
Clarion Magazine

Clarion Magazine

Validating Credit Card Numbers
Credit card processing is a common
requirement in application
development. And before you submit a
credit card number to your bank for
processing, it helps to make sure it's a
well-formed number. Abe Jimenez
explains the code you need to do the
job.

Posted Tuesday, March 02, 2004

How To Stop Trashing The
Template Registry
How many times have you run a
second instance of Clarion, without
turning on multi-user development,
only to have your registry trashed? In
this article Danie de Beer describes a
utility by Mark Goldberg that makes
trashed registries a thing of the past.

Posted Tuesday, March 02, 2004

Register For etc Now!
You can now register online for the
East Tennessee Clarion Conference!
The conference fee is exactly the same
as two years ago: $469 covers all
general sessions for the three core
days of the conference: Wednesday
through Friday. Also included is the
reception Tuesday evening, breakfast
and lunch on all three days, the Cajun
Cookout, the closing dinner, and breaks

Articles:

News:

News

Embedded Firebird

xInactivity 1.1

In-Memory Database
Driver Information

xInactivity Available On
ClarionShop.

Advanced Data Dictionary
Architect 1.0.2

Icetips Previewer 2.0

Multilingual Text To Voice

Fenix ASP.NET Generator
at ETC 2004

1st Logo Design Spring
Specials

Clarion Third Party Profile
Exchange Updated

Firebird Links And Tutorial

SealSoft xTipOfDay 2.0

ClarionForge Input
Requested

CapeSoft Training At ETC
4

SB5 Beta Online Forum

Clarion And Armadillo
HowTo

DCT2SQL For Interbase

Which is your
favorite NOT
unary operator?

NOT
 41.1%

~
 58.9%

56 responses

Previous Surveys

One Year Ago
In CM

GPF Challenge
Results

Mutexes:
Serializing File
Access

Potholes On The
Road To Open
Source
Database
Nirvana

Two Years Ago
In CM

http://www.clarionmag.com/index.html?year=2004&month=3&desc=false&limit=100 (1 of 5) [05/04/04 3:24:54 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://etc.kcug.org/attendee/how.html
http://www.clarionmag.com/articles.rss
http://www.clarionmag.com/news.rss
http://www.clarionmag.com/cmag/news.html
https://www.internetsecure.com/cgi-bin/certified.mhtml?merchant_number=6139
http://www.clarionmag.com/cmag/pastsurveys.html
http://www.clarionmag.com/cmag/v5/v5n04gpfchallenge.html
http://www.clarionmag.com/cmag/v5/v5n04gpfchallenge.html
http://www.clarionmag.com/cmag/v5/v5n04mutexes2.html
http://www.clarionmag.com/cmag/v5/v5n04mutexes2.html
http://www.clarionmag.com/cmag/v5/v5n04mutexes2.html
http://www.clarionmag.com/cmag/v5/v5n04dbtester1.html
http://www.clarionmag.com/cmag/v5/v5n04dbtester1.html
http://www.clarionmag.com/cmag/v5/v5n04dbtester1.html
http://www.clarionmag.com/cmag/v5/v5n04dbtester1.html
http://www.clarionmag.com/cmag/v5/v5n04dbtester1.html

Clarion Magazine

during the sessions. Special rate for
Edgewater hotel rooms. Guest meal
plans and Saturday session by Bruce
Johnson also available.

Posted Wednesday, March 03, 2004

If you emailed ClarionMag and
haven't had a reply yet...
Vacation's over! The Clarion Magazine
office is again open, and all books
ordered during our break have now
been put in the print queue. Our spam
filtering software also picked up about
10,000 spam emails during this time,
and because of the quantity we deleted
most of it sight unseen. If you haven't
yet received a response to an email
you sent in the last 10 days, please
send it again.
Dave Harms, Publisher

Posted Monday, March 15, 2004

Weekly PDF for March 1-6,
2004
All articles for March 1-6, 2004 in PDF
format.

Posted Tuesday, March 16, 2004

A Class Wrapper for Brice
Schagane's Menu Buttons
Nik Johnson gets his copy of Tips &
Techniques and quickly discovers a
solution to his screen real estate
problem: Brice Schagane's menu
button. For easier re-use, Nik shows
how to convert Brice's code into a
class.

Posted Friday, March 26, 2004

Using Client-Side Triggers In

MAV Direct ODBC Rewrite

Gitano Buy One Get One
Free

xDataBackup Manager Pro
1.7

Free Web Email Link
Cloaking Utility

Bg XML Dico Video

Excel Charts 1.0

gReg Plus $99 Offer

Sticky Notes For C6

EasyVersion 2.02

File Manager 3 Beta 3.30

New Wallpaper Template

Encourager Software Web
Site Redesign

Solace Software ReSort
Pro & New Web Site
Design

MAV Direct ODBC 0.04
And 0.07

Freeware Templates
Available

Mail & Merge Manager
v1.1

Outlook Products Available
At ClarionShop

New Clarion Dictionary
Utility

O'Reilly Launches New
Windows DevCenter

Search the news
archive

Baby Overrides
Publishing
Schedule!

Creating A
SCADA Interface
With Clarion
(Part 2)

Secondary
Forms (Part 2)

Three Years
Ago In CM

Clarion and the
Internet:
Publishing Static
Data

Dynamic Filters:
Applying The
Theory

Clarion News -
April 2001

Four Years
Ago In CM

The Clarion
Challenge:
Shoot Yourself
In The Foot
Results

Using Clarion
With MySQL -
Part 1

Doodling
Bitmaps

http://www.clarionmag.com/index.html?year=2004&month=3&desc=false&limit=100 (2 of 5) [05/04/04 3:24:54 PM]

http://www.clarionmag.com/cmag/pubsched.html#1
http://www.clarionmag.com/cmag/pubsched.html#1
http://www.clarionmag.com/cmag/v6/files/cmag-2004-03-06.pdf
http://www.clarionmag.com/cmag/v6/files/cmag-2004-03-06.pdf
http://www.clarionmag.com/cmag/searchnews.frm
http://www.clarionmag.com/cmag/searchnews.frm
http://www.clarionmag.com/cmag/v4/v4n03sophie.html
http://www.clarionmag.com/cmag/v4/v4n03sophie.html
http://www.clarionmag.com/cmag/v4/v4n03sophie.html
http://www.clarionmag.com/cmag/v4/v4n03scada2.html
http://www.clarionmag.com/cmag/v4/v4n03scada2.html
http://www.clarionmag.com/cmag/v4/v4n03scada2.html
http://www.clarionmag.com/cmag/v4/v4n03scada2.html
http://www.clarionmag.com/cmag/v4/v4n03secondary2.html
http://www.clarionmag.com/cmag/v4/v4n03secondary2.html
http://www.clarionmag.com/cmag/v3/v3n4pubhtml.html
http://www.clarionmag.com/cmag/v3/v3n4pubhtml.html
http://www.clarionmag.com/cmag/v3/v3n4pubhtml.html
http://www.clarionmag.com/cmag/v3/v3n4pubhtml.html
http://www.clarionmag.com/cmag/v3/v3n4dynamicfilters2.html
http://www.clarionmag.com/cmag/v3/v3n4dynamicfilters2.html
http://www.clarionmag.com/cmag/v3/v3n4dynamicfilters2.html
http://www.clarionmag.com/cmag/news.html?year=2001&month=4&limit=200
http://www.clarionmag.com/cmag/news.html?year=2001&month=4&limit=200
http://www.clarionmag.com/cmag/v2/v2n4shootfoot2.html
http://www.clarionmag.com/cmag/v2/v2n4shootfoot2.html
http://www.clarionmag.com/cmag/v2/v2n4shootfoot2.html
http://www.clarionmag.com/cmag/v2/v2n4shootfoot2.html
http://www.clarionmag.com/cmag/v2/v2n4shootfoot2.html
http://www.clarionmag.com/cmag/v2/v2n4mysql1.html
http://www.clarionmag.com/cmag/v2/v2n4mysql1.html
http://www.clarionmag.com/cmag/v2/v2n4mysql1.html
http://www.clarionmag.com/cmag/v2/v2n4doodle.html
http://www.clarionmag.com/cmag/v2/v2n4doodle.html

Clarion Magazine

Clarion 6
Client-side triggers are a new, very
neat and useful feature that has been
added to Clarion 6, both Professional
and Enterprise versions. Tom Giles
provides an introduction.

Posted Friday, March 26, 2004

Understanding Clarion
Templates, Part 1
Templates! Templates! Templates! That
for many years has been the Clarion
rallying cry (unless you prefer David
Bayliss's "Don't Know, Don't Care!"
from DevCon '97). And despite the
advance of Clarion OOP technology,
templates are still what Clarion does
best. But what are the templates,
really? David Harms begins this series
with an overview of template types.

Posted Friday, March 26, 2004

Our Email Addresses Have
Changed!
Please note that due to excessive spam
we have been forced to change all
email addresses. Please see this page
for the new addresses.

Posted Friday, March 26, 2004

David Harms To Speak at ETC
2004
David Harms, Clarion Magazine's
publisher, will be giving a presentation
on XML at the East Tennessee Clarion
Conference and Gathering (also known
as ETC 2004). As David's presentation
is immediately prior to the Cajun
Cookout, attendees are requested to
keep drooling to a minimum. Nothing

http://www.clarionmag.com/index.html?year=2004&month=3&desc=false&limit=100 (3 of 5) [05/04/04 3:24:54 PM]

http://www.clarionmag.com/cmag/contactinfo.html#1
http://www.clarionmag.com/cmag/contactinfo.html#1
http://etc.kcug.org/sessions/session2.html
http://etc.kcug.org/sessions/session2.html

Clarion Magazine

unnerves a presenter more than that
hungry dog look.

Posted Tuesday, March 30, 2004

Icetips Bios All Online
Clarion Magazine is pleased to
announce that it is the new home of
the Icetips bios. By special
arrangement with Sue Pichotta, these
profiles of Clarion developers will
remain free access. All the Icetips bios
are now available.

Posted Wednesday, March 31, 2004

Tips & Techniques Book 15%
Off Sale Ends April 16
The 15% off introductory special on the
Tips & Techniques book ends April 16.
Order now before the price goes up!

Posted Wednesday, March 31, 2004

Understanding Clarion
Templates, Part 2
In this second article in his template
series, David Harms takes a closer look
at the template language itself.

Posted Wednesday, March 31, 2004

System Tray Popup Windows
Shortly after installing Outlook 2003
Jim Kane noticed small windows
appearing in the tray area when a new
email message came in. He found
these very useful, so he set about
creating the same kind of popup
messages in Clarion.

Posted Wednesday, March 31, 2004

Compiled Reports From Report
Writer

http://www.clarionmag.com/index.html?year=2004&month=3&desc=false&limit=100 (4 of 5) [05/04/04 3:24:54 PM]

http://www.clarionmag.com/icetipsbios/index.html#1
http://www.clarionmag.com/books/tips/index.html#1
http://www.clarionmag.com/books/tips/index.html#1

Clarion Magazine

As far as Henry Plotkin is concerned,
the best thing about Clarion Report
Writer is the ability to set up the
finished page without having to adjust
the position of each individual band.
The next best thing about Report
Writer is that report testing is much
faster. It does not require a compile-
link cycle. It does not require
minimizing Clarion, starting the
application and navigating to the
report. Wouldn't it be nice to be able to
design reports in Report Writer, and
then just copy them into a Clarion
report procedure? Actually, it can be
done, and fairly easily.

Posted Wednesday, March 31, 2004

Looking for more? Check out the site
index, or search the back issues.
This site now contains more than 700
articles and a total of over a million
words of Clarion-related information.

Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written

consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/index.html?year=2004&month=3&desc=false&limit=100 (5 of 5) [05/04/04 3:24:54 PM]

http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/search.frm
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

How To Stop Trashing The Template Registry

Clarion Magazine

How To Stop Trashing The Template Registry

by Danie de Beer

Published 2004-03-02

Source code is by Mark Goldberg, used with permission.

How many of you have done the same as I have a hundred times, you
run Clarion, and then realize, Wow! Clarion is already running, and your
Clarion IDE is not set for Multi-User Development. In a few seconds your
Registry.TRF file is trashed, and you see the error message in Figure 1.

Figure 1. A trashed registry

I personally don’t like switching the Multi-User Development setting on.
Since this makes the registry read-only, every time I need to register a
template, I need to switch it of and restart the Clarion IDE. In Clarion 5.5
you will find the Multi-User setting under the Setup, Application Option
Menu, Miscellaneous Group

http://www.clarionmag.com/cmag/v6/v6n03registry.html (1 of 10) [05/04/04 3:25:54 PM]

http://www.clarionmag.com/
http://etc.kcug.org/

How To Stop Trashing The Template Registry

Figure 2. Registry settings in Clarion 5.5

In Clarion 6 the checkbox reads "Open Dictionary files and Template
Registry as Read only."

http://www.clarionmag.com/cmag/v6/v6n03registry.html (2 of 10) [05/04/04 3:25:54 PM]

How To Stop Trashing The Template Registry

Figure 2. Registry settings in Clarion 6

Some of us were discussing this issue on IRC (#cw-talk) one day, and
following that discussion Mark Goldberg wrote this really handy utility for
me in a couple of minutes. Instead of launching Clarion directly, you run
this utility, which detects if Clarion is already running, and if it has been
set to Multi User Development. If not, it informs you of your really
horrible mistake, and in a split second prevents your registry from
getting trashed. Otherwise the utility simply launches the Clarion IDE.

How it works

First of all, this utility needs to know the INI settings of all the Clarion
versions as listed in the Win.INI file.

In the BIN folder of each version of Clarion is an INI file that contains the
MULTIUSER setting. So the first question becomes, where is the .INI file.
The answer is, it’s in workdir folder, listed in WINI.INI. Each version of
Clarion has a different section name as you can see from the following

http://www.clarionmag.com/cmag/v6/v6n03registry.html (3 of 10) [05/04/04 3:25:54 PM]

How To Stop Trashing The Template Registry

example:

[Clarion 6.0 Enterprise Edition]
 bin=BIN\
 workdir=C:\Clarion6\BIN\
 root=C:\Clarion6\
 exename=C60EE
 [Clarion 5.5 Enterprise Edition]
 bin=BIN\
 root=C:\C55\
 exename=C55EE
 workdir=C:\cla\C55\BIN\

The utility will also use exename, but I’ll explain that later on.

The next step is to use a mutex to determine if the IDE is already
running. The word mutex comes from the words MUTually EXclusive.
Here’s what the Clarion 6 help has to say on mutexes:

Mutexes are another kind of synchronization object. Their goal
is the same as for critical sections: provide mutual exclusive
access to some shared resource. For example, to prevent two
threads from writing to shared memory (global data) at the
same time, each thread waits for ownership of a mutex object
before executing the code that accesses the shared resource.

There are 2 major differences between critical sections and
mutexes:

Critical sections can only be used for synchronization of
threads owned by the same process. Mutexes can be used for
synchronization of threads that can belong to different
processes. If a process creates a mutex with some name and
another (or the same) process has created a mutex with that
name already, the system does not create a new mutex. It
returns another handle to the existing mutex instead and sets
error code to 183 (ERROR_ALREADY_EXISTS). Unnamed
mutexes are local for the process that created them. Such
mutexes can only be used for synchronization of that process's
threads.

http://www.clarionmag.com/cmag/v6/v6n03registry.html (4 of 10) [05/04/04 3:25:54 PM]

How To Stop Trashing The Template Registry

The utility asks for a named mutex from Windows, and will only be able
to get it if the mutex hasn’t been "checked out" already, e.g. by another
instance of the utility (the Mutex class was written prior to C6 being
available; C6 has its own Mutex):

if Mutex_IDESingle.Init('CWIDE_Single' |
 & lcl:Argument.VerNum) or lcl:MultiUser

Since the name of the mutex includes the version number of the IDE,
LaunchIDE can launch different versions of Clarion on the same machine
at the same time.

Data

The utility will need a few variables, as follows:

lcl:WorkDir String(260) !Clarion working Directory
lcl:Ini string(260)
lcl:Section String(60) !Ini Section
lcl:ExeName String(260) !Clarion Executable filename
Next, create a Group to store the Version number and Clarion Edition
lcl:Argument Group,Pre()
lcl:vernum String(2) !Value like '55','60'
lcl:Edition String (2) !Values like 'EE','PE'
 end
lcl:MultiUser Byte !Flag to check for Multi-User
 ! Development Switched on/off

You need to run the utility with a command parameter, e.g. LaunchIDE
60EE will launch Clarion 6.0, Enterprise Edition. Here’s the code:

Lcl:Argument=command(‘1’) !expecting a command line like: launchIDE
60EE

There’s a small routine called ShowUsage that verifies that the command
line parameters are correct. If there’s a problem it displays a usage
message, shown in Figure 4.

http://www.clarionmag.com/cmag/v6/v6n03registry.html (5 of 10) [05/04/04 3:25:54 PM]

How To Stop Trashing The Template Registry

Figure 4. The usage message

Here’s the code that determines which version of Clarion to run:

case lcl:Argument.VerNum
of ''
 do ShowUsage
of '60'
 case lcl:Argument.Edition
 of 'EE'
 lcl:Section = 'Clarion 6.0 Enterprise Edition'
 lcl:Ini = 'c60ee.ini'
 of 'PE'
 lcl:Section = 'Clarion 6.0'
 lcl:Ini = 'c60pe.ini'
 else
 do ShowUsage
 end
of '55'
 case lcl:Argument.Edition
 of 'EE'
 lcl:Section = 'Clarion 5.5 Enterprise Edition'
 lcl:Ini = 'c55ee.ini'
 of 'PE'
 lcl:Section = 'Clarion 5.5'
 lcl:Ini = 'c55pe.ini'
 else
 do ShowUsage
 end
of '50'
 case lcl:Argument.Edition
 of 'EE'
 lcl:Section = 'Clarion 5 Enterprise Edition'
 lcl:Ini = 'c5ee.ini'
 of 'PE'; lcl:Section = 'Clarion 5'
 lcl:Ini = 'c5pe.ini'
 else
 do ShowUsage
 end

http://www.clarionmag.com/cmag/v6/v6n03registry.html (6 of 10) [05/04/04 3:25:54 PM]

How To Stop Trashing The Template Registry

!------ I believe that there was only one
!------ version prior to 5.0
of '40'
 lcl:Section = 'Clarion 4'
 lcl:INI = 'clarion4.ini'
of '21'
 lcl:Section = 'Clarion for Windows V2.1'
 lcl:INI = 'cw21.ini'
of '20'
 lcl:Section = 'Clarion for Windows V2.0'
 lcl:Ini = 'cw20.ini'
of '15'
 lcl:Section = 'Clarion for Windows V1.5'
 lcl:INI = 'cw15.ini'
of '10'
 lcl:Section = 'TopSpeed: Clarion for Windows'
 lcl:INI = 'cw.ini'
else
 do ShowUsage
end

Now that the utility knows which Clarion version to Run and the INI file
to use, it checks the Working Directory:

lcl:WorkDir = clip(getINI(lcl:Section,'workdir'))

Next, find out if the IDE is set to use Mutli-User Development. If
MultiUser protections are off, then do not allow a seconnd launch as it
can trash the Registry.TRF:

!MultiUser=off
lcl:MultiUser = choose(upper(getIni('Application','MultiUser',|
 '',clip(lcl:WorkDir) & lcl:INI)) = 'ON')
!Policy: Will prevent the SIMPLE case, of MultiUser is Off,
! and all copies are being launched from a single machine

Now it’s time to actually "check out" the mutex from the OS. The
Missing<2,4,8> is a default value for the INI. It’s just a bogus value that
is very unlikely to exist in the INI, which makes it possible to compare
the lcl:Exename to the default value to determine if it was in fact missing

if Mutex_IDESingle.Init('CWIDE_Single' & lcl:VerNum) |
 or lcl:MultiUser
 lcl:ExeName = getINI(lcl:Section,'exename','Missing<2,4,8>')
 if lcl:ExeName = 'Missing<2,4,8>'
 Message('Sorry, but that version of Clarion cannot ' |
 & 'be found in your WIN.INI','Launch IDE',ICON:Hand)

http://www.clarionmag.com/cmag/v6/v6n03registry.html (7 of 10) [05/04/04 3:25:54 PM]

How To Stop Trashing The Template Registry

 else
 lcl:ExeName = clip(lcl:WorkDir) & lcl:ExeName
 Run(lcl:ExeName, 1) !the ,1 means WAIT until completed
 end
else
 Message('Clarion IDE is already running, and ' |
 & 'MultiUser Protections are NOT on.','Launch IDE',ICON:Hand)
end
!Message('LaunchIDE is closing|VerNum['& |
! lcl:VerNum &']|Edition['& lcl:Edition &']')
return
!Note: The mutex is automatically KILL'ed by the .Destruct

ShowUsage Routine
 Message('LaunchIDE Usage: LaunchIDE nnEE|Where nn = Clarion Version' |
 & ' {15,20,40,50,55,60}|Where EE = {{EE or PE}||lcl:Edition['|
 & lcl:Edition &']|lcl:VerNum['& lcl:VerNum&']|')
 return

After compiling the program, create a shortcut on the desktop for each
Clarion version.

● Copy the LaunchIDE.exe to your Windows System Folder
● Right Click on the Desktop and Select New Shortcut.
● In the Target Entry type C:\WINDOWS\LaunchIDE.exe 60EE for

Clarion 6 Enterprise Edition.

Now run some tests:

● Make sure that Multi-User Development is not Switched on:
● Run the First Short cut or go to Start Run LaunchIDE 55EE for

Clarion 5.5 EE or LaunchIDE 60EE for Clarion 60 EE. If all goes well
the first Clarion IDE will run normally

● Trying to run a second copy of the Clarion IDE will display the
message in Figure 5.

http://www.clarionmag.com/cmag/v6/v6n03registry.html (8 of 10) [05/04/04 3:25:54 PM]

How To Stop Trashing The Template Registry

Figure 5. The launch error message

Cool, my registry is not trashed…

Since using this utility, I never had crashed my Registry.RTF file. (Note:
It’s always a good idea to store a backup of your Registry.TRF file
somewhere.)

Thanks again to Mark Goldberg for this very handy little utility.
Remember, if you make any changes to this program, please email Mark
and send him the updated version.

Download the source

Updated source from Mark Goldberg

Danie de Beer was born and raised in South Africa. He is a qualified BTech Electronic

Engineer with a Digital Systems Degree and Higher Educational Diploma in Mathematics

and Science (1994). Danie started playing with Spektrum ZX 80 and Commendore 64

computers at an early age. After two years in the Military Service, he started as a Junior

Mainframe Programmer in 1988, using Cobol, Natural, Vtam Adabas. He moved to PC

programming in 1992 at a cement laboratory, where he converted HP Basic programs to

Turbo Basic and Clarion Professional Developer 2.0 (DOS). After being promoted to

management and taking a six year hiatus from programming, he moved to the United

States where he started programming again using Clarion 5.5 EE. He is now changing over

to C6.

http://www.clarionmag.com/cmag/v6/v6n03registry.html (9 of 10) [05/04/04 3:25:54 PM]

mailto:MonolithMG@aol.com
http://www.clarionmag.com/cmag/v6/files/v6n03registry.zip
http://www.clarionmag.com/cmag/v6/files/v6n03registry2.zip
mailto:danie@unispd.co.za

How To Stop Trashing The Template Registry

Reader Comments

Add a comment

Randy Rogers pointed out the BeginUnique command in...
Small enhancement suggestions would be command line...
I've posted an updated source zip from Mark...
Am I doing something wrong with this utility? It runs...

Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written

consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v6/v6n03registry.html (10 of 10) [05/04/04 3:25:54 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=12707
http://www.clarionmag.com/cmag/discuss.frm?articleID=12707&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=12707&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=12707&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=12707&position=4
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Clarion News

Clarion Magazine

Clarion News

Search the news archive

Embedded Firebird
Chris Bordeman reports that Firebird is available in an embedded
configuration; you don't even have to register a Firebird ODBC driver
with Windows. Look for the TestEmbedded folder in the zip. Just
distribute the embedded server dll and the odbc dll in the same
directory as the exe, and put the CLIENT=C:\myapp\fbembed.dll in
your connect string. Windows sees this and transfers to your DLL,
without checking its driver database. Multiple instances of the
embedded version can run at once (runs in-process w/ your app and
ignores registry settings) and they don't interfere with a full server
that may be installed.
Posted Tuesday, March 30, 2004

xInactivity 1.1
SealSoft's xInactivity v1.1 is now available. There have been some
changes in template. Now the setting for run procedure on event
looks like a standard procedure definition, i.e. you can just RUN a
procedure or START a procedure in a new thread, set procedure
parameters, request file action and return a value.
Posted Tuesday, March 30, 2004

In-Memory Database Driver Information
The Softvelocity Memory driver is a new file driver technology that
does not use physical tables for working with data. This is due to a
RAM-based technology known as IMDD (In-Memory Database Driver).

http://www.clarionmag.com/cmag/news.html?year=2004&month=3&limit=100& (1 of 10) [05/04/04 3:25:56 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/searchnews.frm
http://prdownloads.sourceforge.net/firebird/Firebird-1.5.0.4290_embed_win32.zip?download
http://www.seal-soft.com/cgi-bin/ps_view.pl?id=products&comm=xinactivity
http://www.softvelocity.com/products/imdb.pdf

Clarion News

All data is stored in Random Access Memory (RAM), which gives the
driver a number of unique properties.
Posted Tuesday, March 30, 2004

xInactivity Available On ClarionShop.
xInactivity v1.0 is now available on ClarionShop.
Posted Tuesday, March 30, 2004

Advanced Data Dictionary Architect 1.0.2
Advanced Data Dictionary Architect 1.0.2 is now available. Changes
include: fixed parsing error bug in full rebuild mode; Added button
which allows changing database connection on the fly from the
database synchronizer module; Rollback performed on all the
operations done on an entity if the backend returns an error - this
adds safety to the upgrading process; Added Windows XP manifests
for all the modules. ADDA is a multipurpose toolkit for designing,
creating and maintaining the database layer throughout the entire
application lifecycle.
Posted Tuesday, March 30, 2004

Icetips Previewer 2.0
Version 2.0 of the Icetips Previewer is now available. The Icetips
Previewer is created as a procedure in your application. You can
modify it any way you want. It comes with full source code,
embedded in the Previewer procedure, ready for you to view and
modify. There are no black box DLLs, no external source code files, no
class files - just the code in your application. You can even have
multiple previewers in the same application and use different
previewers for different reports. You can add it to any applications in
Clarion 4, 5, 5.5 and 6.0, ABC or Clarion chains. Supports standalone
and local compiles, multi DLL projects, etc. Among other new things
in version 2.0 are extension templates to allow selecting printers and
print directly from the previewer. The main addition is the new Clarion
6 target options so that now you can print to PDF, HTML, XML and
Text files directly from the previewer. Version 2.0 also has support for
PDF-Tools built in. The manual includes a quick start chapter and a
tutorial on how to add the Clarion 6 target options both to your

http://www.clarionmag.com/cmag/news.html?year=2004&month=3&limit=100& (2 of 10) [05/04/04 3:25:56 PM]

http://www.clarionshop.com/pdetail.cfm?id=697
http://www.power-components.net/
http://www.icetips.com/previewer.php

Clarion News

application and report as well as the Previewer. You can download the
documentation alone from
http://www.icetips.com/downloadfile.php?FileID=39 or from the
downloads link on the Previewer page. The Icetips Previewer works
with many other third party tools, such as Fomin Report builder,
CPCS, EasyListPrint, Icetips Xplore, Email-Report from Vivid Help, PDF-
Tools and the wPDFControl Wrapper from Klarisoft.
Posted Tuesday, March 30, 2004

Multilingual Text To Voice
Jeff Slarve points out this page which lets you type in text and get
synthesized audio. You can also download the audio file. Bob Healy
notes that he's used this site to create application messages for
errors, welcome, good bye, etc.
Posted Tuesday, March 30, 2004

Fenix ASP.NET Generator at ETC 2004
A Fenix Team (Erik Pepping and Sebastian Talamoni) will be present
at ETC 2004,and will present a Fenix ASP.NET Generator demo. They
will also be available during the event for one-to-one demonstrations
and Q&A. RADventure is also an ETC sponsor, meaning that you can
even win a free copy of Fenix is you attend the conference.
Posted Tuesday, March 30, 2004

1st Logo Design Spring Specials
Logo Package Special: Buy any logo package and get free your choice
of stationery upgrade, or your new logo in wallpaper and a screen
saver. The Developer's Package Special includes: Application Logo
Design; Application Icon Design; Splash Screen; Product Box Type 2l
Wallpaper. Image Sale - collection includes: 12 high resolution image
packages (three to be released on a future date); Free updates for
life; 345 icons.
Posted Tuesday, March 30, 2004

Clarion Third Party Profile Exchange Updated
The Clarion Third Party Profile Exchange consists primarily of profiles
of third party add-on products and vendors. This includes freeware

http://www.clarionmag.com/cmag/news.html?year=2004&month=3&limit=100& (3 of 10) [05/04/04 3:25:56 PM]

http://www.research.att.com/projects/tts/demo.html
http://etc.kcug.org/opensessions.html
http://1stlogodesign.com/
http://www.encouragersoftware.com/

Clarion News

templates and tools as well. Online and Downloadable Profiles
available. Online product profiles include Product Internet URL, Order
URL, Currency code, Dated Price Quote, Grouped by Category, Clarion
6 Compatible, Extended Description and Download Page Reference.
Currently, there are 467 product profiles and 461 vendor profiles. You
must have Product Scope 32 PRO Version 5.0 to view profiles with
data files (downloadable profiles). 276 Clarion 6 compatible products
as of this release.
Posted Tuesday, March 30, 2004

Firebird Links And Tutorial
Johan van Zyl has set up a page for Clarion developers interested in
using the Firebird (formerly Interbase) open source SQL database.
There are several step by step articles, as well as a number of useful
links.
Posted Tuesday, March 30, 2004

SealSoft xTipOfDay 2.0
xTipOfDay v2.0 has been released. Changes include: No more black
box DLL, just pure Clarion code; Standard TRN file for localization;
Supports Window XP manifest; New CHM help file; New installation
kits; Some cosmetic changes; Some small bugs were fixed.
Posted Monday, March 22, 2004

ClarionForge Input Requested
ClarionForge is very close to being ready. Ron is looking for input on
the Code Snippets, Forum, Trove, and Help Wanted sections.
Posted Monday, March 22, 2004

CapeSoft Training At ETC 4
A CapeSoft Training Session will be held in Gatlinburg on June 8th
2004, from 1 p.m. to 5 p.m. at the ETC 4 venue. Training will be free
of charge and will be aimed at those people who already have the
following CapeSoft products: NetTalk; Replicate; Insight Graphing.
This will not be a sales pitch, but rather a more detailed look at using
these tool. Training is open to all ETC 4 attendees and is free of
charge. More details will be posted on relevant web sites as they

http://www.clarionmag.com/cmag/news.html?year=2004&month=3&limit=100& (4 of 10) [05/04/04 3:25:56 PM]

http://www.jvz.co.za/firebird
http://www.seal-soft.com/cgi-bin/ps_view.pl?id=products&comm=xtipofday
http://clarionforge.net/
http://etc.kcug.org/

Clarion News

become available.
Posted Monday, March 22, 2004

SB5 Beta Online Forum
The Lindersoft discussion forum is now using the latest version of
vBulletin.
Posted Monday, March 22, 2004

Clarion And Armadillo HowTo
Bernie Grosperrin has published a HowTo on using Armadillo and
eSellerate with Clarion.
Posted Monday, March 22, 2004

DCT2SQL For Interbase
An updated DCT2SQL template with Interbase improvements is now
available for download.
Posted Monday, March 22, 2004

MAV Direct ODBC Rewrite
The MAV library has been completely rewritten order to fix memory
problems. All registered users can download the last versions (007
and 004 from March, 09). Also there is a new test procedure in
ABCMAVT.APP which emulates in a cycle the MAVLOAD calls of all
types. Updated demo and benchmark applications.
Posted Monday, March 22, 2004

Gitano Buy One Get One Free
For a limited time buy any product from Gitano Software and get
another one of the same value or less for free.
Posted Tuesday, March 16, 2004

xDataBackup Manager Pro 1.7
New in this release of xDataBackup Manager: Option to include or not
include Windows XP manifest file when you turn On checkbox
"Program will work under Windows XP"; "Remove icons" option.
Updated Documentation, Demonstration program and Installation Kits
for Clarion 5, Clarion 5.5 and Clarion 6 are available.

http://www.clarionmag.com/cmag/news.html?year=2004&month=3&limit=100& (5 of 10) [05/04/04 3:25:56 PM]

http://www.lindersoft.com/forums
http://www.bgsoftfactory.com/clarion
http://www.icetips.com/downloads.php
http://www.ingasoftplus.com/
http://www.clarionutilities.com/
http://www.seal-soft.com/cgi-bin/ps_view.pl?id=products&comm=xdbmp

Clarion News

Posted Tuesday, March 16, 2004

Free Web Email Link Cloaking Utility
Ben Brady has released a free web email link cloaking utility to
prevent the harvest of email addresses from web pages.
Posted Tuesday, March 16, 2004

Bg XML Dico Video
Bernie Grosperrin has released an experimental video demonstrating
Hi guys, as a kind of experiment, I put a video demonstrating simply
Bg XML DICO.
Posted Tuesday, March 16, 2004

Excel Charts 1.0
Excel Charts is a simple but powerful tool that helps you to include
professional quality charts in your Clarion applications using Microsoft
Excel charting features. No previous charting knowledge is required.
Features include: More than 90 different chart types; Support for
column, bar, line, pie, doughnut, area, scatter, radar, surface, bubble,
stock, cylinder, cone and pyramid chart types; 20 predefined chart
types included; Allows adding charts directly into any Clarion window;
Allows adding charts directly into any Clarion report; Both 2D and 3D
charts supported; Single and multiple series charts supported; Allows
loading series from queue, view or setting a fixed number of series;
Allows loading categories from queue, view or setting a fixed number
of categories; Titles, texts and fonts completely configurable; More
than 20 different textures that can be applied to your charts; More
than 20 predefined gradient styles that can be applied to your charts;
Elevation, rotation and perspective of 3-d charts completely
configurable; More than 15 different chart areas that can be
formatted individually. No black box DLLs. All source included.
Posted Tuesday, March 16, 2004

gReg Plus $99 Offer
gReg Plus is on sale for $99, which is $200 off the regular price.
Posted Tuesday, March 02, 2004

http://www.clarionmag.com/cmag/news.html?year=2004&month=3&limit=100& (6 of 10) [05/04/04 3:25:56 PM]

http://www.clariondeveloper.com/webmailcloak.htm
http://www.bgsoftfactory.com/products/FlashMovie.2004-03-12.2052
http://www.softmasters.com.ar/eng/xlCharts.html
http://www.gitanosoftware.com/g-reg/grinfo.htm

Clarion News

Sticky Notes For C6
Robert Paresi has made an update of Sticky Notes available for C6.
Because of the GAIN:FOCUS regression, the auto-close of the
Help/About screen will have to wait until 6.1 is released. This is a free
product.
Posted Tuesday, March 02, 2004

EasyVersion 2.02
EasyVersion 2.02 is works only with Clarion 6. Please use version 2.01
with Clarion 5 and 5.5. Changes in this release: Added possibility to
add some additional information into CLW modules; Fixed some small
bugs.
Posted Tuesday, March 02, 2004

File Manager 3 Beta 3.30
File Manager 3 version 3.30 beta is ready and available for download.
Posted Tuesday, March 02, 2004

New Wallpaper Template
Castle Computer Technologies has released a new wallpaper template
which allows your end user to change and/or suppress wallpaper on
the fly. Price is $15.
Posted Tuesday, March 02, 2004

Encourager Software Web Site Redesign
The Encourager Software web site has been redesigned using Xara
Webstyle 4 templates, graphic tools, and menus.
Posted Tuesday, March 02, 2004

Solace Software ReSort Pro & New Web Site Design
Simon Burrows has released a new template called ReSort Pro. This is
a beefed up version of the free ReSort template. It includes the
following enhancements for end users: Sort orders can be saved with
a user defined name; On browses users can make sort orders appear
as tabs on sheets where browse sorts are controlled by tabbed
sheets; On reports sort orders can be appended to or replace the built
in sort order; On reports users can define a sort order to be used all

http://www.clarionmag.com/cmag/news.html?year=2004&month=3&limit=100& (7 of 10) [05/04/04 3:25:56 PM]

http://www.innquest.com/sticky.zip
http://www.ingasoftplus.com/id49.htm
http://www.capesoft.com/fm3d.htm
http://www.castlecomputer.com/clarion
http://www.encouragersoftware.com/
http://www.solace-software.demon.co.uk/

Clarion News

the time for an individual report without the sort order window
appearing before each report - this can be overridden by the end
user; Uses SQL external names where applicable; Programmer can
make certain fields unavailable (i.e. Third Normal Form references to
related files); All source code is available; Multi-DLL compatible. ABC
only, price around £40 in beta £55 when it goes gold. Also note that
the Solace Software web site has been revamped for easier
navigation.
Posted Tuesday, March 02, 2004

MAV Direct ODBC 0.04 And 0.07
New releases of MAV Direct ODBC are now available. Changes in
library version 0.07 include: Fixed memory leak when working with
ANY variables in groups; Added BLOB field support; Improved internal
library and classes optimization. Price is $99 during beta testing, $249
when it goes gold (free upgrade for beta testers). Clarion 5.0b, 5.5
and 6.0, ABC or Legacy, 32-bits only. Changes in template version
0.04 include: MAVSave class modified for the purpose of checking of
the BLOB field modifications on saving a form; improved internal
library, classes and templates optimization. Price is $99 during beta
testing, $149 when it goes gold (free upgrade for beta testers).
Requires MAV Direct ODBC library version. Clarion 5.0b, 5.5 and 6.0,
ABC or Legacy, 32-bits only.
Posted Tuesday, March 02, 2004

Freeware Templates Available
A number of freeware templates, including OSShield and DriveInfo,
are now available for download, courtesy of Roel Abspoel.
Posted Tuesday, March 02, 2004

Mail & Merge Manager v1.1
Mail & Manager v1.1 is now available for download. This version has
C6 support and minor improvements.
Posted Tuesday, March 02, 2004

Outlook Products Available At ClarionShop
Softmasters' Outlook-related products are now available through

http://www.clarionmag.com/cmag/news.html?year=2004&month=3&limit=100& (8 of 10) [05/04/04 3:25:56 PM]

http://www.ingasoftplus.com/id81.htm
http://www.abspoel.com/roel-karin/clarion.php
http://www.softmasters.com.ar/eng/indexmm.html
http://www.clarionshop.com/results.cfm?type=Accessory&date=true

Clarion News

ClarionShop.
Posted Tuesday, March 02, 2004

New Clarion Dictionary Utility
BG Softfactory Inc. has released BG XML Dico, a utility that lets you
browse your Clarion dictionary in a new way. This product uses
Clarion templates, COM, XSLT, and HTML with Javascript. A utility
template generates an XML file from the current application
dictionary. Then, this file is loaded as a DOM (Document Object
Model) into the Microsoft XML parser, where it is then transformed
four times by four different XSL style sheets; the result is finally
displayed via a Web browser control. No TXDs are generated and/or
used. The first transformation creates the html frame in which each
one of the three other transformations will be displayed. The second
transformation generates the header, and calculates the statistics.
The third transformation generates the JavaScript tree menu. The
fourth generates the dictionary data, organizing file attributes, keys,
fields and relations in clear, easy to read tables, with hyper links
between related files. The introductory price of $39 is good until
March 31, 2004, after which the price goes up to $50.
Posted Tuesday, March 02, 2004

O'Reilly Launches New Windows DevCenter
O'Reilly's new Windows DevCenter features in-depth articles geared to
developers and system administrators, plus plenty of tips, tricks, and
reviews for Windows power users. Current articles include "Kicking
the Tires of XP Service Pack 2," "Tuning Automatic Updates," and
"Getting Started with Microsoft InfoPath 2003." Ongoing coverage will
address .NET, VBScript, SQL, system administration, wireless, and
emerging Windows issues. The daily news section offers the latest
stories in the Windows world, and weblogs by notable Windows
luminaries and O'Reilly authors present a range of expert opinions on
Windows issues.
Posted Tuesday, March 02, 2004

http://www.clarionmag.com/cmag/news.html?year=2004&month=3&limit=100& (9 of 10) [05/04/04 3:25:56 PM]

http://www.bgsoftfactory.com/
http://www.windowsdevcenter.com/

Clarion News

Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the

express written consent of CoveComm Inc., except as described in the subscription agreement, is

prohibited.

http://www.clarionmag.com/cmag/news.html?year=2004&month=3&limit=100& (10 of 10) [05/04/04 3:25:56 PM]

http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Validating Credit Card Numbers

Clarion Magazine

Validating Credit Card Numbers

by Abe Jimenez

Published 2004-03-02

I recently needed to incorporate credit card validation into a Clarion
application. I looked in Clarion Magazine and was very surprised when I could
not find any articles on the topic. It seems to me that this is a common task for
anyone who develops a sales application, and I was hopping to find a ready-
made function. Since I had to write my own, I decided to share it with the rest
of the Clarion Magazine subscribers.

The Objectives

The function I describe in this article meets the following objectives:

● I can easily call the function from anywhere I need to validate a credit
card

● The function will return the type of credit card
● If the card number is invalid, the function will advise me that a bad card

number has been entered.

The function will be called as follows:

ReturnCode = ValidateCreditCardNumber(CreditCardNumber)

After calling the above function, I want to be able to use the return code to
either display an error message or to display the type of credit card entered.

The Algorithm

http://www.clarionmag.com/cmag/v6/v6n03ccvalidate.html (1 of 11) [05/04/04 3:31:35 PM]

http://www.clarionmag.com/
http://www.developerplus.com/

Validating Credit Card Numbers

Each credit card company has prefixes they use in their credit card numbers,
as follows:

Card Prefix Digits

Master Card Starts with 51,52,53,54 or 55 16

Visa Starts with 4 13 or 16

American
Express

Starts with 34 or 37 15

Diners Club/
Carte
Blanche

Starts with
300,301,302,303,304,305,36
or 38

14

Discover Starts with 6011 16

JCB Starts with 3 (but not
followed by the digits which
are valid for American
Express or Diners Club),
1800, or 2131

15 or 16

In order for a card number to be valid it must pass a MOD 10 validation, as
follows:

1. The credit card number is reversed.
2. Each of the digits is processed into the mod 10 formula. The odd digits

(1st, 3rd, 5th, etc.) are added into a total. The even number digits (2nd,
4th, 6th, etc) are first multiplied by 2 and then each of the digits in the
resulting number are added into the same mod 10 total.

3. If the mod 10 total is a multiple of 10, then the credit card is valid.

This is kind of complicated to understand, so I have included the table below to
illustrate the process. The example validates credit card number
4123456789012.

Digit 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th Result

Original 4 1 2 3 4 5 6 7 8 9 0 1 2

Reverse 2 1 0 9 8 7 6 5 4 3 2 1 4

http://www.clarionmag.com/cmag/v6/v6n03ccvalidate.html (2 of 11) [05/04/04 3:31:35 PM]

Validating Credit Card Numbers

Calculation 2 2*1 2 2*9 8 2*7 6 2*5 4 2*3 2 2*1 4

Mod 10

Total

2 +2 +2 +1+8 +8 +1+4 +6 +1+0 +4 +6 +2 +2 +4 53

The row labeled Original contains each digit in the credit card number. The
row labeled Reverse shows the reversed string. The Calculation row shows
that the odd numbered digits are left alone and the even numbers are
multiplied by 2.

The bottom row shows the numbers that are added into the total. Notice the

column labeled 4th. The Calculation row shows 2*9, which is 18. Each digit is
added into the total separately (1 + 8). Columns 6 and 8 are processed
similarly. The result column shows the total value you get when you sum up

columns 1st through 13th.

If this sum (53) were a multiple of 10, the card number would be valid. In this
example, the card number is invalid. If the total had been 50 or 60, the
number would have been a valid Visa card number, since it starts with a 4.

The Clarion Translation

Now I need to translate the above logic into a Clarion function. I’m going to
create a new source procedure. The first thing is to prototype the function as
shown in Figure 1.

http://www.clarionmag.com/cmag/v6/v6n03ccvalidate.html (3 of 11) [05/04/04 3:31:35 PM]

Validating Credit Card Numbers

Figure 1. Creating the function as a source procedure

Then I need to define some variables:

Reverse is a string the same length as the credit card number. It
will be used to store the credit card digits in reverse order.

CardType is the return code of the function. A return code of 0 will
indicate that the user has entered an invalid credit card number.
Return codes 1-6 will mean Master Card, Visa, American Express,
Diners Club, Discover and JCB respectively.

Length is a byte I will use to store the length of the credit card
string during validation.

Mult is a byte I will use to temporarily store the result of multiplying
the even digits in the credit card number by 2.

Total is a USHORT I will use to store the sum of the digits. You can
define these variables in the Local Data embed or by pressing the
data button in the procedure as I chose to do. Figure 2 is a screen
print of the variable definitions.

http://www.clarionmag.com/cmag/v6/v6n03ccvalidate.html (4 of 11) [05/04/04 3:31:35 PM]

Validating Credit Card Numbers

Figure 2. Adding the procedure data

All the code will be placed in the Processed Code embed of the procedure.

There are five steps to the code:

1. Get the card type:
2. Check that all the characters are numeric
3. Validate the length of the card based on its type
4. Perform the Mod 10 validation on the number.
5. Return the result of my validation to the calling procedure.

This translates into Clarion routines as follows:

Do GetCardType
If CardType then Do CheckNumeric.
If CardType then Do ValidateLength.
If CardType then Do Mod10Validation.
Return(CardType)

If after executing anyone of the first four lines above, the CardType variable is
0, it means that the validation failed, in which case I don’t do any more
checking and I simply return 0 (meaning Invalid Card). If on the other hand a
test passes, the code performs the next test.

The GetCardType routine is as follows. Each IF statement checks the starting

http://www.clarionmag.com/cmag/v6/v6n03ccvalidate.html (5 of 11) [05/04/04 3:31:35 PM]

Validating Credit Card Numbers

characters of the card number and sets the CardType variable accordingly. If a
card number does not start with any of the valid values, the CardType variable
is set to 0, which means that an invalid card number was entered.

GetCardType Routine
 If CCNumber[1:2] = '51' !Master Card
 CardType = 1
 ElsIf CCNumber[1:2] = '52' !Master Card
 CardType = 1
 ElsIf CCNumber[1:2] = '53' !Master Card
 CardType = 1
 ElsIf CCNumber[1:2] = '54' !Master Card
 CardType = 1
 ElsIf CCNumber[1:2] = '55' !Master Card
 CardType = 1
 ElsIf CCNumber[1:1] = '4' !Visa
 CardType = 2
 ElsIf CCNumber[1:2] = '34' !Amex
 CardType = 3
 ElsIf CCNumber[1:2] = '37' !Amex
 CardType = 3
 ElsIf CCNumber[1:3] = '300' !Diners Club
 CardType = 4
 ElsIf CCNumber[1:3] = '301' !Diners Club
 CardType = 4
 ElsIf CCNumber[1:3] = '302' !Diners Club
 CardType = 4
 ElsIf CCNumber[1:3] = '303' !Diners Club
 CardType = 4
 ElsIf CCNumber[1:3] = '304' !Diners Club
 CardType = 4
 ElsIf CCNumber[1:3] = '305' !Diners Club
 CardType = 4
 ElsIf CCNumber[1:2] = '36' !Diners Club
 CardType = 4
 ElsIf CCNumber[1:2] = '38' !Diners Club
 CardType = 4
 ElsIf CCNumber[1:4] = '6011' !Discover
 CardType = 5
 ElsIf CCNumber[1:1] = '3' !JCB
 CardType = 6
 ElsIf CCNumber[1:4] = '1800' !JCB
 CardType = 6
 ElsIf CCNumber[1:4] = '2131' !JCB
 CardType = 6
 Else
 CardType = 0 !Bad Card
 End

The CheckNumeric routine is very simple. It simply sets the CardType to 0 if
the CCNumber string contains any characters that are not allowed. You will find
that many of your users will enter credit card numbers with dashes or spaces

http://www.clarionmag.com/cmag/v6/v6n03ccvalidate.html (6 of 11) [05/04/04 3:31:35 PM]

Validating Credit Card Numbers

separating the digits. Most credit card processing software will expect numeric
strings, and dashes or spaces will cause an error. The application my client
uses absolutely does not like anything but numbers.

I some cases you may just want the program to perform the card validation
ignoring non-numeric characters instead of returning them as invalid. If that’s
the case, you can simply not code this routine. I will show you later how to
accomplish this.

CheckNumeric Routine
 ! If you want the program to simply ignore the non-numeric
 ! characters, leave this routine out and add in the two optional lines of code
 ! as shown in the ReverseTheNumber routine
 If Not Numeric(Clip(CCNumber))
 CardType = 0
 End

The ValidateLength routine is also very simple. It assigns the length of the
string to the Length variable. The CardType variable starts off with a value
from 1 to 6 indicating which credit card type I’m checking (from the
GetCardType routine previously called). The execute statement will validate the
length to be the appropriate size for the card. If it is not, the CardType variable
is set to 0.

ValidateLength Routine
 Length = Len(Clip(CCNumber))
 Execute CardType
 If not Length = 16 then CardType = 0. ! 1=Visa
 If not (Length = 13 Or Length = 16) then CardType = 0. ! 2=MC
 If not Length = 15 then CardType = 0. ! 3=Amex
 If not Length = 14 then CardType = 0. ! 4=Diners
 If not Length = 16 then CardType = 0. ! 5=Discover
 If not (Length = 15 Or Length = 16) then CardType = 0. ! 6=JCB
 End

The last step is to do the Mod 10 validation. Here’s the routine, which simply
calls a couple of other routines and does one final test:

Mod10Validation Routine
 Do ReverseTheNumber
 Do TotalUp
 If Not (Total % 10 = 0) then CardType = 0.

The first step is to reverse the string:

http://www.clarionmag.com/cmag/v6/v6n03ccvalidate.html (7 of 11) [05/04/04 3:31:35 PM]

Validating Credit Card Numbers

ReverseTheNumber Routine
 Reverse = ''
 Loop i# = Len(Clip(CCNumber)) to 1 by -1
 If numeric(CCNumber[I#]) ! only if not using CheckNumeric routine
 Reverse = Clip(Reverse) & CCNumber[I#]
 End ! only if not using CheckNumeric routine
 End

Note: The third and fifth line of the routine are only necessary if you
are not using the CheckNumeric routine, which determines that a
card number is invalid if it contains anything but numbers.

The code ensures that the variable is cleared, and then loops through the
original string backwards appending the characters to the reversed string. I
only wanted to use Clarion code in this article, but it would have been more
efficient and just as easy to use the StrRev standard C function in Clarion’s run
time library. The prototype for StrRev is:

StrRev(*cstring),cstring,raw,name(‘_strrev’)

The above line is straight out of the Clarion help text. If you are interested,
just do a search for StrRev.

Here’s the code for the TotalUp routine:

TotalUp Routine
 Total = 0
 Loop i# = 1 to Len(Clip(Reverse)) by 1
 ! 1st, 3rd, 5th ... digit in reverse card number
 If Not i# % 2 = 0
 Mult = Reverse[I#]
 Else
 ! 2nd, 4th, 6th ... digit in reverse card number
 Mult = Reverse[I#] * 2
 End
 If Mult < 10 ! Single digit
 Total += Mult
 Else ! Two digit
 Total += (Int(Mult/10) + (Mult % 10))
 End
 End

This routine loops through each character of the reversed string. In the first IF
statement the Mult variable is assigned the value of the digit for odd
numbered positions in the string. For even numbered digits, Mult is assigned
the character value times two. At the end of this step, Mult can have a value of

http://www.clarionmag.com/cmag/v6/v6n03ccvalidate.html (8 of 11) [05/04/04 3:31:35 PM]

Validating Credit Card Numbers

0 through 18.

The second IF statement accumulates the value of Mult into the total. If the
value is less than 10 (0-9), a single digit is added to the total. If the value is
two digits long, each digit is added separately. For example, 14 would result in
adding 1 and 4 to the total.

The last line in the Mod10Validation routine changes the value of CardType to
0 (invalid) if the total is not a multiple of 10.

Now that all the validations have been done, the function issues
Return(CardType) to send the result back to the calling procedure:

Using the function

To demonstrate how to use the function, I created a simple window as shown
in Figure 3.

Figure 3. Testing the code

The ValidateCreditCardNumber function is called in the accepted embed of
the credit card number field. If you are using Clarion 6, you can create a
validation rule to execute the code. I wanted to make the example work with
older versions of Clarion, so I didn’t do this. Here’s the embed code:

ReturnCode = ValidateCreditCardNumber(CreditCard)
Execute ReturnCode + 1
 CardType = 'Not Valid'
 CardType = 'Master Card'
 CardType = 'Visa'
 CardType = 'American Express'
 CardType = 'Diners Club'
 CardType = 'Discover'
 CardType = 'JCB'
End

http://www.clarionmag.com/cmag/v6/v6n03ccvalidate.html (9 of 11) [05/04/04 3:31:35 PM]

Validating Credit Card Numbers

Note: The scope of the code in this article is to provide a mechanism
for validating a credit card number and determining the type of
credit card. There is a lot more to validate in a credit card
transaction. For example, you should make sure that the card is not
expired and that the cardholder’s name is entered by the user. Some
credit card terminal programs require that transactions be coded as
Card Not Present. Card Present, or Card Not Present Internet. You
can also enter the street address and zip code for address validation,
and you usually need to provide some kind of code to identify the
type of transaction (Authorize-Only or Funds-Capture). Also your
clients may only accept some of the credit card types and not accept
others. Most of my clients accept Visa, Master Card, Discover and
American Express, and do not accept Diners Club/Carte Blanche and
JCB. If enough readers are interested, I will write a follow-up article
on the additional validation required.

I hope you find this code useful. I have included a sample app with the code
printed on this article. In addition to the credit card validation algorithm and a
function you can use in your own applications, the sample code shows some
examples of string slicing techniques.

Download the source

Abe Jimenez started programming in the late 70s in RPG on the IBM System 34. Towards the late

80s he began using Clarion 2.1 for DOS. Over the years he has programmed in all versions of

Clarion, but not continuously. He is now an independent consultant and programs PC applications

in Clarion and AS400 applications in RPG.

http://www.clarionmag.com/cmag/v6/v6n03ccvalidate.html (10 of 11) [05/04/04 3:31:35 PM]

http://www.clarionmag.com/cmag/v6/files/v6n03ccvalidate.zip
mailto:abe@techqwest.com

Validating Credit Card Numbers

Reader Comments

Add a comment

Nice article and source, shoul dbe very helpful to many of...
For a C# Web Service version........
Very nice article. If anyone is interested the algorithm...
Please include ASCII text file source. The app is V6, and...
To download a C55 version of the app go to...

Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of

CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v6/v6n03ccvalidate.html (11 of 11) [05/04/04 3:31:35 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=12690
http://www.clarionmag.com/cmag/discuss.frm?articleID=12690&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=12690&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=12690&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=12690&position=4
http://www.clarionmag.com/cmag/discuss.frm?articleID=12690&position=5
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

A Class Wrapper for Brice Schagane's Menu Buttons

Clarion Magazine

A Class Wrapper for Brice Schagane's Menu Buttons

by Nik Johnson

Published 2004-03-26

My copy of the new Clarion Tips & Techniques book arrived as I was struggling with an
entry screen problem. I immediately seized on the opportunity do something more
pleasant, all the while telling myself that reading technical books is also work.

Flipping through the pages, it was soon apparent that there was a lot of meat here.
While I could certainly sample articles at random, I was sure that I’d miss something if
I didn’t approach the book in a systematic way. The system I chose was simple: Start
at the beginning.

The first article, by Brice Schagane, presented a method for adding a menu to a
button. What a coincidence! My entry screen problem was that I was clean out of real
estate, and here, on page 3, was the answer. Damn! That Dave Harms guy is amazing.
How did he know?

Figure 1 shows Brice's menu button in action.

http://www.clarionmag.com/cmag/v6/v6n03menubutton.html (1 of 10) [05/04/04 3:31:37 PM]

http://www.clarionmag.com/
http://www.developerplus.com/
http://www.clarionmag.com/books/tips/index.html
http://www.clarionmag.com/cmag/v5/v5n03menubuttons.html
http://www.clarionmag.com/cmag/v5/v5n03menubuttons.html

A Class Wrapper for Brice Schagane's Menu Buttons

Figure 1. Brice Schagane's menu button

After reading the article and playing with the code a bit, I realized that every time I
used this technique I’d have to come back to the article and learn how to do it all over
again. There had to be an easier way, and, in Clarion, an easier way is usually spelled t-
e-m-p-l-a-t-e or c-l-a-s-s. I chose the latter.

A Simple Wrapper

One nice thing about classes is that you can do a lot of prototyping without writing a lot
of code. I started simple:

MenuButtonQueue QUEUE,TYPE
Caption CSTRING(41) ! For popup menu
 END
RECT GROUP,TYPE
Left SIGNED
Top SIGNED
Right SIGNED
Bottom SIGNED
 END
HANDLE EQUATE(UNSIGNED)
HWND EQUATE(HANDLE)
CAIMenuButton CLASS,TYPE,MODULE('CAIABC.CLW'), |
 LINK('CAIABC.CLW',_ABCLinkMode_), DLL(_ABCDllMode_)
MBQ &MenuButtonQueue
ButtonHandle HWND
ButtonControl LONG
Rectangle LIKE(RECT)
Construct PROCEDURE
Destruct PROCEDURE

http://www.clarionmag.com/cmag/v6/v6n03menubutton.html (2 of 10) [05/04/04 3:31:37 PM]

A Class Wrapper for Brice Schagane's Menu Buttons

Init PROCEDURE(LONG pButton)
AddItem PROCEDURE(STRING pCaption)
Popup PROCEDURE,BYTE
 END

This takes care of all of Brice’s code except the API prototype, which I included in the
map at the beginning of CAIABC.CLW.

Using the class is easy:

1. Add a button to the window, using Brice’s instructions. I’ll call it ?Bth:Actions as
Brice did.

2. In the procedure data section, instantiate a menu button object:

MB CAIMenuButon

3. In ThisWindow.Init, after the window is opened, initialize the object:

MB.Init(?Bth:Actions)
MB.AddItem('&Create a New Invoice')
MB.AddItem('&View/Edit Selected Invoice')
MB.AddItem('&Delete Selected Invoice')

4. In the ThisWindow.TakeAccepted embed for ?Bth:Actions, enter the following:

EXECUTE MB.Popup()
 POST(EVENT:Accepted,?Insert)
 POST(EVENT:Accepted,?Change)
 POST(EVENT:Accepted,?Delete)
END

That’s it: Simple, straightforward, and easy enough not to require a template.

One problem: It doesn’t work in my situation.

A Variable-Length Menu

In the case at hand I need to make particular actions available depending on the
characteristics of the record being processed. One way to do this would be to make the
AddItem calls conditional:

IF Condition1
 MB.AddItem('&Create a New Invoice')
END
IF Condition2
 MB.AddItem('&View/Edit Selected Invoice')
END
IF Condition3
 MB.AddItem('&Delete Selected Invoice')
END

http://www.clarionmag.com/cmag/v6/v6n03menubutton.html (3 of 10) [05/04/04 3:31:37 PM]

A Class Wrapper for Brice Schagane's Menu Buttons

The obvious problem with this arrangement is that the integer returned by MB.Popup()
is no longer useful.

Allowing MB.AddItem to specify the integer to be returned solves this problem. This
requires an expansion of MenuButtonQueue and a change in the prototype of the
AddItem method:

MenuButtonQueue QUEUE,TYPE
Caption CSTRING(41) ! For popup menu
Sequence BYTE ! For EXECUTE statement
 END

AddItem PROCEDURE(BYTE pSequence,STRING pCaption)

With these changes in place, the code at ThisWindow.TakeAccepted becomes:

IF Condition1
 MB.AddItem(1,'&Create a New Invoice')
END
IF Condition2
 MB.AddItem(2,'&View/Edit Selected Invoice')
END
IF Condition3
 MB.AddItem(3,'&Delete Selected Invoice')
END

Getting Fancy

While poking through the LRM, double checking the operation of POPUP(), I noticed
that menu selections, as well as buttons, can have icons. Since icons can provide a nice
touch in many situations, I decided to add this capability to the class. The changes
were minimal:

MenuButtonQueue QUEUE,TYPE
Caption CSTRING(41) ! For popup menu
SmallIcon CSTRING(41) ! For popup menu
Sequence BYTE ! For EXECUTE statement
 END

AddItem PROCEDURE(BYTE pSequence,STRING pCaption,<STRING pSmallIcon>)

I chose the name "SmallIcon" to remind me that the space available on a menu item
doesn’t lend itself to the same kind of icon one would put on a button.

Boundary Conditions

Programming problems seem to cluster at the edges. That is, it’s not the processing in

http://www.clarionmag.com/cmag/v6/v6n03menubutton.html (4 of 10) [05/04/04 3:31:37 PM]

A Class Wrapper for Brice Schagane's Menu Buttons

the middle of the loop but the handling of the first and last iterations that trips us up.
In this case there are two boundary conditions to consider:

1. When there is only one active menu selection, pressing the button presents that
selection. While this gets the job done, it requires an unnecessary extra mouse
click. A better option might be to make the button itself represent the single
menu item.

2. When there are no active menu selections, the menu button should probably
disappear.

Handling the first of these conditions requires the addition of a few omittable
parameters, and provision in MemoryButtonQueue to store them:

MenuButtonQueue QUEUE,TYPE
Caption CSTRING(41) ! For popup menu
SmallIcon CSTRING(41) ! For popup menu
Sequence BYTE ! For EXECUTE statement
ShortCaption CSTRING(41) ! For button (if only one selection)
Icon CSTRING(41) ! For button (if only one selection)
 END

AddItem PROCEDURE(BYTE pSequence,STRING pCaption,<STRING pSmallIcon>, |
 <STRING pShortCaption>,<STRING pIcon>)

While buttons can handle larger icons, they tend to be limited in text, hence the
designation ShortCaption for the text to appear on a button. Both boundary conditions
require that the class know when the last AddItem call has been made. I chose to
handle this with a SetVisibility method:

SetVisibility PROCEDURE,VIRTUAL

SetVisibility is called after the last AddItem, at which time the standard logic will
hide the button if no menu options are present, set the button to match the only option
present, or set up the menu if multiple options are present. I made it VIRTUAL so that I
can override the standard logic when necessary.

Dynamic Menu Definition

At this point I had but one unsolved problem. It is possible that the conditions
controlling the menu selections will change while the screen is open. In this case I will
need to repeat the initialization sequence.

Creation and disposal of the queue is handled by Construct and Destruct, so I didn’t
need a Kill method. If the Init method merely FREEs the queue before any AddItem
method calls occur, I can reinitialize the whole menu setup at will — almost.

The "almost" part derives from the fact that after any setup which changes the caption

http://www.clarionmag.com/cmag/v6/v6n03menubutton.html (5 of 10) [05/04/04 3:31:37 PM]

A Class Wrapper for Brice Schagane's Menu Buttons

and icon on the button, I’ve lost the original caption and icon for that button. So I need
to provide that explicitly. I chose to modify the Init calling sequence for this purpose:

Init PROCEDURE(LONG pButton,<STRING pDefaultCaption>,<STRING pDefaultIcon>)

Putting it All Together

Up to this point I had been thinking through the characteristics of the class by using it.
To be able to compile and test, I wrote skeleton code for every method. I also had
rudimentary code in some methods, allowing me to test the basic setup. But for the
most part, the methods were grossly incomplete.

Before investing much in method code, I had arrived at a class definition in which I had
a great deal of confidence:

MenuButtonQueue QUEUE,TYPE
Caption CSTRING(41) ! For popup menu
SmallIcon CSTRING(41) ! For popup menu
Sequence BYTE
ShortCaption CSTRING(41) ! For button (if only one selection)
Icon CSTRING(41) ! For button (if only one selection)
 END
RECT GROUP,TYPE
Left SIGNED
Top SIGNED
Right SIGNED
Bottom SIGNED
 END
HANDLE EQUATE(UNSIGNED)
HWND EQUATE(HANDLE)

CAIMenuButton CLASS,TYPE,MODULE('CAIABC.CLW'), |
 LINK('CAIABC.CLW',_ABCLinkMode_),DLL(_ABCDllMode_)
MBQ &MenuButtonQueue
ButtonHandle HWND
ButtonControl LONG
Rectangle LIKE(RECT)
DefaultIcon CSTRING(41) ! For button (if more than one selection)
DefaultCaption CSTRING(41) ! For button (if more than one selection)
NoPopup BYTE ! If only one selection
Construct PROCEDURE
Destruct PROCEDURE
Init PROCEDURE(LONG pButton,<STRING pDefaultCaption>,<STRING pDefaultIcon>)
AddItem PROCEDURE(BYTE pSequence,STRING pCaption,<STRING pSmallIcon>, |
 <STRING pShortCaption>,<STRING pIcon>)
SetVisibility PROCEDURE,VIRTUAL
Popup PROCEDURE,BYTE
 END

Given a good class definition, the methods were easy:

http://www.clarionmag.com/cmag/v6/v6n03menubutton.html (6 of 10) [05/04/04 3:31:37 PM]

A Class Wrapper for Brice Schagane's Menu Buttons

 MAP
 MODULE('Windows.DLL')
 GetWindowRect(HWND, *RECT),PASCAL,RAW
 END
 END

CAIMenuButton.Construct PROCEDURE
 CODE
 SELF.MBQ &= NEW MenuButtonQueue

CAIMenuButton.Destruct PROCEDURE
 CODE
 DISPOSE(SELF.MBQ)

CAIMenuButton.Init PROCEDURE(LONG pButton,<STRING pDefaultCaption>,|
 <STRING pDefaultIcon>)
 CODE
 SELF.ButtonHandle = pButton{Prop:Handle}
 SELF.ButtonControl = pButton
 CLEAR(SELF.Rectangle)
 IF OMITTED(pDefaultCaption)
 SELF.DefaultCaption = SELF.ButtonControl{Prop:Text}
 ELSE
 SELF.DefaultCaption = CLIP(pDefaultCaption)
 END
 IF OMITTED(pDefaultIcon)
 SELF.DefaultIcon = SELF.ButtonControl{Prop:Icon}
 ELSE
 SELF.DefaultIcon = CLIP(pDefaultIcon)
 END
 FREE(SELF.MBQ)
 SELF.NoPopup = False

CAIMenuButton.AddItem PROCEDURE(BYTE pSequence,STRING pCaption,|
 <STRING pSmallIcon>,<STRING pShortCaption>,<STRING pIcon>)
 CODE
 SELF.MBQ.Sequence = pSequence
 GET(SELF.MBQ,SELF.MBQ.Sequence)
 IF NOT ERRORCODE()
 ASSERT(False,'Menu entry sequence not unique')
 END
 CLEAR(SELF.MBQ)
 SELF.MBQ.Caption = CLIP(pCaption)
 IF NOT OMITTED(pIcon)
 SELF.MBQ.SmallIcon = CLIP(pSmallIcon)
 END
 IF NOT OMITTED(pShortCaption)
 SELF.MBQ.ShortCaption = CLIP(pShortCaption)
 END
 IF NOT OMITTED(pICon)
 SELF.MBQ.Icon = CLIP(pIcon)
 END
 SELF.MBQ.Sequence = pSequence
 ADD(SELF.MBQ,SELF.MBQ.Sequence)
CAIMenuButton.SetVisibility PROCEDURE
 CODE
 EXECUTE RECORDS(SELF.MBQ) + 1
 SELF.ButtonControl{Prop:Hide} = True ! No selections: hide button
 BEGIN ! One selection: no menu

http://www.clarionmag.com/cmag/v6/v6n03menubutton.html (7 of 10) [05/04/04 3:31:37 PM]

A Class Wrapper for Brice Schagane's Menu Buttons

 GET(SELF.MBQ,1)
 ASSERT(NOT ERRORCODE(),'Popup choice does not exist')
 IF SELF.MBQ.ShortCaption
 SELF.ButtonControl{Prop:Text} = SELF.MBQ.ShortCaption
 ELSE
 SELF.ButtonControl{Prop:Text} = SELF.MBQ.Caption
 END
 IF SELF.MBQ.Icon
 SELF.ButtonControl{Prop:Icon} = SELF.MBQ.Icon
 ELSE
 SELF.ButtonControl{Prop:Icon} = ''
 END
 SELF.NoPopup = True
 SELF.ButtonControl{Prop:Hide} = False
 END
 ELSE
 BEGIN ! More than one selection: menu
 SELF.ButtonControl{Prop:Text} = SELF.DefaultCaption
 SELF.ButtonControl{Prop:Icon} = SELF.DefaultIcon
 SELF.ButtonControl{Prop:Hide} = False
 SELF.NoPopup = False
 DISPLAY(SELF.ButtonControl)
 END
 END
CAIMenuButton.Popup PROCEDURE
ControlID LONG
MenuString CSTRING(1001)
MenuChoice BYTE
xpos LONG
ypos LONG
width LONG
height LONG
ix BYTE
 CODE
 IF SELF.NoPopup
 GET(SELF.MBQ,1)
 ASSERT(NOT ERRORCODE(),'Popup choice does not exist')
 ELSE
 ControlID = CREATE(0,Create:Group)
 ControlID{Prop:Text} = ''
 ControlID{Prop:Boxed} = True
 ControlID{Prop:Bevel,1} = -1
 ControlID{Prop:Scroll} = True
 GETPOSITION(SELF.ButtonControl,xpos,ypos,width,height)
 SETPOSITION(ControlID,xpos,ypos,width,height)
 GetWindowRect(SELF.ButtonHandle,SELF.Rectangle)
 MenuString = ''
 LOOP ix = 1 TO RECORDS(SELF.MBQ)
 GET(SELF.MBQ,ix)
 IF ix > 1; MenuString = MenuString & '|';END
 IF SELF.MBQ.Icon
 MenuString = MenuString & '[' & PROP:Icon & '('& |
 SELF.MBQ.SmallIcon&')]'&SELF.MBQ.Caption
 ELSE
 MenuString = MenuString & SELF.MBQ.Caption
 END
 END
 UNHIDE(ControlID)
 MenuChoice = POPUP(MenuString,SELF.Rectangle.Left,SELF.Rectangle.Bottom)

http://www.clarionmag.com/cmag/v6/v6n03menubutton.html (8 of 10) [05/04/04 3:31:37 PM]

A Class Wrapper for Brice Schagane's Menu Buttons

 DESTROY(ControlID)
 IF MenuChoice
 GET(SELF.MBQ,MenuChoice)
 ASSERT(NOT ERRORCODE(),'Popup choice does not exist')
 ELSE
 SELF.MBQ.Sequence = 0
 END
 END
 RETURN(SELF.MBQ.Sequence)

Conclusion

My screen with its new menu buttons is now in production. User reaction has been very
positive. Better yet, I no longer have to worry about the next addition to that screen.
The real estate issue is gone, and I have full control over the options presented.

Thanks to Brice Schagane for researching the Windows API and coming up with this
very powerful technique. Thanks also to Dave Harms for putting Brice’s article on Page
3 where I couldn’t possibly miss it.

Download the source

Nik Johnson stumbled into the programming racket in 1959 when his boss at Grumman Aircraft insisted on

his attending a Fortran class. Since 1986 he has been using Clarion to help clients solve information handling

problems.

Reader Comments

Add a comment

Why not use the ABC PopupClass? What is the difference?
I believe you could call Popup.Ask() from a button and get...
Could you publish the .app, .prj or .clw files as 5.5?

http://www.clarionmag.com/cmag/v6/v6n03menubutton.html (9 of 10) [05/04/04 3:31:37 PM]

http://www.clarionmag.com/cmag/v6/files/v6n03menubutton.ZIP
mailto:nik@yellowpad.com
http://www.clarionmag.com/cmag/comments.frm?articleID=12732
http://www.clarionmag.com/cmag/discuss.frm?articleID=12732&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=12732&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=12732&position=3

A Class Wrapper for Brice Schagane's Menu Buttons

Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm

Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v6/v6n03menubutton.html (10 of 10) [05/04/04 3:31:37 PM]

http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Using Client-Side Triggers In Clarion 6

Clarion Magazine

Using Client-Side Triggers In Clarion 6

by Tom Giles

Published 2004-03-26

Client-side triggers are a new, very neat and useful feature that has
been added to Clarion 6, both Professional and Enterprise versions. In
addition, it is very easy to use. I guess you wouldn’t expect any less
since it is in Clarion. Client-side triggers are rules, added to the
dictionary, expressed as Clarion code that is executed when a file
(table) is accessed. This code can run before and/or after the Add.
You enter the code, say for error checking, field validation, computed
values etc., and then specify when to invoke the code. At the
specified time, your code will be automatically called.

There is an example included with Clarion 6. Documentation is sparse,
really non-existent, but once you know the secret, client-side triggers
are very easy to use. To use the demo, start Clarion 6, then click on
the Pick icon, select the Dictionary tab, click on the Open button and
navigate to the Examples folder. In the Triggers folder select and
Open the TrigExam.Dct.

Highlight and double click on the Pub_info file in the Tables pane to
bring up the records. Note there is a new Triggers tab on the
Column/Key Definition screen.

http://www.clarionmag.com/cmag/v6/v6n03triggers.html (1 of 5) [05/04/04 3:31:40 PM]

http://www.clarionmag.com/
http://etc.kcug.org/

Using Client-Side Triggers In Clarion 6

Figure 1. The Triggers tab

Click on the Triggers tab, then on one of the three folders shown. A
trigger Properties form appears, as in Figure 2.

http://www.clarionmag.com/cmag/v6/v6n03triggers.html (2 of 5) [05/04/04 3:31:40 PM]

Using Client-Side Triggers In Clarion 6

Figure 2. Trigger properties

On the General tab specify the timing using the Type: drop down list.
In the box below enter your code.

Click on the [...] button at the right to bring up the edit screen and
enter any code desired, just as you would in any code embed point.
There is also a Data button that will let you enter a new data field.
The [...] button has the same function as in the procedure Data
button – it exposes the actual declaration.

The Data section is for variables for your trigger code. These are
separate from your normal Data fields in the Properties worksheet,
which means you can use the same names. This is probably not a
good idea unless you use a prefix, since it may be confusing to you
later, but the compiler won’t complain. I use a TRI:(gger) prefix for
these to distinguish these variables from my LOC:(al), MOD:(ule) or
GLO:(bal) variables. The TRI variables will not show up in the normal
Module/Source files but instead in the ????bc0.clw files. This is
because the triggers are generated as part of the file maintenance
code, not the procedure code.

Another way to access Triggers is from the main Dictionary screen.
Highlight the desired file then click on menu item Edit, then Triggers
or highlight the file and press Ctrl+Alt+T. Either of these will take you

http://www.clarionmag.com/cmag/v6/v6n03triggers.html (3 of 5) [05/04/04 3:31:40 PM]

Using Client-Side Triggers In Clarion 6

directly to the Triggers entry screen.

The main point to remember is the triggers are "triggered" on an
Insert, Update or Delete file (Table) action. Using triggers is similar to
putting the code in the Init or Kill source code locations. One of my
programs requires that I increment unique record identifiers
manually, instead of using the Clarion autoincrement feature. Now I
can add my incrementing code to the dictionary using triggers instead
of having to add the code as a separate procedure routine. During
certain operations I like to write what is happening to a Log file, so
this is also a potential trigger point. You can use triggers to update
other files and do various calculations or other lookups. On an Invoice
you might want a current amount due that must be calculated after
reading part of payment file and summing all payments for that
invoice. Certain referential integrity operations or complicated parent-
child relationships can also be coded here.

You will find it takes a certain imagination and a little learning time
before the full power of triggers will become apparent. Try them; they
are quick, easy and powerful.

Tom Giles is a self-taught, long time CPD 2.1 programmer who started with interpretive

BASIC for his business programs. He now uses Clarion 6 for all new projects. When not

programming he is out skydiving or flying his homebuilt airplane. Isn't life grand?

http://www.clarionmag.com/cmag/v6/v6n03triggers.html (4 of 5) [05/04/04 3:31:40 PM]

mailto:tomgiles@aol.com

Using Client-Side Triggers In Clarion 6

Reader Comments

Add a comment

Tried the Trigger.apps from the examples. it worked fine....
The article failed to mention probably the most important...
Hi there again, the problem i had is in connection with...

Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written

consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v6/v6n03triggers.html (5 of 5) [05/04/04 3:31:40 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=12733
http://www.clarionmag.com/cmag/discuss.frm?articleID=12733&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=12733&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=12733&position=3
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Understanding Clarion Templates, Part 1

Clarion Magazine

Understanding Clarion Templates, Part 1

by David Harms

Published 2004-03-26

I don’t think it’s an understatement to say that templates are the
heart and soul of the Clarion development environment. Yes, the
Clarion language is highly readable and expressive, and the ABC class
library saves developers from reinventing many wheels. Yes, the
dictionary editor is massively important. And yes, the database driver
system offers a great many advantages. But for my money, nothing
says "Clarion" like the template language.

In fact, the templates (and their predecessor, the model files) have
been such a huge part of Clarion, ever since Clarion Professional
Developer (DOS) 2.0, that they hindered Clarion’s adoption of object-
oriented technology. Bruce Barrington, Clarion’s creator, believed
model/template technology had significant advantages over objected
oriented programming when it came to improving code
maintainability and reusability. Eventually, thanks to David Bayliss
and the London Development Centre, OOP did make its way into the
Clarion language. Still, I think it’s arguable that it’s the template
language that more than anything defines how most Clarion
developers do most of their work.

What is the template language, really?

It’s quite possible to develop Clarion applications and know little if

http://www.clarionmag.com/cmag/v6/v6n03templates1.html (1 of 8) [05/04/04 3:31:41 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html

Understanding Clarion Templates, Part 1

anything about the template language. But as with most
programming tools, the more you understand about what’s under the
hood, the better you can do your job.

The first point about the template language is that it’s meaningless
without the Application Generator, or AppGen. The AppGen is
essentially a template language interpreter. If your programming
experience goes back to the DOS days, think about the old BASIC
interpreters. You wrote a BASIC program, and fed it to the BASIC
interpreter, which (hopefully) produced the desired output, typically a
program that interacted with the user to accomplish a needed task.
The templates and AppGen function similarly. The AppGen does have
some basic hardwired features, such as the report, window and
listbox formatters, data dialogs, and the embed editor, but the
majority of buttons, entry fields, checkboxes, and other dialogs and
prompts you see when you work in the AppGen are defined
somewhere by a template. And the actual generation of Clarion
source code is almost completely driven by the templates.

And templates, like BASIC programs, are just text files.

Among other things, that means that you can create templates to
generate just about anything you like. Years ago, when Java first
appeared on the scene, I wrote some rudimentary templates to
generate Java code. SoftVelocity, makers of Clarion, have created
template sets for ASP and PHP. RADventure’s Fenix is a template set
that creates ASP.NET applications written in C# and VB.NET. The
possibilities are vast (despite being constrained by the AppGen’s
procedural model, but that’s another subject entirely).

Template chains and template types

There are several ways to classify Clarion templates. One way is by
template function, or type, another is by file organization, also
commonly known as template chains.

A chain of templates has a main file with the extension .TPL, and any

http://www.clarionmag.com/cmag/v6/v6n03templates1.html (2 of 8) [05/04/04 3:31:41 PM]

Understanding Clarion Templates, Part 1

number of included files with the extension .TPW. This modular
structure makes for easier maintenance. You will also quite often see
a single template, or set of templates, contained in a single .TPL file.
Although it probably doesn’t make sense to think of a single TPL file
as a "chain," there is another important distinction between TPLs and
TPWs: templates have to be registered before they can be used (I’ll
say more about that shortly), and you can only register TPL files. So
in order for any template to be available to the AppGen, it has to be
either in a TPL, or in a TPW that is included (using the #INCLUDE
statement) by a TPL.

Templates are often grouped into chains (or just TPL files) by
function. These can be application generation templates, utility
templates, template wizards, templates from a third party vendor,
and so forth. Some of the templates included with Clarion 6 EE, for
instance, provide features such as ADO browses, Cybercash and
LinkPoint credit card processing, messaging (email and news),
business rules, Crystal Reports interfacing, graphing, version resource
information, access to the Clarion finance and business statistics
libraries, and HTML, PDF, and XML report output.

Besides their physical organization in chains (or single TPLs),
templates can also be categorized by type. There are seven basic
types of templates:

● Application templates, which control the generation of entire
applications. Marked by an #APPLICATION statement.

● Code templates, which generate Clarion source code into a
single embed point. Marked by a #CODE statement.

● Control templates, which are wrappers for Windows controls
such as list boxes, windows, etc. Marked by a #CONTROL
statement.

● Extension templates, which generate Clarion source code into
multiple embed points. Marked by an #EXTENSION statement.

http://www.clarionmag.com/cmag/v6/v6n03templates1.html (3 of 8) [05/04/04 3:31:41 PM]

Understanding Clarion Templates, Part 1

● Procedure templates, which generate entire procedures, usually
in conjunction with one or more of the above templates. Marked
by a #PROCEDURE statement.

● Module templates, which govern the generation of source
modules (which can contain one or more procedures). Marked
by a #MODULE statement.

● Utility templates, which can be run from the Clarion IDE. These
are most often used to report on the application (i.e. the
dictionary printout utility), or to create new procedures (the
various procedure wizards). Marked by a #UTILITY statement.

● Template groups are roughly the equivalent of functions, in the
template language. They make it possible to reuse template
functionality without having to recreate the same template code
over and over. You can pass values to a template group and get
values back. Marked by a #GROUP statement.

In the coming weeks I’ll look in more detail at each of these areas,
but for now I want to focus on just application templates, since these
are place most developers first encounter Clarion’s template
technology.

Application templates

Application templates are those templates which are responsible for
pulling together all of the other templates (and there may be many)
required to create a Clarion application. The Clarion Help defines
#APPLICATION as marking "the beginning of a source generation
control section."

Application templates generate global data (out of the dictionary, and
any global embed points), declare global template variables, and
provide all of the global option prompts you see in the AppGen for a
given application. These templates also control the generation of
source code; if a global regenerate is specified by the user, or
required because of application changes, these templates generate all

http://www.clarionmag.com/cmag/v6/v6n03templates1.html (4 of 8) [05/04/04 3:31:41 PM]

Understanding Clarion Templates, Part 1

modules, otherwise they generate just the changed modules.
Application templates also display the "Generating…" messages. And
they do a variety of housekeeping tasks such as adding required
database drivers to the project so the application will link properly.

Which application chain should I use?

In Clarion for Windows 1.x and 2, there was only one application
template chain. These versions of Clarion used strictly procedural
code. That changed with Clarion 4, which introduced the ABC class
library (no, there was no Clarion for Windows 3, and as of version 4
the "for Windows" was also dropped as there was no longer any
potential for version confusion). Clarion’s object-oriented code had
radically different template requirements than the procedural code,
and it wasn’t practical to have one template set capable of creating
both kinds of applications, so the ABC template chain was born. The
Clarion template chain became informally known as the Legacy
template chain, although SoftVelocity seems to favor "Clarion" over
"Legacy." I will, however, use the term "Legacy" to refer to these
templates and the applications created with them, as I think it has
less potential for confusion.

Unfortunately, there is no easy way to migrate a Legacy application to
ABC – you can’t simply go into the AppGen and change the template
chain to ABC. You won’t see the ABC chain listed in the available
choices, and if you type "ABC" in the Application Template field (at
least in C6) you’ll get an error message explaining that you cannot
change to an incompatible template family.

Conversion was a hot topic when Clarion 4 was released, and all
releases from that time on have come with a converter which
purports to convert Clarion for Windows 2.003 applications and C4
beta applications to ABC. Look for the program cnconv.exe in your bin
directory (where n is the Clarion release number). The converter is
usable for simple applications, but the trickier you get with your
Legacy code, the more problems you’ll encounter in conversion. For

http://www.clarionmag.com/cmag/v6/v6n03templates1.html (5 of 8) [05/04/04 3:31:41 PM]

Understanding Clarion Templates, Part 1

instance, many Legacy developers got into the habit of replacing
functionality in generated Legacy code by placing OMIT directives
across embed points to cut out whole sections of code, so they could
replace it with their own. Because the generated code changed so
radically from Legacy to ABC, those OMIT statements often had wildly
different results in the new application, and OMITs that were once
inside a procedure body or routine now spanned class methods. Also
the converter will not convert your embedded source, and the more
use your embed code makes of the generated code, the more trouble
you are likely to have.

Most developers I know found it easier to rewrite their applications for
ABC, and certainly most new development these days is done with
the ABC template chain. But there are still developers who maintain
existing Legacy apps, and others who see no need to move to ABC.
Some in the ABC camp have lobbied SoftVelocity to drop Legacy
support entirely, so that more resources can be devoted to adding
new features rather than keeping Legacy feature-compatible with ABC
(or mostly so). SoftVelocity’s response, as of Clarion 6, has been to
modify the Legacy templates so they can begin making use of the
ABC class library. And in hindsight, it’s easy now to see why
SoftVelocity abjured the term "Legacy" – these templates are still
alive and well.

Although application templates are a distinct type separate from the
other template types (code, extension, control, etc.) they are seldom,
if ever, used on their own. Instead, they’re the organizing principle
behind the use of all other templates in an application. At the end of
the Clarion 6 ABCHAIN.TPL file, for instance, you will see the following
#INCLUDE directives:

#INCLUDE('ABWINDOW.TPW')
#INCLUDE('ABASCII.TPW')
#INCLUDE('ABBLDEXP.TPW')
#INCLUDE('ABBLDSHP.TPW')
#INCLUDE('ABBLDWSE.TPW')
#INCLUDE('ABBROWSE.TPW')
#INCLUDE('ABCODE.TPW')
#INCLUDE('ABCONTRL.TPW')
#INCLUDE('ABDROPS.TPW')

http://www.clarionmag.com/cmag/v6/v6n03templates1.html (6 of 8) [05/04/04 3:31:41 PM]

Understanding Clarion Templates, Part 1

#INCLUDE('ABFILE.TPW')
#INCLUDE('ABGROUP.TPW')
#INCLUDE('ABMODULE.TPW')
#INCLUDE('ABPROCS.TPW')
#INCLUDE('ABPOPUP.TPW')
#INCLUDE('ABOLE.TPW')
#INCLUDE('ABPROGRM.TPW')
#INCLUDE('ABRELTRE.TPW')
#INCLUDE('ABREPORT.TPW')
#INCLUDE('ABUPDATE.TPW')
#INCLUDE('ABFUZZY.TPW')
#INCLUDE('ABUTIL.TPW')
#INCLUDE('cwRTF.TPW')
#INCLUDE('cwHHABC.TPW')
#INCLUDE('CWUtil.tpw')
#INCLUDE('SVFnGrp.TPW')
#INCLUDE('SVUSortOrder.tpw')
#INCLUDE('ENHANCED.TPW')
#INCLUDE('PROCBIND.TPW')
#INCLUDE('ABOOP.TPW')
#INCLUDE('QCENTER.TPW')
#INCLUDE('BrwExt.TPW')
#INCLUDE('ABVCRFRM.TPW')
#INCLUDE('ABOOPU.TPW')
#INCLUDE('REBASEDLL.TPW')
#INCLUDE('UTIL.TPW')
#INCLUDE('ABTHREAD.TPW')
#INCLUDE('ABBLOB.TPW')
#INCLUDE('BLOBSRV.TPW')
#INCLUDE('xmlsprt.tpw')
#INCLUDE('rtfctl.tpw')
#INCLUDE('HelpUtil.tpw')

That’s a lot of templates! In general, the further down that list you
go, the more specialized the templates become. The vast majority of
Clarion code generation is handled by the templates that deal with
the window processing, and with the most common controls, such as
reports, browses, menus, and form controls.

Next time I’ll continue this discussion with closer look at the template
language itself.

David Harms is an independent software developer and the editor and publisher of

Clarion Magazine. He is also co-author with Ross Santos of Developing Clarion for

Windows Applications, published by SAMS (1995). His most recent book is JSP,

http://www.clarionmag.com/cmag/v6/v6n03templates1.html (7 of 8) [05/04/04 3:31:41 PM]

mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html

Understanding Clarion Templates, Part 1

Servlets, and MySQL, published by HungryMinds Inc. (2001).

Reader Comments

Add a comment

Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written

consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v6/v6n03templates1.html (8 of 8) [05/04/04 3:31:41 PM]

http://www.covecomm.com/java/index.html
http://www.clarionmag.com/cmag/comments.frm?articleID=12734
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Understanding Clarion Templates, Part 2

Clarion Magazine

Understanding Clarion Templates, Part 2

by David Harms

Published 2004-03-31

In Part 1 of this series I briefly discussed the function of templates in the
Clarion development system, and looked at the seven basic types of
templates (application, control, code, extension, procedure, module,
utility, and template groups). This week I’ll take a closer look at the
template language itself.

The template language

Clarion templates are text files made up of a combination of two
programming languages: the Clarion language, and the template
language. This, of course, is a recipe for confusion, as well as for
productivity.

Template language statements usually, though not always, begin with a #
character, and template variable declarations begin with a % character.
Template language statements do not appear in the generated Clarion
source code. Rather, they control the generation of that source.

Here, for example, is a fragment of code from the
CodeTPLValidationCode group template:

 GlobalResponse = RequestCancelled
 IF LocalResponse = RequestCompleted
 %ControlUse = %LookupField

http://www.clarionmag.com/cmag/v6/v6n03templates2.html (1 of 10) [05/04/04 3:31:44 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html

Understanding Clarion Templates, Part 2

#IF(%ControlEvent='Accepted')
 ELSE
 SELECT(%Control)
 CYCLE

#ENDIF
 END

You don’t need to understand, at least for now, what this code really does.
The point is that it shows how a template can (and often does) contain a
mix of Clarion language and template statements. The first two lines of
code will be generated as is into the Clarion source file. In the third line,
the %ControlUse and %LookupField variables will be replaced by field
equates (use variables) as chosen by the developer, in template prompts
within the AppGen. The ELSE block of code will only be generated if the
contents of the %ControlEvent variable equals ‘Accepted’.

You may also notice that the indentation levels of the Clarion and template
source code don’t necessarily match up. There’s no reason why they
should – after all, the logic behind which block of Clarion code should be
generated may not have much in common with the logic of the block of
Clarion code being generated. Sometimes it’s a bit tricky to "see" the
Clarion code within a template.

The complexity inherent in the template/Clarion language mix is one of
the reasons Clarion almost inevitably grew object-oriented extensions. The
Legacy templates (at least prior to C6) generate all of the code for the
application, and that means that if you’re the person in charge of the
templates, and you want to change how some of that code works, you
have be really good at differentiating between the template source and
the Clarion source. As of this writing, at least, there is no development
tool available that makes this task easy. In the ABC templates, however,
most of the functionality is embodied in the all-Clarion ABC class library;
the templates function more as wrappers around ABC classes. They don’t
generate nearly as much actual Clarion source as before.

Registering templates

To use any template you have to register it in the template registry.

http://www.clarionmag.com/cmag/v6/v6n03templates2.html (2 of 10) [05/04/04 3:31:44 PM]

Understanding Clarion Templates, Part 2

Although the Clarion IDE could, in theory, use the templates directly from
disk, a source file isn’t the most efficient storage format for this kind of
information. The various templates need to be indexed and sorted for
quick retrieval, and there’s also a certain amount of error checking that
has to be done. It’s more efficient to do all of this massaging of template
data just once, and then have everything ready for the AppGen to use.

To register a template, choose Setup|Template Registry from the Clarion
main menu. You’ll see the window shown in Figure 1. To register a
template click on the Register button and choose one or more TPL files.

Figure 1 The ABC template chain in the registry

Starting with #TEMPLATE

I indicated last week that templates can be organized, and described, in a
variety of ways, such as by function, or by their template chain or family.
Template chains always begin with a #TEMPLATE statement, such as this

http://www.clarionmag.com/cmag/v6/v6n03templates2.html (3 of 10) [05/04/04 3:31:44 PM]

Understanding Clarion Templates, Part 2

one which is at the beginning of ABCHAIN.TPL:

#TEMPLATE(ABC,'Application Builder Class Templates'),FAMILY('ABC')

The help file for #TEMPLATE gives the following description of this
statement’s parameters (with my comments added in italics):

#TEMPLATE(name, description) [, PRIVATE] [, FAMILY(sets)]

#TEMPLATE Begins the Template set.

name The name of the Template set which uniquely
identifies it for the Template Registry and Template
Language statements. This must be a valid Clarion
label.

The name makes it possible for a template in one
chain to call a group template (a.k.a. a template
function) which is defined in another chain

description A string constant describing the Template set for
the Template Registry and Application Generator.

PRIVATE Prevents re-generation from the Template Registry.

This is a seldom-used option – the idea, back in the
early days of Clarion for Windows, was that you
could provide a template registry to someone so
they could do development, but they wouldn’t be
able to generate the original template source from
the registry, so you could effectively hide your
templates from prying eyes.

FAMILY Names the other Template sets in which the
#TEMPLATE is valid for use.

http://www.clarionmag.com/cmag/v6/v6n03templates2.html (4 of 10) [05/04/04 3:31:44 PM]

Understanding Clarion Templates, Part 2

sets A string constant containing a comma delimited list
of the names of other Template sets in which the
#TEMPLATE is valid for use.

The two usual options here are ABC and CW20 – a
template that is available to both, such as the
graphing template in C6, will have a family attribute
of 'ABC','CW20'

There is typically one line of code following the #TEMPLATE statement, and
that’s a #HELP statement which specifies the default help file associated
with the template, for example:

#HELP('C60HELP.HLP')

From this point on the template is divided up into code sections.

Template code sections

A template code section is simply a block of code which begins with one of
the following template statements:

#SYSTEM
#APPLICATION
#PROGRAM
#MODULE
#PROCEDURE
#CONTROL
#CODE
#EXTENSION
#UTILITY
#GROUP

The end of a template code section is marked by the end of the file, or by
the beginning of another template code section. And although there are
different kinds of code sections, the template source they contain can be
broken down further into three kinds: prompts, symbol declarations, and
code.

http://www.clarionmag.com/cmag/v6/v6n03templates2.html (5 of 10) [05/04/04 3:31:44 PM]

Understanding Clarion Templates, Part 2

Template prompts

Most templates, including #APPLICATION, #PROCEDURE, #EXTENSION,
#UTILITY, #CONTROL, and usually #CODE templates, have prompts which
let the developer choose options, select files, fields and controls from pick
lists, enter free form text, and so forth. The vast majority of options you
have available to you within the application generator are determined
directly by the templates.

Template prompts are defined by a #PROMPT statement, as in this
example:

#PROMPT('&DATA Sections',COLOR),%ColorDataSection,DEFAULT(00000FFH)

This prompt lets the user pick a color from the standard color dialog, and
save that value in a variable called %ColorDataSection. The available
prompt types, from the Clarion help, are as follows:

PROCEDURE The label of a procedure

FILE The label of a data file

KEY The label of a key (can be limited to one file)

COMPONENT The label of a key component field (can be limited to one
key)

FIELD The label of a file field (can be limited to one file)

EXPR A multi-field selection box that builds an expression

OPTFIELD Constant text or the label of a file field

FORMAT Calls the listbox formatter.

PICTURE Calls the picture token formatter.

DROP Creates a droplist of items specified in its parameter

http://www.clarionmag.com/cmag/v6/v6n03templates2.html (6 of 10) [05/04/04 3:31:44 PM]

Understanding Clarion Templates, Part 2

KEYCODE A keycode or keycode EQUATE

OPTION Creates a radio button structure

RADIO Creates a radio button

CHECK Creates a check box

CONTROL A window control

FROM Creates a droplist of items contained in its symbol
parameter

EMBED Allows the user to edit a specified embedded source code
point

SPIN Creates a spin control

TEXT Creates a text entry control

OPENDIALOG Calls a standard Windows Open File dialog

SAVEDIALOG Calls a standard Windows Save File dialog

COLOR Calls a standard Windows Color dialog

There are a number of techniques you can use in conjunction with
#PROMPTs to improve the visual appeal of your templates, include the #TAB
and #BOXED statement to create tabs and surrounding boxes, respectively.
You can also explicitly set the location of prompts using the AT attribute,
and in Clarion 6 you can even set foreground and background colors.

Template symbols

Templates often declare variables, more accurately called symbols, for the
same reasons you declare variables in a source procedure: to store data
needed by the template.

http://www.clarionmag.com/cmag/v6/v6n03templates2.html (7 of 10) [05/04/04 3:31:44 PM]

http://www.clarionmag.com/cmag/v6/v6n02templatestyles.html

Understanding Clarion Templates, Part 2

To declare a template symbol, you use the #DECLARE statement, and you
prefix the symbol label with % to differentiate it from normal Clarion
labels:

#DECLARE(%OOPConstruct)

If you don’t specify a data type, a string is assumed. Possible data types
are LONG, REAL, and STRING. Here’s a LONG variable:

#DECLARE(%ByteCount,LONG)

Template symbols can also be single valued or multi-valued. A single
valued symbol is what you’d expect – it can hold only one value at a time.
Multi-valued symbols are like simple queues, containing multiple instances
of the symbol. In the following declaration, no type is specified, so this is a
multi-valued string, which functions just like a queue with a single string
field:

#DECLARE(%ClassDeclarations),MULTI

You can also link multi-valued symbols, so that one is parent to the other.
This is like nested queues. I’ll have more to say about mult-valued
symbols later on in this series.

Besides user-defined symbols, there are a large number of built-in
symbols. These provide information about files, fields, relations,
schematics, drivers, views, modules, procedures, windows, reports,
formulas, and a number of special-purpose symbols.

Template code

Not all templates have prompts, and not all have declarations, but it’s a
rare template that doesn’t have any code! The ultimate purpose of a
template, after all, is almost always to generate source code, and to do so
it needs to contain Clarion code, or template code that generates Clarion
code, or some combination of the two. Compared to prompts and
declarations, template code is a truly massive subject, and one which I’ll
begin discussing next time.

http://www.clarionmag.com/cmag/v6/v6n03templates2.html (8 of 10) [05/04/04 3:31:44 PM]

Understanding Clarion Templates, Part 2

A final word on application templates

In Part 1 of this series I mentioned the #APPLICATION template as the
starting point for a template chain. In fact, very few developers will ever
deal write an #APPLICATION template, or the related #SYSTEM, #PROGRAM,
and #MODULE templates. These templates together manage the generation
of Clarion applications, and as long as you’re writing Clarion code, there’s
probably no need for you to reinvent the wheel. If you are creating
templates that generate code for another language, such as C++ or Perl,
then most likely you will want to investigate these areas more closely.

Instead, most Clarion developers who venture into the template language
do so by creating code, extension, utility, and control templates, and
those will be the areas I’ll focus on in coming articles.

David Harms is an independent software developer and the editor and publisher of Clarion

Magazine. He is also co-author with Ross Santos of Developing Clarion for Windows

Applications, published by SAMS (1995). His most recent book is JSP, Servlets, and MySQL,

published by HungryMinds Inc. (2001).

Reader Comments

Add a comment

http://www.clarionmag.com/cmag/v6/v6n03templates2.html (9 of 10) [05/04/04 3:31:44 PM]

mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.clarionmag.com/cmag/comments.frm?articleID=12749

Understanding Clarion Templates, Part 2

Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written

consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v6/v6n03templates2.html (10 of 10) [05/04/04 3:31:44 PM]

http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

System Tray Popup Windows

Clarion Magazine

System Tray Popup Windows

by Jim Kane

Published 2004-03-31

Shortly after installing Outlook 2003 I noticed small windows appearing
about the tray area when a new email message was received. I found
these very useful, so I wanted to see if I could do the same with
Clarion. If it had worked on the first try, I probably would have just
partly developed it and put it aside in case I ever really needed, but
once I failed miserably on the first try, I couldn’t stop until I got what I
wanted. To spare others the frustration I experienced I thought I’d
describe my work here and present the code.

After some thought I developed the following requirements for the tray
popup windows, to ensure they were suitably cool:

1. Use slide animation such that they appeared to rise out of the tray
area. The window starts off with a zero height and gradually
increases in height until full height.

2. Use fade animation after they had displayed for a fixed period of
time.

3. Support operation no matter where the tray was located on the
desktop (bottom, top, right, or left).

4. Allow closing the tray windows by pressing a close button.
5. Allow moving the windows by pressing the left mouse button and

dragging.
6. If the window was clicked on while fading, bring it back to life, i.e.

redisplay it.
7. Double clicking should close the tray window and bring up a

regular Clarion window showing the full detail for the information

http://www.clarionmag.com/cmag/v6/v6n03systraypopup.html (1 of 10) [05/04/04 3:31:46 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html

System Tray Popup Windows

shown in the tray window.
8. I wanted a gradient fill for the window color and some type of

frame around the tray window rather than the classic window
appearance with a title bar.

9. When the windows opened, they should not be fully overlapped to
make them easier to read.

10. I wanted to limit the number of windows open at one time so they
didn’t take over the screen.

11. I didn’t want the windows to be the "always on top" type so that if
you were not terribly interested in the popup message, it could be
easily ignored.

12. I wanted the option of playing a sound when the windows
appeared.

On initial exploration I found two APIs that would be helpful in getting
the window appearance I wanted: AnimateWindow and GradientFill.
AnimateWindow provides both the fade and slide animation.
GradientFill provides a way to color the window background with a
color gradient rather than with a solid color. The only problem though is
neither is supported on Windows 95. As a result I decided to call these
functions by address so that my program would still run on, and provide
substitute code for, Windows 95. On Windows 95 there are no animation
effects – the window appears abruptly, hides abruptly, and the window
is a solid color. With these compromises, I could support all Windows
operating systems from Windows 95 through 2003.

When I tried to use AnimateWindow and GradientFill with Clarion
windows I didn’t have much luck. The built in Clarion window creation
and painting code got in the way. My solution was to use the Windows
API to create a thread (using the CreateThread API call) and a window
(using CreateWindow) for each popup tray window created. That worked
quite nicely.

In the download with this article is animate.prj (and animate.exe) which
should compile in all versions of Clarion from 5 through 6. I recommend
you run animate.exe to see the popup windows, and then look at
animate.clw as you read through a description of the important parts of
the code below. I think once you see them you’ll be hooked too.

http://www.clarionmag.com/cmag/v6/v6n03systraypopup.html (2 of 10) [05/04/04 3:31:46 PM]

System Tray Popup Windows

I also found a tremendous side benefit to this code. As it turns out, I
added the sound effect very early on in the development. I played the
sound probably hundreds of time as I developed, compiled, cursed,
compiled, ran, cursed, and restarted. What I found it after a few
hundred repetitions was that the sound drove my teenage children
absolutely crazy. They can listen to rock ten times louder and ten times
longer than I can, but playing this one simple sound got their attention.
Now when ever they don’t want to turn down their music, I threaten to
play this tune again in a continuous loop. The house has never been so
quiet. If I could only bottle and patent the effect, I’d be rich. Then if I
could find another tune that makes babies stop crying, I’d give Bill
Gates a run for his position in the world wealth standings.

To use this code, in the application frame’s Event:OpenWindow embed,
START a procedure called PopupStarter like this:

!this is the thread that starts the tray
! popups - a tray popup factory!
start(PopupStarter,,address(ShowMsg))

The ShowMsg procedure is the form or window that is called when the
user double clicks on a tray window to show full detail. That procedure
should have a prototype like this:

ShowMsg procedure(string strMsgID)

The single string parameter passed to ShowMsg is the unique primary
key for the record to be shown in response to the double click. The
primary key field can be a long, as Clarion will automatically convert
string to long. At the start of ShowMsg, typical code, after opening files,
would be:

PrimaryKeyField = strMsgID
If Access:YourFile.TryFetch(PrimaryKey) then return Level:fatal.

The code above will fetch the record to be shown. If ShowMsg is a form
rather than a window, be sure to set GlobalResponse to ChangeRecord
at the very start of ThisWindow.Init(). If you don’t want anything to
happen on double click, then pass ‘0’ instead of a procedure address

http://www.clarionmag.com/cmag/v6/v6n03systraypopup.html (3 of 10) [05/04/04 3:31:46 PM]

System Tray Popup Windows

The PopupStarter procedure has a timer, and on each Event:Timer it
checks a global queue called TrayWndQ for a message to display. If there
is a record in TrayWndQ, PopupStarter determines if there is room on
the screen to display it, and if so, creates and displays the tray popup
window. Since TrayWndQ is global queue, and I wanted this code to work
in Clarion 6, I also created a critical section class called trayWndQLock
to protect the global queue. Typical code to make a tray popup window
appear is:

trayWndQLock.EnterCriticalSection()
TrayWndQ.cFrom= 'What ever you want to appear on the from line'
traywndq.cMsg='Message to appear in the tray window'
traywndq.msgid= primary key field associated with this window
add(traywndq,1)
trayWndQLock.LeaveCriticalSection()

Since both trayWndQLock class and TrayWndQ queue are both global,
the above can appear anywhere in your code.

This include file contains the traywndq, traywndqlock, and
PopupStarter declarations:

Include(‘traywnd.inc’)

In addition, add traywnd.clw and calla.a to the external source area of
the project tree. Traywnd.clw contains the code for PopupStarter, and
calla.a helps with the call by address for Windows 95 support. The call
by address scheme used and calla.a are described in my article Call By
Address, STARTing By Address.

PopupStarter starts out by determining how many dots per inch the
screen uses. All the pixel values used in the design of the popup
windows assume 96 dpi. If the actual screen resolution is not 96 dpi
then it scales all values appropriately for what ever the run-time screen
resolution is. This allows the windows to work even if a user has
selected large fonts, or has an unusual display device. PopupStarter
also checks to see if the number of popup tray windows allowed to be
on the screen at once will actually fit. If not, it scales back the
maximum number of windows it will open.

http://www.clarionmag.com/cmag/v6/v6n03systraypopup.html (4 of 10) [05/04/04 3:31:46 PM]

http://www.clarionmag.com/cmag/v3/v3n11byaddress1.html
http://www.clarionmag.com/cmag/v3/v3n11byaddress1.html

System Tray Popup Windows

PopupStarter tracks all the popup tray windows it has already started
through the use of a global array declared in traywnd.clw (which uses a
critical section class called critscl for thread protection):

!global data - use critscl for access
eMaxTrayWnds equate(5) !if 5 or more popups are shown and you
 !try to start a 6th, it is not started.
Event:FirstSlot equate(0A200H) !events for the double click handler
Event:lastslot equate(Event:FirstSlot+eMaxTrayWnds-1)
Glo:TrayWndMgr group,dim(eMaxTrayWnds)
threadid long
lpdata long
hthread long
 end

In my sample code, I elected to have no more than five tray popup
windows at one time. The eMaxTrayWnds equate declares this limit. For
each window, the Glo:TrayWndMgr array stores the threadID, hThread
or thread handle, and a pointer to thread-specific data, lpData. If the
threadID is 0 the array entry is assumed to be zero, and can be used
for a new window.

lpData points to a rather large data group with all the data the API
thread needs to display the popup window

tlsType Group,type
hwnd long !hwnd of the popup window
parenthandle long !handle of the dummy window
 ! of PopupStarter
slotidx long !1...eMaxTrayWnds
PopupStarterThread long !clarion thread # for PopupStarter
useslide byte
xoffset long !offset from edge of the screen
yoffset long
r like(recttype) !rect for drawing the edge
Gradient_Rect like(GRADIENT_RECTType)
vertex like(vertextype)
xbutton like(recttype) !close button rect
dpix long !dpix for font calcs
MaxScreenX long !screen size in X
MaxScreenY long !Screen size in Y
hfont long,dim(eMaxFont)
xpos long !x,y pos of the window
ypos long
mouseleftdown long !set to true when the mouse is
 ! down regardless of why

http://www.clarionmag.com/cmag/v6/v6n03systraypopup.html (5 of 10) [05/04/04 3:31:46 PM]

System Tray Popup Windows

mousedrag long !set to true after mouse down for 1
 ! set - beginning of a drag
MouseDownX long
MouseDownY long
buttondepressed byte !set to true when button depressed
 ! on mousedown
cFrom cstring(50)
cMsg cstring(400)
MsgID long !primary key of message
iconresourcename cstring(260) !must be linked into the app (not dll)
iconsize long
!Windows 95 compatibility
lpGradientfill long
lpAnimatewindow long
 end

To customize the appearance of tray windows, modify both the
traywndq and the tls group above to hold what ever you need for the
window appearance you want. In addition to the information passed to
the PopupStarter in the global queue, there are quite a number of
equates that determine various aspects of the tray popup windows
appearance and actions. To locate these equates that determine the
window appearance for all tray windows, search the source of
traywnd.clw for this comment:

"!---------------- Start of equates for appearance and

function ---------------------!"

All the items in that section are user preference so have at it and
change them to get the desired appearance. One item to note is there is
one equate for each font to be used, along with an equate of the total
number of fonts used on the window. If the window design requires
more than three fonts, change the eMaxFont equate value to the
number of fonts you require, and create a new equate for each font to
be used.

When PopupStarter finds a record in the trywndq and an empty spot in
the glo:trayWndMgr array, it copies the data in the traywndq record to
the tls group allocated by the Clarion New() function, along with other
data contained in the series of equates described above that pertain to
all windows. It then calls the API CreateThread function to start a new
API thread, which immediately calls the ShowPopup procedure. Once the

http://www.clarionmag.com/cmag/v6/v6n03systraypopup.html (6 of 10) [05/04/04 3:31:46 PM]

System Tray Popup Windows

API thread is created, it deletes the record from the global queue,
trywndq.

The Showpopup procedure is responsible for creating the tray popup
window and starting a message loop. Before doing anything else
though, if the code is running under Clarion 6, the API thread has to be
registered with the Clarion runtime:

 compile('***', _C60_)
 AttachThreadToClarion(0)
 !***

Once that is done, ShowPopup calls ShAppBarMessage() to find out
where the tray area is, and to determine the xy position at which the
new window should appear. Once ShowPopup has the xy position, it calls
the CreateWindow API function to create the window. At this point the
window is still hidden. Next, all the fonts needed to paint the window
are created. The AddFont procedure uses normal Clarion color and font
style equates to create API fonts. A FontID is passed to the AddFont
procedure, and the font is subsequently referenced by this FontID.
These fonts are created and stored in the per thread data so that there
is no danger two threads would try to use one at the same time. A timer
is then created to control the lifetime of the new window. When the
timer fires, a wm_timer message is generated and the window is closed.

If during the startup of PopupStarter the address for the
AnimateWindow API function was found, indicating this is not a Windows
95 machine, then the AnimateWindow API is called to provide slide
animation and display the window. On Windows 95, ShowWindow is used
instead to display the window. Lastly a very simple message loop is
started for the window. A message loop is very similar to a Clarion
accept loop, but without any Clarion-specific behavior. When the
window closes, the procret routine is called to free the font objects and
remove the window from the glo:traywndmgr array.

All the Windows messages for the window created by ShowPopup are
processed in the SubClassFunc1 procedure. Of most interest for
customization are the wm_paint event and the closely related wm_print

http://www.clarionmag.com/cmag/v6/v6n03systraypopup.html (7 of 10) [05/04/04 3:31:46 PM]

System Tray Popup Windows

and wm_printclient events, which are called by AnimateWindow. Upon
receiving one of these events, the first order of business is to paint the
window background. The GradientFill API call is used for that unless
the function is not found, as would be the case on Windows 95. When
GradientFill is not available, the default window background is used.
Next the DrawEdge API function is called to draw the frame around the
window edge. With that done, the TakePaint procedure is called.
TakePaint receives a pointer to the tls data and the hdc or windows
device context. TakePaint displays an icon if an IconResourceName
value was supplied. Next, TakePaint uses the fonts created earlier to
display text on the window.

I’ve provided two different procedures to make it easy to display text.
PrintString simply displays the string passed to it using the specified
FontID. As I mentioned earlier, the fonts are all created before starting
the thread, and each font is referenced by its FontID.

DrawString is a bit more complicated. It can display multi-line text, and
if the text is too long it truncates the text and adds an elipsis (…) at the
end. Because it can display multi-line text, it takes not just an xy
position as does PrintString, but also a height and width. Also note
that all the pixel coordinates for positioning the text are transformed by
the scalex or scaley procedures. This is a part of the run-time scaling
used so the window will display reasonably at other than the standard
96 dpi resolution I used during design. Note also the cstrings
containing the text to display come from the tls data group. The strings
got into that group from the TraywndQ. So to modify the appearance of
the window and add or subtract fields in the display, modify the
traywndq so the required data is passed in, and also change the code
just before the CreateThread API call where the traywndq fields are
copied to the tls data and the tls group itself. By calling customized
combinations of PrintString, DrawString, or the icon drawing code,
you can obtain any desired window layout.

If the tray window is double clicked the wm_lbuttondblclk message is
generated. Timers are killed and a message is posted to PopupStarter.
PopupStarter determines which window was double clicked (based on

http://www.clarionmag.com/cmag/v6/v6n03systraypopup.html (8 of 10) [05/04/04 3:31:46 PM]

System Tray Popup Windows

the value of the event generated) and starts a form procedure. Once
the form procedure is started, PopupStarter posts a wm_destory
message to the tray popup window to close it.

When either the timer controlling the tray popup window’s life fires, or
the close button is pushed and released, the wm_close message is
generated. In WM_Close timers no longer needed are killed, and the
animation, typically fade animation, is used to begin hiding the window.
After the animation is completed, GetInputState() is called to see if a
user clicked on the window while it was fading out. If so the window is
brought back to life and a new timer started. If not, the wm_destroy
message is posted. The WM_Destory message handler calls
PostQuitMessage(), and that causes the message loop in ShowPopup to
end. When the loop ends, ShowPopup cleans up memory in the procret
routine, and then the ShowPopup procedure and the API thread created
by PopupStarter end as well. This completes the life cycle of the popup
window.

When your application closes, the Clarion runtime library sends a
event:closewindow to PopupStarter. PopupStarter frees the
traywndQ so no new windows are started. It then loops thru the
glo:Traywndmgr global array protected by the critscl critical section
class to find any popup tray windows still running. When they are found,
it posts a wm_destroy message to them to close them. It keeps looping
until all the tray windows are closed. It then does a little cleanup and
terminates.

While for everyday programming the ease of use of Clarion is great,
sometimes it’s fun and productive to use the API alternatives to get
special effects. I hope you will find this code as interesting and useful as
I have.

Download the source

Jim Kane was not born any where near a log cabin. In fact he was born in New York City.

After attending college at New York University, he went on to dental school at Harvard

http://www.clarionmag.com/cmag/v6/v6n03systraypopup.html (9 of 10) [05/04/04 3:31:46 PM]

http://www.clarionmag.com/cmag/v6/files/v6n03systraypopup.zip
mailto:jkane@satx.rr.com

System Tray Popup Windows

University. Troubled by vast numbers of unpaid bills, he accepted a U.S. Air Force

Scholarship for dental school, and after graduating served in the US Air Force. He is now

retired from the Air Force and writing software for ProDoc Inc., developer of legal

document automation systems. In his spare time, he runs a computer consulting service,

Productive Software Solutions. He is married to the former Jane Callahan of Cando, North

Dakota. Jim and Jane have two children, Thomas and Amy.

Reader Comments

Add a comment

Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written

consent of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v6/v6n03systraypopup.html (10 of 10) [05/04/04 3:31:46 PM]

http://www.prodoc.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=12750
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Compiled Reports From Report Writer

Clarion Magazine

Compiled Reports From Report Writer

by Henry Plotkin

Published 2004-03-31

As far as I am concerned, the best thing about Clarion Report Writer is the ability to set
up the finished page without having to adjust the position of each individual band (see
Figure 1).

The next best thing about Report Writer is that report testing is much faster. A Report
Writer does not require a compile-link cycle. It does not require minimizing Clarion,
starting the application and navigating to the report.

Not having to recompile, etc., can save me one or two (full) minutes in testing a report.
Because I get very impatient when making changes, this minute or two seems to drag on
forever.

Figure 1. Report Writer page configuration

http://www.clarionmag.com/cmag/v6/v6n03compiledreports.html (1 of 8) [05/04/04 3:31:50 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html

Compiled Reports From Report Writer

What would be ideal is to use Report Writer to create and test reports and, when the
report is complete (or nearly so), import it into a standard, compiled report procedure.

I am going to show you how to do just that, import a Report Writer report into a
standard .APP with only a little work.

The TXR

In the accompanying sample application (download at the end of this article), I have
included a C5.5 Report Writer library. The first report lists customers and their total
purchases. There is a grand total band with the total purchases for all customers.

The .TXR file created for this report (all Report Writer reports are stored in text files with
the extension "TXR") is very instructive:

[LIBRARY]
VERSION(4001)
ENDUSER('off')
OPTION(0)
[REPORTS]
Report1 REPORT,FONT('Arial',10),PRE(Report1),THOUS,AT(250,912,8000,9838),¿
MARGINS(250,235,250,250) !Customer List
 HEADER,FONT('Times New Roman',10,0,700),AT(250,235,8000,677)
 STRING('Customer Number'),AT(50,350)
 STRING('Last Name'),AT(1375,350)
 STRING('First Name'),AT(2888,350)
 STRING('Total Sales'),AT(4610,350)
 LINE,LINEWIDTH(15),AT(0,618,8000,0)
 STRING('Customer Sales Report'),AT(3046,67)
 END
REPORT BREAK
TOTALS BREAK
Detail1 DETAIL,FONT('Arial',8,0),AT(0,0,,253)
 STRING(@n-14),LEFT,TRN,USE(CUS:CustomerNumber),AT(50,0,1125)
 STRING(@s20),USE(CUS:LastName),AT(1375,0)
 STRING(@s20),USE(CUS:FirstName),AT(2888,0)
 STRING(@n-10.2),USE(CUS:TotalSales),AT(4401,5,844)
 END
 FOOTER,AT(0,0,,1000)
 STRING('Total Sales:'),AT(3682,189)
 STRING(@n-10.2),USE(GrandTotal),AT(4528,189)
 END
 END
 END
GrandTotal TOTAL(@n-10.2),SUM,USE(CUS:TotalSales)
 END
[FILES]
Customers FILE,PRE(CUS),DRIVER('TOPSPEED',,'C55tps','TPS'),CREATE
CustNbrKey KEY(CUS:CustomerNumber),NOCASE,OPT
CusNameKey KEY(CUS:LastName,CUS:FirstName,CUS:CustomerNumber),DUP,NOCASE,OPT
__Record RECORD
CustomerNumber LONG,PICTURE(@n-14),PROMPT('Customer Number:'),¿

http://www.clarionmag.com/cmag/v6/v6n03compiledreports.html (2 of 8) [05/04/04 3:31:50 PM]

Compiled Reports From Report Writer

HEADER('Customer Number')
LastName STRING(20),PICTURE(@s20),PROMPT('Last Name:'),HEADER('Last Name')
FirstName STRING(20),PICTURE(@s20),PROMPT('First Name:'),¿
HEADER('First Name')
TotalSales DECIMAL(7,2),PICTURE(@n-10.2),PROMPT('Total ¿ Sales:'),HEADER('Total Sales')
 END
 END
[RELATIONS]
[REPORTVIEWS]
Report1 VIEW(Customers),ORDER('UPPER(CUS:LastName),UPPER(CUS:FirstName),¿
CUS:CustomerNumber'),KEY(CUS:CusNameKey)
 END
[SOURCES]
 DICTIONARY,VERSION('1.0'),DATE(74229),TIME(3200300),NAME('C:\C55\REPORT~1\¿
SAMPLE.DCT')
[SEARCHPATHS]
 PATH('Customer.TPS','C:\C55\REPORT~1\')
[EXTERNALS]
Notice that it is composed of a number of sections, like an INI file. These sections are:
[LIBRARY]
[REPORTS]
[FILES]
[RELATIONS]
[REPORTVIEWS]
[SOURCES]
[SEARCHPATHS]
[EXTERNALS]

The content of several of these sections is entirely self-explanatory. In [SOURCES], the
source dictionary is named (this is what allows Report Writer to load the dictionary and
detect any changes in it – at least, when you run Report Writer from the Clarion IDE).
[FILES] contains all the files (including global variables) from the dictionary,
[REPORTVIEWS] contains views used in reports, "indexed" by report and [RELATIONS]
contains dictionary defined file relations.

The most interesting section is [REPORTS]. This section contains all the reports defined in
the library. The Label of each report is the name given to the report when it is created.
However, examining the [REPORTS]section, in isolation from the rest of the file should
give one a sense of déjà vu – all over again.

As I examine the code in the [REPORTS] section, I find that I cannot distinguish it from
the code generated by the Report Formatter in the IDE. There is a REPORT declaration, a
prefix declaration, headers, details, breaks and footers, exactly as I would seem them if I
looked at the Report Formatter’s code.

This makes me wonder whether it isn’t possible to copy the report layout and paste it
into the Report Formatter. The ellipsis button beside the report button on the procedure
properties dialog makes this prospect very tantalizing, very tantalizing indeed.

"Importing" from Report Writer

http://www.clarionmag.com/cmag/v6/v6n03compiledreports.html (3 of 8) [05/04/04 3:31:50 PM]

Compiled Reports From Report Writer

Of course, before copying and pasting, it is wise to press the Tables button and complete
the file schematic for the procedure. Then you can open the report code and paste the
report structure.

However, on closing the embed, I immediately got a "Syntax error reading WINDOW or
REPORT." Not only can’t the IDE tell me whether the offender is a window or a report, it
doesn’t go to the line containing the error.

Not to worry, on examination, it is clear that MARGINS is not a recognized attribute in
the Report Formatter. Here's the problem code noted in boldface:

Report1 REPORT,FONT('Arial',10),PRE(Report1),|
 THOUS,AT(250,912,8000,9839,MARGINS(250,250,250,250)

Removing the MARGINS attribute solves that problem. But, it brings up another, which is
the total declaration in the report structure:

GrandTotal TOTAL(@n-10.2),SUM,USE(CUS:TotalSales)

The variable GrandTotal is not recognized. Neither is the attribute: TOTAL(@n-10.2). Of
course, I could declare GrandTotal and I could change the line to something like:

Grandtotal String(@n-10.2),SUM,USE(CUS:TotalSales)

and return to this embed and re-paste the code.

Or, I could delete the offending line and create the variable. Some action is necessary
because the report still contains a band with this variable (see Figure 2).

http://www.clarionmag.com/cmag/v6/v6n03compiledreports.html (4 of 8) [05/04/04 3:31:50 PM]

Compiled Reports From Report Writer

Figure 2. Total variable remains on report even after deletion

In the end, I just incremented the variable in TakeRecord and created a grand totals
band as described in the on line help.

This turns out to be a good idea. If you examine Figure 2, above, you will notice two
Breaks. Neither has a Break Variable; neither has a Use variable. These bands appear
totally inexplicable.

http://www.clarionmag.com/cmag/v6/v6n03compiledreports.html (5 of 8) [05/04/04 3:31:50 PM]

Compiled Reports From Report Writer

Figure 3. Properties of the "mystery" breaks

But, delete them and the Group Footer, containing the GrandTotal variable disappears.
As I said, it was a great stroke of luck that I decided that grand totals weren’t so hard to
implement without Report Writer’s help.

In the end, I end up with two standard embeds. I accumulate the totals in TakeRecord
and I print my GrandTotals band in AskPreview (Figure 4).

http://www.clarionmag.com/cmag/v6/v6n03compiledreports.html (6 of 8) [05/04/04 3:31:50 PM]

Compiled Reports From Report Writer

Figure 4. The completed embed tree

But…

Does the finished report work (you know, after compilation, navigating and all that other
stuff)?

Yes, it does.

Download the source

"hp" in fact prefers Hewlett-Packard printers but will use whatever is available. Born in New York City, hp is a

self-taught Clarion developer doing a sustantial amount of work for hospital gift shops.

http://www.clarionmag.com/cmag/v6/v6n03compiledreports.html (7 of 8) [05/04/04 3:31:50 PM]

http://www.clarionmag.com/cmag/v6/files/v6n03compiledreports.zip

Compiled Reports From Report Writer

Reader Comments

Add a comment

Copyright © 1999-2003 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm

Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v6/v6n03compiledreports.html (8 of 8) [05/04/04 3:31:50 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=12751
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

	clarionmag.com
	Clarion Magazine
	How To Stop Trashing The Template Registry
	Clarion News
	Validating Credit Card Numbers
	A Class Wrapper for Brice Schagane's Menu Buttons
	Using Client-Side Triggers In Clarion 6
	Understanding Clarion Templates, Part 1
	Understanding Clarion Templates, Part 2
	System Tray Popup Windows
	Compiled Reports From Report Writer

