLine procedure(string Line)

AppendToLine procedure(* cstring cs,string s),private

Construct procedure

Destruct procedure

GetAddress procedure,string

Reset procedure

end

EndOfInclude

If | were to compilethis classinto alibrary, and add that library to my application's project data, that wouldn't be enough

http://www.clarionmag.com/cmag/v9/vOnl2codelib.html (2 of 8) [09/01/2008 12:00:06 PM]

http://www.clarionmag.com/cmag/v4/v4n10addresses.html

Designing Clarion# Libraries

for me to use the classin my application. | would still need some sort of class declaration. There would be some changes:
the CLASS would need to be declared as EXTERNAL,DLL. And | wouldn't have to include everything in the
CLASS declaration, just the methods and properties | needed.

The Clarion# approach

Code libraries change radically in Clarion#. Although the INCLUDE mechanism is still there (asis the ability to
write procedural code), most code reuse is accomplished using standard .NET mechanisms. And specifically when it comes
to using aready-compiled code, the key is something called reflection.

Figure shows an example of reflection in action. I've created a class called MyClass, and an instance called mc. In the
code section I've just typed mc. and the editor's I ntellisense capability is showing alist of available methods.

MyClass Class,TYPE
DoSomething procedure
DoSomething procedure(String s)
DoSomething procedure(String s, long i)
DoSomethingElse procedure
DoAThirdThing procedure(String s)

end

mc MyClass

code
mc.
@ DolThirdThing [Woid D oS omething] (+2 overloads] |

DoSomethingElse

@ Equals
#GetHashCode
B GetType
“®ToString

Figure 1. The I DE showing available methods

Okay, what's the big deal ? That's just Intellisense, the IDE helping you figure out what your options are, right? Right,
except that it's also an example of reflection at work. The editor is examining MyClass's structure using reflection,
and presenting I ntellisense options based on that information.

Aside: Okay, | can't absolutely guarantee that the IDE is using reflection in this exact case because | haven't asked SV, and
| haven't seen the underlying source code. | suppose it's possible the editor is parsing my class's source. But Intellisense
aso works for classes where the source isn't present, and it makes more sense to only have one mechanism for any

given feature.

Reflection is possible for two reasons. First, .NET classes contain not just code and data, but metadata, which is data about
the classitself. Second, the .NET framework includes a number of classes to help in the examination of that metadata.

No morelibrary prototypesor declarations

Because .NET classes contain this readily-accessible metadata, you no longer need to create declarations of compiled classes
or other structures before you use them. Let me repeat that. You no longer need to create declarations of compiled classes

or other structures before you use them. That's a huge change, and a great advantage. If you don't need to create
declarations, you don't have to worry about making mistakes on those declarations, and you also don't have to worry

about keeping your declarationsin sync if you end up changing the library.

http://www.clarionmag.com/cmag/v9/vOnl2codelib.html (3 of 8) [09/01/2008 12:00:06 PM]

Designing Clarion# Libraries

NOTE: You can till use source code libraries in Clarion#; you simply include the source file in the project. If the

library classes are in the same namespace as the code you're writing, you don't have to use the fully qualified class names. If
the library classes are in a different namespace, you must either use the fully qualified name or add a USING

directive specifying the namespace. Y ou will also need to use the fully qualified name if you have same-named classesin
two namespaces, since the compiler won't otherwise know which class you mean. In general, however, it's better to

reuse compiled source; you shouldn't have to keep compiling the same library code over and over.

Assemblies and visibility

When you create a Clarion# library, your project is compiledtoaDLL, and in NET aDLL, like an EXE, has afancy
new name: it's called an assembly. Assemblies are a little more sophisticated than EXEs or DLLs, but for purposes of
this discussion you can think of an assembly the same way you think of a Clarion EXE or DLL.

In .NET, class methods visibility attributes are similar to those we're used to in Clarion. These include PUBLIC,
PRIVATE, and PROTECTED, aswell as a new attribute, INTERNAL, which means the method is visible anywhere within
its own assembly. CLASSes are either INTERNAL (the default) or PUBLIC.

Projects X
2@ 2
=73 Solution peoplefpp

- peopleApp
[=¥E=] References

-+ System.Data
3 System.Drawing

3 System.Windows.Forms
s System.Xml
..... 48] Assemblylnfo.cin
..... 2] Main.cln
4] MainForm.cln
-4HE] peopleBrowse.cln
-4k peopleDataGridView.cln
-4 peopleDataGridViewUpdateForm.cln
-] peopleReport.cin
-4 peopleUpdateForm.cin

ey OO o OO e O oy OO e O
Ll =y o B - o o}

[&) Projects | [l Teolbox | ¥ Classes

Figure 2. The project pane

Scopein .NET is aso determined by namespaces. I've gone into this topic in another article, so | won't cover it
exhaustively here. Essentially, namespaces are away of grouping similar code, which can be spread across many source files.

When you create a new Clarion# application, the IDE creates a default namespace based on the project name. Each source
file you create viathe IDE will have that namespace added. Let's say you create a new project called TestNamespaces. The
IDE will add this directive to each source file created (I'm using the forthcoming syntax without the quotes):

NAM ESPACE(TestNamespaces)
Y ou can create multi-level namespaces like this:
NAMESPA CE(TestNamespaces.A SubNamespace)
All classes you create using the first example will effectively have TestNamespaces. prepended. If your classis

caled MyClass, its full name will be TestNamespaces.MyClass. If you use the second example, the full name will
be TestNamespaces.A SubNamespace.MyClass

http://www.clarionmag.com/cmag/v9/vOnl2codelib.html (4 of 8) [09/01/2008 12:00:06 PM]

http://www.clarionmag.com/cmag/v7/v7n11dotnetbasics2.html

Designing Clarion# Libraries

Under the covers, all classes have these fully qualified names - that's how the compiler sees them. But for you and |, who
may not like to type that much, there are anumber of shortcuts. When you're working on aclassin its own sourcefile,
you don't need the prefix, because the NAMESPACE isimplicit. If someone elseis using your class and doesn't want to
type TestNamespaces. al the time, they can insert a USING(TestNamespaces) directive and the compiler will try out
that namespace along with the current namespace as it attempts to resolve the labels you've typed into the actual fully
qualified values.

Adding references

To use acompiled class library in your application you creating areference to the library's assembly (typically aDLL, but
it could also be an EXE).

Have alook again at the project pane in Figure 2. To add a new reference you right-click on References and choose
Add Reference. You'll seethewindow in Figure 3.

| Add Reference @

GAC | Projects | .NET Assembly Browser | COM |

[7] Choose specific assembly version Select
Reference Name Wersion Path g
napsnap 6.0.00
napsnap resources 6.0.0.0
Narrator 6000
nunit.core 2420
K|
office 12000 W
Policy.1.0.Microsoft. Ink 6.0.00
Policy.1.0.Microsoft Interop. Securi... 6.0.6000.... il
Delicar 1 % Mirrnonft Intarne Conod & 0 GAAN

Selected References

Reference Mame Type Location Remove

OK | [Cancel | [Hep

Figure 3. Adding areference, GAC tab

GAC stands for the Global Assembly Cache, which isacentral location for commonly-used, version-managed .NET DLLs.
In general you don't want to go adding your own DLLsto the GAC, but you may find that various third party add-ons
install their DLLs here. Y ou can manage the GAC with the utility program gacutil, which you can find in your .

NET framework bin directory.

If the DLL you want to useisn't in the GAC, you can locate it manually. Click on the .NET Assembly Browser, and then on
the Browse... button shown in Figure 4. Navigate to the DLL or EXE you want to use and select it. Click OK to add
the reference.

http://www.clarionmag.com/cmag/v9/v9n12codelib.html (5 of 8) [09/01/2008 12:00:06 PM]

Designing Clarion# Libraries

| Add Reference @

GAC |Projed5 NET Assembly Browser |[j,0|'u'| |
=

Selected References

Reference Name Type Location Remove

0K | [Cancel | [Hep

Figure4. AddingaDLL or EXE reference

Note that after you add the reference, it isn't the DLL's or EXE's name that appears in the project list, but the namespace
(s) contained in that DLL or EXE.

The same rules regarding fully qualified names and USING apply to references as to classes included as source code.

Choosing namespaces

Namespaces are clearly an important part of Clarion# and .NET, and a very useful way to organize your own code. But how
do you go about choosing your namespaces?

There are two goals you should have for your namespaces: they should be descriptive, and they should be unique. I've
always liked the Java approach to uniquely naming namespaces (which Java calls packages); at the top level you use
your domain name, reversed. Namespaces for ClarionMag.com classes would begin with com.clarionmag, thereby
absolutely guaranteeing uniqueness.

The .NET namespace conventions are less restrictive and potentially more readable, but also less certain to result in
unique names. Here's what Microsoft has to say on the subject:

From MSDN:

.NET Framework types use a dot syntax naming scheme that connotes a hierarchy. This technique groups related types

into namespaces so they can be searched and referenced more easily. The first part of the full name - up to the rightmost dot -
is the namespace name. The last part of the name is the type name. For example, System.Collections.ArrayList represents
the ArrayList type, which belongs to the System.Collections namespace. The types in System.Collections can be used

to manipulate collections of objects.

This naming scheme makes it easy for library developers extending the .NET Framework to create hierarchical groups of
types and name them in a consistent, informative manner. It is expected that library developers will use the following guideline
when creating names for their namespaces:

CompanyName.TechnologyName

For example, the namespace Microsoft.Word conforms to this guideline.

http://www.clarionmag.com/cmag/v9/vOnl2codelib.html (6 of 8) [09/01/2008 12:00:06 PM]

http://msdn2.microsoft.com/en-us/library/hfa3fa08.aspx

Designing Clarion# Libraries

The use of naming patterns to group related types into namespaces is a very useful way to build and document class
libraries. However, this naming scheme has no effect on visibility, member access, inheritance, security, or binding.

A namespace can be partitioned across multiple assemblies and a single assembly can contain types from multiple
namespaces. The assembly provides the formal structure for versioning, deployment, security, loading, and visibility in the
common language runtime.

Starting with the company name or domain name is agood idea. After that, think about grouping classes by functionality.
Here are afew suggestions for code related to the basic Clarion procedure types:

. CompanyName.Windows.Forms

. CompanyName.Windows.Forms.Menus

. CompanyName.Windows.Forms.Browses
. CompanyName.Windows.Forms.Forms

Y ou might want to create asimilar hierarchy for web applications (CompanyName.Web) or compact framework
apps (CompanyName.Compact). And how about business objects? Perhaps you'd want to group these by business
type: CompanyName.Business.Shipping, or just CompanyName.Shipping.

It'simportant to note that you don't have to have all your classes for one namespace in asingle DLL. Asnoted in the MS
guote, you can spread a namespace across multiple DLLs, and one assembly (typically aDLL) can contain
multiple namespaces.

Directory structure

You'll also have to decide how you want to structure your project directories. Y ou probably want your directory structure
to mimic your namespaces, but do you want to do it by folders or by dot notation, or by some combination? The

Java namespace specification requires each level of the hierarchy to haveits own directory, but the NET specification isn't
asrestrictive.

In .NET you are certainly free to specify your directoriesin Java style:

CompanyName
Windows
Forms
Windows
Forms

Menus

Or you could do it like this:

CompanyName.Windows.Forms

CompanyName.Windows.Forms.Menus

Or you can use a hybrid, where you only go down afew levelsin the directory structure, even if the namespace structure
goes deeper:

CompanyName
Windows.Forms

Windows.Forms.Menus

Summary

http://www.clarionmag.com/cmag/v9/vOnl2codelib.html (7 of 8) [09/01/2008 12:00:06 PM]

Designing Clarion# Libraries

Thanks to reflection, class declarations are no longer required when using compiled .NET libraries. Instead, the compiler
will search the referenced assemblies (DLLS and/or EXESs) looking for matching classes and other structures.

The new NAMESPACE and USING directives make it easy to group code by functionality; alittle thought now will go a
long way to organizing your code into a usable and maintainable namespace hierarchy.

Next time I'll show how to create asmall library, and do unit testing with NUnit.

David Harms is an independent software devel oper and the editor and publisher of Clarion Magazine. He is also co-author
with Ross Santos of Developing Clarion for Windows Applications, published by SAM S (1995), and has written or co-
written severa Javabooks. David is amember of the American Society of Journalists and Authors (ASJA).

Reader Comments

Add acomment

http://www.clarionmag.com/cmag/v9/vOnl2codelib.html (8 of 8) [09/01/2008 12:00:06 PM]

mailto:david.harms@clarionmag.com
http://asja.org/
http://www.clarionmag.com/cmag/comments.frm?articleID=15380

Clarion# And The Google Calendar API

Clarion Magazine

Clarion# And The Google Calendar API
by Randy Rogers

Published 2007-12-17

Over the past couple of months | have been exploring various way to allow my municipal customersto make their
Facilities Scheduling calendars available to their rate payers via the Internet. In my research | came across the Google
Calendar API which allows programmatic access to Google's on-line calendaring application. Y ou can have both private
and public calendars, and the best part is that you have access to the calendar anywhere you have an Internet connection.

I thought this might be a good solution for my customers, and | began trying to implement access to the Google Calendar
API from Clarion 6. I've written alot of these types of interfaces, but eventually decided that creating a NetTalk
webserver-based calendar application would be much easier than the work | would need to do to interface with the
Google Calendar API.

Then SoftVelocity released the first public beta of Clarion#. | held out for aweek after the announcement from

Softvelocity, but curiosity finally got the better of me and | bought into the beta program. | spent a bit of time

familiarizing myself with the new |DE and working through the examples before embarking on my first hand-coded
Clarion# application. Since | had recently been looking at interfacing to the Google Calendar API, | thought that might make
agood first project. | set out to convert some sample C# code to Clarion#.

The Google APIs

The Google Data API libraries, documentation, and sample code can be found at http://code.google.com/apis/calendar/
| downloaded and installed the Google tools; to make sure the supplied code was good | used Visua Studio to compile and
run an example C# application. Then | set out to create my Clarion# application.

Onething | discovered later in this process was that al of the Google API libraries were not registered in the Global
Assembly Cache (GAC), and Clarion# (at least in the first beta) seems to have trouble using a mixture of global and
local assemblies from the same namespace. If you find this happens to you, you'll need to use gacutil to add the missing
DLLSto the cache. Here's the syntax:

gacutil /i dllname

Y ou can find gacutil in the NET SDK's bin directory (e.g. C:\Program Files\Microsoft. NET\SDK\v2.0\Bin)

The Clarion# application

| began with anew Clarion# Windows (that is, Windows Forms) project, which supplied me with a MainForm.cln

file containing aform. The Clarion# Windows Designer also creates a formname.Designer.cin file (MainForm.Designer.cin
in this case) that contains all the information and code needed to intialize the form. Y ou must be very careful to make
screen changes using the Window Designer. Directly editing the designer.cln file is discouraged and it is very easy to ruin
your application; | know because | have done just that.

Figure 1 shows the Google Calendar demo in the Window Designer.

http://www.clarionmag.com/cmag/v9/vOnl2calendar.html (1 of 11) [09/01/2008 12:00:14 PM]

http://www.clarionmag.com/index.html
http://code.google.com/apis/calendar/
http://code.google.com/apis/calendar/
http://www.capesoft.com/accessories/netsp.htm
http://code.google.com/apis/calendar/

Clarion# And The Google Calendar API

Sun Mon Tus wed Thu Fri Sat URL: |http:a‘.r'www.gnngle.c:0m.fc:aIendara‘feed&Hdefault:’private.ffull? |
1

B : ¢+ 5 5 7 &8 User. ' sample@amail. com |

9 10 11 12 13 14 18

16 17 18 13 20 21 22 :

21 24 ¥ % 27 28 29 Pasie | |

0 A

Today: 0271242007 Google Calendar Example

Event Author Start End I Parzonal Calendar ‘

I Fublic Calendar ‘

Figure 1. The Window Designer

The elements of the screen in Figure 1 are, from |eft to right and top to bottom, a MonthCalendar control, some labels
and TextBoxes, a ListView control showing events, and a couple of SoftVelocity's new GlassButton controls.

The source code for the MainForm starts with the familiar member statement and is followed by a new namespace
compiler directive that is used to declare a scope in the .NET framework. The USING directive lets you reference objects
in those namespaces without having to specify the namespace in your code. (Editor's note: As of the next build of Clarion#
the single quotes will no longer be needed for NAMESPACE and USING.)

MEMBER(")

NAMESPA CE(‘SampleApp’)
USING('System)
USING('System.Drawing')
USING('System.Collections)
USING('System.ComponentModel')
USING('System.Windows.Forms))
USING('Google.GData.Client")
USING('Google.GData.Extensions)
USING('Google.GData.Caendar")

One new concept that is ubiquitousin Clarion# is that pretty well everything isaclass, including Forms. In this example,
the MainForm is atyped class with three private properties and a half dozen methods. The EntryList and ArrayList are used
to hold the calendar events, m_calendarURI is the Uniform Resource Identifier (URI) for the calendar to be accessed,

and m_selectedDate holds the date that the user selects via the MonthCalendar control.

The Construct method is generated automatically by the Clarion.Net IDE, and the other methods are ones that | created (via
the Designer) to handle the various event responses. | also created a reference, this, to a MainForm class to make it a bit
easier for me to port the code from C# to Clarion#. | could have changed all instances of thisin the sample code to self, but

| am alazy programmer.

MainForm CLASS(System.Windows.Forms.Form), TY PE,NETCLASS,PARTIAL
entryList &ArrayList,PRIVATE

http://www.clarionmag.com/cmag/v9/vOnl2calendar.html (2 of 11) [09/01/2008 12:00:14 PM]

Clarion# And The Google Calendar API

m_calendarURI &String,PRIVATE
m_selectedDate DateTime,PRIVATE
CONSTRUCT PROCEDURE(),PUBLIC
CalendarControl_DateSelected |
PROCEDURE(System.Object sender, |
System.Windows.Forms.DateRangeEventArgs €),PUBLIC
Go_Click PROCEDURE(System.Object sender, System.EventArgs €),PUBLIC
GoPublic_Click PROCEDURE(System.Object sender, System.EventArgs €),PUBLIC
RefreshFeed PROCEDURE(),PRIVATE
Password_KeyPress PROCEDURE(System.Object sender, |
System.Windows.Forms.K eyPressEventArgs €),PUBLIC
END

this &MainForm

The Construct method contains the call to InitializeComponent method which is declared and defined in the
MainForm.designer.cln file (the one you do not want to edit as source code). Notice that MainForm has the
PARTIAL attribute, indicating it is a partial class, spread across multiplefiles. In this case, the part you can modify
is MainForm.cln, and the part you must not modify isin MainForm.Designer.cln.

After the InitializeComponent call, | initialize the m_selectedDate and this properties.

MainForm.CONSTRUCT PROCEDURE()
CODE
!
! The InitializeComponent() call isrequired for
! Windows Forms designer support.
!
SEL F.InitializeComponent()
SELF.m_selectedDate = NEW DateTime(TODAY ()
this&=SELF

The CalendarControl_DateSelected event handler is called when the user clicks on adate in the MonthCalendar control. To
see the available methods via the Designer, select the calendar control and click on the Events button in the Properties

pane. Y ou can type a new method name for any event, or select from the existing methods. The Designer will create a

stub method in MainForm.cln, and will add the necessary code to MainForm.Designer.cln to register the event with the control.

http://www.clarionmag.com/cmag/v9/vOnl2calendar.html (3 of 11) [09/01/2008 12:00:14 PM]

Clarion# And The Google Calendar API

Properties

calendarControl System.Windows.Forms.MonthCalend.
g2l B ¥
(DataBindings) -
BackColorChanged
BindingZontextZhanged
Causesyalidationhange
ChangeUICues
ClientSizeChanged
ContextMenustripChange
ConkrolAdded
ControlRemoved

CursorChanged
DateChanged

DateSelected CalendarControl_Date
DockChanged
DragDrop
DragEnter
Dragleave
DragCrwer
EnabledChanged
Enter
Fonthanged
ForeCaolorChanged
GiveFeedback
HelpRequested
KenDown
KevwPress

Kewllp

Layouk

Leave
Location”hanged
MarginChanged
MouseCaptureChanged
Mouselown
MouzeEnter
MouseHower

Mouseleave
MouselMave

Mousellp

Mowve

ParentChanged
PreviewkeyDown
QuerydccessibilityHelp

SRR P P

DateSelected
Occurs when the user selects a date or a range of dates,

Figure 2. Calendar control events

At the start of the procedure | declare references to the various classes | will need later on. Severa of these are lists of
objects, and I'll process these, not with a LOOP, but with the new ForEach looping statement.

MainForm.CalendarControl_DateSelected |
PROCEDURE(System.Object sender, |
System.Windows.Forms.DateRangeEventArgs €)
results &ArrayList

http://www.clarionmag.com/cmag/v9/vOnl2calendar.html (4 of 11) [09/01/2008 12:00:14 PM]

Clarion# And The Google Calendar API

evtEntry & EventEntry
eviTimes &WhenCollection
w &When

Ivitem &ListViewltem

Thefirst conditional after the code statement checksto see if the DateRangeEventArgs are null. Normally, when

invoked because of an event, the DateRangeEventArgs are not null, but | also make calls to this method from afew

other places and pass a null reference for the DateRangeEventArgs. If | got here from an actual event | save the selected
date and clear the ListView control, which is called DayEvents. Note that this is the actual object name, not afield equate.
Y ou won't see any field equates in this example.

CODE

IF~e&=NULL
thism_selectedDate = e.Start
this.DayEvents.Items.Clear()

END

The entryL.ist object contains the events received from the Google Calendar API. entryList getsfilled in the
RefreshFeed method which | discuss later.

This sample application only shows five eventsin the ListView control. Y ou would need to make the events array larger
to show more events.

If entryList has some entriesinit, | create anew ArrayList to hold the events | am going to display. | then iterate through
the collection of EventEntries using the new ForEach statement. Each event has a WhenCollection of event dates; |

iterate through that collection looking for dates that match the date that the user clicked on. Matching entries are then added
to theresults array.

IF ~this.entryList &= NULL AND this.entryList.Count >0
results &= NEW ArrayList(5)
FOREACH evtEntry IN this.entryList
I let's find the entries for that date
evtTimes &= (evtEntry.Times)
IF evtTimes.Count > 0
FOREACH w IN evtTimes
IF this.m_selectedDate.Date.CompareTo(w.StartTime.Date) = 0 OR |
this.m_selectedDate.Date.CompareTo(w.EndTime.Date) = 0
results.Add(evtEntry)
BREAK
END
END
END
END

Finaly, | iterate through the results array and for each entry | create a ListViewltem object, setting the event title, author
name, and start and end times. | add the ListViewltem object to the ListView control for display.

FOREACH evtEntry IN results

http://www.clarionmag.com/cmag/v9/vOnl2calendar.html (5 of 11) [09/01/2008 12:00:14 PM]

Clarion# And The Google Calendar API

Ivitem &= NEW ListViewltem(evtEntry.Title. Text)

Ivitem.Subltems.Add(evtEntry.Authors[0].Name)

evtTimes &= (evtEntry.Times)

IF evtTimes.Count > 0
Ivitem.Subltems.Add(evtTimes[0]. StartTime. TimeOfDay. ToString())
Ivitem.Subltems.Add(evtTimes 0] .EndTime.TimeOf Day.ToString())
this.DayEvents.Items. Add(lvItem)

END

END

That's how calendar datais displayed, but before you can display the data you have to retrieve or add the data.

Retrieving calendar data

The Go_Click method is called when the user clicks on the Personal Calendar button. | set the URI for the user's
private calendar, specifying that | want the data sorted by ascending date order. Next | call the RefreshFeed method to
retrieve data from Google, and then | call the CalendarControl_DateSelected method with anull EventArgs parameter,
as discussed previously, to display the events for the currently selected date.

MainForm.Go_Click PROCEDURE(System.Object sender, System.EventArgs €)
CODE
SELF.m_calendarURI &= |
'http://www.google.com/cal endar/feeds/defaul t/private/
full orderby=starttime& sortorder=ascending'
SELF.CalendarURI.Text := SELF.m_calendarURI
SEL F.RefreshFeed()
SEL F.CalendarControl_DateSel ected(sender, NULL)

The GoPublic_Click method is called when the user clicks on the Public Calendar button. This bit was not in the
original sample application, but | wanted to figure out how to access my public calendar. It took abit of research, but
I eventually found what | was looking for. The URI is pretty cryptic to say the least.

MainForm.GoPublic_Click PROCEDURE(System.Object sender, System.EventArgs €)

CODE

SELF.m_calendarURI &= |! line breaks added below
"http://www.google.com/cal endar/feeds/d882sdnar12kk80c1lc1h9f Ik @
group.calendar.google.com/private/full
?orderby=starttime& sortorder=ascending’

SELF.CaendarURI.Text := SELF.m_calendarURI

SEL F.RefreshFeed()

SEL F.CalendarControl_DateSel ected(sender, NULL)

To discover the URI for your public calendar, do the following after signing in to your Google account:

. Click the My Account and then My Services Calendar links.
. On theleft side of the screen you should find asmall link that says Manage Calendars; click thislink (Figure 3)

http://www.clarionmag.com/cmag/v9/vOnl2calendar.html (6 of 11) [09/01/2008 12:00:14 PM]

Clarion# And The Google Calendar API

Calendar

Create Event KB
Quick Add
« December 2007

»
5§ M T W T F 5
25 26 27 28 29 30 1

8

Google -

3 4 5 6 7 fam
9 10 11 12 13 14 15
16 17 18 19 20 21 22 Bam
23 24 25 26 27 28 29
30 31 1 2 3 4 5 Qam
B 7 8 9 10 11 12
10am
- Add |+
My Calendars =
M} Randy Rogers -
Keystone Public - 12pm
COther Caleads

Figure 3. The Manage calendarslink

. You should then see something similar to Figure 4:

My Calendars
CALENDAR

T Randy Rogers
H
=

Keystone Public

Figure4. The public calendar link

. Click on thelink for your public calendar and you will find the odd bit that you need to construct the URI for your
public calendar (Figure 5).

http://www.clarionmag.com/cmag/v9/vOn12calendar.html (7 of 11) [09/01/2008 12:00:14 PM]

Clarion# And The Google Calendar API

Embed This Calendar

Embed this calendar in your website or blog
by pasting this code into your web page. To
embed multiple calendars, click on the
Customize Link

FPaste this code into your website.
Customize the color. size. and other options

<ifrgme om/calendar/fembed?
5 %gd0group._calendar.google.com” style="border:
0" wid E . eborder="0" scrolling="no"=</fiframe=>

Figure 5. The calendar URL

| call the RefreshFeed method whenever | want to retrieve calendar data from Google. First, | declare references to the classes
| am going to need to use:

MainForm.RefreshFeed PROCEDURE()

userName &string
passWord &string

dates &ArrayList

query & EventQuery
service & CalendarService
calFeed &EventFeed
evtEntry & EventEntry
evtTimes &WhenCollection
w &When

aDates DateTime[]

i LONG

d DateTime

exType & System.Type
tryAgain BOOL

populateCalendar BOOL

| disable the Go and GoPublic buttons to prevent the user from clicking on them while the code is busy. Then | initialize
the references and verify the users credentials with the setUserCredentials method of the Calendar Service.

CODE

this.Go.Enabled = FALSE

this.GoPublic.Enabled = FALSE

userName &= this.UserName.Text

passwWord &= this.Password.Text

dates &=NEW ArrayList(50)

query &= NEW EventQuery

service &= NEW CalendarService('SampleApp")

http://www.clarionmag.com/cmag/v9/vOnl2calendar.html (8 of 11) [09/01/2008 12:00:14 PM]

Clarion# And The Google Calendar API

IF ~userName &= NULL AND userName.Length >0
service.setUserCredential s(userName, password)
END

Now | set up the query parameters and try to get the Calendar data feed from Google. If | am successful | display the
calendar title on the screen, clear the ListView control, and create anew ArrayList for fifty entries.

! only get event's for today - 1 month until today + 6 months
query.Uri &= NEW Uri(SELF.m_calendarURI)
query.StartTime = DateTime.Now.AddMonths(-1)
query.EndTime = DateTime.Now.AddMonths(6)
calFeed &= NULL
populateCalendar = TRUE
LOOP
tryAgain = FALSE
TRY
calFeed &= service.Query(query) AS EventFeed
this.CalendarTitle. Text = calFeed.Title.Text & ' Calendar’
this.DayEvents.Items.Clear()
thisentryList &= NEW ArrayList(50)

If thereisan error, | catch the exception and try to display an intelligent error message.

CATCH (Exception ex)
exType &= ex.GetType()
CASE exType.Name.ToString()
OF 'AuthenticationException’
MESSAGE('Are your user name and password correct?, |
exType.Name.ToString() ,ICON:HAND)
OF 'GDataRequestException’
CASE MESSAGE('An error occurred trying to retrieve the calendar events.'|
& '[Would you like to retry?, exType.Name.ToString() ,|
ICON:QUESTION, BUTTON:YES+BUTTON:NO, BUTTON:YES)
OFBUTTON:YES
tryAgain = TRUE
OF BUTTON:NO
populateCalendar = FALSE
ELSE
MESSAGE('An Unexpected Error Has Occurred!’, exType.Name.ToString(), |
ICON:HAND)
populateCalendar = FALSE
END
FINALLY
END

http://www.clarionmag.com/cmag/v9/vOnl2calendar.html (9 of 11) [09/01/2008 12:00:14 PM]

Clarion# And The Google Calendar API

IF tryAgain = FALSE
BREAK
END
END

TRY, CATCH, and FINALLY make up Clarion#'s new structured exception handling mechanism. If service.Query
encounters an error it will throw an exception; that means that execution inside the TRY block immediately terminates

and resumes at the CATCH statement where the exception can be processed. An optional FINALLY clause will execute
when CATCH isdone.

I loop until there are no more entriesin the calendar feed; the loop also repeats if there was a connection error and the
user wishes to retry. The query results are iterated through using foreach and the event start times are stored in the dates array.

IF populateCalendar = TRUE
! now populate the calendar
LOOP WHILE (~calFeed &= NULL AND calFeed.Entries.Count > 0)
FOREACH evtEntry IN calFeed.Entries
this.entryList. Add(evtEntry)
evtTimes &= (evtEntry.Times)
IF evtTimes.Count > 0
FOREACH w IN evtTimes
dates. Add(w.StartTime)
END
END
END
I just query the same query again.
IF (~calFeed.NextChunk &= NULL)
query.Uri &= NEW Uri(cal Feed.NextChunk)
calFeed &= service.Query(query) AS EventFeed
ELSE
calFeed &= NULL
END
END

Next | create an array of DateTime objects, one for each event date. | assign that array to the calendar control's
BoldedDates property and the control automatically displays those datesin bold. Finally | re-enable the buttons on the screen.

aDates &= NEW DateTime[dates.Count]
i=0
FOREACH d in dates
i+=1
aDated[i] =d
END
this.calendarControl.BoldedDates & = aDates
END
this.Go.Enabled = TRUE

http://www.clarionmag.com/cmag/v9/vOnl2calendar.html (10 of 11) [09/01/2008 12:00:14 PM]

Clarion# And The Google Calendar API

this.GoPublic.Enabled = TRUE

When | was testing the program, | would quite often enter my username and password and then simply press Enter. |

was expecting some default action that didn't occur, so | initially added a method to watch for the Enter key,

and programmatically click the Personal Calendar button. | later discovered that | could achieve the effect | really wanted
by assigning the Personal Calendar Button to the form's AcceptButton property.

To run the program you need a Google account. Enter your username and password and then click on one of the buttons, or
just press Enter for your personal calendar. If you have put eventsin your Google calendar, you should see them displayed
on the screen. There are only a couple of entriesin the Keystone Public calendar for November 2007. The

example demonstrates how to retrieve data; it is aso possible with the Google Calendar API to manage calendars and
maintain events programmatically.

| certainly had fun putting this example together and | am enjoying having accessto all the code available in the .
Net framework. An executable version of this program and other Clarion# examples can be found on my web site.

Download the source

Randy Rogersis a data processing professional with over 35 years of experience in awide variety of industries
including accounting, municipal government, insurance, printing, and pharmacoeconomics. He has adegreein
Mathematics from Florida State University and is the president of Keystone Computer Resources. Randy is the author
of ClassViewer, autility for browsing the Clarion class hierarchies. Heis a'so the creator of NetTools, Queue Edit-in-
Place, and Screen Capture Tools for Clarion application devel opers.

Reader Comments

Add acomment

http://www.clarionmag.com/cmag/v9/vOnl2calendar.html (11 of 11) [09/01/2008 12:00:14 PM]

http://www.keystonecr.com/clarionsharp.htm
http://www.clarionmag.com/cmag/v9/files/v9n12calendar.zip
mailto:RROGERS@keystonecr.com
http://www.keystonecr.com/
http://www.keystonecr.com/classviewer.htm
http://www.clarionmag.com/cmag/comments.frm?articleID=15371

Comparison of C#, Clarion# and VB.NET
This is a quick reference guide to highlight some key syntactical differences between C#, Clarion# and VB.NET (version 2).

NOTE: Clarion.NET and the Clarion# language are currently in alpha test, and various areas of the documentation are incomplete
and in a state of flux. Therefore, it’s very likely that some of the entries will change as new information becomes available.

Program Structure

C#

Clarion#

VB.NET

using System;

namespace Hello {
public class HelloWorld {
public static void Main(string[] args) {
string name = "C#";

//See if an argument was passed from the command line
if (args.Length == 1)
name = args[0];

Console.WriteLine("Hello, " + name + "!");

}
}
}

C#

PROGRAM
NAMESPACE (Hello)
USING(System)
MAP

END

Name &STRING

CODE
Name = 'Clarion#’
ISee if an argument was passed from the command line
IF COMMAND('1"') <> "'
Name = COMMAND('1')
END
Console.WritelLine('Hello, '& Name & '!")

Clarion#

Imports System

Namespace Hello
Class HelloWorld
Overloads Shared Sub Main(ByVal args() As String)
Dim name As String = "VB.NET"

'See if an argument was passed from the command line
If args.Length = 1 Then name = args(0)

Console.WriteLine("Hello, " & name & "!")
End Sub
End Class
End Namespace

Comments

VB.NET

//Single line
/* Multiple
lines */
///<summary>XML comments on single line</summary >

/** <summary >
XML comments on multiple lines
</summary> */

ISingle line
I~ Multiple
lines ~!
<summary>XML comments on single line</summary>
<summary>

111 XML comments on multiple lines
1</summary >

‘Single line only
REM Single line only

""'<summary >XML comments</summary >

Data Types

C#

Clarion#

VB.NET

// Value Types

bool

byte, sbyte

char

short, ushort, int, uint, long, ulong
float, double

decimal

DateTime //not a built-in C# type

// Reference Types
object
string

// Initializing
bool correct = true;
byte b = Ox2A; //hex

object person = null;
string name = "Mike";
char grade = 'B';
DateTime today = DateTime.Parse("12/31/2007 12:15:00");
decimal amount = 35.99m;
float gpa = 2.9f;

double pi = 3.14159265;
long 1Total = 123456L;
short sTotal = 123;
ushort usTotal = 123;
uint uiTotal = 123;
ulong ulTotal = 123;

// Type Information

int x;

Console.WritelLine(x.GetType()); //Prints System.Int32
Console.WritelLine(typeof(int)); //Prints System.Int32

Console.WritelLine(x.GetType().Name); //Prints Int32

// Type Conversion
float d = 3.5F;
int i = (int)d; //set to 3 (truncates decimal)

! Value Types

BOOL

BYTE, SBYTE

CHAR, CSTRING, PSTRING, CLASTRING

SHORT, USHORT, SIGNED, UNSIGNED, LONG, ULONG, CLALONG
SREAL, REAL, BFLOAT4, BFLOATS8

DECIMAL, PDECIMAL, CLADECIMAL

DATE, TIME, CLADATE, CLATIME

! Reference Types
&0OBJECT
&STRING

! Initializing
Correct BOOL(True)
H BYTE (©2Ah) !hex
0 BYTE(©520) loctal
B BYTE(01101b) !binary
Person &O0BJECT
Name &STRING

Name = 'Mike’
Grade CHAR('B")
Today DATE

Today = DATE(12,31,2007)
Amount DECIMAL(35.99)
GPA SREAL(2.9)
Pi REAL(3.14159265)
1Total LONG(123456)
sTotal SHORT(123)
usTotal USHORT(123)
uiTotal UNSIGNED(123)
ulTotal ULONG(123)

! Type Information

X SIGNED
Console.WriteLine(X.GetType()) !Prints System.Int32
Console.WriteLine(TYPEOF (SIGNED)) !Prints System.Int32

Console.WriteLine(X.GetType().Name) !Prints Int32

! Type Conversion
D SREAL(3.5)
I SIGNED
I=0D !Implicitly truncate to 3
D AS SIGNED !Explicitly truncate to 3

-
U}

'Value Types

Boolean

Byte, SByte

Char

Short, UShort, Integer, UInteger, Long, ULong
Single, Double

Decimal

Date

' Reference Types
Object
String

'Initializing

Dim correct As Boolean = True
Dim b As Byte = &H2A ‘hex

Dim o As Byte = &052 ‘octal
Dim person As Object = Nothing
Dim name As String = "Mike"

Dim grade As Char = "B"c

Dim today As Date = #12/31/2007 12:15:00 PM#
Dim amount As Decimal = 35.99@
Dim gpa As Single = 2.9!

Dim pi As Double = 3.14159265
Dim 1Total As Long = 123456L
Dim sTotal As Short = 123S

Dim usTotal As UShort = 123US
Dim uiTotal As UInteger = 123UI
Dim ulTotal As ULong = 123UL

' Type Information

Dim x As Integer

Console.WritelLine(x.GetType()) ‘Prints System.Int32
Console.WritelLine(GetType(Integer)) 'Prints System.Int32
Console.WriteLine(TypeName(x)) ‘Prints Integer

' Type Conversion

Dim d As Single = 3.5

Dim i As Integer = CType(d, Integer) 'setto 4 (Banker's rounding)
i = CInt(d) ‘'same result as CType

i = Int(d) 'set to 3 (Int function truncates the decimal)

C#

Constants
Clarion#

VB.NET

const int MAX_STUDENTS = 25;

// Can set to a const or var; may be initialized in a constructor
readonly float MIN_DIAMETER = 4.93f;

! CONST and READONLY unsupported.

! Use EQUATEs or regular data types instead.

MAX_STUDENTS EQUATE(25) !Instead of CONST; will auto-convert
MIN_DIAMETER SREAL(4.93) /READONLY is unsupported

Const MAX_STUDENTS As Integer = 25

‘Can set to a const or var; may be initialized in a constructor
ReadOnly MIN_DIAMETER As Single = 4.93

*
Enumerations
Ci# Clarion# VB.NET
enum Action {Start, Stop, Rewind, Forward}; Action ENUM Action ENUM /Alternate syntax Enum Action

Start ITEM Start Start
Stop ITEM Stop [Stop] 'Stop is a reserved word
Rewind ITEM Rewind Rewind
Forward ITEM Forward Forward

END END End Enum

enum Status {

Flunk = 50,
Pass = 70,
Excel = 90

s

Action a = Action.Stop;
if (a != Action.Start)

Console.WriteLine(a + " is " + (int) a); //Prints "Stop is 1"

Console.WritelLine((int) Status.Pass); //Prints 70
//Prints Pass

Console.WritelLine(Status.Pass);

Status ENUM
Flunk(50)
Pass (70)
Excel(90)
END

A Action(Action.Stop)
IF (A <> Action.Start)
Console.WriteLine(A.ToString() &'is '& A) !Prints "Stop is 1"
END
Console.WritelLine(Status.Pass + 0) !Prints 70
Console.WritelLine(Status.Pass) !Prints Pass

Enum Status

Flunk = 50

Pass = 70

Excel = 90
End Enum

Dim a As Action = Action.Stop
If a <> Action.Start Then _
Console.WritelLine(a.ToString & " is " & a)

Console.WritelLine(Status.Pass)
Console.WritelLine(Status.Pass.ToString())

‘Prints "Stop is 1"

‘Prints 70
'Prints Pass

Operators
Ci# Clarion# VB.NET
// Comparison ! Comparison ' Comparison
= < > <= >= |I= = < > K= >= ~= <> &= = < > <= >= <
// Arithmetic ! Arithmetic ' Arithmetic
y - % + - * / + - *
% //mod % Imod Mod
/ //integer division if both operands are ints / linteger division \ integer division
Math.Pow(x, y) //raiseto a power A Iraise to a power n 'raise to a power
// Assignment ! Assignment ' Assignment
= 4= -= *= /= %= &= |= A= (K= >>= 4+ = 4= -= *= /= %= &= = 4= -= *= /= \= A= <K= >>= &=
:= ["Smart" replacement for = and &=
// Bitwise ! Bitwise ' Bitwise
& | AN K >> BAND(val,mask) BOR(val,mask) BXOR(val,mask) BSHIFT(val,count) And Or Xor Not << >>

// Logical
&& | & | " !

// Note: && and || perform short-circuit logical evaluations

// String Concatenation
+

C#

! Logical
AND OR XOR NOT

! Note: AND and OR perform short-circuit logical evaluations

! String Concatenation
&

Clarion#

'Logical
AndAlso OrElse And Oor Xor Not

' Note: AndAlso and OrElse perform short-circuit logical evaluations

' String Concatenation
&

VB.NET

greeting = age < 20 ? "What's up?" : "Hello";

if (age < 20)
greeting = "What's up?";
else
greeting = "Hello";
// Semi-colon ";" is used to terminate each statement,
/7 so no line continuation character is necessary.

// Multiple statements must be enclosed in {}
if (x != 100 & y < 5) {

X *= 5;
y *=2;

}

if (x > 5)
X *=y;

else if (x == 5)
X +=y;

else if (x < 10)
X -=y;

else
X /=y;

Greeting = CHOOSE(Age < 20, 'What''s up?', 'Hello')

! One line requires THEN (or ;)
IF Age < 20 THEN Greeting = 'What''s up?' END
IF Age < 20; Greeting = 'What''s up?'ELSE Greeting = 'Hello' END

! Use semi-colon (;) to put two commands on same line.

! A period (.) may replace END in single line constructs,

!I'but it is discouraged for multi-line constructs.

IF X <> 100 AND Y < 5 THEN X *= 5; Y *= 2. [IPeriod is OK here

! Multi-line is more readable (THEN is optional on multi line)
IF X <> 100 AND Y < 5 THEN IF X <> 100 AND Y < 5

X *= § X *= §
Y *= 2 Y *= 2
END . !Period is hard to see here

! To break up any long single line use | (pipe)

IF WhenYouHaveAReally < LonglLine |

AND ItNeedsToBeBrokenInto2 > Lines
UseThePipe(CharToBreakItUp)

END
IF X > 5
X *=Y
ELSIF X = 5
X +=Y
ELSIF X < 10
X -=Y
ELSE
X /=Y
END

greeting = IIf(age < 20, "What's up?", "Hello")

' One line doesn't require End If
If age < 20 Then greeting = "What's up?"
If age < 20 Then greeting = "What's up?" Else greeting = "Hello"

' Use colon (:) to put two commands on same line
If x <> 100 AndAlso y < 5 Then x *= 5 : y *= 2

' Multi-line is more readable
If x <> 100 AndAlso y < 5 Then

X *= 5
y *=2
End If

' To break up any long single line use _

If whenYouHaveAReally < longlLine AndAlso _
itNeedsToBeBrokenInto2 > Lines Then _
UseTheUnderscore(charToBreakItUp)

If x >
X *=
ElseIf
X +=
ElseIf
X =-=
Else
X /=y
End If

Then

= 5 Then

< 10 Then

K XK X< wun

// Every case must end with break or goto case

switch (color) {

//Must be integer or string

CASE Color
OF 'pink' OROF 'red’

!Any data type or expression

Select Case color
Case "pink", "red"

case "pink" R+=1 r+=1
case "red" : r++; break; OF 'blue’ Case "blue"
case "blue" : b++; break; B +=1 b +=1
case "green": g++; break; OF 'green’ Case "green"
default: other++; break; //break necessary on default G +=1 g+=1
} ELSE Case Else
Other += 1 other += 1
END End Select
CASE Value
OF 0.00 TO 9.99; RangeName = 'Ones’
OF 10.00 TO 99.99; RangeName = 'Tens'
OF 100.00 TO 999.99; RangeName = 'Hundreds'
letc.
ELSE ; RangeName = 'Zillions'
END

‘Must be a primitive data type

EXECUTE Stage !Integer value or expression

C#

Stagel ! expression equals 1

Stage2 ! expression equals 2

Stage3 ! expression equals 3
ELSE

StageOther ! expression equals some other value
END

Clarion#

VB.NET

// Pre-test Loops

while (c < 10) LOOP WHILE C < 10 LOOP UNTIL C = 10 While c < 10 Do Until c = 10
C++; C+=1 C+=1 c +=1 c +=1
END END End While Loop
// no "until" keyword
LOOP C = 2 TO 10 BY 2 Do While c < 10 For c = 2 To 10 Step 2
for (c = 2; c <= 18; c += 2) Console.WriteLine(C) c +=1 Console.WriteLine(c)
Console.WriteLine(c); END Loop Next
// Post-test Loop ! Post-test Loops ' Post-test Loops
do LooP LooP Do Do
C++; C+=1 C+=1 c +=1 c +=1
while (c < 10); WHILE c < 10 UNTIL C = 10 Loop While c < 10 Loop Until c = 10
// Untested Loop ! Untested Loops ' Untested Loop
for (5;) { LOOP LOOP 3 TIMES Do
//break logic inside IBreak logic inside Console.WritelLine //break logic inside
} END END Loop

! Pre-test Loops

' Pre-test Loops

// Array or collection looping

string[] names = {"Fred", "Sue",

foreach (string s in names)
Console.WritelLine(s);

"Barney"};

// Breaking out of loops
int i = 0;
while (true) {
if (i == 5)
break;
i++;

}

// Continue to next iteration
for (i =0; i < 5; i++) {
if (1 < 4)
continue;
Console.WritelLine(i); //0nly prints 4

}

C#

! Array or collection looping
Names &STRING,DIM(3)
S &STRING
CODE
Names[1] := 'Fred'; Names[2] := 'Sue'; Names[3] := 'Barney'
FOREACH S IN Names
Console.WriteLine(S)
END

! Breaking out of loops
I SHORT(9)
CODE
LOOP
IF I = 5 THEN BREAK.
I +=1
END

! Continue to next iteration
LOOP I =0 TO 4
IF I < 4 THEN CYCLE.
Console.WritelLine(I)
END

' Array or collection looping

Dim names As String() = {"Fred", "Sue", "Barney"}

For Each s As String In names
Console.WriteLine(s)

Next

' Breaking out of loops

Dim i As Integer = 0

While (True)
If (i = 5) Then Exit While
i+=1

End While

' Continue to next iteration
For i = @ To 4
If i < 4 Then Continue For
Console.WriteLine(i) 'Only prints 4
Next

VB.NET

int[] nums = {1, 2, 3};
for (int i = @; i < nums.Length; i++)
Console.WriteLine(nums[i]);

// 5 is the size of the array

string[] names = new string[5];

names[@] = "David";

names[5] = "Bobby"; //Throws System.IndexOutOfRangeException

// C# can't dynamically resize arrays, so copy into new array
string[] names2 = new string[7];

Array.Copy(names, names2, names.Length);

//or

names.CopyTo(names2, 0);

float[,] twoD = new float[rows, cols];
twoD[2,0] = 4.5f;

Clarion#
Nums SIGNED,DIM(3)
I SIGNED
CODE

Nums[1] = 1; Nums[2] = 2; Nums[3] = 3

LOOP I = 1 TO Nums.Length
Console.WriteLine(Nums[I])

END

! 5 is the size of the array
Names &STRING,DIM(5)

CODE

Names[1] := 'David’

Names[6] := 'Bobby' !Caught by compiler

I=26

Names[I] := 'Bobby' !Throws System.IndexOutOfRangeException

! Clarion# can't dynamically resize arrays, so copy into new array
Names2 &STRING[]
CODE
Names2 := NEW STRING[7]
Array.Copy(Names, Names2, Names.Length) lor
Names.CopyTo(Names2,)

TwoD SREAL[,]
CODE
TwoD := NEW SREAL[Rows, Cols]
TwoD[3,1] = 4.5

Dim nums() As Integer = {1, 2, 3}

For i As Integer = @ To nums.Length - 1
Console.WriteLine(nums(i))

Next

'4 is the index of the last element, so it holds 5 elements

Dim names(4) As String

names(@) = "David"

names(5) = "Bobby" 'Throws System.IndexOutOfRangeException

' Resize the array, keeping existing values (Preserve is optional)
ReDim Preserve names(6)

Dim twoD(rows-1, cols-1) As Single
twoD(2, @) = 4.5

// Jagged arrays

int[][] jagged = new int[3][] {
new int[5], new int[2], new int[3] };
jagged[0][4] = 5;

C#

! Jagged arrays unsupported

Clarion#

' Jagged arrays
Dim jagged()() As Integer = { _

New Integer(4) {}, New Integer(l) {}, New Integer(2) {} }
jagged(@)(4) =5

Functions

VB.NET

// Pass by value(in,default), reference(in/out), and reference(out)
void TestFunc(int x, ref int y, out int z) {

X++;

y++;

int a =1, b =1, c; //cdoesn't need initializing
TestFunc(a, ref b, out c);
Console.WriteLine("{0} {1} {2}", a, b, c); /125

// Accept variable number of arguments
int Sum(params int[] nums) {
int sum = 0;
foreach (int i in nums)
sum += i;
return sum;

}

int total = Sum(4, 3, 2, 1); //returns 10

/* C# doesn't support optional arguments/parameters.

Just create two different versions of the same function. */
void SayHello(string name, string prefix) {

Console.WritelLine("Greetings, " + prefix +

+ name);

void SayHello(string name) {
SayHello(name, "");

}

! Pass by value(in,default), reference(in/out), and reference(out)
TestFunc PROCEDURE(SIGNED X, *SIGNED Y, *SIGNED Z)
CODE

X 4= 1
Y 4= 1
Z=5

RETURN !Optional, if not returning a value

A UNSIGNED(1)
B UNSIGNED(1)
C UNSIGNED IC doesn't need initializing
CODE
TestFunc(A, B, C)
Console.WriteLine('{{0} {{1} {{2}', A, B, C) /125

! Accept variable number of arguments
Sum PROCEDURE (PARAMS UNSIGNED[] Nums),UNSIGNED
Result UNSIGNED(®)
I UNSIGNED

CODE

FOREACH I IN Nums

Result += I
END
RETURN Result

Total# = Sum(4, 3, 2, 1) Ireturns 10

! Optional parameters without default value

! (When omitted, value parameters default to 0 or an empty string)
I (Use OMITTED to detect the omission)

SayHello PROCEDURE(STRING Name, <STRING Prefix>)

! Optional parameters with default value

! (Valid only on simple numeric types)

! (OMITTED will not detect the omission — the default is passed)
SayHello PROCEDURE(STRING Name, BYTE Age = 20)

' Pass by value(in,default), reference(in/out), and reference(out)
Sub TestFunc(ByVal x As Integer, ByRef y As Integer, _
ByRef z As Integer)
X +=1
y += 1
z =5
End Sub

Dim a = 1, b = 1, c As Integer 'csetto zero by default
TestFunc(a, b, c)
Console.WriteLine("{0} {1} {2}", a, b, c) 125

' Accept variable number of arguments
Function Sum(ByVal ParamArray nums As Integer()) As Integer
Sum = 0
For Each i As Integer In nums
Sum += i
Next
End Function 'Oruse Return statement like C#

Dim total As Integer = Sum(4, 3, 2, 1) ‘returns 10

' Optional parameters must be listed last and have a default value

Sub SayHello(ByVal name As String, Optional ByVal prefix As String = "")
Console.WriteLine("Greetings, " & prefix & " " & name)
End Sub

SayHello("Strangelove", "Dr.")
SayHello("Madonna")

// String concatenation

string school = "Harding\t";
school = school + "University";
// school is "Harding(tab)University"

// Chars

char letter = school[@]; //letter is H

letter = Convert.ToChar(65); //letter is A

letter = (char)65; //same thing

char[] word = school.ToCharArray(); //word holds Harding

// String literal

string msg = @"File is c:\temp\x.dat";
// same as

string msg = "File is c:\\temp\\x.dat";

// String comparison

string mascot = "Bisons";

if (mascot == "Bisons") J/true

if (mascot.Equals("Bisons")) //true

if (mascot.ToUpper().Equals("BISONS")) //true

if (mascot.CompareTo("Bisons") == 0) //true

// Substring

Console.WritelLine(mascot.Substring(2, 3)); //Prints "son"

! String concatenation
School &STRING
Univ ~ CLASTRING('University') !Clarion string class

CODE
School = 'Harding<9>'
School = School & Univ

ISchool is "Harding(tab)University"

! Chars
Letter CHAR
Word CHAR[]

CODE

Letter = School[1] ILetter is H

Letter = Convert.ToChar(65) !Letteris A

Letter = '<65>' ISame thing

Word = School.ToCharArray !Word holds Harding

! No string literal operator
Msg &STRING
CODE
Msg = 'File is c:\temp\x.dat'

! String comparison
Mascot &STRING

CODE

Mascot = 'Bisons’

IF Mascot = 'Bisons’ Itrue
IF Mascot.Equals('Bisons') Itrue
IF Mascot.ToUpper().Equals('BISONS') /true
IF UPPER(Mascot) = 'BISONS' Itrue
IF Mascot.CompareTo('Bisons') = @ Itrue

! Substring
Console.WriteLine(Mascot.Substring(2, 3)) !Prints "son"
Console.WritelLine(SUB(Mascot, 3, 3)) !Prints "son"
Console.WriteLine(Mascot[3 : 6]) !Prints "son"

C# Clarion# VB.NET
// Escape sequences ! Special Characters ' Special Character Constants
\r //carriage-return <13> Icarriage-return vbCrLf, vbCr, vbLf, vbNewLine
tn Zlige-feed <10> Iline-feed vl;NuélStr‘ing
t ta vbTa
<9> Itab
\> //backslash <n> Icharacter with the ASCII value=n (see above) vbBack
\ //quote) vbFormFeed
<« !less-than vbVerticalTab
{{ !left-curly-brace "
v Isingle-quote
{n} !Repeat previous character "n" times

' String concatenation (use & or +)

Dim school As String = "Harding" & vbTab
school = school & "University"

'school is "Harding(tab)University"

' Chars

Dim letter As Char = school.Chars(®) letter is H

letter = Convert.ToChar(65) letter is A

letter = Chr(65) 'same thing

Dim word() As Char = school.ToCharArray() ‘word holds Harding

' No string literal operator
Dim msg As String = "File is c:\temp\x.dat"

' String comparison

Dim mascot As String = "Bisons"

If (mascot = "Bisons") Then ‘true
If (mascot.Equals("Bisons")) Then ‘true
If (mascot.ToUpper().Equals("BISONS")) Then 'true
If (mascot.CompareTo("Bisons") = @) Then ‘true
' Substring

Console.WritelLine(mascot.Substring(2, 3)) 'Prints "son"

// String matching
// No exact equivalent to Like - use regular expressions

using System.Text.RegularExpressions;
Regex r = new Regex(@"Jo[hH]. \d:*");
if (r.Match("John 3:16").Success) //true

// My birthday: Sep 3, 1964
DateTime dt = new DateTime(1964, 9, 3);
string s = "My birthday: " + dt.ToString("MMM dd, yyyy");

// Mutable string
System.Text.StringBuilder buffer =

new System.Text.StringBuilder("two ");
buffer.Append("three ");
buffer.Insert(0, "one ");
buffer.Replace("two", "TWO");

Console.WriteLine(buffer); //Prints "one TWO three"

C#

! String matching
! No exact equivalent to Like - use regular expressions or MATCH

USING(System.Text.RegularExpressions)

&Regex

&STRING

&STRING

&STRING

CODE

R := NEW Regex('Jo[hH]. \d:*")

IF R.Match('John 3:16"').Success Itrue

A 'Richard’

B = '"RICHARD'

C = 'R*'

IF MATCH(A,B,MATCH:Simple+Match:NoCase) !true: case insensitive

IF MATCH(A,B,MATCH:Soundex) Itrue: soundex

IF MATCH(A,C) Itrue: wildcard (default)

IF MATCH('Fireworks on the fourth', '{{4|four}th', |
MATCH:Regular+Match:NoCase) Itrue: RegEx

IF MATCH('July 4th fireworks', '{{4|four}th', |

N W>=>

MATCH:Regular+Match:NoCase) Itrue: RegEx

! My birthday: Sep 3, 1964
DT DateTime
S &STRING

CODE

DT = NEW DateTime(1964, 9, 3)

S = 'My birthday: '& DT.ToString('MMM dd, yyyy')
! Mutable string
Buffer System.Text.StringBuilder('two ')

CODE

Buffer.Append('three ')
Buffer.Insert(@, 'one ')
Buffer.Replace('two', 'TWO")

Console.WriteLine(Buffer) !Prints "one TWO three"

Clarion#

' String matching
If ("John 3:16" Like "Jo[Hh]? #:*") Then ‘true

Imports System.Text.RegularExpressions
Dim r As New Regex("Jo[hH]. \d:*")
If (r.Match("John 3:16").Success) Then ‘true

'More powerful than Like

' My birthday: Sep 3, 1964
Dim dt As New DateTime(1964, 9, 3)
Dim s As String = "My birthday: " & dt.ToString("MMM dd, yyyy")

' Mutable string

Dim buffer As New System.Text.StringBuilder("two ")
buffer.Append("three ")

buffer.Insert(0, "one ")

buffer.Replace("two", "TWO")

Console.WriteLine(buffer) ‘Prints "one TWO three"

Exception Handling

VB.NET

// Throw an exception
Exception ex = new Exception("Something is really wrong.");
throw ex;

! Throw an exception

Ex &Exception('Something is really wrong.')
CODE
THROW Ex

' Throw an exception
Dim ex As New Exception("Something is really wrong.")
Throw ex

// Catch an exception ! Catch an exception ' Catch an exception

try { TRY Try
y =0; y = 9; y==9
x =10 / y; x =10 / y; x =10/ y
} CATCH(Exception Ex) !Argument is optional, no "When" keyword Catch ex As Exception When y = @ 'Argument and When is optional
catch (Exception ex) { //Argument is optional, no "When" keyword Console.WritelLine(Ex.Message); Console.WriteLine(ex.Message)
Console.WritelLine(ex.Message); FINALLY Finally
} BEEP Beep()
finally { END End Try
//Requires reference to the Microsoft.VisualBasic.dll
//assembly (pre .NET Framework v2.0) ' Deprecated unstructured error handling
Microsoft.VisualBasic.Interaction.Beep(); On Error GoTo MyErrorHandler
}

MyErrorHandler: Console.WritelLine(Err.Description)

Namespaces

C# Clarion# VB.NET
namespace Harding.Compsci.Graphics { NAMESPACE (Harding.Compsci.Graphics) Namespace Harding.Compsci.Graphics
} End Namespace
// or ‘or
namespace Harding { !Progressive, nested namespaces unsupported Namespace Harding

namespace Compsci { Namespace Compsci
namespace Graphics { Namespace Graphics
} End Namespace
} End Namespace
} End Namespace
using Harding.Compsci.Graphics; USING(Harding.Compsci.Graphics) Imports Harding.Compsci.Graphics
Classes / Interfaces

C# Clarion# VB.NET
// Accessibility keywords ! Accessibility keywords ' Accessibility keywords
public PUBLIC Public
private PRIVATE Private
internal INTERNAL Friend
protected PROTECTED Protected
protected internal PROTECTED INTERNAL Protected Friend
static STATIC Shared
// Inheritance ! Inheritance " Inheritance
class FootballGame : Competition { FootballGame CLASS(Competition) Class FootballGame

cee cen Inherits Competition
} END

End Class

// Interface definition
interface IAlarmClock {

}...

// Extending an interface
interface IAlarmClock : IClock {

}...

// Interface implementation
class WristWatch : IAlarmClock, ITimer {

}

C#

! Interface definition
IAlarmClock INTERFACE

END

! Extending an interface
IAlarmClock INTERFACE(IClock)

END
! Interface implementation
WristWatch CLASS,IMPLEMENTS(IAlarmClock),IMPLEMENTS(ITimer)

END

Clarion#

" Interface definition
Interface IAlarmClock

End Interface

' Extending an interface

Interface IAlarmClock
Inherits IClock

End Interface

" Interface implementation

Class WristWatch

Implements IAlarmClock, ITimer

End Class

Constructors / Destructors

VB.NET

class SuperHero {
private int _powerLevel;

public SuperHero() {
_powerlLevel = 0;
}

public SuperHero(int powerLevel) {
this._powerLevel= powerLevel;

}

~SuperHero() {
//Destructor code to free unmanaged resources.
//Implicitly creates a Finalize method

}
}

C#

SuperHero CLASS
PowerLevel UNSIGNED,PRIVATE

Construct PROCEDURE, PUBLIC
Construct PROCEDURE (UNSIGNED PowerLevel),PUBLIC
Destruct PROCEDURE

END

SuperHero.Construct PROCEDURE
CODE
SELF._PowerLevel = 0

SuperHero.Construct PROCEDURE (UNSIGNED PowerlLevel)
CODE
SELF._PowerLevel = PowerlLevel

SuperHero.Destruct PROCEDURE

CODE
IDestructor code to free unmanaged resources.

Clarion#

Class SuperHero
Private _powerLevel As Integer

Public Sub New()
_powerLevel = 0
End Sub

Public Sub New(ByVal powerLevel As Integer)
Me._powerlLevel = powerlLevel
End Sub

Protected Overrides Sub Finalize()
'Destructor code to free unmanaged resources
MyBase.Finalize()

End Sub

End Class

Using Objects

VB.NET

SuperHero hero = new SuperHero();

// No "With" construct
hero.Name = "SpamMan";
hero.PowerLevel = 3;

Hero &SuperHero
Hero2 &SuperHero
Obj &Object
CODE
Hero &= NEW SuperHero

! No "With" construct
hero.Name = 'SpamMan’
hero.PowerLevel = 3

Dim hero As SuperHero = New SuperHero

or
Dim hero As New SuperHero

With hero
.Name = "SpamMan"
.PowerLevel = 3
End With

hero.Defend("Laura Jones");

SuperHero.Rest(); //Calling static method

SuperHero hero2 = hero;
hero2.Name = "WormWoman";
Console.WritelLine(hero.Name); //Prints WormWoman

//Both reference the same object

hero = null ; //Free the object
if (hero == null)
hero = new SuperHero();

Object obj = new SuperHero();
if (obj is SuperHero)
Console.WriteLine("Is a SuperHero object.");

// Mark object for quick disposal
using (StreamReader reader = File.OpenText("test.txt")) {
string line;
while ((line = reader.ReadlLine()) != null)
Console.WritelLine(line);

Hero.Defend('Laura Jones')

SuperHero.Rest () !Calling static method

Hero2 &= Hero
Hero2.Name = 'WormWoman'
Console.WriteLine(Hero.Name) !Prints "WormWoman"

!Both reference the same object

Hero &= NULL !Free the object

IF Hero &= NULL
Hero &= NEW SuperHero
END

Obj &= NEW SuperHero();
IF Obj IS SuperHero

Console.WritelLine('Is a SuperHero object.')
END

! No equivalent to USING(Resource) to mark for quick disposal

hero.Defend("Laura Jones")
hero.Rest() 'Calling Shared method

or
SuperHero.Rest()

Dim hero2 As SuperHero = hero 'Both reference the same object
hero2.Name = "WormWoman"
Console.WriteLine(hero.Name) ‘Prints WormWoman

hero = Nothing 'Free the object

If hero Is Nothing Then _
hero = New SuperHero

Dim obj As Object = New SuperHero
If TypeOf obj Is SuperHero Then _
Console.WriteLine("Is a SuperHero object.")

' Mark object for quick disposal
Using reader As StreamReader = File.OpenText("test.txt")
Dim line As String = reader.ReadLine()
While Not line Is Nothing
Console.WritelLine(line)
line = reader.ReadLine()
End While
End Using

this.gpa = gpa;
}
}

StudentRecord stu = new StudentRecord("Bob", 3.5f);
StudentRecord stu2 = stu;

stu2.name = "Sue";
Console.WritelLine(stu.name); //Prints Bob
Console.WritelLine(stu2.name); //Prints Sue

SELF.Name = Name
SELF.GPA = GPA
END
END

Stu StudentRecord('Bob', 3.5)
Stu2 StudentRecord

CODE
Stu2.Name = 'Sue’
Console.WritelLine(Stu.Name) !Prints Bob

Console.WritelLine(Stu2.Name) !Prints Sue

C# Clarion# VB.NET
struct StudentRecord { StudentRecord STRUCT Structure StudentRecord
public string name; Name &STRING,PUBLIC Public name As String
public float gpa; GPA SREAL,PUBLIC Public gpa As Single
Construct PROCEDURE (STRING Name,SREAL GPA),PUBLIC
public StudentRecord(string name, float gpa) { INLINE Public Sub New(ByVal name As String, ByVal gpa As Single)
this.name = name; CODE Me.name = name

Me.gpa = gpa
End Sub
End Structure

Dim stu As StudentRecord = New StudentRecord("Bob", 3.5)
Dim stu2 As StudentRecord = stu

stu2.name = "Sue"
Console.WritelLine(stu.name) ‘Prints Bob
Console.WritelLine(stu2.name) ‘Prints Sue

foo.Size++;

C#

Foo.Size += 1

Clarion#

C# Clarion# VB.NET
private int _size; _Size UNSIGNED,PRIVATE Private _size As Integer
Size PROPERTY,UNSIGNED,PUBLIC
public int Size { INLINE Public Property Size() As Integer
get { GETTER Get
return _size; CODE Return _size
} RETURN SELF._Size End Get
set { //parameter is always "value" SETTER !parameter is always "Value" Set (Byval Value As Integer)
if (value < 0) CODE If Value < @ Then
_size = o; IF Value < © _size = @
else SELF._Size = @ Else
_size = value; ELSE _size = Value
} SELF._Size = Value End If
} END End Set
END End Property
! Rather than use INLINE, you may define Get_PropertyName
!'and Set_PropertyName methods separately.
ClassName.Get_Size PROCEDURE
CODE
RETURN SELF._Size
ClassName.Set_Size PROCEDURE(UNSIGNED pValue)
CODE
SELF._Size = CHOOSE(pValue < @, @, pValue)
// Usage ! Usage 'Usage

foo.Size += 1

Delegates / Events

VB.NET

delegate void MsgArrivedEventHandler(string message);

event MsgArrivedEventHandler MsgArrivedEvent;

// Events must use explicitly-defined delegates in C#

MsgArrivedEvent += new
MsgArrivedEventHandler(My_MsgArrivedEventCallback);

MsgArrivedEvent("Test message"); //Throws exception if obj is null

MsgArrivedEvent -= new
MsgArrivedEventHandler(My_MsgArrivedEventCallback);

MAP
MsgArrivedEventHandler PROCEDURE (STRING Message),DELEGATE
END

MsgArrivedEvent EVENT,MsgArrivedEventHandler

! Events must use explicitly-defined delegates in Clarion#

MsgArrivedEvent += My_MsgArrivedEventCallback

MsgArrivedEvent('Test message')
MsgArrivedEvent -= My_MsgArrivedEventCallback

Delegate Sub MsgArrivedEventHandler(ByVal message As String)

Event MsgArrivedEvent As MsgArrivedEventHandler

" or to define an event which declares a delegate implicitly
Event MsgArrivedEvent(ByVal message As String)

AddHandler MsgArrivedEvent, AddressOf My_MsgArrivedCallback

' Won't throw an exception if obj is Nothing

RaiseEvent MsgArrivedEvent("Test message")

RemoveHandler MsgArrivedEvent, AddressOf My MsgArrivedCallback

using System;
using System.Windows.Forms;

public class MyClass {
Button MyButton;

public void Init() {
MyButton = new Button();
MyButton.Click += new EventHandler (MyButton_Click);

}

private void MyButton_Click(object sender, EventArgs e) {
MessageBox.Show("Button was clicked", "Info",
MessageBoxButtons.OK, MessageBoxIcon.Information);

C#

USING(System)
USING(System.Windows.Forms)

MyForm CLASS, TYPE, NETCLASS, PARTIAL

MyButton &Button

Init PROCEDURE

MyButton_Click PROCEDURE(Object Sender, EventArgs E)
END

MyForm.Init PROCEDURE
CODE
MyButton &= NEW Button
SELF.MyButton.Click += SELF.MyButton_Click

MyForm.MyButton_Click PROCEDURE(Object Sender, EventArgs E)
CODE
MessageBox.Show('Button was clicked', 'Info', |
MessageBoxButtons.OK, MessageBoxIcon.Information)

Clarion#

Imports System
Imports System.Windows.Forms

Public Class MyForm
Dim WithEvents MyButton As Button

Public Sub Init
MyButton = New Button
End Sub

Private Sub MyButton_Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles MyButton.Click
MessageBox.Show(Me, "Button was clicked", "Info", _
MessageBoxButtons.OK, MessageBoxIcon.Information)
End Sub
End Class

Console 1/O

VB.NET

Console.Write("What's your name? ");
string name = Console.ReadLine();
Console.Write("How old are you? ");
int age = Convert.ToInt32(Console.ReadlLine());
Console.WriteLine("{0} is {1} years old.", name, age);
// or

Console.WriteLine(name + " is " + age +

years old.");

int ¢ = Console.Read(); //Read single char
Console.WriteLine(c); //Prints 65 if user enters "A"

C#

Name &STRING
Age UNSIGNED
C UNSIGNED
CODE
Console.Write('What's your name? ')
Name = Console.ReadLine()
Console.Write('How old are you? ')
Age = Convert.ToInt32(Console.ReadlLine())
Console.WriteLine("{{0} is {{1} years old.", Name, Age);
lor
Console.WriteLine(Name + 'is '+ age + 'years old.');

C = Console.Read() !Read single char
Console.WriteLine(C) !Prints 65 if user enters "A" @

Clarion#

Console.Write("What's your name? ")

Dim name As String = Console.ReadLine()
Console.Write("How old are you? ")

Dim age As Integer = Val(Console.ReadlLine())
Console.WriteLine("{0} is {1} years old.", name, age)

or
Console.WriteLine(name & " is " & age & " years old.")

Dim c As Integer
c = Console.Read() 'Read single char
Console.WriteLine(c) 'Prints 65 if user enters "A"

File 1/0

VB.NET

using System.IO;

// Write out to text file

StreamWriter writer = File.CreateText("c:\\myfile.txt");
writer.WriteLine("Out to file.");

writer.Close();

USING(System.IO)

| Write out to text file

Writer &StreamWriter
CODE
Writer &= File.CreateText('c:\myfile.txt')
Writer.WriteLine('Out to file.')
Writer.Close()

Imports System.IO

' Write out to text file

Dim writer As StreamWriter = File.CreateText("c:\myfile.txt")
writer.WriteLine("Out to file.")

writer.Close()

// Read all lines from text file
StreamReader reader = File.OpenText("c:\\myfile.txt");
string line = reader.ReadLine();
while (line != null) {
Console.WriteLine(line);
line = reader.ReadLine();

reader.Close();

// Write out to binary file
string str = "Text data";
int num = 123;
BinaryWriter binWriter =
new BinaryWriter(File.OpenWrite("c:\\myfile.dat"));
binWriter.Write(str);
binWriter.Write(num);
binWriter.Close();

// Read from binary file
BinaryReader binReader =
new BinaryReader(File.OpenRead("c:\\myfile.dat"));
str = binReader.ReadString();
num = binReader.ReadInt32();
binReader.Close();

! Read all lines from text file
Reader &StreamReader
Line &STRING
CODE
Reader &= File.OpenText('c:\myfile.txt"')
Line = Reader.ReadlLine()
LOOP WHILE NOT Line &= NULL
Console.WritelLine(Line)
Line = Reader.ReadLine()
END
Reader.Close()

! Write out to binary file

Str &STRING

Num SIGNED(123)

BinWriter &BinaryWriter
CODE

Str = 'Text data’

BinWriter &= NEW BinaryWriter(File.OpenWrite('c:\myfile.dat'))
BinWriter.Write(Str)

BinWriter.Write(Num)

BinWriter.Close()

! Read from binary file
BinReader &BinaryReader
CODE
BinReader &= NEW BinaryReader(File.OpenRead('c:\myfile.dat'))
Str = BinReader.ReadString()
Num = BinReader.ReadInt32()
BinReader.Close()

'Read all lines from text file
Dim reader As StreamReader = File.OpenText("c:\myfile.txt")
Dim line As String = reader.ReadLine()
While Not line Is Nothing
Console.WritelLine(line)
line = reader.ReadLine()
End While
reader.Close()

' Write out to binary file

Dim str As String = "Text data”

Dim num As Integer = 123

Dim binWriter As New BinaryWriter(File.OpenWrite("c:\myfile.dat"))
binWriter.Write(str)

binWriter.Write(num)

binWriter.Close()

' Read from binary file

Dim binReader As New BinaryReader(File.OpenRead("c:\myfile.dat"))
str = binReader.ReadString()

num = binReader.ReadInt32()

binReader.Close()

Based upon adocument by Frank McCown (www.harding.edu/fmccown/vbnet csharp comparison.html). Licensed under a Creative Commons License (creativecommons.org/licenses/by-sa/2.0).

Clarion# examples provided by Mike Hanson (www.boxsoft.net). Last updated December 17, 2007.

Should Clarion# Drop Automatic Instantiation?

Clarion Magazine

Should Clarion# Drop Automatic I nstantiation?
by Dave Harms

Published 2007-12-13

Earlier | published an article titled Understanding Clarion# Strings, which | concluded with a bit of code demonstrating
the difference between how Clarion# declares Clarion.ClaString variables and System.String variables, and | suggested
that those differences would lead to some interesting questions (and answers) on how Clarion declares classes. If you
haven't read that article you might want to do so now.

Inthisarticle I'll argue that Clarion# would be a clearer, easier-to-use language if it did not permit the automatic instantiation
of classes, which is a standard feature of the Clarion language. I'll aso argue that the costs of this change are less than the
costs of continuing to permit automatic instantiation in Clarion#.

Here's the snippet of code from the Strings article:

s ClaString(20)
t & String

CODE

s = "abcdef’

t=s

s=sub(s,1,3)

t = t.Substring(1,3)

The important point about this code is that while String is declared with aleading &, indicating it is areference, ClaString
is declared without the & . So what's the big deal about that? One is areference, and one isn't right?

Asit turns out, there is a problem, not with the declaration per se, but with the code. Look at the source listing and you
won't seeaNEW statement for & String.

That seems odd. Isn't NEW required for all reference variables? In Clarion, yes. In Clarion#, it isn't always the case.

If | add a& to ClaString, asin the following code, | will in fact need to NEW the & ClaString before | can useit:

S & ClaString(20)
t & String
CODE
s &= new ClaString(20)
s = "abcdef*
t=s
s=sub(s,1,3)
t = t.Substring(1,3)

So the rule seems to be that ClaString reference variables have to be NEWed, but .NET String reference variables do not
have to be NEWed. And that's a surprising inconsistency in alanguage valued for its readability.

Infact, if you look at some of the Clarion# sample applications, you'll quickly realize that many if not all .NET objects

http://www.clarionmag.com/cmag/v9/vInl2instantiation.html (1 of 8) [09/01/2008 12:00:25 PM]

http://www.clarionmag.com/index.html

Should Clarion# Drop Automatic | nstantiation?

are declared with the & syntax, while some Clarion objects are declared with & and some are not. Although the String
exampleis particularly confusing, the whole concept of sometimes needing & and sometimes not needing it is a bit odd
when you compare Clarion# code to other .NET languages. And the reason for the oddness and the confusion comes down
to one important concept: automatic instantiation.

Automatic instantiation

If you have a bit of experience with object-oriented programming, you're probably familiar with the formal distinction
between a class and an object. In general, the term class refers to the type (or definition, if you prefer) of an object; there can
be one or more instances of the class, and each of those instancesis an object. So class=definition, and instance=object.

In Clarion (and, at least for now, in Clarion#) you have several ways of declaring a CLASS. Here'swhat | think of as
a"normal" class, which isto say it'satype, and is not allocated any memory:

NameClass CLASS,TYPE
Name String(20),Private
SetName Procedure(String newName)
GetName Procedure,String

END

NameClass.SetName Procedure(String newName)
code

self.Name = NewName

NameClass.GetName Procedure
code
return self.Name

Note that the class definition begins with CLASS and ends with END. Following the class you have the source code for
the methods (although these can aso be in a separate sourcefile).

The TY PE attribute tells the compiler not to allocate memory to this class. To create an instance of the class you need to
do something like thisin your code:

MyClass & NameClass
code

MyClass &= new (NameClass)
MyClass is declared as areference variable; that is, it's a null value until the NEW operator allocates memory for an instance
of NameClass, and assigns areference to that object to MyClass.

However, you can a so declare NameClass without the TY PE attribute:

NameClass CLASS
I... properties and methods
END

I methods here

In this case you don't need to declare a MyClass reference variable; you can just go ahead and use NameClass
directly (provided it'sin scope, of course):

http://www.clarionmag.com/cmag/v9/vInl2instantiation.html (2 of 8) [09/01/2008 12:00:25 PM]

Should Clarion# Drop Automatic | nstantiation?

code
NameClass.SetName('Dave')

Thisidea of declaring a class and automatically instantiating it is, for the most part, foreign to .NET. (Actually there is such
athing as a static class, but that's a slightly different animal and beyond the scope of this article.) The norm, in .NET, is that
dl classes areimplicitly TYPEd, and you have to create a NEW instance whenever you want to use a class. Specia
exceptions are made for some data types, however; you don't need to NEW String objects, you just assign a value to them
and the String's constructor is called automatically, passing in the value.

Automatic instantiation has the potential to cause much confusion for Clarion# devel opers because the default in Clarion
isautomatic instantiation. Y ou have give the CLASS the TY PE attribute to make it atype, and you have to modify a
variable with & to make it areference variable. By and large, in the world of OOP, things are the other way around.

TYPEd classes and reference variables are the default, and you have to mark something as static if you want it

available without explicit object creation. These conflicting standards can make mixing Clarion objects and .NET objects just
alittle confusing.

But if automatic instantiation isn't the norm for object-oriented languages, why isit the norm for Clarion?

The value of automatic instantiation

Automatic instantiation in Clarion (not Clarion#) has a very important value: it makes memory management easier. Up
until Clarion grew OO extensions, it was just about impossible to create a memory leak in a Clarion application. Oh, you
could forget to empty a queue, but really there weren't any nasty memory-related problems waiting to happen because
Clarion programmers didn't explicitly alocate memory.

And then came OOP, and with OOP came those two ways to declare classes. Conveniently, the default

implementation (without the TY PE attribute) meant Clarion programmers could continue to code just as before, without
any concern for cleaning up memory. As soon as a CLASS (declared without TY PE) went out of scope the runtime
library freed up the associated memory. But to allow the full flexibility afforded by object-oriented programming, the
compiler had to permit the runtime creation of objects. That meant using NEW to allocate memory, and if you

allocated memory with NEW you had to free the memory with DISPOSE, or your application would have a memory leak.

Isautomatic instantiation still needed?

Making CLA SSes default to automatic instantiation no doubt saved many of us from a host of memory leaks. In
Clarion#, however, these kinds of memory leaks are no longer a concern. That's because the .NET platform employs
something called automatic garbage collection.

Clarion developers have enjoyed automatic garbage collection from the beginning. For the longest time we didn't
(couldn't!) allocate memory - the runtime did that for us - but we also never had to clean up memory. .NET takes that a
step further; you can NEW objects to your heart's content, and when they are no longer referenced by any active code,
the .NET garbage collector swoopsin and scoops them up.

That means that the primary reason for automatically instantiating Clarion CLASSesisno longer valid in .NET.

Reference variables

A byproduct of Clarion's automatic instantiation is the concept of areference variable. Clarion makes a distinction between
aCLASS, aTYPEd CLASS, and areference variable. A reference variable is avariable that starts out as a null value and
is assigned areference to an object of itstype.

In most of the OOP world there are only classes and objects; what we think of asa CLASS (without the TY PE attribute) and
areference variable are really one and the same. In .NET object variables are references to object instances, or references
to NULL. In Clarion, CLASSes without the TY PE attribute are a special entity; they're like TY PEd classes except they

http://www.clarionmag.com/cmag/v9/vIn12instantiation.html (3 of 8) [09/01/2008 12:00:25 PM]

Should Clarion# Drop Automatic | nstantiation?

are automatically instantiated, and you can't use them as reference variables.

The point of confusion

Clearly if you write only Clarion# code, and particularly if you're familiar with Clarion syntax, none of the above need
concern you. It'sreally only when you start mixing .NET objects and Clarion# objects that you need to remember to

always decorate the .NET declarations with & and instantiate those objects with NEW or assign those references to

existing objects. (System.String, of course, gets specia treatment and doesn't need to be explicitly NEWed.) And if

you're porting, say, some C# code to Clarion, and your Clarion version uses some automatically instantiated objects,

you'll have to remember that the undecorated classin C# is the opposite of the undecorated (with TY PE or &) Clarion class.

A modest proposal

Obviously it would be nice not to have this conflicting style of declarations between Clarion# and .NET. If Clarion# were
more closely aligned to .NET it would make it easier to translate code between Clarion# and other .NET languages, and
it would actually simplify Clarion#'s syntax. But what would that syntax look like?

This subject has been discussed extensively in the dotnet.general newsgroup (restricted to .NET beta participants, at least
for now), and in particular Mike Hanson and Dennis Evans made some excellent points. I'm doing my best to summarize,
and hopefully Mike and Dennis will excuse me if | missed a point or got something wrong.

If Clarion# were to abandon automatic instantiation, the TY PE attribute would become implicit, as would the & prefix
on variables. In other words, all Clarion# classes would be TY PEs, and you would have to manually instantiate a
reference variable before you could use the class (strings, like System.String, being a notable exception). The

above NameClass example would look like this:

NameClass CLASS

1... properties and methods
END

! methods here

To use NameClass you would need to declare an instance (reference) variable like this:

MyClass NameClass

and in code, create an instance like this:

MyClass = new NameClass

Although you could declare areference variable with & (asin & NameClass), in genera the & would be ignored by
the compiler. Mike expressed a preference for retaining reference variables for simple data types. (I think it's worth
pointing out that .NET languages like C# do allow you to have references to simple data types, which resultsin an
implicit conversion from simple data type to object - search for the terms boxing and unboxing for more information.)

Mike's reference variables for simple data types notwithstanding, removing & as ameaningful term would mean that any
class variable is areference variable, and could be either instantiated as a new object or assigned to an existing object.

That would get rid of the special status of automatically instantiated CL A SSes, which cannot be used as reference variables
at present, and make Clarion#'s object handling syntax simpler and more .NET-like.

Other usesof TYPE

The TYPE attribute is also used in procedure prototyping and deriving structures such as GROUPs and QUEUESs. In .NET
all complex data types are classes, so | would expect that an implicit TY PE would essentially mean no code would have
to change, except for addition of code to NEW as needed.

http://www.clarionmag.com/cmag/v9/vInl2instantiation.html (4 of 8) [09/01/2008 12:00:25 PM]

Should Clarion# Drop Automatic | nstantiation?

The downside

Removing automatic instantiation would obviously break any code that relied on non-TY PEd class declarations. It also
raises some questions about the = operator, which currently is used both to assign values and to test for equality. Asking it
to assign references as well might cause problems.

Aside from these issues, for the most part the solution would be quite simple: just add an instance variable and NEW it.
And based on what 1've seen so far of Clarion#, | think it's likely that most developers will choose to write new code in

any case, rather than attempt to port existing APP files, even if amigration tool is available. Although Clarion and Clarion#
are both Windows languages, the differences between the WinAPI and the .NET environments are significant enough that
the change is not unlike moving from DOS to Windows. And very few devel opers chose porting to Windows over rewriting
for Windows.

Oh, and one morething...

There's one other platform compatibility issue that's raised its head lately, and that's array indices. Clarion has always had
1-based arrays, that is, the first element in any array has an index of 1, followed by 2, etc. In .NET, however, arrays are
zero-based. If you're mixing Clarion# and .NET objects, you can have a situation where sometimes you need to be zero-
based, and other times one-based. Here's an example with System.String:

a &String[]
CODE
a &= new String[5]
a[1] = 'abcdefg’
System.Console.WriteLine(a[1].Substring(1,3))

The variable ais an array of System.String objects, and because that array was created in Clarion it is 1-based, and the
first string in the array is set to ‘abcdefg’. But when you run this code the output is

bed

which is probably not what you expect. That's because System.String isa .NET object, and the Substring method expects
a zero-based argument, not a 1-based argument. Y ou have to use this code:

System.Console.WriteLine(a]1].Substring(0,3))

to get thefirst three characters. Y ou'll encounter similar problems when dealing with arrays of objects created by .NET classes.

Some Visua Basic users have had to deal with thisissue, since VB6 alows you to create non-zero-based arrays. The
solution, naturally enough, was a custom array datatype for VB.NET that lets you specify a different base for arrays. And
since Clarion# already supports 1-based arrays, there's obviously no problem achieving this feature. The question, as
with instantiation, is what should be the default?

Thearguments

Here are the main points in the argument in favor of leaving Clarion#'s automatic instantiation in place:

1. Familiarity - Clarion devel opers can continue to use objects in the way to which they've become accustomed

2. Portability - It will be easier to move existing Clarion code to Clarion#

http://www.clarionmag.com/cmag/v9/vIn12instantiation.html (5 of 8) [09/01/2008 12:00:25 PM]

Should Clarion# Drop Automatic Instantiation?

Here are the main pointsin favor of getting rid of Clarion's automatic instantiation:

1. Clarity - having two ways to instantiate objects is more confusing than having one way (in this respect, getting rid of
automatic instantiation is truer to the spirit of Clarion).

2. Alignment with .NET - it's easier to port C#VB.NET examples to Clarion# without the & .

3. Ease of implementation - the compiler could probably treat & asavalid, but ignored, part of the declaration; this way
existing variable declarations using & would not be broken.

4. Lessdisruption - arguable, but | think having to add NEW where needed is less trouble than untangling the confusion
caused when the undecorated (no &) style means something completely different in Clarion# than in other .NET languages

5. Automatic instantiation had the great benefit of not requiring the devel oper to DISPOSE; under most circumstances,
DISPOSE is now automatic in .NET so the programmer no longer needs to be protected this way.

6. Marketability - any significant difference in how classes are declared is going to negatively affect the marketability of
Clarion# to non-Clarion devel opers.

7. And the best argument, | think: The users most affected by the loss of automatic instantiation are devel opers who already
know how to write classes, and they can cope. The Clarion developers who are trying to learn .NET OOP are the ones who

are most likely to be tripped up by this difference.

Clearly I'm biased in favor of dropping automatic instantiation and making Clarion# more closely aligned with the .
NET platform. Y our view may be different.

Takethesurvey

When | first ran these ideas past Bob Zaunere, he suggested it would make a good poll for Clarion Magazine, and | agreed.
For the first two weeks after this article goes live, you can go to the Clarion Magazine home page and cast your vote for

or against dropping automatic instantiation. | don't know whether SoftVelocity will change object instantiation in Clarion#
if there'sa strong vote in favor, but | believe if alarge number of developers are comfortable with dropping

automatic instantiation, that change is certainly more likely. Depending on the results of that poll | may run another one
on zero-based arrays.

David Harmsis an independent software devel oper and the editor and publisher of Clarion Magazine. Heis also co-author
with Ross Santos of Developing Clarion for Windows Applications, published by SAMS (1995), and has written or co-
written several Java books. David is a member of the American Society of Journalists and Authors (ASJA).

Reader Comments

Posted on Thursday, December 13, 2007 by Garry Anderson

Wheat about using the AUTO attribute to not auto instantiate?

Posted on Thursday, December 13, 2007 by Dave Harms

Garry,
That did occur to me aswell. Unfortunately, | think there are two strikes against using AUTO
1. It means you have to add an attribute to achieve non-instantiation, so it's still out of sync with the .NET default, and

2. Theterm AUTO, to the uneducated coder, implies automatic instantiation, not alack of automatic instantiation. So not only isit an additional step, it communicates

exactly the opposite of its meaning.

Dave

http://www.clarionmag.com/cmag/v9/vIn12instantiation.html (6 of 8) [09/01/2008 12:00:25 PM]

http://www.clarionmag.com/index.html
mailto:david.harms@clarionmag.com
http://asja.org/

Should Clarion# Drop Automatic Instantiation?

Posted on Thursday, December 13, 2007 by Stephen Ryan

Technicaly your right, breaks alots of code that could be ported or dual compiled. Dual compiling will require special tools. Soid go so far asto say that porting

would then be awaste of time. That leaves mix and match. | now favour mix and match since its easier to leave code in win32 and call it from dot net if you need to.
clarion 7 and 8 should provide look and feel that means code in dot net and win 32 does not look to dif.

so forget porting

Posted on Thursday, December 13, 2007 by John Dunn

These Clarion.NET and Clarion# articles are great! 1'vereally enjoyed them. My vote would be to drop automatic instantiation and provide for amechanism to
specify zero based arrays.

John

Posted on Thursday, December 13, 2007 by Douglas E. Johnson

While probably not a popular idea, what about forcing code to be explicit and clear? In other words, a declaration MUST have an attribute to indicate automatic
instantiation or not. If the darned AUTO attribute was not contrary to itself, IMO it would be an easy choice between TYPE and AUTO, otherwiseit's TY PE or
INSTANT.<g>

Posted on Thursday, December 13, 2007 by Angel L. Bermudez, Jr.

Dave,

| agree. Clarion# should align with other .Net languages. SV should get rid Clarion's automatic instantiation and if necessary use AUTO to signify automatic
instantiation.

Posted on Friday, December 14, 2007 by Garry Anderson

Hi Dave,
Yeah, | thought after | had posted that using AUTO wasn't the smartest idea
ok, so here's another one...

If you declare a class without the & then auto instantiate.
If the class is declared with the & then don't...
that way the behavior is closer to the way Clarion currently works and also closer to .NET

Posted on Friday, December 14, 2007 by Dave Harms

Steve,

| don't think dual compile has much of afuture - .NET and the WinAPI arejust too different. But | can definitely see some libraries being ported. And ClaString is

immensely important for anyone who has specialized string handling code.

Dave

Posted on Friday, December 14, 2007 by Dave Harms
Douglas,

That's an interesting suggestion - it would definitely make things clear. The only downsideisit would seem odd to have to specify a non-instantiated state, when
compared to that being the default in other languages.

Maybe a CREATE attribute?<g>

Dave

http://www.clarionmag.com/cmag/v9/vIn12instantiation.html (7 of 8) [09/01/2008 12:00:25 PM]

Should Clarion# Drop Automatic Instantiation?

Posted on Friday, December 14, 2007 by Dave Harms

Garry,

> If you declare a class without the & then auto instantiate.
> |f the classis declared with the & then don't...

That's how it works now, for the most part. If Clarion# was alanguage unto itself, that would be fine. The problem is that the current default in Clarion# (declaring an
object with the class name only, without the &) isinstantiated, which is the opposite of how it's donein .NET where the default state (class name only) is an
uninstantiated reference variable.

Dave

Posted on Friday, December 14, 2007 by Douglas E Johnson

>> Maybe a CREATE attribute?<g>
That's Clarion enough for me.

The discussion does make one wonder how AUTO came about. Any DAB's around here?

Posted on Monday, December 17, 2007 by Bjarne Havnen

| must agree with the overall point of this article. The confusion on when to use areference and/or NEW is what has made me make most errorsin my first project.
Clarion should line up with .NET in this matter

Add acomment

http://www.clarionmag.com/cmag/v9/v9n12instantiation.html (8 of 8) [09/01/2008 12:00:25 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=15370

The Clarion.NET FAQ

Clarion Magazine

The Clarion.NET FAQ
by Dave Harms

Published 2007-11-17

In this Frequently Asked Questions (FAQ) page I'll attempt to answer at |east some of the questions that have been raised
about Clarion.NET. If you log in you can post your own comments and questions below.

Terminology!

One of the problemsin discussing Clarion.NET is finding a meaningful term for traditional (non-.NET) Clarion
applications. Some devel opers use the term Win32, but that isn't always helpful since .NET applications can also be Win32
(or Win64).

As noted below, one of the key differences between the Clarion we now know and Clarion.NET is that the former is
ultimately built on top of the Windows API. For that reason | will refer to "traditional" Clarion Windows applications
as WinAPI apps, to differentiate them from .NET apps.

What did you just say?
| said that when | use the term WinAPI app I'm referring to atraditional Clarion (Windows) application.
But | don't usethe Windows API in my applications.

Y ou might not, but without the Windows API there would be no Clarion (for Windows) as we know it. All your apps use it
all thetime.

IsClarion.NET available now?

Yes, the first beta was released to subscription program participants on Saturday, Nov 17, 2007.

What isClarion.NET?

Clarion.NET isaversion of the Clarion development environment specifically designed for Microsoft's .NET platform.

Okay, what is .NET?

From Wikipedia:
The Microsoft .NET Framework is a software component that can be added to or included in the Microsoft Windows operating
system. It provides alarge body of pre-coded solutions to common program requirements, and manages the execution of

programs written specifically for the framework. The .NET Framework is akey Microsoft offering, and is intended to be used
by most new applications created for the Windows platform.

I'll just add (for now) that .NET is an object-oriented framework which accommodates a great variety of
programming languages.
Isn't .NET all about web development?

Y ou might think so, given the name of the platform. While .NET contains many web/Internet-related classes, it also
has extensive support for desktop development. Aswell, there's a version of the framework for mobile devices.

.NET is a comprehensive development and runtime environment suitable for most kinds of programming, but not usually
for low level hardware-oriented stuff (although you can get an 80386 assembler that generates .NET code).

What'sthe difference between Clarion.NET applications and the Clarion WinAPI applications| write now?

http://www.clarionmag.com/cmag/clariondotnetfag.html (1 of 9) [09/01/2008 12:00:32 PM]

http://www.clarionmag.com/index.html
http://en.wikipedia.org/wiki/.NET_Framework
http://www.viksoe.dk/code/asmil.htm

The Clarion.NET FAQ

There are anumber of differences. One of the biggest is that the Clarion language (for Windows) is highly dependent on
the Windows API. For instance, when you open awindow, that window is created by the Clarion runtime library viacalls
to the Windows API. When you create a new variable or class instance, memory is allocated viathe Windows API. This

is procedure-oriented coding, and procedure-oriented applications (and operating systems) tend to be hardwired - they
have only set ways of doing things. For instance, the Clarion window formatter only has a specific set of controls available,
and you can't add your own custom widgets. Y ou can use add-on components like ActiveX controls, but as anyone who's
tried it in Clarion can tell you, it isn't al that easy either.

In aWinAPI application you often have to work hard to make different functional units of code work together because
the Windows API isn't really geared to the concept of components.

Applications written for .NET, however, use the extensive .NET Framework class library rather than the Windows API.
In .NET it'sall about objects. Y ou can assemble an application out of different classes and components much more
easily because .NET provides a congenia framework for al these things to work together.

Isthe .NET Framework that much better than the Windows API?

Yes, in amost every way. That's not toadying to Microsoft - it's just the evolution of programming. The Windows API
is disorganized - you need to know what you're looking for or you'll get lost very quickly. The .NET Framework library
is organized into namespaces. For instance, security classes are grouped together, as are diagnostic classes, data access
classes, etc.

The .NET framework library is much more massive than the APl and is growing larger. It provides awhole lot of code
that you'd otherwise have to write yourself. There are many other benefits to the library but many of these are better
described in the context of the Common Language Runtime (CLR).

Okay, I'll bite. What'sthe Common L anguage Runtime?

The CLR isan essential part of .NET. It'sthe layer that sits between you and the hardware, and which provides
important services to your applicationsincluding, but not limited to: memory management; thread management;
exception handling; garbage collection; security; introspection and reflection. The CLR means many tasks are easier in .
NET. For instance, if you NEW something you don't (usually) have to DISPOSE it - the CLR's garbage collector will
detect when the object is no longer in use and will clean it up automatically.

Arethere any other weird acronyms| should know?

Well, there's CIL, the Common Intermediate Language (often just called IL). The CLR doesn't actually run the code you
write; instead, all .NET language compilers tranglate their code into this CIL (IL) bytecode, and that's what the CLR executes.

So .NET isagiant interpreter? This seemslike a step back from true compiled languages - didn't CPD
gener ate pseudocode which had to beinterpreted?

You'reright - CPD did in fact generate pseudocode, and it'safair analogy. The advantage of IL isthat sinceal .NET
languages compile to an intermediate language, they al share a common platform. Y ou can take some classes compiled in,
say, Fortran.NET (no, I'm not kidding) and easily use themin C# or Boo or Clarion.NET.

What is Clarion#?

Clarion# isthe .NET version of the Clarion programming language. The Clarion IDE for .NET is, at least at present,
called Clarion.NET. But alot of developers aready use the terms Clarion# and Clarion.NET interchangeably.

Clarion isboth a procedural and an object-oriented language, but .NET isan OO framework - can | still
write procedure codein Clarion.NET?

Yes, you can still write procedural code in Clarion.NET. Y our procedures are converted to object-oriented code when
they're compiled to IL code, but you don't need to know or care about that if procedural code is what makes you happy.

AreClarion 7 and Clarion.NET the same product?

No, they are separate products, but they share the same integrated devel opment environment (IDE).

http://www.clarionmag.com/cmag/clariondotnetfag.html (2 of 9) [09/01/2008 12:00:32 PM]

http://www.thefreedictionary.com/dict.asp?Word=toadying
http://en.wikipedia.org/wiki/Clarion_programming_language
http://www.lahey.com/lf71/lf71.htm
http://boo.codehaus.org/

The Clarion.NET FAQ

Doesthat mean if | buy Clarion 7 and Clarion.NET I'll end up with just oneinstalled I DE ableto work with
both platforms?

Most likely, although there may be some versioning issues that make that more difficult, at least during the beta process. So
for atime you may have two IDEs installed. | really don't know.

What can | dowith Clarion.NET/Clarion# beta in thefirst release?

The betaincludes a template wizard you can use to generate a .NET application, but since those templates run in C6, not
the new IDE (AppGen isn't ready yet), you can't yet create and maintain a .NET APP filein the same way you do in C6.
No word yet on when the AppGen will be ready, but meanwhile you can hand code not just desktop applications, but also
ASP.NET and mobile applications.

There are anumber of example solutions shipped with the beta. These include demonstrations of connecting to a database
with ADO.NET, displaying a BLOB image onscreen, amobile app, data binding, drag and drop, a FOREACH with
QUEUE example, glass buttons, new listbox features, the SCHOOL application, mixing Clarion# and C#, asimple

web service, a"Hello world" ASP.NET web application, a.NET remoting example, the PEOPLE app with data grid

and browse procedures, and a screen capture utility.

Since Clarion#isafull .NET producer/consumer language, you will have full accessto al of the .NET framework library
aswell astherich supply of third party .NET tools.

What will I beableto do with Clarion.NET/Clarion#in thelong run?

When complete Clarion.NET will include templates to generate desktop (WinForms) applications, web (ASP.
NET) applications, and mobile (Compact Framework) applications.

What isthe Compact Framework?

The Compact Framework is .NET for mobile devices, and includes about 30% of the full framework plus classes specific
to mobile devices, and takes up about 1/10 of the space, mostly due to file compression.

What isASP.NET?

ASP.NET is Microsoft's Active Server Pages web application framework for .NET. Y ou create ASP.NET pages using
a development approach similar to desktop development: you place controls on a page, and write code for those controls;
ASP.NET then renders the pages accordingly and executes the code on the server side when data comes back from the browser.

How hard isit towrite .NET applications?

Writing .NET applications can be both easier and harder than writing WinAPI apps, and the comparison between the

two brings to mind the differences between DOS and Windows APl development. Y ou could argue that Windows
development was a lot harder because you had to do so much more to create even a simple Hello World application (at least
in C, if not in Clarion). On the other hand, Windows provided standard capabilities like awindowing library; in DOS you
had to write or otherwise obtain awindowing library to achieve a consistent, accessible user interface. In DOS you had to
know how to talk to every printer you wanted to use; in Windows you talked to the printer driver, and the printer driver
sorted out the back end. Similarly .NET does alot of the heavy lifting you now have to code in WinAPI apps, leaving
newer and more complex tasks to your wily programming brain.

One big difference between WinAPI and .NET isthat the latter is exclusively object-oriented. To get the most out of
Clarion.NET apps you will definitely want some basic OO programming knowledge. With that knowledge in hand, |
think you'll find .NET easier and safer to use than the Windows API. If you've had to deal with ActiveX or (heaven help
you) directly call COM functions you'll truly find .NET an easier place to code.

.NET introduces some new language concepts that may take some getting used to, such as delegates, which are a sort of
type-safe object-oriented callback mechanism.

Is.NET open source?
.NET is not open source, but Microsoft isin the process of releasing source code for some parts of the framework.

Will my third party toolswork in .NET?

http://www.clarionmag.com/cmag/clariondotnetfag.html (3 of 9) [09/01/2008 12:00:32 PM]

The Clarion.NET FAQ

The majority of third party tools will need to be ported to Clarion.NET. Templates that don't generate any source code and
do not depend on a particular template chain are likely to work without modification, but there aren't many that fall into
that category. Y ou're probably best off assuming you'll need new versions until you hear otherwise from the vendor.

I've often said that .NET is atwo-edged sword for third party vendors. If what you provideis readily available as part of
the .NET framework, then zing!! off goes your head as you step into .NET land. On the other hand, if you have a great
product and you can port it to .NET, you're ready to carve a swath through a programming market that numbersin the
millions of coders.

Will my customerswant .NET and if so why?
Some customers will want .NET just because it's a buzzword. That's an easy sale.

Other customers may or may not know whether they want .NET. Clearly what they want is software that does what they need
it to. If their needs run to eye candy or very unique user interfaces, then .NET presents some distinct advantages. There are
abazillion custom controls out there for .NET, al of which you can use with Clarion.NET. And there are many class
libraries that handle important behind-the-scenes tasks as well.

| find it difficult to overstate the importance of ready accessto al of that existing code. With Clarion WinAPI apps you have
to be concerned about prototyping functions, register passing conventions, the arcana of COM, etc. etc. With .NET you
just drop in the library and start to use it, no matter what language it's written in.

.NET offers programming benefits as well. For instance, your code compilesto IL code which is run under the watchful eye
of the CLR. That means the CLR can detect problems with your code and present far more detailed information to you
than you get from, say, a GPF in aWinAPI application. This makes debugging easier and faster.

Can | run .NET appson Linux or the Mac? What isMono?

Mono is a Novell-sponsored project to port the .NET platform's functionality to multiple platforms, including Linux, Mac
OS X, Solaris, BSD, and Windows. Mono necessarily lags behind Microsoft's efforts, and currently has completed support
for .NET 1.1 and mostly-complete support for .NET 2.0.

Versions? What are all these NET versions?

Microsoft released .NET 1.0in 2002, and 1.1 in 2003. Y ou may see some computers with 1.1 asthe latest version, (and
some computers without .NET installed at al) but the standard at present is .NET 2.0, released in 2005. Clarion.NET
targets 2.0 apps - there was talk in the early days of 1.1 being supported as well but the only reason | can see for supporting
1.1isfor Mono compatibility, given that Windows Forms 2.0 support is now scheduled for Mono 2.5, which does not have
arelease target.

For most of us, .NET 2.0 will be just where we want to be.
What about .NET 3.0? Or 3.5?

Thefirst thing to keep in mind about .NET 3.0 isthat it is not areplacement for .NET 2.0. It's abunch of new stuff added
to 2.0, including Windows Presentation Foundation, Windows Workflow Foundation, Windows Communication
Foundation, and Windows Card Space. The base class library is unchanged from 2.0.

.NET 3.5 uses the same CLR as 2.0 but it adds some new stuff to the base class library, in particular support for the
LINQ query language. 2.0 apps will still run fine on 3.5.

Will | need tolearn C#or VB.NET?

Y ou will not need to learn C# or VB.NET or any other .NET language, but you may want to. In particular theres alot of
C# source code out there, and you may want to adapt some of it to your own uses. If you can read object-oriented Clarion
code you won't have much trouble reading C#.

What isADO.NET?

ADO.NET is Microsoft's data access layer for .NET, and consists of data providers (i.e. drivers) and DataSets. A DataSet is
aset of objects that model the database elements (tables, views, columns, rows, relations, etc.).

http://www.clarionmag.com/cmag/clariondotnetfag.html (4 of 9) [09/01/2008 12:00:32 PM]

http://www.mono-project.com/Main_Page

The Clarion.NET FAQ

Will my Clarion (.clw) programs compilein Clarion#?

While much of the Clarion language is unchanged in Clarion#, it's unlikely that any single WinAPI application will compile
as Clarion# code without modification.

What will | haveto doto port my appsto .NET?

Porting applicationsto .NET isabit of agray areaat the moment. Theoretically it can be done; the question is, isit worth
the work? Clarion WinAPI apps are built on atraditional, client-server model. Is this a good approach to take into the .
NET world? Do we really want ABC.NET? Perhaps a multi-tier design would be more appropriate, particularly one where
you could easily reuse your business logic in desktop, web, and mobile versions of your application. SV has aluded to this
kind of design but it isn't clear yet what kind of desktop application templates will be included with Clarion.NET.

Can we mix and match .NET objectswith Win32 API objects easily?

Y ou can include WinAPI codein a.NET app and vice versa. Easy isarelative term. See Wade Hatler's series of articles.

Can | get my Clarion 7 and earlier programsto use .Net components| create using Clarion.Net or other .Net languages?
Most likely you could (see the article series above) but | think this would be a stopgap measure at best.

How secureis .NET code? Can it be easily decompiled?

Code security is alegitimate concernin .NET and yes, IL code can be decompiled much more easily than native
Windows executable code. .NET obfuscators alter label names and use various code scrambling approaches to make it
very difficult for anyone to make sense of the decompiled result. Or you could just hire someone who's a natural at
writing unreadable code.

I'veheard .NET programsrun slower than native code. Will | notice the difference?

.NET usesjust-in-time (JI T) compiler technology, meaning that IL code is compiled to native code the first time that IL code
is needed by the application. That means thereis asmall startup penalty but once the code is compiled it runsjust like any
other native code. Theoretically code produced by aJ'T compiler can outperform code issued by a standard compiler
because the JIT compiler can tailor the code to the hardware.

Can | includea .NET runtimewith my appsso | don't haveto require my customerstoinstall .NET?

Thereisatool called the Salamander .NET Linker, Native Compiler and Mini-Deployment Tool that will do just this. It'sa
bit expensive, and | don't know how well it works. Apparently Thinstall will also create self-contained .NET installs.

If both new Clarions deliver desktop applications - why should | buy both? Would Clarion# not be enough?

I'll assume here you mean after AppGen isreleased for C7 and Clarion.NET. While you can create real desktop apps
aready with Clarion.NET, most developers will want to use AppGen for larger apps.

So yes, you can create desktop apps with both. Why would you still want C7? Here are afew reasons:

. Better productivity with the new IDE

. Ability to work with different versions of Clarion within the same IDE

. C7'sruntime improvements including eye candy and Unicode/Clear Type support.
. Stability - templates are well established and the runtimeis solid

. Potentialy smaller installs - no need for the .NET runtime

Can a Clarion# classinherit from a C# class?
Definitely. And vice versa. The same goes for all .NET languages.
What are .NET's minimum requirements?

According to Microsoft, the minimum requirements for the NET 2.0 redistributable are:

« 400 Mhz processor (800 Mhz recommended)

http://www.clarionmag.com/cmag/clariondotnetfag.html (5 of 9) [09/01/2008 12:00:32 PM]

http://www.clarionmag.com/cmag/topics.html?subcategoryid=315
http://scapecode.com/archive/2007/02/23/9.aspx
http://www.remotesoft.com/linker/index.html
http://thinstall.com/
http://msdn2.microsoft.com/en-us/library/aa480241.aspx

The Clarion.NET FAQ

. 96-128 Mb memory (256 or better recommended)
. 280 Mb hard disk space (610 for 64 hit), 1 gig recommended
. 800x600 256 color, 1024x768 high color recommended

Aswith most Microsoft platform requirements, you're probably not going to be very happy at the low end of the spectrum.
| suggest you take the "recommended” values as the minimum values.

Supported x86-based operating systems:

. Microsoft Windows 98

. Microsoft Windows 98 Second Edition

. Microsoft Windows 2000 Professional with SP4

. Microsoft Windows 2000 Server with SP4

. Microsoft Windows 2000 Advanced Server with SP4

. Microsoft Windows 2000 Datacenter Server with SP4

. Microsoft Windows XP Professional with SP2

. Microsoft Windows XP Home Edition with SP2

. Microsoft Windows XP Media Center Edition 2002 with SP2
. Microsoft Windows XP Media Center Edition 2004 with SP2
. Microsoft Windows XP Media Center Edition 2005

. Microsoft Windows XP Tablet PC Edition with SP2

. Microsoft Windows XP Starter Edition

. Microsoft Windows Millennium Edition

. Microsoft Windows Server 2003 Standard Edition

. Microsoft Windows Server 2003 Enterprise Edition

. Microsoft Windows Server 2003 Datacenter Edition Microsoft Windows Server 2003 Web Edition

x64-bit based systems

. Microsoft Windows X P Professional x64 Edition

. Microsoft Windows Server 2003, Standard x64 Edition

. Microsoft Windows Server 2003, Enterprise x64 Edition
. Microsoft Windows Server 2003, Datacenter x64 Edition

Itanium-based systems

. Microsoft Windows Server 2003 with SP1, Enterprise Edition for Itanium-based Systems
. Microsoft Windows Server 2003 with SP1, Datacenter Edition for Itanium-based Systems

Should | belearning C# or VB.NET, or someother .NET language?

Although Clarion isafull-fledged .NET language, it probably will be to your advantage to learn at least one other .
NET language. There'sawealth of .NET programming information out there, and the vast majority of books and articles
deal with either C# or VB.NET. So which language should you learn?

VB.NET in general has more Clarion-like syntax; there are certainly differences, but VB.NET ismore of a"plain
English" programming language. C# on the other hand has C-like syntax which isn't to everyone's liking. It's also easier
to make non-obvious mistakes with C#. On the other hand, C# isthe .NET reference language, so you can expect it to
support all the latest .NET features, and it's generally a better source of programming examples.

If you have C, C++, or Java experience, choose C#. If you've never worked in alanguage with C-like syntax then

http://www.clarionmag.com/cmag/clariondotnetfag.html (6 of 9) [09/01/2008 12:00:32 PM]

The Clarion.NET FAQ

you'll probably be better off with VB.NET. Carl Barnes recommends Programming VB .NET: A Guide For
Experienced Programmers, which is also available as a free download - look for the Free eBook Download link on that page.

Why should | choose Clarion# over VB.NET or C#?

Clarion developers have enjoyed the benefits of code generation since the days of CPD 2.0. And when the Clarion#
AppGen and templates are ready, | think it'll be easy to see the productivity advantage in Clarion#. But the Clarion.
NET AppGen isn't ready yet, and there are no shipping Clarion# templates. Until that happens, why should you
choose Clarion# over VB.NET or C#?

First, let me deal with the reasonsto use VB.NET or C# instead of, or in addition to, the Clarion# beta. Obviously both
those languages are available in gold release, and have been for some years, while Clarion# is, well, in beta. So you can
expect fewer bugsin VB.NET and C#, and more complete support for many .NET features. And Visual Studioisa
more evolved hand-coder's environment, at least at the moment, with extensive add-in support.

There are, however, some important reasons for choosing the Clarion.NET beta over (or at the very least in addition to)
VB.NET and/or C#:

. Language familiarity - you can start getting up to speed on .NET using a language with which you are familiar

. QUEUEs - dthough .NET has extensive support for collections, queues are still a dead-easy way to manage listsin
memory, and aterrific feature of the language.

. Reports - Thereport designer isn't yet feature complete, but the report structure in Clarion# is basically the same asit is
in Clarion. Reporting is one of Clarion's great strengths. Creating reportsin other .NET languages typically means buying add-
on products.

. Fileaccess - you have access to al the file drivers, including TopSpeed and Clarion files.

. File processing - you can still use Clarion's file access grammar (SET/NEXT etc.) if you want to.

. String handling - Stringsin .NET are massively different from Strings in Clarion. The ClaString class provides
compatibility with Clarion string handling code.

. Preparation - although SV has indicated a C# and/or VB.NET template chain is a future possibility, you can be sure that
the first template setswill be for Clarion#. Aswith Clarion, the better you know the Clarion# language, the better you'll be
able to take advantage of the templates and the corresponding class libraries.

Arethere bugsin the beta? Sure, it's a beta. Don't buy in if you're not ready to deal with that fact. But you can already do
some pretty cool stuff with the first beta, and the compiler is pretty solid.

Additional reading

. Clarion Magazine articles on Clarion.NET

. All Clarion Magazine articles related to .NET

. Clarion Magazine articles on mixing Clarion 6 and .NET
. How to subscribe to Clarion Magazine

. CapeSoft's Clarion.NET FAQ

. Randy Rogers' Clarion# Examples

David Harmsis an independent software developer and the editor and publisher of Clarion Magazine. He is aso co-author
with Ross Santos of Developing Clarion for Windows Applications, published by SAMS (1995), and has written or co-
written several Java books. David is amember of the American Society of Journalists and Authors (ASJA).

http://www.clarionmag.com/cmag/clariondotnetfag.html (7 of 9) [09/01/2008 12:00:32 PM]

http://www.apress.com/book/view/1893115992
http://www.apress.com/book/view/1893115992
http://www.clarionmag.com/cmag/topics.html?subcategoryid=319
http://www.clarionmag.com/cmag/topics.html?subcategoryid=282
http://www.clarionmag.com/cmag/topics.html?subcategoryid=315
http://www.clarionmag.com/cmag/subscribe.html
http://www.capesoft.com/CapeSoftDotNetFAQs.htm
http://www.keystonecr.com/clarionsharp.htm
mailto:david.harms@clarionmag.com
http://asja.org/

The Clarion.NET FAQ

Reader Comments

Posted on Saturday, November 17, 2007 by Wolfgang Orth

If both new Clarions deliver desktop applications - why should | buy both? Would Clarion# not be enough? It seems to be the most evolved as it covers Desktop,
somehow Web-applictions and mobile devices. So the traditional Clarion 7 with its WinAPI-programming is ol dfashioned history from now on, even before it got
gold? Or am | wrong on this?

Posted on Sunday, November 18, 2007 by Dave Harms

Thanks Wolfgang - see answer above.

Dave

Posted on Wednesday, November 21, 2007 by Carl Barnes

A concern | don't think | see addressed in the FAQ are the system requirements for the End User computer for a Clarion# application.

A "classic" Clarion Win32 app will typically run on Windows 98 or newer. Probably even Windows 95. No patches are needed. Nothing to download. 3rd party
tools can change this.

A Clarion# .Net app requires the 2.0 .Net Framework. That is more picky about systems. Here'salist | found:
Windows 2000 SP3; Windows 98; Windows 98 SE; Windows ME; Windows Server 2003; Windows Vista; Windows X P SP2

Note that XP users must have SP2. | don't see NT 4 or 95.

Some (or many) users will have to download and install 2.0. That's a 23MB file that takes a 280MB of diskspace. | wonder if the 23MB isjust theinstaller and it
downloads more.

In summary if you are trying to reach the maximum users, that may be running older hardware, the .Net way might cost you afew.

Posted on Friday, November 23, 2007 by Dave Harms

Thanks Carl - I've updated the FAQ.

Posted on Thursday, December 13, 2007 by Robert Wright

If one would have to more or |ess re-write ones apps (and learn clarion#) and it looks like C# and VB.Net are high as recommemded languages. What advantage or
disadvantage does clarion.net have over visual studio 2005/8? Does any one have a feature comparisson.

Posted on Thursday, December 13, 2007 by Dave Harms

Robert - I've added aresponse to the FAQ.

Dave

Posted on Wednesday, December 19, 2007 by Robert Wright

How does the tree control in clarion# compare with C6 Clarion, C# and VB.net?

Posted on Wednesday, December 19, 2007 by Dave Harms

Robert,

I've had alook at the declarations in the Clarion.Windows.Forms namespace and don't see anything indicating there's a Clarion-specific tree control. | might have
missed it, or something may be in development, or it may be that you'll just use the standard WinForms control or any of the third party products out there.

Dave

Add acomment

http://www.clarionmag.com/cmag/clariondotnetfag.html (8 of 9) [09/01/2008 12:00:32 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=15331

The Clarion.NET FAQ

http://www.clarionmag.com/cmag/clariondotnetfag.html (9 of 9) [09/01/2008 12:00:32 PM]

Understanding Clarion# Strings

Clarion Magazine

Under standing Clarion# Strings
by Dave Harms

Published 2007-12-10

Clarion.NET brings numerous changes to the Clarion language (now called Clarion#). | discussed anumber of these changes
in Clarion.NET Language Changes: What's Gone and Clarion.NET Language Changes: What's New. In this article I'll take
anin depth look at how strings changein Clarion#. I'll also lay the groundwork for an important follow-up discussion

on automatic instantiation, which you won't want to miss.

In most applications strings account for the majority of memory allocation. And unfortunately for Clarion developers, there's
abig difference between how Clarion has aways handled strings and how they are handled in .NET.

Traditional Clarion strings

I'm still struggling a bit with terminology when it comes to differentiating between the Clarion we know (which I've
been calling Clarion WinAPI) and Clarion#, the NET version of the language. A few people have suggested to me that
Clarion and Clarion# are difference enough, so that's the terminology I'll usein this article. Post a reader comment below
and let me know what you think.

Here's the formal syntax for STRING in Clarion:

| length |
label STRING(| string constant [) [,DIM(O)][,OVER()] [[NAME()] [EXTERNAL] [,DLL] [,STATIC]
| picture | [, THREAD] [AUTO] [,PRIVATE] [,PROTECTED]

But that's pretty complicated. Most STRING declarations are simply alabel and alength:

S STRING(20)

The most important point isthat STRING is afixed length string. Y ou specify how much space you need, and that memory
isautomatically allocated. Y ou don't need to clean up thiskind of string after you're done with it.

Y ou also, however, have the option of creating strings dynamically, at runtime. In this case you declare the string asa
reference variable without a specified length:

S &STRING

Until you do something with this reference it has anull value; you have to create the string using the NEW operator:

S &= NEW/(String(20))

And when you're done you have to dispose of the string this way:

DISPOSE(S)

Failure to dispose means the memory is not freed until the application terminates; this unfreed memory iscalled a
memory leak, and memory leaks are Not A Good Thing.

http://www.clarionmag.com/cmag/v9/vOnl2clarionsharpstrings.html (1 of 8) [09/01/2008 12:00:37 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/v9/v9n09clariondotnetlang1.html
http://www.clarionmag.com/cmag/v9/v9n09clariondotnetlang2.html

Understanding Clarion# Strings

Value and reference types

Before | get into .NET strings | want to explain a bit of terminology. In Clarion, and in Clarion# (asin .NET generally)
there are two types of variables: value types and reference types. The code

Sval STRING(30)

isan example of avalue type. The variable is the 30 byte string. On the other hand, the code

Sref &STRING(30)

isan example of areference type. Sref isnot the string, it is the address of the string. That's an important and subtle distinction.

Value string types can be accessed faster because the variable contains the string; reference types contain the address of
the string, so there's an extra step involved in locating the actual string in memory. (I'm using the example of a string,
but reference types can be just about any kind of data.)

The benefit of using avalue type is speed; the benefit of areference typeisflexibility. Although most Clarion developers
use value type strings, there are situations where using a reference type is an advantage, as when you'll be dealing with
strings whose size you won't know until runtime.

.NET strings

.NET strings are quite a different animal from Clarion strings, although they bear some resemblance to string references.
The .NET string datatype is System.String. Here's a System.String declaration in Clarion# (the USING SY STEM directive
isimplicit, so the System. namespace doesn't have to be specified);

s & String
code
s = 'abcdef'

Stringsin .NET areinstances of the System.String class. That is, each string is an instance of aclass, ak.a an object,
with properties and methods. And System.String is areference type, not avalue type.

The second important point isthat .NET strings are fixed length and immutable. When you assign avalue to a System.
String, the string is exactly aslong as the data. There's no padding, no empty space. When you assign a new value, or append
avaueto astring, the old string data is discarded and a new string is automatically created.

Along with a Length property, System.String has numerous methods including:

. Clone

. Compare

. CompareOrdinal
. CompareTo

. Concat

. Copy

. CopyTo

. Endswith

. Equals

. Format

. GetEnumerator

http://www.clarionmag.com/cmag/v9/vOnl2clarionsharpstrings.html (2 of 8) [09/01/2008 12:00:37 PM]

Understanding Clarion# Strings

. GetHashCode
. GetType

. GetTypeCode
. IndexOf

. IndexOfAny
. Insert

. Intern

. Isinterned

. Join

. LastindexOf
. LastindexOfAny
. PadLeft

. PadRight

. Remove

. Replace

. Split

. Startswith

. Substring

. ToCharArray
. ToLower

. ToString

. ToUpper

« Trim

. TrimEnd

. TrimStart

Asyou can guess from that lengthy list, most of Clarion's string handling functions (SUB, UPPER, INSTRING etc) have
direct equivalents in System.String methods. And since SUB, UPPER etc. al still exist in Clarion#, it also seems plausible
that these methods could simply call System.String methods as needed. But there's at least one big problem with just

using System.String in place of STRING in Clarion# code, and that has to do with STRING's fixed length. There are also
some issues with string slicing and automatic type conversion.

Needed: A .NET string of arbitrary length

When you declare a STRING in Clarion you give it alength, but you don't do that with System.String. Y ou can give a
System.String an initial value if you want, but the length of a System.String is always the length of its data (sort of like
aCSTRING).

SoftVelocity's solution is Clarion.ClaString, a completely new class which is evidently not derived from System.String.
Here's a code snippet (note that the USING Clarion directiveisimplicit, just like the USING System directive):

S ClasString(20)
code

s="abcdef' ! String is 20 characterslong

Interestingly, if you leave off the length specification ClaString behavesjust like System.String, and is only aslong asthe
datait contains:

s ClaString

http://www.clarionmag.com/cmag/v9/vOnl2clarionsharpstrings.html (3 of 8) [09/01/2008 12:00:37 PM]

Understanding Clarion# Strings

code

s="abcdef' ! String is six characters long

ClaString's methods include:

. AssignString
. Clone

. Dispose

. Equals

. GetBufferSize
. GetBytes

. GetHashCode
. GetReferenceToSlice
. GetSlice

. GetType

. |sBytesDeposit
. RefRequa

. ReplaceSlice
. ToBoolean

. ToByte

. ToChar

. ToDateTime
. ToDecimal

. ToDouble

. Tolnt16

. Tolnt32

. Tolnt64

. ToSByte

. ToSingle

. ToType

. ToUInt16

. ToUInt32

. ToUInt64

Properties include

. Kind

. Length
. RefType
. Value

You can see dl of the To... methods that accommodate Clarion's automatic type conversion - similarly there are a bunch
of constructors that make it possible to assigh numeric values to strings.

The upshot of al of thisisthat you can still do string handling in Clarion# almost exactly as you do in Clarion, provided
you use ClaString instead of System.String.

ClaString vs. STRING

http://www.clarionmag.com/cmag/v9/vOnl2clarionsharpstrings.html (4 of 8) [09/01/2008 12:00:37 PM]

Understanding Clarion# Strings

Does al of this mean that you should always use ClaString in place of System.String? Probably not.

There are at least two issues here. Oneisthat you'll have to change all of your STRING definitions to ClaString. Presumably
aconversion tool could be created to take care of thistask relatively painlessly.

NOTE: You may be wondering why Clarion.ClaString isn't Clarion.String. The problem is name collisions. Every .NET
application (at least, every one | can think of) needs classes declared in the System namespace; every Clarion# application that
uses Clarion-specific functionality is going to need to use classes declared in the Clarion namespace as well as the System
namespace. If you have identical labelsin two namespaces, and you have USING directives for both those namespaces, the
compiler isgoing to get confused. It won't know if String means System.String or Clarion.String, so you'll have to use the fully
qualified nameinstead of the much shorter class name. And that's a pain.

The second issue isthat ClaString is a completely different class from System.String, and if you write code that other .
NET languages can use you'll have to stick to System.String anyway if you want those languages to call methodsin
your classes and pass or receive strings.

Finally, since ClaString is not derived from System.String, you have to use the Clarion RTL functions for string
manipulation, which may make it more difficult to port sample code from, say, C#. Happily you can assign a String to
a ClaString (and vice versa) so that isn't necessarily a huge problem, aslong as your code makes it relatively clear
which strings are .NET strings and which are Clarion strings.

Here's alittle console application that illustrates some of the differences between ClaString and String manipulation:

s ClaString(20)
t & String

CODE

s = 'abcdef’

t=s

s=sub(s,1,3)

t =t.Substring(1,3)
System.Console WriteLine(s)
System.Console.WriteLine(t)
System.Console.ReadK ey()

The ClaString sis assigned a value; then the System.String t is assigned a copy of that value. The Clarion SUB
function extracts a substring and assignsit to s, just as the SubString method does. But the output may not be what you expect:

abc
bcd

Strings are basically arrays of characters, and in .NET arrays are zero based, so the t.Substring method has to be called this way
t = t.Substring(0,3)

to get the same result as Clarion's SUB function.

Array indexes are just one of the subtle ways Strings are different from ClaStrings. Another has to do with how references
are assigned.

Clarion has the & = operator which you must use when assigning references (although in Clarion# you can aso use the :
="smart" operator, which will do an = or & = as the situation requires).

http://www.clarionmag.com/cmag/v9/vOnl2clarionsharpstrings.html (5 of 8) [09/01/2008 12:00:37 PM]

Understanding Clarion# Strings

This code creates two references to the same string:

S ClaString(20)
s2 & ClaString

CODE

s = "abcdef’

2&=s

s2 ="ghijkl’
System.Console.WriteLine(s)
System.Console.WriteLing(s2)
System.Console.ReadK ey()

The output is

ghijkl
ghijkl

because both s and s2 point to the same string object.

Now, look at some similar codein C#:

String t = "abcdef";
Stringt2 =t;
t2 = "ghijkl";

Console.WriteLine(t);
Console.WriteLine(t2);
Console.ReadKey();

The output is

abcdef

ghijkl
Okay, what just happened? Y ou may think the problem is that the = operator creates a copy, but thisis not theissue. Y ou
can use the System.String.Clone method, which returns the string instance, and you will still get the same result.

Remember what | said earlier about the immutability of .NET strings: when you assign a new value to a string variable, the
old string is disposed and a new string is created. So even though t2 may start off with areferenceto t, by changing the value
of t2 you're also removing that reference and creating a reference to the new string, rather than changing the value of t.

Clearly there are enough differencesin string handling between Clarion and .NET to warrant the use of ClaString in
many situations. If you do wish to use System.String instead of ClaString you'll need to pay special attention to zero
based indices and the immutability of .NET strings.

Happily, you can easily mix ClaString and String, and al you need is an = sign to assign a string value from one type to
the other.

But wait, there'smore...

Let me take you back to this bit of code:

http://www.clarionmag.com/cmag/v9/vOnl2clarionsharpstrings.html (6 of 8) [09/01/2008 12:00:37 PM]

Understanding Clarion# Strings

S ClaString(20)
t & String

CODE

s = "abcdef’

t=s

s=sub(s,1,3)

t =t.Substring(1,3)
System.Console.WriteLine(s)
System.Console.WriteLine(t)
System.Console.ReadK ey()

Notice anything odd? The ClaString sis declared in the manner of anormal Clarion string - ClaString(20). On the other
hand, the String t is declared as & String. Why does String need the & while ClaString doesn't?

Watch what happens if | put amatching & in front of ClaString and take away the (20):

S & ClaString
t & String

CODE

s = 'abcdef’

t=s

s=sub(s,1,3)

t = t.Substring(1,3)
System.Console. WriteLine(s)
System.Console. WriteLine(t)
System.Console.ReadK ey()

The code compiles, but the application gets a runtime Null Pointer exception. That's because | haven't allocated any
memory for s. If | add theline

s &= new ClaString(20)

before | reference s, then all iswell. (I can aso leave off the (20) if | want a variable length string.)

How about this declaration:

t String

If you try to compile that code, you'll get this error:

Cannot find constructor for class 'System.String' that receives specified set of arguments (Wrong number of
parameters) (CLA00074)

When your application first creates an instance of any string object, whether it's a ClaString or a System.String, it uses

the appropriate constructor for either the declaration or the NEW statement, as appropriate. The problem hereis that

the compiler needs to create an instance of System.String, but it doesn't have anything to pass to the constructor, and there's
no matching parameter-less constructor. If, on the other hand, you declare the String as

t & String

http://www.clarionmag.com/cmag/v9/vOnl2clarionsharpstrings.html (7 of 8) [09/01/2008 12:00:37 PM]

Understanding Clarion# Strings

and then in your code do something like
t = 'abcdef’

the compiler will create the String instance and pass the value "abcdef' to the constructor. There is a matching constructor so
the code compiles.

There are, then, three legal ways to declare stringsin Clarion#:

S &ClaString ! requires NEW
s ClaString ! optional parameters, useasis

t &String ! useasis

Clearly there's a significant difference between how Clarion# handles its own classes, and how it handles .NET classes.
There are some interesting historical reasons for this, but even more importantly, it may be that the question of how
much Clarion# should look like Clarion, and how much it should look like other .NET languages, isn't completely settled.

Earlier | asked why, in the absence of a NEW statement, ClaStrings do not need the & and .NET strings do need the &.
Thereis an answer to that question, and the answer raises some an important (and perhaps till open) question asto
how Clarion# should handle classinstantiation. More on that next time...

David Harms is an independent software devel oper and the editor and publisher of Clarion Magazine. Heis aso co-author
with Ross Santos of Developing Clarion for Windows Applications, published by SAMS (1995), and has written or co-
written several Java books. David is amember of the American Society of Journalists and Authors (ASJA).

Reader Comments

Posted on Wednesday, December 12, 2007 by Gregg Matteson

Dave,
Appreciate this article. Keep em coming!
Thank you,

Gregg Matteson

Posted on Wednesday, December 12, 2007 by Dave Harms

Thanks Gregg - definitely lots more where this came from.

Dave

Add acomment

http://www.clarionmag.com/cmag/v9/vOnl2clarionsharpstrings.html (8 of 8) [09/01/2008 12:00:37 PM]

mailto:david.harms@clarionmag.com
http://asja.org/
http://www.clarionmag.com/cmag/comments.frm?articleID=15359

	clarionmag.com
	Clarion Magazine
	Clarion News
	Testing Clarion# Libraries With NUnit
	A Simple Clarion# PDA Application
	Designing Clarion# Libraries
	Clarion# And The Google Calendar API
	Mike Hanson's Clarion Sharp Language Comparison
	Should Clarion# Drop Automatic Instantiation?
	The Clarion.NET FAQ
	Understanding Clarion# Strings

