
Clarion Magazine

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

The Clarion Advisor: Procedure
Prototypes
Compiler changes, unless they implement
bug fixes, don’t often get a lot of press in
the Clarion community. A few years ago
the compiler began handling an alternate
form of procedure prototype, which can
make your programming life just a tiny bit
easier.
Posted Wednesday, February 28, 2001

The Clarion Challenge: Useless Tab
Text
I was taking a tour of the Language
Reference Manual when I came across a
curious and, as near as I can tell,
completely useless feature: inverted tab
text. I've written a small program to
demonstrate this feature, but the program
has a bug. The challenge: fix the bug
and/or find a better way to write this
program.
Posted Wednesday, February 28, 2001

Introduction To SQL: Part 1
In the first installment of this new series,
Dave Harms compares TPS and SQL
databases and explains why SQL is
important to Clarion developers.
Posted Wednesday, February 28, 2001

The Cranky Programmer: Got Them
Bloated ABC Blues
Cranky's back, and he's not at all pleased
with the way ABC packs ABC-compliant
classes into data DLLs.
Posted Thursday, February 22, 2001

COM: Getting Easier By The Minute
(Part 3 of 3)
COM? Easy? Well, easier, at least. In this
three-parter, Jim Kane, Clarion Magazine's
resident guru of Microsoft component
object technology, shows how to call COM

RSBackUp 1.2
Released

MessageEx Updated

Free Outlook Style
Template

HTML Designer
Version 1 Release
Imminent

VariView FAQ Page

Freeware Template
Handles
Capitalization

Solace VariView
Demo Available

MenuTree Template
Includes TXAs

Registry Function
Library 1.5 Available

Intuit To Provide
QuickBooks Interface

Logic Central Adds
Remote Reporter

FrameText Adds Text
To Application Frame

CLARION.COM Sold
For $30,000

Clarion ABC
Templates In Spanish

Which browse
& form control
method do
you use?

http://www.clarionmag.com/index.html?year=2001&month=2&limit=100 (1 of 3) [5/9/01 2:01:29 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

Clarion Magazine

objects with the new COM-compatible
INTERFACE in Clarion 5.5. As Jim says, if
VB programmers can use COM, so can
you!
Posted Thursday, February 22, 2001

The Clarion Advisor: Locating Records
With PROP:SQLFilter
If you're working with SQL tables, you can
muster the full power of the database
server to quickly locate the records you
want, using PROP:SQLFilter. Just add an
entry field to your browse window, type
the filter, and away you go. Until you type
an incorrect filter, and away the browse
goes instead. Here's one way to solve the
problem.
Posted Tuesday, February 13, 2001

Information Systems Planning
This Whitemarsh Information Systems
paper presents an information systems
model for information systems managers.
Includes comparisons to IBM's Business
System Plan, James Martin's Strategic
Data Planning, and Clive Finklestein's
Strategic Management Plan.
Posted Tuesday, February 13, 2001

COM: Getting Easier By The Minute
(Part 2 of 3)
Easy? Well, easier, at least. In this three-
parter, Jim Kane, Clarion Magazine's
resident guru of Microsoft component
object technology, shows how to call COM
objects with the new COM-compatible
INTERFACE in Clarion 5.5. As Jim says, if
VB programmers can use COM, so can
you!
Posted Tuesday, February 13, 2001

COM: Getting Easier By The Minute
(Part 1 of 3)
COM? Easy? Well, easier, at least. In this
three-parter, Jim Kane, Clarion Magazine's
resident guru of Microsoft component
object technology, shows how to call COM
objects with the new COM-compatible
INTERFACE in Clarion 5.5. As Jim says, if
VB programmers can use COM, so can
you!
Posted Tuesday, February 06, 2001

The Five Minute Developer:
Understanding Interfaces

GREGPlus Update
Available

http://www.clarionmag.com/index.html?year=2001&month=2&limit=100 (2 of 3) [5/9/01 2:01:29 PM]

http://www.clarionmag.com/cmag/v3/informationsystemsplanning.pdf

Clarion Magazine

This week Jim Kane begins a three-parter
on calling COM using Clarion Interfaces.
But what are Interfaces anyway, and why
should you care? Read on...
Posted Tuesday, February 06, 2001

February 2001 News
Clarion news for February, 2001.
Posted Thursday, February 01, 2001

January 2001 PDF
This PDF contains all of the January 2001
articles. You need access rights to all the
January 2001 issues to dowload this file.
Posted Thursday, February 01, 2001

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/index.html?year=2001&month=2&limit=100 (3 of 3) [5/9/01 2:01:29 PM]

http://www.clarionmag.com/cmag/v3/files/cmag-2001-01.pdf
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

The Clarion Advisor: Procedure Prototypes

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

The Clarion Advisor: Procedure Prototypes

by Dave Harms

Published 2001-02-28

Compiler changes, unless they implement bug fixes, don’t often
get a lot of press in the Clarion community. A few years ago, I
believe in Clarion version 4, the compiler began handling an
alternate form of procedure prototype. I’m pretty sure this slipped
past a lot of developers, because I still often see procedures
prototyped the "old" way.

In Clarion, a procedure has to be declared twice, first as a
prototype (in a map or class), and second in the actual procedure
code. Consider a small program, contained in a single source file:

program

 map
 testproc
 end

 code
 testproc()

testproc procedure
 code
 message('Hi!')

This program shows a testproc procedure declared in the map,
and defined at the end of the listing. The code statement following
the map is the beginning of program execution. All this program
does is call the testproc procedure, which displays a message
box. Now suppose you want to pass the message to display to
testproc. In the old days, you’d declare the data type in the
prototype, and the variable name in the procedure, like this:

program

 map
 testproc(string)
 end

 code

http://www.clarionmag.com/cmag/v3/v3n2advisor2.html (1 of 4) [5/9/01 2:33:06 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

The Clarion Advisor: Procedure Prototypes

 testproc('Hi!')
 testproc('Bye!')

testproc procedure(msg)
 code
 message(msg)

Guess what? This still works in Clarion 5.5. And you’re probably
wondering why it wouldn’t work. But take a look at the same
program, written to take advantage of the compiler feature
introduced in Clarion 4:

program

 map
 testproc(string msg)
 end

 code
 testproc('Hi!')
 testproc('Bye!')

testproc procedure(string msg)
 code
 message(msg)

This is the same program, except that now the parameter list in
the prototype and in the procedure declaration are the same:

(string msg)

There are two advantages to using this newer syntax when
declaring procedures with parameters. One is that you can always
tell the parameter data type from the procedure definition;
sometimes it’s very helpful to know that you’ve passed, say, a
string, not a group, or whether something is passed by value or
address. With this syntax you don’t have to chase down the
prototype. The other benefit is that there’s less chance of mixing
up parameter names and data types in lengthy parameter lists,
particularly in AppGen. Figure 1 shows an AppGen procedure
properties window

http://www.clarionmag.com/cmag/v3/v3n2advisor2.html (2 of 4) [5/9/01 2:33:06 PM]

The Clarion Advisor: Procedure Prototypes

Figure 1. Entering prototypes and parameters the old way.

The data types in the prototype are as follows (you won't have the
line break character in your code):

(long,string,string,date,date,
 string,string,short)

and the variables in the parameters list are:

(ID,LastName,FirstName,StartDate,
 EndDate,Flag1,Flag2,Count)

Unfortunately, if you’re typing the parameter list to match the
prototype, the entry field isn’t big enough to see everything at
once, and it’s easy to mix up or miss parameters. With the newer
syntax, you only have to type either the prototype or the
parameter list, and since the two should be identical you just copy
what you’ve typed to the other field:

(long ID,string LastName,string FirstName,
 date StartDate,date EndDate,string Flag1,
 string Flag2,short Count)

The only exception to the rule of identical prototype and parameter
list occurs when a procedure returns a value. In this case you
append a return data type (such as ,long) to the prototype only. If
you accidentally append the return data type to the parameter list,
you will get a compiler error.

David Harms is an independent software developer and the co-author with Ross
Santos of Developing Clarion for Windows Applications, published by SAMS (1995).
He is also the editor and publisher of Clarion Magazine.

http://www.clarionmag.com/cmag/v3/v3n2advisor2.html (3 of 4) [5/9/01 2:33:06 PM]

mailto:dharms@clarionmag.com
http://www.clarionmag.com/

The Clarion Advisor: Procedure Prototypes

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n2advisor2.html (4 of 4) [5/9/01 2:33:06 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10429&nameID=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

The Clarion Challenge: Useless Tab Text

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

The Clarion Challenge: Useless Tab Text

by Dave Harms

Published 2001-02-28

During a recent tour of the Language Reference Manual I came
across a curious and, as near as I can tell, completely useless
feature. As you probably know, you can place tabs on any side of a
sheet, left, right, top, bottom. For left and right side tabs you can
force the text to run top to bottom or vice versa, assuming you use
a TrueType font. You can also make the tab text appear upside
down. I suppose this is to accommodate users who hang from
gravity boots during working hours. See Figure 1.

Figure 1. Inverted text on tabs

I was hard pressed to find a use for inverted tab text, but I finally
settled on a little application that sends the selected tab scurrying
around all four sides of a sheet. My intention was to have the text
showing normally at the top of the sheet, then running top to
bottom along the right side, inverted on the bottom, bottom to top
on the left side, in an endless square loop. Listing 1 shows the
source for an application that does this. You can also view a very
short MPEG video of this stunningly pointless application.

The problem is that while this program demonstrates a use for
inverted tab text, it also has a major bug. After I changed the

http://www.clarionmag.com/cmag/v3/v3n2challenge.html (1 of 4) [5/9/01 2:33:09 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/v3/images/v3n2uselesstabs.mpg

The Clarion Challenge: Useless Tab Text

orientation using the property syntax, I was unable to get the tab
text back on its feet. As a result I had to make the text on the top of
the sheet inverted as well! So challenge number one is to find a way
of making the text appear right side up on the top of the sheet while
the application is running.

The second challenge, of course, is to find another application for
inverted tab text, and the third is to find a very compact way of
rewriting this program. Three challenges for the price of one! Good
luck!

Send your answers to the challenge to editor@clarionmag.com, and
I'll post the results in a few weeks.

Download the source

Listing 1. The completely useless tab program

 program

 map
 testproc
 end

 code
 testproc()

testproc procedure

Window WINDOW('The completely useless tab program')|
 ,AT(,,196,152),FONT('Times New Roman',,,,CHARSET:ANSI)|
 ,TIMER(10),GRAY
 SHEET,AT(28,24,139,100),USE(?Sheet),SPREAD
 TAB('Tab 1'),USE(?Tab1)
 END
 TAB('Tab 2'),USE(?Tab2)
 END
 TAB('Tab 3'),USE(?Tab3)
 END
 TAB('Tab 4'),USE(?Tab4)
 END
 END
 END

count byte(1)
side byte(1)
tab short(1)

 code
 open(window)
 display()
 accept
 case event()
 of event:timer
 case count
 of 1

http://www.clarionmag.com/cmag/v3/v3n2challenge.html (2 of 4) [5/9/01 2:33:09 PM]

mailto:editor@clarionmag.com
http://www.clarionmag.com/cmag/v3/files/v3n2tabs.zip

The Clarion Challenge: Useless Tab Text

 side = 1
 tab = 1
 ?sheet{prop:above} = 1
 ?sheet{prop:default} = 1
 ?sheet{prop:upsidedown} = 0
 of 5
 side = 2
 tab = 1
 ?sheet{prop:right} = 1
 ?sheet{prop:down} = 1
 of 9
 side = 3
 tab = 4
 ?sheet{prop:upsidedown} = 1
 ?sheet{prop:below} = 1
 of 13
 tab = 4
 side = 4
 ?sheet{prop:left} = 1
 ?sheet{prop:up} = 1
 end
 execute (tab)
 select(?tab1)
 select(?tab2)
 select(?tab3)
 select(?tab4)
 end
 if side < 3
 tab += 1
 else
 tab -= 1
 end
 if count = 16
 count = 1
 else
 count +=1
 end
 display(?sheet)
 end
 end
 close(window)

David Harms is an independent software developer and the co-author with Ross
Santos of Developing Clarion for Windows Applications, published by SAMS (1995).
He is also the editor and publisher of Clarion Magazine.

http://www.clarionmag.com/cmag/v3/v3n2challenge.html (3 of 4) [5/9/01 2:33:09 PM]

mailto:dharms@clarionmag.com
http://www.clarionmag.com/

The Clarion Challenge: Useless Tab Text

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n2challenge.html (4 of 4) [5/9/01 2:33:09 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10428&nameID=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Introduction To SQL: Part 1

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Introduction To SQL: Part 1

by Dave Harms

Published 2001-02-28

In a recent Clarion Magazine poll I asked developers how much of their
development effort was directed at SQL databases. Out of 193
responses, 46% did no SQL development, 20% did half or less
development for SQL, and 34% did most of their development for SQL.

Interest in SQL is at an all-time high in the Clarion development
community, but many are still uncertain about whether to go to SQL, or
how to make the switch. In this article I’ll compare SQL databases to
TPS databases, and suggest some reasons and strategies for moving to
SQL.

What is SQL?

SQL stands for Structured Query Language, and can be pronounced
either "sequel" or "ess-queue-ell" depending on which side of the
religious war you prefer. SQL was originally developed by IBM, and
inspired by IBM researcher E.F. Codd. As the name suggests, SQL is an
English-like language that lets you selectively retrieve data from a
database. For instance, the statement:

SELECT FirstName, LastName FROM Names WHERE Country= ’Canada’

will retrieve the first and last names of all the Canadians from a table
called Names. It could be that your application created that SELECT
statement, or perhaps you typed it in yourself using a special database
client. In the former case, your application will then display the names
(perhaps in a browse); in the latter, the database client will display a
list of names.

Actually SQL can do a whole lot more than just retrieve data. You can
use SQL to create and modify databases, tables, and keys as well as
update, insert, and delete data. You can also use SQL to enforce
relationships between tables, creating what’s called a relational
database. (For more on relational databases, see Tom Ruby’s series of
articles on database normalization.) A relational database doesn’t have
to be a SQL database, but in most cases you’ll find that relational and
SQL go hand in hand. That’s because SQL isn’t just a standard query
language, it’s also a standard language for defining tables and their
relationships.

http://www.clarionmag.com/cmag/v3/v3n2introsql1.html (1 of 5) [5/9/01 2:33:12 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/v2/v2n8complexity1.html

Introduction To SQL: Part 1

SQL is a bit like the standard Clarion language grammar for accessing
databases. The Clarion language has CREATE, SET, NEXT, PREVIOUS,
ADD, and DELETE statements which you can use on a variety of different
file formats; all you need is a file driver appropriate for the data files
you’re accessing. SQL has CREATE, SELECT, INSERT, DELETE, and
UPDATE statements which will work on any SQL database; all you need
is a way of presenting those statements to the database.

If SQL and Clarion take similar approaches to handling data, why would
you bother with SQL? Part of the answer lies in the differences between
relational and flat file databases.

Relational vs. flat file databases

A lot of people think of Clarion as a relational database development
tool. In fact, Clarion is really a database-agnostic fourth generation
language, or 4GL. You can use Clarion with flat file and relational
databases. And for those of you who think of TPS files as a relational
database, nope, that isn’t the case. TPS files are flat files.

A flat file database simply contains data files; there is no code involved
in processing the data, rather, the application does all the work. If, for
instance, you have an order entry application, you’ll probably have
something like an Order header table, which contains one record for
each order, and an OrderDetail table, which contains one record for
each item purchased as part of a given order. If you delete an Order
record, and there are related OrderDetail records, you could leave
behind orphaned records. To prevent this you’ll want to either delete
those related records, or prevent the deletion of the Order record. In a
flat file database your application has to manage the relationships
between tables; in a relational database, this is the server’s job.

NOTE: The term database server has two common
meanings: one is the software that manages the database,
and the other is the physical computer that holds the
database and the database server software. In most cases,
database server software is installed on a dedicated machine,
so that other processes don’t slow database handling.

Clarion is quite good at handling relationships between tables in a flat
file database. You can define those relationships in the data dictionary,
and by clicking a few options you can tell Clarion to generate
appropriate code to cascade or restrict deletes, and so forth. What
Clarion can’t do, however, is stop any other program from violating the
rules you’ve so carefully defined in the dictionary. Your data is just
sitting out there in a no-brain TPS file, waiting to be trashed by any
program that can read the file.

Client/server and relational databases

Another term frequently used in database application development is
client/server. If you’re using a flat file (i.e. TPS database) on local
computer, you’re not doing client/server. If you place that flat file
database on a server, so more than one program can work with the
data at a time, you’re still not doing client/server. In a client/server
environment, both the client and the server have some intelligence.
Relational SQL databases are a common example of client/server

http://www.clarionmag.com/cmag/v3/v3n2introsql1.html (2 of 5) [5/9/01 2:33:12 PM]

Introduction To SQL: Part 1

processing.

The database server’s intelligence provides a number of key advantages
over flat file databases, including speed, data integrity, compatibility
with other products, ease of administration, and scalability.

The need for speed

A SQL database can provide dramatic speed improvements over flat file
databases in a network environment,(from this point on, I’ll use the
term "SQL database" to mean "relational SQL database," but keep in
mind that not all SQL databases are fully relational). If you’re using flat
files such as TPS files, every time you request a record from a table, all
of the fields in that record have to travel across the network. If your
table has fifteen fields with a total of 500 bytes per row, and you only
want to retrieve one 25 byte field, then you’re moving 20 times more
data across the network than you need! In most cases you’ll want more
than just five percent of the row’s data, but if you even use only half of
the available data, you’ve doubled your bandwidth requirements by
using a flat file.

And since the flat file database contains no intelligence, it doesn’t know
anything about how tables are related. If your browse makes use of
multiple tables, your application will have to retrieve full rows of data
from the related tables as well, and match those results with the first
table.

If you’re using a SQL database, your application sends a SELECT
statement to the database server, which sends only the requested fields
across the network. Your application can also tell the database server to
return fields in related tables; it’s up to the server to decide how it
locates this related data, and it only sends the requested fields back to
the application. This also means the client computer doesn’t have to
expend processor cycles matching the related records.

NOTE: Reducing the client computer’s processing load may
or may not speed the application. Much will depend on the
speed of the network, and the load on the database server.

Data integrity

I’ve already mentioned data integrity in the case of orphaned records.
Although you can easily create a Clarion application that manages
related table data, this puts the burden entirely on the application. In a
shared database environment you often have multiple applications
working with the same data. Even if you’ve created all these
applications with Clarion, you’ll need to ensure that you use the same
dictionary, or maintain the same relationship settings across multiple
dictionaries. And if someone wants to work with the database using,
say, Excel, or a Visual Basic application, all bets are off.

In a heterogeneous environment, you’re far better off putting core
database integrity rules in the database itself. These rules can embody
the sort of basic relational integrity (RI) options you see in the Clarion
data dictionary (restrict or cascade changes and deletes), and they can
specify default and allowed values for individual fields. In most SQL
databases you can also create triggers, which execute SQL code when a

http://www.clarionmag.com/cmag/v3/v3n2introsql1.html (3 of 5) [5/9/01 2:33:12 PM]

Introduction To SQL: Part 1

certain action (like a delete or insert) happens. Triggers can call stored
procedures, which are functions written in SQL and stored on the
server.

You can build a SQL database with sufficient RI and other rules so that
it’s virtually impossible for any application (or any individual executing
SQL statements by hand) to corrupt that database. I’ll discuss this
subject in more detail in upcoming articles.

Compatibility

Although the major database vendors each have their own flavor of
SQL, there is enough adherence to the 1992 ANSI SQL standard that
you can readily port most applications from one server to the next. And
because SQL is a relatively standardized language, there are many tools
and utilities available, for everything from database design to syntax
checking to reporting. One place to look for SQL tools is the WinFiles
web site.

Ease of administration

As I indicated earlier, SQL isn’t just for querying data. You also use SQL
to create and alter databases, tables, and indexes. It’s easy to add a
field to or remove a field from an existing table, or to change a field’s
data type or default value. In a TPS file, changing the table definition
doesn’t change the physical data; you still have to create a conversion
program, or use the data dictionary’s table conversion feature.

You can also easily do mass updates in SQL by applying UPDATE or
DELETE statements to a selected set of records. While mass updates are
inherently dangerous (you can easily wipe out an entire table), they’re
also amazingly useful.

Scalability

Applications are not only a lot bigger than they used to be, but they
typically deal with a lot more data. TPS files can store a lot more data
than the old Clarion DAT files, but in general flat file databases hit
storage limits and performance walls a lot sooner than SQL databases.
The history of each kind of database suggests this is likely to happen:
Flat file databases derive from small, single user systems, and SQL
databases started out on the big iron. You wouldn’t want to store a
terabyte of data in a TPS file, even if it were possible (it isn’t – the
maximum size of a TPS file is two gigabytes).

SQL databases are designed to hold massive amounts of data, and to
work with that data efficiently. SQL server performance scales with the
hardware, while the same isn’t generally true of flat file databases. At
the same time, SQL servers are invading the personal computer data
space, and some of the more popular SQL databases are even available
for handheld computers.

Clarion and SQL

Clarion’s support for SQL databases has improved considerably in
recent years. Prior to ABC, your only real option was the Cowboy

http://www.clarionmag.com/cmag/v3/v3n2introsql1.html (4 of 5) [5/9/01 2:33:12 PM]

http://winfiles.cnet.com/apps/nt/program-misc.html

Introduction To SQL: Part 1

Computing Solutions SQL templates. ABC provides acceptable SQL
features and performance, although for serious work you should still
take a look at the CCS SQL templates.

If you already have an SQL database, and you have a suitable SQL or
ODBC driver for that database, all you probably need to do is import the
tables into a dictionary and you can start creating your application in
the usual manner.

If you’re porting a TPS database to SQL, I strongly suggest you read
the free articles on this subject by Stephen Mull and Scott Ferrett.
There are a number of important data type and table design
requirements in SQL that don’t exist in TPS files, and there’s a good
chance that you’ll need to make at least a few minor changes. If you
don’t yet have a SQL database to play with, take a look at Tom
Hebenstreit’s suggestions for getting into SQL on the cheap. One free
SQL database increasingly popular with Clarion developers is MySQL,
and you can read more about this database in my earlier articles on
using MySQL with Clarion.

I hope I’ve whet your appetite for SQL databases. That was the
appetizer; next week I’ll serve up a first course of database and table
creation.

David Harms is an independent software developer and the co-author with Ross Santos of
Developing Clarion for Windows Applications, published by SAMS (1995). He is also the
editor and publisher of Clarion Magazine.

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n2introsql1.html (5 of 5) [5/9/01 2:33:12 PM]

http://www.ccscowboy.com/products.htm
http://www.clarionmag.com/cmag/v1/v1n10convertingtosql.html
http://www.clarionmag.com/cmag/v1/v1n4convertingtosql.html
http://www.clarionmag.com/cmag/v2/v2n6cheapsql.html
http://www.mysql.com/
http://www.clarionmag.com/cmag/v2/v2n4mysql1.html
mailto:dharms@clarionmag.com
http://www.clarionmag.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=10427&nameID=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

The Cranky Programmer: Got Them Bloated ABC Blues

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

The Cranky Programmer: Got Them Bloated ABC
Blues

by Cranky

Published 2001-02-22

Got Them Bloated ABC Blues

Do you know what a gnat is?

It’s a teeny-tiny-itsy-bitsy flying insect that thinks you make a
pretty tasty snack. (Of course, Hannibal Lecter might think the
same thing about you, but I digress.)

In ones or twos, you probably never even notice gnats; they’re
just a petty annoyance, quickly forgotten. The problem is, they
tend to descend in vast swarms, and all those minor annoyances
soon become a major pain-in-the… well, pick your favorite body
part (or maybe that should be your least favorite body part).

That’s what I’ve been going through lately, only it’s nits instead of
gnats – a swarm of annoying little things that have finally added
up to a major attack of Cranky-itis.

That’s right. Just like Hannibal, I’m baaaaaaaaaaaack. And this is
only the beginning.

Today’s tasty topic is…

ABC gives you that little something extra

I was setting up a new ABC multi-DLL application the other day in
Clarion 5.5, and in the process of creating the initial data DLL I
encountered some annoying link errors. After a few moments
thought (more on that later), I was able to fix the errors, compile
the app, and proceed with making a couple other applications for
related DLLs and the EXE.

Each of these applications was basically a stub, i.e. just an entry
point without much of anything else. The EXE contained just a
small menu, and the entire application only had 10 or 15 files
defined. Nothing special yet.

http://www.clarionmag.com/cmag/v3/v3n2cranky.html (1 of 5) [5/9/01 2:33:16 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

The Cranky Programmer: Got Them Bloated ABC Blues

In the course of poking around in the folder for my new
application, I noticed that the EXE and most of the DLLs were
around 20-25k in size. Cool, that’s what I’d expect.

Then I took a look at the data DLL and fell out of my chair.

Well, actually, I almost fell out of my chair. I got my new Super
Executive Hyper Swivel Mega Roller Ultra Lounger with arm rests
for just that reason – I was tired of hitting the floor every time I
ran into a new "undocumented feature’.

Where was I? Oh, yeah, the data DLL. It weighed in at a hefty 1.5
megs, and that was without debug turned on. Yikes! What was
going on?

Time for a bit of "sleuthing,", otherwise known as crying and
whining on the newsgroups.

Can I pack that for you, sir?

Did you know that when you create an ABC multi-DLL application,
every "ABC compliant" class is included in your data DLL? I don’t
mean just every SoftVelocity ABC class; I mean every single
compliant class from every single template set and/or tool that you
have installed for that version of Clarion.

What constitutes an ABC compliant class? There are several
requirements, but the main one is, to quote the online help:

The header file (.INC) containing the CLASS declaration
must contain the following comment before compilable
code begins:

!ABCIncludeFile

If a class is in your \LibSrc folder and has that line in it, it is
probably ABC compliant. And if it is compliant, then it is a) loaded
when you open your first ABC app of the day (the ever popular
"Please wait… Reading ABC header files" message), and b)
included in every data DLL you create (i.e., a DLL that doesn’t
have the "Generate template globals and ABC’s as EXTERNAL" flag
turned on).

So it doesn’t matter whether you are using the class or not, it gets
compiled in. That’s why even for fairly small and simple ABC
applications, the size of the data DLL can be all out of proportion
to the number of files you have defined or the classes actually
being used.

It is also the cause of a fairly common cry for help on the
newsgroups that goes something like this:

"When I try to compile my data DLL, I’m getting link errors for a
bunch of stuff that starts with "vsaftp.’ I don’t even know what

http://www.clarionmag.com/cmag/v3/v3n2cranky.html (2 of 5) [5/9/01 2:33:16 PM]

The Cranky Programmer: Got Them Bloated ABC Blues

that is!" (Umm, remember those link errors I mentioned earlier?)

The culprit in the above case is Vince Sorensen’s ABC Free
templates, a very useful (and highly recommended) collection of
free templates and tools. The package includes a wrapper class for
the Catalyst SocketTools ftp library (another third party product),
and guess what -- the wrapper is ABC compliant. Thus, the ABC
Free classes get sucked into your data DLL and compiled along
with everything else.

The problem, of course, is that if the hapless recipient of the link
errors doesn’t happen to own SocketTools, there is nothing there
to link to and now they are stuck.

So what’s the solution?

You really have two basic options. The first is to not use some of
these free tools. After all, if they aren’t there, they can’t cause
problems. The major drawback to this, of course, is that you are
severely limiting your options and not "working smarter" by taking
advantage of the time and effort savings that these kinds of no-
cost templates and tools can provide. The other option is to
selectively remove the classes you don't need.

I vastly prefer the second option, and there’s even a free template
that does this in… you guessed it, Vince’s ABC Free templates.

Fixes and cleans for one low, low price!

One of the little gems Vince provides is a template to exclude
generation of global classes, i.e., not include them in your data
DLL. This not only eliminates errors like the ones caused by the ftp
wrapper, it has the cardinal virtue of letting you trim a lot of that
extra baggage in your data DLL from classes that you simply aren’t
using.

To use the template, you add it to your data DLL application under
Global Extensions and then just choose the classes you want to
exclude by picking them from a convenient list. It looks something
like this:

http://www.clarionmag.com/cmag/v3/v3n2cranky.html (3 of 5) [5/9/01 2:33:16 PM]

http://www.dlcwest.com/~sorev/topspeed/
http://www.dlcwest.com/~sorev/topspeed/
http://www.catalyst.com/

The Cranky Programmer: Got Them Bloated ABC Blues

Figure 1. The "Exclude classes" template in action

As Figure 1 shows, you click on Insert and then just drop down the
list of ABC compliant classes. Select a class, say OK and –poof-,
it’s gone from your app. If you look at the first one on my list,
you’ll see it is "CSFTPClass", the class wrapper that causes the link
errors.

Remember that application I was talking about at the start of this
column? The one with a data DLL that weighed in at around 1.5
megs? After some judicious class pruning using this template, I
not only eliminated the link errors but also reduced the size to
under 500K. Not bad for a few minutes "work", and the application
showed another benefit in a faster load time.

So, don’t let ABC turn your programs into disk pigs – slim down
those applications!

Tidying up

By the way, with this template you can exclude any ABC class,
including the base SoftVelocity ABC classes. If you want to be
ruthless in trying to exclude absolutely everything that your app
isn’t using, feel free to add whatever ABC classes you don’t think
you need to the exclude list. If you excluded something that you
shouldn’t have (like maybe the BrowseClass), you’ll just get a

http://www.clarionmag.com/cmag/v3/v3n2cranky.html (4 of 5) [5/9/01 2:33:16 PM]

The Cranky Programmer: Got Them Bloated ABC Blues

million compile errors. Take that item back off the list and
everything should be fine again.

Note: All of this only applies if you are creating a multi-DLL
application. If you are compiling local (i.e., one big EXE with no
DLL files), only the classes you actually use will be included.

Is something annoying you? Even better, have you figured out a
way around some other Clarion annoyance? Share it with Cranky,
and I’ll share it with the world!

I’m waiting…

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n2cranky.html (5 of 5) [5/9/01 2:33:16 PM]

mailto:cranky@clarionmag.com
http://www.clarionmag.com/cmag/comments.frm?articleID=10408&nameID=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

COM: Getting Easier By The Minute
(Part 3 of 3)

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

COM: Getting Easier By The Minute
(Part 3 of 3)

by Jim Kane

Published 2001-02-22

Part 3 of 3

In the first and second installments in this series I showed how
Clarion COM is really pretty easy, using Clarion Interfaces that
correspond to COM Interfaces. The approach I outlined uses early
binding, where you know the names of the Interface methods at
compile time.

You can also locate and call COM methods at runtime, using late
binding. This is what the Clarion OLE control does, and you can do
it too in your code. I’ll touch on this briefly, and then I’ll go back to
early binding to finish up the IXMLSaxReader wrapper classes.

Late Binding

There are two basic types of interfaces used by COM objects:
IUnknown and IDispatch. IDispatch is derived from IUnknown,
and it adds a few additional methods used to call COM methods
without first prototyping them. This is also known as late binding,
and it’s what the Clarion OLE control uses. The IDispatch interface
looks like this:

IDISPATCH INTERFACE(IUNKNOWN),COM
GetTypeInfocount Procedure(*Unsigned pctinfo),hresult
GetTypeInfo Procedure(unsigned itinfo,
 Unsigned lcid,*long pptinfo),hresult
GetIdsOfNames Procedure(long riid, long rgsznames,
 unsigned cnames,unsigned lcid,
 *long rgdispid),hresult
Invoke Procedure(long dispidmember, long riid,
 unsigned lcid,ushort flags,
 long pdispparams, *long pvarresult,
 *long pexceptinfo,*unsigned puArgErr)
 ,hresult
 END

Of the additional methods in IDispatch, Invoke is the most

http://www.clarionmag.com/cmag/v3/v3n2easiercom3.html (1 of 11) [5/9/01 2:33:22 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

COM: Getting Easier By The Minute
(Part 3 of 3)

noteworthy. Lets say you have an IDispatch interface that is
known to support a method called DoIt. Here is the prototype:

ITestcom Interface(IDispatch),COM
End

Notice DoIt is not among the methods in the interface. The reason
for this is all method calls go through Invoke when you are using
IDispatch. You simply pass the string ’DoIt’ to Invoke, along
with any parameters you need to pass. Invoke parses the function
name and parameters, and then calls the appropriate class method
for you. In this scheme there is no way to call DoIt directly. Invoke
is very convenient because you don’t have to do any prototyping,
but this kind of late binding is slow process with a lot of overhead.
Given a choice, never call IDispatch.Invoke. Because Invoke is so
slow, Microsoft currently recommends creating dual interfaces. A
dual interface includes all the methods of IDispatch, plus all the
methods IDispatch supports which can be called directly. If the
hypothetical ITestCom interface were a dual interface it would look
like this:

ITestCom Interface(IDispatch),COM
DoIt procedure(),hresult
 End

With a dual interface you can call DoIt via IDispatch.Invoke or
you can call the DoIt method directly. Why bother? If you create
COM objects with a dual interface, scripting languages can call the
object via IDispatch and languages that support early binding can
have the speed and efficiency of early binding; these languages can
call the methods directly without going through IDispatch.Invoke.
The original Clarion OLE control only called COM methods via
IDispatch (late binding). Now, with the advent of the Interface
structure, you can also call the methods of a dual interface directly
(early binding).

To call a COM object you need an interface definition, and an object
that implements that definition. An interface contains no code – it’s
just a group of prototypes that tells Clarion how to call a COM
object. Working with COM is all about matching COM objects up
with Clarion interface definitions, using the following sequence of
events:

● get the CLSID and IID from the typelib
● call coIntialize to wake up COM
● call CoCreateInstance to get the pointer to the interface
● feed the pointer obtained from CoCreateIntance to the

interface definition
● you’re ready to call OLE methods!

Getting back to ISaxReader, the two most important methods you
need to call are putContentHandler and ParseURL:

putContentHandler procedure(long lpISaxContentHandler)

http://www.clarionmag.com/cmag/v3/v3n2easiercom3.html (2 of 11) [5/9/01 2:33:22 PM]

COM: Getting Easier By The Minute
(Part 3 of 3)

 ,hresult
ParseURL procedure(long lpURL),hresult

PutContentHandler is how you tell IsaxReader what the address
of the ISaxContentHandler interface it should send results to is.
ParseURL is where you specify the name of the file to parse as a
wide string. Because ParseURL expects a resource in URL format,
precede the name of the file with file://.

Next you need to create the ISaxContentHandler interface and
class. The IXMLSaxReader is a generic XML parser; it knows how to
read an XML file and extract the tags and tag attributes. But that’s
all it does; you still have to supply code to do something with that
data. In my case I’m writing XML file data to a TPS file. The code
that does this is in the ISaxCl.EndElement method in saxxml.clw.

When you call a COM object you only need the interface, but to
implement or create a COM object, you need both the interface for
others to call (well it would be a shame to create a COM object and
not have any one call it!) and the class itself that does the work.
The IXMLSaxReader requires you to create a class that implements
the ISaxContentHandler interface, which you can find in the
MSXML3 typelib. Prototype this interface as follows:

ISaxContent INTERFACE(IUnknowntype),COM,type
documentLocator Procedure(long lpLocatorObj),hresult
StartDocument Procedure(),hresult
EndDocument Procedure(),hresult
StartPrefixMapping Procedure(long lpWPrefix,
 long cbPrefix, long lpWURI,
 long cbURI),hresult
EndPrefixMapping Procedure(long lpWPrefix,
 long cbPrefix),hresult
StartElement Procedure(long lpWNamespaceURI,
 long cbNameSpaceURI,
 long lpWLocalName,
 long cbLocalName,
 long lpWQName, long cbQName,
 long lpObjAttributes),hresult
EndElement Procedure(long lpWNameSpaceURI,
 long cbNameSpaceURI,
 long lpWLocalName,
 long cbLocalName,
 long lpWQName,
 long cbQName),hresult
Characters Procedure(long lpWChars,
 long cbChars)
 ,hresult
IgnoreableWhitespace Procedure(long lpWchars,
 long cbChars),hresult
processingInstruction Procedure(long lpWTarget,
 long cbTarget,long lpWData,
 long cbData),hresult
SkippedEntity Procedure(long lpWName,
 long cbName),hresult

http://www.clarionmag.com/cmag/v3/v3n2easiercom3.html (3 of 11) [5/9/01 2:33:22 PM]

COM: Getting Easier By The Minute
(Part 3 of 3)

 End

Notice first that ISaxContent a type definition. The "real" interface
is the class as you will see shortly. Among the parameter names I
use the prefix lp to signify long pointer or an address. My usage of
lp tells you I’m very old. Back in the days of 16 bit there was a
distinction between long and short pointers. Out of habit I still refer
to addresses as lpSomething. I use lpW as my abbreviation for the
address of a wide string. Keep in mind that the IXMLSaxReader
works in wide (Unicode) strings , so the COM object that handles
the parser’s output needs to work in wide strings also.

Most of the methods in ISaxContent, such as StartElement,
contain the address of a wide string followed by its length. I use cb
to stand for count byte or length of the string. For the most part,
the code in each of these methods simply takes the address of the
wide string with it’s length and converts the wide string into a
Clarion string. Once converted into a Clarion string, I pass the
Clarion string back to my IsaxCl class.

The complete circle is this: IsaxCl calls the IXMLSaxReader
interface and tells it to parse a file; IXMLSaxReader sends the
output to a class which implements an ISaxContent interface. Once
ISaxContent gets the information, it converts it to a Clarion format
and passes it back to the IsaxCl. The IsaxCl can then store the
information in a file or queue or use the information directly.

Interpreting XML

The ISaxContentCl class interprets the XML elements the parser
extracts from the XML file. Here is a basic XML file with one record:

<?xml version="1.0" ?>
<ORDER>
 <ITEM>Widgets</ITEM>
 <QTY>5</QTY>

</ORDER>

The IXMLSaxReader handles the sequence of calls required to
correctly read the XML data. First the parser calls the content
handler’s StartDocument method, then for each element in the
XML file the parser calls the content handler’s StartElement,
Characters, and EndElement methods.

In StartDocument you open or create a file. StartElement tells you
the record type or field name, and EndElement indicates that the
parser is done with that element. In between StartElement and
EndElement, one or more calls to Characters supply the element
value. When you encounter a call to EndElement with a record
name of Order, you save the record.

Repeat this process repeats for each element in the XML file until
you get an error or the IXMLSaxReader automatically calls

http://www.clarionmag.com/cmag/v3/v3n2easiercom3.html (4 of 11) [5/9/01 2:33:22 PM]

COM: Getting Easier By The Minute
(Part 3 of 3)

EndDocument. In both the error handler and EndDocument you
should close the file you are saving to.

The best way to learn how the XML file is parsed is to put MESSAGE
statements into each of the IsaxCl methods corresponding to an
IsaxContext method and display the information it receives.
Believe me, it’s not very complex, VB programmers have done it.

Now with out further ado, but perhaps a drum role, here is a COM
Class implementing the ISaxContent interface:

ISaxContent INTERFACE(IUnknowntype),COM,type
documentLocator Procedure(long lpLocatorObj),hresult
StartDocument Procedure(),hresult
EndDocument Procedure(),hresult
StartPrefixMapping Procedure(long lpWPrefix,
 long cbPrefix,long lpWURI,
 long cbURI),hresult
EndPrefixMapping Procedure(long lpWPrefix,
 long cbPrefix),hresult
StartElement Procedure(long lpWNamespaceURI,
 long cbNameSpaceURI,
 long lpWLocalName,
 long cbLocalName,
 long lpWQName,
 long cbQName,
 long lpObjAttributes)
 ,hresult
EndElement Procedure(long lpWNameSpaceURI,
 long cbNameSpaceURI,
 long lpWLocalName,
 long cbLocalName, long lpWQName,
 long cbQName),hresult
Characters Procedure(long lpWChars,
 long cbChars),hresult
ignoreableWhitespace Procedure(long lpWchars,
 long cbChars),hresult
processingInstruction Procedure(long lpWTarget,
 long cbTarget, long lpWData,
 long cbData),hresult
SkippedEntity Procedure(long lpWName,
 long cbName),hresult
 End

ISaxContentClType Class,Implements(ISaxContent),
 Module('ISaxCl.clw')
 ,DLL(_ABCDllMode_),type
refcount long(0)
debugmode byte(0)
ISaxCl &IsaxClType !reference to parent
StrCl &StrClType !helper class
 End

Here is one typical class method:

http://www.clarionmag.com/cmag/v3/v3n2easiercom3.html (5 of 11) [5/9/01 2:33:22 PM]

COM: Getting Easier By The Minute
(Part 3 of 3)

ISaxContentclType.ISaxContent.EndElement
 Procedure(long lpWNameSpaceURI,
 long cbNameSpaceURI,
 long lpWLocalName,
 long cbLocalName, long lpWQName,
 long cbQName)

Res byte(0)
NameSpaceURI &string
LocalName &string
QName &String

 Code
 !convert each of the wide
 !strings to Clarion strings
 NameSpaceuri&=SELF.StrCl.WideStrToCwAlloc
 (lpwNamespaceURI,res,cbNameSpaceUri)
 if ~res then localname&=SELF.StrCl.WideStrToCwAlloc
 (lpwLocalName,res,cbLocalName).
 if ~res then QName&=SELF.StrCl.WideStrToCWAlloc
 (lpwQName,res,cbQName).
 !pass the Clarion strings to
 !the corresponding IsaxCl method
 if ~res then res=SELF.ISaxCl.EndElement
 (NameSpaceURI,Localname,QName).
 !dispose of the Clarion strings new()ed by strcl.
 dispose(namespaceuri)
 dispose(localname)
 dispose(qname)
 !message if an error and debug mode is on.
 if res and SELF.DebugMode |
 then message('endelement failed').
 !convert our nice simple 0 code
 !to a com hresult (0=S_OK)
 return Choose(res=0,0,E_Fail)

The corresponding IsaxCl method does just about nothing other
than clean up:

ISaxClType.EndElement
 Procedure(*String NameSpaceURI, *String LocalName,
 *string QName)!,byte,proc

 Code
 !At this point, SELF.ElementText contains
 !the text of the element. Insert your code here
 !to save it to a queue or derive this method
 !Clear the inelement flag used by the
 !character method
 SELF.Inelement=False
 clear(SELF.ElementText)
 return return:benign

Perhaps the odd thing is you never call the EndElement method –
the Microsoft IXMLSaxReader’s class calls this method via the
ISaxContentCl when it has data from the parsing of the XML file.

http://www.clarionmag.com/cmag/v3/v3n2easiercom3.html (6 of 11) [5/9/01 2:33:22 PM]

COM: Getting Easier By The Minute
(Part 3 of 3)

For those of you familiar with the term, this is a classic callback
function.

Despite all the hype about creating a COM object, all you really
need to do is create a normal Clarion class that implements a
Clarion COM interface.:

ISaxContentClType
Class,Implements(ISaxContent),Module('ISaxCl.clw'),
 DLL(_ABCDllMode_),type

And:

ISaxContentclType.ISaxContent.EndElement Procedure(
 long lpWNameSpaceURI, long cbNameSpaceURI,
 long lpWLocalName, long cbLocalName,
 long lpWQName, long cbQName)

That’s it! There’s nothing up my sleeve; just add an interface with
the COM attribute and your class become a COM object callable by
standard COM protocols! Now all you need to do is connect the
dots, or in this case connect the IsaxCl class to the ISaxContent
XML content handler. That happens in the IsaxCl.init method,
like this:

!create a few classes
!string class for Clarion to wide string conversion
 SELF.StrCl &= NEW StrClType
!create the ISaxContectCl
SELF.ISaxContentCl &= New ISaxContentClType
!intialize the ISaxContentCl
!Pass the IsaxCl or SELF to the ISaxContentCl
!you just created
SELF.ISaxContentCl.ISaxCl&=SELF
!Give ISaxContentCl it’s own string class
SELF.ISaxContentCl.StrCl&=New StrClType

At this point the ISaxContent interface and class, and the
IsaxReader interface are all set up and ready to call. Notice that
you pass the address of the ISaxContent interface and not the
address of the class because the interface is what IXMLSaxReader
will use.

!if pass the content Interfaces
!to the IXMLSAXReader Interface
hr=SELF.ISaxReader.PutContentHandler
 (address(SELF.ISaxContentCL.ISaxContent))
if hr<0 then !standard com error handling

res=return:fatal end

To begin the parsing, convert the XML file name to URL form and
call ParseURL with the address of that string:

!this starts the actual parsing of the file

http://www.clarionmag.com/cmag/v3/v3n2easiercom3.html (7 of 11) [5/9/01 2:33:22 PM]

COM: Getting Easier By The Minute
(Part 3 of 3)

!pXMLSourceURL=’file://order.xml’
wurl&=SELF.StrCl.CWToWideStralloc(pXMLSourceURL)
hr=SELF.ISaxReader.ParseUrl(address(wURL))
dispose(wURL)
if hr<0 then
 res=return:fatal
end
return res

In the downloadable source you’ll find the test application, made up
of SaxXML.Prj and SaxXml.clw. That little test application uses the
IsaxCl to parse Order.XML and save the information into
outfile.tps, which has this format:

OutFile FILE,DRIVER('TOPSPEED'),CREATE,BINDABLE
Record RECORD,PRE()
Item string(20)
Qty long
 END
 END

The test program declares IsaxCl like this:

ISaxCl class(ISaxClType)
EndElement Procedure(*String NameSpaceURI,
 *String LocalName, *string QName),byte,proc,virtual
End

Whenever the parser calls EndElement, EndElement looks for a field
completion, or a record completion. When the EndElement
LocalName is Order it’s time to add the record:

ISaxCl.EndElement Procedure(*String NameSpaceURI,
 *String LocalName, *string QName)

anyfield any

 code
 if Upper(localname)='ORDER' then add(Outfile) else
 loop Idx=1 to Outfile{prop:fields}
 if Upper(localname)=|
 Upper(Outfile{prop:Label,Idx})
 anyfield&=what(Outfile.Record,idx)
 anyfield=SELF.ElementText
 anyfield&=NULL
 end
 end
 end
 return(Parent.EndElement|
 (NameSpaceURI,LocalName,QName))

Note that I’ve used prop:label and What to save myself the
trouble of hard coding field names.

As you look through the code you will see a few other objects that

http://www.clarionmag.com/cmag/v3/v3n2easiercom3.html (8 of 11) [5/9/01 2:33:22 PM]

http://www.clarionmag.com/cmag/v3/cmagarticle_v3.jsp#download

COM: Getting Easier By The Minute
(Part 3 of 3)

handle errors and XML attributes. That code follows the same
pattern as the code I’ve already described: you prototype an
interface, define a corresponding class that implements the
interface, and set things up by passing the address of the interface
to IXMLSaxReader so IXMLSaxReader’s class knows what to call.

The only other detail in the code worth special mention is the use of
AddRef and Release. As I discussed in Part 1 of this series, when
the reference count inside an object gets to zero, the COM object
self destructs. If IXMLSaxReader passes you an object, the first
thing you should do with it is call AddRef to increment that object’s
internal counter. That ensures that the object won’t be disposed
until after you call Release.

If an error occurs, IXMLSaxReader passes the address of a locator
object’s IsaxLocator interface along with the other error
information. This happens in the IsaxClType.ErrorHandler
method. The ErrorHandler method then calls the ReadLocator
method just to read the locator and get the row and column in the
XML file where the error occurred. The code in
IsaxClType.ReadLocator method shows how to call the interface
on the locator object. The first call is to AddRef and the last to
Release. In between those calls the locator reads the column and
row. You must be very careful to balance calls to AddRef and
Release. Here is the code:

ISaxClType.ReadLocator procedure(long lpLocator,
 *long pColumn, *long pLine)

res byte(Return:Fatal)
ISaxLocator &ISaxLocatorType

 code
 if ~lpLocator then return res.
 ISaxLocator&=(lpLocator)
 !you let the locator know you are using
 !it so it doesn't self destruct
 ISaxLocator.AddRef()
 if ISaxLocator.GetColumnNumber(pColumn)<0 then
 ISaxLocator.Release()
 clear(pColumn)
 clear(pLine)
 return res
 end
 if ISaxLocator.getLineNumber(pLine)<0 then
 ISaxLocator.Release()
 clear(pLine)
 clear(pcolumn)
 return res
 end
 !let the locator know you are done with it and it
 ! can self destruct any time it wants
 ISaxLocator.Release()
 return return:benign

http://www.clarionmag.com/cmag/v3/v3n2easiercom3.html (9 of 11) [5/9/01 2:33:22 PM]

COM: Getting Easier By The Minute
(Part 3 of 3)

If you would like to see the error handling and the Locator in
action, find the jni_server.xml file in the downloadable zip. If you
load this XML file with Internet Explorer you will find out it has a
syntax error. If you try to read it with the demo program, it will
report the same syntax error with the location. That is the locator
object in action reporting the column and row where the error is.

In the above example calls to AddRef and Release are balanced. If
you call Release without AddRef, the object will probably be
destroyed while your program or some other program is trying to
use it.. Since your code didn’t create the ISaxReader object, it
shouldn’t release it. On the other hand your code did call
CoCreateInstance (by calling stdcom.GetInterface) to create the
class that contained the IXMLSaxReader interface so your code
should dispose of the object by calling Release. The last few lines
of code in the init method do just that:

!if ISaxReader was created, then Release it
if lpISaxReader then
 SELF.ISaxReader.Release
End

If you want to check that the reference count is okay, put a
message around the Release like this:

Message(SELF.IsaxReader.Release(),’Ref Count’)

The value displayed should be 0 indicating the object was disposed.

As I was building this project, my first implementation of
ISaxContent just had a method statement in each ISaxContent
method. I had no wide string conversion, no call to IsaxCl, and I
was ignoring the parsed data. You may think it corny, but when
that MESSAGE statement popped up and I knew the Microsoft
IXMLSaxReader was calling my COM object, I was quite excited and
did a little dance of joy. Fortunately no video tape was rolling – at
least I hope not!

After that little victory dance the floodgates opened, and I’ve built
little COM objects that can be called by both the usual Clarion OLE
Control and by early binding Interface methods. I’ve also written
little COM objects to modify the behavior of Internet Explorer
(Browser helper objects) and MS Office but have run into some
trouble getting them to unload.

The only thing that could make using COM in Clarion even better is
a utility that accepts information about the COM object you want to
create and produces the needed typelib and some starter files.
Want to guess what I’m working on? Okay I’m perhaps easily
entertained, but I think the COM possibilities for Clarion
programmers are endless. That’s a good feeling.

http://www.clarionmag.com/cmag/v3/v3n2easiercom3.html (10 of 11) [5/9/01 2:33:22 PM]

http://www.clarionmag.com/cmag/v3/cmagarticle_v3.jsp#download

COM: Getting Easier By The Minute
(Part 3 of 3)

Download the source

Some additional resources (courtesy of Carl Barnes)

● Dr. GUI articles on COM
● Download OLEView
● Inside COM - a good starter COM book
● Jumpstart for creating a SAX2 application with C++
● A Visual Basic SAX example
● MSDN article on XML
● Write an XML composer in VB

Jim Kane was not born any where near a log cabin. In fact he was born in New York
City. After attending college at New York University, he went on to dental school at
Harvard University. Troubled by vast numbers of unpaid bills, he accepted a U.S. Air
Force Scholarship for dental school, and after graduating served in the US Air Force.
He is now retired from the Air Force and writing software for ProDoc Inc., developer
of legal document automation systems. In his spare time, he runs a computer
consulting service, Productive Software Solutions. He is married to the former Jane
Callahan of Cando, North Dakota. Jim and Jane have two children, Thomas and Amy.

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n2easiercom3.html (11 of 11) [5/9/01 2:33:22 PM]

http://www.clarionmag.com/cmag/v3/files/v3n2easiercom.zip
http://msdn.microsoft.com/library/default.asp?URL=/library/welcome/dsmsdn/DrGUI042099.htm
http://www.microsoft.com/com/resources/oleview.asp
http://mspress.microsoft.com/prod/books/19.htm
http://msdn.microsoft.com/workshop/xml/articles/sax2jumpstart.asp
http://msdn.microsoft.com/workshop/xml/articles/joyofsax.asp
http://msdn.microsoft.com/msdnmag/issues/0900/xml/xml0900.asp
http://msdn.microsoft.com/library/periodic/period00/vb00l1.htm
mailto:jkane@satx.rr.com
http://www.prodoc.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=10356&nameID=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Clarion Magazine -

Clarion News

RSBackUp 1.2 Released
Robert Stanic has released version 1.1 of RSBackUp, a
standalone EXE backup utility for your applications. Features
include: compression using addZIP DLL; automatic calculation of
required floppies; large capacity/ZIP drive support; and selective
restore.
Posted Tuesday, February 27, 2001

MessageEx Updated
MessageEx, a MESSAGE() enhancement tool from solid software,
is now in release 1.4. New features include: random message
window placement, centering of text, WAV files (32 bit only), and
an HTML help file. This update is free for registered users. If you
purchased at ClarionShop, please download the update from their
site. If you purchased directly from solid software, you can
download from there using the old passwords. Demo available.
Posted Tuesday, February 27, 2001

Free Outlook Style Template
Ronald van Raaphorst has created a free template to assist
developers in creating Outlook-style applications with a menu on
the left, a tree (visible or invisible) in the middle, and a browse or
other window on the right. This is an adaptation of the free Locus
templates and the WinTree template. This is a work in progress,
not production quality code. For C55EE.
Posted Monday, February 26, 2001

http://www.clarionmag.com/cmag/news01-02.html (1 of 4) [5/9/01 2:33:24 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://members.easyspace.com/rstanic/tpl.htm
http://www.solidsoftware.de/msgex.htm
http://www.compad-software.com/ronald/outlook.zip

Clarion Magazine -

HTML Designer Version 1 Release Imminent
HTML Designer Version 1 is still scheduled for release at the end
of February 2001. The price of the HTML Designer will then
increase from $59.00 to $99.00. HTML Designer allows you to
bypass the cwHH class and automatically implements HTML Help
on ALL versions of Clarion for Windows for both Legacy and ABC.
You can add a template to your application to create a complete
bare bones HTML Help system for your application, and you can
export your application's help information and build a complete
HTML Help system for your application making use of the custom
WYSIWYG HTML Editor and the custom HTML Help Project Editor.
Posted Monday, February 26, 2001

VariView FAQ Page
Simon Burrows has created a FAQ page to answer the many
questions developers have been asking about the new VariView
templates.
Posted Monday, February 26, 2001

Freeware Template Handles Capitalization
New from Sterling Software, CapFlash is a freeware extension
template to be used on a Process. The template coverts file data
from upper case to proper case with the following options: You
can enter into the template a list of words which are always lower
case - such as del, la, de etc.; You can define a list of words
which are always upper case, such as ABC, USA, AFB etc.;
Individual fields (such as State) can be excluded; Names
beginning with Mc,Mac or O' are handled correctly. Compatible
with CW2002 to C5.5, ABC and Legacy
Posted Monday, February 26, 2001

Solace VariView Demo Available
Solace Software has a demo of the VariView debugging tool,
which is simply the Event Manager C55 example with the
VariView templates added. The new templates add a toolbox to
your application which can be called up by a programmer defined
key press. The toolbox shows the current values of all your Global
and Local variables together with all fields from your files. As
your progress through your program, the toolbox shows the

http://www.clarionmag.com/cmag/news01-02.html (2 of 4) [5/9/01 2:33:24 PM]

http://www.clarionshop.com/
http://www.solace-software.demon.co.uk/VvFAQ.htm
http://www.sterlingdata.com/capflash.htm
http://www.solace-software.demon.co.uk/

Clarion Magazine -

values of these variables without interfering with the flow of your
program. The templates are available for ABC and Legacy apps
and for 16 and 32bit.
Posted Monday, February 26, 2001

MenuTree Template Includes TXAs
The Menutree template includes two simple example applications
in Clarion 5.5 format. For those who don't have Clarion 5.5, the
template also ships with the application TXA files.
Posted Monday, February 26, 2001

Registry Function Library 1.5 Available
Registry Function Library 1.5 is now available for download. This
release includes three new functions for enumerating the
registry: EnumReg will load the entire contents of a key into a
queue structure; EnumValue and EnumKey return the name,
type, and content of a value or key by position. Also all remaining
16-bit API calls have been replaced by the 32-bit version.
Posted Tuesday, February 20, 2001

Intuit To Provide QuickBooks Interface
Intuit has announced qbXML, an interface to its popular
QuickBooks accounting system. Still under development, qbXML
will allow developers direct access to QuickBooks data. An
application communicating with QuickBooks will create XML data
(in memory or in a file) and pass that data to QuickBooks via a
COM object. The XML data type definitions are available for
download.
Posted Tuesday, February 13, 2001

Logic Central Adds Remote Reporter
Logic Central has released Remote Reporter, an add on to
IFT:HTTP server. Remote Reporter web-enables Clarion reports
quickly, and without coding. Your report is converted to a JPEG,
PNG, or WMF and sent to the client's browser or a customized
HTTP client. Requires Windows 95 or better, Clarion 5 or better,
and Internet Framework Tools HTTP Server 2.5 or better.
Posted Monday, February 12, 2001

http://www.clarionmag.com/cmag/news01-02.html (3 of 4) [5/9/01 2:33:24 PM]

http://www.clarionfoundry.com/
http://ourworld.compuserve.com/homepages/jeffnjones
http://developer.intuit.com/
http://www.logicentral.com/

Clarion Magazine -

FrameText Adds Text To Application Frame
New from solid software is FrameText, a small extension that
allows you to display text on your application frame's client area,
where you normally can't display any information. With
FrameText you can specify all text parameters including font
name, size and style, character set, color, light and shadow color
(for 3D effect), and justification. FrameText works with Clarion 5
and 5.5, legacy and ABC, 16 and 32 bit.
Posted Monday, February 12, 2001

CLARION.COM Sold For $30,000
Sensium Corporation recently put the CLARION.COM domain
name up for auction, with a minimum bid of $25,000. A user
named cagle22 purchased the domain for $30,000 on February 4.
Posted Friday, February 09, 2001

Clarion ABC Templates In Spanish
A version of the c55 Gold ABC templates, translated into Spanish,
is now available. Back up your current templates, just in case.
Posted Friday, February 09, 2001

GREGPlus Update Available
A free update is now available for GREGPlus for all v4.5
registered users.
Posted Tuesday, February 06, 2001

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any form without
the expresswritten consent of CoveComm Inc., except as described in the subscription agreement,
is prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

http://www.clarionmag.com/cmag/news01-02.html (4 of 4) [5/9/01 2:33:24 PM]

http://www.solidsoftware.de/frametxt.htm
http://www.clarion.com/
http://gopac.com.mx/Clarion/downloads.htm
http://www.gitanosoftware.com/GR401.EXE
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

The Clarion Advisor: Locating Records With PROP:SQLFilter

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

The Clarion Advisor: Locating Records With
PROP:SQLFilter

by Dave Harms

Published 2001-02-13

As much as I like the TopSpeed file format, the more I use SQL,
the more I wonder why I didn't switch sooner. SQL is an amazingly
powerful way to deal with data, and one of my favorite SQL
features is the ease with which I can locate data in a table using
PROP:SQLFilter.

Typically, I add an entry field to a browse window, and on that
field’s Accepted event I place code something like the following
(assuming the View is called BRW4::View:Browse and the entry
field is called ArticleFilter):

BRW4::View:Browse{prop:sqlFilter} = ArticleFilter
ArticlesBrowse.ResetFromBuffer()

I can then type any valid filter statement into ArticleFilter and
restrict the number of records the browse retrieves from the
database. Some of the statements I commonly use on the Clarion
Magazine Articles table are as follows:

ArticleType='CMAG' and Status='V'

ExtraInfo <> ''

ArticleType='NEWS' and
month(PublicationDate) = month(now())
and year(PublicationDate) = year(now())

Since I’m executing SQL statements directly on the server, I can
use all of the available functions, such as the month() and year()
functions. My all-time favorite filter function is like:

lower(URI) like '%oop%'

The % character is a wild card, and substitutes for any string of
characters so this filter will retrieve all articles with the phrase
‘oop’ in the file name.

http://www.clarionmag.com/cmag/v3/v3n2advisor.html (1 of 2) [5/9/01 2:33:26 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

The Clarion Advisor: Locating Records With PROP:SQLFilter

As handy as PROP:SQLFilter is, it doesn’t sit well with ABC. If you
enter an incorrect filter string (say you forget a quote character),
ABC reports the error, and then quite unpleasantly terminates the
browse procedure. At first I tried to detect the bad filter by
executing a NEXT() on the view after applying the filter, Clarion
never reported the error. Then Larry Teames suggested I use
PROP:SQL to test the filter, and that did the trick. My code now
looks like this:

Articles{prop:sql} = |
 'select ArticleID from Articles where ' |
 & clip(ArticleFilter) & ' limit 1'
next(Articles)
if errorcode()
 beep
 select(?ArticleFilter:2)
else
 BRW4::View:Browse{prop:sqlFilter} = ArticleFilter
 ArticlesBrowse.ResetFromBuffer()
end

The PROP:SQL statement attempts to retrieve just one record from
the table using the filter I’ve typed. If there’s an error, or there are
no records that match the filter, the code beeps and returns the
focus to the entry field.

I find PROP:SQLFilter so useful that I almost never use locators
anymore. I store commonly-used filters in a separate table, and
instead of an entry field I use a file loaded drop combo loaded
from that table. That way I can still type free-form filters when I
want to.

David Harms is an independent software developer and the co-author with Ross
Santos of Developing Clarion for Windows Applications, published by SAMS (1995).
He is also the editor and publisher of Clarion Magazine.

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n2advisor.html (2 of 2) [5/9/01 2:33:26 PM]

mailto:dharms@clarionmag.com
http://www.clarionmag.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=10415&nameID=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

COM: Getting Easier By The Minute
(Part 2 of 3)

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

COM: Getting Easier By The Minute
(Part 2 of 3)

by Jim Kane

Published 2001-02-13

Part 2 of 3

In Part 1 of this series I explained how Windows stores COM
information in the registry, and I showed how to declare a Clarion
interface that corresponds to the IUnknown interface that every
COM object contains. In this article I’ll show how to build on
IUnknown to call COM methods.

Adding the getFeature method

The IUnknown interface is the base interface for ISaxXMLReader.
Interfaces are just like classes – you can derive one interface from
another. To create an interface you can use to actually call the
COM object, derive the interface from IUnknown, and add the
additional methods (in this case the methods in ISaxXMLReader).
Here is the information from the typelib about the getFeature
method.

HRESULT _stdcall getFeature(
 [in] unsigned SHORT* pwchName,
 [out, retval] VARIANT_BOOL* pvfValue);

Again you see the familiar HRESULT (which is a LONG); the function
looks like this in Clarion:

Hresult equate(LONG)

ISaxXMLReader Interface(IUnknown),COM
GetFeature procedure(pwchName, pvfValue),hresult
 End

You’ve already declared the IUnknown interface so you don’t need
to redeclare those methods, but since those three methods already
exist, getFeature is the fourth method in the interface. You might
recall from my earlier articles that you had to count the position of
a method in the interface to know how to call it. I love inheriting

http://www.clarionmag.com/cmag/v3/v3n2easiercom2.html (1 of 7) [5/9/01 2:33:31 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

COM: Getting Easier By The Minute
(Part 2 of 3)

interfaces and saving all that typing.

Now you need to figure out the types for each of the two
parameters. One of the very best things about a typelib is each
parameter is marked with [in], [out] or [in,out]. Just like in
Clarion, if something is going to come out of a COM method, that
data has to be passed by address. In that case the C++ data type
has a * after it. All [IN] parameters are passed by value and have
no *.

Strings and groups

It looks like I just talked myself into a corner. I said [in]
parameters are passed by value, yet the first parameter is an [in]
and passed by address. The reason for that is STRINGs and GROUPs
are a special cases. These are too big to put on the stack and pass
by value, so instead just the address of the STRING or GROUP is
passed. That would explain it, except the type says USHORT and
not STRING! Well, a bunch of C and VB programmers got together
one day and evidently did a lot of drinking. Either that or they’re
under a Microsoft spell that causes them to do silly things. The
result was a decision to refer to wide (a.k.a. UniCode) strings as
unsigned shorts since each character in the STRING is 2 bytes or a
SHORT. It’s bizarre to me that unsigned SHORT * is used to
represent the address of a wide string. There really is no way to
tell from the prototype alone if the author meant a single USHORT
passed by address (*USHORT) or an array of ushorts representing
a wide string.

Clarion uses STRING and CSTRING which are both single byte
strings, but fortunately converting a Clarion STRING or CSTRING to
a wide string is not very difficult. My original COM article covered it
(yet another shameless plug). I also have included a new and
improved string class with the downloadable code for this article.
This string class has functions to convert wide strings to Clarion
strings and vice versa. With that code in hand conversion becomes
an easy process, so I won’t dwell on wide strings. There’s too
much other stuff to fill your heads with, and you wont get any cool
points for converting strings anyway.

Since the unsigned SHORT* is the address of a wide string, for the
purpose of prototyping I declare the wide string as LONG (all
addresses are can be prototyped as longs). The second parameter
is Variant_Bool*. Variant_Bool is not a variant but it is Boolean.
It is a SHORT and how VB programmers express true and false. To
those folks (remember they evidently drink a lot and don’t make
good decisions) true is -1 or 0FFFFH, and false is 0. That
conversion can mess up Clarion and C programmers since true is 1
to us. Since VARIANT_BOOL is an [Out] (parameter, not belly
button) you pass it by address, so in the Clarion prototype you add
a * to the SHORT. With that information the interface becomes:

Hresult equate(LONG)

http://www.clarionmag.com/cmag/v3/v3n2easiercom2.html (2 of 7) [5/9/01 2:33:31 PM]

http://www.clarionmag.com/cmag/v1/v1n6callingole_part1.html
http://www.clarionmag.com/cmag/v3/cmagarticle_v3.jsp#download

COM: Getting Easier By The Minute
(Part 2 of 3)

ISaxXMLReader Interface(IUnknown),COM
GetFeature procedure(LONG pwchName,
 *SHORT pvfValue),hresult
 End

Now that’s pretty amazing. Two long paragraphs and all you’ve
added to your interface is two words: LONG and *SHORT! Well, at
least it’s progress.

I know you’d love me to do a blow-by-blow description of every
parameter in the entire interface but instead I put the completed
prototypes for the ISaxXMLReader interface in the IsaxCl.Inc file
in the download. The pattern is the same. When you pass an item
such as a STRING, GROUP, or interface as a parameter, you pass
it by address because the item is too big to fit on the stack. In
each case you’ll see a * in the typelib prototype but in Clarion you
use a LONG since you’re just passing a pointer, or address. If
you’re passing the address [out] then make it a *LONG, since to
get the information out of the method you’ll need to give the
address’s, ah, address.

I think you’ll find it worth your time to compare the typelib
prototypes with the prototypes in IsaxCl.inc in the
downloadable code and work your way through the conversions.
These are not the only possible ways to prototype these functions
but workable. Other possibilities you might think would work,
don’t. If you tried to prototype the unsigned SHORT* used for a
wide string literally as *USHORT, Clarion would insist you use a
variable with a type of USHORT for the actual parameter, and that
would not work.

Now I said calling an interface was easy. Here you are well into
Part 2 and I’ve not done it yet. Guess I better, but heck, at least I
haven’t written any assembler code yet. I think that shows
excellent restrain on my part.

Creating the COM object

Before I create the COM object (another delay!) I’m going to give
you an overview of how my parser program works. If you look in
saxxml.clw you’ll see these two lines of code:

ISaxCl.Init('file://D:\Clarion5\apps\sax\order1.XML',1)
ISAXcL.KILL()

Those two lines of code do all the parsing. ISaxCl is an instance of
the ISaxClType class, which you can find in ISaxClType.inc and
ISaxClType.clw. This class is a wrapper around the Microsoft SAX
parser. The ISaxCl.init method (mainly by means of utility
classes) initializes the COM object, obtains the necessary
interfaces, and calls interface methods to parse the XML file.

To create the COM object you want (that is, SaxReaderClass) and
get the pointer to the interface you need (that is, ISaxXMLReader),

http://www.clarionmag.com/cmag/v3/v3n2easiercom2.html (3 of 7) [5/9/01 2:33:31 PM]

http://www.clarionmag.com/cmag/v3/cmagarticle_v3.jsp#download

COM: Getting Easier By The Minute
(Part 2 of 3)

you call the Windows API CoCreateInstance procedure. In
addition, you need to call CoIntialize just to wake up COM on
the thread you are using. CoCreateInstance takes a number of
parameters but the only three of consequence are the CLSID of
the class you want to turn into an object, the IID of the interface
you want, and a pointer which CoCreateInstance will set to the
ISaxXMLReader object.

Within my code, to save typing, I named the ISaxXMLReader as
IsaxReader. Since you always refer to the COM interfaces by IID,
the label in the code in unimportant. The fact that Microsoft refers
to this COM interface as ISaxXMLReader and I call the interface
IsaxReader makes no difference at all – it’s the IID that is
important. To make life easier, I wrote a little class that contains a
ton of constants needed for COM work, and included in that class
is a wrapper function for CoCreateInstance, called GetInterface:

GetInterface procedure(LONG lpClsid,
LONG lpiid),LONG

You can think of CoCreateIntance, at its simplest, as a way to
pass in the CLSID and IID and get back the address of the
requested interface. Previously I showed CLSIDs as long strings of
numbers in curly braces. As if that wasn’t ugly enough, when you
use UUIDs of any type, such as CLSIDs and IIDs, in a program,
you have to represent them in GROUPs.. For example, here is the
CLSID from the typelib for the CoClass containing the
ISaxXMLReader interface:

!079aa557-4a18-424a-8eee-e39f0a8d41b9
CLSID_ISax Group
data1 ULONG(079aa557H)
data2 USHORT(4a18H)
data3 USHORT(424aH)
data4 string(‘<8eH><0EEH><0E3H><9FH>
 <0AH><8DH><41H><0B9H>’)
 end

Parsing the XML file

The IsaxClType.init method (from isaxl.clw) contains the code
that will eventually grow to serve your parsing needs:

!make the stdcom class
SELF.StdComCl&=New StdComclType
if SELF.StdComCl&=NULL then return return:fatal.
!call coinit to initialize com on
! this thread, call couninit later
SELF.StdComCl.InitCom()
!use the clsid for ISax to get the
! address of an ISaxReader interface.
lpISaxReader=SELF.StdComCl.GetInterface(|
 address(Clsid_ISax), |
 address(IID_ISaxReader))

http://www.clarionmag.com/cmag/v3/v3n2easiercom2.html (4 of 7) [5/9/01 2:33:31 PM]

COM: Getting Easier By The Minute
(Part 2 of 3)

if ~lpISaxReader
 !0 Value indicates an error
 return return:fatal
end

First init creates StdCom helper class, and then calls this class’s
InitCom method. InitCom calls CoIntialize to initialize the COM
object. Then init calls the GetInterface method with the address
of the CLSID and IID for the class and interface you want.
Remember how I said groups do not fit on the stack so they are
always passed by address? The above is an example - I’m passing
the addresses of the CLSID and IID groups.

The GetInterface call returns a pointer to the list of addresses (or
vTable, but you don’t need to worry about vTables any more) for
the ISaxReader Interface. On the next line I feed the address to
the interface. This way the interface knows where to find the
information it needs:

SELF.ISAXReader &= (lpISaxReader)

NOTE: You must use the parentheses around
lpISaxREader. This forces the compiler to evaluate
what is inside the parentheses to an address, which is
then assigned to the interface on the left side of the
statement.

With that done, the interface is ready for use.

The syntax to call a method of an interface is quite simple. Here is
some sample code to call the AddRef method, which increases the
reference count, and then the release method to restore the
reference count.

SELF.IsaxReader.AddRef()
SELF.IsaxReader.Release()

When you Call the methods of an interface directly using the
Clarion Interface structure, you are using a technique called early
binding. Early binding is fast because the methods to be called are
determined at compile time, but it does require you to know the
method prototypes.

In addition to serving as a list of methods and providing the calling
methodology, interfaces also help with the version control problem
common with ordinary DLLs. Once an interface is defined and
receives an IID, the interface definition may not change. If you
(the COM class developer) need new functions, you must create a
new interface; usually this interface has the same name as the
original, with a 2 at the end. For example, IcreateTypeLib and
IcreateTypeLib2 are the first and second versions of an interface;
IcreateTypeLib2 has a few additional functions not found in
IcreateTypeLib. Everything still runs fine because older programs
can still request and receive IcreateTypeLib via

http://www.clarionmag.com/cmag/v3/v3n2easiercom2.html (5 of 7) [5/9/01 2:33:31 PM]

COM: Getting Easier By The Minute
(Part 2 of 3)

CoCreateInstance or QueryInterface . Newer programs
requiring the IcreateTypeLib2 interface can request it, and if it is
not available, take appropriate action (such as shutting down
gracefully). The invariant nature of interfaces is a tremendous
strength of COM.

Although I doubt reading type libraries to write interface
definitions will ever become a national pastime, it is a necessary
step before either calling or creating a COM objects. Fortunately,
OleView shows the needed information from a type library. In the
third article I’ll apply what I have learned and build both the
interfaces I need to call and the interfaces I need to create. With
that done, I’ll add a modest amount of Clarion code to the
interfaces I will create, and the SAX Parser will begin to function.
Along the way I’ll compare the IUnknown derived interfaces
discussed so far with the Idispatch interfaces commonly used
with the Clarion OLE control.

Read Part 3

Download the source

Some additional resources (courtesy of Carl Barnes)

● Dr. GUI articles on COM
● Download OLEView
● Inside COM - a good starter COM book
● Jumpstart for creating a SAX2 application with C++
● A Visual Basic SAX example
● MSDN article on XML
● Write an XML composer in VB

Jim Kane was not born any where near a log cabin. In fact he was born in New York
City. After attending college at New York University, he went on to dental school at
Harvard University. Troubled by vast numbers of unpaid bills, he accepted a U.S.
Air Force Scholarship for dental school, and after graduating served in the US Air
Force. He is now retired from the Air Force and writing software for ProDoc Inc.,
developer of legal document automation systems. In his spare time, he runs a
computer consulting service, Productive Software Solutions. He is married to the
former Jane Callahan of Cando, North Dakota. Jim and Jane have two children,
Thomas and Amy.

http://www.clarionmag.com/cmag/v3/v3n2easiercom2.html (6 of 7) [5/9/01 2:33:31 PM]

http://www.clarionmag.com/cmag/v3/files/v3n2easiercom.zip
http://msdn.microsoft.com/library/default.asp?URL=/library/welcome/dsmsdn/DrGUI042099.htm
http://www.microsoft.com/com/resources/oleview.asp
http://mspress.microsoft.com/prod/books/19.htm
http://msdn.microsoft.com/workshop/xml/articles/sax2jumpstart.asp
http://msdn.microsoft.com/workshop/xml/articles/joyofsax.asp
http://msdn.microsoft.com/msdnmag/issues/0900/xml/xml0900.asp
http://msdn.microsoft.com/library/periodic/period00/vb00l1.htm
mailto:jkane@satx.rr.com
http://www.prodoc.com/

COM: Getting Easier By The Minute
(Part 2 of 3)

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n2easiercom2.html (7 of 7) [5/9/01 2:33:31 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10355&nameID=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

COM: Getting Easier By The Minute
(Part 1 of 3)

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

COM: Getting Easier By The Minute
(Part 1 of 3)

by Jim Kane

Published 2001-02-06

Part 1 of 3

Have you ever received an email from an old customer you haven’t
heard from in a while? Those emails always makes me pause, because
it’s rare to get good news out of the blue. Well, a few months ago I got
an email from an old customer. With the usual amount of trepidation I
opened the email, and was quite relieved to find a request for a bid on
new work. Even better, the request was for something I knew how to
do: work with COM!

From my experience on the Clarion newsgroups I know many Clarion
users are not comfortable with Microsoft's Component Object Model, or
COM. Once you get past the terminology, however, basic COM is fairly
simple and quite similar to calling any API function. Heck, if VB
programmers can do it you ought to be able to! You can get perhaps
90% of the functionality of COM just knowing the basics. You don’t
need to conquer the more difficult topics like threading and
aggregation. All you really need is a love of acronyms and redundant
terminology, and once through the terminology you’ll just sound cooler
– and may get a few things done you wouldn’t otherwise!

Getting down to business

My customer’s request was to parse a XML file (that the company
receives on a regular basis from an e-business partner) and update
some TPS files. My customer had attached a sample file that was quite
simple, plain XML. Since I already had a class that used the Microsoft
Document Object Model (DOM) to parse XML, I thought it would be an
easy project. I gave a low bid which was quickly accepted.

That was the last of the good news! After I built the application and
sent it off, I got a quick response that it didn’t work. After assessing
the damage, I realized the problem was the real file to be parsed was
a huge quarterly summary of all transactions.

DOM is a notorious memory hog. Even on a server with 512MB of
memory the application couldn’t parse the file. Fortunately, I always
have my nose in something, often a computer book, so I knew the
alternative was to use the Microsoft (or other) SAX (Simple Api for

http://www.clarionmag.com/cmag/v3/v3n2easiercom1.html (1 of 7) [5/9/01 2:33:35 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

COM: Getting Easier By The Minute
(Part 1 of 3)

Xml) parser, and in particular the ISAXXMLReader interface which is
much better on memory usage than DOM.

I do like challenges, but when I downloaded the latest (3.0) release of
the SAX parser (from http://msdn.microsoft.com/xml/default.asp) I
realized that to use the SAX parser not only did I need to call a COM
interface, I also needed to create one.

As I read through the documentation that came with the SAX parser I
realized I needed to first call the ISaxXMLReader interface to pass in
the name of the file to parse. The SaxXMLReader object then calls a
ISAXXMLContext interface that my program must supply. When I
discovered I needed to create a COM interface, I said a bad word (or
two), sighed, but realized this was my chance to explore two new
Clarion features: Interface and Implements. From my earlier cursory
inspection of those new features I thought they were everything I
needed to call COM interfaces and create my own. It was clearly time
to jump in and see if I could save my bacon and get this project done.
Well, I’m happy to report that about one week later I emerged
victorious. I was able to call a COM interface more easily than ever
before, and I even created my own COM interface and object.

Understanding COM

I think the easiest way to understand COM is to look at how a COM
object is registered, called, and eventually released or unloaded. A
COM object can be packaged in an EXE, DLL, or a few other file types.
When in the form of a DLL, your program loads the DLL and the COM
object becomes a part of your program or process. As a result, that
type of COM object is called an in-process server. A COM object in a
separate EXE is an out-of-process server. The SAX COM object is a in-
process server so I’ll confine my discussion to that type of object.

Each COM DLL contains one or more classes. An object is just an
instance of a class, or, said another way, a class that is in use. For
most purposes you can use the terms component, object and class
interchangeably.

If more than one version of a DLL is available, sometimes a copy other
than the intended one is loaded, causing a program to misbehave and
programmers to commit suicide. COM seeks to avoid these problems.
One of the requirements for creating a COM class (the original class,
not the instance used by a program) is to assign that class a unique
CLSID. CLSIDs are those long, slightly insane numbers you’ve
probably seen in the registry with this format: {079aa557-4a18-424a-
8eee-e39f0a8d41b9}.

To load a COM object, the program looks up the COM object in the
registry. This is a very important step. Take a moment and run
regedit.exe – you can usually find this program in the Windows
system directory, or you can just run it from the Windows menu. Find
the HKEY_CLASSES_ROOT key. Open this key and look down until you
find the CLSID subkey. Under the CLSID subkey you will see all the
COM objects on the computer. Assuming you have downloaded and
installed the SAX parser mentioned above, you will find its CLSID
under this key:

http://www.clarionmag.com/cmag/v3/v3n2easiercom1.html (2 of 7) [5/9/01 2:33:35 PM]

http://msdn.microsoft.com/xml/default.asp

COM: Getting Easier By The Minute
(Part 1 of 3)

HKEY_Classes_Root
|_{079aa557-4a18-424a-8eee-e39f0a8d41b9} SAX XML Reader
|_Inprocserver32 %systemRoot%\system32\msxml3.dll
|_ProgID Msxml2.SAXXMLReader

There is also a similar key based on the more programmer friendly
ProgID of MSXML2.SAXXMLReader. Beware though ProgIDs are not
globally unique; they are just easier to type and add an extra step in
getting to the CLSID:

Hkey_Classes_Root
|_MsXML2.SAXXMLReader
|_CLSID {079aa557-4a18-424a-8eee-e39f0a8d41b9}

If you tell your program to create the COM object from the ProgID (I’ll
explain how to do this shortly), the program searches the registry
using the ProgID key shown just above and retrieves the CLSID. Once
the program has the CLSID, which is a unique value identifying this
particular COM class, it looks up the CLSID key above and gets the
path and name of the DLL. Your program can then load the DLL.

As you can imagine, if the registry entries are not there or the DLL is
moved after the registry entries are created, this isn’t going to work. If
a COM object doesn’t work or stops working, you can often solve the
problem by tracing through these registry entries. Most installation
programs create these required entries. If this hasn’t happened, or if
you don’t have an installation program, simply run RegSvr32, and pass
the name of the DLL on the command line. It is likely you will find
regsvr32 on your system all ready but if not, you can download it from
Microsoft. If you are in doubt about the accuracy of the registry
entries, just run RegSvr32 again to re-write the correct registry
entries. RegSvr32 calls the code to write the registry located in the
DLL itself.

Loading the COM object

If the registry entries are in place, your program can load the COM
object. Now it’s time to look at how to call the loaded DLL. To link to a
conventional DLL you use a corresponding LIB (which gets linked into
your program). If you don’t have a lib you can create one with
LibMaker. Then you write some prototypes and call the functions.
Guess what? COM is the same. Only in the case of a COM object, the
tool of choice is a free Microsoft program called OLEView.

If you plan to use COM, you must have OLEView. Without OLEView
you’re working in the dark. OLEView exposes all kinds of information
about a COM object, and who wouldn’t want to expose a sexy object?
You can download OLEView and RegSvr32 by going to the Microsoft
download home page
http://msdn.microsoft.com/downloads/default.asp and searching for
each program.

While LibMaker only shows the name of the functions, OLEView shows
a lot (almost an excessive amount) of information. OLEView reads
something called a type library or typelib for short. The typelib, like

http://www.clarionmag.com/cmag/v3/v3n2easiercom1.html (3 of 7) [5/9/01 2:33:35 PM]

http://msdn.microsoft.com/downloads/default.asp

COM: Getting Easier By The Minute
(Part 1 of 3)

the registration code, is usually inside the COM object. The typelib can
also be in a separate file usually with the extension of OLB or TLB.
Whenever I get my hands on a COM object, I register it, and then try
to open it with OLEView. While usually this works, not all COM objects
contain or come with a typelib.

After I open a COM object with OLEView I first look for CoClass
sections. Remember when I said the only requirement for working with
COM is a love of acronyms and redundant terminology? Well, here we
go. The CoClass section simply shows the CLSID for the class and a
list of the interfaces in the class. For example, for SAX, I found from
the registry entries that the SAX parser’s DLL is MSXML3.DLL, located
in the Windows system32 directory. I opened MSXML3.DLL with
OLEView and searched for a CoClass that contained the
ISAXXMLReader interface I knew I wanted to call. This is what I found:

[
 UUID(079AA557-4A18-424A-8EEE-E39F0A8D41B9),
 helpstring("SAX XML Reader (version independent) coclass")
]
coclass SAXXMLReader {
 [default] interface IVBSAXXMLReader;
 interface ISAXXMLReader;
 interface IMXReaderControl;
};

The UUID, or Universally Unique Identifier, is just another term for
GUID, or Globally Unique Identifier. CoClass is another term for
CLASS. UUID and GUID are exactly the same and a CLSID is a GUID
that identifies a CLASS or CoClass. Redundant enough for you? Next I
searched for ISAXXMLReader and found both the interface and finally
the ParseURL method I knew I needed to eventually call. This is what
it looks like:

[
 odl,
 UUID(A4F96ED0-F829-476E-81C0-CDC7BD2A0802),
 helpstring("ISAXXMLReader interface"),
 hidden
]
interface ISAXXMLReader : IUnknown {
 HRESULT _stdcall getFeature(
 [in] unsigned short* pwchName,
 [out, retval] VARIANT_BOOL* pvfValue);
 ...Many more methods deleted for now...
};

What I saw was another UUID or GUID this time for an interface. From
previous exploits in COM land, I knew a GUID applied to an interface is
an called IID or, as you might guess from the context, interface id.
There may be a million of these abbreviations but at least they are
fairly short and easy to figure out.

Understanding interfaces

So just what is an interface? In many ways, it’s the most important

http://www.clarionmag.com/cmag/v3/v3n2easiercom1.html (4 of 7) [5/9/01 2:33:35 PM]

COM: Getting Easier By The Minute
(Part 1 of 3)

thing in COM. In Clarion, to use a class you need the class definition in
the INC file. To call a regular DLL you use a prototype in a map. To call
a COM Class or object you use an interface. An interface lists all the
methods in a specific order with their prototypes. All methods in a
COM interface use the pascal calling convention, like most Windows
functions. The difference is that the address for each method in an
interface is supplied in a table called a vtable. If you are interested in
the assembler level mechanics of a vtable, please read my first three
articles on COM. While it deeply saddens me to say this, it is no longer
necessary to understand vtable mechanics; Clarion can now handle
calling a COM interface without the programmer writing the low level
details. All you need to do is convert the typelib information above
into a Clarion interface definition. Clarion will then take care of the
rest.

Defining an interface

By way of example, let’s look SAXXMLREADER Class’s getFeature
method, using the ISAXXMLReader Interface. Keep in mind the Class or
object is the code and the interface is just the calling convention or
instructions. Here again is the interface definition from OLEView.

[
 odl,
 UUID(A4F96ED0-F829-476E-81C0-CDC7BD2A0802),
 helpstring("ISAXXMLReader interface"),
 hidden
]
interface ISAXXMLReader : IUnknown {
 HRESULT _stdcall getFeature(
 [in] unsigned short* pwchName,
 [out, retval] VARIANT_BOOL* pvfValue);
 ...Many more methods deleted for now...
};

Notice the first line of the interface definition contains the text
ISAXXMLReader : IUNKNOWN. Iunknown is not a description of my
knowledge of COM; it does mean that the ISaxXMLReader interface is
based on or starts with the three methods of the IUNKNOWN interface.
IUNKNOWN is the interface every single COM interface is based on. In
Clarion you prototype IUNKNOWN like this:

Iunknown Interface,COM
QueryInterface PROCEDURE (long iid_Requested,
 *LONG lpInterface),HRESULT
AddRef PROCEDURE (),Long,PROC
Release PROCEDURE (),Long,PROC
 END

You call the QueryInterface method to get the address of any other
interface the class supports. Rather than asking for the interface by
name, you pass an IIDand the method returns a pointer to the
requested interface. QueryInterface, or QI for short, returns an
HRESULT, which is just a long. If QI returns a value less than zero you
have an error. The AddRef method takes no input and returns the
number of users the COM object you’re querying currently has. This

http://www.clarionmag.com/cmag/v3/v3n2easiercom1.html (5 of 7) [5/9/01 2:33:35 PM]

http://www.clarionmag.com/cmag/v1/v1n6callingole_part1.html
http://www.clarionmag.com/cmag/v1/v1n6callingole_part1.html

COM: Getting Easier By The Minute
(Part 1 of 3)

counter is just like a file opening counter in Clarion. Every time some
piece of code tries to open a file in a Clarion application, the count on
the file is increased by one. For every close request it’s decreased.
When the count gets to 0, then the file is really closed.

COM objects use the exact same type of reference counting. When you
create a COM object (by calling the COM API functions) that object’s
internal reference count starts life at 1. If another user comes along
and calls AddRef the internal count goes to 2. When either the original
or new user calls Release the count goes to 1. When the last user calls
Release, the count goes to 0 and the object self-destructs. If Release
is not called enough, the COM object stays in memory. Reference
counting is pretty important because if you don’t call Release for a
COM object when you’re done with it, you’ll have a memory leak, and
if you call Release before you’re done, the COM object is destroyed
before you want it to be destroyed. If you then try to call the COM
object, the chances of GPF are great. Take your shoes and socks off
and count it out if you need to; as long as the count is correct, the
COM object will do just what you want! In fact, if your boss catches
you with your feet up on your desk, you have my permission to quote
this article and explain you were just reference counting.

That’s all for Part 1 of this series. In Part 2 I’ll explain how to add the
methods you really want to call to this interface.

Download the source

Some additional resources (courtesy of Carl Barnes)

● Dr. GUI articles on COM
● Download OLEView
● Inside COM - a good starter COM book
● Jumpstart for creating a SAX2 application with C++
● A Visual Basic SAX example
● MSDN article on XML
● Write an XML composer in VB

Jim Kane was not born any where near a log cabin. In fact he was born in New York
City. After attending college at New York University, he went on to dental school at
Harvard University. Troubled by vast numbers of unpaid bills, he accepted a U.S. Air
Force Scholarship for dental school, and after graduating served in the US Air Force. He
is now retired from the Air Force and writing software for ProDoc Inc., developer of legal
document automation systems. In his spare time, he runs a computer consulting
service, Productive Software Solutions. He is married to the former Jane Callahan of
Cando, North Dakota. Jim and Jane have two children, Thomas and Amy.

http://www.clarionmag.com/cmag/v3/v3n2easiercom1.html (6 of 7) [5/9/01 2:33:35 PM]

http://www.clarionmag.com/cmag/v3/files/v3n2easiercom.zip
http://msdn.microsoft.com/library/default.asp?URL=/library/welcome/dsmsdn/DrGUI042099.htm
http://www.microsoft.com/com/resources/oleview.asp
http://mspress.microsoft.com/prod/books/19.htm
http://msdn.microsoft.com/workshop/xml/articles/sax2jumpstart.asp
http://msdn.microsoft.com/workshop/xml/articles/joyofsax.asp
http://msdn.microsoft.com/msdnmag/issues/0900/xml/xml0900.asp
http://msdn.microsoft.com/library/periodic/period00/vb00l1.htm
mailto:jkane@satx.rr.com
http://www.prodoc.com/

COM: Getting Easier By The Minute
(Part 1 of 3)

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n2easiercom1.html (7 of 7) [5/9/01 2:33:35 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10377&nameID=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

The Five Minute Developer: Understanding Interfaces

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

The Five Minute Developer: Understanding
Interfaces

by Dave Harms

Published 2001-02-06

If you’ve dabbled in Clarion object-oriented programming you’ve
probably come across the term "interface." In OOP interfaces have a
particular and well-defined meaning, which I’ll paraphrase as
follows:

An interface is a description of the methods a class must implement.

I know what you’re thinking. Big deal, right? As it turns out,
interfaces are a very big deal.

Just as a procedural application is made up of procedures, any of
which can call each other, object-oriented applications consist of
numerous objects, many of which can call methods in other objects.
The more classes you design, and the more objects you create (an
object being an instance of a class), the more important this
interoperability becomes.

Getting classes to talk to each other can be a problem. Consider the
ABC WindowManager class. This class manages all typical window-
related functions for all sorts of procedures, including browses.
When you create an ABC browse procedure, the templates create an
instance of WindowManager, and as many instances of BrowseClass
as you have browses. Let’s say you have a file-loaded drop combo
on the window as well, and the browses are using the (ugh) toolbar
control.

WindowManager has to know about all of these classes. Each time
the user does something (clicks the mouse, presses a key),
WindowManager traps the event, and then passes that event along to
the appropriate object.

In the pre-interface ABC implementation, WindowManager had a
different type of reference for each kind of object it needed to work
with. For instance, to register a BrowseClass object with the
WindowManager, the template-generated code called a method with
BrowseClass as one of its parameter types. This worked fine, but it
was highly restrictive.

http://www.clarionmag.com/cmag/v3/v3n2interfaces.html (1 of 3) [5/9/01 2:33:38 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

The Five Minute Developer: Understanding Interfaces

Let’s say you create a funky new kind of grid class and you want to
register an object of this type with WindowManager. Since the pre-
interface WindowManager only knows about certain object types,
your only option would be to derive your class from a type
WindowManager already knows how to register. It might suit your
needs to derive from one of these other classes, but chances are
that will add a lot of unnecessary baggage to your class.

Interfaces to the rescue! In Clarion 5.5 WindowManager uses an
interface that’s defined like this:

WindowComponent INTERFACE
Kill PROCEDURE
Reset PROCEDURE(BYTE Force)
ResetRequired PROCEDURE,BYTE
SetAlerts PROCEDURE
TakeEvent PROCEDURE,BYTE
Update PROCEDURE
UpdateWindow PROCEDURE
 END

The WindowManager.AddItem method takes a WindowComponent
object as a parameter:

AddItem PROCEDURE(WindowComponent WC)

and stores component objects in a queue:

ComponentList QUEUE,TYPE
WC &WindowComponent
 END

Note that the ComponentList queue is actually declared in
abwindow.clw, not abwindow.inc – an interesting bit of forward
referencing (but not particularly important to this discussion).

You can think of WindowComponent references as object references,
except that WindowComponent doesn’t actually have any code. It’s
simply a definition of methods that must exist in a class. When the
compiler sees you passing an object as if it were a
WindowComponent, or assigning an object to a WindowComponent
reference, it examines the object to see if it implements the
WindowComponent interface:

BrowseClass CLASS(ViewManager),IMPLEMENTS(WindowComponent)
... lots of stuff omitted
END

The compiler won’t let you create a class that implements an
interface without that class containing all of the methods defined in
the interface. This makes perfect sense, when you think about it.
The WindowManager, for instance, needs to know that it can call a
TakeEvent method on any object in its component list. If that
method didn’t exist, you’d get a GPF.

http://www.clarionmag.com/cmag/v3/v3n2interfaces.html (2 of 3) [5/9/01 2:33:38 PM]

The Five Minute Developer: Understanding Interfaces

And now that all WindowManager expects of components is a defined
set of methods, you can adapt any class you wish to function as a
WindowManager component. Just implement the interface and its
methods, and pass the object to WindowManager.AddItem.

An interface is just a description of the methods a class has to
implement. It’s like a window on the class that allows the calling
code to see only that part of the class defined in the interface. Of
course, you can implement the interface code any way you choose.
All the calling code should care about is that your class implements
the methods defined in the interface.

For an in-depth treatment of interfaces, see the David Bayliss article
in the January 2000 issue.

David Harms is an independent software developer and the co-author with Ross
Santos of Developing Clarion for Windows Applications, published by SAMS (1995).
He is also the editor and publisher of Clarion Magazine.

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n2interfaces.html (3 of 3) [5/9/01 2:33:38 PM]

http://www.clarionmag.com/cmag/v2/v2n1interfaces.html
mailto:dharms@clarionmag.com
http://www.clarionmag.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=10372&nameID=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

	clarionmag.com
	Clarion Magazine
	The Clarion Advisor: Procedure Prototypes
	The Clarion Challenge: Useless Tab Text
	Introduction To SQL: Part 1
	The Cranky Programmer: Got Them Bloated ABC Blues
	COM: Getting Easier By The Minute
(Part 3 of 3)
	News
	The Clarion Advisor: Locating Records With PROP:SQLFilter
	COM: Getting Easier By The Minute
(Part 2 of 3)
	COM: Getting Easier By The Minute
(Part 1 of 3)
	The Five Minute Developer: Understanding Interfaces

	KPHHCGBMNNNNFOAHGADMIFDKBNIPONAL:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	FMAHGICELIKDEKLELOPOMCOMDFFAEGIPGO:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	EDEHNGELAFGJFMAHICMPONJBIMBMBOIMBP:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	KMKOHMJCHJKCHPOMNNLEBMCDLOPAIOGF:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	OIFJEIADCNFPKDEEGENEDDHAGJMGMIHH:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	EFAONFOLGJPFPBBDKBBCCCGDFDLPGNOH:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	HBLIABAELIBBHHPKLBCBKBOCKHBJGLEH:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	IMCIPLCGADBPJBDKNKJOBKEOJLFOPKCG:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	DMLCONDBLGBMPHMMCMPBCKIDEDNEHHEE:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	FMFMFOHFNNLNKNJGMKPFHCIHGFECCJFGJG:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

