
Clarion Magazine

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

PDF For January, 2003
All Clarion Magazine articles for January, 2003 in PDF format.
Posted Sunday, February 02, 2003

Interfaces Everywhere
Some time ago Jim Kane created the OLETCL class to use COM objects
with a VB-like syntax. OLETCL relied on a quirk in Clarion's COM and
thread handling, but with Clarion 6's new threading model OLETCL will
no longer work. That prompted Jim to finish a COM interface generator
he'd started many years earlier.
Posted Monday, February 03, 2003

Introducing PostgreSQL - Creating Tables And Sequences
Dave Harms resumes his series on the open source PostgreSQL database
with a look at table creation, and the intricacies of PostgreSQL's
sequences, which are used primarily for autonumbering primary keys.
Posted Thursday, February 06, 2003

Weekly PDF For February 2-8, 2003
All ClarionMag articles for February 2-8, 2003 in PDF format.
Posted Monday, February 10, 2003

New Topics Created For Clarion 6
The Clarion Magazine Topical Index now has several topics for Clarion 6
articles, and more will be added as needed.
Posted Monday, February 10, 2003

A Class For Tagging
Steve Parker is on record as not feeling the need to create classes. Yet
here he is, creating a class version of his tagging code. It's the end of the
world as we know it.
Posted Thursday, February 13, 2003

CONVIC - An Antipodean Clarion Gathering
If you’re not an Australian Clarion developer then there’s a good chance
you haven’t heard of ConVic. Does this matter, you ask? Well, ConVic’s

News

EmailReport Nettalked

Icons Sets From Ace Icons

CPCS Beta Install Files For Clarion6

xReplacer (TXA Manager) v1.0 beta

HelpMaker.NET Now Freeware

INN Bio & News for 25-Feb-2003

EasyResizeAndSplit 1.03

[MS] Outlook EmailReport 1.1

Taboga Software Schedule For Feb 24-
28, 2003

EasyResizeAndSplit 1.02

BoxSoft SuperSecurity 5.0a

HTML Designer 1.04 Beta Update

PD Lookup And Drop Edit Controls
Updated

Winner Of The cpTracker Drawing

cpTracker R3

Excel Read/Write Utility 1.2

http://www.clarionmag.com/index.html?year=2003&month=2&limit=100&desc=false (1 of 3) [03/03/2003 4:22:15 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/v5/files/cmag-2003-01.pdf
http://www.clarionmag.com/cmag/v5/files/cmag-2003-02-08.pdf
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/news.html

Clarion Magazine

been on the Australian landscape for five years now and for the last four,
it’s been the only Clarion conference in Australia. What’s more, ConVic
2003 is coming up at the end of March; it's an opportunity not to be
missed by Australian developers, and overseas developers who might like
to consider combining the conference with a sightseeing trip down under.
Posted Friday, February 14, 2003

Demystifying C6 Threading (Part 1)
Mutexes, semaphores, critical sections, reader/writer locks; all of these
things are part of Clarion 6, and they all have to do with the new support
for unlocking Clarion threads so they run like real operating system
threads. Should you care? If you write any embedded code, yes, you
should. Should you worry? That all depends on what kind of embedded
code you write. Part 1 of 2.
Posted Saturday, February 15, 2003

Weekly PDF For February 9-15, 2003
All ClarionMag articles for February 9-15, 2003 in PDF format.
Posted Wednesday, February 19, 2003

Demystifying C6 Threading (Part 2)
Mutexes, semaphores, critical sections, reader/writer locks; all of these
things are part of Clarion 6, and they all have to do with the new support
for unlocking Clarion threads so they run like real operating system
threads. Should you care? If you write any embedded code, yes, you
should. Should you worry? That all depends on what kind of embedded
code you write. Part 2 of 2.
Posted Thursday, February 20, 2003

Data Structures and Algorithms Part XVI - The Huffman
Compression Algorithm (Part 1)
In her latest installment, Alison Neal discusses the Huffman compression
algorithm, which is the same compression algorithm that is used by
PkZip. The algorithm yields approximately 40% compression for text
files. The test application included with the article reduces the provided
test file from 20kb to 12kb in size, and then decompresses it back to its
original state. Part 1 of 2.
Posted Friday, February 21, 2003

Weekly PDF For February 16-22, 2003
All ClarionMag articles for February 16-22, 2003 in PDF format.
Posted Monday, February 24, 2003

Data Structures and Algorithms Part XVI - The Huffman

SkyHI Debug Template

ImageEx 2 Gold Release

Newsletter Service

Win A Free Copy Of cpTracker

cpTracker Silver R2 Available

chSTD Library Version 2.63

EasyVersion 2.01 Released

Icetips Clarion 6 Compatibility

Clarion Third Party Profile Exchange
Updated

ABCFree Templates And Tools
Updated

CPCS Builds v5.16 (C5b) And v5.57h
(C55)

Special Offer From Berthume
Software And Epsilon Concepts!

Ingasoftplus EasyResizeAndSplit 1.01

1st Logo Design

C6EA2 Patch Released

EasyResizeAndSplit 1.00

xDigitalClock v1.5

PDF-Tools New Features

Handy Tools FTP/HTTP

ProDomus Updates C55 Translator
Plus

gReg Licensing Change

ProDomus PD Universal Drop Edit
Controls

SealSoft xFunction Library v1.7

XPMenu Holiday Schedule

HelpMaker Update.

powerRUN Freeware

Clarion 5.5 MS SQL Server Seminar
In Johannesburg

INN Bio And News For 28-Jan-2003

Firebird 1.5 Beta 1

cpTracker Silver Edition Released!

Threading Download At RadFusion

http://www.clarionmag.com/index.html?year=2003&month=2&limit=100&desc=false (2 of 3) [03/03/2003 4:22:15 PM]

http://www.clarionmag.com/cmag/v5/files/cmag-2003-02-15.pdf
http://www.clarionmag.com/cmag/v5/files/cmag-2003-02-22.pdf

Clarion Magazine

Compression Algorithm (Part 2)
In her latest installment, Alison Neal discusses the Huffman compression
algorithm, which is the same compression algorithm that is used by
PkZip. The algorithm yields approximately 40% compression for text
files. The test application included with the article reduces the provided
test file from 20kb to 12kb in size, and then decompresses it back to its
original state. Part 2 of 2.
Posted Tuesday, February 25, 2003

Debugging Queues With Excel
Like a lot of Clarion programmers, Alan Telford thinks queues are the
greatest thing since sliced bread. But it isn't always easy viewing queue
data when you're tracking down a queue data-related bug. To solve this
problem, Alan created a procedure that makes it easy to export queue data
to Excel, which is an excellent tool for viewing tabular data.
Posted Thursday, February 27, 2003

Book Review: PostgreSQL Developer's Handbook
PostgreSQL is one a handful of popular open-source databases, and
arguably the most feature-rich. This hefty book from SAMS does cover
day to day operations with SQL, but as the title suggests, devotes more
pages to the many ways developers can use, and extend, PostgreSQL's
advanced features.
Posted Friday, February 28, 2003

Looking for more? Check out the site index, or search the back issues.
This site now contains more than 700 articles and a total of over a million
words of Clarion-related information.

Product Scope 32 PRO Sale Ends Feb
3

ZipApp 1.1b Freeware

SealSoft xDigitalClock v1.4

Search the news archive

 Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/index.html?year=2003&month=2&limit=100&desc=false (3 of 3) [03/03/2003 4:22:15 PM]

http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/cmag/searchnews.frm
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Interfaces Everywhere

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > COM/OLE > COM/OLE

Interfaces Everywhere

by Jim Kane

Published 2003-02-03

Some time ago I needed to write code to interact with MS Office products, and I wanted a way
to do so using syntax closer to Visual Basic syntax. To fill that need, I created the OLETCL
class, which relied on a quirk in Clarion’s COM and thread handling. Unfortunately, with
Clarion 6’s new threading model OLETCL no longer works. When one door closes another
opens, or, said differently, necessity is the mother of invention. When I saw OLETCL was
officially dead, it prompted me to finish a COM interface generator I’d started many years
earlier.

There are two ways to call most COM objects. The first is called late binding or IDispatch.
That is what the Clarion OLE control uses. It’s slow, and because it’s part of the Clarion
language it’s sealed and cannot be easily modified or extended. Personally I hate the OLE
control on both counts. Fortunately, almost all COM objects are accessible using early binding.
Calling a COM object via early binding is accomplished in Clarion by creating an interface. If
you not familiar with interfaces read Phil Will’s excellent article on the subject.

Calling a COM object via early binding is really no different than calling a Clarion class. Prior
to using a Clarion class you need to create an instance of the class, which may implement one
or more interfaces. COM objects work much the same way. To create a COM object and
receive the address of an interface on that COM object, you call the Win32 API
CoCreateInstance function, and then you pass the COM class instance, plus interface
identifiers (CLSID and IIDs), to CoCreateInstance. After creating the class or object,
you can call any method on one or more of its interfaces.

Each call to an interface method is very much like calling a Win32 API function. The steps
involved, whether calling any Win32 API function or a COM method, are: prototype it;

http://www.clarionmag.com/cmag/v5/v5n02rtlib.html (1 of 8) [03/03/2003 4:23:25 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=120
http://www.clarionmag.com/cmag/topics.html?categoryid=120&subcategoryid=10
http://www.clarionmag.com/cmag/v4/v4n06interface.html

Interfaces Everywhere

convert the input data to the format expected by the call; make the call; and convert the output
to Clarion data types.

The purpose of this article is to introduce a utility I call RTLib that creates the prototypes for
interface methods and various equates. In addition, a new class called StdCom2Cl eases tasks
such as calling CoCreateInstance, converting data to or from BStrings, and error
handling.

The StdComCl which I published earlier in Clarion Magazine is still viable. StdCom2Cl is
a superset that creates an instance of StrCl for conversion of Clarion strings to and from
COM BStrings, and integrates the error handling of StrCl and StdComCl. It also uses
CallDLLCl (also previously in ClarionMag) to optionally automatically register COM
objects like regsvr32 does. Because of the inclusion of CallDllCl, a small assembler file
needs to be added to the project or application (CallA.A) whenever StdCom2Cl is used.

The task

Recently I was asked to import a list of clients into Quick Books Pro. I was aware there was a
COM SDK available so I downloaded it from Intuit’s developer web site. Once I had
downloaded the SDK and read through the documentation, it became apparent the COM code
was located in a DLL called qbfc2.DLL. Opening that DLL in Oleview showed over 500
interfaces!

The type library displayed by OleView showed all the interfaces, prototypes, and equates, but
in typical Microsoft format. What I wanted was the same information in Clarion format. To
accomplish that I wrote RTlib, which is short for ‘read type library.’ RTLib works by loading
a type library with the LoadTypeLib API, then calling the ITypeLib interface to iterate
through the type descriptions. Full source is provided in the accompanying download.

To use this utility, change the first two lines after the CODE statement in the source code to
specify the input and output, and then compile and run RTLIB.EXE.

dumpfilename='qbfc2.inc'
tlibname='c:\program files\common files\Intuit\QuickBooks\qbfc2.dll'

When compiled and run, RTLib creates a file – qbfc2.inc in this case – with a Clarion version
of what OleView shows for qbfc2.dll. All 543 interfaces and additional constants and equates
are included. That’s over a megabyte of text! When RTLib is done, it displays the count of
interfaces generated.

To use the file created add it to a Clarion source module along with stdcom2cl like this:

http://www.clarionmag.com/cmag/v5/v5n02rtlib.html (2 of 8) [03/03/2003 4:23:25 PM]

http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Bauthor%3Akane%2B%2Btitle%3Acom%2B%2B%2Btitle%3Aeasier
http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Bauthor%3Akane+%2Btitle%3Astarting
http://developer.intuit.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcsample98/html/_sample_mfc_oleview.asp

Interfaces Everywhere

include('stdcom2.inc')
include('qbfc2.inc')

In order to add clients to QuickBooks you need to connect with QuickBooks, create a request,
add the customer information to the request, then send the request to QuickBooks, and process
the response. I derived a new class from Stdcom2cl, called QuickBCl, to perform all these
tasks. The complete code needed to add the customer to QuickBooks is as follows:

if ~QuickBCl.init(eDebugon, Appid, appname, companyfile, OMDontCare) then
 !do stuff
 if ~QuickBCl.StartRequest(ROEContinue) then
 loop
 !this is where you get creative
 if QuickBCl.CustomerAddRequest() then break.
 !all done so exit
 break
 end
 !process the requests if any; process the ret object
 QuickBCl.ProcessRequest(1)
 end
end
QuickBCl.kill()
Message('All done')
return

I’ll go through this code line by line so you can see what actually happens.

The Init method

First, the init method initializes COM and creates the QuickBooks COM object:

!intialize COM
SELF.initcom(pDebugMode)
!create the quick books session manager COM object
SELF.IQBSessionManager&=SELF.getinterface(|
 address(CLSID:QBSessionManager),address(IID:IQBSessionManager))

Notice that the CLSID and IID constants are generated by RTLib and found in abfc2.inc
along with the IQBSessionManager interface definitions.

In the QuickBCl class definition the interface is defined as:

IQBSessionManager &IQBSessionManagerType

This compiles because IQBSessionManagerType is defined in QBFC2.Inc generated by
RTLib. RTLib appends the word ‘Type’ to interface definitions. Thus if the COM object you
are using RTLib on contains an interface called IDoSomething, then RTLib will generate
IDoSomethingType, which can be used as follows:

http://www.clarionmag.com/cmag/v5/v5n02rtlib.html (3 of 8) [03/03/2003 4:23:25 PM]

Interfaces Everywhere

IDoSomething &IDoSomethingType
Code
 IDoSomething&=(address of the IDoSomething interface)
 !Call IDoSomething an IDoSomething method such as DoIt:
 If IDoSomething.DoIT() <0 then
 Message('IDoSomething Error)
 end
!And finally release the interface:
IDoSomething.Release()

Every COM interface has a release method which needs to be called when you are done with
the interface. All interface methods return a long commonly called a HResult. The
StdComCl.TakeHR() method checks the HResult for error, converts the long to a string,
and stores the error description in the StdComCl.ErrorStr member variable.

The IQBSessionManager interface is initially null, but GetInterface returns the
address of the interface which is then stored in SELF.IQBSessionManager. In the kill
method, if the interface is not null, it is released. Tracking all interfaces obtained as
IQBSession, and eventually releasing them, is important. Failure to do so may result in a
memory leak.

The ~QuickBCl.init method receives several strings: AppID, the application name, and
the QuickBooks Company file name. These must all be converted to BStrings. Please
consult the QuickBooks SDK for details of these constants. StdCom2Cl uses an instance of
StrCl to do the conversion, and in case of error sets the ErrorStr member variable of
StdCom2Cl with an appropriate message:

!convert input strings to bstrings
if SELF.tobstr(pappid,lpBstr1) or|
 SELF.tobstr(pappname,lpbstr2) or |
 SELF.tobstr(pCompanyfile,lpBstr3) then
 do procret
end

Next, two methods on the IQBSessionManager interface are called to connect with
QuickBooks:

if ~SELF.TakeHR(SELF.IQBSessionManager.OpenConnection(|
 lpBstr1,lpBstr2),'OpenConnection') and |
 ~SELF.TakeHR(SELF.IQBSessionManager.BeginSession(|
 lpbstr3,pShareMode),'BeginSession')
 then !(companyfile,omDontCare)
 res=return:benign
end

Notice no prototyping of the interface is needed since RTLib generated the interface
prototype. You can view the prototype by searching for the above methods in QBFC2.INC.

http://www.clarionmag.com/cmag/v5/v5n02rtlib.html (4 of 8) [03/03/2003 4:23:25 PM]

Interfaces Everywhere

The TakeHR method of StdCom2Cl does the error handling in case the method call returns
an error, with a description stored in StdCom2Cl.Errorstr. If the debug mode is set to
true, the error is displayed.

In each method the ProcRet routine does all the freeing of interfaces or BStrings required.
All interfaces eventually need to be released by calling the release method (which every
interface has). Likewise all BStrings created to be passed into one of the method calls need
to be freed by calling the BstrFree() method of StdComCl.

The StartRequest method

The StartRequest method calls the CreateMsgSetRequest method on the
IQBSession interface:

!create a requestset (IMsgSetRequest)
if SELF.TakeHr(SELF.IQBSessionManager.CreateMsgSetRequest(|
 2,0,lpInterface),'CreateMsgRequest')
 or ~lpInterface then do procret.
SELF.IMsgSetRequest&=(lpInterface)

The address returned by this method, lpInterface, is the address of the
IMsgSetRequest interface. The line above casts the long into the interface.

The AddRequest method

The CustomerAddRequest method calls the AppendCustomerAddRq method of the
IMsgSetRequest interface to get a ICustomerAdd interface. Notice in the generated file
(QBFC2.inc) the AppendCustomerAddRq method is shown as:

AppendCustomerAddRq Procedure(*LONG lpICustomerAdd),|
 hresult,raw,proc !Function[OUT][RETVAL]

I find the comment following every interface method indicating whether the parameter is
supplying ([IN]) or returning ([OUT]) very helpful information in understanding how to use
the method. In C/C++ things like **void or a pointer to a pointer are allowed. Clarion does
not have a direct equivalent but in general a long can be used. The only remaining item to
decide is if it should be *long or long, and that is where the [OUT] or [IN] comment can
be very helpful. While RTLIB generally gets it right, the [IN] or [OUT] designation is a
good final sanity check.

If an interface has a property such as NewMessageID, the Get and Put methods are
generated as follows:

PutOldMessageSetID Procedure(bstring pOldMessageSetID),|

http://www.clarionmag.com/cmag/v5/v5n02rtlib.html (5 of 8) [03/03/2003 4:23:25 PM]

Interfaces Everywhere

 hresult,raw,proc !PropPut[IN]
GetOldMessageSetID Procedure(*bstring OldMessageSetID),|
 hresult,raw,proc !PropGet[OUT]

RTLib prepends Get or Put to the property name. The comment indicates is a property and
clearly shows the direction of information flow.

Now back to calling AppendCustomerAddRq. As the comment above indicates, this
method returns a long.

!Get the customerAdd interface
if SELF.TakeHR(SELF.IMsgSetRequest.AppendCustomerAddRq(lpInterface),|
 'AppendCustomerAddReq') or ~lpInterface then do procret.
ICustomerAdd &= (lpInterface)
!Now set the customer name
if SELF.TakeHR(ICustomerAdd.GetName(lpInterface),'GetName') |
 or ~lpInterface or SELF.SetStringValue(lpInterface,'TestCustomer1') |
 then do procret.

The procret routine contains typical code to release the ICustomerAdd interface:

IF ~ICustomerAdd&=null THEN
 ICustomerAdd.Release()
 ICustomerAdd&=NULL
end

The ProcessRequest method

Finally the ProcessRequest method sends the request to QuickBooks by passing the
IMsgSetRequest interface by address:

!SEND THE REQUEST
IF SELF.TakeHr(SELF.IQBSessionManager.DoRequests(|
 address(SELF.IMsgSetRequest), lpInterface),|
 'DoRequests') or ~lpInterface then do procret.
IMsgSetResponse&=(lpInterface)

QuickBooks has rather elaborate error handling code. The remainder of the code loops through
the results returned by QuickBooks and processes any errors reported. After all the error
processing, the ClearOldMessageSetID class method is called to let QuickBooks know
the response has been processed. Without that step QuickBooks stores previous results so they
can be reprocessed in case of power loss or GPF during the initial processing. The code
presented here does not fully implement the QuickBooks error recovery system, but the Quick
Books SDK describes it in detail for those interested.

The Kill method

http://www.clarionmag.com/cmag/v5/v5n02rtlib.html (6 of 8) [03/03/2003 4:23:25 PM]

Interfaces Everywhere

When all is completed the Kill method is called to clean up and uninitialize COM. First the
IMsgSetRequest interface is released if not null, and then the connection with QuickBooks
is closed:

 !release a pending MsgSetRequest that was
 ! not processed - IMsgSetRequest would be
 ! non-null if error setting up the request
 ! after creating it.
 if ~SELF.IMsgSetRequest&=NULL then
 SELF.IMsgSetRequest.Release()
 SELF.IMsgSetRequest&=NULL
 end
 !close session/connection and release the section manager
 if ~SELF.IQBSessionManager&=NULL then
 SELF.TakeHR(SELF.IQBSessionManager.EndSession(),'EndSession')
 SELF.TakeHR(SELF.IQBSessionManager.CloseConnection(),'CloseConnection')
 SELF.IQBSessionManager.Release()
 SELF.IQBSessionManager&=NULL
 end
 !uninitialize COM
 SELF.killCom()

Summary

The purpose of this article is not to show how to use the QuickBooks SDK, but to demonstrate
the power of RTLib to generate all the interface prototypes and equates needed for a complex
COM object such as the one for QuickBooks, and to show how to call those interfaces using
StdCom2Cl. While RTLib may not handle every possible data type especially data types not
supported by Clarion such as signed bytes and 64 bit integers, it has handled everything I’ve
thrown at it so far. The source is provided in case modifications or extensions are needed.

Download the source

Jim Kane was not born any where near a log cabin. In fact he was born in New York City. After attending college at New York

University, he went on to dental school at Harvard University. Troubled by vast numbers of unpaid bills, he accepted a U.S. Air

Force Scholarship for dental school, and after graduating served in the US Air Force. He is now retired from the Air Force and

writing software for ProDoc Inc., developer of legal document automation systems. In his spare time, he runs a computer

consulting service, Productive Software Solutions. He is married to the former Jane Callahan of Cando, North Dakota. Jim and

Jane have two children, Thomas and Amy.

http://www.clarionmag.com/cmag/v5/v5n02rtlib.html (7 of 8) [03/03/2003 4:23:25 PM]

http://www.clarionmag.com/cmag/v5/files/v5n02rtlib.zip
mailto:jkane@satx.rr.com
http://www.prodoc.com/

Interfaces Everywhere

Reader Comments

Add a comment

Interesting stuff. Ok, Im dense. What provoked this...
I was born in New York City - not exactly a bucolic...

 Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v5/v5n02rtlib.html (8 of 8) [03/03/2003 4:23:25 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=11887
http://www.clarionmag.com/cmag/discuss.frm?articleID=11887&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=11887&position=2
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Introducing PostgreSQL - Creating Tables And Sequences

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Databases > PostgreSQL

Introducing PostgreSQL - Creating Tables And Sequences

by David Harms

Published 2003-02-06

In Part 1 of this series I introduced the PostgreSQL open source database, and showed how to
install the native Windows beta version. In this article I’ll continue with some basic database
operations, including creating tables and using sequences, which are PostgreSQL’s version of
server-side autoincrementing keys.

As the native Windows open source version of PostgreSQL is still in beta, I’ll be using a Linux
installation for the following discussion. The latest word is that the native Windows version of
will be in PostgreSQL 7.4 (the current stable version is 7.3.1). I won’t cover Linux installation
as there’s plenty of documentation available at the PostgreSQL web site.

Setting up the database

In the last episode I ran into a bunch of trouble getting a working user name and password for
the Windows version of psql, the command line interface to PostgreSQL (although not
everyone who's run the beta has had the same difficulty). On Linux, if you’re administering the
server, you can log in as root and assume the postgres user’s identity with the su command:

[root@ns root]# su postgres
bash-2.05$ createuser demo
Shall the new user be allowed to create databases? (y/n) n
Shall the new user be allowed to create more new users? (y/n) n
CREATE USER
bash-2.05$ createdb demo
CREATE DATABASE
bash-2.05$

If you don’t have root access, then whoever does have root access can set up your database
access for you.

http://www.clarionmag.com/cmag/v5/v5n02postgres2.html (1 of 11) [03/03/2003 4:23:27 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=131
http://www.clarionmag.com/cmag/topics.html?categoryid=131&subcategoryid=153
http://www.clarionmag.com/cmag/v4/v4n11postgres1.html
http://www.postgresql.org/docs/

Introducing PostgreSQL - Creating Tables And Sequences

Notice that in my example above the user and the database have the same name. This isn’t
absolutely necessary, but psql will default to the currently logged in user name for both the
psql user and the database name. This makes for easy management where you want to give
each logged in user their own PostgreSQL database.

Connecting

Now that I have created a demo database, and a demo PostgreSQL user, I can either log in to
Linux as user demo and execute

psql

or as another user I can enter:

psql –U demo –d demo

In either case I’ll get the following greeting:

Welcome to psql, the PostgreSQL interactive terminal.
Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

demo=>

You can quickly check the version of PostgreSQL you’re running by calling the version()
function:

demo=> select version();
 version

 PostgreSQL 7.2.1 on i686-pc-linux-gnu, compiled by GCC 2.96
(1 row)

As you can see I’m one dot release behind the times. You can also check the psql client
version with either the --version or the -V option:

psql --version
psql (PostgreSQL) 7.2.1
contains support for: readline, history, multibyte
Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
Portions Copyright (c) 1996, Regents of the University of California
Read the file COPYRIGHT or use the command \copyright to see the
usage and distribution terms.
[root@ns admin]#

http://www.clarionmag.com/cmag/v5/v5n02postgres2.html (2 of 11) [03/03/2003 4:23:27 PM]

Introducing PostgreSQL - Creating Tables And Sequences

Creating tables

Figure 1 shows the database I’ll be creating in this installment. These are the tables that I
currently use to store Survey data for Clarion Magazine, using MySQL. The titles are fairly
self-explanatory.

Figure 1. The Surveys database diagram

Here’s a CREATE TABLE statement for Surveys:

CREATE TABLE Surveys(
SurveyID serial NOT NULL PRIMARY KEY,
Question varchar(255),
StartDate date,
EndDate date,
LastModified timestamp,
Active bool DEFAULT False);

When I paste this statement into psql and execute it, I get the following result:

NOTICE: CREATE TABLE will create implicit sequence
 'surveys_surveyid_seq' for SERIAL column 'surveys.surveyid'
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit
 index 'surveys_pkey' for table 'surveys'

Two additional structures have been automatically created, both because of this line in the
declaration:

SurveyID serial NOT NULL PRIMARY KEY,

The second item is the index for the primary key, which is no surprise. But SurveyID also is
my autoincrementing unique identifier for each row, as indicated by the SERIAL data type.
SERIAL values are stored in eight byte integers, with a maximum value of
9223372036854775807 (big enough for ya?) unless the platform compiler doesn't support
eight byte integers, in which case the maximum value is the same as a Clarion LONG. A
SERIAL column causes PostgreSQL to create a sequence number generator, called simply a

http://www.clarionmag.com/cmag/v5/v5n02postgres2.html (3 of 11) [03/03/2003 4:23:27 PM]

Introducing PostgreSQL - Creating Tables And Sequences

sequence, which is used to automatically increment that value. Here’s the description of the
table as shown by psql after I issued the CREATE:

demo=> \d surveys;
 Table "surveys"
 Column | Type |Modifiers
--------------+--------------------------+---------------------------------
 surveyid | integer | not null default nextval(
 '"surveys_surveyid_seq"'::text)
 question | character varying(255) |
 startdate | date |
 enddate | date |
 lastmodified | timestamp with time zone |
 active | boolean | default 'f'::bool
Primary key: surveys_pkey

As you can see the default value for surveyid references surveys_surveyid_seq.
Sequences are actually single-row tables (think control files) with special associated functions:
setval(), which lets you change the current value in the row; nextval(), which
increments the current value (and first adds the row if the sequence has never been used
before) and returns that value; and currval(), which returns the value last set by
nextval() or setval() for the current process. This last point is an important one. If, for
instance, I add the very first surveys record, currval('surveys_surveyid_seq')
will return 1 even if another process (typically another user) inserts a surveys record after I
inserted the first one, and before I called currval(). (Next time I’ll show you to call
currval() from within a Clarion application to get autoincremented IDs when adding child
records.)

The fact that sequences are actually tables gives you some flexibility in autoincrementing. You
can create them separately from your tables and with specialized attributes, including reverse
order, increment steps other than 1, and wrap-around. Here’s a sequence that starts at 4,
decrements by two, and when it hits zero starts over at 10 again.

CREATE TEMPORARY SEQUENCE increment_test
 INCREMENT -2 MINVALUE 0 MAXVALUE 10
 START 4 CYCLE;

Repeatedly calling SELECT nextval('increment_test') on this sequence yields
the following numbers:

4 2 0 10 8 6 4 2 0 10 8

… and so on. Also note that I’ve used the TEMPORARY qualifier on this sequence – once the
session is closed this sequence will be deleted. You can specify the name of an existing
sequence when creating a temporary sequence. In that case the temporary sequence will
replace the permanent sequence for the duration of the session. You would, of course, want to

http://www.clarionmag.com/cmag/v5/v5n02postgres2.html (4 of 11) [03/03/2003 4:23:27 PM]

Introducing PostgreSQL - Creating Tables And Sequences

use something like this very carefully.

Why would you want a sequence to cycle? As Carl Barnes pointed out to me after reading the
draft of this article, one application would be a Job/Order number that you don't want to
exceed, say, five digits. Of course that would assume that you're archiving/deleting old orders
so they can't cause duplicate key errors.

Because sequences are separate entities from tables, there is one side effect you might not
expect. If you subsequently issue a DROP TABLE command, as in:

DROP TABLE Surveys;

the table and any indexes will be deleted, but the sequence will not be deleted. If you reissue
the CREATE TABLE command, you’ll get an error like this one:

ERROR: Relation 'surveys_surveyid_seq' already exists

So what do you do? Issue a DROP SEQUENCE:

demo=> DROP SEQUENCE surveys_surveyid_seq;

Now you can create the table, and its associated sequence will also be created.

Going back to the table description reported by PostgreSQL, you’ll notice a :: operator used
in two places. This is the cast operator, and it first shows up in the primary key column that
uses the sequence:

surveyid | integer | not null default
 nextval('"surveys_surveyid_seq"'::text)

Since PostgreSQL supports function overloading, it’s conceivable that there could be versions
of the nextval() function which take parameters of data type other than text. The ::text
operator ensures that the parameter to nextval() is interpreted as text. Seems a bit
paranoid, but there you are.

There is also a cast on the boolean field named active, which is cast to a boolean value
('f'::bool). In PostgreSQL, the possible true values for a boolean are TRUE, 't',
'true', 'y', ' yes', and '1', while possible false values are FALSE, 'f', 'false',
'n', 'no', and '0'. The cast 'f'::bool ensures that the default value is in fact boolean.

Because sequences are independent of the table they don’t necessarily function the same way
as a client-side autonumber, where the code looks at the highest value in the primary key,
increments, and tries to add the placeholder record. For instance, imagine a sequence that’s

http://www.clarionmag.com/cmag/v5/v5n02postgres2.html (5 of 11) [03/03/2003 4:23:27 PM]

Introducing PostgreSQL - Creating Tables And Sequences

been used just once. You can see the sequence data with a SELECT statement like this:

demo=> select * from surveys_surveyid_seq;
 sequence_name | last_value | increment_by | max_value
----------------------+------------+--------------+---------------------
 surveys_surveyid_seq | 1 | 1 | 9223372036854775807

| min_value | cache_value | log_cnt | is_cycled | is_called
+-----------+-------------+---------+-----------+-----------
| 1 | 1 | 32 | f | t

The sequence has a last_value of 1 because I've already added a record in the surveys
table, without specifying a value for the surveyid column. Here's the resulting data:

demo=> select * from Surveys;
 surveyid | question | startdate | enddate | lastmodified | active
----------+--------------+------------+------------+--------------+--------
 1 | First survey | 2003-02-03 | 2003-03-05 | | f

Now I add a record specifying a primary key value of 4:

INSERT INTO surveys (surveyid,question,startdate,enddate)
values(4,'Fourth survey',now(),now()+30);

There are now two records in the table:

demo=> select * from surveys;
 surveyid | question | startdate | enddate | lastmodified | active
----------+---------------+------------+------------+--------------+--------
 1 | First survey | 2003-02-03 | 2003-03-05 | | f
 4 | Fourth survey | 2003-02-03 | 2003-03-05 | | f
(2 rows)

The sequence, however, remains unchanged because a value was supplied for the surveyid
field:

demo=> select * from surveys_surveyid_seq;
 sequence_name | last_value | increment_by | max_value
----------------------+------------+--------------+---------------------
 surveys_surveyid_seq | 1 | 1 | 9223372036854775807

 | min_value | cache_value | log_cnt | is_cycled | is_called
 +-----------+-------------+---------+-----------+-----------
 | 1 | 1 | 0 | f | t

So what happens now? If I continue adding records, I’ll end up with a duplicate key error when
I hit surveyid 4:

demo=> INSERT INTO surveys (question,startdate,enddate)
values('Second survey',now(),now()+30);

http://www.clarionmag.com/cmag/v5/v5n02postgres2.html (6 of 11) [03/03/2003 4:23:27 PM]

Introducing PostgreSQL - Creating Tables And Sequences

INSERT 506966 1
demo=> INSERT INTO surveys (question,startdate,enddate)
values('Third survey',now(),now()+30);
INSERT 506967 1
demo=> INSERT INTO surveys (question,startdate,enddate)
values('Fourth survey',now(),now()+30);
ERROR: Cannot insert a duplicate key into
 unique index surveys_pkey
demo=> INSERT INTO surveys (question,startdate,enddate)
values('Fifth survey',now(),now()+30);
INSERT 506969 1

Although the attempt to insert the record with surveyid 4 failed, the sequence did
increment, so subsequent inserts will again work. The moral of the story, however, is that you
really have to be careful if you import a bunch of records with existing primary key values.
You might want to set the sequence number to a value higher than any of the primary key
values you're importing, leaving a window for the existing values. All subsequent calls to
nextval() will start at that number plus one. You do this with the setval() function:

demo=> select setval('surveys_surveyid_seq',1000);
 setval

 1000
(1 row)

And the result:

demo=> select * from surveys_surveyid_seq;
 sequence_name | last_value | increment_by | max_value
----------------------+------------+--------------+---------------------
 surveys_surveyid_seq | 1000 | 1 | 9223372036854775807

 | min_value | cache_value | log_cnt | is_cycled | is_called
 +-----------+-------------+---------+-----------+-----------
 | 1 | 1 | 0 | f | t

One curiosity of sequences is that the minimum value of any sequence is 1, so you can’t issue
a setval(‘sequencename’,0); if you set the current value to 1, then the next available
value for any serial data type is 2. That means you can’t reset an existing sequence so it will
start at 1 – you have to drop the sequence and recreate it. At least that’s been my experience.

The SurveyChoices table

As shown in Figure 1. the Surveys database includes a table for survey choices:

CREATE TABLE SurveyChoices(
SurveyChoiceID serial NOT NULL PRIMARY KEY,
SurveyID int NOT NULL,
Sequence decimal(5,2) DEFAULT 1,
Value varchar(100),

http://www.clarionmag.com/cmag/v5/v5n02postgres2.html (7 of 11) [03/03/2003 4:23:27 PM]

Introducing PostgreSQL - Creating Tables And Sequences

FOREIGN KEY (SurveyID) REFERENCES Surveys (SurveyID)
ON DELETE CASCADE
ON UPDATE CASCADE);

And just to speed things up, here are a couple of indexes:

CREATE INDEX SurveyChoices_Idx_ID
 ON SurveyChoices (SurveyID);
CREATE INDEX SurveyChoices_Idx_ID_Seq
 ON SurveyChoices (SurveyID,Sequence);

SurveyChoices is linked to the Surveys table via the SurveyID column. Here’s the
output from the CREATE statement:

NOTICE: CREATE TABLE will create implicit sequence
 'surveychoices_surveychoicei_seq' for SERIAL
 column 'surveychoices.surveychoiceid'
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit
 index 'surveychoices_pkey' for table 'surveychoices'
NOTICE: CREATE TABLE will create implicit trigger(s)
 for FOREIGN KEY check(s)

As before, the CREATE statement has resulted in the creation of an implicit sequence for the
SurveyChoiceID column, as well indexes for the primary key and for the foreign key. The
CREATE statement also results in the creation of two triggers for the specified ON DELETE
CASCADE and ON UPDATE CASCADE foreign key checks. These mean that if you attempt to
delete a Surveys record, and there are related child SurveyChoices records, those child
records will be deleted. Similarly if the parent primary key value changes, these changes will
be rippled down to the child records (but that’s irrelevant, because you always use values for
primary keys that will never need to be changed, right? Right!).

So how do you find out what triggers are in place for an existing table? The answer lies in the
system tables, and to get a listing of those you type \dS:

demo=> \dS
 List of relations
 Name | Type | Owner
--------------------------+----------+----------
 pg_aggregate | table | postgres
 pg_am | table | postgres
 pg_amop | table | postgres
 pg_amproc | table | postgres
 pg_attrdef | table | postgres
 ... Approx. 40 tables omitted for brevity
 pg_type | table | postgres
 pg_user | view | postgres
 pg_views | view | postgres
 pg_xactlock | special | postgres

http://www.clarionmag.com/cmag/v5/v5n02postgres2.html (8 of 11) [03/03/2003 4:23:27 PM]

Introducing PostgreSQL - Creating Tables And Sequences

These system tables store everything from databases to tables to functions, check constraints,
data types, and yes, triggers. It would’ve taken me forever to find out how to get a trigger
listing from this database, but happily I found one on the web, posted by Michael Fork in the
comp.databases.postgresql.general newsgroup on January 17, 2001:

SELECT pg_trigger.tgargs, pg_trigger.tgnargs,
pg_trigger.tgdeferrable, pg_trigger.tginitdeferred,
pg_proc.proname, pg_proc_1.proname FROM pg_class pg_class,
pg_class pg_class_1, pg_class pg_class_2, pg_proc pg_proc,
pg_proc pg_proc_1, pg_trigger pg_trigger, pg_trigger
pg_trigger_1, pg_trigger pg_trigger_2
WHERE pg_trigger.tgconstrrelid = pg_class.oid
AND pg_trigger.tgrelid = pg_class_1.oid
AND pg_trigger_1.tgfoid = pg_proc_1.oid
AND pg_trigger_1.tgconstrrelid = pg_class_1.oid
AND pg_trigger_2.tgconstrrelid = pg_class_2.oid
AND pg_trigger_2.tgfoid = pg_proc.oid
AND pg_class_2.oid = pg_trigger.tgrelid
AND ((pg_class.relname='<<PRIMARY KEY TABLE>>')
AND (pg_proc.proname Like '%upd')
AND (pg_proc_1.proname Like '%del')
AND (pg_trigger_1.tgrelid=pg_trigger.tgconstrrelid)
AND (pg_trigger_2.tgrelid = pg_trigger.tgconstrrelid))

Find <<PRIMARY KEY TABLE>> in that listing and replace it with the name of your table.
For the Surveys table, the output looks like this:

tgargs

\000surveychoices\000surveys\000UNSPECIFIED\000surveyid\000surveyid\000

| tgdeferrable | tginitdeferred | proname | proname
+--------------+----------------+---------------------+---------------------
| f | f | RI_FKey_cascade_upd | RI_FKey_cascade_del

Fortunately there are tools available to make this kind of database administration easier. I use
PostgreSQL Manager from EMS (the same company that produces MySQL Manager, and IB
Manager for Interbase/Firebird). I’ll say more about PostgreSQL Manager in future articles.

The SurveyData table

Finally, here’s the table creation script for the SurveyData table, which holds the survey
responses:

CREATE TABLE SurveyData(
SurveyDataID serial NOT NULL PRIMARY KEY,
SurveyID int NOT NULL,
Value varchar(100) NOT NULL,
Source varchar(30),
DateTime timestamp,

http://www.clarionmag.com/cmag/v5/v5n02postgres2.html (9 of 11) [03/03/2003 4:23:27 PM]

http://ems-hitech.com/pgmanager/
http://ems-hitech.com/mymanager/
http://ems-hitech.com/ibmanager/
http://ems-hitech.com/ibmanager/

Introducing PostgreSQL - Creating Tables And Sequences

FOREIGN KEY (SurveyID) REFERENCES Surveys (SurveyID)
 ON DELETE CASCADE ON UPDATE CASCADE);

And here’s the result:

NOTICE: CREATE TABLE will create implicit sequence
 'surveydata_surveydataid_seq' for SERIAL column
 'surveydata.surveydataid'
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit
 index 'surveydata_pkey' for table 'surveydata'
NOTICE: CREATE TABLE / UNIQUE will create implicit index
 'surveydata_surveydataid_key' for table 'surveydata'
NOTICE: CREATE TABLE will create implicit trigger(s)
 for FOREIGN KEY check(s)

Add one index to make retrieving the survey data a bit more orderly:

CREATE INDEX IDX_SurveyData_Survey_Value ON SurveyData(SurveyID,Value);

Summary

Table creation isn’t that much different in PostgreSQL as compared to other SQL databases,
although its use of sequences to handle autonumbered columns is worth some special attention.
Next time I’ll provide some demo data, and show how to use the psqlODBC driver to connect
to a PostgreSQL database with Clarion.

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He is also co-author with

Ross Santos of Developing Clarion for Windows Applications, published by SAMS (1995). His most recent book is JSP, Servlets,

and MySQL, published by HungryMinds Inc. (2001).

Reader Comments

Add a comment

Here's an updated link to installation instructions for...
You can find a commercial Windows version of PostgreSQL at...
While trying to access...
Vaidya, I found an email address at the referring page...
Vaidya, I found an email address at the referring page...

http://www.clarionmag.com/cmag/v5/v5n02postgres2.html (10 of 11) [03/03/2003 4:23:27 PM]

http://gborg.postgresql.org/project/psqlodbc/projdisplay.php
mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.covecomm.com/java/index.html
http://www.clarionmag.com/cmag/comments.frm?articleID=11902
http://www.clarionmag.com/cmag/discuss.frm?articleID=11902&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=11902&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=11902&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=11902&position=4
http://www.clarionmag.com/cmag/discuss.frm?articleID=11902&position=5

Introducing PostgreSQL - Creating Tables And Sequences

 Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v5/v5n02postgres2.html (11 of 11) [03/03/2003 4:23:27 PM]

http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Topical Index

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > CLARION 6

Topical Index

Published 2001-11-12

Topics > CLARION 6

● C6 COM - 1 article(s)

● C6 General Info - 1 article(s)

● C6 Threading - 4 article(s)

Reader Comments

Add a comment

I've been waiting for an index like this. When will you...
Dave, This is great! I looked at all the articles...
Excellent - thank you!
Is there anyway to include a topic about API !!! Coz I am...
I'm trying to create an Invoice Report (1 Parent- 1 child)...
What a PAIN I used a whole afternoon persuing all the...
Dermot, Thanks, I'm delighted to have been the cause of...
Oops - I guess it's no longer undocumented.
Okay-I've just acquired an 8-year established software...
Is there anywhere I can buy clarion book? Thanks
Curtis - Mitten Software sells the Clarion Companion...

http://www.clarionmag.com/cmag/topics.html?categoryid=155 (1 of 2) [03/03/2003 4:23:28 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=155&subcategoryid=158
http://www.clarionmag.com/cmag/topics.html?categoryid=155&subcategoryid=159
http://www.clarionmag.com/cmag/topics.html?categoryid=155&subcategoryid=156
http://www.clarionmag.com/cmag/comments.frm?articleID=10966
http://www.clarionmag.com/cmag/discuss.frm?articleID=10966&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10966&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10966&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=10966&position=4
http://www.clarionmag.com/cmag/discuss.frm?articleID=10966&position=5
http://www.clarionmag.com/cmag/discuss.frm?articleID=10966&position=6
http://www.clarionmag.com/cmag/discuss.frm?articleID=10966&position=7
http://www.clarionmag.com/cmag/discuss.frm?articleID=10966&position=8
http://www.clarionmag.com/cmag/discuss.frm?articleID=10966&position=9
http://www.clarionmag.com/cmag/discuss.frm?articleID=10966&position=10
http://www.clarionmag.com/cmag/discuss.frm?articleID=10966&position=11

Topical Index

 Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/topics.html?categoryid=155 (2 of 2) [03/03/2003 4:23:28 PM]

http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

A Class For Tagging

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Browses > Tagging

A Class For Tagging

by Steven Parker

Published 2003-02-13

Oh, how the mighty have fallen! Steve didn't feel the need. He didn't see a reason.
Classes offered nothing he couldn't do using tried and true techniques. Now, the
good doctor succumbs to the siren call of OOP and makes his first class.
Appropriately, perhaps, this article appears 10 years after his first article, "A
Better Still Validation Template," in the Clarion Tech Journal for March/April
1993.

I am on record as feeling that marking, as implemented in the browse template, is massively
underwhelming (List Box Marking). Tagging by storing a reference to a record, in a queue or
in a file, is and has been my preferred method since forever and is all but bulletproof.

I am also on record as not having felt the need to create classes. In Reports: OOP, ABC and
Ignoring Templates (Part 1) I went so far as to state:

I use OOP … but I do not do OOP. I have not created a single class, much less a
class library. I do have an occasional attack of "I really should learn this stuff."
But, that would require doing, and I haven’t been that tempted….

I just haven’t yet felt the need. I have yet to find anything I need to do or want to
do that I cannot do quite easily with my tried and true techniques of incorporating
frequently used procedures in DLLs and INCLUDE-ing blocks of frequently
called code.

Well, "I really should learn this stuff" finally got the better of me. I finally "felt the need" and I
converted the tagging code presented in List Box Marking to a class.

http://www.clarionmag.com/cmag/v5/v5n02tags.html (1 of 7) [03/03/2003 4:23:30 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=123
http://www.clarionmag.com/cmag/topics.html?categoryid=123&subcategoryid=160
http://www.clarionmag.com/cmag/v2/v2n2listboxmarking.html
http://www.clarionmag.com/cmag/v4/v4n07epiphany1.html
http://www.clarionmag.com/cmag/v4/v4n07epiphany1.html
http://www.clarionmag.com/cmag/v2/v2n2listboxmarking.html

A Class For Tagging

What finally motivated me to take this drastic, nay, radical step? Well, that’s easy. In fact, it
was simple laziness.

In the past, I compiled my tagging and time routines into LIBs and DLLs. This required an
EXP file in addition to the functional code. Because I was too lazy to figure out how to create
the export file manually, I used an .APP. An .APP is very convenient but that linked in all the
globals (ABC or Legacy, 16 bit, 32 bit – I was maintaining both 16 and 32 bit for a while). So,
I created a set of PRJs and used the source files generated by the .APP.

No wonder I didn’t regenerate them very often.

A class offers the opportunity to be rid of export files, project files and multiple LIB/DLL
files. As I said, laziness got me to feel the need to try to write a class.

The INC File

While creating a class (albeit from code that I’ve been using for almost 10 years), I realized a
couple of interesting things about the INC file.

First, a class’ INC file is just a prototype file, not significantly different than INC files in CDD
(often used with DLLs). The main difference is that these INC files can also contain data
declarations (inside or outside the class) in addition to method (procedure) prototypes.

Second, unless you want to jump through all kinds of hoops, you need to use the form of
prototype that specifies the data type and label together.

The type of tagging I do is queue based, so the INC file includes a queue declaration (before
the class proper) and a reference to a queue of that type in the class declaration (explained in
CLASSy ASCII File Importing). I still haven’t gotten my head around reference variables but,
from examining existing class code, I know I need to do this:

!ABCIncludeFile
OMIT('_EndOfInclude_',_tagging_)
tagging EQUATE(1)
shpTagQueue Queue,Type
Ptr String(1024)
 End
shpTagClass CLASS,TYPE,MODULE('shpTagging.clw'), ¿
 LINK('shpTagging.clw',_ABCLinkMode_),DLL(_ABCDllMode_)
TagQueue &shpTagQueue
Construct Procedure
Destruct Procedure
IsTagged Procedure(String pPoint),Byte
MakeTag Procedure(String pPoint)
ClearTag Procedure(String pPoint)
ClearAllTags Procedure

http://www.clarionmag.com/cmag/v5/v5n02tags.html (2 of 7) [03/03/2003 4:23:30 PM]

http://www.clarionmag.com/cmag/v4/v4n12classyascii.html

A Class For Tagging

NumberTagged Procedure(),Long
 End
EndOfInclude

As I explained in List Box Marking, I use the queue to store unique information about the
tagged record. With this unique information, I can determine if the record has been tagged. I
can also use the information to retrieve the actual record. I can even use the unique information
as a report, process or browse filter.

Note that my queue has only one element, Ptr, a string. Using a long string here allows me a
great deal of flexibility.

I can use a string to store Position() information. Relying on Clarion’s automatic type
conversion, I can also use a string to store an auto numbered system ID (usually a long), a
Pointer()or any other information that uniquely identifies a record. (Note that TopSpeed
and Softvelocity are not keen on pointers for TPS files and there are cases where
Pointer(file) can be unreliable – check the file driver specifications for the file type you
are using.).

The remainder of the INC file is just the prototypes of functions (class methods) that actually
tag and untag records.

Construct and Destruct: As discussed in CLASSy ASCII File Importing, these methods
create the queue – because a class cannot contain a structure but can contain a reference to one -
- and clean it up on exit (Free and Dispose).

I don’t have to call these methods – Construct and Destruct are "magic" method names; these
methods are automatically called whenever an object is created or destroyed, respectively.
(Those of you who’ve been around Clarion a while may remember a Clarion goal, words to the
effect of "if it always needs to be done, the developer should never have to do it.")

IsTagged: This function returns True if a record is tagged, False otherwise. This function is
used in filters and in conditional list box icons (see the demo app and Icons in List Box).

MakeTag: Tags a record if it is not already tagged (i.e., adds it to the queue).

ClearTag: Untags a record, if it is tagged. ClearTag removes a record reference from the
queue.

ClearAllTags: Does just what its label implies.

NumberTagged: Returns how many records are tagged.

http://www.clarionmag.com/cmag/v5/v5n02tags.html (3 of 7) [03/03/2003 4:23:30 PM]

http://www.clarionmag.com/cmag/v2/v2n2listboxmarking.html
http://www.clarionmag.com/cmag/v4/v4n12classyascii.html
http://www.clarionmag.com/cmag/v5/v5n01listicons.html

A Class For Tagging

Creating the Code File

The code for these functions is somewhat changed from my first presentation of them. Note
that return data types do not get included in the prototype line (the compiler gets most unhappy
if you do).

Because I was using existing, well tested code, I thought my CLW file would be little more
than my old code.

Wrong.

Not prepending the class name to each method prototype was deadly. The compiler could not
resolve the prototypes without the class name.

Also, note how the queue is referred to by its reference (instantiated) label, not its type
declaration. And only dot syntax works in class code:

 MEMBER
 omit('***',_c55_)
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)

 Include('shpTagging.inc')
 Map
 End

shpTagClass.Construct Procedure
 CODE
 Self.TagQueue &= New(shpTagQueue)

shpTagClass.Destruct Procedure
 CODE
 Free(Self.Tagqueue)
 Dispose(Self.TagQueue)

shpTagClass.IsTagged Procedure(String pPoint)!,Byte
 CODE
 Self.TagQueue.Ptr = pPoint
 Get(Self.TagQueue,Self.TagQueue.Ptr)
 If ~ErrorCode()
 Return(True)
 Else
 Return(False)
 End

shpTagClass.MakeTag Procedure(String pPoint)
 CODE
 Self.TagQueue.Ptr = pPoint
 Get(Self.TagQueue,Self.TagQueue.Ptr)
 If ErrorCode()

http://www.clarionmag.com/cmag/v5/v5n02tags.html (4 of 7) [03/03/2003 4:23:30 PM]

A Class For Tagging

 Add(Self.TagQueue,Self.TagQueue.Ptr)
 End

shpTagClass.ClearTag Procedure(String pPoint)
 CODE
 Self.TagQueue.Ptr = pPoint
 Get(Self.TagQueue,Self.TagQueue.Ptr)
 If ~ErrorCode()
 Delete(Self.TagQueue)
 End

shpTagClass.ClearAllTags Procedure
 CODE
 Free(Self.TagQueue)

shpTagClass.NumberTagged Procedure()!,Long
 CODE
 Return(Records(Self.TagQueue))

If you examine the code, you will not see anything even vaguely resembling rocket science.
It’s all just standard queue manipulation code. But, like functions in a DLL, it is useable
anywhere the object is in scope. See the sample app, where most of these functions are used.

Implementing shpTagClass

I realize that global data is bad and that, in upcoming releases of Clarion, global data is likely
to cause an increasing number of problems. However, I do not see the logic in creating a tag
queue at anything less than the global level.

If a tag queue is declared at the procedure level, tagging information can only be used in that
procedure. But, users are usually tagging records for batch processing (in processes and
reports) elsewhere, in other procedures.

Demoting the class instantiation to the module level, forces all potential user-procedures to be
in the same module. This would, I think, be a major design restriction.

For the same reason, you will note that neither shpTagQueue nor TagQueue is threaded. If
I put the Thread attribute on the queue, any procedure that might use tagged records would
have to be on the same thread. I couldn’t Start()any procedure that might use a tag. On its
face, this would be another major restriction.

So, in a global data embed, I instantiate shpTagging class in the application data area and
create a tag object:

Include('shpTagging.inc'),Once
Arnold shpTagClass

"Arnold" may seem a somewhat less than descriptive object name (in the sample app, it is used

http://www.clarionmag.com/cmag/v5/v5n02tags.html (5 of 7) [03/03/2003 4:23:30 PM]

A Class For Tagging

to tag customer records). But, it illustrates my ability to create multiple tag objects (either on
the same file or on different files):

Include('shpTagging.inc'),Once
Arnold shpTagClass
Annie shpTagClass

and I have two sets of tags, two tag queues that know nothing about each other.

In the sample app, there are two browses. Open them, create some records and tag some of
them. You will see that the items tagged in one browse are not ipso facto tagged in the other.

A more realistic use of this is to create tags for each of your files is:

Include('shpTagging.inc'),Once
CustTags shpTagClass !Tags for Customer file
InvcTags shpTagClass !Tags for Invoices
InvtTags shpTagClass !Tags for Inventory
!etc.

Neither am I concerned about tags set by multiple users "inheriting" tags set by others, since
I’m storing the data in a queue, not in a (potentially) shared file.

Summary

This is hardly a full, or even decent, implementation of tagging. A proper implementation
requires a template (for example, to populate the various buttons and the code that makes them
work). For this very reason, I have been using Mike Hanson’s SuperTemplates (actually, I
started using them when they were CPD models). But, not only is the TagClass adequate for
limited uses, it provides a good test and learning case (especially because you can compare the
class to the traditional method of coding, as shown in List Box Marking).

More importantly, I no longer need to recompile my tagging code with new Clarion releases.

Download the source

Steve Parker started his professional life as a Philosopher but now tries to imitate a Clarion developer. He has been attempting to

subdue Clarion since 2007 (DOS, that is). He reports that, so far, Clarion is winning. Steve has been writing about Clarion since

1993.

http://www.clarionmag.com/cmag/v5/v5n02tags.html (6 of 7) [03/03/2003 4:23:30 PM]

http://www.clarionmag.com/cmag/v2/v2n2listboxmarking.html
http://www.clarionmag.com/cmag/v5/files/v5n02tagging.zip
mailto:sparker@par2.com

A Class For Tagging

Reader Comments

Add a comment

Steve: I like this article. I don't know if this...
Jim could you point out where in the class code a global...
I was confused by the following: I realize that global...
A reference to the class could be passed to a report or...

 Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v5/v5n02tags.html (7 of 7) [03/03/2003 4:23:30 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=11911
http://www.clarionmag.com/cmag/discuss.frm?articleID=11911&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=11911&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=11911&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=11911&position=4
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

CONVIC - An Antipodean Clarion Gathering

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > News > Conference notes

CONVIC - An Antipodean Clarion Gathering

by Chris Livingstone

Published 2003-02-14

If you’re not an Australian Clarion developer then there’s a good chance you haven’t heard of
ConVic. Does this matter, you ask? Well, ConVic’s been on the Australian landscape for five
years now and for the last four, it’s been the only Clarion conference in Australia. What’s
more, ConVic 2003 is coming up at the end of March – it’s an opportunity not to be missed by
Australian developers, and overseas developers who might like to consider combining the
conference with a sightseeing trip down under.

CONVIC is a Clarion conference held annually in Victoria, Australia’s second smallest state in
area, the second largest in population. In case you're wondering, CONVIC stands for [Clarion]
CONference in VICtoria; of course it’s also a sly tip of the hat to Australia’s past as a colony
for criminals exported from England.

For most of the 1990s, Australian Clarion conferences were held in the heart of Sydney, but
the high cost of airfares and accommodation put these Sydney Devcons out of reach for many
developers living in other states. The humble aim of the first CONVIC in 1998 was simply to
provide an opportunity for all Victorian Clarion developers to get together. The idea was to
make the conference as inexpensive and accessible as possible, an idea which spread to
developers from South and Western Australia who decided to join us in this venture.

For the last four years, ConVic has been the only Clarion conference in Australia, and so
we’ve had participation from right around the country and even the odd overseas visitor.

CONVICs past

The first CONVIC was held in November 1998 in Ballarat, a large town 100 km west of
Melbourne, with its history rooted in the gold rushes of the 1850s. After the success of this

http://www.clarionmag.com/cmag/v5/v5n02convic2003.html (1 of 10) [03/03/2003 4:23:34 PM]

http://www.clarionmag.com/
http://www.developerplus.com/
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=129
http://www.clarionmag.com/cmag/topics.html?categoryid=129&subcategoryid=56
http://www.convic.org/
http://www.ballarat.com/

CONVIC - An Antipodean Clarion Gathering

first conference, CONVIC 99 was inevitable. This time we moved right up into the mountains,
to Mt Buffalo Chalet in the Victorian Alps. The conference was great, but the fickle spring
weather meant that we missed much of the beauty of the mountain. In 2000, we met in
Daylesford, a picturesque country town where gentlefolk retired to take the waters of the
mineral springs.

Back to Mt Buffalo in March 2001, the end of
summer; unfortunately, six months’ perfect
weather chose to break on the very weekend of
our conference! The title "Clarion in the
Clouds" was intended to be just a pithy slogan,
not a literal description, but thick fog blanketed
us the whole weekend limiting visibility
outside to a few metres. Luckily there was so
much on the program that we had little time for
outdoor activities, but those who stayed on an
extra day were treated to splendid vistas of the Australian Alps (much of it since devastatingly
burnt in the bushfires still burning now).

CONVIC 2001 was great, endorsed by many as the best Clarion conference ever held in
Australia. However, anyone who’s run a conference of any sort will know just how much work
and time is required to make it successful. CONVIC 2001 was no exception and it took its toll.
With Clarion use evidently in decline in this country, it seemed that this would be the last of
the regional conferences, possibly the last Clarion conference ever in this country. I certainly
would never organise another Clarion conference!

http://www.clarionmag.com/cmag/v5/v5n02convic2003.html (2 of 10) [03/03/2003 4:23:34 PM]

CONVIC - An Antipodean Clarion Gathering

But sometimes, you just can’t help yourself, can you?

In this part of the world, Clarion developers are geographically very dispersed and there are
very few occasions for catching up with others. Sure we keep in touch over the Internet but it’s
not the same as physically getting together.

Someone planned a one-day event in late 2001 but there was considerable disappointment
when this was cancelled.

So I relented ever so slightly and decided I'd just "facilitate" something really low-key in 2002.
No publicity, no big deal, no organisation, no prizes, no fancy stuff. Just a day for people to get
together. All I had to do was tee up a venue and let people get on with it. I'd better organise
some food but that’s no big deal. It’d probably be a good idea to get a couple of speakers just
to kick things off. Actually, it looks like we’ve got some good stuff here – it’d be a pity to
cram it all into one day. OK, so now we’ve got a two-day event. I guess I'd better do
something about accommodation. Ah, I've got just the venue. It’s still low-key of course but I'd
better work out a bit of a timetable. We’d better have a couple of extra people to fill in some

http://www.clarionmag.com/cmag/v5/v5n02convic2003.html (3 of 10) [03/03/2003 4:23:34 PM]

CONVIC - An Antipodean Clarion Gathering

blank spots. Right, that’s it – it’s another bloody conference! – CONVIC 2002.

What makes CONVIC special?

Several things make CONVIC special. First of all, it’s held "out of town." Deliberately. That
mightn’t sound like a big deal to overseas developers who live in cities all over the country but
down here, in a land of huge empty spaces, most of us live in just a very few big cities. In fact,
half of Australia’s population lives in just three state capital cities on the eastern sea-board.

Here in Victoria, three-quarters of the population lives in the state capital, Melbourne.
However, a significant proportion of our Clarion community lives and works in country and
regional areas. So while it makes sense for monthly meetings to be held in the capital city, a
weekend conference is a good opportunity to acknowledge and cater for country and regional
members by leaving the metropolis. Besides, it’s a breath of fresh air for those living in the
capital city.

Secondly, our conferences are residential – everyone stays on site. We’ve eschewed the city
hotels and country motels in favour of conference venues which allow participants to relax and
socialise. That’s why a number of people have taken to referring to our conferences as
"retreats," a very appropriate term.

Combining on-site accommodation with an out-of-town location has a further advantage. At
the end of the day, participants don’t suddenly desert back home to the suburbs, or to their own
motels and hotels. Instead, they sit down, relax, go walking, swimming (if the weather’s right!)
and take the opportunity to catching up with others in an informal environment. Partners join
in and become part of the group.

I’ve always believed strongly that the benefit of conferences goes well beyond the formal
content. Of course content is important but equally important is the contact with other
developers: sitting round sharing ideas, mixing informally, having a drink, chatting as you
walk down to the beach, spending time over lunch, getting to know other developers, get new
ideas, make new contacts.

Venues are important. Not just for the conference facilities but also for the environment and
that intangible "ambience". If you live and work in the city or the suburbs, it’s not much of a

http://www.clarionmag.com/cmag/v5/v5n02convic2003.html (4 of 10) [03/03/2003 4:23:34 PM]

CONVIC - An Antipodean Clarion Gathering

change if you step out of the conference
room into bustling city streets and
commuter traffic, even if it’s a different
city. It’s much easier to put aside the cares,
the pressures, the frustrations, of everyday
life when you’re in a tranquil rural
environment.

Content is obviously central to a conference
of any sort. While it’s good just coming
together every so often, you also need to
feel you’re getting something useful out of

the conference. A good variety of topics is essential but it’s also vital to have presenters who
can communicate their topic. While I have some leniency with someone who has a lot of
technical knowledge to share, I’m always aiming for a professional presentation. From the
very first regional conference, CONVIC 98, I ditched the overhead projector and specified
PowerPoint for all presenters. A few needed a bit of help at the first conference, but now
everyone seems pretty comfortable. It certainly contributes to a much better presentation.

Presentations are also better when they don’t go on too long. As you get older, time becomes
more precious and we don’t like wasting what we have left in this life. (Also, bladders seem to
shrink as we get older!) From the start, I made a very strong point of starting and ending
sessions on time, even if it meant cutting a speaker short. Feedback shows this has really been
appreciated by participants even if speakers aren’t always happy. In more recent conferences
I’ve become a little more flexible, but only when there’s been time available.

Dave Harms came out as a key speaker for our first conference and established a respect and
friendship out here which endures to this day. The experience has not been forgotten by
participants nor I suspect by Dave himself. But Dave spoilt us; since then, we’ve been badly
burnt with overseas speakers who’ve promised but not delivered (or more accurately, they’ve
promised then not turned up). Still, we’ve proved that we don’t need overseas speakers to run a
good conference.

Quite a few other things have contributed to the success of the five regional conferences held
in this part of the country. One example: seating at meals. This is done by a random chance

http://www.clarionmag.com/cmag/v5/v5n02convic2003.html (5 of 10) [03/03/2003 4:23:34 PM]

CONVIC - An Antipodean Clarion Gathering

allocation. Sorry, but you can’t hog a table
with all your cronies nor can you wangle it
to sit with the keynote speaker at every meal.
The flip side is you won’t be left out in the
cold if you're a newcomer who knows no-
one else; you have the same chance as
anyone else of sitting with special guests or
speakers. Above all, there’s every chance
that you will meet someone new or discover
something different while enjoying your
meal.

Is CONVIC successful?

OK, it’s different, but is it successful?

If you measure success by attendance, then 30-35 participants probably seems a
disappointment. But look at it on a per capita basis. Australia is a country with 19 million
people (about the same as New York state, a few more than Florida, a few less than Texas)
while the US now has around 285 million people. So by this measure, 30-35 to an Australian
conference corresponds to 450-500 participants at a US conference. Put like that, you can’t
complain about attendance. It looks even better when you realise that CONVIC is still
primarily a regional conference. It’s not bad when you know that you’re getting considerably
more than 50% of the active Clarion developers in your state!

Feedback from participants leaves no doubt that we’ve found a winning formula. We haven’t
had one disappointed participant, no-one who’s gone away and said "never again!". Typical
reactions are "the best conference so far", "can’t wait till next year’s conference", plus
superlatives enough to embarrass even the most blush-proof.

CONVIC 2002

Despite the low-key intentions, CONVIC 2002, held on March 23-24 2002, proved just as
successful as the previous conferences. It was very much a local event with local speakers but
that was no disadvantage.

From the weather-cursed mountain tops of the previous conference, I decided to go to the other
extreme in 2002, right down to sea-level. To Geelong, a regional centre some 70 km south-
west of Melbourne, a waterside city on the very large bay which forms the sea entrance to
Melbourne. The conference centre blended in with the surrounding parklands, just five minutes
walk from the beach. The change of location worked: we enjoyed fine warm days and balmy
evenings. Several people took the opportunity of a swim, most preferring the pool and spa at

http://www.clarionmag.com/cmag/v5/v5n02convic2003.html (6 of 10) [03/03/2003 4:23:34 PM]

CONVIC - An Antipodean Clarion Gathering

the conference centre but more venturesome souls braving the sea water.

Like the previous regional conferences in Victoria, CONVIC 2002 was deliberately residential.
After the formal part of the day was over, there was time for people to relax, wander down the
beach, take a dip in the pool or spa, use the gym or just sit around chatting, before we all went
for a leisurely dinner down by the waterfront. Later in the evening, some played pool or table
tennis while the rest enjoyed the casual conversation with other participants and their partners.
No distinction between city and country members here – we were nearly all in residence so no-
one had to rush off home.

Geelong Conference Centre was a great venue providing good formal conference facilities but
also plenty of areas for impromptu gatherings. There was no shortage of food and no one
found any need to seek extra sustenance.

Despite the low-key nature of this year’s conference, and the emphasis put on people meeting
people, the actual content was still substantial. This time we adopted the approach used in

some overseas conferences with fewer but
longer major presentations.

In fact, there were just three major
presentations, in the form of tutorials or
"how-to" sessions. The theme became
"Clarion + ", or Clarion Plus.

Bruce Cowan had taken on Crystal Reports
as part of his work and was therefore an
ideal choice for a session on "Clarion +
Crystal". Chris Livingstone has spent quite
a few months working with ClarioNET and

this was the centrepiece of his presentation on "Clarion + ’Net". The third tutorial came out of
left field but proved one of the highlights of the conference. Alex McCullie is a long-time
Microsoft Access programmer as well as a Clarion developer; in the last couple of years, he
has combined these skills by very successfully using Clarion as a front-end to Access and SQL

http://www.clarionmag.com/cmag/v5/v5n02convic2003.html (7 of 10) [03/03/2003 4:23:34 PM]

CONVIC - An Antipodean Clarion Gathering

Server databases. Tutorial number three: "Clarion + MS Access. Each of these sessions led
into a wide-ranging discussion on the topic covered with much sharing of ideas and
experiences.

We topped up the conference with some less formal but nevertheless valuable contributions
from a couple of other stalwarts from this part of the world. Geoff Robinson covered both
archiving and BLOBs in his presentation, while we welcomed Simon Brewer back into the
fold with the old but still popular favourite review of third-party tools. As a broadening
experience, there was also a look at another development environment which has been
attracting some interest over the past couple of years. (Perhaps it’s our isolation, more likely
just commercial reality, but most developers in this country don’t seem to have a problem
recognising there is life outside Clarion.)

In preparation for his session, Simon Brewer contacted ten suppliers of Clarion third-party
products, seeking information. I'd like to acknowledge the three who responded; they also
generously donated prizes. Thanks to Susan and Arnor at Icetips, Bruce and his team at
CapeSoft, and Gus Creces with his rather amazing Handy Tools. So popular was Simon’s first
session on the products from these three companies that we had to schedule an extra session.

From every aspect, CONVIC 2002 proved another highly successful conference. The open
forum which concluded the conference showed that even with all the Internet communications
now available to us, there is still very much a place for face-to-face contact and interaction.
The unanimous call for another conference in 2003 in the same place was a very positive
affirmation of the success and value of this event; I had little hesitation in booking the dates

http://www.clarionmag.com/cmag/v5/v5n02convic2003.html (8 of 10) [03/03/2003 4:23:34 PM]

CONVIC - An Antipodean Clarion Gathering

and venue for a conference in 2003. "We’ll
see you next year" was the parting greeting
from most participants.

CONVIC 2003

CONVIC 2003 is a three-day conference,
from Friday, March 28 to Sunday March 30,
2003, in Geelong, Victoria, Australia. This
year we have speakers from all around the
country and even a couple of overseas
speakers (Gus Creces and Russ Eggen) providing presentations remotely!

If you’ve never been to a CONVIC, here’s your chance. All Australian developers should mark
it on their calendars. And we’d be very happy if some overseas Clarion developers could share
the experience with us. March-April is a great time to visit this country and with the current
exchange rate, it’s a great value holiday.

Check us out at www.convic.org.

Chris Livingstone

Grand Poohbah, CONVIC

chris@convic.org

Chris Livingstone has been a teacher for more than half of his working life, and a programmer for some three decades. He began

using Clarion in the days of CPD and LPM, and now divides his time between Clarion programming, photography, and other

equally challenging interests. Known for writing emails of near Tolstoyan proportions, Chris is possessed of a teacherly spirit

regarding written material, user interfaces, pronunciation of kilometre, and sundry other irrelevancies. Has a penchant for

organising things (ever since starting the anti-sport league in primary school), a trait which has not always sat well with the

anarchic Clarion community in his native Australia. Chris has bossed the Victorian User Group around for three years (making it

into a pretty successful group along the way), and has organized yearly Clarion conferences in Victoria since 1998 (CONVIC

2003 will be conference number six).

http://www.clarionmag.com/cmag/v5/v5n02convic2003.html (9 of 10) [03/03/2003 4:23:34 PM]

http://www.convic.org/
mailto:chris@convic.org
mailto:chris@convic.org%20

CONVIC - An Antipodean Clarion Gathering

Reader Comments

Add a comment

 Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v5/v5n02convic2003.html (10 of 10) [03/03/2003 4:23:34 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=11913
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Clarion News

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > News > ClarionMag 2001 News

Clarion News

Published 2001-11-21

EmailReport Nettalked
EmailReport Nettalked by VividHelp is a specialized report emailing template that works in
conjunction with CapeSoft's Nettalk template (not included). With EmailReport Nettalked
template you can: Send Clarion, CPCS, RPM, DAS, and TIN reports in the email body;
Duplicate report in RTF format as attachment; Email reports as RTF attachment only; Save
report to disc without emailing as RTF in silent mode or as RTF, DOC, HTML in manual
mode; Send unattended and/or bulk emails; Send and play sound files. Demo available.
Available from ClarionShop for $70.
Posted Friday, February 28, 2003

Icons Sets From Ace Icons
Sue and Arnor at IceTips have set up a new website: Ace Icons. At Ace Icons you can get
color-matched icon sets, GIFs, backgrounds and buttons. The Ace Icons items are all original
creations. As a special sale just for Clarion developer, Ace Icons is offering a free matching
imaging set (when it becomes available) for any icon and/or glyph sets you buy before the end
of February, 2003. The base set includes 110 different images, and costs $25 (less in a suite).
Coming soon: The Ace Imaging Set, a specialty set of icons for use in your imaging apps.
These are being designed with the advice of a developer who is using Jens Weierman's
ImageEx, but they will work with any imaging needs. Other specialty sets will follow.
Background (wallpaper) images are also available, in colors to match the icon sets. The Ace
Background sets cost $10 each (less in a suite). Ace Button images work with the Icetips
Magic Buttons templates, or on a web site. The Ace Button sets cost $5 each (less in a suite).
Icon images are also available as GIF files. The Ace Glyph sets cost $25. Or get everything at
once, in a suite.
Posted Friday, February 28, 2003

CPCS Beta Install Files For Clarion6

http://www.clarionmag.com/cmag/news.html?year=2003&month=2&limit=100& (1 of 10) [03/03/2003 4:23:36 PM]

http://www.clarionmag.com/
http://www.developerplus.com/
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=129
http://www.clarionmag.com/cmag/topics.html?categoryid=129&subcategoryid=140
http://www.vividhelp.com/emailrptnettalked.htm
http://www.aceicons.com/
http://www.cpcs-inc.com/C6Beta.asp

Clarion News

CPCS has C6 Beta versions of all CPCS Products. Upgrade policy information and install files
for all products (except the ClarioNET add-on which should be available a bit later) are on the
web site.
Posted Friday, February 28, 2003

xReplacer (TXA Manager) v1.0 beta
SealSoft's xReplacer works with TXA files. Currently in beta, its features include: Move up
and downwards on filled embeds; Comment and uncomment all embed lines; Search any text
in filled embeds or whole file (from current line or from top of file); Replace any text in filled
embeds or whole file (from current line or from top of file); Move up and downwards on
changed lines; Edit embeds; Replace in embeds; Go to line by number; Embeds and Buttons
List; Go to specific embed; Go to specific button; Open last edited file (options); Save file and
SaveAs file. Demo available. During beta period the price is $59, final version will be $89. If
you have a SealSoft discount card, use it at ClarionShop (enter the number in the Promotion
Number field) and save 10%.
Posted Friday, February 28, 2003

HelpMaker.NET Now Freeware
HelpMaker.NET is a help authoring tool written in C#. There used to be two versions -
standard (freeware) and professional (shareware). Now, both versions are now freeware.
Posted Friday, February 28, 2003

INN Bio & News for 25-Feb-2003
A Clarionite in the Pacific Northwest, he's been an expert witness for F. Lee Bailey and won
both tennis and photographic competitions. He says about technology: "It marches to a
different drummer than I do, I think. Technology marches in double time, and I'm marching
behind the horses and have to watch my step." Gotta love him! Be sure not to miss the photos
at the end.
Posted Friday, February 28, 2003

EasyResizeAndSplit 1.03
Infasoftplus has released EasyResizeAndSplit version 1.03. Changes include: Small
modifications in the templates; Usage of IMM attribute required for the window (rollback);
Fixed GPF with controls with a negative coordinates.
Posted Friday, February 28, 2003

[MS] Outlook EmailReport 1.1
Vivid Help has released Outlook EmailReport 1.1 for C5/55 ABC/Legacy. EmailReport lets
you send your reports (Clarion, CPCS, RPM, DAS, TIN) as RTF attachments with MS
Outlook. You can send emails one-by-one or in batch mode.
Posted Monday, February 24, 2003

http://www.clarionmag.com/cmag/news.html?year=2003&month=2&limit=100& (2 of 10) [03/03/2003 4:23:36 PM]

http://www.seal-soft.com/cgi-bin/ps_view.pl?id=products&comm=xreplacer
http://www.accviz.com/
http://www.icetips.com/
http://www.ingasoftplus.com/id68.htm
http://www.vividhelp.com/outlookemlrpt.htm

Clarion News

Taboga Software Schedule For Feb 24-28, 2003
Edgard Riba will be out of the office until Feb 28 and may not be able to respond to email.
Posted Monday, February 24, 2003

EasyResizeAndSplit 1.02
EasyResizeAndSplit ver 1.02 is now available. Changes include: Allow Resize for Both
direction, width only or height only; Different types of the split control - Panel, Invert
Transparent; Dynamic resizing for SpilBars and Window (with all controls); Fixed controls of
movement for split control; Compatibility with non-Clarion controls (SYSLIST, KSSTBAR
etc); Window IMM attribute no longer needed; Fixed incorrect resizing for not MDI windows.
A new demo is available. All registered users can download the new version.
Posted Monday, February 24, 2003

BoxSoft SuperSecurity 5.0a
BoxSoft's SuperSecurity Version 5.0 is now available. This release includes some new fields
and a new table, so if you're upgrading be sure to read the upgrade notes. All hard-coded
windows have been moved into generated Window procedures, to enable better handling by
Clarionet, etc. There's a new property called Security.FullAccess. If you want your users to
logon, but for some reason you want to allow unlimited access throughout the program, then
set this to True. There's a new method called Security.PrepareFilenames. It's an empty virtual
procedure that you can override to set your own variable filenames and owner attributes for the
security files. The Logon can happen automatically using the network username (as long as it
matches a username in SSEC::User). Passwords are no longer restricted to 8 characters. The
new default (when importing SECURITY.TXD) is 20 characters, and you can edit the field
definition to a maximum of 50 characters. There is also an optional setting for minimum
password length. You can set passwords to expire, so that the user must enter a new one. This
comes from a global default, but can be changed on a per user basis (including no timeout at
all). There's a new "Locked" feature to lock-out users from logging on. When the Security
system HALTs the program, you can execute some of your own code on the way out.
Posted Monday, February 24, 2003

HTML Designer 1.04 Beta Update
HTML Designer Version 1.04 Build 12 is available. This is an update to Version 1.03 and
cannot be installed on its own. Use the same password as for version 1.03. HTML Designer is
a WYSIWYG HTML Help Creation utility that interfaces directly with the Clarion
Development environment for HTML Help file Creation in all Windows versions of Clarion
up to C55H. (Not tested with version 6 yet). This Update needs version 1.03 (69) to run.
Changes include: Updated user interface; more stable DHTML control; Added HTML help
and contents control windows; Setting of contents tab tree options now included (change icons,
tree style,etc); All images for a project now under Images sub-directory; Selecting an image

http://www.clarionmag.com/cmag/news.html?year=2003&month=2&limit=100& (3 of 10) [03/03/2003 4:23:36 PM]

http://www.tabogasoftware.com/
http://www.ingasoftplus.com/
http://mittensoftware.com/clar.htm
http://www.riebens.co.za/

Clarion News

from "Anywhere" to be included in a project automatically copies the image to the images sub
directory; Check for duplicate image names with options to use existing image or overwrite
image; Hotspot map editor updated; and much more. HTML Designer is available through
ClarionShop.
Posted Monday, February 24, 2003

PD Lookup And Drop Edit Controls Updated
ProDomus has released updates to PDLookup and DropEdit Controls. Changes include:
Parameters can now be passed to the browse lookup procedure (Clarion5 Version 05-05 and
C55 Version 55-06); Fix for a class library situation where no edit record is added to the queue
which might cause the edit list to appear when a blank record was selected; Fix for a template
issue that might occur when two procedures use the same local data definition (C55 Version 55-
04).
Posted Monday, February 24, 2003

Winner Of The cpTracker Drawing
The winner of the very first weekly cpTracker drawing is Kell Jørgensen of Proff Consult ApS.
Congratulations Kell!
Posted Saturday, February 22, 2003

cpTracker R3
Berthume Software's cpTracker R3 adds the following features: All browse windows are now
resizable. Additional columns have been added to all task browses; The Application
Procedures option on the Configure menu now has an import option to import all procedure
names and descriptions from your Clarion Application TXA files (if applicable); A new report
previewer (IceTips) has been added with the ability to generate PDF files (PDF Tools) of your
reports which you can then email or archive. More PDF enhancements will be coming such as
the ability to email the PDF directly from the previewer.
Posted Saturday, February 22, 2003

Excel Read/Write Utility 1.2
Alexander Ageev has announced version 1.2 of the ERW Excel Reader/Writer utility. This
version can read/write Excel files to/from CSV (Tab, basic, etc) files in addition to all previous
features. Auto-detect of the most used formats (dates, decimals, reals) is included, along with a
number of other features. A new demo is available.
Posted Saturday, February 22, 2003

SkyHI Debug Template
SkyHi Software has released a new debug template which lets you view all the variables that
are currently in use at the press of a button. Templates include global and procedure extensions
and a breakpoint embed. Available from www.clarionshop.com.

http://www.clarionmag.com/cmag/news.html?year=2003&month=2&limit=100& (4 of 10) [03/03/2003 4:23:36 PM]

http://www.prodomus.com/
http://www.berthume.com/
http://www.berthume.com/
http://www.clariosha.clarion.ru/excel.htm
http://www.skyhi.co.za/help/skyind.html

Clarion News

Posted Saturday, February 22, 2003

ImageEx 2 Gold Release
ImageEx 2 is now in gold release. The installation password hasn't changed, so if you're an
existing user please use the one sent to you before. New features include: Completely new
TIFF engine, now (finally) supporting CCITT group 4 tiff images; Support for Clarion 6 EA 1;
New ImageExPcxSaver class for saving uncompressed PCX images; Some minor changes to
the bitmp, viewer and panner classes. A new demo is also available.
Posted Saturday, February 22, 2003

Newsletter Service
MyComputerJouranl.com is offering a newsletter service for computer consultants. Each
month MyComputerJournal.com will send you a newsletter for you to send to your clients. The
newsletter will have computer related articles and tips for your clients with your name and
phone number on every page. You have a choice of receiving professionally printed copies of
your newsletter or a PDF file. With your subscription, you also receive a free HTML file and
link for customers to view your newsletter online.
Posted Thursday, February 13, 2003

Win A Free Copy Of cpTracker
Berthume software is holding a weekly drawing for a free copy of cpTracker. Visit the web
site and click on the "Win a Free Copy..." graphic on the lower left.
Posted Thursday, February 13, 2003

cpTracker Silver R2 Available
There is a new version of cpTracker available for immediate download. This version features
bulk email capabilities using your MAPI email client, with SMTP support to come shortly.
Posted Thursday, February 13, 2003

chSTD Library Version 2.63
Ingasoftplus's chSTD Library version 2.63 is now available. This release includes changes to
date/time processing, reporting, and various miscellaneous functions. New demo available.
Posted Thursday, February 13, 2003

EasyVersion 2.01 Released
Ingasoftplus's EasyVersion ver 2.01 is now available. This release fixes some small bugs in the
template.
Posted Thursday, February 13, 2003

Icetips Clarion 6 Compatibility

http://www.clarionmag.com/cmag/news.html?year=2003&month=2&limit=100& (5 of 10) [03/03/2003 4:23:36 PM]

http://www.solidsoftware.de/imageex.htm
http://www.mycomputerjournal.com/
http://www.berthume.com/
http://www.berthume.com/news.htm
http://ingasoftplus.com/id61.htm
http://ingasoftplus.com/id18.htm
http://www.icetips.com/products

Clarion News

Icetips Software has made available three installs that are Clarion 6 EA1 compatible. EA2 will
be tested shortly. The products which are currently Clarion 6 compatible are: Icetips Magic
Buttons; Icetips Magic Entries; Icetips Previewer. IceTips will be working on C6 compatible
releases of the other products and will make them available as they get tested for compatibility.
Some of the remaining products require recompiles of DLLs etc. and these may not be
available publicly until C6 goes gold, but they will be available to beta testers before that. If
you are interested in beta testing (and are an existing customer) email
clarion6beta@icetips.com.
Posted Thursday, February 13, 2003

Clarion Third Party Profile Exchange Updated
The Clarion Third Party Profile Exchange consists primarily of profiles of third party add-on
products and vendors. This includes freeware templates and tools as well. Online and
Downloadable Profiles available. Online product profiles include Product Internet URL, Order
URL, Dated Price Quote, Grouped by Category, Extended Description and Download Page
Reference. Currently, there are 424 product profiles and 355 vendor profiles. You must have
Product Scope 32 PRO Version 4.5 or 4.5a to view profiles with data files (downloadable
profiles).
Posted Thursday, February 13, 2003

ABCFree Templates And Tools Updated
ABCFree Templates And Tools Version 2.42 is now available: Changes include: Added
"Simple Filter" support - user presses CTRL+SHIFT+F and can enter text to search the current
list for (string fields only); vsSimpleStringFilter procedure; Template to add call to procedure
to all browses; Fixed bug in "SendKeys" logic - the EXTENDEDKEY attribute was being
applied to all characters, and on some systems this caused applications to randomly open
(dependent on the keyboard driver that was installed); Added support for "Popup" selection
when multiple reports could be called using the PrintButton template; Added
"Copy/Cut/Paste/Undo" popup menu for normal entry fields (template and class); Added
"Prevent MDI Errors" template. The ABCFree Templates and Tools are a set of templates,
classes, and utilities for Clarion 5 and 5.5 (ABC template chain).
Posted Thursday, February 13, 2003

CPCS Builds v5.16 (C5b) And v5.57h (C55)
CPCS has posted new builds for v5.16 (for C5b) and v5.57h (for C55) which have been
modified as follows: Previewer Page Number spinbox now supports up to 99,999 pages; The
Print and Stay toggle can now be set to ON by default (via the previewer INI file). Use your
existing codes for these builds to install the new files.
Posted Thursday, February 13, 2003

Special Offer From Berthume Software And Epsilon Concepts!

http://www.clarionmag.com/cmag/news.html?year=2003&month=2&limit=100& (6 of 10) [03/03/2003 4:23:36 PM]

http://www.encouragersoftware.com/
http://www.authord.com/
http://www.cpcs-inc.com/
http://www.epsilonconcepts.com/

Clarion News

Get Berthume Software's cpTracker, a complete project management and bug tracking system,
for free if you order a service or product from Epsilon Concepts that costs $250 or more! If
you spend less than $250, you will receive a 50% off coupon for cpTracker. This is a savings
of $80-$159.00.
Posted Thursday, February 13, 2003

Ingasoftplus EasyResizeAndSplit 1.01
Ingasoftplus has released EasyResizeAndSplit 1.01. Now supports non-MDI windows, and has
fix for SplitBar control on Windows 98. New demo is also available.
Posted Thursday, February 13, 2003

1st Logo Design
1st Logo Design is having a developer graphics special for $199. Package includes contains an
application logo, an application icon, splash screen and product box image (regular price
$299). Also included: a 20% off coupon for anything in Gitano Software's product line or
custom work in 1st Logo Design.
Posted Thursday, February 13, 2003

C6EA2 Patch Released
A patch for release 2 of the Clarion 6 Early Access release is now available to participants. The
honor of the first known EA 2 compatible third party product in binary release goes to Lee
White's RPM!
Posted Wednesday, February 12, 2003

EasyResizeAndSplit 1.00
EasyResizeAndSplit (ERS) ver 1.00 has been released. This class and template lets the end
user resize window controls and use split bars. ERS generates code to reposition the controls,
resize the controls, or both, when the end user resizes the window or moves the split bars
(vertical or/and horizontal). Price is $49.
Posted Friday, February 07, 2003

xDigitalClock v1.5
New in xDigitalClock v1.5: The xDigitalClock control now can be used as count-down timer.
New methods include: SetTimerOpt; GetTimerResult; SetTimerTime; StopTimer; StartTimer.
Code templates for these methods are supplied.
Posted Friday, February 07, 2003

PDF-Tools New Features
This new build of PDF-Tools now allows the auto generation of watermarks (images and text
supported) on PDF output (select fonts as outline, foreground/background etc.). Additionally,
by completing a few template fields it is now possible to auto-generate nested bookmarks

http://www.clarionmag.com/cmag/news.html?year=2003&month=2&limit=100& (7 of 10) [03/03/2003 4:23:36 PM]

http://www.ingasoftplus.com/id68.htm
http://www.1stlogodesign.com/
http://www.softvelocity.com/C6EA/
http://www.ingasoftplus.com/
http://www.seal-soft.com/cgi-bin/ps_view.pl?id=products&comm=xdclock
http://www.docu-track.com/

Clarion News

(outlines) for your reports.
Posted Friday, February 07, 2003

Handy Tools FTP/HTTP
The upcoming update #2 for build O7B2 of the Clarion Handy Tools includes a server/client
set of demo applications that illustrate how you can use The Clarion Handy Tools and Clarion
to build secure file transfers applications using HTTP over the internet.
Posted Friday, February 07, 2003

ProDomus Updates C55 Translator Plus
A minor update to Translator Plus is now available. Changes include: Legacy Template - fixed
posting of non fatal error saying certain include files could not be found (occurred when
opening the global extension); Translation Assistant - added preference item to change
replacement string font attributes to provide better support of multi-byte character sets;
TPSTR.INC - changed definition of pdFontGT to handle styles.
Posted Friday, February 07, 2003

gReg Licensing Change
Gitano Software has changed its licensing policy for gReg effective immediately. All new
purchases and upgrades will now include a five license pack and the language modules for
Clarion, Visual Basic and Delphi at no additional cost.
Posted Friday, February 07, 2003

ProDomus PD Universal Drop Edit Controls
ProDomus has released the PD "Universal" Drop Edit Controls, a Drop List or Combo with an
"Edit" choice that you can populate quickly without having to create a file, browse or form.
The library can use INI or database files to save the pick list. Prompts, headers, pictures, and
entry mode come from the dictionary or local data. It's quick to implement because: There's no
need for a browse; There's no need for a form; There are very few template entries. It relies on
the dictionary for headers, prompts, pictures, and entry mode.
Posted Monday, February 03, 2003

SealSoft xFunction Library v1.7
SealSoft's xFunction Library v1.7 is now available. This is a bugfix release.
Posted Monday, February 03, 2003

XPMenu Holiday Schedule
Ronald van Raaphorst will be on holiday from February 3-19, 2003. His colleague will
takeover for urgent emails (if any) and sales.
Posted Monday, February 03, 2003

http://www.clarionmag.com/cmag/news.html?year=2003&month=2&limit=100& (8 of 10) [03/03/2003 4:23:36 PM]

http://www.cwhandy.com/pcdemos/hndfilsvdemo.exe
http://www.prodomus.com/
http://www.g-reg.com/
http://www.prodomus.com/
http://www.seal-soft.com/cgi-bin/ps_view.pl?id=freeware&comm=xfunc
http://www.compad-software.com/uk/developer

Clarion News

HelpMaker Update.
HelpMaker.net, a help authoring tool that can do WinHelp, HTML-Help can now do HTML
generation of help files.
Posted Monday, February 03, 2003

powerRUN Freeware
The free powerRUN utility picks up where RUN() left off. Features include: Launch programs
hidden, minimized, in a window or maximized, with or without focus; Run DOS or Window
processes in the background, waiting (or not) until termination; Set the Priority in 32bit apps;
Load websites and documents using default browser or application via the ShellExecute code
template; Pop the client's email window with the email address and subject automatically filled
in, CC's listed, BCCs listed, etc. Uses ShellExecute(); Play Wave sound files. powerRUN
works in 16 and 32bit, Clarion 2003 and earlier, C4, C5, C5.5 ABC/Legacy and is multi-DLL
compliant and DET compatible.
Posted Monday, February 03, 2003

Clarion 5.5 MS SQL Server Seminar In Johannesburg
A Clarion 5.5 seminar on MS SQL Server will be held March 16-18, 2003 in Johannesburg,
South Africa. Cost is R3700 per person incl VAT. Requirements: Clarion 5.5, notebook or PC
Computer (recommended), SQL Server (eval copy provided if needed), lunch and
refreshments provided but you're on your own for dinner. Minimum of 15 needed to make
class size up - bookings must be made ASAP. Class Size is limited to 20 so personal attention
can be given.
Posted Monday, February 03, 2003

INN Bio And News For 28-Jan-2003
A long term Clarion user, and an Aerospace Engineer, Benjamin is certainly no newcomer to
technology. Born in Mexico City in 1963, moved to San Antonio, Texas in 1974 and lived in
Israel for 14 years, he has been places and seen things. Now he lives in Denver, Colorado, with
his wife, Irit, his two daughters, Vered and Sivan, and works for his own network support
company.
Posted Monday, February 03, 2003

Firebird 1.5 Beta 1
Kelvin Chua reports that Firebird 1.5 Beta 1 is now available for download.
Posted Monday, February 03, 2003

cpTracker Silver Edition Released!
cpTracker 2003 Silver Edition is now available for download and purchase. cpTracker is a tool
specifically designed for independent software developers, software development departments,

http://www.clarionmag.com/cmag/news.html?year=2003&month=2&limit=100& (9 of 10) [03/03/2003 4:23:36 PM]

http://www.accviz.com/downloads/avhelp.zip
http://www.berthume.com/
http://www.african-sunrise.co.za/seminar.htm
http://www.icetips.com/
http://prdownloads.sourceforge.net/firebird/Firebird-1.5.0.2068_beta_1_win32.zip?download
http://www.berthume.com/

Clarion News

software companies, contract programmers, etc. Keep track of customers, customer product
sales, users, products, versions, projects, project tasks, customer projects, beta sites, defects,
enhancements, and more. Create custom queries, reports, and spreadsheets, and custom HTML
pages for posting to your web site. Includes FTP Wizard for easily uploading and downloading
files.
Posted Monday, February 03, 2003

Threading Download At RadFusion
Owen Brunker's template modifications to handle the 5.5 threading issues are now available at
the RadFusion web site.
Posted Monday, February 03, 2003

Product Scope 32 PRO Sale Ends Feb 3
In honor of the Super Bowl Champions - Tampa Bay Buccaneers - Encourager Software is
extending the sale of Product Scope 32 PRO software at sizeable savings through February
3rd, 2003. Product Scope 32 PRO, Version 4.5 (a) - Spreadsheet Version is USD $15
(normally USD $49); Product Scope 32 PRO, Version 4.5 (a) - Unlimited Editing Version is
USD $10 (Normally USD $29).
Posted Monday, February 03, 2003

ZipApp 1.1b Freeware
ZipOption 1.1b, a freeware utility, now has an option to back up TXA (and TXD/TXR) files.
Fixes include changes to method calculating Last Incremental to Date Last Run, and a slight
file change to show _to_ instead of _at_ on incremental file names.
Posted Monday, February 03, 2003

SealSoft xDigitalClock v1.4
SealSoft's xDigitalClock version 1.4 is now available. Changes include: new
SetStopWatchTime(LONG StopWatchTime) method; Some template changes; New demo and
install.
Posted Monday, February 03, 2003

Reader Comments

Add a comment

 Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/news.html?year=2003&month=2&limit=100& (10 of 10) [03/03/2003 4:23:36 PM]

http://www.radfusion.com/Downloads/downloads.html
http://www.encouragersoftware.com/
http://www.mcs.org.uk/ZipApp.htm
http://www.seal-soft.com/cgi-bin/ps_products.pl?id=products#goto_xdclock
http://www.clarionmag.com/cmag/comments.frm?articleID=10979
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Demystifying C6 Threading (Part 1)

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > CLARION 6 > C6 Threading

Demystifying C6 Threading (Part 1)

by David Harms and Carl Barnes

Published 2003-02-15

Mutexes, semaphores, critical sections, reader/writer locks; all of these things are part of
Clarion 6, and they all have to do with the new support for unlocking Clarion threads so they
run like real operating system threads. Should you care? If you write any embedded code, yes,
you should. Should you worry? That all depends on what kind of embedded code you write!

The hullabaloo over threading has one root cause: multiple threads can now execute, for all
intents and purposes, simultaneously. And there is one potential victim: global data without the
THREAD attribute. This article series is about how to recognize situations where global data is
in danger, and how to remove that danger.

How threads worked before C6

In versions prior to Clarion 6 it really wasn’t true that multiple threads ran at the same time.
Although you could launch a number of threads with START, only one was ever active at a
time. The ACCEPT statement controlled thread switching in a token-ring fashion so that only
one thread was active inside the ACCEPT loop.

Here’s what happens in a pre-Clarion 6 application when you create several threads. When you
launch the application (in Windows terminology, each instance of an application is also called
a process) it has one thread of execution, which normally is your application frame, containing
the main menu. From the main menu you select, say, a browse procedure, and if you’re using
the normal Clarion MDI approach there will be some code in that main frame that looks like
this:

START(BrowseProc1,25000)

http://www.clarionmag.com/cmag/v5/v5n02sync1.html (1 of 4) [03/03/2003 4:23:37 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=155&subcategoryid=156
http://www.clarionmag.com/cmag/v3/v3n8threading.html

Demystifying C6 Threading (Part 1)

The runtime library creates a new thread for the browse procedure. Now there are two threads
running in the application. Click on the main menu again and you cause a thread context
switch back to the application’s main thread, and if you choose another browse procedure, or a
second instance of the first browse procedure, there is another call to START() and another
thread begins for that procedure. Now you have three threads. The thread that is active is
determined entirely by which window you click on, whether the app frame or one of the
browses. (Again, that’s assuming you have an MDI application, and also that you’re not doing
any fancy POSTing of events to cause thread switching.)

The key point is that thread switching is all handled by the ACCEPT statement. If you have a
tight loop running in one of those threads, clicking on another window won’t cause a switch to
that other window’s thread. First the tight loop has to terminate so the code can reach the
ACCEPT statement. This is why reports and processes don’t just loop through all records in a
single sequence; they read x number of records at once, then go back to the ACCEPT loop and
wait for another TIMER event. Without this little trick (pre C6) you’d never be able to cancel a
report or process! And you could not do anything else in another thread of your application
while a long report or process ran. This is a form of thread control known as cooperative
multitasking, where threads retain control until they give it back. This was also the only way to
do multitasking under 16-bit Windows.

How threads work as of C6

In C6, however, multiple threads can run at exactly the same time. Well, not exactly.
Windows, at least in 32-bit versions, use a preemptive multithreading model. On a single-
processor computer you can’t really have multiple threads running at exactly the same time
because there is only one processor. The operating system executes a few instructions for a
given thread, saves the processor state, switches in some instructions for another thread, and so
on. Notice that there is no mention of a process (an application being a process) in that
description. Windows schedules, manages and switches threads. A process is just a container
to manage memory and thread scope. Windows protects processes from each other, but all of
the threads within a process share the virtual memory address space within that process. And
every process must have at least one thread.

In a preemptive multithreading system time slices are really very small, which means that it’s
quite possible for one thread to be halfway through changing, say, a global string variable to a
new value, when it gets preempted, i.e. is put to sleep. The variable now contains half new and
half old data. If the new thread that gains control reads that entire variable it will get corrupted
data (half new and half old).

Chances of corruption become more likely with complicated data structures such as queues,
where inserts, deletes, and sorts may involve many instructions. As a result, there are now

http://www.clarionmag.com/cmag/v5/v5n02sync1.html (2 of 4) [03/03/2003 4:23:37 PM]

Demystifying C6 Threading (Part 1)

Clarion versions of Windows mechanisms which make it possible to control how and when
threads run under specific conditions. Those mechanisms (a.k.a. synchronization objects) are
the aforementioned mutexes, semaphores, critical sections, and reader/writer locks (and we'll
have much more to say about them in Part 2).

Is this kind of data corruption a very likely occurrence? In most business applications, no, not
really, because the user generally controls which thread is active at any one time by launching
procedures and clicking on active windows. But it could be the cause of intermittent bugs or
application crashes. And in an application that does a lot of processing, failure to safeguard
access to data could have frequent, serious consequences.

Shared resources – an example

Here’s a real world example of the global data problem, which is typically defined as
"synchronizing the use of shared resources between threads." Global data is an example of a
shared resource.

Consider a single phone line that comes into your house. You can have any number of phone
handsets, but they all must share the one line. When you are using the phone in one room
nothing prevents someone in another room from picking up the phone and trying to use it.
That’s an example of resource contention, and guess what? Your call got corrupted. Anyone
with who has used dialup Internet access is familiar with this problem.

Each person in that house is like a thread in an application, potentially contending for a shared
resource. If there are only two adults, there may never be any contention for the phone (the
shared resource) because they just don’t use the phone that much and tend to notice if someone
else is using it. This is analogous to why a typical business app will probably not run into
shared resource corruption. It’s just not going to get used hard enough.

The cooperative phone sharing situation would never work in a business with multiple phone
lines and many handsets. So business phone systems implement synchronization that prevents
two callers from interrupting each other by trying to use the same phone line. They also
implement features such as conference calling that let multiple callers share the same line.
With properly programmed synchronization a Clarion 6 app can run like a business phone
system. Without it you’ve got a home phone that could potentially have problems.

One word about terminology. The mechanisms Clarion 6 provides for dealing with shared
resource management are called synchronization objects. The word "synchronize" really means
to cause events to happen at the same rate or the same time. Synchronization objects like
semaphores can be used this way, but more commonly synchronization objects are actually
used to serialize access to shared resources so that no two threads use the resource at once.
Serialization has another meaning in programming, however (which is to convert an object like

http://www.clarionmag.com/cmag/v5/v5n02sync1.html (3 of 4) [03/03/2003 4:23:37 PM]

Demystifying C6 Threading (Part 1)

a class into a stream of bytes). Just keep in mind that the programming definition of
synchronize is a lot broader than the common, every day definition.

Now you know the nature of the problem. Coming next week: how you can manage access to
shared resources using the Clarion synchronization objects.

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He is also co-author with

Ross Santos of Developing Clarion for Windows Applications, published by SAMS (1995). His most recent book is JSP, Servlets,

and MySQL, published by HungryMinds Inc. (2001).

Carl Barnes is an independent consultant working in the Chicago area. He has been using Clarion since 1990, is a member of

Team TopSpeed and a TopSpeed Certified Support Professional. He is the author of the Clarion utilities CW Assistant and Clarion

Source Search.

Reader Comments

Add a comment

Looking forward to the rest of this article! Keep up the...
Thanks! Part 2 should be up in a couple of days.
Thanks, good article. I was wondering if you can cover...

 Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v5/v5n02sync1.html (4 of 4) [03/03/2003 4:23:37 PM]

mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.covecomm.com/java/index.html
mailto:carl@carlbarnes.com
http://www.clarionmag.com/cmag/comments.frm?articleID=11926
http://www.clarionmag.com/cmag/discuss.frm?articleID=11926&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=11926&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=11926&position=3
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Demystifying C6 Threading (Part 2)

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > CLARION 6 > C6 Threading

Demystifying C6 Threading (Part 2)

by David Harms and Carl Barnes

Published 2003-02-20

Part one of this series introduced the concept of shared resources, and showed how Clarion 6’s
new threading model introduces the prospect of corrupted global data. That article also
introduced the concept of shared resources, of which global data is an example. In this article
you’ll learn how to use some of Clarion 6’s synchronization objects to manage shared
resources when necessary.

While global data is the most common example of a shared resource, you must be concerned
about all static data that does not have the thread attribute. This includes module data and local
data with the STATIC attribute. Because global data is the most common, that is the term we
will use in this article; just remember you must be concerned about static data.

You probably have some global data that cannot be threaded, but which you do not need to
worry about, particularly if you only write that data once while the application is initializing
and only read it subsequently. Also any global data that is used to pass information between
procedures should still work the desired way if it is changed to have the THREAD attribute. It is
only data that must be passed between or used by all threads that requires careful attention.

The first thing you should try to do is not synchronize, but simply get rid of the global
unthreaded data. It's like in the movie War Games - the best move is not to play. The easiest
way to do that is to try to make it work as threaded data. In many cases simply adding
THREAD is all that is required and sha-boom! (that's a technical term often used in OLE class
browsing) you're done. A more efficient change would be to make global data into local data
and pass it between procedures. The START function allows passing up to three string type by-
value parameters to new threads.

http://www.clarionmag.com/cmag/v5/v5n02sync2.html (1 of 8) [03/03/2003 4:23:39 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=155&subcategoryid=156
http://www.clarionmag.com/cmag/v4/v4n05outlook1.html

Demystifying C6 Threading (Part 2)

Global queues must be handled differently from other data types because buffers are involved.
To work on a global queue’s record you must use the queue buffer and that is shared by all
threads. Two threads might try to get, put or add different queue records at the same time and
can corrupt the data.

One possible fix is to put the THREAD attribute on the declaration. This will cause the runtime
library to create a new copy of the queue for each thread, so that the resource is not shared and
queue access code can function properly. The new copy of the queue will be created empty so
you may need code to fill the queue with the correct records for each new thread. This can be
done easily with a threaded class that has a constructor to populate the queue.

If you require a single global queue shared by all threads then you’ll need to wrap all queue
access with synchronization code. There is an example of this in the C6 docs – look for the
QueueAccess class.

Classes are yet different from queues and variables. If you put the THREAD attribute on a class
declaration, the runtime library will create a new instance of that class each time a thread is
launched, and it will also call the class’s automatic constructor (you must give this method the
name CONSTRUCT) on thread creation, and the destructor (the DESTRUCT method) on thread
termination. You can use the constructor to initialize any data the class needs. Note that in a
threaded Class all properties (class data) is implicitly threaded.

If you are reading and writing your global data, then chances are you’ll need to do a little more
work to ensure your code runs smoothly. The short answer to the problem of data corruption in
a multithreaded environment is to synchronize access to the data in question. This simply
means identifying each item of the global data that might get corrupted by multiple readers and
writers, and then only allowing one thread, at one time, to execute a section of code that reads
or writes that data.

Critical sections

The most efficient way to synchronize data access is to use a critical section. If you're
ambitious, you can do this with the Windows API using the EnterCriticalSection and
LeaveCriticalSection functions, but Clarion 6 provides its own wrapper for this
functionality.

To synchronize a shared resource such as global data, you simply use the
NewCriticalSection() library function to get an instance of ICriticalSection.
You then call the Wait() method to "wait" your turn to continue into the critical section,
when Wait() returns you execute your data access code, and finally you call the Kill()
method on ICriticalSection to clean up and allow the next thread access:

http://www.clarionmag.com/cmag/v5/v5n02sync2.html (2 of 8) [03/03/2003 4:23:39 PM]

Demystifying C6 Threading (Part 2)

cs & IcriticalSection
CODE
cs &= NewCriticalSection()
! Get access to the critical section
cs.Wait()
! I now own the CS
! read or write some global data
cs.Release()
cs.Kill()

Although this code demonstrates the basic principles of a critical section (create the critical
section, call Wait(), execute code, clean up) it isn’t that practical a framework for managing
global data. Think of how you use your global data now – you declare it, and then you
read/write it from various locations in your code. If you want to continue using globals that
way, you’ll need to make sure you wrap each section of code that uses the globals in a critical
section. And what happens if you write some new code that uses the global data and you forget
to include a critical section? How do you maintain all of this code?

A better solution is to wrap the global data in a non-threaded global class instance, and make
the data private so it can only be accessed using "getter/setter" methods. You then create a
critical section (or some other form of synchronization) for the class, and use that critical
section whenever you read/write the data. The C6 threading docs include an example of such a
class, so we won’t go into details here.

There are several other points to note about this code. One is that it synchronizes access to this
data only within an application (a process). If you have multiple instances of an application
running on one machine, it’s possible that two of them will execute the same critical section at
the same time. But if you are protecting global data then there is no possible conflict since
different instances of a Clarion program do not share global data. Also, and perhaps more
importantly, two different critical sections can run concurrently. If you have one procedure
with its own critical section for reading the data, and another procedure with its own critical
section for writing the data, then you can still have data corruption. If, however, you wrap your
data access up in a class, you can easily create one critical section in the class constructor and
then use it as needed in the class’s getter and setter methods.

Remember that you must call the Wait() method to get access to (that is, own) the critical
section object; if another thread is using it, this method will be blocked until the critical section
is released by that thread. Note that a thread can never block itself waiting for a critical section
it already owns.

In Clarion versions before C6 the 32-bit RTL ACCEPT loop entered a critical section any time
an event fired the ACCEPT. When control returned to ACCEPT the RTL would leave the
critical section and then an ACCEPT in another thread could own the critical section. If you
trace through the ACCEPT loop in the debugger you’ll see this happen. So you were always in

http://www.clarionmag.com/cmag/v5/v5n02sync2.html (3 of 8) [03/03/2003 4:23:39 PM]

Demystifying C6 Threading (Part 2)

a critical section and so there was never a risk of corrupting your global data. When you read
about critical sections this kind of design is usually frowned up as it creates a lot of contention.
C6 enables (and forces) the developer to manage critical sections, thus allowing a program to
run better. As a rule, you really do want your critical sections to be as few as possible, and as
short as possible.

Critical sections are the fastest and cheapest way to regulate access to shared data, but they
only work within a process (i.e. a single instance of an application executing). They are
designed for a situation of low contention to protect small blocks of code. They achieve their
efficiency by remaining in user mode and not making the very expensive switch to kernel
mode unless blocked. They also gain efficiency by assuming you will use them correctly and
provide almost no protection against improper use. It you release them too many times or fail
to release them (abandonment) other threads trying to own the cs will probably hang.

Critical sections also don’t give you a way of testing to see if they are available (i.e.
TryWait) – once you call Wait(), you’re committed to waiting.
(TryEnterCriticalSection is available under NT but not under Win9x, so
SoftVelocity has chosen not to implement the feature.) You don’t have much control over how
those threads run – it’s all up to Windows. If you need to manage a high level of contention
between threads, or you want to regulate access among all processes running on one machine,
you need to use a mutex.

Interlocked functions

There is one more Windows mechanism that provides tools for efficient user mode
synchronization – the interlocked family of functions. There is no Clarion equivalent for these
functions – you’ll need to search MSDN for "Interlocked" to get the details. These functions
provide atomic access to LONG integers. Atomic means that no other thread will be able to
access the LONG until the function completes. This has the same effect as wrapping the code
in a critical section, but is much faster. The interlocked family provide atomic functions to add,
subtract, set and, compare-then-set a value.

The following code uses a critical section to see if a thread is already running so the user can
be limited to a single thread running the Vendor browse:

csThreads.Wait()
IF Glo:ThrdsVendorBrowse=0
 Glo:ThrdsVendorBrowse=THREAD()
 csThreads.Release()
ELSE
 POST(EVENT:GainFocus,,Glo:ThrdsVendorBrowse)
 csThreads.Release()
 RETURN
END

http://www.clarionmag.com/cmag/v5/v5n02sync2.html (4 of 8) [03/03/2003 4:23:39 PM]

http://msdn.microsoft.com/
http://search.microsoft.com/default.asp?qu=interlocked&boolean=ALL&nq=NEW&so=RECCNT&p=1&ig=01&ig=03&ig=04&ig=05&ig=06&i=00&i=01&i=02&i=03&i=04&i=05&i=06&i=07&i=08&i=09&i=10&i=11&i=12&i=13&i=14&i=15&i=16&i=17&i=18&i=19&i=20&i=21&i=22&i=23&i=24&i=25

Demystifying C6 Threading (Part 2)

You can do the same thing using an interlocked function with the below code. Note that all
interlocked functions return the prior value. This function call will test that
Glo:ThrdsVendorBrowse equals zero, and only then will it set it equal to thread(). It
returns the prior value which the Clarion IF checks if another thread is running.

IF InterlockedCompareExchange(|
 Glo:ThrdsVendorBrowse,|
 THREAD(), 0) > 0
 POST(EVENT:GainFocus,,Glo:ThrdsVendorBrowse)
 RETURN
END

(This code is not as perfect as the critical section code. Only the interlocked function is atomic.
In a worst case situation a thread switch could happen after it returns and before the POST.
During that time the vendor browse could shut down.) If you have threads doing intense work
with global integers you’ll want to read about the interlocked functions. Critical sections
actually use interlocked functions to provide their user mode locking efficiency.

So much for the API digression. We now return you to your regularly scheduled Clarion
synchronization objects article…

Mutexes

A mutex is like a critical section that is managed by the OS kernel. (The name comes from its
purpose, which is "mutual exclusion".) You ask for a mutex by specifying an identifying name;
if no mutex by that name exists, one will be created. Here’s a code example:

mt &iMutex
CODE
mt &= NewMutex('MyMutex')
! Get access to the Mutex
mt.Wait()
! read or write some data
mt.Release()
mt.Kill()

As with the critical section, the call to Wait() will be blocked until any other thread owning
the mutex calls the Release() method. Both critical sections and mutexes allow a thread to
make multiple calls to Wait() and never wait on itself, to allow for their use in recursive
calls – just make sure you call Release() once for every call to Wait(). This concept of
thread ownership is only provided by critical sections and mutexes.

If you don’t want to automatically wait (i.e. wait forever) for the mutex to be released, you can
call the TryWait(length of wait in milliseconds) method. Possible return
values are as follows:

http://www.clarionmag.com/cmag/v5/v5n02sync2.html (5 of 8) [03/03/2003 4:23:39 PM]

Demystifying C6 Threading (Part 2)

WAIT:OK You have the mutex and can proceed

WAIT:TIMEOUT The mutex did not become available before
the time passed to TryWait (in
milliseconds) expired.

WAIT:NOHANDLE Could not get a handle to the mutex

WAIT:FAILED Attempt to get the mutex failed for some
other reason

WAIT:ABANDONED The thread that had control of the mutex
ended (or was terminated) without calling
Release(). You do own the mutex; this is
the same as a Wait:OK return, but there is a
chance the data the mutex is protecting was
not completely updated by the prior owner.

Only one thread can successfully call the Wait() function at once and gain ownership of the
mutex. As with critical sections, if thread one calls Wait() on a given mutex, and then
threads two and three successively call Wait() before thread one completes its work and
calls Release() on that mutex, both threads will be blocked. After thread one calls release,
thread two gets the mutex, then when it calls Release() thread three gets the mutex. During
the time they are waiting the threads are put into a very efficient sleep state and not given any
CPU time.

If you want multiple threads to have access to some block of code, or resource, at once, you
can use a semaphore instead of a mutex.

Semaphores

Semaphores are somewhat like multi-user mutexes. They have a resource count associated
with them, and so multiple threads can own the semaphore simultaneously up to the predefined
maximum resource count. This would allow you to write a server that might allow five threads
to start to service incoming connections; any additional threads would wait. Picture a security
check in at an airport with five metal detector lanes and a queue of 50 waiting passengers. The
semaphore is the person releasing the passengers from the queue so they can go through the
metal detectors.

When you create a new semaphore, you specify its name, and how many threads can use it at
once. The following code creates a semaphore that can be used by up to three threads

http://www.clarionmag.com/cmag/v5/v5n02sync2.html (6 of 8) [03/03/2003 4:23:39 PM]

Demystifying C6 Threading (Part 2)

simultaneously:

sem &= new ISemaphore('MySemaphore',0,3)

The ‘0’ is the initial release count, the ‘3’ is the maximum count. Often semaphores are created
in this maximum owned state (initial release count of 0) while the code prepares the data the
threads will manage. This causes other threads trying to own the semaphore to wait. When the
data is ready a call of Release(3) opens the doors to waiting threads. This prevents a race
condition when there is a tiny time slot during which corruption could occur.

Semaphores, like mutexes, have Wait(), TryWait(), Release() and Kill()
methods. You can use a semaphore to limit the number of threads active at any one time, for
instance.

Keep in mind that there isn’t necessarily a one-to-one correspondence between a thread and a
semaphore state. If a thread calls Wait multiple times, it will use up a resource count each time,
and eventually could block itself when the maximum is reached. In this respect semaphores are
quite different than critical sections and mutexes, where a thread can call Wait() any number of
times without blocking itself (although even critical sections and mutexes require one
Release() for every Wait()). For more information see the C6 threading docs or MSDN.

Mutexes and Semphores may be created without a name. This is useful if you need a mutex but
do not need access to it from another process (or you have control over that processes and can
pass it the mutex’s or semaphore’s object handle.) You probably are thinking, "Well, if I don’t
need to access it from another process then I’ll use a critical section." Critical sections have a
limitation in that they are not "waitable" objects. If you need the functionality of a
TryWait() method, you’re out of luck; there isn’t one in the CriticalSection
interface. Critical sections are designed for efficiency and not features.

There you have some of the basic synchronization mechanizes that Windows implements and
SV has wrapped. Next time we’ll look at the ReaderWriter class and critical procedures.

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He is also co-author with

Ross Santos of Developing Clarion for Windows Applications, published by SAMS (1995). His most recent book is JSP, Servlets,

and MySQL, published by HungryMinds Inc. (2001).

Carl Barnes is an independent consultant working in the Chicago area. He has been using Clarion since 1990, is a member of

Team TopSpeed and a TopSpeed Certified Support Professional. He is the author of the Clarion utilities CW Assistant and Clarion

Source Search.

http://www.clarionmag.com/cmag/v5/v5n02sync2.html (7 of 8) [03/03/2003 4:23:39 PM]

http://msdn.microsoft.com/
mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.covecomm.com/java/index.html
mailto:carl@carlbarnes.com

Demystifying C6 Threading (Part 2)

Reader Comments

Add a comment

I am a bit confused with the statement: "Also any...
JC, There really isn't any difference that I can see...

 Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v5/v5n02sync2.html (8 of 8) [03/03/2003 4:23:39 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=11929
http://www.clarionmag.com/cmag/discuss.frm?articleID=11929&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=11929&position=2
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 1)

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Tips/Techniques > Clarion Language

Data Structures and Algorithms Part XVI - The Huffman
Compression Algorithm (Part 1)

by Alison Neal

Published 2003-02-21

In this article I will discuss the Huffman compression algorithm, which is the same
compression algorithm that is used by PkZip. The algorithm yields approximately 40%
compression for text files. The test application included with this article reduces the provided
test file from 20kb to 12kb in size, and then decompresses it back to its original state.

The Huffman algorithm fundamentally works by replacing each character with a binary code.
It starts by identifying the frequency of each recurring character in the file and then allocating
a binary code to each character, with the most frequent characters getting the shortest codes.
The file is then read again and the corresponding codes are output in compressed format.

Lets take an example piece of text: "Steve sells sea shells by the sea shore"

There are a possible 255 ASCII characters, so I define an array of 255, and then increment the
count of the position corresponding to the VAL of the character. For example a lower case ‘a’
has a value of 97, so position 97 in the array would be incremented with every occurrence of
the letter ‘a’.

The frequency array for the above text would be as shown in Figure 1:

Chr
Val /
Idx Count

[space] 32 7
S 83 1
a 97 2

http://www.clarionmag.com/cmag/v5/v5n02huffman1.html (1 of 11) [03/03/2003 4:23:42 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=143
http://www.pkzip.com/

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 1)

b 98 1
e 101 8
h 104 3
l 108 4
o 111 1
r 114 1
s 115 7
t 116 2
v 118 1
y 121 1

Figure 1.

Note that in Figure 1 I have ignored any index value that would be zero.

From the frequency array, you can build a Priority Queue (lowest order first). The Priority
Queue is then used to build a Huffman Tree, which is a form of Binary Tree. The most
frequent values end up nearest the root, and the least frequent characters end up in the lower
levels, the Priority Queue provides this ordering principle.

The Huffman Tree is then used to provide the binary codes associated with each character
value. On decompression, the codes will be interpreted as a series of instructions on how to
walk the Huffman tree to obtain the characters, one at a time. For the string "Steve sells sea
shells by the sea shore" the Huffman Tree would look like Figure 2.

Figure 2.

The codes are then calculated by adding a 0 bit if a left branch is taken, and a 1 bit if a right
branch is taken. The following codes are generated (Figure 3):

http://www.clarionmag.com/cmag/v5/v5n02huffman1.html (2 of 11) [03/03/2003 4:23:42 PM]

http://www.clarionmag.com/cmag/v5/v5n01priorityq.html

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 1)

Letter Code

‘e’ 00

‘l’ 010

‘a’ 0110

‘t’ 0111

‘S’ 10000

‘b’ 10001

‘o’ 10010

‘r’ 10011

‘v’ 10100

‘y’ 10101

‘h’ 1011

[space] 110

‘s’ 111

Figure 3.

Once the codes are generated the compressed file can be created. Firstly the frequency array is
output to the file, so that the decompression algorithm can re-create the Huffman Tree and
translate the codes.

Then the file to be compressed is re-read and the appropriate codes written to the compressed
file, instead of the character. The compressed file is written one byte at a time, as the codes are
squashed together into the byte (8 bit) space which one character would normally fill. For
"Steve sells sea shells by the sea shore", given the codes above, the output, one byte at a time,
would read something like Figure 4:

Byte

1

10000011 (S and beginning of t)

http://www.clarionmag.com/cmag/v5/v5n02huffman1.html (3 of 11) [03/03/2003 4:23:42 PM]

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 1)

Byte

2

10010100 (Rest of t, e and v)

Byte

3

00110111 (e, space and s)

Byte

4

00010010 (e, l and l)

Byte

5

11111011 (s, space and beginning of s)

Byte

6

10001101 (end of s, e, a and beginning of space)

Byte

7

10111101 (end of space, s and beginning of h)

Byte

8

10001001 (end of h, e, l, and beginning of second l)

Byte

9

01111101 (end of l, s, space, and beginning of b)

Byte

10

00011010 (end of b and beginning of y)

Byte

11

11100111 (end of y, space, and t)

Byte

12

10110011 (h, e, and beginning of space)

Byte

13

01110001 (end of space, s, e and beginning of a)

Byte

14

10110111 (end of a, space, and s)

http://www.clarionmag.com/cmag/v5/v5n02huffman1.html (4 of 11) [03/03/2003 4:23:42 PM]

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 1)

Byte

15

10111001 (h and beginning of o)

Byte

16

01001100 (end of o, r and e)

Figure 4

The text has been compressed from 39 bytes (characters) to 16 bytes plus the frequency array,
which is also written in compressed fashion. If the output had completed part way through a
byte, the remaining bits would have been filled with zeroes and the last number written to the
file would say how many zeroes that was.

To successfully complete the compression algorithm the application must complete the
following steps:

1. Read the file to be compressed and build a frequency array for each occurrence
of a character.

2. Load the frequency array into a Priority Queue and Build a Huffman Tree.
3. Assign a binary code to each character within the tree (shortest code to most

frequent character), determined by whether the character is a left child or right
child.

4. Write the frequency array in compressed format to the compressed file (so that
the decompression algorithm will be able to rebuild the Huffman tree and
therefore decode.)

5. Read the file to be compressed again and output the corresponding binary codes
in compressed format.

Step 1. Build the frequency array.

Building the frequency array is a reasonably simple affair. It is simply a matter of defining an
array of 255 (the maximum ASCII characters), and scanning the input file character by
character and incrementing the count in the frequency array for that character.

Note, in the code below I have used a class for file handling, included in the sample code
provided with this article. The class uses API calls rather than the DOS driver, but this is
purely just a matter of preference and outside the scope of this article.

Build:Frequency ROUTINE
 DATA
i ULONG
 CODE
 !0 = File Begin & 0 for position
 Cancel = ios_imp.SetPointer(0,0)

http://www.clarionmag.com/cmag/v5/v5n02huffman1.html (5 of 11) [03/03/2003 4:23:42 PM]

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 1)

 IF ~Cancel
 LOOP i = 1 TO MAXIMUM(dat:freq,1)
 dat:freq[i] = 0
 END
 LOOP
 IF ios_imp.ReadFile(ADDRESS(loc:impLine),1)
 THEN BREAK.
 dat:freq[VAL(loc:impLine[1])] += 1
 END
 IF ~Cancel THEN Cancel = Tr.Init(dat:freq).
 END

The first thing I do is set the file pointer to the beginning of the file. If this works I initialise the
frequency array. Then I loop through the file reading one byte at a time, until the loop breaks
when the read fails. I then increment the VAL(read byte) position in the frequency array.
For a space this is going to be position 32, for a lower case ‘a’ this is going to be position 97.

Step 2. The Priority Queue and Huffman Tree.

I introduced the Priority Queue structure in my last article. I have changed the code only
slightly to allow lowest order first rather than highest order first, which simply meant flipping
the greater than and less than operators around on the insert method. I have also implement
the Huffman Tree as an array, or rather as two arrays.

huffL LONG(0),DIM(511)
huffR LONG(0),DIM(511)
n LONG(0)
huffRoot LONG(0)

As I am somewhat pedantic about dynamic structures, it may seem odd that I have a fixed
length array in my code; however, a binary tree with a maximum of 255 leaves (ASCII
characters) should only ever have a maximum of 511 (255 * two possible values + 1) nodes. I
feel reasonably secure in the knowledge that the code should not over run the bounds of the
array.

Telling the difference between a leaf containing a valid character and a parent node which
points (contains the index value) of its two sub-children is reasonably easy. The HuffL (left)
index position will always be zero on a leaf making the HuffR (right) index position contain a
valid character, whereas both HuffL and HuffR will contain values if it is a parent node.

For the example string the tree actually looks like Figures 5 and 6.

http://www.clarionmag.com/cmag/v5/v5n02huffman1.html (6 of 11) [03/03/2003 4:23:42 PM]

http://www.clarionmag.com/cmag/v5/v5n01priorityq.html

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 1)

Figure 5.

Huffman Tree
IDX Left Right

1 0 32
2 0 83
3 0 97
4 0 98
5 0 101
6 0 104
7 0 108
8 0 111
9 0 114
10 0 115
11 0 116
12 0 118
13 0 121
14 2 4
15 8 9
16 12 13
17 3 11
18 14 15
19 16 6
20 7 17
21 18 19
22 1 10

http://www.clarionmag.com/cmag/v5/v5n02huffman1.html (7 of 11) [03/03/2003 4:23:42 PM]

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 1)

23 5 20
24 21 22
25 23 24

Figure 6.

Position 25 in the array is the root node of the tree, and it has a left and right sub tree. The left
child is position 23 in the array and the right child is position 24 in the array. If I follow the left
children from position 23, its left child is position 5 of the array, which is a leaf node because
it has no left child, making 101 (‘e’) a valid character.

The code to build the Huffman Tree and Priority Queue is as follows:

huffTree.Init PROCEDURE(*ULONG[] pFreq)
i ULONG
T1 GROUP(T).
T2 GROUP(T).
 CODE
 SELF.n = 1
 p.init()
 LOOP i = 1 TO MAXIMUM(pFreq,1)
 IF pFreq[i]
 P.InsertQ(pFreq[i],SELF.newNode(0,i))
 END
 END
 IF P.isEmpty()
 MESSAGE('Error: Input File was Empty',|
 'System Error',ICON:Exclamation)
 RETURN TRUE
 ELSE
 LOOP
 P.remQ(t1.freq,t1.ptr)
 IF P.isEmpty() THEN BREAK.
 P.remQ(t2.freq,t2.ptr)
 P.insertQ(t1.freq+t2.freq,SELF.newNode(t1.ptr,t2.ptr))
 END
 END
 SELF.huffroot = t1.ptr
 P.kill()

 RETURN FALSE

The definition for the Group T is:

T GROUP
freq ULONG
ptr LONG(0)
 END

The NewNode method is:

huffTree.NewNode PROCEDURE(LONG pLeft, LONG x)

http://www.clarionmag.com/cmag/v5/v5n02huffman1.html (8 of 11) [03/03/2003 4:23:42 PM]

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 1)

 CODE
 SELF.huffL[SELF.n] = pLeft
 SELF.huffR[SELF.n] = x
 SELF.n+=1
 RETURN SELF.n - 1

So what’s happening here? The Node count n is initialised to 1, and the Priority Queue is
initialised. The code then loops through the frequency array. If the array frequency value is
greater than 0, that is if the character occurred in the input file, it is added to the Priority Queue
with a pointer (array index number) to the tree node that contains the value of that character.

The first character in the array is [space], index value 32, so when the NewNode method is
called pLeft is 0 (zero) and I is 32, because this is the first value in the frequency array. The
NewNode method then assigns these values to the arrays, and returns which Node this relates
to, being 1. When the insertQ method for the Priority Queue is called it is passed 7, the
frequency count (which acts as the priority), and the index number 1, which is where 32 is
stored in the Huffman Tree.

As HuffL[1] contains 0 (zero) this node is a leaf node. If the left branch were not 0 (zero)
then it would be a parent node that provides the index number of its left sub child.

The next element of the frequency array that isn’t zero is ‘S’ value 83. So, a new node is added
to the Huffman Tree, this time with the left value of 0 and a right value of 83. The frequency of
83 (1), and the index of the new node (2) are then added to the Priority Queue. Remember that
the Priority Queue is keeping the nodes ordered lowest priority (frequency) first so now the
Priority Queue will place this new one ahead of the entry for [space].

At the end of this first loop the Huffman Tree will look like Figure 7.

Huffman Tree
IDX Left Right

1 0 32
2 0 83
3 0 97
4 0 98
5 0 101
6 0 104
7 0 108
8 0 111
9 0 114

http://www.clarionmag.com/cmag/v5/v5n02huffman1.html (9 of 11) [03/03/2003 4:23:42 PM]

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 1)

10 0 115
11 0 116
12 0 118
13 0 121

Figure 7.

The Priority Queue will look like Figure 8.

PQ
Freq Ptr

1 2
1 4
1 8
1 9
1 12
1 13
2 3
2 11
3 6
4 7
7 1
7 10
8 5

Figure 8.

As the Priority Queue is not empty the second loop then starts building the parent nodes of the
Huffman Tree. In this way the tree is built from the bottom up.

LOOP
 P.remQ(t1.freq,t1.ptr)
 IF P.isEmpty() THEN BREAK.
 P.remQ(t2.freq,t2.ptr)
 P.insertQ(t1.freq+t2.freq,SELF.newNode(t1.ptr,t2.ptr))
END

The first two nodes are removed from the Priority Queue. Note that the parameters of the
remQ method are passed by reference, and are updated as a part of that method with the values

http://www.clarionmag.com/cmag/v5/v5n02huffman1.html (10 of 11) [03/03/2003 4:23:42 PM]

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 1)

of the node being removed.

So t1.freq holds value 1, and t1.ptr holds index number 2. Therefore t2.freq holds
value 1 and t2.ptr holds index number 4. At this point a new node is added to the Huffman
tree which contains the values of the two ptr fields; 2 is assigned to HuffL, and 4 is assigned
to HuffR. Thus the parent node is created and its corresponding node is added to the Priority
Queue containing the combined frequency and the index value of the new parent node. (This
use of the Priority Queue ensures that the most frequently occurring characters end up with the
shortest codes, as they will end up higher in the tree than those nodes with lower frequencies,
which can afford to have relatively lengthy codes.)

Note that the new Priority Queue node still only has a combined frequency of 2, which means
that this new node will be placed behind the last node containing a frequency (priority) of two,
which is well ahead of the node relating to ‘s’ with a frequency of 8, and as such will be built
into the lower levels of the tree much earlier on then the highest priority node.

Next week I’ll continue with the explanation of the code, beginning with the assignment of
binary codes.

Download the source

Alison Neal has been using Clarion since 2000, whilst working for Asset Information Systems (AIS) in Auckland, New Zealand.

Some years ago (at the tender age of 19) Alison graduated from the Central Institute of Technology in Wellington, New Zealand

with a major in Cobol. She also has a BA in English literature and has studied Computer Science, Philosophy and Information

Systems. AIS is an independent division of Asset Forestry Ltd, and has a team of five programmers developing almost exclusively

in Clarion. AIS also offers web (ClarioNET) and email services for the customer who needs everything. The company has many

and varied customers bridging across a wide range of industries including Telecommunications, Forestry & Agriculture,

Manufacturers, Military & Government, Legal & Financial, and Retail.

Reader Comments

Add a comment

 Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v5/v5n02huffman1.html (11 of 11) [03/03/2003 4:23:42 PM]

http://www.clarionmag.com/cmag/v5/files/v5n02huffman.zip
mailto:alison@asset.co.nz
http://www.infosystems.co.nz/
http://www.clarionmag.com/cmag/comments.frm?articleID=11928
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 2)

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Tips/Techniques > Clarion Language

Data Structures and Algorithms Part XVI - The Huffman
Compression Algorithm (Part 2)

by Alison Neal

Published 2003-02-25

Last week I introduced the Huffman compression algorithm, along with an implementation in
Clarion. This week I’ll conclude that discussion, beginning with the assignment of binary
codes.

Step 3. Assign Binary Codes.

To assign the binary codes the Huffman Tree must be traversed:

huffTree.Traverse PROCEDURE(*UNSIGNED[] pcde, *UNSIGNED[] pln)
 CODE
 SELF.Trav(pcde,pln,SELf.huffRoot,0,0)

huffTree.Trav PROCEDURE(*UNSIGNED[] pcde, *UNSIGNED[] pln, |
 LONG h, UNSIGNED cde, LONG ln)
ch USHORT
 CODE
 IF SELF.HuffL[h] = 0
 ch = SELF.HuffR[h]
 pcde[ch] = cde
 pln[ch]= ln
 ELSE
 cde = BSHIFT(cde,1)
 ln += 1
 SELF.Trav(pcde,pln,SELF.HuffL[h],cde,ln)
 SELF.Trav(pcde,pln,SELF.HuffR[h],cde+1,ln)
 END

The pcde array and the pln array are declared to 255, which is the number of possible ASCII
characters. The first call to huffTree.Trav passes both empty arrays, the root node, which

http://www.clarionmag.com/cmag/v5/v5n02huffman2.html (1 of 6) [03/03/2003 4:23:44 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=143

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 2)

is the highest index value of the Huffman Tree (25) a code of 0, and a code length (Tree level)
number of 0. Looking back at Figure 4 in last week's article, the root node of the Tree contains
a left value of 23 and a right value of 24, which denotes it as a parent node. As this isn’t a leaf,
a zero bit is added to the cde, and the ln (length or level) value is incremented by 1 to 1.

A recursive call is then made to the left passing the still-empty arrays, the left sub child index
value, a code of ‘0’, and a line number of 1. The left sub child contains a left value of 5 and a
right value of 20, making this node a parent as well, so another 0 bit is added to the code and
the ln number is incremented to 2.

The next recursive call to the left passes the still-empty arrays, the left value of the current
node (5), a code of ‘00’, and a length of 2. Node 5 of the Huffman Tree contains a left value of
0 and a right value of 101. This node is therefore recognised as a leaf, which relates to a valid
character 101 or ‘e’ from the input file. The code for position 101 in the pcde array is then
assigned the now applicable code of ‘00’. The pln (code length) array is assigned the ln
value of 2. The code length is used in recognising how many bits of the stored code are
relevant in writing the compressed file.

The method returns at this stage and a call is made to the right sub child. This time the code
passes the code and length arrays, the right value of 20, a code of ‘01’ and a length value of 2.
The left value of the current node is 7 and the right value is 17, which means that this node is a
parent node. Another zero bit is added to the code giving ‘010’ and ln is incremented to 3.
Another recursive call is made to the left passing the value 7. Node 7 in the Huffman tree is a
left node containing a left value of 0 and a right value of 108, which relates to the character ‘l’,
so the pln array for index position 108 is updated with the value 3 and pcde array for index
position 108 is updated with the valid code 010. The procedure continues allocating codes for
all the leaf nodes.

Step 4. Write the frequency array.

Writing the frequency array as a header to the compressed file allows the decompression
algorithm to rebuild the Huffman Tree, and therefore decipher the codes.

Write:FreqFile ROUTINE
 DATA
MAX_SEQUENCE_LENGTH EQUATE(63) !Highest number holdable in 6 bits
SeqLen BYTE(0)!6 bits=sequence length,2 bits = format
lenCode BYTE(0)
!holds the format, based on the frequency count 00,01,10,11
UCHAR EQUATE(BYTE)
jLower UCHAR(1)
!Lower bound of range in frequency array
jUpper UCHAR(255)
!Upper bound of range in frequency array
j ULONG(0)

http://www.clarionmag.com/cmag/v5/v5n02huffman2.html (2 of 6) [03/03/2003 4:23:44 PM]

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 2)

j0 ULONG(0)
f ULONG(0)!frequency & uLong place holder for output
u USHORT(0) !Ushort place holder for output
b BYTE(0) !Byte place holder for output
 CODE
!Find the smallest range of the array that we have to deal
! with by finding the lowest and highest elements.
 LOOP jLower = 1 TO MAXIMUM(dat:freq,1)
 IF dat:freq[jLower] <> 0 THEN BREAK.
 END
 Cancel = ios_exp.WriteFile(ADDRESS(jLower),SIZE(jLower))
 IF ~Cancel
 LOOP jUpper = MAXIMUM(dat:freq,1) TO 1 BY -1
 IF dat:freq[jUpper] <> 0 THEN BREAK.
 END
 Cancel = ios_exp.WriteFile(ADDRESS(jUpper),SIZE(jUpper))
 END
!Output the frequency array in compact form by breaking the
! calculated range into subranges that meet the same format
! from FindLenCode format can be 00, 01, 10 or 11 = zero,
! 1 byte, unsigned short, unsigned long.
 j0 = jLower
 LOOP WHILE j0 <= jUpper
 IF Cancel THEN BREAK.
 LenCode = FindLenCode(dat:Freq[j0])
 j = j0 + 1
 LOOP WHILE j <= jUpper AND j - j0 < MAX_SEQUENCE_LENGTH |
 AND FindLenCode(dat:Freq[j]) = LenCode
 j += 1
 END
!2 bits contains format, 6 bits contains the sequence length
!MAX_SEQUENCE_LENGTH = 63 as that's the highest number
! possibly held in 6 bits.
 SeqLen = LenCode
 SeqLen = BSHIFT(SeqLen,6) + (j - j0)
 Cancel = ios_exp.WriteFile(ADDRESS(SeqLen),SIZE(SeqLen))
 LOOP WHILE j0 < j
 IF Cancel THEN BREAK.
 f = dat:freq[j0]
 j0+=1
 CASE LenCode
 !1 = BYTE, 2 = USHORT, 3 = ULONG
 OF 1
 b = f
 Cancel = ios_exp.WriteFile(ADDRESS(b),SIZE(b))
 OF 2
 u = f
 Cancel = ios_exp.WriteFile(ADDRESS(u),SIZE(u))
 OF 3
 Cancel = ios_exp.WriteFile(ADDRESS(f),SIZE(f))
 END
 END
 END

The first thing that this piece of code does is find the smallest range within the frequency array.

http://www.clarionmag.com/cmag/v5/v5n02huffman2.html (3 of 6) [03/03/2003 4:23:44 PM]

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 2)

There is little point in writing out a series of zeroes if it isn’t needed, so in the example
jLower is 32 [space], and jUpper is 121 ‘y’. The loop then iterates through the remainder
of the array from 32 to 121.

The FindLenCode function is used to identify how many bytes, or which data type, to
write/read from the compressed file, when writing/reading the frequencies, without wasting
space. It is 3 bytes if the value is greater than 65535, it is 2 Bytes if the value is greater than
255 but not greater than 65535, and it is 1 Byte if the value is less than 255 but not zero, and
zero bytes if the value does not exist.

The source for FindLenCode is:

USHRT_MAX EQUATE(65535)
UCHAR_MAX EQUATE(255)
 CODE
 RETURN CHOOSE(pVal > USHRT_MAX, 3, |
 CHOOSE(pVal > UCHAR_MAX, 2, |
 CHOOSE(pVal <> 0,1,0)))

With my example the first LenCode is 1 as the frequency of 32 is only 7. The nested loop is
to ascertain how many more in the series have the same Lencode. Unfortunately there are no
more, as the 33 did not occur in the example. The first two bits of the SeqLen variable are
made to equal the format ‘01’, and the next six bits of the SeqLen variable are made to equal
the sequence length of 1; seqLen equals 01000001. The frequency for 32 (7) is then output to
the file in a one-byte space and j0 is incremented to position 33.

The LenCode of position 33 is 0, as there is no frequency for this, the same holds true up to
position 83. This time SeqLen contains 00 in the first two bits, and 110010 (50) in the last six
bits. The SeqLen variable is written out to the file, but when the second nested loop iterates,
incrementing j0, no data is actually written as the lenCode is 0.

Returning to the main, loop j0 now equals 83, which has a LenCode of 1, and is written on
its own in the same way that 32 was written. Between 83 and 97 there is another series of
zeros. The seqLen variable is written saying the format is ‘00’, in the first two bits, and there
are ‘001110’ (14) zeros in the sequence.

Now j0 equals 97 and there are two array elements in a row, which have a code length of 1, or
code format of ‘01’, so the seqLen variable is written to the file containing these details. The
second nested loop sees that the frequency for both of these values is written within their own
byte space, the frequency of 97 being 2 and the frequency of 98 being 1.

The process continues to the used upper limit of the frequency array, as stored in the value
jUpper.

http://www.clarionmag.com/cmag/v5/v5n02huffman2.html (4 of 6) [03/03/2003 4:23:44 PM]

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 2)

Step 5. Read the file again and write the relevant codes.

Write:File ROUTINE
 DATA
j LONG
i BYTE(0) !Placekeeper
k BYTE(0)
t UNSIGNED(0)
b BYTE(0)

 CODE
 Cancel = ios_imp.SetPointer(0,0)
 IF ~Cancel
 LOOP
 IF ios_imp.ReadFile(ADDRESS(loc:impLine),1) THEN BREAK.

 t = cde[val(loc:impLine[1])]
 j = ln[val(loc:impLine[1])]
 LOOP i = j TO 1 BY - 1
 !last bit postion of b = bit position i of t.
 b = BSHIFT(b,1)
 b += BSHIFT(BSHIFT(t,31-(i-1)),-31)
 k += 1
 IF k = 8
 Cancel = ios_exp.WriteFile(ADDRESS(b),SIZE(b))
 k = 0
 b = 0
 END
 END
 END
 b = BSHIFT(b,8 - k)
 Cancel = ios_exp.WriteFile(ADDRESS(b),SIZE(b))
 Cancel = ios_exp.WriteFile(ADDRESS(k),SIZE(k))
 END

The code above loops through the input file, finds the relevant code for each character read and
then outputs the resultant codes one byte at a time.

In the example "Steve sells sea shells by the sea shore", ‘S’ is the first character read, which
has a code t of ‘10000’ and a code length j of 5. The nested loop iterates for the code length,
appending each bit to that length on to the end of B. B starts by being ‘1’, the next iteration has
B as ‘10’ until all five bit places have been appended.

Variable k keeps a count of how many bits have been appended to ensure that once a full byte
is available it is written to the compressed file. When the code for ‘S’ is appended to B, k
equals 5, so the next character is read, which is ‘t’, which has a code t of ‘0111’ and a length
code j of 4. So bit positions 1 to 3 are appended to B giving ‘10000011’, at which point the
byte is full, k equals 8, and needs to be written to the compressed file. K is then reinitialised to
zero, as is b, and the final 1 of the code for t is then appended to the now clear b variable.

http://www.clarionmag.com/cmag/v5/v5n02huffman2.html (5 of 6) [03/03/2003 4:23:44 PM]

Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 2)

Another letter is read from the file, this time ‘e’ which has a code t of ‘00’ and a code length j
of 2. Both relevant bit positions are also appended to the b variable giving ‘100’ There are still
five positions left in the byte, so it isn’t written to the compressed file and another letter is
read, this time ‘v’ which has a code value t of ‘10100’ and a code length j of 5. The entire
code is appended to the B variable giving ‘10010100’ before it is written to the compressed
file.

The process continues until after the last character is read and its relevant code assigned. If at
the end of the loop k is less than eight, then the remainder of the B variable is appended
with zeros and written to the compressed file. Then the number of required zeros is also
written to the file. This ensures that the decompression algorithm does not try to add additional
characters e.g. characters with codes of all zeros to the end of the decompressed file.

Summary

The Huffman compression algorithm can be expanded to include more than one file, and to
recognise recurring patterns rather than just single characters for very large files.

In my next article I will cover the somewhat simpler process of decompression.

Download the source

Alison Neal has been using Clarion since 2000, whilst working for Asset Information Systems (AIS) in Auckland, New Zealand.

Some years ago (at the tender age of 19) Alison graduated from the Central Institute of Technology in Wellington, New Zealand

with a major in Cobol. She also has a BA in English literature and has studied Computer Science, Philosophy and Information

Systems. AIS is an independent division of Asset Forestry Ltd, and has a team of five programmers developing almost exclusively

in Clarion. AIS also offers web (ClarioNET) and email services for the customer who needs everything. The company has many

and varied customers bridging across a wide range of industries including Telecommunications, Forestry & Agriculture,

Manufacturers, Military & Government, Legal & Financial, and Retail.

Reader Comments

Add a comment

 Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v5/v5n02huffman2.html (6 of 6) [03/03/2003 4:23:44 PM]

http://www.clarionmag.com/cmag/v5/files/v5n02huffman.zip
mailto:alison@asset.co.nz
http://www.infosystems.co.nz/
http://www.clarionmag.com/cmag/comments.frm?articleID=11942
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Debugging Queues With Excel

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Tips/Techniques > Debugging

Debugging Queues With Excel

by Alan Telford

Published 2003-02-27

To the Clarion programmer, queues are the greatest thing since sliced bread (so what was the
greatest thing before sliced bread?). They are one of my favorite features in Clarion. With
queues I can easily read multiple files (or tables), consolidate, summarize, re-sort into any
order, and then use the results. Most of my reports use queues. The main disadvantage I have
with queues is the work involved to view their contents.

One report that uses queues a lot is my Stock Variation report. This report needs to calculate
the actual stock movement (from delivery, waste and stock count information) and compare it
with the expected stock movement (from product sold information and the quantity of stock
items contained in each product). To do this I need to read about eight different files and
summarize the results. This is a complex report, and recently I had to field a number of support
calls for it. Some users were getting large stock variations which were incorrect, and it took a
lot of work on my part to track down the problem.

My first approach was to use the Clarion debugger, trace the program, view the queue contents
for each stock item and compare with what I expected it to be. But a report often has 2-300
stock items, and the queue is processed in code order, whereas the report displays in name
order. This very quickly became error-prone and rather boring, but I persevered for the first
couple of calls. Oh, if only there was an easy way to view the contents of a queue.

By the third support call I had modified my approach to traverse the queue, and write the
contents out one record at a time into an ASCII file. I saved a lot of time by not having to use
the debugger, but the code was specific to this report and this queue and couldn’t be reused
anywhere. Oh, if only there was an easy way to view the contents of a queue.

On other procedures I had used a special key combination to open up a window which uses a

http://www.clarionmag.com/cmag/v5/v5n02debugq.html (1 of 6) [03/03/2003 4:23:46 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=59

Debugging Queues With Excel

listbox to display the queue. Again, this is highly specific in each case. Oh, if only there was an
easy way … (I’m sure you get the point by now!)

The design

As I thought about the solution some more I decided to list my requirements for debugging
queue contents. (yes, even the lazy programmers do occasionally do some design work). The
requirements are as follows:

● View any queue
● Sort queue in any order
● Print the queue
● Add calculated columns based on queue contents
● Sum/average of any column
● Be transparent to the user (only the programmer needs to see the debug

information)

and most of all

● Be really easy to implement – ideally only one line of code

Looking at the requirements gave me one of those magic Aha! moments. I already had a tool
which provided those features: Microsoft Excel. Excel could already sort in any order, add
calculated columns, and produce sums and averages and print results. All that I had to do was
export my queue to Excel, and that can easily be done using a CSV file.

A CSV (comma separated values) file is an ASCII file which contains one line per queue
record, where the line contains the contents of each queue field separated by a comma. And if
the CSV file extension has a Windows association with Excel, then I can double-click on a
CSV file and it’s automatically opened inside my spreadsheet. So how do I do this?

The Clarion WHAT(group, number) statement is all that’s required to retrieve the contents
of a queue. The WHAT statement returns the field specified by number from the group
structure. Group is the label of a GROUP, RECORD, CLASS, or QUEUE declaration. By
assigning the WHAT to an ANY variable and testing for NULL, I can easily tell when I’ve passed
the last field in the queue. The following code will create a string which contains the contents
of each field in myQueue, separating each field with a comma.

 Line = ''
 Ndx = 0
 loop
 Ndx += 1
 AnyVar &= WHAT(myQueue, Ndx)
 if AnyVar &= Null then break.

http://www.clarionmag.com/cmag/v5/v5n02debugq.html (2 of 6) [03/03/2003 4:23:46 PM]

Debugging Queues With Excel

 Line = Line & choose(~Line,'', ',') & AnyVar
 End

All that’s needed now is to create the file, read each record in the queue, and write to a file. For
convenience I wrap this code in a generic procedure that can be called from anywhere.

ExportQtoCsv Procedure(Queue p:Q)
!--
ExportFile File,Driver('Ascii'),create,Name('DebugQ.csv')
Record Record
Line String(4096)
 . .
AnyVar Any
Line Cstring(4097)
Ndx Long
QueueNdx Long
 code
 create(ExportFile)
 open(ExportFile)
 loop QueueNdx = 1 to records(p:Q)
 get(p:Q, QueueNdx)
 ! create string with queue contents
 Line = ''
 Ndx = 0
 loop
 Ndx += 1
 AnyVar &= WHAT(p:Q, Ndx)
 if AnyVar &= Null then break.
 Line = Line & choose(~Line,'', ',') & AnyVar
 end
 ExportFile.Line = Line
 Add(ExportFile)
 end
 close(ExportFile)

Here in 28 Clarion source code lines is a simple procedure which will take any queue, and
export the contents into a CSV file called DEBUGQ.CSV, which can then be easily read by
Excel. To use the procedure simply call it, passing the queue:

 ExportQtoCsv(MyCustomQueue)

I immediately imported this procedure into a number of apps and put to use (you can do the
same with the TXAs in the downloadable source – more about this at the end of the article).

Once I added this new tool to my toolbox, I wondered how I ever did without it. But of course,
I soon noticed a whole lot of improvements that could be made:

1. Allow for a configurable filename rather than a fixed "DEBUGQ.CSV"
2. With larger queues, it would be nice to list the names of each column in the first

row of the CSV (header record)

http://www.clarionmag.com/cmag/v5/v5n02debugq.html (3 of 6) [03/03/2003 4:23:46 PM]

Debugging Queues With Excel

3. String values can contain commas (e.g. addresses, product names) and should
be surrounded by quotes, so the CSV file doesn’t split the value into two or
more fields where the comma occurs

4. Date/Time fields by default display as the numeric value (e.g. 76351). An option
is needed to specify a format picture for each field.

As this stage I like to change hats. Instead of being the programmer of the ExportQtoCsv
procedure, I switch to being the user. This allows me to design the way ExportQtoCSV
should be used and how it is called before I actually make the program changes. Here’s what I
added:

A configurable filename – I supported this by with an optional second parameter.

ExportQtoCsv PROCEDURE(Queue p:Q, <String p:Filename>)

This allows the procedure to be called multiple times for different queues without overwriting
the file.

Listing column names – I do this always. If the column names are not required, then the first
row can be deleted from within Excel after opening the CSV. The function gets the column
names with the WHO statement.

Commas in data – I solved the problem of a comma in the middle of text by surrounding all
fields in quotes. Optionally you could use the ISSTRING function to only surround string
fields with quotes.

Date/Time pictures – I added a third omittable parameter specifies the format picture for each
column. Use a pipe delimiter (|) between the format pictures so they can be combined into one
long string.

ExportQtoCsv PROCEDURE(Queue p:Q, <String p:Filename>, <String p:Format>)

Then the procedure can be called as follows:

ExportQtoCsv(QueueName, ‘debugQ.csv’, ‘@s20|@n7.2|@d1|@t7|@s10’)

This assumes the queue has five fields: a string, number, date, time, and a string.

Omit the picture (but keep the | delimiter) if you want to use the default picture for that
column. E.g.

ExportQtoCsv(QueueName, ‘debugQ.csv’, ‘||@d1|@t7’)

This assumes the queue has at least five queue fields, with the third field being a date, and the

http://www.clarionmag.com/cmag/v5/v5n02debugq.html (4 of 6) [03/03/2003 4:23:46 PM]

Debugging Queues With Excel

fourth field being a time. The default format is used for all other queue fields.

Usage

To use the ExportQtoCSV procedure, simply import the TXA from the downloadable source
(Export_Leg.txa for legacy applications, or Export_Abc.txa for ABC applications) into your
application. Then in any embed point, add source code to call the procedure passing the queue
name, and optionally a filename, and a pipe-delimited list of format pictures.

Note that for Legacy applications you will probably need to add the ASCII database driver to
your application. From the project editor (Project |Edit) select the Database driver libraries
icon, press Add File, and select the ASCII (Text) entry as shown in Figure 1.

Figure 1. Adding the ASCII driver to the project

As a side note, you may be interested to know that the Legacy and ABC TXAs are identical
apart from changing the fifth line from

FROM ABC Source

into

FROM Clarion Source

http://www.clarionmag.com/cmag/v5/v5n02debugq.html (5 of 6) [03/03/2003 4:23:46 PM]

Debugging Queues With Excel

Summary

First I came up against the problem – I’m lazy and I don’t like doing more work than required.
Then I came up with the requirements – using one line of code, view the contents of any
queue, in any order, in a flexible manner, including being able to add calculated columns and
sums of columns.

Then in an Aha! moment, I realized I had a tool in my box which already did this, and it wasn’t
Clarion.

Now I solved the simpler problem of exporting the queue to a CSV file, abstracted the code to
a procedure, and then added refinements to the procedure as they were needed.

I hope you enjoy using Clarion queues as much as I do, and if you ever need to quickly see
what the contents of a queue are, now you have an easy way of doing this.

Download the source

Alan Telford has been programming in Clarion since 1994. He is the Chief Software Developer at Maxtel Software Ltd, a New

Zealand software company specializing in writing back office computer solutions for McDonald's Family Restaurants and other

similar markets.

Reader Comments

Add a comment

Alan, A wonderfull article. I'm already found an...
Very nice job Alan....Will be used extensively!
Hi Alan, If you use DRIVER('ASCII','/TAB=-100') and add...
Hi Patriek Thanks for that information. That's very...
There is an easier Way!!!!!!! You can view all Table...
There is an easier Way!!!!!!! You can view all Table...

 Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v5/v5n02debugq.html (6 of 6) [03/03/2003 4:23:46 PM]

http://www.clarionmag.com/cmag/v5/files/v5n02debugq.zip
http://homepages.paradise.net.nz/alantelf/
http://www.maxtel.co.nz/
http://www.clarionmag.com/cmag/comments.frm?articleID=11943
http://www.clarionmag.com/cmag/discuss.frm?articleID=11943&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=11943&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=11943&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=11943&position=4
http://www.clarionmag.com/cmag/discuss.frm?articleID=11943&position=5
http://www.clarionmag.com/cmag/discuss.frm?articleID=11943&position=6
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Book Review: PostgreSQL Developer's Handbook

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Reviews > Reviews

Book Review: PostgreSQL Developer's Handbook

by David Harms

Published 2003-02-28

PostgreSQL Developer's Handbook

By Ewald Geschwinde and Hans-Jüergen Schöenig
Published by Sams, December 2001
ISBN: 0672322609
768 pages, $44.99 US, $67.95 CA, £32.99 UK

PostgreSQL Developer’s Handbook, at some 750 pages, is one of the longer and more detailed
books on PostgreSQL currently available. Not that there are a lot to choose from – a search on
Amazon for PostgreSQL books yielded 11 hits to arch rival MySQL’s 49.

The lesser part of this book is taken up with the nuts and bolts of common SQL operations as
defined by PostgreSQL. Chapter one covers basic concepts, and chapter two installation on
Unix/Linux and on Windows (the latter using CygWin – ugh! – happily a native Windows
version is expected this summer, and a beta is available now). Chapter three is a longish one
dealing with the basic SQL commands for creating databases, tables, and other components,
adding and modifying data, and retrieving data. There’s a lot of fairly detailed information
here, including topics such as self joins, casting data types, and working with arrays, BLOBs,
and other special data types. There’s even a section on modeling databases.

After a very brief treatment of transactions, Handbook goes on to a topic that I’ve found of
considerable personal interest lately: the PL/PGSQL programming language. Unfortunately
this is also a short chapter – if you get into writing stored procedures in a big way, you’ll

http://www.clarionmag.com/cmag/v5/v5n02postgresbook.html (1 of 3) [03/03/2003 4:23:48 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=133
http://www.clarionmag.com/cmag/topics.html?categoryid=133&subcategoryid=12
http://www.samspublishing.com/catalog/product.asp?product_id=%7B2C8075E5-6409-422A-9148-8EAFEE5C1F6D%7D
http://techdocs.postgresql.org/guides/InstallingOnWindows

Book Review: PostgreSQL Developer's Handbook

probably spend more time with the standard docs. Database administration, backup and
recover, and performance tuning all get their own chapters, none extensive, but generally
sufficient. The performance tuning chapter deals mainly with database design issues (when and
how to create indexes, optimizing queries, using EXPLAIN and VACUUM) , and touches on
system issues such as file systems and buffers.

There are some long, long chapters in this book. The granddaddy of them all is Programming
Interfaces, which spans almost 200 pages (a book in itself!) and provides an overview of using
PostgreSQL from a half-dozen or so languages, and with ODBC. Only the latter is likely to be
of interest to most Clarion developers, so there’s a good chunk of this book you probably
won’t care about. The last chapter in Part 1 summarizes software add-ons for PostgreSQL,
such as a cube datatype (you can, for instance, select the union of two cubes), full text indexes,
ISBN/ISSN numbers, a utility for dumping large objects, a soundex module, and more.

If you’ve read this far through the book you’re about two-thirds done; the last third is devoted
to real-world examples. I won’t go into all the details, but the topics include: working with
EBCDIC data; multidimensional data structures; classifying and aggregating data; generating
Flash content with PHP and PostgreSQL; running the PostgreSQL regression tests (mainly
useful to the PostgreSQL developers, but you may want to do this to ensure that the latest beta
works on your system); extending PostgreSQL with C functions; creating custom datatypes;
creating operators (for instance, overloading the + operator to allow for adding RGB color
values to get a new color); writing new rules (PostgreSQL is a highly configurable database);
handling date and time calculations; persistent database connections (using PHP); using
ODBC; and finally, graphing PostgreSQL data using gnuplot.

The PostgreSQL Developers Handbook is a heavy volume with a lot of information on an
incredible variety of subjects. It may not tell you everything you ever want to know about the
SQL in PostgreSQL (although it will come reasonably close), but it will open your eyes to the
great breadth of functionality available in this popular open source database.

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He is also co-author with

Ross Santos of Developing Clarion for Windows Applications, published by SAMS (1995). His most recent book is JSP, Servlets,

and MySQL, published by HungryMinds Inc. (2001).

http://www.clarionmag.com/cmag/v5/v5n02postgresbook.html (2 of 3) [03/03/2003 4:23:48 PM]

mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.covecomm.com/java/index.html

Book Review: PostgreSQL Developer's Handbook

Reader Comments

Add a comment

I just thought that other ClarionMag readers might be...

 Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v5/v5n02postgresbook.html (3 of 3) [03/03/2003 4:23:48 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=11944
http://www.clarionmag.com/cmag/discuss.frm?articleID=11944&position=1
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

	clarionmag.com
	Clarion Magazine
	Interfaces Everywhere
	Introducing PostgreSQL - Creating Tables And Sequences
	Topical Index
	A Class For Tagging
	CONVIC - An Antipodean Clarion Gathering
	Clarion News
	Demystifying C6 Threading (Part 1)
	Demystifying C6 Threading (Part 2)
	Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 1)
	Data Structures and Algorithms Part XVI - The Huffman Compression Algorithm (Part 2)
	Debugging Queues With Excel
	Book Review: PostgreSQL Developer's Handbook

