
Clarion Magazine

Clarion News

❍ » First DerivedShell Product Released

❍ » iQ-XML 1.03

❍ » ClarionMag/Podcast Coffee Mugs!

❍ » ClarionMag E-Book RSS Feed

❍ » New Edit-In-Place E-Book

❍ » vuAgent Updated

❍ » DynaLib 4.0.1

❍ » iQ-XML Updated

❍ » New Data Ferret Website

❍ » Solace Flatten Free Template

❍ » EasyCOM2INC 2.02

❍ » Easy3DStyle 2.00

❍ » Free Tech Books #3

❍ » Free Tech Books #2

❍ » Free Tech Books #1

❍ » CapeSoft At South American DevCon

❍ » Replicate Jumps Forward

❍ » HotUpDates

❍ » Secwin Online Server 1.03 Beta Released

❍ » EasyCOM2INC 2.02

❍ » XML Parser/Writer Function Library

❍ » SB5 Developer Edition RC1 Build 1101

❍ » solid software support schedule

❍ » KwikSYSTEMS & Comsoft7 Exclusive AppShell (Duke Shells) Source

❍ » ABCFree Templates and Tools 04/06/2005

http://www.clarionmag.com/index.html?pFriendlySes...login=true&month=4&year=2005&limit=100&desc=false (1 of 5) [29/04/05 4:13:49 PM]

http://www.clarionmag.com/index.html

Clarion Magazine

❍ » xPathManager 1.2

❍ » ClarionMag Free EBook Offer Extended To Friday, April 8

❍ » ClarionMag Adds Three New E-Books

❍ » EasyResizeAndSplit 2.08

❍ » SoftVelocity Training On Demand

❍ » In-Memory and IP Driver 2.0 Releases Coming Soon

❍ » EasyCOM2INC 2.01

❍ » DCT2SQL Templates Updated

[More news]

Podcast

Political mover and shaker Andrew Guidroz spills the beans on how a custom Clarion app
helped him wage a successful election campaign, Dave Harms waxes and wanes poetic on
Thunderbird, and Dave and Andrew discuss user interface issues and the new Planet
Clarion/Clarion Magazine coffee mug. 00:43:46, 15389K

Listen now

[Track lists, more podcasts]

Latest Free Content

New Clarion Magazine Link Images

Clarion Magazine has a new logo, and new linking images. If you have (or would like to
have) a link to Clarion Magazine on your web site, you can get updated images here.

PDF: Using Agile Programming Techniques for the Enterprise Information System :

A Case Study

Louis Coraggio and Wayne Lundeberg describe how Clarion is used in an extreme/agile
programming environment to create an Enterprise Information System for an ISO 9001
manufacturing firm. An overview of the EIS development process, the system design

http://www.clarionmag.com/index.html?pFriendlySes...login=true&month=4&year=2005&limit=100&desc=false (2 of 5) [29/04/05 4:13:49 PM]

http://www.clarionmag.com/cmag/podcast.html
http://www.clarionmag.com/cmag/v7/audio/planetclarion-2005-04-29.m3u
http://www.clarionmag.com/cmag/v7/audio/planetclarion-2005-04-29.m3u
http://www.clarionmag.com/cmag/podcast.html

Clarion Magazine

goals, and a chronological narrative of EIS development are presented. Included are
additional requirements and recommendations for those considering agile methods.

[More free articles]

Latest Subscriber Content

New Clarion Magazine Link Images (free article)

Clarion Magazine has a new logo, and new linking images. If you have (or would like to
have) a link to Clarion Magazine on your web site, you can get updated images here.
Posted Thursday, April 07, 2005

PDF for March 2005

All Clarion Magazine articles for March 2005 in PDF format.
Posted Friday, April 08, 2005

Limit An App To A Single Instance: DDE Strikes Back

In days of old, when programmers were bold and DDE was the ultimate tool, if one wished
to limit one's application to a single instance, it was quite easy. But Microsoft has
deprecated DDE, and has done its best to move programmers to other solutions. As a
result, that old DDE instance-limiting code doesn't always work as expected. Unless you
add a modern twist, as Steve Parker shows.
Posted Tuesday, April 12, 2005

PDF: Using Agile Programming Techniques for the Enterprise Information System :

A Case Study (free article)

Louis Coraggio and Wayne Lundeberg describe how Clarion is used in an extreme/agile
programming environment to create an Enterprise Information System for an ISO 9001
manufacturing firm. An overview of the EIS development process, the system design
goals, and a chronological narrative of EIS development are presented. Included are
additional requirements and recommendations for those considering agile methods.
Posted Wednesday, April 13, 2005

Version Control with CVS and Clarion 6.x

Recently, Nardus Swanevelder introduced the open source CVS version control system to
ClarionMag readers. Now Bernie Grosperrin advances this topic, showing how to use CVS
with Clarion 6.x. Part 1 of 2.
Posted Friday, April 15, 2005

http://www.clarionmag.com/index.html?pFriendlySes...login=true&month=4&year=2005&limit=100&desc=false (3 of 5) [29/04/05 4:13:49 PM]

http://www.clarionmag.com/cmag/freearticles.html
http://www.clarionmag.com/cmag/v7/files/cmag-2005-03.pdf

Clarion Magazine

Version Control with CVS and Clarion 6.x, Part 2

Recently, Nardus Swanevelder introduced the open source CVS version control system to
ClarionMag readers. Now Bernie Grosperrin advances this topic, showing how to use CVS
with Clarion 6.x. Part 2 of 2.
Posted Thursday, April 21, 2005

Providing Good Customer Support

They call day and night, email you even on weekends, and actually expect you to help...
customers! Arggh! But without them, you're out of business. So what is the best way to
manage tech support? In this article Drew Bourrut defines good tech support, and suggests
ways to assure that type of support.
Posted Friday, April 22, 2005

Planet Clarion Transcript: Clarion.NET, and Trial Versions

In this prequel to the previous podcast's Bob Z interview, Dave Harms talks with Bob
about Clarion.NET, and Andrew and Dave talk about the value of trial editions.
Posted Monday, April 25, 2005

DLLs and Reusable Code: Divide and Simplify

DLLs are a fantastic way to split up large applications, but in some situations you can still
run into problems with duplicate symbols if you try to create a generic data DLL with
exported global variables, using the AppGen. The solution? A hand-coded generic DLL.
As Jeff Slarve shows, this is a lot easier than you might think.
Posted Friday, April 29, 2005

[Last 10 articles] [Last 25 articles] [All content]

Printed Books & E-Books

E-Books

E-books are another great way to get the information you want from Clarion Magazine.
Your time is valuable; with our e-books, you spend less time hunting down the information

you need. We're constantly collecting the best Clarion Magazine articles by top developers
into themed PDFs, so you'll always have a ready reference for your favorite Clarion
development topics.

Printed Books

http://www.clarionmag.com/index.html?pFriendlySes...login=true&month=4&year=2005&limit=100&desc=false (4 of 5) [29/04/05 4:13:49 PM]

http://www.clarionmag.com/index.html?limit=10
http://www.clarionmag.com/index.html?limit=25
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/books/index.html

Clarion Magazine

As handy as the Clarion Magazine web site is, sometimes you just want to
read articles in print. We've collected some of the best ClarionMag articles
into two 600+ page softcover books: Clarion Tips & Techniques, and

Clarion Databases & SQL. These books are packed with information useful

to any Clarion developer. We also publish Russ Eggen's widely-acclaimed
Programming Objects in Clarion, an introduction to OOP and ABC.

From The Publisher

About Clarion Magazine

Clarion Magazine is your premier source for news about, and in-depth articles on Clarion
software development. We publish articles by many of the leading developers in the
Clarion community, covering subjects from everyday programming tasks to specialized
techniques you won't learn anywhere else. Whether you're just getting started with Clarion,
or are a seasoned veteran, Clarion Magazine has the information you need.

Subscriptions

While we do publish some free content, most Clarion Magazine articles are for subscribers
only. Your subscription not only gets you premium content in the form of new articles, it

also includes all the back issues. Our search engine lets you do simple or complex searches

on both articles and news items. Subscribers can also post questions and comments directly
to articles.

Satisfaction Guaranteed

For just pennies per day you can have this wealth of Clarion development information at
your fingertips. Your Clarion magazine subscription will more than pay for itself - you

have my personal guarantee.

Dave Harms

http://www.clarionmag.com/index.html?pFriendlySes...login=true&month=4&year=2005&limit=100&desc=false (5 of 5) [29/04/05 4:13:49 PM]

http://www.clarionmag.com/books/tips/index.html
http://www.clarionmag.com/books/tips/index.html
http://www.clarionmag.com/books/dbsql/index.html
http://www.clarionmag.com/books/poic/index.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/cmag/refund.html
http://www.clarionmag.com/cmag/subscribe.html

Clarion News

Clarion News

Search the news archive

First DerivedShell Product Released

KwikSYSTEMS(tm) ASSOCIATES has released their first DerivedShell(tm) product.
DerivedShell(tm) Products can be downloaded and purchased from ClarionShop and via
PayPal.
Posted Wednesday, April 27, 2005

iQ-XML 1.03

iQ-XML 1.03 is now available. There are two new functions: QualifyField allows you to
further qualify a fieldname in your Local Queue with the parent for fieldname matching;
AttributeFieldSet allows you to skip records added to your Queue by marking fields as
REQUIRED or OPTIONAL as well as set a Clarion Format Picture. Various other
enhancements included. Freeware.
Posted Wednesday, April 27, 2005

ClarionMag/Podcast Coffee Mugs!

Clarion Magazine/Planet Clarion coffee mugs are now available! You have your choice of
a small mug, and/or a large mug, and/or a beer stein. The Clarion Magazine logo is on one
side, the Planet Clarion logo is on the other.
Posted Tuesday, April 26, 2005

ClarionMag E-Book RSS Feed

http://www.clarionmag.com/cmag/news.html (1 of 7) [29/04/05 4:14:36 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/searchnews.frm
http://www.kwiksystems.net/appshell/DerivedShellProducts.htm
http://www.clarionmag.com/cmag/www.innquest.com/iqxml
http://www.cafepress.com/clarionmag
http://www.clarionmag.com/ebooks.rss

Clarion News

Our latest RSS feed makes it easy to get notification of new and updated Clarion e-books.

You will need an RSS reader to properly view this feed.
Posted Tuesday, April 26, 2005

New Edit-In-Place E-Book

Clarion's Edit-In-Place (EIP) capability is powerful, but difficult to master. This extensive
e-book covers not just the standard EIP techniques, but also some very cool tricks with
forms in place of EIP, and checkboxes for managing many-to-many relationships.
Posted Tuesday, April 26, 2005

vuAgent Updated

vuAgent has been updated with an additional Init function and some expanded capacities.
Command size has been expanded from 386 bytes to 32,768 bytes (32K). Speech text
length has been increased from 128 bytes to 32,768 bytes (32K).
Posted Tuesday, April 26, 2005

DynaLib 4.0.1

DynaLib 4.0.1. has been released. This new version has many new features. You can full
control on practically all Clarion data structures - GROUPs, QUEUEs, FILEs and VIEWs.
You can create these structures at run-time from string data. A new feature of this library
allows you to create FILE structures directly from physical disk files. A new class for
working with all SQL servers allows you to simply work with parametric SQL queries,
getting results in queue or file. And DynaLib now supports the In-Memory Database
Driver, IP Database Driver and Dynamic File Driver. The price of DynaLib Professional is
$180, Dynalib Advanced is $150.
Posted Tuesday, April 26, 2005

iQ-XML Updated

An update to iQ-XML, a free XML Parser and Writer for both ABC and Clarion template
chains, is now available. The biggest enhancement is added full template support for all
APIs as well as Import/Export functions. Also, the Add Clarion Queue debug option has
been enhanced to adjust the field types/sizes before creating the queue structure.
Download is available at www.par2.com. Manually register iQXML.tpl once you install.
Posted Tuesday, April 26, 2005

http://www.clarionmag.com/cmag/news.html (2 of 7) [29/04/05 4:14:36 PM]

http://www.clarionmag.com/cmag/v5/v5n06rss.html
http://www.valutilities.com/downloads.htm
http://www.nikasoft.co.uk/index.php?page=products&hid=2
http://www.par2.com/

Clarion News

New Data Ferret Website

Solace Software's Data Ferret is a Windows application which can automatically scan
yellow pages type web sites and extracts the names and addresses, phone numbers and
email addresses if available and places them in a file for manipulation.
Posted Tuesday, April 26, 2005

Solace Flatten Free Template

Once this template is added to the global extensions, it allows users to decide if they want
their controls to appear 'Flat'. You have the option to omit buttons, checkboxes and Radio
buttons. For C6 and above only. Available in the free templates section.
Posted Tuesday, April 26, 2005

EasyCOM2INC 2.02

EasyCOM2INC 2.02 is now available. Changes include: New RTL procedures, added to
avoid redefining system intrinsics - ProviderType, HDC, HMenu, Picture, Dock, Owner,
Step, Vartype, Project, Icon, Band; ParameterPrefix in ecom2inc.ini. gets a parameter
name prefix to avoid any conflict; Renamed methods to avoid conflict with interface
names; Current object shows in the progress window; Possibility to terminate generation
process; Bug fixes; Template changes. Free upgrade for all registered customers.
Posted Tuesday, April 26, 2005

Easy3DStyle 2.00

Easy3DStyle 2.00 is now available. Changes include: Added new button styles: 3D boxed,
Boxed, Color, VColor and HColor; Added XP Manifest support - Create XP manifest file
(works in C5, C55 and C61); Added standard message function hook - new message look;
Templates redesigned; More flexible settings. Price: $89 (1 license) or A bundle of
Easy3DStyle and EasyResizeAndSplit for $129.
Posted Tuesday, April 26, 2005

Free Tech Books #3

A very large collection, albeit on possibly the ugliest site on the web. CapeSoft sez if you
can suppress the initial gag reflex, then it's quite a good list.
Posted Tuesday, April 26, 2005

http://www.clarionmag.com/cmag/news.html (3 of 7) [29/04/05 4:14:36 PM]

http://www.dataferret.net/
http://www.solace-software.demon.co.uk/
http://www.clarionshop.com/results.cfm?type=Accessory&sup=IngaSoftPlus
http://www.clarionshop.com/results.cfm?type=Accessory&sup=IngaSoftPlus
http://hogan-productions.com/books/

Clarion News

Free Tech Books #2

Free books are also available at the O'Reilly Open Books Project.
Posted Tuesday, April 26, 2005

Free Tech Books #1

CapeSoft staff point out this site with 150+ books spread across a whole range of
computer related topics. It also has a good front page describing why free online books
exist and so on.
Posted Tuesday, April 26, 2005

CapeSoft At South American DevCon

The 6th South American DevCon is taking place in May, and CapeSoft is proud to
announce that Bruce Johnson will be attending. He will give his usually entertaining
presentations on ABC and the three recently released drivers from SoftVelocity. As
always, the event has been organized by Clarion users, and for the first time will be
including Clarion developers from Argentina and Brazil. Previous editions of this event
had 100-130 developers, with more expected this year.
Posted Tuesday, April 26, 2005

Replicate Jumps Forward

Replicate provides an automatic, driver independent, file-version independent, mechanism
for replicating the data in two or more databases. Replicate underwent some major
restructuring over Christmas time and the early new year. If you've been keeping up-to-
date with the releases, but you're not on version 1.86, or if you're still on one of last year's
versions (v1.62 or earlier) it would be a good idea to upgrade now. Some of the latest
features include: LogManager ControlCenter; Optional Replicate activation made easy;
Status of relating LogManagers. Cost: $399
Posted Tuesday, April 26, 2005

HotUpDates

You can use HotDates to view dates in a calendar - drill down to month, or day. Create a
scheduler or weekly planner. Print your calendar straight to a printer or create a
customizable date picker. Recent changesinclude:Date-Range selection (in the Year
Calendar and Planner templates); DatePicker Hotkey; Sorting of child data (Planner
template); Customizable zooming; and more. Cost: $239

http://www.clarionmag.com/cmag/news.html (4 of 7) [29/04/05 4:14:36 PM]

http://www.oreilly.com/openbook/
http://www.freetechbooks.com/
http://www.unisoft.com.ar/novedades.asp
http://www.capesoft.com/accessories/REPLICATESP.HTM
http://www.capesoft.com/accessories/hotdatessp.htm

Clarion News

Posted Tuesday, April 26, 2005

Secwin Online Server 1.03 Beta Released

Secwin Online Server provides immediate access to temporary or permanent product
activation codes for any product which has the Secwin Online client feature enabled.
Activation codes can be blocked for certain clients, products or datasets, allowing the
supplier full control over product sales and distribution, but giving prospective or new
clients immediate access to the product. Version 1.03 Beta now supports: Online customer
registrations through your application or a product registration web page; Product
activation codes can be automatically emailed to your customers. Cost: $199.
Posted Tuesday, April 26, 2005

EasyCOM2INC 2.02

EasyCOM2INC 2.02 is now available. Changes include new RTL procedures, parameter
name prefixes, method renaming, bug fixes, updated templates, and more. EasyCOM2INC
utility is used to automatically creating Clarion include files with the definitions of COM-
interfaces from IDL file AND now comes with EasyCOM Generator and generate needed
Classes. Trial version available. Price: $189.
Posted Monday, April 18, 2005

XML Parser/Writer Function Library

Robert Paresi has created an XML Parser/Writer function library to use with Clarion 6.1.
Since it is a function library, you can easily attach it to Legacy and ABC applications. This
function library is completely free. It comes with many functions to Load XML
documents in to a Clarion Queue as well as write an XML document from a Clarion
queue. Features include: Handles both Group fields as well as dimensional array fields
within the queue to automatically produce child records; Ability to debug the XML
document as well as display your own Clarion queue with one function call; Ability to
prime and cascade queue fields when importing from an XML document; Ability to save
node cursors within the document for sub-processing and quickly pop back to where you
were; Documentation. Available in the downloads section.
Posted Monday, April 11, 2005

SB5 Developer Edition RC1 Build 1101

SetupBuilder 5.0 Build 1101, Release Candidate 1, (April 10, 2005) is now available.

http://www.clarionmag.com/cmag/news.html (5 of 7) [29/04/05 4:14:36 PM]

http://www.capesoft.com/accessories/sossp.htm
http://www.ingasoftplus.com/
http://www.par2.com/
http://www.lindersoft.com/

Clarion News

Numerous new features, fixes, and improvements.
Posted Monday, April 11, 2005

solid software support schedule

Jens Weiermann won't be in the office for the next week and doesn't know yet if he'll have
Internet access during that time, so support will, if possible at all, be somewhat delayed.
Jens will be back in the office on April 18th.
Posted Monday, April 11, 2005

KwikSYSTEMS & Comsoft7 Exclusive AppShell (Duke Shells) Source

KwikSYSTEMS(tm) ASSOCIATES & Comsoft7 (as Associates) are please to announce
that they have exclusively licensed the products know as Duke Shells, ands have renamed
these as the AppShell product line. KwikSYSTEMS/Comsoft7 will be the exclusive sales
outlet for the latest AppShell(tm) products from now on. They will also be supporting,
further enhancing and adding to the existing AppShell(tm) products. There is development
in the works to make some new products called DirivedShell(tm) products which will
consist of existing AppShell(tm) products given a new "twist" (e.g. "Derived"). Other
brand new AppShell(tm) products are also in the works.
Posted Friday, April 08, 2005

ABCFree Templates and Tools 04/06/2005

ABCFree Templates and Tools changes as of 04/06/2005 include: Added
GetControlPosition method to WindowsClass; Fixed issue where ",,THREAD" was
generated for threaded class declarations; Browse "Copy Button" template no longer
requires name of ABC browse object.
Posted Friday, April 08, 2005

xPathManager 1.2

xPathManager 1.2 is now available. Changes include: Legacy template support added;
New methods to manage paths; New code template for mapping drives; New code
template code for disconnecting a maped drive; New code template for relative paths;
Changed example application to show how to use Default Path feature; Two small legacy
examples for Clarion 6; Updated demonstration program and installation kit for Clarion
6.1 (Build 9033), Clarion 5.5 also supported.
Posted Friday, April 08, 2005

http://www.clarionmag.com/cmag/news.html (6 of 7) [29/04/05 4:14:36 PM]

http://www.solidsoftware.de/
http://www.kwiksystems.net/appshell/index.htm
http://www.authord.com/Clarion/abcfree6.exe
http://www.seal-soft.com/cgi-bin/index.pl?p=pr&l=en&id=xpathman

Clarion News

ClarionMag Free EBook Offer Extended To Friday, April 8

All Clarion Magazine subscribers who subscribe or renew by April 8, 2005 will receive an
e-coupon for one free e-book.
Posted Wednesday, April 06, 2005

ClarionMag Adds Three New E-Books

Clarion Magazine has released three new e-books: Learning The Clarion Language,
Learning The Clarion Template Language, and Threading In Clarion. Non-subscriber
prices are $19.95 each, subscribers $9.95. Subscribers also get free updates.
Posted Wednesday, April 06, 2005

EasyResizeAndSplit 2.08

EasyResizeAndSplit 2.08 is now available. Fixes include: GPF with the RTF control; C61
general fix; C61 iconize and restore modal window caused wrong window size and control
positions. This is version for Clarion 5.0, 5.5 and 6.1 (9033). Free for all registered
customers. Price: $79
Posted Tuesday, April 05, 2005

SoftVelocity Training On Demand

The first two SoftVelocity courses are ready and will start shipping out within a day or
two. Check the outline of lessons that we have available so far, and I think that you will be
excited at this product's usefulness to you.
Posted Tuesday, April 05, 2005

http://www.clarionmag.com/cmag/news.html (7 of 7) [29/04/05 4:14:36 PM]

http://www.ingasoftplus.com/
http://www.softvelocity.com/

Link To Clarion Magazine

Link To Clarion Magazine

Published 1999-02-07

Link To Clarion Magazine

If you'd like to link to Clarion Magazine, you can use any of the following images.

To download these images, right-click over the image and choose "Save Picture As" (or
equivalent). When you've placed the image on your page, set the URL to
http://www.clarionmag.com. Or if you wish you're welcome to link directly to the images

on this server.

http://www.clarionmag.com/cmag/links.html (1 of 2) [29/04/05 4:14:39 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/

Link To Clarion Magazine

http://www.clarionmag.com/cmag/links.html (2 of 2) [29/04/05 4:14:39 PM]

 1

Using Agile Programming Techniques for the Enterprise
Information System : A Case Study

Louis Coraggio – Troy State University, Florida & Western Region

Wayne A. Lundeberg – University of Phoenix, Southern Arizona Campus

ABSTRACT
The authors describe the development of an Enterprise Information System (EIS) for an

ISO 9001 manufacturing firm. The system is built using rapid application development tools with
the method known as extreme programming. An overview of the EIS development process, the
system design goals, and a chronological narrative of EIS development are presented. Included
are additional requirements and recommendations for those considering agile methods.

AGILE PROGRAMMING CONCEPTS

Information management has a cyclical history that resembles the fashion cycle of men’s
ties; hold on to a tie long enough and it comes back in style. In the 1960s mainframe era,
centralized processing ruled. Controlling access to resources and code efficiency were key IS
goals. The introduction of the personal computer ushered in the distributed processing age.
Users customized the environment and hardware became relatively cheap. Now that server
based peer networks dominate the firm, centralized principles are being revisited as data integrity
and controlling access are once again a priority.

In early application development focus was on getting the programming done, then
worrying about documentation. The introduction of the Systems Development Life Cycle
(SDLC) model and Systems Analysis and Design (SAD) methods focused attention on assessing
user needs and constructing performance specifications prior to coding. The introduction of
CASE development tools and object oriented programming techniques drastically reduced the
expense and time for programming. The SAD methods are capital intensive, requiring a
substantial investment of resources before producing a usable piece of code.

In the late 1990s, a movement toward “agile” software development gained popular
momentum. The principles of the agile development are:

• Individuals and interactions over processes and tools;
• Working software over comprehensive documentation;
• Customer collaboration over contract negotiation; and
• Responding to change over following a plan. (Beck, 3)

Agile methods assume a constantly changing business and user environment. Focus is on
cooperative efforts between programmers and the user community. Economic justification is the
immediate benefit of the application, i.e. savings by the users will offset any increased cost for
later maintenance.

Extreme Programming

The most widespread form of agile concept is Extreme Programming (XP) was first
proposed by Beck (2). The formalizing of XP principles arose from the development of the

 2

Chrysler Comprehensive Compensation system headed by Beck in 1997. Paulk (6) best
summarizes the principles of XP:

1. Planning the game -- quickly determine the scope of the next release,
combining business priorities and technical estimates.
2. Small releases -- put a simple system into production quickly. Release new
versions on a very short cycle.
3. Metaphor -- guides all development with a simple, shared story of how the
whole system works.
4. Simple design -- designed as simply as possible at any given moment.
5. Testing -- continually write unit tests that must run flawlessly; customers write
tests to demonstrate functions are finished. "Test then code" means a failed test
case is an entry criterion for writing code.
6. Refactoring -- restructure the system without changing behavior to remove
duplication, improve communication, simplify, or add flexibility.
7. Pair programming -- all production code written by two programmers at one
machine.
8. Collective ownership -- anyone can improve any code anywhere in the system
at any time.
9. Continuous integration -- integrate and build the system frequently, every time
a task is finished. Continual regression testing means no regressions in
functionality as a result of changed requirements.
10. 40-hour week -- work no more than 40 hours per week as a rule; never work
overtime two weeks in a row.
11. On-site customer -- real, live user on the team full-time to answer questions.
12. Coding standards -- rules emphasizing communication throughout the code.

While neither of the authors had formally embraced the XP creed, both had an extensive

history of collaborating on development of commercial applications. The authors had
independently concluded that many of these principles worked. Pair programming, collective
ownership, simple design, continuous integration, refactoring and coding standards had proven
effective in past projects. With an on-site customer, much of the XP model was in place. The
remainder of this paper describes the development of an Enterprise Information System (EIS)
using (and discarding some) XP principles.

EIS DESIGN GOALS

Background

Catalina Tool & Mold (CTM) is an ISO 9001 manufacturer of precision plastic injection
molds and molded plastic products. Historically, CTM has competed primarily on a quality and
delivery basis. CTM is an industry leader in manufacturing technology, rapid delivery, and
product design. The emergence of cheaper mold shops in the Far East has eroded the domestic
market for traditionally price-sensitive customers. As a consequence, CTM focused on those
customers for whom speedy delivery and/or extreme precision are primary concerns.

 3

With annual sales of $5-$9 million and 60-90 employees, CTM was one of the larger
independent tool and mold shops in the U.S. The typical job is a “one of”, make to order
contract, done on a fixed price basis. On average, a job is in the shop for 6 weeks with $150,000
in revenue. Repairs and modifications to prior jobs also constitute a substantial portion of sales.

In 1998, Mr. Lundeberg took over as CEO. Typical products at the time were cell
phones, integrated circuit assembly trays, and industrial sprinklers. Customers pushed for faster
turnaround times, experimental plastics, and closer tolerances. Investments in robotics, computer
controlled machining and sophisticated CAD software could no longer be managed with the
existing batch mode, report driven information system. The existing system was a patchwork of a
Unix based, mainframe managerial/ financial accounting system, Excel spreadsheets, and user
developed Access applications.

Much of Beck’s model fit circumstances at CTM. The network platform was clearly
moving to Microsoft Windows NT based servers. CAD applications that had once required
specialized UNIX workstations could now be run on Intel based Windows machines. It was clear
that CTM needed an information system that would allow for enterprise resource planning and
paperless manufacturing using real-time data. Strategic plans also called for re-inventing the
business into new markets and products.

Objectives for the EIS

Extensive discussions took place with key operation people, the Board of Directors, and
financial managers. After spirited debate, the following general goals were identified.

Job Estimation – Many design and manufacturing jobs lost money due to misquoting the project
at its inception. A quick, clean, collaborative method for quoting new work was identified as the
top priority. The new estimating tools should incorporate lessons learned from prior mistakes.

Real Time Resource Monitoring and Allocation – In general, labor and three key processes
were identified as bottlenecks. Individual operations often vary greatly from budgeted time.
This was true for both engineering and manufacturing operations. Additionally, management
priorities changed based on new work; customer modifications; or errors in design and
machining. Managers needed real time monitoring of shop floor resources.

Preparation for ISO 9001-2000 Standards – To maintain certification, ISO requires that: “(t)he
organization shall plan and implement the monitoring, measurement, analysis and improvement
processes needed to demonstrate: … conformity of the product; …; the conformity of the
quality management system; … and the continuous improvement of the quality management
system.” (ASQ,1) The new EIS should include monitoring and exception reporting for non-
conformance as well as archiving capabilities.

Universal Visibility – All workstations should have at least read privileges to most major aspects
of the job.

 4

Cultural Compatibility – CTM had established cost centers, local terminology, and shop floor
reporting formats. User acceptance and minimized training time were deemed mission critical.

Reduction of Redundant Entry – Much of the administrative information flow was paper to
electronic to paper (e.g. time reporting.) Eliminating the initial paper step would reduce
transcription errors and streamline accounting processes.

Post Production Analysis – Retrospectives on “what we did” to improve quoting skills, elevate
quality and for use in performance evaluation. Analysis of the “as built” project would form the
basis of a modular library of operations to be used in future job estimating.

Work began on the EIS in the summer of 1998. (Figure 1 depicts an Overview of the EIS
development sequence.)

Figure 1

BUILDING THE EIS

Development Environment

The Clarion environment is a 4th generation, object oriented (OO) development environment.
Applications are based on the initial construction of a relational database with file relationships,
formatting, and changeable referential integrity constraints. Basic forms, queries, tables, and
reports are then constructed from the database design – much like Microsoft Access. Unlike
Access, Clarion allows the developer to mix and match multiple file formats in the same

 5

application and produce a stand-alone executable application that manipulates an independent set
of data files. Also included is an independent report writer application that allows users to
construct (and save) ad-hoc queries as formatted reports. Reports added in this manner do not
require modifications of the database or recompile and reissue of applications. With a mixture of
Windows 95, 98 and NT machines, Clarion’s independent data and application provided
maximum flexibility.

The interchangeable file formats allowed us to prototype quickly and rapidly convert live
data. The proprietary “TopSpeed” file format was chosen for the final database. This format
stores each table and all of its keys in a single DOS file and uses the application as a DBMS.
Record hold/lock semantics, sharing, filtering and referential integrity constraints are enforced at
the application level. Using this format allowed us to add, format, and manipulate individual
tables without revising the entire database. It also places responsibility for maintaining database
integrity and validity squarely on the developers.

The OO structure of Clarion provides an inherent consistency of formats, screens and
reports. Much of the “code standard” advocated by XP is easily accomplished by customizing
the templates used as a staring point for forms and tables.

Project Management for the EIS

In Clarion, the “Dictionary” construction is done independently from the “Application”
development. When a Dictionary is changed, the programmer must close it, reopen the
Application, and instruct the environment to integrate the changes. The Application must then be
recompiled to produce the standalone “Program”. Since the database is independent, each
change of the Dictionary requires a conversion of the live database. With two developers,
version control (and data file conversion) becomes a critical issue. To mitigate this issue, the
authors created a “Master” zip disk. Only the programmer with the Master disk was allowed to
change code and database fields. The official version was contained only on the master disk.
Despite the availability of remote network connections, this master disk approach resulted in
better personal time management and forced the developers to review and agree on changes
before going live.

Each day, live data was backed up from the server to a development workstation. The
live data and current versions of all Dictionaries, Applications and Programs were then archived
to offline media. Each version revision was placed on a separate disk to allow the opportunity to
roll back to a prior version if necessary.

While both developers worked on most aspects of the EIS, a comfortable division of
labor was soon reached. As the “resident” member, Lundeberg was primarily responsible for
defining business rules, final formatting of screens and reports, setting priorities, and developing
program flow. Lundeberg had exclusive control of posting new releases and acted as project
manager. As the “off-site” developer, Coraggio did most of the hard coding and prototyping.
Database design and relationships were done together. The major benefits of paired
programming were seen in developing complex database relationships and logically intensive
batch updates.

 6

User requests for changes and features rapidly got out of hand. Eventually, a formal

request procedure was established to field requests. Each was reviewed by Lundeberg and
typically forwarded to Coraggio for implementation in the next release. As the system grew,
releases became less frequent. Many of the requested features were aesthetic or the result of
disparities in local workstations. Since Lundeberg was both Project Manager and CEO, he had
both the technical background and the authority to implement (or deny) changes in CTM EIS.

Phase 1 – Time Reporting

Customer pressure to reduce delivery times and price suggested the immediate need was
an effective means of managing jobs in the factory. The existing Shop floor job management
used a mainframe system driven by paper records of worker activity. Timecards served as both a
payroll vehicle and as the primary record of cost center activity and progress. Workers typically
put off filling out cards until days end, often with less than perfect recall. Transcription time
added another 3-6 hours to the reporting process. As a consequence, a computer based timecard
system (PunTran) was chosen as the initial system module.

The PunTran application drives most of the shop floor management. It was also the first
time many shop floor workers would be asked to use PC’s for cost accounting purposes. PunTran
needed to be easy to use and relatively bullet proof. Workers punch in at the beginning of each
shift. When punching out, net working time is calculated. Before a time record is accepted, the
worker must completely allocate their time to current jobs and to cost centers. The construction
of the cost center codes allowed the punch records to generate job utilization for key machine
centers as well. A worker could punch in and out as often as they wished; eliminating the need
to remember what he had done.

Introduction of PunTran was done formally in a company meeting. A general outline of
the EIS was presented, and the initial PunTran release was demonstrated on 10 computers spread
throughout the factory. A one-week period of testing was initiated. Workers entered time on
both paper cards and in PunTran. At the end of the test period, worker comments were solicited.

Most found the system easy to use but slow. The prototype used list boxes and pull
downs for validating choices. Most thought typing (with validation) should be an option.
Workers also wanted to see a listing of their hours; to request personal time off; and to leave
notes for management. All changes were implemented and the system went “live.”

After a couple of weeks, behavioral issues came to light. Workers typically used one
machine for punching in and another for punching out at days end. Word spread quickly that
some PCs had slow clocks and others had fast clocks. In the morning, they used slow machines;
in the afternoon they used the fast PC’s resulting in as much as 15 minutes per day of extra time.
(This was remedied by synchronizing local stations with the server clock)

Though individual workers had no edit privileges, several key administrators could fix
“mistakes”. It became apparent that someone was padding the records. Several security

 7

measures were considered. Eventually, transaction logging was added for any edit changes and
included fields that identified the date, time, workstation, and original values. Armed with
transaction record logs, the culprit was identified and confronted. Word spread that the system
had “spy-ware.” After about a month, most of the initial gamesmanship and “testing” was done.
PunTran became part of daily life at CTM. PunTran freed one full-time clerical worker from
time card processing.

Phase 2 Estimating and Job Planning

The job-monitoring database structure is the heart of this EIS. All resource scheduling,
cost accounting, ISO documentation, resource utilization, engineering designs and purchasing
are tracked and allocated to the job. Determining the granularity of the job database consumed
many hours of analyst time.

Integrating estimating (“quotes”) with work orders (“jobs”) needed to be as seamless as
possible. The Access based estimating system (already in use) was accepted and effective. Using
it as a basis, the basic screen formats, program flow and logic were duplicated in Clarion. Using
the Access structure also allowed us to convert live data into the TopSpeed format. This was
particularly important because of the value of using historical quote information to aid in quoting
similar new projects.

Both quotes and jobs may have several “items”, each having its own budget. (Typical
quote items include tasks like product engineering, mold design, mold building and plastic part
production.) Quote items formed the basis for job items, but a job may be assembled from a
variety of quotes to the same customer.

Frequently, a job requires a many:many relationship with the customer file. CTM may
ship to several locations around the world, and have several different contacts for billing, project
management, or technical decisions. Some jobs (like repairs or enhancements) may actually be
completed before written authorization arrives. As part of job planning system, contacts within a
company were spawned into a child file. Also added was a communication log that attached to
each contact and to each job. This allowed project managers to track the history of engineering
changes and project anomalies.

Each job consists of a parent job record and two sets of children; the job items and one
record for each cost center. When a new job is created, the basic information is copied from
various quotes and transferred into job items. At the same time, one child record for each cost
center is created. In the quote system, individual cost centers are carried as fields in the quote
record. Thus each quote field instantiates one child record in the job. Multiple items are
aggregated to their individual cost center. (Appendix 1 shows a partial list of CTM Cost Centers)

For each cost center, four fields representing the “hours” or dollars are included. There are
five separate “hours” kept for each cost center activity.

• Quote – Hours directly from the quote;
• Planned – Revisions based on conditions at the time the job is created;
• Allocated – Budget hours to be publicly visible (may be revised);

 8

• Actual – Hours tracked by the punch system; and
• Requote – Analysis of the actual time spent per process restated to account for specific

process events occurring on that job. The value of this is for requoting a repeat job.
Fields for start/end dates, remaining hours and management-only “fudge” fields round out the
cost center record. (Figure 2 depicts the file relationships for the primary job files)

Figure 2

Phase 3 – ISO 9001 Subsystem and Documentation

The completion of Phase 3 stabilized the database and established the central transform
for the EIS. It allowed the developers to divide work independently as well. ISO 9001
compliance standards require considerable documentation of meetings, reviews, customer
contacts and error correction processes. Most of these are tracked to the job level. In a

 9

normalized database, most of the ISO requirements should be part of the main job record as most
requirements are 1:1. However, the sheer number of fields, and their infrequent access, led us to
create a separate “master file” record for each job. This record also became the parent for most of
the administrative tasks including purchasing, shipping, inventory movement and customer
invoicing.

From a culture standpoint, most of the ISO documentation is after the fact. Consequently
it becomes a nuisance. Much of the development work was targeted to making the job tracking
record a push button operation. The CTM ISO System calls for a series of reviews and meetings
throughout the project. When the master file record is created, tentative dates and participants are
instantiated for these reviews. Based on the ISO plan and job characteristics, appropriate fields
are displayed or hidden from users. If the program detects that a target date has past, users are
prompted for an explanation or asked to fill in details.

Splitting the production and administrative sides into separate records also enhanced
network performance. Typically, managers worked on the job tracking side while manufacturing
floor people worked in the cost center side.

Phase 4 -- Resource Scheduling

Rolling up all budgeted and actual hours to cost centers provides a good overview of
individual jobs and resource loading. However, it does not provide sufficient detail for
scheduling. Since short delivery time is a major competitive advantage for CTM, scheduling is
the mission critical function of the EIS. In manufacturing, tasks are identified on individual
sheets of the design drawings. A prototype mold may have only one cavity; a production mold
may have several cavities. The estimates, specifications and CNC programming for a single
cavity might constitute a “Sheet”. For a six- cavity mold, each sheet detail would be repeated six
times. Thus the sheet detail becomes the atomic unit for purposes of resource scheduling.

In a perfect world, sheet details would roll up to job items. Job items would roll up to the
main job record. CTM history had proven otherwise. Competition for resources, customer
changes, and rework all create a dynamically changing manufacturing floor. So another set of
child records were created to accommodate shop floor scheduling. Sheet detail records are
logically the children of the main job record. As cross check, sheet hours are also rolled up to
their respective cost center records.

With the complex relationships and evolutionary development cycle, job records are not
truly real-time. Job records are actually batch updated on-demand at the user level. Each time a
user asks for details on a job, a batch process checks for changes and additions in sheet and
timecard files, updates the job record in the database, then the record is displayed for that user.
Since Clarion does all database management at the application level, this approach offers
improved performance for all users, without forcing every entry in the PunTran system to update
multiple tables.

Several versions of the resource scheduling process were modeled. Scheduling
simulations were tried (based on PERT and Shortest Processing Time). While theoretically

 10

attractive, these proved impractical due to uncertainty of individual workstation times; on-the-fly
redesign of the product (concurrent engineering); and resource availability. These prototypes
were built with sample data, and demonstrated in focus groups with line level managers. This
departure from “simple design” principles proved to be a major waste of time. This was a
definite win for the XP camp.

The final version uses a list based priority system that employs a group technology
approach. Resources (labor and machinery) were classified into groups based on
interchangeability. Cost centers were first aggregated into groups based on similarity of skills
and workstation capabilities. Each resource was assigned to one or more groups based on
capabilities. For each job, tasks are also assigned to the same group designators. This allows
managers to look at subsets of resources and tasks that match up. The assignment is by drag and
drop. The sequencing of tasks is determined on a daily basis by the plant managers through
assignment of a priority.

Phase 5 - Financial Accounting

For the financial accounting functions, a set of Clarion “templates” was purchased from
another developer. These included General Ledger, Payables, Receivables, Payroll, and Purchase
Orders. The authors spent about 150 hours customizing these templates. Much of the time was
devoted to figuring out the template logic and data structures used by the original programmer.
Importing time card records for payroll and invoicing for receivables are the primary interface
with the main job based system. The authors found dealing with “foreign” code frustrating at
times, the time and manpower savings from the purchase of these templates clearly justified the
decision.

Payroll was the first subsystem brought on line. With PunTran in use, all of the pertinent
information could be electronically accessed. Once the payroll system was customized for local
taxes, direct deposits and payroll deductions, a batch process extracted payroll hours from the
PunTran database to produce paychecks.

Receivables are handled within the Master File records. CTM agreements typically
contain progress payments, and recurring invoices that required tie-ins to job items, quote items,
and authorizations already contained within the main job system. Only summary information is
exported to the General Ledger. Payables are handled within the financial system by the
purchased template system. Balance Sheets, Income Statements and other standard financial
reports are maintained in standard spreadsheet programs.

CTM operates using a revolving line of credit secured by capital assets and receivables.
Periodic reviews of key financial ratios and performance indicators are part of the bank
covenants that dictate interest rates and fees. Since CTM has a mix of recurring production and
one-time projects, determining revenues, costs and work in process is a quite complex. Accurate
measures of true output are performed on a monthly basis. Sales taken for a month are
determined on a job-by-job basis by management. Once sales are determined, an extensive batch
process rolls up all payables, invoices, time records and job progress. From this Shipment/Work
In Process (WIP) report, financial ratios are calculated and the labor overhead burden is

 11

determined. Each quarter the shop labor rates (containing the overhead burden) and machine
rates are reviewed and adjusted based on Ship/WIP results. The completion of the Ship/WIP
process was the final link in the enterprise system. It ties the managerial accounting system to the
financial accounting system and generates most of the performance metrics required by
management.

Phase 6 - Marketing and Performance Evaluation

As the EIS evolved and manufacturing floor management became more streamlined, the
primary focus turned to marketing. By mid 2001, the CTM client base had shifted. Jobs were
smaller, with a wider customer base. CTM had opened a subsidiary operation in Queretaro,
Mexico to service major manufacturers in the area. CTM marketing efforts turned toward
soliciting ideas for new products from patent holders and high margin specialty manufacturers.
This became known as Concept To Market (C2M).

Contact management, follow-ups, forecasting and long term monitoring of market
segments became critical to the success of the C2M strategy. For the EIS, a contact management
scheme was added to track personal responsibilities, dates, and prospect qualification
information. Likelihood estimators for quoted jobs were added to improve sales forecasting.
Much of the development effort was directed to making contact system easy to use and
convenient. Reminders, and contact information buttons were tied to customer files, quotes, job
progress, Rolodex and calendar functions. Wherever possible, field values were instantiated
based on login, program location, and customer information. Exception reports and color-coded
browse lists enable senior management to assign responsibilities and set priorities for both the
corporate and individual to-do lists.

Postmortem job analysis and ISO documentation include both “as built” information and
mitigation for any quality issues encountered during construction. This provided an opportunity
to add individual performance appraisals for employees. These became the basis for the HR sub
system. In combination with time summaries from PunTran, wage/benefits from payroll, and
personal information, these became the Human Resources system. The addition of user-defined
queries enables management to look at histories for individuals or groups, as well as a cross-
section for any time period.

Security

While most of the EIS information is visible to all employees, there are areas limited to
senior management, and accounting. Three methods are used to secure access to sensitive
information, passwords; separate applications, and hidden menus. A master “switchbox”
provides access to all of the individual applications. When the user logs into the switchbox with
an ID and password, only those menu choices available to that user are displayed. The switchbox
in turn calls individual applications and logs the date, time, station, and user in a transaction file.
Individual applications also look for specific “flag files” in other folder locations to verify that
they are being accessed from the CTM server. Absence of these flag files will cause an
immediate shutdown.

 12

Within an application, there are selected menus that only appear when the user executes a
specific key sequence. This method is primarily used for senior management to “adjust”
budgets, editing timecards, or printing sensitive reports.

The structure of the TopSpeed data files also allows the database to be copied while in
use. Thus mirrored copies can be quickly generated for tracking and comparison purposes. The
EIS resides entirely on a single server, with firewall protection to the outside world provided by
a Microsoft Proxy Server. Source code is kept on a single local machine. While a knowledgeable
employee could conceivably make copies of the data and applications, it’s unlikely that he/she
could reproduce the necessary local flag files required for operation.

Refactoring Examples

As more and more of the daily activities at CTM were included in the EIS, user
performance expectations also rose. Increased dependency on the EIS created higher demands on
the applications. Requests for unusual reports, local use features, faster data input and different
layouts dominated requests. Many of these requests were not judged to be worth the developers’
time, or implemented and never used. Though Clarion includes a “Report Writer” for ad-hoc
queries, instructing users in its operation (and the structure of the database), proved impractical.

For recurring views, like receivables, export queries by example are employed. Users can
tag individual fields in tables, and export the results to comma-delimited, ASCII text files.
Resulting files are then imported to Excel or Access for further processing. For “one time”
queries (e.g. a capital loan application), the developers created small programs to extract the data
and process it with standard office software.

As the EIS grew, infrequently used reports and queries were moved into a separate
application to facilitate code maintenance, and enhance performance and response-time of the
core procedures. These procedures characteristically require massive sequential searches of
tables, intense screen I/O, or creation of temporary files. Though this module can be called from
other applications via embedded command line, it also acts as a standalone application. Thus
long searches (like the Ship/WIP report) can be accomplished as a background task. Unused
procedures and one-time transitional code was removed and archived.

Final Form of the EIS

When the “final” version of the EIS was released in summer of 2002 perhaps half of the
U.S. mold building capacity had disappeared. CTM had survived the exodus, and won ISO 9001-
2000 certification – one of the first mold shops in the world to do so. Sales for custom
machining, OEM products, and C2M projects have supplemented traditional mold building.

Sales for 2001 were only 85% of 1998 levels. Over the same period, revenues per direct
labor hour rose from $53.16 to $63.62. Much of this rise in efficiency can be attributed to the
EIS. Figure 3 shows a data flow diagram of the final system. In Figure 4, summary statistics on
development are provided.

 13

Figure 3 Final EIS System Overview

 14

Figure 4
CTM EIS Final Statistics (June 2002)

Procedures in Financial System 275
Procedures in Main System 303
Primary Tables in Data Base 150
Externally Generated Reports 94
Estimated Programmer Hours 1400
Approximate Development Time 22 months

SO DOES XP REALLY WORK?

The CTM EIS must be considered a major success. Since the EIS development follows
the XP model, the authors’ answer would be a qualified yes. The biggest flaws in XP reasoning
are the notions of the simple metaphor and simple coding. Stevens (7) makes a strong case for
lack of planning being the major downfall in XP projects. The authors concur. Even if no
formal documentation is created, time spent on the data dictionary, entity relationships and data
flows are necessary planning stages. Most of the rework time was consumed in revisiting older
code to add new functionality. Beck suggests that system specifications be assembled from
“note cards” containing user requests. While that may be a good starting point, a trained analyst
must convert those requests to fields, records and processes.

The simple coding concept (“exactly what is needed now”) should be a guideline, not a
rule. Adding database fields for future use, and hooks for future processing are usually viewed as
major time savers. In XP style development they also serve as part of the development plan and
reminders for procedures yet to be done. The inclusion of “to do” procedures also acts as a
preview of coming attractions for the user community.

Paired programming has definite advantages for database development and complex

logical modeling. Cockburn and Williams (4) suggest that the cost of a second programmer adds
about 15% to the cost of development, offset by a 15% improvement in quality. Collaboration
also ensures consistency in coding and data element naming conventions. Once the central
transformation is functional (job planning), much of the development focuses on additional input
and formatting output. Report writing and screen design are more modular tasks and could be
delegated to additional programmers. However, the logistics of meeting, communicating, and
integrating the pieces could rapidly consume any extra capacity. Having both resident and non-
resident members proved valuable. Intricate and lengthy procedures are better accomplished off-
site, with no interruptions. A resident developer can more effectively do testing, revisions,
formatting, and refinements.

Based on the experience of Catalina’s EIS the authors suggest the following additional

precepts for those considering an XP approach.

The development team needs decision-making authority. – To consider all of the user
requests and potential policy changes, decisions must be made quickly and have force of law.
For XP development, a benevolent dictator is more efficient than a democracy.

 15

Analyst and programmer roles must be tightly integrated. – Many of the flow and logic

decisions require an understanding of user perception, operations reality and programming
feasibility. Adding new capabilities often creates new software performance specifications and
changes in business rules. The analyst’s role as user liaison is vital to acceptance.

Anticipate transitional nulls. – As new tables, features and fields are added, the
transition of older data must be incorporated into the code. The XP approach mandates checks
for null data and some method for dealing with it. In most cases, this transitional code (or field
instantiation) goes away over time. However, transition management will consume a substantial
amount of coding time. The majority of incremental programming cost under XP (over SAD
methods) occurs in this transition management.

Create a release plan and adhere to it. – As the system grows, incorporating changes
and making the user community aware of those changes becomes a management task in itself.
At CTM all requests for changes had to be submitted in writing. These were batched together
and released about every two weeks. A log of changes was attached to the application, and the
current release date displayed on the application title bar. New system features became part of
production planning meetings.

A motivated user community is a must. – The technical sophistication of the workforce
and the “can-do” corporate culture at CTM is largely responsible for the success of the EIS.
Direct user requests and feedback were largely responsible for many of the EIS capabilities and
refinements. Without an active, receptive user community XP development will flounder.

Save a rollback version. – Despite thorough testing, every new feature added does not
prove successful. A complete sequential backup of applications and data will be a major time
saver. It’s often easier to start over with a prior version, than to undo changes.

Be flexible in database design. – While the theoretical advantages of normalized
database design are well documented, they may become restrictive in practice. The addition of
1:1 file relationships, extra fields, and multiple key relationships may result in major
performance gains and greatly simplify development efforts.

Allow adequate time for organization adaptation. – The default setting for the user
community is “I don’t know what I want, but I know that isn’t it.” Introduction of a new report
or subsystem will inevitably meet resistance. During the CTM development, users were told that
changes would take one to three weeks for completion. Many initial reactions disappeared after
people lived with the new report for a while. The lag between activation and utilization will be
longer when there is a culture change involved. Though considerable effort went into simplifying
the contact management subsystem, many users simply don’t use it.

Hold on to back up systems as long as possible. – Some bugs may take weeks or months
to surface. Issues with triggered events (like year end closings or quarterly taxes) may reveal
problems that were not caught during routine operations or pre release testing. Trial closings
with backup data are highly recommended.

 16

Consider batch, on-demand processing. – Many reports are infrequently needed, or are
limited to very few users. Using spawned, batch-style processes, (with locally generated files),
for these reports will save extensive rework of database keys and relationships. Batch processes
are typically easier to modify for transitional nulls.

Limit end user computing. – While major development is going on, users will insist that
provided reports and screens don’t meet their needs. Some will create shadow systems without
recognizing changes in business rules and the effects of transitional nulls on data integrity. If the
need for ad hoc figures arises, the development team should provide it. Agile development will
exacerbate reconciliation problems.

Consider user documentation issues. – Most programmers and analysts despise doing
user documentation. The accelerated pace of XP methods exaggerates this problem. At CTM
several key users act as testers and become “Local Resident Experts” (LRE.) While formal
training was regularly scheduled, the LREs provided the majority of instruction. In commercial,
“shrink wrap” situations, this approach may not be feasible.

References

1. American Society for Quality, American National Standard Quality Management Systems –

Requirements for ISO 9001-2000, December 13, 2000, Quality Press, Milwaukee, WI

2. Beck, K., Extreme Programming Explained: Embrace Change, Addison-Wesley, Reading,

MA, 1999

3. Beck, K. et.al., Manifesto for Agile Software Development, http://www.agilemanifesto.org/,

Confirmed October, 2002.

4. Cockburn,A., Williams, L., The Costs and Benefits of Pair Programming, XP2002,

http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF

5. Hoffer, J.A., George, J.F., Valacich, J.S., Modern Systems Analysis and Design, 3rd Edition,

Prentice Hall, Reading, 2001.

6. Paulk, M.C., Extreme Programming from a CMM Perspective, IEEE Software, Vol. 18, No. 6,

November/December 2001, pp. 19-26.

7. Stephens, M., The Case Against Extreme Programming,

http://www.softwarereality.com/lifecycle/xp/case_against_xp.jsp, Feb 3,2002

“Clarion”, and “TopSpeed” are registered trademarks of SoftVelocity Inc.

“Access”, and “Windows” are registered trademarks of MicroSoft Corporation.

 17

Appendix 1 -- PARTIAL LIST OF CTM COST CENTERS

 General Labor Machine Centers Materials
1 Layout 141 CNC Electrodes 201 Mold Base
2 Detail 150 EDM Sinker 202 Steel/MB Plates
3 Checking 151 Mold Base CNC 203 Pins/Comp
4 Electrode Design 152 CNC Machining 204 Graph/Wire
5 Programming 157 Mold Sample 205 Hot Runner Sys
6 Training 158 Production Molding 206 Misc
7 Run Prints 160 Wire Steel 207 Tools
8 Database Processing 165 Wire Electrodes 208 Resin

11 CNC MB
12 Conventional MB
21 CNC Machining
22 Conventional Machining
23 Grinding Administrative Subcontracting
41 CNC Electrodes 506 Inspection Admin 301 Heat Treat
42 Conventional Electrodes 510 Engineer Admin 302 Thr. OD Grind
50 EDM Sinker 511 Indirect 303 Turning
60 Wire Steel 512 Supervision 304 Jig Grinding
65 Wire Electrodes 514 Meeting/Training 305 Plating
70 Honing 517 Shop PLT 306 Gundrilling
75 Heat Treating 527 Project Management 307 Polish
80 Polishing 618 Admin Salary 308 Mold Design
90 Assemble 622 Admin Holiday 309 Text Engrave
91 Meeting 623 Admin PLT 310 Sample

111 Production Molding 624 Admin PTO 311 Freight
112 Mold Sample 217 Personal Time Off 312 Misc Subcontract
120 Inspection 218 Shop Holiday 313 Wire - EDM
121 First Article Inspection 314 Machining

Limit An App To A Single Instance: DDE Strikes Back

Limit An App To A Single Instance: DDE Strikes Back

by Steven Parker

Published 2005-04-12

In days of old, when programmers were bold and DDE was the ultimate tool … if one wished to limit
one’s application to a single instance, it was quite easy. But Microsoft has deprecated DDE, and has done
its best to move programmers to other solutions. As a result, that old DDE instance-limiting code doesn’t
always work as expected. Unless you add a modern twist.

Limiting with DDE

Here’s how the original DDE approach works. Following the lead of a Richard Taylor news group
posting in October 1999: "The trick here is to make your program a DDE Server and have it look for an
already running instance of itself before fully loading."

To implement this, Richard recommends, first, declaring a global variable:

Channel LONG

Second, ensure that the Clarion prototypes for DDE are available. In the Inside the Global Map embed:

Include('DDE.CLW'),ONCE

Also, prototype a Windows API call, to bring an app to the foreground, in the same (Global Map) embed:

 MODULE('Windows API Call') BringWindowToTop(LONG),BYTE,RAW,PASCAL,|
NAME('BringWindowToTop'),PROC
 END

Next, in the Program Setup embed point, test whether there is a previous instance:

Channel = DDECLIENT('MYPROGRAM') ! look for running instances
 ! of this program

http://www.clarionmag.com/cmag/v7/v7n04limitsingle.html (1 of 6) [29/04/05 4:14:43 PM]

http://www.clarionmag.com/index.html

Limit An App To A Single Instance: DDE Strikes Back

IF Channel <> 0 ! and if found
 DDEEXECUTE(Channel,'INFRONT') ! tell the running instance to
 ! take focus
 DDECLOSE(Channel)
 RETURN ! then get out
END

In the Frame's Init method, after opening window, set up a DDE server:

Channel = DDESERVER('MYPROGRAM') !set program as a DDE Server

Finally, in the Frame's ThisWindow.TakeEvent method, at the top of the CYCLE/BREAK support
embed point:

IF EVENT() = Event:DDEexecute
 IF DDEVALUE() = 'INFRONT' !tells it to bring itself to the
 !front
 AppFrame{PROP:Iconize} = FALSE
 BringWindowToTop(AppFrame{PROP:Handle}) !and this does it
 END
END

What happens is this: When the app starts, it tries to set itself up as a DDECLIENT. DDECLIENT
requires that a (named) DDESERVER already exists. In this case, if DDECLIENT returns a good value,
the app must already be running.

If this is the case, a command is sent to the server. The server, listening for DDE events, responds to the
DDE command by coming to the top.

The app attempting to open then terminates.

If DDECLIENT fails, the app must not be running; it couldn’t attach to the server. In that case, it registers
itself as a DDESERVER. This is what other attempts to start the app try to find.

Microsoft has its say

This code worked when DDE was Microsoft’s latest salvation. Now, Microsoft wants to move
programmers away from DDE and they have "deprecated" (read "crippled") it, so that DDE calls are
much slower. But this code still works and if one’s users have a modicum of patience, it works perfectly.

However, if the app does not appear in a timeframe acceptable to the user (i.e., instantly) and that user
tries to start the app again, the new-found slowness of DDE may well allow multiple instance of the app
to start.

In A Naïve Look at the Mutex, I stated that a mutex could be used to ensure that only a single instance is

http://www.clarionmag.com/cmag/v7/v7n04limitsingle.html (2 of 6) [29/04/05 4:14:43 PM]

http://www.clarionmag.com/cmag/v5/v5n04mutexes1.html

Limit An App To A Single Instance: DDE Strikes Back

running, as follows:

Limiter &= NewMutex('thisApp')
If Limiter &= NULL !very serious problem
 Message('Error: Mutex cannot be created')
 Return
Else !try for half second
 Result = Limiter.TryWait(500)
 If Result <= WAIT:Ok !program not already running, continue
 ProgramStarted = True
 Elsif Result = WAIT:TIMEOUT !program is already running, +
 ! warn user
 Message('Another instance of this program is running. ' &|
 'Please switch to that instance.','Don''t Do ' &|
 'That!',ICON:Hand) !and terminate
 Return
 Else !another very serious problem
 Message('Wait failed')
 Return
 End
End

A mutex is not only a synchronization object, it is a Windows kernel object. Therefore, it should be more
than fast enough.

This code works by attempting to create a named mutex. If this attempt fails (Limiter &= NULL),
something very serious is wrong. The app is terminated.

Otherwise, it tries to get the mutex. If it can, the app is not running and initialization can continue. If the
mutex already exists (Result = WAIT:TIMEOUT), the app is already running.

All that is missing is notifying the running copy and bringing it to the top.

To effect this, all of the "old" DDE code is required. The code that actually notifies a running instance
simply has to be moved into the mutex test:

After Program Code statement:

sLimiter &= NewMutex('MYPROGRAM')
If sLimiter &= NULL
 Halt(,'This wonderful program encountered a fatal ' &|
 'problem starting up.')
Else ! try for 1 second
 Result = sLimiter.TryWait(1000)
 If Result <= Wait:OK
 !Program started
 Elsif Result = Wait:Timeout

http://www.clarionmag.com/cmag/v7/v7n04limitsingle.html (3 of 6) [29/04/05 4:14:43 PM]

Limit An App To A Single Instance: DDE Strikes Back

 Channel = DDEClient('MYPROGRAM')
 If Channel <> 0
 DDEExecute(Channel,'INFRONT')
 DDEClose(Channel)
 Return
 End
 Else
 Halt(,'System problem trying to open configuration files.')
 End
End

I do get occasional reports of the app not starting but multiple instance showing in Windows’ Task
Manager. This seems to imply that it is hanging at the attempt to get the mutex. Perhaps I have embedded
my code a bit too early. But, I do not get multiple instances of the app running.

Allowing multiple instances, with control

I was recently asked to allow a specific user to run two instances of the app. All rational suggestions were
rejected; they wanted two different icons on the desktop with each instance pointed to different data set
(actually, different file servers, too). And I wasn’t going to do a one-off version or a serial number check
….

But. A unique name is necessary for both the mutex and the DDEServer. If the customer is willing to run
each instance from a separate directory, the Clarion Command() statement guarantees the uniqueness
needed to provide multiple instance with some semblance of control.

The code now becomes:

sCommandName = Command('0')
sLimiter &= NewMutex(sCommandName)
If sLimiter &= NULL
 Halt(,'This wonderful program encountered a fatal problem ' &|
 'starting up.')
Else
 Result = sLimiter.TryWait(1000)
 If Result <= Wait:OK
 !Program started
 Elsif Result = Wait:Timeout
 Channel = DDEClient(sCommandName)
 If Channel <> 0
 DDEExecute(Channel,'INFRONT')
 DDEClose(Channel)
 Return
 End
 Else
 Halt(,'System problem trying to open configuration files.')

http://www.clarionmag.com/cmag/v7/v7n04limitsingle.html (4 of 6) [29/04/05 4:14:43 PM]

Limit An App To A Single Instance: DDE Strikes Back

 End
End

The only problem is that any attempt to start the app fails with a message.

I checked. Command('0') returned the correct fully qualified path and program name, just as if I had
typed it in a DOS box.

It was suggested that I try the optional error parameter of the NewMutex statement, which would make
the problem obvious:

NewMutex (name, owner, <error>)

name A string constant or variable that names the new IMutex object. If a name
parameter is not supplied, NewMutex is used for synchronizing threads only. If a name is
supplied, NewMutex can be used to synchronize multiple processes rather than just the
threads within a process.

owner A BYTE variable or constant that specifies the initial owner of the Mutex. If this
value is TRUE, and the caller creates the Mutex, the calling thread obtains ownership of
the Mutex. This is the equivalent of calling Mutex.Wait immediately after NewMutex(). If
the caller did not create the mutex, then the calling thread does not obtain ownership of the
Mutex. To determine if the caller created the Mutex, you need to check the value of Err

error A LONG variable or constant that returns any operating system error.
ERROR_ALREADY_EXISTS (183) indicates that the caller did not create the Mutex (a
handle is still returned but owner is ignored) because another process or thread has already
created the Mutex.

Unfortunately, this returned the totally unhelpful error: Path not Found. Path not found indeed!

I do not remember who it was who solved this dilemma, for surely I owe him a beer, but it turns out that
the Windows kernel is not fond of back slashes (shades of UNIX!). Replacing back slashes with forward
slashes solved the problem:

sCommandName = Command('0')
Loop i# = 1 to Len(Clip(sCommandName))
 If sCommandName[i#] = '\'
 sCommandName[i#] = '/'
 End
End
sLimiter &= NewMutex(sCommandName)
! etc.

True, there are synchronization objects that allow multiple waits. But, (1) I haven’t mastered them and (2)
I don’t recall them being testable.

http://www.clarionmag.com/cmag/v7/v7n04limitsingle.html (5 of 6) [29/04/05 4:14:43 PM]

Limit An App To A Single Instance: DDE Strikes Back

So, there you have it. Despite Microsoft’s best efforts (to date, at least, and until they further muck with
the DDE code base), you can still use DDE, with a steroidal boost, to limit an app to a single instance.

Download the source

Steve Parker started his professional life as a Philosopher but now tries to imitate a Clarion developer. He

has been attempting to subdue Clarion since 2007 (DOS, that is). He reports that, so far, Clarion is
winning. Steve has been writing about Clarion since 1993.

Reader Comments

Add a comment

http://www.clarionmag.com/cmag/v7/v7n04limitsingle.html (6 of 6) [29/04/05 4:14:43 PM]

http://www.clarionmag.com/cmag/v7/files/v7n04limitsingle.zip
mailto:sparker@par2.com
http://www.clarionmag.com/cmag/comments.frm?articleID=13510

Version Control with CVS and Clarion 6.x

Version Control with CVS and Clarion 6.x

by Bernard Grosperrin

Published 2005-04-15

Version Control is a very wide subject, and I am not going to cover the whole thing from A to
Z in a single paper. Nardus Swanevelder did an excellent job already, presenting the basics of

Concurrent Versions System (CVS) and how you can use it.

I am going to look at how you can use CVS to keep track of SoftVelocity releases and hotfixes,
as well as of third party tools, and how you can keep track of changes you made to one of the
releases of your software, after you've started development of the next wonderful killer
version.

So, in a way, I am going to look at CVS starting by the end, the results, then look at how to
organize your daily work with Clarion and CVS. Nardus covered the installation on a

standalone machine; I will briefly explain the installation of CVNST on a Linux server, but

this is not going to be a "How-to" install CVSNT article. I will refer you to web pages doing
this much better and in greater detail.

You will also discover that CVS use is not limited to keeping track of your development, it can
also be used for everything else you do where keeping revisions of text files can be important,
like a web site, documents, SQL scripts, installation scripts, etc, etc.

Let me quickly state which software I'm using, so that you can find and install those tools:

Server

For the server, you can use either CVS or CVSNT. Both can be installed on Linux, CVSNT
has a Windows version.

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (1 of 19) [29/04/05 4:14:53 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/v7/v7n02basiccvs1.html
http://www.clarionmag.com/cmag/v7/v7n02basiccvs1.html
http://www.clarionmag.com/cmag/v7/v7n02basiccvs1.html

Version Control with CVS and Clarion 6.x

CVS: https://www.cvshome.org/

CVSNT: http://www.cvsnt.com/cvspro/ and http://www.cvsnt.org/wiki

Client

There are a number of clients out there for Windows, Tortoise being interesting and easy to
use, but there are many features in WinCVS missing in Tortoise, one of them being the ability
to extend the commands via Python Macros, which I will do to customize WinCVS for
Clarion.

WinCVS: http://www.wincvs.org/

Python

It may seem strange that an article on version control introduces a scripting language, but
WinCVS uses Python as its macro language, and I would suggest you download and install
Python (version 2.3 or 2.4), along with the PythonWin extensions, for which I will have a use
later...

Python: http://www.python.org/

PythonWin: http://www.python.org/windows/pythonwin/

Differences Comparison tool

One of the strong points of version control is the ability to compare different revisions of a file.
CVS has a built in tool, but it is not too user friendly as it compares line by line, out of context.
There are other, better tools. Personally, I use Beyond Compare, but do your own search and
select your own.

Beyond Compare: http://www.scootersoftware.com/

Editor

You can set up WinCVS so that it will open a file in your favorite programming editor. I use
Multi-Edit, but you can use any editor you like. Multi-Edit can also be set up to work with
CVS, so if you work quite a bit on classes, SQL Scripts, HTML, CSS, etc. you can do all your
work and version control management without leaving Multi-Edit!

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (2 of 19) [29/04/05 4:14:53 PM]

https://www.cvshome.org/
http://www.cvsnt.com/cvspro/
http://www.cvsnt.org/wiki
http://www.wincvs.org/
http://www.python.org/
http://www.python.org/windows/pythonwin/
http://www.scootersoftware.com/

Version Control with CVS and Clarion 6.x

Multi-Edit: http://www.multiedit.com/

Keeping Track of SoftVelocity versions and hotfixes

Now, let's assume you have a CVS server installed/available somewhere, and you have
installed WinCVS (although what I describe here will work just as well on a standalone system
as described by Nardus).

Say I work with Clarion 6.x, and it happens that SoftVelocity just released a new hotfix. But I
have made some changes to ABFILE.CLW, because I wanted my own version of
PrimeAutoIncServer (and there are too many privates properties to derive cleanly), or I
changed some templates, or none of the above, as I never modify anything directly, I just want
to be able to roll back easily if something is wrong with the new fix.

Let's see how CVS can help.

The first thing to do, if not already done, is to put my Clarion6 directory under version control.
I could either do that for the whole Clarion 6 directory tree, or select only the directories I
want. My directories 3rdparty,Bin,Lib, Libsrc, and Templates are under version control. I will
explain later how you do that; for now, let's just say it's done.

I just downloaded Clarion 6.1 hotfix build 9031, and I want to update my Clarion 6 working
directory.

As SV hotfixes check that I have the correct versions of the DLL before installing, I have to
install on an existing Clarion directory, but not my working directory. Let me be clear about
this: You need to have a Clarion directory tree, which you will use only to "feed" CVS. Your
"real" Clarion working directory tree is only updated from CVS, never directly from
SoftVelocity updates. To do that, I simply copy my whole Clarion 6 directory, renamed with
the last hotfix number: something like Clarion6_9031. The cleanest way to proceed would be
to install a clean Clarion6_updates directory from the original CD, then update it with each of
the releases/hotfix, and each time do the procedure I am going to describe. That way you
would have all SoftVelocity releases under version control. If you did not make any
modifications to SV shipped files, I would recommend this as the best start.

Now that I have a Clarion6_9031 directory, I need to tell version control that I am importing a
"vendor update". I select the first directory from my "vendor update directory tree" that I want
to have under version control, BIN, right click and select "import Module" in the popup menu.
It is important to check that the directory name matches exactly the directory name existing on
the server, as I want this new import to go to the same directory on the server where my

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (3 of 19) [29/04/05 4:14:53 PM]

http://www.multiedit.com/

Version Control with CVS and Clarion 6.x

Clarion tree is. Only my local directory, to import from, must be different. WinCVS run an
import filter, to differentiate between text files and binary files. There is normally no
correction to be made here, so I click OK to go to the Import Settings Window.

What I am interested in, in this window, as seen in Figure 1, are the Vendor tag and Release
tag settings. Vendor is SoftVelocity, release is Clarion_6-1_9031. Note that you can't have
spaces in a tag name. Note also that, my server being a Linux box, I have to be careful with
cases. For instance, if on your server the directory is Bin, rename the directories on your
"vendor update" directory tree as created by Clarion's install to match exactly; if you import a
BIN directory, you will create another directory, not update the existing one!

Once you click on OK, CVS will update your BIN directory on the server with SV's latest
patch.

Do the same for each directory under version control.

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (4 of 19) [29/04/05 4:14:53 PM]

Version Control with CVS and Clarion 6.x

Figure 1. CVS vendor Import.

Once you are done importing Modules for this new release, select your Clarion 6 working
directory from WinCVS, and select Update for each directory under version control. Now, if
you think this is a slightly tortuous procedure to update Clarion, and take 30 minutes where it
took usually less than five, I will entirely agree with you! So, where are the benefits?

They are almost too numerous to list.

First, it's now pretty easy to see what has changed between two revisions. For example, I can
see that AbFile.clw (Figure 2)did not change at all between the last three hotfixes, while
AbDrops.clw (Figure 2) has a change between 9029 and 9030. How do I know this? I just right
click on the files, and select Graph from the popup menu:

Figure2. AbFile and AbDrops graphs

Verrsion 1.1 is the original version, created when I imported the whole module into CVS (I
was on hotfix 9028). You can see that for ABFile, vendor version 1.1.1.2 has all three release
labels pointing to it, indicating it's the same version and there has been no changes, while
Abdrops has only 9029 pointing to revision 1.1.1.2, and 9030 and 9031 pointing to revision
1.1.1.3. I can as easily look at those changes. With AbDrops.clw selected, I select Diff from
the popup menu. In the dropdown list box on top "Diff compare options", select "Two
revisions/tags/branches or dates against each other", as seen on Figure 3, Diff settings..

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (5 of 19) [29/04/05 4:14:53 PM]

Version Control with CVS and Clarion 6.x

Figure 3. Diff settings.

For revision or date #1, click on the lookup button to have "select tag/branches" displayed
(Figure 4), select the older version, then select the newer for Revision or date #2.

Don't forget the check the box "Use the external diff" if you want to see the changes in your
preferred compare program. I use Beyond Compare.

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (6 of 19) [29/04/05 4:14:53 PM]

Version Control with CVS and Clarion 6.x

Figure 4. Select a tag/branch

Among a few other lines changed (Beyond Compare shows six sections different, Figure 5), I
can discover that 9030 and 9031 have a new ResetfromItem method in the
FileDropComboClass. I could have discovered the same thing reading SV release notes
item (FEATURE: New method to reset the FDCB to an item in the list. ResetFromItem
PROCEDURE(LONG Item)), but that does not tell me which file is involved and how the
code looks like, and where would be the fun, anyway?

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (7 of 19) [29/04/05 4:14:53 PM]

Version Control with CVS and Clarion 6.x

Figure 5. Comparison with Beyond Compare (view full sized image)

Tagging a product release (version)

One of the most recurrent problem of any software company, either individual or corporation,
is to be able to freeze a development environment at a specific point in time, matching the
release of a product.

Let's say you proudly release version 10.09 of your killer application, and immediately start
working on the next, the BIG one, version 11, which will have all the features you have been
dreaming to implement for so long. You conscientiously update your third party products, as
well as your Clarion version, change a few templates, and work, work, work....

Suddenly, the phone rings. Your biggest, most important client has discovered a showstopper
bug, while you are still months away from releasing version 11. You know you have to
immediately stop any new development to fix that bug. And then, it hits you. You can't!

You can't because you have no ideas what version of each third party tool you were on. When
you loaded the APP you have so preciously backed up and labeled Killer App 10.09, you get
tons of error messages, templates missing, prototypes of functions and classes changed, etc,
etc.....

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (8 of 19) [29/04/05 4:14:53 PM]

http://www.clarionmag.com/cmag/v7/images/v7n04cvs-fig4.jpg

Version Control with CVS and Clarion 6.x

OK, maybe that's a bit of a caricature, as it's possible to backup the entire Clarion directory
each time you have a new release, but, I don't do that systematically enough, and I know that
this is not purely a fairy story…

So, how do you use CVS to avoid this kind of Clarion developer drama?

Modules

To manage complete versions of your development environment you have to define a module
on your server.

CVS use the word "module" for any directory in your server repository. Here, we are talking
about a logical, or virtual, directory, not a physical directory.

So, what is a logical module, seen from the server? It is a way to group files and directories
belonging to a project. In fact, it's a pretty simple ASCII file, named, guess what, "modules",
residing in your server's CVSROOT directory (which was automatically created when you first
initialized the CVS server, or your local installation).

I would suggest, if you have not already done so, that you Checkout CVSROOT somewhere on
your local drive, so that you can edit your version control configurations files, and commit
them, without sitting in front of your server. You will even be able to go back if you make
some mistakes, as this a way for CVS to put itself under version control! (Please, please, if you
are on a standalone machine, never directly update files in the repository!)

To demonstrate a module, I will use the Clarion example Invoice application. But to make the
example more realistic, I will move the directory to an Invoice directory on my drive. What I
want to have in this Module for any Invoice product release is everything that I might need to
have later on to be able to change and recompile. This means I need to include the directories
and files required by the application, such as any Clarion or third party BIN, LIBSRC,
TEMPLATE, and IMAGE directories, as well as my working directory. I would need to add to
that any other file/directory used in my final product, like the install script, SQL scripts if any
are used, etc, etc.

To put my new folder Invoice under version control, I select it from WinCVS. I then right-
click on it, select Import Module from the popup menu; the import filter window show what
files will be imported as binaries, and which one as text. As for now I am not digging into
Clarion 6's use of CVS, I leave aside APVs and DCVs, the renamed TXAs and TXDs
generated by Clarion for Version Control. I will let CVS handle APP and DCT files, which it

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (9 of 19) [29/04/05 4:14:53 PM]

Version Control with CVS and Clarion 6.x

recognizes as binaries. (I will look at Clarion 6 integration with CVS later, but this will show
to you that, even if you have an older version of Clarion, you can benefit from CVS, although
not with the maximum flexibility).

Here is what the graph for Invoice.App looks like after initial import (figure 7). For an initial
import from WinCVS and with CVSNT as server, you need to select "Don't create vendor
branch or release tag, on the tab import settings, and "Create CVS directories while importing"
on the Import options tab.

Figure 6. Invoice after initial import

Now, if you open the Modules file from your CVSROOT directory, you will see that it
includes some kind of help text, but as with many Unix-originated documents, you can't say it's
too user friendly.

I am interested in the -a option, aliases. Here is what my Invoice module looks like (line breaks
added):

INVOICE -a Invoice Clarion6/BIN Clarion6/Template
 Clarion6/LIB | Clarion6/LIBSRC Clarion6/images
 Clarion6/3rdParty/Template | Clarion6/3rdParty/bin
 Clarion6/3rdParty/libsrc

As you can see, it's a simple list of directories. Be careful – these must be the full directory
paths from inside your CVS repository, not your machine! And if your server is Linux, you
had better type the exact case, or you will have errors.

Let's say that after some last modifications to Invoice.app, I am ready for release. To mark the
big event from a CVS point of view, I want to "tag" this module, which is like taking a
snapshot of the state of each file in all those directories.

To do this, I go to the Remote menu and select the Create a tag by module option. To be sure
that I select the INVOICE Module, not just my Invoice directory, I click on the lookup button
on the right of the drop down list box, to access the server defined modules, and enter the name
for my tag (Note that spaces and dots are not allowed).

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (10 of 19) [29/04/05 4:14:53 PM]

Version Control with CVS and Clarion 6.x

Now, be careful! With CVS (I am not sure about CVSNT) there is tagging and then there is
tagging! If you tag by Module, using the Remote menu option, you tag on the server, that is,
the tag will be put on the HEAD (last revision), which seems pretty normal. But sometimes
that's not what you want! Example: You carefully update Clarion 6.1 as soon as SoftVelocity
release a hotfix, test it and develop with it, as I described above. But, you have another
directory(or machine) for your production application, which you don't update to the latest,
preferring to release from a stable version. In that case, you would use Modify/Create a tag,
rather than Remote/Create a tag by module.

Modify will tag relative to the currently active version, indicated in the graph by the little
document icon, rather than systematically to the HEAD (The HEAD being always the last
version, active or not). This means that, if you are in a multi-developer environment, you might
very well be polishing a new version, for which you are using Clarion 6.1, built 9028 (for
example), while on the server, the last version is Clarion 6.1 build 9032. You might very well
use this latest version from another machine, for tests and maybe development of a new
application. For your current work, if you develop with 9028, you want to tag 9028 with your
production files, which is what I mean by "the currently active version". If this is the case, you
will want to use Modify/Create a tag, as Remote/Create a tag would tag 9032. It might sound
more complex than it really is. Just sit in front of WinCVS on your machine, tests those
options, and you will quickly understand what this is all about.

Release

Here is the graph for Invoice.App immediately after release:

Figure 7. Invoice after tagging for release 10-9

Notice, on Figure 7, the little icon document with "01" inside. It shows that 1.3 is the currently
active revision, and the file is binary. It's your clue, if you have complex graphs with branches
and tagging, of where you are on the tree.

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (11 of 19) [29/04/05 4:14:53 PM]

Version Control with CVS and Clarion 6.x

Now, I work a little on my next invoice version, and commit revisions 1.4 and 1.5.

Now that I have updated and committed my work on Invoice.app, the phone rings, my
wealthiest (and best) client calls with a major showstopper bug found in Invoice 10.9. I need a
fix a.s.a.p. Problem is, I have some new and un-tested classes in my new version that I

introduced immediately after the release, as well as a few beta releases of third party tools. I
can't afford to fix the bug and send something to that client with all those un-tested changes.
Solution? Branching.

Branching Out

It's time to "Branch-Out", using my "release tag" as point from which to branch.

I need to rename my working directories before I make changes for this branch version, or else
when I checkout code for the branch, I will overwrite my working files. In CVS terms, I need a
new "sand-box"!

Practically, for the time where I will need to work on both my old version and the current
version, I will have an "Invoice_Original" directory, as well as a "Clarion6_Original"
directory. If I have defined my INVOICE module properly, checking it out should recreate
everything I need to work with my version at the time, so no worries, and my paths and
redirection file will stay correct. Now, you might wonder why it would be needed to create a
new "Sandbox" when I branch out?

The reason is that CVS does not treat binary files and text files equally. When I checkout the
branch, everything will be fine. But when I will want to go back to the trunk, that is my last
revision, out of the branch, after committing my changes on the branch, if I do an "update",
CVS will MERGE my text files, and not replace them, like it does for binaries, and that might
very well NOT be what I want! It is much better to work with totally separated directories, and
merge manually exactly what I decide to merge.

Important: Do not forget to commit your redirection file and .C6ee.ini file, if
you want to find your own settings when you will have to checkout an older
branch of Clarion.

Now that I have renamed my directories, I go to CVS Remote menu, and select the Create a
Branch option, as seen on Figure 8:

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (12 of 19) [29/04/05 4:14:53 PM]

Version Control with CVS and Clarion 6.x

Figure 8. Create Branch settings, tab Rtag Settings

Most importantly, I use the second tab, as seen on Figure 9, to select the point from which I am
going to branch out:

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (13 of 19) [29/04/05 4:14:53 PM]

Version Control with CVS and Clarion 6.x

Figure 9. Create Branch settings, Tab 2, tag Options

CVS lets me know that the branching went well (line breaks added).

cvs -d :pserver;username=xxxx;password=xxxx;hostname=
 192.168.1.105:/home/cvsroot... rtag -b -r Release_version_10-9
 Branch_of_Invoice_Version_10-9 INVOICE
cvs rtag: Tagging Invoice
cvs rtag: Tagging Invoice/HELPSRC
cvs rtag: Tagging Clarion6/BIN
cvs rtag: Tagging Clarion6/BIN/Flash
cvs rtag: Tagging Clarion6/Template
cvs rtag: Tagging Clarion6/3rdParty/Template/_BACKUP_
cvs rtag: Tagging Clarion6/3rdParty/bin
cvs rtag: Tagging Clarion6/3rdParty/libsrc
***** CVS exited normally with code 0 *****

It might surprises you to see this working just fine, without any error, when I just renamed my
directories! The branch/tag happened on the server, in the repository – the branch files don't
yet exist on the local drive.

To work on this older version, I need to checkout this branch. I go to the Remote menu,
checkout module (INVOICE), and on the second tab "Update options", as seen on Figure 10, ,

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (14 of 19) [29/04/05 4:14:53 PM]

Version Control with CVS and Clarion 6.x

I select my branch:

Figure 10. Checkout by branch.

Once you click OK, CVS re-creates the directories on your machine, and you are back in the
environment you had at the time you tagged your release!

Bug FIX!

For demonstration purposes, my bug fix is actually just a comment:

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (15 of 19) [29/04/05 4:14:53 PM]

Version Control with CVS and Clarion 6.x

Figure 11. Bug Fixed!

Fast and simple…but an excellent way to see what CVS does, even if this is a binary file,
although CVS is much better dealing with pure text files (you will see later what is at the same
place in my file AFTER release).

Let's have a look at the graph, too:

Figure 12. Bug Fixed on invoice branch.

During the commit, CVS lets me know I am actually working on the branch, telling me that the
new revision is 1.3.2.1, while the previous version was 1.3. the extra digits tells me that I am
not on the trunk anymore, and you might see on the graph the little document icon indicating
the active revision is on 1.3.2.1, which is the first revision of the branch

cvs commit -m "Bug Fixed!" invoice.app (in directory D:\Invoice\)

Checking in invoice.app;

/home/cvsroot/repository/Invoice/invoice.app,v <-- invoice.app
new revision: 1.3.2.1; previous revision: 1.3
done
***** CVS exited normally with code 0 *****

Now what happen if another developer on another machine continues working on the new

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (16 of 19) [29/04/05 4:14:53 PM]

Version Control with CVS and Clarion 6.x

version, not knowing I am working on the previous version? Nothing changes, as his active
branch is still the main trunk, and its commit would create revision 1.6.

Once you are done fixing your bug(s), compiling and delivering the fix to your client(s) you
check your changes in to CVS. Then you can delete your Invoice and Clarion working
directories, rename Invoice_original and Clarion6_original back to Invoice and Clarion, update
your module, just to be safe, and carry on….. Let's say I made some changes on the version I
have installed on my laptop, as seen on Figure 13. Here's the code I committed:

Figure 13. Last change made from the Laptop

No bug fix here – this is a new feature, so this branch is really separated from the main trunk.

And the matching graph on Figure 14 after I update from my main machine:

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (17 of 19) [29/04/05 4:14:53 PM]

Version Control with CVS and Clarion 6.x

Figure 14. Invoice after change 6 on the Trunk.

But, you are going to ask, what if I want to MERGE the fix that I did for the old version with
the new one?

Well, CVS allows that also. It's called "pruning back" to the main tree. There are some cases
where it might be needed and convenient to do so, but I would never attempt this at a whole
module level, as CVS doesn't know how to merge binaries. If you were actually trying this
with APP files and or DLLs/EXEs, CVS would rename your current files, and bring back the
branch version! Not good at all!

If you want to merge individual text files, you can update, with the option to "reset any sticky
tags", and "merge with one rev/tag". This creates a new revision as a result of the merge that
you will need to commit.

Now that you have a pretty decent idea of what's possible to do with CVS, I hope you are
impatient to install it and start using it, if you have not already done so. Next week I'll describe

how to set up a server-based CVS installation; if you want to install CVS locally, refer to
Nardus's article.

Bernard Grosperrin is a native of France, and has been a big fan of everything American since

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (18 of 19) [29/04/05 4:14:53 PM]

http://www.clarionmag.com/cmag/v7/v7n02basiccvs1.html
mailto:bernard@bgsoftfactory.com

Version Control with CVS and Clarion 6.x

his teens. He began visiting the US in 1996, and moved to San Antonio in 1998, where he
discovered his love of Mexican food. He and his lovely wife Gloria, who he met in Tulsa, now
live in California. Bernard has been programming and designing software and databases for 14
years, primarily with Clarion. His hobbies include flying radio-controlled airplanes and riding
his motorcycle. He loves aircraft of all kinds, and can't miss an opportunity to fly, whether it’s
in a glider, a World War II trainer, or a general aviation Piper or Cessna.

Reader Comments

Add a comment

http://www.clarionmag.com/cmag/v7/v7n04cvs1.html (19 of 19) [29/04/05 4:14:53 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=13509

Version Control with CVS and Clarion 6.x, Part 2

Version Control with CVS and Clarion 6.x, Part 2

by Bernard Grosperrin

Published 2005-04-21

Last week I explained the concepts behind CVS, and how these apply to Clarion developers. This week I'll

cover the CVS server and client installation and configuration in more detail.

I am not going to fully detail an installation for the server, as there are too many specificities, depending on
your own local configuration, needs, operating system, company policies, etc. I will just give you some pointers
as well as some directions you can take to improve on a basic install. For example, I will not expand much on
security, but I would suggest, mostly if you want to have collaborative work through the Internet, to look at
SSH tunneling.

My own server runs on Fedora Core 3 from Red Hat, so you may have to adapt these instructions for other

Linux distributions.

For Windows, installing is pretty straightforward, but I would suggest reading the documentation anyway if
you want things to run smoothly.

I recommend you do not use a shared directory for your repository. You need a server, and it would be a lot
better and safer in the long run if your repository was not visible in your network neighborhood. WinCVS 1.3
will not accept to work on a shared directory anyway.

You probably have an old machine somewhere you don't know how to recycle, or a computer you let the kids
play with. This could make a pretty decent CVS server with Linux, if you are diplomatic enough...

I just switched from using CVS (which is part of Fedora Core 3 distribution), to CVSNT, so this article is all
about CVSNT, and I will try to point out differences when necessary. (I recommend using CVSNT over CVS)

CVSNT Install on Red Hat Fedora Core 3

As CVS is part of the Red Hat Fedora Core 3 distribution, I will simply upgrade the already-installed CVS to
CVSNT. There is a perfect upward compatibility between CVS and CVSNT, so it's not a big deal to switch,
even if you are already using CVS extensively. CVSNT Wiki has a pretty good explanation, which I followed
step by step: http://www.cvsnt.org/wiki/InstallationLinux

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (1 of 15) [29/04/05 4:15:05 PM]

http://www.clarionmag.com/index.html
date:%20%20%20%20Thursday%20February%2010,%202005%20@%2013:47
htttp://www.redhat.com/
http://www.cvsnt.org/wiki/InstallationLinux

Version Control with CVS and Clarion 6.x, Part 2

First, don't forget to remove your pre-existing CVS installation with the command:

rpm –e cvs

If you are installing CVSNT on a machine that has no previous CVS installation, you should at first create a
directory to be your CVS repository, as well as a cvs user and group, and give the cvs group all the rights to the
cvs directory tree.

You can install a binary RPM, but I prefer to install sources when available, and build the application on my
machine.

Then from inside your cvsntxxxx directory, build CVSNT from the source with the following three commands:

./configure
make
make install

Depending on your hardware this can take a bit of time, but it really works just fine, and ensures that CVSNT is
correctly built for your particular Linux installation.

As indicated by the CVSNT Wiki page, rename and modify the Pserver file. You just have to indicate the
directory that you are going to use as CVS repository.

Then, you have to build up your cvspserver file. Here is mine (line breaks added):

service cvspserver
{
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 passenv = PATH
 server = /usr/local/bin/cvs
 server_args = -f --allow-root=/home/cvsroot/repository
 --allow-root=/home/cvsroot/public_repos pserver
}

Obviously, you will have to adapt to your own paths. Restart xinetd (using the command service xinetd restart),
and you should have access to your new CVSNT server!

Continue to follow the CVSNT Wiki page for Lockserver and the repository setup if this is a new install for
you. Don't init your repository if it already exists !

If you need/want to install SSH, you need to do so now. If you are going to work from your own local network,
without external access, you don't need to worry about SSH.

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (2 of 15) [29/04/05 4:15:05 PM]

Version Control with CVS and Clarion 6.x, Part 2

Now it's time to set up the WinCVS client.

WinCVS install and configuration.

Nardus explained the WinCVS installation in his article, and I encourage you to read it now if you haven't

already. Just a little remark: his install is on a standalone windows machine. You don't need a full CVSNT
install if you have a separate server, and you will not have the Locking service running on your machine, as it
has to be running on the server.

You can set a CVSROOT environment variable, but I don't really recommend doing so, as WinCVS allow you
to work with multiple servers; as you can very well have your own in-house server for your own work, an
outside server for some work you are collaborating on, and maybe a few open-source CVS servers. (For
instance, you can checkout the sources for WinCVS and compile it yourself if you have Visual C++ 6.0). All
the settings are kept on a per directory basis. WinCVS will ask you the settings when they are needed, but most
of the commands use what is stored in your (hidden) CVS directory created each time you checkout a module.

Configure your Applications and Directories to work with Clarion6 and CVS

You know that Clarion, unlike many other tools, does not store all source in ASCII files (unless you program
entirely by hand rather than using APPs and DCTs). And CVS doesn't know how to merge binary files that
well. Luckily enough, with Clarion 6 SoftVelocity introduced a way to customize the Version Control feature,
so that it can work with CVS, among other versioning software.

When you use the Version Control interface, Clarion will create a TXA file (renamed APV) for each module in
your application, plus one for Applications Options, as well as a TXD File (renamed DCV) for your dictionary.

I suggest that you rename each of your modules in a more meaningful way than Appli001, Appli002, etc, if you
want to know what each file is and what it does! I will demonstrate this with the Clarion Invoice application
that I previously put under Version control the "brute force" way, that is the binary app file itself.

As seen on Figure 15, Invoice has only four modules, Invoice.clw, Inv001.clw, Inv002.clw and Inv003.clw.

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (3 of 15) [29/04/05 4:15:05 PM]

http://www.wincvs.org/
http://www.clarionmag.com/cmag/v7/v7n02basiccvs1.html

Version Control with CVS and Clarion 6.x, Part 2

Figure 15. Invoice Modules "out of the box"

Each module has about seven procedures. This will not help me much if I have three or four programmers
working together, as they all would have to commit the same module once they are done. And the file names do
not make it clear where PrintInvoice is, for example.

So the very first thing to change, in order to make it easier and more efficient to use CVS with Clarion, is to
split my application in more modules, and give them meaningful names. I don't absolutely need to have one
procedure per module, but it's better if I can reach that level of granularity. (I am not trying to say that it is
mandatory to rename all your modules, version control will work just fine without doing this, but, in the long
run, you will thank me for this suggestion.)

To manually change your modules in a Clarion application, select the procedure you want to change, go to the
procedure menu, select change module, then select New Module, give the name you want, and validate. It's as
simple as that!

Okay, I know it's a long and tedious job, mostly if you have hundreds of procedures per application in 30 or 50
apps! But it's time well spent, and it will pay back very quickly.

You can see in Figure 16 below how the application looks like after this transformation.

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (4 of 15) [29/04/05 4:15:05 PM]

Version Control with CVS and Clarion 6.x, Part 2

Figure 16. Invoice Modules after transformation for CVS.

Now I can look at my files and have a pretty good idea of what procedure they contain, and what they are
supposed to do.

On your file menu in Clarion, you may have noticed the new options Check In and Check Out. Click on Check
In, as seen on Figure 17.

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (5 of 15) [29/04/05 4:15:05 PM]

Version Control with CVS and Clarion 6.x, Part 2

Figure17. Checkin Dialog from Clarion.

Figure 17 shows all my modules with the task "add" in front of them. This seems pretty logical, as I am just
creating these modules and they are not yet under version control. The only thing I have done so far to
configure Clarion with CVS is to select CVS (Button Configure CVS, then load commands, select CVS), and
put a "rem" on the line in front of each set of commands! As these commands are all command line, a rem
instruction will just disable any command, but Clarion will still create my APV and DPV files, and for now
that's all what I want from Clarion. I'll do the rest in CVS.

Notice that I use a subdirectory named CVSApplicationName as the Archive directory for Clarion, so that the
APV and DCV files are not mixed with my other files in my working directory.

So, what happens now if I click OK on this dialog? I will see the DOS command window pop up a few times,
and not much more. Once finished, I can see in my CVSInvoice\Invoice subdirectory that I have my APV files,
one per module. I still need to do the same for my dictionary, to get a DCV file the same way.

As this new sub-directory is not under version control, yet, I need to import it. Clarion will (if I wish) allow me
to commit changes, but I first need to repeat the same process explained by Nardus in his First Import
paragraph: Select my CVSInvoice Sub-directory, right click, select import, OK the filter, check the box to not
create vendor tag, and to create CVS directories while importing.

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (6 of 15) [29/04/05 4:15:05 PM]

Version Control with CVS and Clarion 6.x, Part 2

Figure 18. cvsinvoice\Invoice before adding the files to CVS, all flagged as unknown.

Once done, CVS shows me the directory with my files now having a revision number, as seen on Figure 19:

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (7 of 15) [29/04/05 4:15:05 PM]

Version Control with CVS and Clarion 6.x, Part 2

Figure 19. cvsInvoice\Invoice after adding files to CVS

After this initial import, I can, if I want to, configure Clarion so that I would be able to commit directly from
Clarion. Everything has advantages and inconveniences, but I am sure many of you will want to be able to
directly commit from Clarion. I will show to you how to do this, but I also like the control WinCVS gives me,
and the capability to make a lot of operations automatic. At the end, you can judge which method seems better
for you.

To make Clarion work properly with CVS, the easiest way is to look at the commands generated by WinCVS:
For example, If I select commit for a file, WinCVS show this command in the console:

cvs commit -m "no message" UpdateCompany_Invoice.APV (in directory
D:\Invoice\CVSInvoice\)

So, in Clarion, I enter the exact same command, adapting to what Clarion indicates for comments, files and
directories, as seen on Figure 20:

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (8 of 15) [29/04/05 4:15:05 PM]

Version Control with CVS and Clarion 6.x, Part 2

Figure 20. Commit settings in Clarion (view full sized image)

As indicated earlier, as I am making some experiments and tests, right now, I simply put rem in front of each
command line to not commit directly,as in Figure 20. You will need to have the directory where CVS is located
in your path, for Clarion to be able to use it. If you install WincvS 1.3 xx, this directory should be

C:\Program Files\GNU\WinCvs 1.3\CVSNT

As you might have guessed, Commit in CVS terminology, is the same as check in for many other Version
Control Systems. (The terminology is important. You don't "check in" with CVS, as you are free to continue
working on your files after committing).

For "Add" the WinCVS command is add, as seen here (line break added):

cvs add BG_FILE_2.CLW BG_FILE_2.INC
 (in directory D:\Clarion6\LIBSRC\)

There are no comments for add with CVS, as the files are simply filtered and flagged to be committed. The
comment will be included when you commit the files, so after adding your modules from Clarion, you need to
go to WinCVS and commit your files from there.

Remove is like add, but with different consequences. Here is what the console displays on a delete (line breaks
added):

'BrowseAllOrders_invoice.clw' has been
 moved successfully to the recycle bin...
cvs remove BrowseAllOrders_invoice.clw
 (in directory D:\Invoice\)
cvs server: scheduling
 `BrowseAllOrders_invoice.clw' for removal
cvs server: use 'cvs commit' to remove
 this file permanently

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (9 of 15) [29/04/05 4:15:05 PM]

http://www.clarionmag.com/cmag/v7/images/v7n04cvs-fig19.jpg

Version Control with CVS and Clarion 6.x, Part 2

This command remove does two things: it deletes the file from your disk (in the Windows way, moves the file
to the recycle bin), and it flags it for removal from the server repository. It's important to do both, as if you
simply delete the file from your disk, the next time you update this directory, CVS will re-import it, and you
might have some surprises when compiling if you end up with modules supposedly eliminated. (That is, unless
you use the macros included in the source for this article – those macros read the project in the Application
Options.APV file, avoiding any errors of this kind).

As with the add command, the files to be deleted have to be committed to be effectively removed from the
repository.

The last set of commands to put into Clarion is for checking-out, or updating in CVS language.

cvs update -P Main_Invoice.APV
 (in directory D:\Invoice\CVSInvoice\)

Again, I will translate this command into Clarion with cvs update -P "%P\%F"

NOTE: I never check out directly from Clarion, mostly because it takes too long, as I have to go
to each module individually and set the option one for each one. Also, for some Applications, it
seems that Clarion trashes the app file if I don't import the whole TXA at once, as when the
"application Options" files is merged with the current one, the AppGen does not seem to find the
embeds properly, and duplicates the code in orphan embeds.. Happily enough, the set of macros
and Clarion utility I've included with this article makes updating your application(s) a breeze.

Directory Structure

As you might have guessed from the above, I work with a standard directory structure, to make it easier to not
mix modules in a multi application product, and to make committing and updating as automatic as I possibly
can. This structure is mandatory for my macros to run properly.

My directory tree looks like this:

Product
 Cvsproduct
 Appname
 Appname

All that is fine and dandy, but you might be a bit reluctant to adopt this same structure if you have a few
products, and each one of them has 30-50 applications. That's a lot of work just to be able to put your
applications under version control! WinCVS can be adapted more precisely to your tools and environment via
macros written using Python, as seen on Figure 21, so I wrote a macro just for that, it takes one click and a few
seconds to create the structure described above:

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (10 of 15) [29/04/05 4:15:05 PM]

Version Control with CVS and Clarion 6.x, Part 2

Figure 21. Macro to prepare directory selected from the Macros Menu.

You must have selected the directory you want to prepare, and this directory must contain at least one .APP file
for this macro to do something.

If you are curious about Python, Figure 22 shows the code for this macro:

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (11 of 15) [29/04/05 4:15:05 PM]

Version Control with CVS and Clarion 6.x, Part 2

Figure 22. Prepare for CVS python Macro source code

I am far from being an expert in Python, and I am sure this code could take less lines, but I always prefer my
code to be readable. And Python code is very readable, due to the mandatory tabs. As an example, I will use the
Clarion DLLTutor example, as this directory has four applications. Here is the console output in WinCVS once
the macro has finished working:

Preparing D:\Clarion6\Examples\DLLTUTOR to be used with WinCVS and Clarion6.
Create directory D:\Clarion6\Examples\DLLTUTOR\cvsDLLTUTOR.
Create directory D:\Clarion6\Examples\DLLTUTOR\cvsDLLTUTOR\Allfiles.
Create directory D:\Clarion6\Examples\DLLTUTOR\cvsDLLTUTOR\Dlltutor.
Create directory D:\Clarion6\Examples\DLLTUTOR\cvsDLLTUTOR\Reports.
Create directory D:\Clarion6\Examples\DLLTUTOR\cvsDLLTUTOR\Updates.
...done Preparing D:\Clarion6\Examples\DLLTUTOR for CVS.

And here is what I get in WinCVS file manager once I refresh the display (F5)

Figure 23. DLL tutor directory after the macro has been launched.

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (12 of 15) [29/04/05 4:15:05 PM]

Version Control with CVS and Clarion 6.x, Part 2

Reasons to use WinCVS rather than Clarion

The main reason to not interact with CVS entirely from Clarion is that Clarion works exclusively file by file. If
you are a member of a development team, you need to periodically update your working directory, and it's a lot
faster and easier to do so by updating the whole directory, rather than updating each module of an application.
Imagine an application of about 25, 30 DLLs, one EXE, with an average of 25 procedures per application.
WinCVS allow you to update all this source with one click! From inside Clarion, you will have wrist pain
before being done with your 750 modules.

But, you are going to tell me, how can I use the APV's files that I just updated from my co-workers, without
doing mouse gymnastics from inside Clarion?

As you have seen in the screen shot showing Clarion CVS macros, and with the example above, there are
macros that I use to rebuild the TXA and DCT files from the APVs and DCVs files. These are in the
downloadable zip at the end of this article.

Administration, automatisation

CVS works just fine without ever changing anything in your administrative files, but there are numerous cool
features you can add to your CVS toolbox.

I talked a little about CVS administration earlier, when I suggested that you checkout your CVSROOT module,
and update the modules file to be able to tag and branch your last release.

There is also a useful hook for a notification feature, by which CVS emails all the users when files have been
committed to certain directories. CVS does not do this directly, it just provide hooks, in the form of files. These
files live in your CVSROOT directory, and which you can use to run scripts. CVS reads those files, and
executes anycommands they contain. For example, the loginfo script will execute after commit, once the log
file is written, while the commitinfo script will execute prior to commit, to check that a commit matches certain
criteria. (Note, all this works on Linux and should work on Windows, but it's possible some scripts may need
an adaptation for Windows). You may also want to try Bo Berglund's CVSMailer script.

To get email notification to work, you need to use your loginfo file, found in CVSROOT, as well as a Perl
script (part of the code to download with the paper). Here is a line of my loginfo file (line breaks added):

DEFAULT $CVSROOT/CVSROOT/mailer.pl -f
 $CVSROOT/CVSROOT/commitlog –m|
 bernard@bgsoftfactory.com %s

DEFAULT means "everything else", as in you can have other lines before, specifying other directories, and
using other scripts. You can also have as many emails addresses as you want/need. Commitlog is the log
written after a commit, so this line means that the Perl script receives that log as parameters after a commit,
along with the specified email address(es) and the name of the files being committed. The script parses the log
and sends an email to each address specified on the line,as this one I just received while making changes on
Invoice.app:

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (13 of 15) [29/04/05 4:15:05 PM]

http://web.telia.com/%7Eu86216121/cvsmailer/CVSMailer.html

Version Control with CVS and Clarion 6.x, Part 2

Date: Thursday February 10, 2005 @ 13:47
Author: bernard

Update of /home/cvsroot/repository/Invoice
In directory linuxserver.bgsoftfactory.com:/tmp/cvs-serv30831

Modified Files:
 Tag: Branch_out_Invoice_for_Version_10-9
 INVOICE.app INVOICE.BPP
Log Message:
Change made on the branch.

This is very useful, mostly if you have more than one person working on a project. It helps to know who did
what, and to remind you that you may have to update your code base before going to work on some of these
files.

There are entire books explaining a lot more about CVS that I would ever be able to, and I suggest that you
refer to them if you want to master CVS, along with the on-line documentation already suggested by Nardus. I

have been using the following books to learn CVS and discover its possibilities:

● Essential CVS, O'Reilly, ISBN 0-596-00459-1
● Open Source Development with CVS, Paraglyph press, ISBN 1-932111-81-6

Tools, ideas

There is no real limit to what can be done to improve and extend CVS. For my work in Clarion with CVS, I
have written a few macros in Python, as well as a couple of utilities in Clarion to be able to save time and make
CVS a more pleasant and safe experience. You will find those in the downloadable zip at the end of this article.

One thing I have not done yet is link an update command on a directory with the macro reloading the apps in
Clarion and a batch compile utility. That way I could update and recompile a whole product made of about 50
DLLs!

As of now I am working on a little utility which lives in the system tray, and grabs any email with "CVS
update:" as subject. This way I avoid cluttering my mailbox, and I'm reminded of what I may need to update.

The administrative files in CVSROOT allow running scripts as "post-commit", and this could be used to clone
your working directory with another directory to which each newly committed file would be copied. That
would be an excellent way to have an always up-to-date copy of your work, on which you could periodically
run a batch compile. As you can see, the possibilities are endless.

I hope this introduction to CVS has given you the desire to try and see for yourself what version control with
CVS can do for you. If you have any questions, feel free to email me. I have also set up a page on my web site

dedicated to CVS and Clarion. You can find further assistance there

Download the source

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (14 of 15) [29/04/05 4:15:05 PM]

http://www.clarionmag.com/cmag/v7/v7n02basiccvs1.html
http://www.bgsoftfactory.com/clarion/CVS
http://www.bgsoftfactory.com/clarion/CVS
http://www.clarionmag.com/cmag/v7/files/v7n04cvs.zip

Version Control with CVS and Clarion 6.x, Part 2

Bernard Grosperrin is a native of France, and has been a big fan of everything American since his teens. He

began visiting the US in 1996, and moved to San Antonio in 1998, where he discovered his love of Mexican
food. He and his lovely wife Gloria, who he met in Tulsa, now live in California. Bernard has been
programming and designing software and databases for 14 years, primarily with Clarion. His hobbies include
flying radio-controlled airplanes and riding his motorcycle. He loves aircraft of all kinds, and can't miss an
opportunity to fly, whether it’s in a glider, a World War II trainer, or a general aviation Piper or Cessna.

Reader Comments

Add a comment

http://www.clarionmag.com/cmag/v7/v7n04cvs2.html (15 of 15) [29/04/05 4:15:05 PM]

mailto:bernard@bgsoftfactory.com
http://www.clarionmag.com/cmag/comments.frm?articleID=13516

Providing Good Customer Support

Providing Good Customer Support

by Drew Bourrut

Published 2005-04-22

They call day and night, email you even on weekends, and actually expect you to help...
customers! Arggh! But without them, you're out of business. So what is the best way to
manage tech support? In this article I'll first define what I believe is good tech support, and
then I'll suggest ways to assure that type of support.

Let's assume you have a product that requires you to answer questions about everything
from perceived bugs in the product, to how to use some extremely simple feature. Let's
further assume that you are interested in providing good support, both because you believe
it's the right thing to do, and because it may help to increase business.

The customer's perspective

The first thing to do is to not look at support from your perspective but rather from your
customer's perspective. What does the customer want? Above all, the customer would
rather not have to contact you in the first place. So the easier your product is to use and the
more bug-free and reliable the product the happier the customer (and having a too-buggy
product could cause you to go out of business).

Second, try to anticipate your customer's preferred way of contacting you. Offer choices.
Email and telephone are perhaps the most common. If the customer is going to use email,
s/he probably doesn't want to fill out a complex web application form to ask a simple
question. If by phone, the customer doesn't want to have to push a myriad of buttons
before being given to the appropriate person. Further, customers don't want to be on hold

http://www.clarionmag.com/cmag/v7/v7n04support.html (1 of 7) [29/04/05 4:15:07 PM]

http://www.clarionmag.com/index.html

Providing Good Customer Support

for hours.

Third, if the problem cannot be resolved immediately and requires work on your part, the
customer almost certainly wants to be kept informed of the status of the problem.

Finally, when the problem is resolved, the customer wants to know that the problem has
been resolved.

Let me give a simple example. I have cable Internet access. Suppose one day I discover
access to the Internet is down. I call my ISP and they say they will have to research the
problem and will contact me. But I'm impatient, so after an hour I check... No service...
Another hour goes by... no service... another hour... no service.

At some point I stop checking. Two days go by and I've heard nothing. Then I decide to
check, and discover I have service. Should I be happy? I should be furious. When was it
fixed? For how long have I had service and not known it?

How could this have been made better? My ISP could have said, "We will phone you
when the problem is resolved." They then could have had some sort of automated system
make the phone call and play a message stating that the problem had be taken care of. I
would have been a happy camper!

So, when there is a problem that cannot be immediately resolved the customer probably
wants feedback, and for such a customer probably no amount of feedback is too much.

Providing support

Okay, you're committed to good support, but it takes time to provide good support and you
don't have the time. Simply put, this is nonsense. The key is in the methodology. You need
to create a process that works for you, and then use that process each day every day, with
every situation, big or small. For example, I use my own product (which I call PSI HD) to
track problems and their resolutions.

My process

Every problem a customer reports to my company goes through the following process:

http://www.clarionmag.com/cmag/v7/v7n04support.html (2 of 7) [29/04/05 4:15:07 PM]

Providing Good Customer Support

● Customer contacts me
● I enter the date and time of the contact, and a synopsis of the problem.
● I now either solve the problem or add it to the queue of problems to be

solved.
● If I can immediately solve it I note what I did, complete the call or email,

and then move the problem to the solved problem folder.
● If the problem must be added to the queue, I state how long it may take (is it

hours, days, weeks?) and tell the customer.
● I keep the customer updated. For example, I have a standard form email

letter I keep, and which I periodically send to the customer telling him that
we are still working on the problem; in the email I also note any parts of the
problem that have been resolved. It takes seconds to send out this email.

● When the problem is resolved, I call the customer if they've called me, or
email them if I was originally contacted by email. I state the resolution of
the issue.

● I note in the log what I've done, and then move the logged entry to the
completed folder. By the way, this folder becomes a great resource for
solving similar problems.

● Finally, regardless of the situation, after a period of time I double-check by
either calling the customer or sending another email to ask if things are still
okay.

● I periodically update the above process to make it better and more efficient.

The routine

The key to success is in the routine. Do it the same way each and every time, and always
do what the customer requires.

Here's one more example. We were referred to a client (by one of our current customers)
to solve a spyware problem. Simple, we went, we ran various pieces of software, and the
spyware was reported as removed. We left a bill. The next day we called, and asked "Is
everything okay?" We were surprised to discover that the same piece of spyware was
back. We went back twice before it was fully removed. Time passed and that customer
moved to a new office. We were asked to make sure all of the technology-related products
were properly installed and set up at the new location. When I asked why we were being
asked to provide this service, the customer said, "You're the first company that ever called
us back after a service call to make sure things were working. And when they weren't you
took care of it and checked back again. I know you'll do the right thing."

But let's take a deeper look at this idea of routine. Fast food chains know about routine.

http://www.clarionmag.com/cmag/v7/v7n04support.html (3 of 7) [29/04/05 4:15:07 PM]

Providing Good Customer Support

They know that if you do it the same way each time you spend less time than if you re-
event the wheel over and over again. You may see having a routine as something that
diminishes creativity. I argue that's not so. Rather, having a good routine allows more time
for the creative process. I have various routines and so do you. It may be getting up at the
same time each day or eating dinner at a specified time. In general, routines are what make
creative time possible.

Creating a routine

There are three keys to creating a routine that you will be able to follow.

● Put it in writing
● Automate as much a possible
● Re-work it when it fails to handle a situation.

Putting a routine in writing is key because a written procedure doesn't depend on your
potentially faulty memory. Also, a written procedure can be revised. If you simply try to
create a routine in your head you'll fail on two fronts. First, you won't be consistent, and
without consistency you don't have a routine. Second, it's easier to more thoroughly re-
work a written routine than to depend on your memory.

For example, suppose you create a routine for handling un-solicited calls. Occasionally
you'll have a situation not covered by your routine. By writing down the routine you can
easily modify it when it doesn't work.

Here's an actual example. When I receive an unsolicited call at home, I do the following:

● Ask the person's name and company, and write it down
● Note the date and time of the call
● Ask to be put on the "Do Not Call" list.

Recently a company has been calling my home with a completely automated message. I
could not tell them to not call again since there was no person to talk to. But at the end of
the message there were instructions to press the numeral two to be put on their Do Not
Call list. I pressed it. A week later I got another call from them and I had to listen to the
whole message again to learn what number to press to remove myself from their call list.
But this time when I hung up I changed my procedure and noted it on my form. I then
updated the written procedure to remind me and my wife of this change. I haven't stopped
them from calling but now I immediately hit 2 and hang up.

http://www.clarionmag.com/cmag/v7/v7n04support.html (4 of 7) [29/04/05 4:15:07 PM]

Providing Good Customer Support

Once you have a routine, automate it as much as possible. Our company has a holiday card
list, which I maintain using a piece of software that I use for no other purpose. For quite
some time I had a problem remembering what software to use and how to use it. I created
an automated procedure that, unasked, prints a document December 1st. This document
reminds me of what I need to do and how to do it. Shazam!

Finally, rework your routines. As you saw in the phone example I changed the routine
when it failed to work. And make a routine of revisiting your routines. You'll only make
the process better.

More on Automation

Here are three possible scenarios where automation can really help: a hardware
manufacturer, a software manufacturer, and a tree spraying company.

The hardware manufacturer

Let's say you build computers that are sold over the internet. You probably get two types
of support calls: "How do I?" and "It doesn't work!" calls. The "How do I?" calls are the
easiest to automate. Every time you get a question, you enter that question into your
support log. Then you log the solution into the same support log, and finally add the
question and solution to an online knowledgebase searchable by your staff as well as by
the customer. Don't just rely on the Internet version - by having an offline log you have
access even when your Internet access is down. The next time similar a question is asked,
the staff already have the answer. Further since the customer can find the answer online,
they may not call.

Hardware problems can also use automation up to and including issuing a Return Material
Authorization for computer return. But there is more you can do. When the computer is
received your system can automatically send an email to the customer stating that you are
in possession of their machine and telling the customer when they can next expect to hear
from you. When a tech puts the hardware on the bench and starts to look at the machine
this can trigger another automated email, and every time the tech notes what she is doing
to solve the problem that can also be emailed to the customer.

The customer who knows where things stand is less likely to be calling you and
complaining.

http://www.clarionmag.com/cmag/v7/v7n04support.html (5 of 7) [29/04/05 4:15:07 PM]

Providing Good Customer Support

The Software Manufacturer

Suppose you make a software product that you sell on the Internet. You know that when
you release version 1.0 that there are probably bugs in the software, and certainly there
will be updates and upgrades. So you're not going to be surprised when a customer emails
you saying they've found a bug. You can automate acknowledging the receipt of the
message. You can automate making sure the email is passed on to the correct person in
your organization. And you can automate keeping the customer updated on solving the
problem. Sometimes the customer may find a way to work around a bug. You can
encourage the customer to report these workarounds. Then finally all of this information
can be automatically added to an online searchable knowledgebase.

The Tree Spraying Company

I have a customer who has a tree spraying company. We've created custom software for
them that not only handles their sales and accounting functions but also helps them
automate handling complaint calls from their customers.. Typically, they get complaints
that a spraying was not done when it should have been, and complaints about the quality
of work. Perhaps they sprayed right after a rain storm and the customer wants a re-
spraying. They have a routine for handling both phoned-in complaints as well as emailed
complaints. They also could have an automated, online system that would allow their
customers to reschedule a missing or poorly done spray, and also find out more about tree
spraying in general. There they might learn that an hour after a rain storm is a great time to
spray against insects.

Summary

I've discussed those issues directly related to support from the customer's perspective.
Other things to consider include tracking your time, tying support and billing together, and
even handling issues of replace vs. repair.

What's important is that we can all do better at supporting our customers. Routines are
essential, and finding ways to automate those routines is just as important! You already
know that keeping the customer happy is good business and besides, that customer may be
me!

http://www.clarionmag.com/cmag/v7/v7n04support.html (6 of 7) [29/04/05 4:15:07 PM]

Providing Good Customer Support

Reader Comments

Add a comment

● » This is a very helpful article for me. I write software...

http://www.clarionmag.com/cmag/v7/v7n04support.html (7 of 7) [29/04/05 4:15:07 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=13517
http://www.clarionmag.com/cmag/discuss.frm?articleID=13517&position=1

Planet Clarion Transcript: Clarion.NET, and Trial Versions

Planet Clarion Transcript: Clarion.NET, and Trial
Versions

Published 2005-04-25

Dave Harms: This is Planet Clarion for March 30th, 2005. I’m Dave Harms.

Andrew Guidroz: I’m Andrew Guidroz.

Dave Harms: Good day.

Andrew Guidroz: Good day.

Dave Harms: On today’s show, we’re playing Part Two, we’re playing the secret tapes of
the conversation that I had with Bob Zaunere. Prior to the conversation that we played last
time - - is that too confusing?

Andrew Guidroz: No, I don’t think so at all. It’s sort of the prequel.

Dave Harms: It’s the prequel, exactly. That’s just the word I was looking for. Today we
play the prequel. This is Star Wars One.

Andrew Guidroz: That’s right. This is when you get to find out exactly who Bob Z. was
before he put on the black mask and the helmet. Bob’s going to cover some of the things
that happened before I got in the middle of the conversation. So it’s going to be primarily
Dave and Bob. We’ll do the take.

Dave Harms: Okay. In fact, it’ll be exclusively Dave and Bob.

Andrew Guidroz: Exclusively.

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (1 of 15) [29/04/05 4:15:10 PM]

http://www.clarionmag.com/index.html

Planet Clarion Transcript: Clarion.NET, and Trial Versions

Dave Harms: Yes.

Andrew Guidroz: Of course.

Dave Harms: All right, roll the tape. Let’s roll it.

<start of interview with Bob Z>

Dave Harms: How about if somebody wants to - can’t really wait for the subscription
program and they want to cut their teeth on .NET? What’s the best way to do that? Should
they be looking at getting C# or something like that?

Bob Z: Well, I guess I have two comments. I don’t think that C# is really the answer and -
although I think it is a great language - really, it’s pretty nice. But, at the end of the day,
it’s a language at the level of C code. So it’s entirely different from what we write in
Clarion. I think I mentioned, and it was often misunderstood, but part of the approach that
we took to doing the .NET compiler was to ensure that we could compile the same code in
C#, and compare the output and be able to debug either assembly, which is what they call
DLLs and EXEs in the .NET world, and to ensure that we could get equal performance to
anything done in C#, and equally to ensure that we didn’t - that we followed the right
paths and we’re following what Microsoft intended the language - intended the platform to
do, in the same manner. But what we’ve come to find out, not - no surprise there, but you
might write five lines of Clarion code and then when you get the equivalent C# code, you
might be looking at 150 to 200 lines, to do the same thing, particularly when dealing with
file structures.

Dave Harms: Yes, I think we Clarion developers are a little bit spoiled when it comes to
file handling, that’s for sure. So when are we going to get to see Clarion.NET?

Bob Z: The people who really are anxious to get into .NET and Clarion.NET probably
won’t have more than a few weeks to wait before they will be able to do so. And that
would be via the subscription program. The other thing is that Bob Foreman, and a couple
of others, have been hard at work on the beginnings of a whole .NET training course,
which will both introduce .NET as a platform, and what you have to know about it, and, of
course, from that platform lead you right through how to work with Clairon.NET. And
that’ll also be available, I don’t think more than 3 to 4 weeks out - the first of it. I mean,
this won’t be - it won’t be complete because to cover everything in .NET, you could easily
spend, I don’t know, a few months, and you’d be working pretty hard at it. Obviously it’s
a big - there’s a huge class library behind it.

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (2 of 15) [29/04/05 4:15:10 PM]

Planet Clarion Transcript: Clarion.NET, and Trial Versions

Dave Harms: I know, and obviously Microsoft thinks that .NET is the future. But what’s
in it for Clarion developers? What’s going to motivate people to start getting involved
with Clarion.NET now, as opposed to waiting a couple of years down the road?

Bob Z: Part of the problem that we wanted to address, really, is that it’s not for everyone,
right now, to say, "You know what? I’m going to call this API call." Or, "I want to use this
C++ library." And there’s some intricacies, depending on the API, or the library that
you’re working with, that go beyond what many people want to work with, or that is easy
to work with in the sense that it requires a lot of knowledge that you don’t get if you
haven’t worked in that world. If you haven’t worked in C++, then you’re probably not
going to feel comfortable working with a lot of the API calls, for example. We wanted to
try to make that not be the case with the .NET class library. We wanted to make it very,
very simple - so much so that you should be able to pick up any example code and go,
"Oh, okay. I’m just going to write that using Clarion syntax, to do the exact same thing."
And right now it’s kind of hard, for example, to go - a lot of guys go, "How do I make this
VB.NET code do the same thing in Clarion?" And it’s not easy. I read an article, not too
long ago, maybe a few weeks ago, that said, well, to set up a few classes to work with
ADO - not ADO.NET - and to take the NorthWind example, it would take 60 pages of
code, and with .NET, it’s going to take 140 to 150. But, if you think about it, for Clarion,
it’s going to take, I don’t know, two pages of code. When you think about it, it’s true -
three pages. And that is going to be true in Clarion.NET as well. So the point being is that
it would not be - it’s not a big leap to think that someone may look at Clairon.NET and go,
"You know, this really is going to make my database work much easier. But I have all this
other code and it’s in VB or it’s in C#." And you’ll be able to easily export the assemblies
and work with them from other languages, unlike - it’s a little difficult right now.

Dave Harms: Yes. It just opens up so many avenues, doesn’t it?

Bob Z: Yes, it really does.

Dave Harms: It’s quite something. So what is the status of Clarion.NET right now?

Bob Z: The Compiler project has just really made excellent progress. There’s always,
simultaneously, there’s the RTL, the critical parts of it are being "ported." There’s some
decisions left to be made as far as file drivers and file systems, particularly for ISAM files,
which aren’t well supported in .NET - obviously none of the proprietary ones like
TopSpeed and Clarion files are. There’s a lot to be said about the ADO.NET provider for
Btrieve, and whether it’s any good or not so good, or if to make it Access is better. And so
there’s some work to be done and some decisions left to be made in that area. And the

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (3 of 15) [29/04/05 4:15:10 PM]

Planet Clarion Transcript: Clarion.NET, and Trial Versions

window handling is a big, big thing. We tackled WinForms first, because WinForms is the
.NET way of doing Windows - period, across all languages. And we intend to support it
completely. And the implementation of the Clarion window handling will, of course, be
built on top of WinForms.

Dave Harms: So when people get this first look, they’ll basically be able to - it’ll be kind
of like, I guess, maybe the first alphas of Clarion for Windows, where you could do some
fairly basic stuff, but there will still be - or are you trying to get a lot of the RTL ready for
that?

Bob Z: Well, a lot of the - the file handling will certainly be ready. The windows will
probably have to be WinForm windows initially, for the very first release of it. So I
wouldn’t really characterize it as you’d only be able to do basic stuff. You’ll have less
versatility maybe, or more code to write is really what it boils down to, for window
handling.

Dave Harms: Yes, but you’ll be able to start playing with a new IDE and you’ll be able
to…

Bob Z: You’ll be able to write .NET code.

Dave Harms: How much of the IDE will be in that initial release - the new IDE?

Bob Z: Good question. Most likely AppGen will not be in a state that I’ll release it during
that time. It’s possible but I don’t think it will be. The new project system will be - which I
don’t know if we ever talked about that, but I think I mentioned, I did mention it at
DevCon and talked about it a bit - the solution based system. The fact of the matter is that
that will be kind of an interesting thing because in Clarion 6, at least, it’s very simple to go
and export your projects, from your app files, for example. And you’re going to be able to
build these solutions around them. And the project system has really been - well, it’s really
being brought up to date in the sense that the Topspeed project system, has always had
incredible capabilities - much more programmable than, say, Visual Studio .NET even.
You can just do some really neat things with it. Those features or that power was never
brought into [the] Clarion IDE, period. It will be part of what will be supported with the
new IDE. So that will be there. The new editor will be there, with all of its features. I’m
not sure the code completion will be there yet, because we’re not doing simple code
completion. Code completion, really there’s two ways to do it. There’s the alphabetic look-
up, which is I guess base-level code completion, where you just complete a - you just have
a database, and if someone goes, A,B,C-dot, and you go, "Okay, let me go find A, B, C, or
A-B type, and you’re just doing a look-up. There’s no syntax analyzer. So there’s nothing

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (4 of 15) [29/04/05 4:15:10 PM]

Planet Clarion Transcript: Clarion.NET, and Trial Versions

that really understands the code. A true code completion system has a syntax analyzer in
it. So it understands what’s a class, what’s a queue, what’s a file. It knows about driver
classes. It goes much further. So I don’t think - the end-goal for that, won’t be in the first
release but it will most likely - some of the code completion has already been plugged in,
some of it’s being completed. So some code completion, the code folding will be in there.
And there’s some really cool stuff - some new to-do lists. There’s a lot of stuff that’s
going to surprise people that they’re going to really like in the new editor. Yeah, it’s going
to be good. It’s a nice implementation. And then the dictionary, I’m not sure. The
dictionary has evolved from what I showed at DevCon - quite a bit, by the way. And that
could be a topic we could talk about in one of the interviews because there’s been some
additional things added in. There was some things I brought up at DevCon that people
expressed real interest in. And so we’ve re-factored some of the code and we’re making
allowances so we can support those things - example being multi-user dictionaries. So
that’s going to be some neat things too.

Dave Harms: But if I understand you right, it sounds like with the new Clarion - Clarion
2005, whatever it’s going to be called - that the first release of that - because if the
AppGen stuff is not really quite ready, the first release of that probably will be more of a
.NET supporting release than a Clarion supporting release. Is that accurate?

Bob Z: Well, I think I would characterize it a little differently. I’d say that if AppGen
doesn’t make the cut, then it’s obviously more of a hand coder’s or - release and/or, if
you’re willing to take the time to just export your projects, assuming they’re app-based,
then it will be able to be used immediately to build solution files through applications. So
you can go off and go, "Hey, build me this solution. Build me Debug. Build me this in
release and this in Debug. Build me both." And so you’ll be able to go off and you’ll be
able to do the whole thing without - I mean, there’s a lot of good compile managers out
there, but they rely upon DDE. They have to. And, as we know, XP has pretty much done
away with DDE support, and just about made it useless, in many cases. So, it’ll be a lot
better. It’ll be markedly faster for building large systems. There’s no question. And
dictionary [editor], like I said, it may be ready by then, at least an early cut. It’ll probably
be ready to look at. I’m not sure how it would--. I will be suggesting people to migrate the
dictionary work over. But that’ll be an interesting thing. There’s some interesting things,
with the move to .NET. I don’t foresee people just going, "Okay, all my development is in
.NET." Now some will, obviously. They have external pressures and it’s, "This is what
corporate said or this is what my customers want, and that’s all I’m doing now." But, for
most people, they’re going to need to live in both worlds, for quite a number of years to
come.

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (5 of 15) [29/04/05 4:15:10 PM]

Planet Clarion Transcript: Clarion.NET, and Trial Versions

Dave Harms: Yes, I think that’s a reasonable expectation. So what comes first? Clarion 7
or Clarion.NET?

Bob Z: Well, there’s two different teams working on both. So it’s not going to be an
either/or. The work on the IDE is central to us going forward. So that is really the prime
focus, as an end-goal to get something into people’s hands. We want people to get into the
.NET compiler, early on, so we get feedback, so we can refine the manuals and the
training materials, and to deliver what people - those people who say, "I have to have
.NET, a month ago - I needed it" - to be able to start to work with it right away. But we
don’t - it’s not a case where we have to choose, well, should we move people off of that,
onto this, because there’s been a clear division, right from the beginning, on who will
work on what. As we get closer to both projects, getting to their goals, then there’s going
to be - then there’ll be some shared work, because the - some of the integration for .NET
support into the IDE will require people from both teams to work on it. And the same for
some of the run-type library support and the driver support.

Dave Harms: Let’s, for the sake of argument, call the next version of Clarion, Clarion 7.
So if I’ve got a C7 app and a C6 app open in the new IDE, when I switch to the C6 app,
does it look like - am I looking at the same kind of prompts and everything, as I see now,
because obviously the templates are going to be the C6 templates?

Bob Z: Yes, it’s going to be interesting. You will see everything wrapped in the new look
and feel of the IDE, which has changed, but your prompts will be identical, to what you
see in Clarion 6.

Dave Harms: What about the sort of jumping around business where you open this
window, or will it flatten out at all, or how does that hardware--?

Bob Z: Yes, the IDE won’t change in its behavior. Aside from the prompts you’ll see -
based on templates, because those prompts come from the templates. But other than that,
the IDE will be the same, whether you’re in Clarion 7 or Clarion 5.

Dave Harms: Wow. Yes, as long as we’re on the subject of templates, I wanted to ask
you something about DevCon. Remember you were asking for a show of hands on some
new features, and you asked whether anybody would like compiled templates, and a voice
from the back said, "As long as we can decompile them."

Bob Z: Yes, it’s funny to hear them say that, because you think about it. Right now,

there’s 3rd party utilities that have to ship as a DLL, to protect their intellectual property.

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (6 of 15) [29/04/05 4:15:10 PM]

Planet Clarion Transcript: Clarion.NET, and Trial Versions

But people should be more concerned about that than they are about can I decompile the
template - because if you can’t write a template, you’re not going to need to decompile it

and work on it and recompile it. The chances are, you report a bug to the 3rd party guy and

he’s going to fix the bug - not to be very - so I was kind of surprised at that. I thought 3rd
party people would go, "Jeeze, that makes my life really kind of easier, because I--."

Dave Harms: Yes, I have to say that I still sort of wonder about that one because--.

Bob Z: Yes?

Dave Harms: Yes. When I heard the comment, I thought - I expected the comment. I
mean, I wasn’t expecting it, I wasn’t surprised by the comment. And I think that maybe is
a different perspective. It’s something that maybe you don’t see as much or get a sense of
as much, as the vendor of the language. But out there, it does seem to be that there is - if
anything, there’s more of a trend towards openness, where you get the template source
with it, or you get the source code with it. And that seems to be more of a driving force

than the ability to protect intellectual property, in a way. I see the value to the 3rd party

vendor. The question is - it’s not a question of value to the 3rd party vendor. It’s a question
of the perception on the part of the user of that product, whether they’re--. People, I think,
are always a little bit leery - have become more leery, over the years, about black boxes.
So when people have DLLs and source coded stuff, then they create a version that [has] no
more black box. You know?

Bob Z: Yes.

Dave Harms: And they’re doing that because there’s a commercial pressure to do that, I
think.

Bob Z: No, I would agree with you on that. I tend to agree on that. I don’t see our
template chains, ABC and Clarion chain, shipping in compiled form. However, that
doesn’t preclude us from producing a student version that would ship, with a given
compiled template chain.

Dave Harms: And that I can see as a really good reason for having that ability.

Bob Z: I would think 3rd party people would go, "Jeeze, I could do the same now. I can
have a demo version - It’s compiled.

Dave Harms: Yes, I could see that.

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (7 of 15) [29/04/05 4:15:10 PM]

Planet Clarion Transcript: Clarion.NET, and Trial Versions

Bob Z: And if I - you get the source code of the template.

Dave Harms: I think that would be a wonderful use of that.

<end of interview with Bob Z>

Dave Harms: And that’s my conversation with Bob Z.

Andrew Guidroz: It’s sort of like a conversation with me in the room with a gag on.

Dave Harms: Yeah, yeah, we ought to try that sometime.

Andrew Guidroz: Yeah, I appreciate that. About a trial version of Clarion…

Dave Harms: Yes.

Andrew Guidroz: Why are you so gung-ho about that?

Dave Harms: Well, I guess that probably just for the sort of nonsensical reason, that I’ve
used trial versions of many products and it’s often helped me to make a decision about
whether or not to buy it.

Andrew Guidroz: Did you use that to get into Clarion to start with?

Dave Harms: At the time, I don’t think it was very common to have trial versions - well,
you didn’t have downloadable trial versions of things - but I certainly would obtain trial
versions of a few other products at the time I was looking at Clarion, yes.

Andrew Guidroz: Can you think off the top of your head the last software product that
you bought? Something relatively recent that you purchased - did you try it in trial first?

Dave Harms: Yeah…

Andrew Guidroz: That’s the question - right?

Dave Harms: FrameMaker. Sure, definitely trial version first. I think basically any - it’s
really - it’s a lot harder for me to make a decision on some software if I can’t actually try it
out.

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (8 of 15) [29/04/05 4:15:10 PM]

Planet Clarion Transcript: Clarion.NET, and Trial Versions

Andrew Guidroz: Is FrameMaker expensive?

Dave Harms: Yes, FrameMaker’s around a thousand bucks or something like that, I
think?

Andrew Guidroz: So maybe the key to the trial version is the fact that the cost of entry is
high…

Dave Harms: Yeah.

Andrew Guidroz: And that’s what brings you in. Because what I was thinking of is the
fact that it’s been awhile since I got a trial version of anything. But when I look back at
what I’ve done - lately I’ve gotten into digital photography. So I picked up a copy of, what
is it? Photoshop, what’s the geared down version? - Photoshop Elements. Okay?

Dave Harms: Mmm hmm.

Andrew Guidroz: And I bought version 2.0, which was the current version, at the time,
that I was doing my thing. And it only cost like about 69 bucks, with the rebates.

Dave Harms: Yes, and if it’s 69 bucks and you have a fairly good--.

Andrew Guidroz: The cost of the entry was low.

Dave Harms: You have a fairly good idea that it’s going to do the job, you don’t have a
problem, because it’s an impulse buy.

Andrew Guidroz: And it was okay.

Dave Harms: Kind of like Clarion Magazine. You see with everything - "Yes, that’ll do
the job." Impulse buy.

Andrew Guidroz: There you go. But this thing here, it was cheap so I bought it. It didn’t
do exactly what I wanted it to do but it was - I didn’t feel ripped off.

Dave Harms: Yes, now if that had been a 600 dollar product or a 2000 dollar product.

Andrew Guidroz: I’d have felt ripped off. Yeah, I’d have wanted to test drive first. For
sure, I’d have been very aggravated afterwards, because it didn’t do exactly what I thought

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (9 of 15) [29/04/05 4:15:10 PM]

Planet Clarion Transcript: Clarion.NET, and Trial Versions

it was going to do. But, what ended up happening was 3.0 came out, like right about the
same time. And I’m wondering if the discounting of 2.0 was done on purpose, because
they knew that 3 was coming and it would try to drag you in. And 3.0 was awesome, in
Photoshop Essentials.

Dave Harms: And this is relevant to trial editions?

Andrew Guidroz: Yes, I think it is. I think that--. Do you like the product you were just
taking about? FrameWork?

Dave Harms: FrameMaker.

Andrew Guidroz: Yes, FrameMaker.

Dave Harms: Well, FrameMaker is well sort of the lesser of all evils, when it comes to
publishing books. But it’s very old. It does the job. It actually does the job much better, for
the kind of stuff I do, better than many newer tools.

Andrew Guidroz: And you like the product.

Dave Harms: Well, it’s certainly useable and it does the things that I need. It’s really
showing its age.

Andrew Guidroz: But it’s value for the money?

Dave Harms: It’s value for the money - for sure.

Andrew Guidroz: Yes. And I think that’s what people are looking for. And I think that’s
the thing with the trial. So maybe what we’re talking about right here isn’t relevant to the
normal listeners. Maybe it’s more relevant to Bob Z. Maybe it’s like, hey Bob, this is why
we think - your products that are expensive, get trial versions out there because we kind of
like to poke it before we - poke, kick the tires and take a look around at this thing.

Dave Harms: Yes, I think there are trial versions of - I’ve looked at all kinds of
development tools - something like Rational Rose, a modeling tool. You can get a trial
version of that, or at least you used to be able to. You can get trial versions of all kinds of
stuff. It’s pretty common. And I think that that would really be a big help. And the whole
business of compiled templates certainly makes that a lot more practical because you don’t
have to worry so much about giving away the--.

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (10 of 15) [29/04/05 4:15:10 PM]

Planet Clarion Transcript: Clarion.NET, and Trial Versions

Andrew Guidroz: Right. Oh, I see what you’re saying. With the compiled template set, a
compiled template set would be useable for people that want to sell test drives.

Dave Harms: Yeah.

Andrew Guidroz: For, what’s the word, trial versions.

Dave Harms: Well, that’s what Bob was saying was that it could be useful for 3rd party
products. I mean I still maintain that--.

Andrew Guidroz: Yes, well when he said 3rd party products it - that didn’t click. I
understand the concept that they want to--.

Dave Harms: No way, and it doesn’t--.

Andrew Guidroz: Well, they want to protect their investment in writing templates. I
understand that. I understand that some people want more closed deals. Some software
people - there was talk about, what was it? Decompiling templates.

Dave Harms: Yes.

Andrew Guidroz: Look. I don’t think that should be a consideration at all, by Soft
Velocity. The fact that some users are nervous that some compiled templates will certainly
start happening out there. I think compiled templates are fine. I don’t see a problem with
it. I think that software developers are mature enough to know when they should expose
things. Heh heh. Of course, I’m not mature enough to say it without giggling. I think
they’re mature enough to know when to expose things and when not to expose things.
Right? If the market’s screaming for source code, and the market is willing to pay for
source code, then these guys, they’re going to sell source code.

Dave Harms: Yeah.

Andrew Guidroz: The money’s there. And the same thing with the compiled templates is
that if the market’s not there, it’s just - it’s going to disappear. The market will dictate it.

Dave Harms: And I think Bob’s point was that even if the 3rd party developers don’t want
to - even if they want to sell product, they want to sell the source code, the template - if
they want to release template source code, they certainly can - or at least if they’ve got the
compile option, they can release demos, of what the templates do.

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (11 of 15) [29/04/05 4:15:10 PM]

Planet Clarion Transcript: Clarion.NET, and Trial Versions

Andrew Guidroz: Sure.

Dave Harms: And they can put - because they’re compiled, you can also put in
limitations in those templates and then somebody can’t go and remove the limitations, just
by editing the source code. So it’ll actually raise a whole ‘nother issue of how secure the
compiling is, and whether it’s - people bother trying to find a way to decompile it. But
obviously you can build some sort of limits in or you can have your templates always
generate some, "Trial Version", "Demo Version", into any reports or browsers or anything
like that.

Andrew Guidroz: Exactly. And is this confession time? Should I come forward?

Dave Harms: Oh, well if you think that this is--.

Andrew Guidroz: I have taken 3rd party templates and read them.

Dave Harms: You rascal.

Andrew Guidroz: And said, "Man, that’s a clever idea, the way he’s doing that to do field
assignments, in this little section. I think I’ll use that in some of my own templates."

Dave Harms: Yes. Of course, you’re not selling those templates, you’re just--.

Andrew Guidroz: No, I’m not selling them. And I look at those guy’s code, and I learn
from them. The way I learned how to write templates was reading the standard templates -
just reading through them and seeing what Soft Velocity did or I guess he who shall be
nameless, the original owner, the original company that had it. That’s how we learn. And I
understand compiled templates may take some of that away. But I think the market will
figure it out. I have the utmost confidence that when some vendor has done something no
one likes, we drive them out of the town.

Dave Harms: Right. Run them out on a rail.

Andrew Guidroz: There you go.

Dave Harms: Covered with tar and feathers.

Andrew Guidroz: Tarred and feathered.

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (12 of 15) [29/04/05 4:15:10 PM]

Planet Clarion Transcript: Clarion.NET, and Trial Versions

Dave Harms: Is that how it’s done? Are those separate things? Riding someone out of
town on a rail? Would they be tarred and feathered at the same time?

Andrew Guidroz: No, by the time you tar and feather them, there isn’t a lot left. If you’ve
seen - what’s the HBO series, the brand new one? Carnivàle, a few weeks ago.

Dave Harms: No, I can’t say I’ve seen it.

Andrew Guidroz: A gentleman was tarred and feathered and, believe me, boiling tar,
does not feel good.

Dave Harms: Oh yes. Okay. All right. Well, this is a family show.

Andrew Guidroz: Oh, I’m sorry.

Dave Harms: So, we won’t maybe go there.

Andrew Guidroz: Oh Brother Aren’t Thou, there’s a scene where they run the opposing
political candidate out on a rail. They literally throw the doors open and come in with a
large wooden rail, pick him up, set him on top of the rail, and run him out. It was pretty
good.

Dave Harms: That’s always the mental picture I’ve had.

Andrew Guidroz: Yes. There it is.

Dave Harms: Yes.

Andrew Guidroz: Okay. Now, we got one other thing. I have one other topic I want to
squeeze into the broadcast this week.

Dave Harms: Fire away. Another confession?

Andrew Guidroz: Well, I have a coffee mug, that I use a lot, and it’s got a company name
on it - well, it’s he who shall remain nameless, on my coffee mug. Bob Z., by now it’s
time, now that everyone’s screaming for this and screaming for new features...

Dave Harms: It’s time for new coffee mugs?

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (13 of 15) [29/04/05 4:15:10 PM]

Planet Clarion Transcript: Clarion.NET, and Trial Versions

Andrew Guidroz: I need a Soft Velocity coffee mug. And I’ve asked about it. In the past
there weren’t any yet, the last couple of times I’ve asked. And I think it’s a cop out. I think
that there really are coffee mugs there, with Soft Velocity written on it. Just set a price.
You don’t have to market it. I’ll call. Just drop me an email and say, the Soft Velocity
coffee mugs are available. I think that there’s too many coffee drinkers in the Clarion
community.

Dave Harms: Yeah.

Andrew Guidroz: Sell them 10 bucks a pop, if you got to. Just go for it. Go for it. We
need a Soft Velocity coffee mug to go with our new .NET. That’s what I have - that was
very important to me today, to get that out.

Dave Harms: Do you feel better now?

Andrew Guidroz: I do, yes.

Dave Harms: Yeah, I can tell. Would you settle for a Clarion magazine coffee mug?

Andrew Guidroz: Clarion magazine has coffee mugs?

Dave Harms: Well, this is possible.

Andrew Guidroz: If you could get one, now that I’m crying for one. Why not?

Dave Harms: For the right price. Yes. I think they’re probably available, for the right
price.

Andrew Guidroz: Clarion magazine on one side and what? - the podcast logo on the
other?

Dave Harms: Hey, hey, I think maybe we ought to do that. Yeah, yeah. I like that. Okay.
All right. Well, send your orders, or send your interest. If you’re interested in any Planet
Clarion coffee mugs.

Andrew Guidroz: With the podcast, on the back. Oh, and we can--.

Dave Harms: Yes. A complete podcast, with every coffee mug.

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (14 of 15) [29/04/05 4:15:10 PM]

Planet Clarion Transcript: Clarion.NET, and Trial Versions

Andrew Guidroz: Yes.

Dave Harms: What you do is, you hold the mug up to your ear and you just - you listen,
very carefully. Okay. Well, I think we’re done.

Andrew Guidroz: We’ll have to call it a day.

Dave Harms: We’ll have to call it a day. We got to get to get this one out.

Andrew Guidroz: Because we can’t call it a night. That always throws you, doesn’t it?

Dave Harms: Yes, because if we do it late enough, we can call it a night.

Andrew Guidroz: Can we go on at night? Let’s call it a night.

Dave Harms: Let’s call it a night.

Andrew Guidroz: Goodbye Dave.

Dave Harms: See you later Andrew. Okay. Bye.

Reader Comments

Add a comment

http://www.clarionmag.com/cmag/v7/v7n04planetclarion-2005-03-30.html (15 of 15) [29/04/05 4:15:10 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=13518

DLLs and Reusable Code: Divide and Simplify

DLLs and Reusable Code: Divide and Simplify

by Jeffrey Slarve

Published 2005-04-29

Many years ago, when I was relatively new to Clarion for Windows (I think it was version
1.0), I remember reading an essay by Dave Harms about splitting an application into DLLs. It
was a big jump for me to grasp why splitting an app up was a good thing, how dingdang easy
it was to do, and how much faster my development progress would become. But get it I did.
DLLs allowed me to work on small chunks of a project without having to re-compile the
entire thing with every little change/test that I needed to make. All was blissful in the world,
and I lived happily ever after. The end.

Well, not quite the end. As time went on, and I had project after project (project, in this case,
meaning all of the components of a software application) to write, I found myself duplicating
code between projects. Many of these functions were very generic and didn’t rely on a
dictionary, so I tried making a generic DLL that did not require a dictionary or other global
data, but the Application Generator thought it was way smarter than I was (which, in fact, it
might very well have been). The AppGen wanted to either generate a bunch of global
variables (GlobalRequest, GlobalResponse, etc.) as External, or Local. If global data
was Local, meaning memory would be allocated for these variables in the DLL, then the
templates would generate the .EXP file and include those global variables, causing duplicate
symbol linking errors. If I told the AppGen to make global data external, then I had to make
sure that any global data used by my DLL was also declared in any project where I wanted to
use my generic DLL.

At first, I tried tricking the Appgen into doing my bidding, using the Local setting and
modifying the .EXP file after the code was generated, but eventually I gave up with using
Appgen to create a generic DLL. It was way too complicated. Especially when ABC came to
be, and there were all those global class declarations.

http://www.clarionmag.com/cmag/v7/v7n04dllbyhand.html (1 of 9) [29/04/05 4:15:14 PM]

http://www.clarionmag.com/index.html

DLLs and Reusable Code: Divide and Simplify

But yikes! Now what was I going to do? Creating a DLL by hand was an option, but that
seemed complicated, and way too much trouble. But then I remembered that the code would
rarely change, so this effort would basically only have to be done one time and it wouldn’t
hurt to learn how to do this. Besides, I had much to gain by putting my frequently used
generic functions into their own DLL:

1. Reusable code. No more rewriting/importing a DayOfWeek() function, or
a function to get a widget from a dofladgey. All that has to be done is attach
that special DLL to an app and it’s ready to go.

2. Write once, modify in one place. If any changes need to be made to any of
the generic functions, then they only need to be fixed in one place. Often, the
applications that make use of this generic DLL will not need any
recompiling. They only need recompiling if one of the following situations
occurs:

a. Any of the prototypes change. If any of the prototypes for
the functions/procedures in the DLL change, then the
applications making use of this DLL won’t be able to find
the procedure unless they are recompiled.

b. New procedures are added. It’s usually safe to not re-
compile an existing app if all you did was add some new
prototypes to the existing generic DLL. If, of course, you
need to make use of the new functions, then a recompile will
be needed regardless.

c. New Clarion version. You can’t normally share a DLL that
was compiled with one version of Clarion with another.
Well, you can, but not without a lot of knowledge, or special
tools. It’s better to recompile.

3. Easy maintenance. Once you set a DLL up, it’s very easy to make changes
to it. It’s way easier than trying to make these changes to the same
DayOfWeek() function in 20 apps.

4. Coolness. DLLs are very cool. Very very cool, indeed.

Handcoding the DLL

There are a few things you need to create when hand coding a DLL. Some of them might
seem a little bit foreign to someone that hasn’t dealt with this aspect of programming before,
but they really aren’t difficult to do once you get the hang of it. These steps are as follows:

1. Create a folder
2. Create a PRJ file
3. Create the source file(s)
4. Create an EXP file

http://www.clarionmag.com/cmag/v7/v7n04dllbyhand.html (2 of 9) [29/04/05 4:15:14 PM]

DLLs and Reusable Code: Divide and Simplify

5. Compile the DLL
6. Share the DLL prototypes
7. Make the DLL available to other applications
8. Use the DLL

Create a folder

The first step is to create a new folder somewhere in your Clarion development directory tree.
It’s a good idea to give your DLL a special place for all of it’s components. It’s the least you
could do for it, seeing how well it will treat you in the future.

Create a .PRJ File

The .PRJ or Project is the daddy (or mommy, if you prefer) of your DLL. It needs to know
everything that’s included in your DLL, including file drivers, external LIB files, icon
resources, and source code. Without the project, I don’t know what I would do. Probably go
fishing or play guitar.

Creating a PRJ is very easy in the Clarion IDE:

a. Click File|New then select Project.
b. You’ll be presented with a file dialog where you can type the name of your

project. This may or may not be what you choose to name your DLL. Click
Save.

c. Now you should see a window that says New Project File. In this window,
you can:

i. Enter a Project Title. This field is optional.
ii. The Main File is the name of the main .CLW file for your

project. Just type the name here, then press TAB. It needn’t
be a file that exists yet.

iii.
The Target File will probably be the same as the name of the Main
File, except it will have a .EXE extension. This will change to DLL,
after you change the Target Type to DLL. Click OK.

http://www.clarionmag.com/cmag/v7/v7n04dllbyhand.html (3 of 9) [29/04/05 4:15:14 PM]

DLLs and Reusable Code: Divide and Simplify

d. You have just created a project. If this is your first project, then
congratulations are in order.

You might have noticed that there is another Target Type called Library. Libraries are very
similar to DLLs, but they have advantages/disadvantages when compared to using a DLL. I
prefer to use DLLs because they are easier to manage, and require far fewer full-rebuilds of
all of your .APP/.PRJ files than do .LIB files. If you make any change at all to a LIB, you will
need to recompile (well, at least relink) all applications that use the LIB. The only downside
to a DLL that you have one extra file to distribute with your application. Usually, having that
extra file is an advantage because if you make a change to the DLL, all you have to do is ship
that one file.

Create the .CLW file(s)

None of this would go anywhere without your .CLW or other source code files. These are
where you write your functions/procedures. Just for the purpose of this article, I’m going to
use one of the functions on my ClarionFAQ.com website. This function is used to move a

Parent control (GROUP, OPTION, etc.) on a window, and subsequently move all of its child
controls in pseudo unison. If you’d ever tried to move one of these parent controls at run-
time, you’d know that the child controls have no idea that they’re supposed to move along
with their daddy too.

There are a few minimal things that need to be placed in the main module of your DLL’s
source code in order for it to compile.

a. PROGRAM or MEMBER statement. Even though this DLL isn’t a program or a
member of anything yet per se, the compiler needs this. If you use MEMBER,

http://www.clarionmag.com/cmag/v7/v7n04dllbyhand.html (4 of 9) [29/04/05 4:15:14 PM]

http://www.clarionfaq.com/faq/

DLLs and Reusable Code: Divide and Simplify

be sure to use it without any parameters. This can go on the first line,
anywhere after the first column.

b. MAP statement. This is where you put the prototypes for the various
functions that you’ll be using in and exporting from your DLL.

map
 JSMoveParentControl(Long pParentFEQ,Long pXShift,|
 Long pYShift,Byte pMoveType=0)
end

c. CODE section. This is where you, uh, write your code. Please see the
accompanying mydll.clw to see how this all goes together.

Naming your functions

As the world gets more and more
crowded, and more and more
functions are being written, and
more and more third party products
are being used, the possibility of
naming collisions (functions,
procedures, variables, equates from
various developers being named the
same thing) is becoming more and
more prominent. I didn’t put the JS
at the beginning of the
MoveParentControl function
because I’m vain (okay, maybe I
did). I did it because it is an attempt
at preventing the possibility of
using the same name by another
developer. I guess someone else
could use JS, but hey, I was here
first! The same thing goes for API
functions being prototyped. It
doesn’t at all hurt a vendor to put
his/her prefix on that function, and
it will save a lot of grief in the
future.

Create an .EXP file

The .EXP, or Export or Module Definition file is what you use to
tell the project what variables and/or functions will be exposed,
or exported to applications that use your DLL. Sometimes you
might have functions that are only useful to other functions in
the DLL, so they might not need to be exported. The .EXP can
be either somewhat complex or very simple, but either way it’s
just a text file. The Clarion 6 help file has lots of information on
.EXP files, but it might be a little bit difficult to find. Just do a
search for .EXP then look for Module Definition Files.

Here’s what the .EXP for our little DLL looks like:

NAME 'MYDLL' GUI
EXPORTS
 JSMOVEPARENTCONTROL@FlllUc @?
Be sure to put at least one blank line here!

Notice the line that says JSMOVEPARENTCONTROL@FlllUc. You might notice that it
doesn’t look anything like the original prototype for JSMoveParentControl(). Why is
this, you ask? I don’t know. I don’t think anyone knows. It just works. But what it really is, is
a thing called Name Mangling. This is a fitting title, seeing how messed up the name appears.

What name mangling does, is allow procedure overloading to be communicated when linking
one entity to another. Name Mangling can also be turned off by using the NAME() attribute,
and that might work okay for you for the most part, but it isn’t a big chore to mangle the
names yourself. Luckily, there’s an example program under

http://www.clarionmag.com/cmag/v7/v7n04dllbyhand.html (5 of 9) [29/04/05 4:15:14 PM]

http://www.clarionmag.com/cmag/v7/v7n03callingc3.html

DLLs and Reusable Code: Divide and Simplify

%CWROOT%\Examples\src\pro2exp. Just compile that program and enter your prototype
into the entryfield, then press the Tab key. Pro2EXP will show you your mangled prototype.

NOTE: See that sentence about putting a blank line underneath the last export?
That’s very important, and was the cause of about an hour’s worth of
frustration on my part while writing this article. Before I added that line, the
IDE (C5.5) kept crashing and would not export my function when it finally
linked the DLL.

Compiling your DLL

Okay. Click on that lightning bolt and let ‘er rip. Hopefully, like me, you get everything to
compile correctly the first time. Ha ha. Okay, you finally got it to compile. Now what? After
a successful compile of a DLL project, you end up with a .LIB file and a .DLL. The .LIB file
is the glue that connects your app to your DLL. You place into the project of the app that
makes use of the .DLL. When you connect the DLL to your application in this manner, you
must have the DLL placed in a location where the application can find it. (See also, a trio of
articles that Larry Sand wrote about Loading DLLs At Runtime.)

Sharing the DLL prototypes

I usually create an include file for including into my application so I don’t have to do any
typing, and all of my special functions are available to me. Simply copy the MAP section to a
separate file. You’ll use that in a moment.

Making your DLL available

The Clarion environment has a few different folders for different files. The %CWRoot%\bin
folder is where DLLs are usually placed. The %CWRoot%\lib folder is where the .LIB files
are usually placed. What I usually do when I’m ready to publish my DLL (after testing) is run
a batch file to clean up my DLL’s folder and copy the LIB/DLL files to their proper places.
Here is an example of what my batch file looks like:

 copy mydll.dll e: \c55\bin
 copy mydll.lib e:\c55\lib
 copy mydll.inc e:\c55\libsrc
 del *.bkp

http://www.clarionmag.com/cmag/v7/v7n04dllbyhand.html (6 of 9) [29/04/05 4:15:14 PM]

DLLs and Reusable Code: Divide and Simplify

 del *.bak
 del *.lnk

Using your DLL

Now that you have your DLL, you’re most likely going to want to make use of it. I guess if
you wanted to be extra fancy, you could write a template that includes the DLL into your app.
It’s so simple to do, however, that I almost never bother with a template. Here’s all that you
have to do:

1. Open the App that you wish to add your DLL to.
2. Click on the Module tab.
3. Click on the Application menu item then select the Insert Module. A Select

Module Type window will open.

4. Select External DLL. A module properties window will open.

http://www.clarionmag.com/cmag/v7/v7n04dllbyhand.html (7 of 9) [29/04/05 4:15:14 PM]

DLLs and Reusable Code: Divide and Simplify

5. In the Name field, enter the name of your DLL with a LIB extension.
6. In the Map Include File field, enter the name of your include file.

NOTE: If you do choose to use an include file here, the procedures will not
automatically be visible to the AppGen, although you can use them in embed
points. It can be frustrating if you don’t know about this behavior. If you
need your DLL procedures to be visible to AppGen, you’ll have to enter
them manually instead of using the include file. Select the DLL’s module,
and press Insert or choose Procedure|New to create each procedure, making
sure to set the procedure prototype as necessary. You may also want to check
the Declare Globally option.

Now, if everything’s set up correctly, you’ll have full use of your DLL functions.

Looking back on this article, it might seem like a whole lot of hassle to go through for just a
DLL, but it really is worth the effort. Once you get your special DLL set up, it’s very easy to
add new functions to it as time goes by, and you’ll never have to code them again. If you do
have to maintain that code again, it will only be in one place. And best of all, you won’t have
to fight with the AppGen over what declarations do or don’t get exported. Isn’t that nice?

Download the source from ClarionMag

Download this file from Jeff's ClarionFaq.com site

Carl Barnes wrote a utility template that makes use of the LinkName() function from the
Clarion Template Language. CBMangle.zip contains the template, and
CBSampleInputOutput.zip contains a sample input file and an example of what the output
looks like. One big advantage to using the template language for generating an EXP is that

http://www.clarionmag.com/cmag/v7/v7n04dllbyhand.html (8 of 9) [29/04/05 4:15:14 PM]

http://www.clarionmag.com/cmag/v7/files/v7n04dllbyhand-jsPro2xp.091.zip
http://www.clarionfaq.com/faq/index.php?page=index_v2&id=24&c=12

DLLs and Reusable Code: Divide and Simplify

the LinkName() function would most likely (hopefully) have the most correct logic in it for
handling anything new in the language. Thanks, Carl.

Download CBMangle.zip

Download CBSampleInputOutput.zip

Download these files from Jeff's ClarionFaq.com site

Jeff Slarve is an independent software developer and the creator of the critically-acclaimed In

Back automated file safeguard utility. Jeff has been a Clarion developer since 1991, and is a

member of the group formerly known as Team TopSpeed.

Reader Comments

Add a comment

http://www.clarionmag.com/cmag/v7/v7n04dllbyhand.html (9 of 9) [29/04/05 4:15:14 PM]

http://www.clarionmag.com/cmag/v7/files/v7n04dllbyhand-CBMangle.zip
http://www.clarionmag.com/cmag/v7/files/v7n04dllbyhand-CBSampleInputOutput.zip
http://www.clarionfaq.com/faq/index.php?page=index_v2&id=24&c=12
mailto:jeff@jssoftware.com
http://www.jssoftware.com/In_Back/in_back.html
http://www.jssoftware.com/In_Back/in_back.html
http://www.clarionmag.com/cmag/comments.frm?articleID=13540

Clarion Magazine's E-Books

Clarion Magazine's E-Books

E-books are another great way to get the information you want from Clarion Magazine.
Your time is valuable; with our e-books, you spend less time hunting down the
information you need. We're constantly collecting the best Clarion Magazine articles by
top developers into themed PDFs, so you'll always have a ready reference for your favorite
Clarion development topics.

E-book format

All our e-books are unencrypted PDFs, and are formatted to the same standards as our
print books. All you need to read them is Adobe Reader or any other PDF viewer.

Free e-books

If you take out a Clarion Magazine subscription or renewal by April 8, 2005, you'll

automatically receive an electronic coupon for a free e-book! You can verify your coupon
by logging in to your My ClarionMag page.

Free updates

We're constantly updating our e-books with the latest articles. All e-book purchases come
with a three month free upgrade policy; if you're also a subscriber, you get unlimited free
updates, as long as you have an active subscription.

http://www.clarionmag.com/cmag/ebooks.html (1 of 4) [29/04/05 4:15:16 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/books/index.html
http://www.adobe.com/products/acrobat/readermain.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/myclarionmag.html

Clarion Magazine's E-Books

Subscriber discounts

Clarion Magazine subscribers can purchase e-books at discounted prices.

Current and upcoming e-books

E-Book Your
Price

Regular
Price

All prices in
US Dollars

E-Book (PDF): Clarion Edit-In-Place Tips &
Techniques
Clarion's Edit-In-Place (EIP) capability is powerful, but
difficult to master. This extensive e-book covers not
just the standard EIP techniques, but also some very
cool tricks with forms in place of EIP, and checkboxes
for managing many-to-many relationships. Regular
price $9.95/19.95 View the table of contents

$7.95 $16.95

E-Book (PDF): Learning The Clarion Template
Language
The real power of Clarion is its template-based code
generation. Just like the shipping templates, your own
custom templates increase your productivity and reduce
the effort required to maintain code. And writing
templates is easier than you think, as this intro-level
ebook shows. Topics include template language basics,
code templates, extension templates, reusable template
#GROUPs, and the Template Wizatron/Writer. View

the table of contents

$9.95 $19.95

http://www.clarionmag.com/cmag/ebooks.html (2 of 4) [29/04/05 4:15:16 PM]

http://www.clarionmag.com/ebooks/ClarionMag-EditInPlaceTOC.pdf
http://www.clarionmag.com/cmag/store.html?action=add&productId=38&qty=1
http://www.clarionmag.com/ebooks/ClarionMag-TempateWritingTOC.pdf
http://www.clarionmag.com/ebooks/ClarionMag-TempateWritingTOC.pdf
http://www.clarionmag.com/cmag/store.html?action=add&productId=31&qty=1

Clarion Magazine's E-Books

E-Book (PDF): Mastering Clarion DLLs (version
1.1)
Almost any Clarion application can benefit from being
split into an EXE and one or more Dynamic Link
Libraries (DLLs). This collection of articles shows all
the tricks for getting the most out of DLLs, from how
to easily split your applications up for easier
maintenance, to calling unlinked DLLs at runtime, to
rebasing your DLLs (and third party DLLs) for greatly
improved load times. An essential handbook for
anyone who develops large applications. View the table

of contents

$9.95 $19.95

E-Book (PDF): Learning The Clarion Language
Many Clarion developers begin writing applications
with the AppGen, and then find themselves wanting to
do more with the Clarion environment. But learning
how to write Clarion code by examining the generated
code can be overwhelming. This ebook begins with an
overview of the Clarion environment, and by using
simple examples shows how easy it is to write Clarion
code. Topics include standard Clarion data types and
equates, creating procedures, list box formatting, and
basic file handling techniques. View the table of

contents

$9.95 $19.95

E-Book (PDF): Threading In Clarion
Clarion 6 has opened up a new, exciting, and
potentically confusing world of threading to Clarion
developers. This collection of articles will guide you
through the various new functions, classes, and
techniques available to unleash the power of true
threads in your applications. As a bonus, you also get
Jim Kane's classic articles on using API threads with
Clarion 5.x. View the table of contents

$9.95 $19.95

E-Book (PDF): More E-Books Coming in April/May
We have a number of additional e-books on the way!
Upcoming topics include debugging, COM, Edit-In-
Place, using C/C++ code, and ABC design notes - stay

tuned!

$9.95 $19.95 Available April, May
2005

http://www.clarionmag.com/cmag/ebooks.html (3 of 4) [29/04/05 4:15:16 PM]

http://www.clarionmag.com/ebooks/ClarionMag-DLLsTOC.pdf
http://www.clarionmag.com/ebooks/ClarionMag-DLLsTOC.pdf
http://www.clarionmag.com/cmag/store.html?action=add&productId=35&qty=1
http://www.clarionmag.com/ebooks/ClarionMag-ClarionLanguageIntroTOC.pdf
http://www.clarionmag.com/ebooks/ClarionMag-ClarionLanguageIntroTOC.pdf
http://www.clarionmag.com/cmag/store.html?action=add&productId=37&qty=1
http://www.clarionmag.com/ebooks/ClarionMag-ThreadingTOC.pdf
http://www.clarionmag.com/cmag/store.html?action=add&productId=32&qty=1

Clarion Magazine's E-Books

http://www.clarionmag.com/cmag/ebooks.html (4 of 4) [29/04/05 4:15:16 PM]

	clarionmag.com
	Clarion Magazine
	Clarion News
	Link To Clarion Magazine
	Microsoft Word - Coraggio&Lundeberg.doc
	Limit An App To A Single Instance: DDE Strikes Back
	Version Control with CVS and Clarion 6.x
	Version Control with CVS and Clarion 6.x, Part 2
	Providing Good Customer Support
	Planet Clarion Transcript: Clarion.NET, and Trial Versions
	DLLs and Reusable Code: Divide and Simplify
	Clarion Magazine's E-Books

