
Clarion Magazine

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

View Recently Posted Reader
Comments
Okay, so being able to add your own
comments to ClarionMag articles is cool.
But how do you locate newly posted
messages without visiting the same
articles over and over? You visit this page!
Posted Thursday, May 31, 2001

The Clarion Advisor: SUB Tricks
You've probably used the SUB function to
extract one string from another, but did
you know that SUB can also count
backwards?
Posted Thursday, May 31, 2001

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)
In any programming environment it's
useful to represent certain commonly-used
values as constants. In Clarion, the
EQUATE keyword defines such a constant,
and the two places you'll find most of
these equates are in EQUATES.CLW
(naturally) and PROPERTY.CLW. In this
second of two parts, Dave Harms finishes
discussing EQUATES.CLW.
Posted Thursday, May 31, 2001

Loading DLLs At Runtime - Part 3
Do you want to sell your software with
optional modules that are automatically
recognized when installed? Do you ever
need to call a procedure that may not exist
on your end user's system? Will your
program even load if you use one of those
functions? In this three part series Larry
Sand exlains how to load DLLs at runtime.
Posted Tuesday, May 29, 2001

Weekly PDF for May 21-27, 2001
All Clarion Magazine articles for May 21-
27, 2001.
Posted Monday, May 28, 2001

File Explorer 1.7
Shipping

NetTalk 1.0 Beta 12
With DUN Available

CapeSoft Draw
Version 1.0 Beta 2
Available

CapeSoft Mailer 1.0
Beta 1 Released

CapeSoft
MessageBox Version
1.0 beta 1 Released

The CapeSoft Big
Birthday Bash Ends
Soon

One Week Left On
FrameText Special

Search Engines
Profile Exchange
Updated

Buggy 2.1.4 Available

IMPEX 5.0 Adds
HTML Export

FrameText Special
Offer

Stealth Software Mail
& Fax Upgrade
Pricing Changes

Clarion To Excel

On average,
how many
hours per
week do you
work?

http://www.clarionmag.com/index.html?year=2001&month=5&limit=100 (1 of 4) [6/4/01 11:26:02 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/v3/files/cmag-2001-05-25.pdf

Clarion Magazine

Creating Elliptical Windows in Clarion
Have you ever wondered how some
applications display windows in non-
standard shapes? As Brice Schagane
shows, you can create elliptical windows
(and other shapes) with just a few simple
API calls.
Posted Friday, May 25, 2001

Loading DLLs At Runtime - Part 2
Do you want to sell your software with
optional modules that are automatically
recognized when installed? Do you ever
need to call a procedure that may not exist
on your end user's system? Will your
program even load if you use one of those
functions? In this three part series Larry
Sand exlains how to load DLLs at runtime.
Posted Tuesday, May 22, 2001

Weekly PDF for May 14-20, 2001
All Clarion Magazine articles for May 14-
20, 2001.
Posted Monday, May 21, 2001

Reading Tables With ADO
Have you ever wanted to write a
generalized utility to work with a data file
which may exist on more than one
backend database? Do you need a utility to
handle a file when you don't have/or want
a DCT layout? Have you ever wanted to
use ADO (ActiveX Data Objects) in Clarion
as a standard way of managing your data?
Here's how to get started.
Posted Monday, May 21, 2001

The Novice’s Corner: Understanding
EQUATES.CLW (Part 1)
In any programming environment it's
useful to represent certain commonly-used
values as constants. In Clarion, the
EQUATE keyword defines such a constant,
and the two places you'll find most of
these equates are in EQUATES.CLW
(naturally) and PROPERTY.CLW. In this
first of two parts, Dave Harms explores
EQUATES.CLW.
Posted Friday, May 18, 2001

Using The TPS ODBC Driver
Vince Du Beau explore the possibilities of
using the TPS ODBC driver with other
applications, and demonstrates importing
data into an Excel spreadsheet.

Example

CapeSoft Draw
Version 1.0 Beta 1
Released

The CapeSoft Big
Birthday Bash

http://www.clarionmag.com/index.html?year=2001&month=5&limit=100 (2 of 4) [6/4/01 11:26:02 AM]

http://www.clarionmag.com/cmag/v3/files/cmag-2001-05-18.pdf

Clarion Magazine

Posted Thursday, May 17, 2001

Loading DLLs At Runtime - Part 1
Do you want to sell your software with
optional modules that are automatically
recognized when installed? Do you ever
need to call a procedure that may not exist
on your end user's system? Will your
program even load if you use one of those
functions? In this three part series Larry
Sand exlains how to load DLLs at runtime.
Posted Wednesday, May 16, 2001

Weekly PDF for May 7-13, 2001
All Clarion Magazine articles for May 7-13,
2001.
Posted Monday, May 14, 2001

The Clarion Advisor: Avoiding GPFs
With ANYs And QUEUEs
If you've every used an ANY variable in a
QUEUE, chances are you've encountered at
least one GPF. ANYs in QUEUEs require
some special handling, and unfortunately
the Clarion documentation is not
completely accurate.
Posted Thursday, May 10, 2001

Quickbooks-Style Date Fields
Andrew Guidroz II gets a request for
QuickBooks-style date
incrementing/decrementing, and writes a
template to automatically apply this code
to an entire application.
Posted Thursday, May 10, 2001

Creating ODBC Data Sources At
Runtime
One of the drivers that comes with Clarion
is the ODBC driver. Although Clarion deals
with most of the problems of translating
your file access code (e.g. OPEN, CLOSE,
NEXT) into calls to the particular ODBC
driver that looks after your data file, there
is one area where Clarion ignores a
potentially useful set of features of the
ODBC design. These are the administration
functions, which are required before you
can access any data source through ODBC.
Posted Wednesday, May 09, 2001

Reader Comments Now Available On
All Articles
You can now add your own comments to
all ClarionMag and COL Archive articles.

http://www.clarionmag.com/index.html?year=2001&month=5&limit=100 (3 of 4) [6/4/01 11:26:02 AM]

http://www.clarionmag.com/cmag/v3/files/cmag-2001-05-11.pdf

Clarion Magazine

Posted Tuesday, May 08, 2001

Weekly PDF for April 30 - May 6, 2001
All Clarion Magazine articles for April 30 -
May 6, 2001.
Posted Monday, May 07, 2001

Replicating IDLE: All Quiet on the
Keyboard?
Needing to have two inactivity timers
running at the same time, Steve Parker
goes in search of an IDLE equivalent.
Posted Thursday, May 03, 2001

The Clarion Advisor: API Tricks
Pierre Tremblay shows how to easily pass
either a CSTRING or a NULL to the _strtok
API parsing function.
Posted Thursday, May 03, 2001

Clarion Magazine's Publication
Schedule
Clarion Magazine is still a weekly
magazine, published 48 times per year,
but we now post articles and news items
throughout the week, rather than just on
one day. Weekly PDFs appear the Monday
following, and the weekly summary notices
are also emailed on Mondays (except when
the Monday falls on a statutory holiday).
Posted Wednesday, May 02, 2001

Introduction to SQL - Part 4
In Part 4 of this series, Dave Harms
answers some questions about the
differences between developing for flat file
and SQL databases.
Posted Tuesday, May 01, 2001

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/index.html?year=2001&month=5&limit=100 (4 of 4) [6/4/01 11:26:02 AM]

http://www.clarionmag.com/cmag/v3/files/cmag-2001-05-04.pdf
http://www.clarionmag.com/cmag/pubsched.html
http://www.clarionmag.com/cmag/pubsched.html
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

View Recently Posted Reader Comments

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

View Recently Posted Reader Comments

Published 2001-05-31

This page lists all recently-posted reader comments. The comments
are listed in reverse chronological order (newest first), but only under
each article. If you're looking back more than a few days the overall
order of the messages may appear to be out of sequence.

Display all reader comments posted in the last

Article View Recently Posted
Reader Comments

Posted Friday, June 01, 2001

by Ralph Johnston

Nice addition Dave!

Now we'll have "recent posts" junkies, just like newsgroups junkies
and e-mail junkies! <g>

Join the discussion

Article View Recently Posted
Reader Comments

Posted Friday, June 01, 2001

by Tom Hebenstreit

Checking out the grouping/sorting of messages.<g>

Join the discussion

Article View Recently Posted
Reader Comments

Posted Friday, June 01, 2001

by Dave Harms

This is the first release of this feature. If you have any suggestions,
post them here!

Join the discussion

Article The Novice’s Corner:
Understanding

Posted Monday, June 04, 2001

http://www.clarionmag.com/cmag/recentcomments.html (1 of 5) [6/4/01 11:26:40 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

View Recently Posted Reader Comments

EQUATES.CLW (Part 2) by Carl Barnes

CW Assistant has an Equate Viewer/Helper that helps get a handle on
the 1500+ equates in Clarion by organizing them into 50 categories.
For larger groups like "Prop:" and "Event:" it puts them in sub-
categories like: Window, Field, List, At. It is free to use in the
unregistered version. For download or info
www.carlbarnes.com/cwa.htm.

At tip from Jim DeFabia was that if you have custom colors you use
frequently you can default their equates in EQUATES.CLW and then
use them in the IDE. You can get about 400 standard HTML colors as
Clarin Equates at http://home.powertech.no/sylkie/downloads.htm.

CWA also has a color designer that lets you see and play with colors
and color equates. Also free to use in the unregistered version.

Dave, I hope plugging products is OK here. I got tired of digging
around in Equates.CLW and Property.CLW and made a better way.

Join the discussion

Article The Novice’s Corner:
Understanding
EQUATES.CLW (Part 2)

Posted Monday, June 04, 2001

by Carl Barnes

test, delete me

Join the discussion

Article Loading DLLs At
Runtime - Part 3

Posted Thursday, May 31, 2001

by Bruce Johnson

Thanks for this series Larry! It couldn't have come at a better time!
Just _exactly_ what we needed this week! 1 gem like this makes my
whole ClarionMag subscription worthwhile. And I get more than 1 in a
year!!

Cheers
Bruce Johnson
CapeSoft

Join the discussion

Article Reading Tables With
ADO

Posted Wednesday, May 30,
2001

by Dave Harms

An alternate fix to the one in the updated zip (which moved the
OVERed group out of the queue) is to insert this code:

http://www.clarionmag.com/cmag/recentcomments.html (2 of 5) [6/4/01 11:26:40 AM]

View Recently Posted Reader Comments

 ?list{PROP:Format} = ALL('2L',2*16)

after opening the window.

Join the discussion

Article Reading Tables With
ADO

Posted Wednesday, May 30,
2001

by Dave Harms

I've updated the source - there was a problem (at least under C5.5)
with the OVERed group inside the queue), which caused a parameter
typing error when the listbox tried to display the queue.

Join the discussion

Article Quickbooks-Style Date
Fields

Posted Monday, June 04, 2001

by Carl Barnes

Template Writer Utility (TWriter.EXE) would be good for this type of
example. It takes existing code, extracts the embed code and writes
you a template frame work that is a good starting point. At least you
have all of the #AT's in pretty good shape.

You will find TWriter.EXE in your BIN directory and the install should
have created a shortcut to it under the Tools folder.

The Template Writer Utility was shipped in C55 with the help broken.
You must START TW.HLP from within the C55Bin directory to view it.

In C5 this was know as the Template Wizatron (TW.EXE). It's not
really a true Wizatron but does help use Wizatrons by helping you
make templates which you can then use in Wizatrons.

Join the discussion

Article Quickbooks-Style Date
Fields

Posted Monday, June 04, 2001

by Carl Barnes

Didn't you read Bruce's article on CASE? <g>
Below is the IF changed to a CASE statement.

If the date is zero I think Quicken pops up with today which is a nice
feature. The Code below sets the date to TODAY if it is currently zero
using CHOOSE(~%ControlUse...

I would recode as:

 IF ~%Control{PROP:ReadOnly}
 UPDATE !So we get what he typed before +/-
 CASE KeyCode()
 OF 443 OROF PlusKey
 %ControlUse=CHOOSE(~%ControlUse,TODAY(),%ControlUse+1)

http://www.clarionmag.com/cmag/recentcomments.html (3 of 5) [6/4/01 11:26:40 AM]

View Recently Posted Reader Comments

 OF 189 OROF MinusKey
 %ControlUse=CHOOSE(~%ControlUse,TODAY(),%ControlUse-1)
 END
 DISPLAY(%Control)
 END

original code
 IF %ControlUse <> 0 |
 AND %Control{PROP:ReadOnly} <> TRUE
 IF KeyCode() = 443 OR KeyCode() = PlusKey
 %ControlUse += 1
 ELSIF KeyCode() = 189 OR KeyCode() = MinusKey
 %ControlUse -= 1
 END
 DISPLAY(%Control)

If you were going to have a lot of dates another interesting way to do
it would be with "?" code like below so each new date adds just 1 new
OROF line of code. (And the rest of the code remains unchanged.)

 IF EVENT()=EVENT:AlertKey
 CASE Field()
 OF ?My:Date1 << tpw gen
 OROF ?My:Date2 << tpw gen
 OROF ?My:Date3 << tpw gen
 IF ~?{PROP:ReadOnly}
 UPDATE
 CASE Keycode()
 OF 443 OROF PlusKey
 CHANGE(?,
CHOOSE(~CONTENTS(?),TODAY(),CONTENTS(?)+1))
 OF 189 OROF MinusKey
 CHANGE(?, CHOOSE(~CONTENTS(?),TODAY(),CONTENTS(?)-
1))
 OF TKey
 CHANGE(?, TODAY())
 END
 DISPLAY(?)
 END
 END
 END
 END

Join the discussion

Article Quickbooks-Style Date
Fields

Posted Tuesday, May 29, 2001

by Andrew Guidroz II

To Mike ...

Exactly. I really wish I had thought longer about the article title as
the neat part about the template isn't in its QuickBooks functionality.
 It is more how the little template tricks in it have tons of other
applications.

http://www.clarionmag.com/cmag/recentcomments.html (4 of 5) [6/4/01 11:26:40 AM]

View Recently Posted Reader Comments

Join the discussion

Article Creating Elliptical
Windows in Clarion

Posted Wednesday, May 30,
2001

by James Cooke

It is really nice to see such a clear demonstration of good WINAPI
implementation. This is a topic that has not been very prominent - up
till now!
Thanks!

Join the discussion

Article Four DLLs And An
Executable

Posted Friday, June 01, 2001

by Dave Harms

That sounds vaguely like a null reference problem. Where did this
olex.dll come from?

Join the discussion

Reader Comments

Add a comment

This is the first release of this feature. If you have any...
Checking out the grouping/sorting of messages.
Nice addition Dave! Now we'll have "recent posts"...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/recentcomments.html (5 of 5) [6/4/01 11:26:40 AM]

http://www.clarionmag.com/cmag/v1/v1n5fourdllsandanexe.html
http://www.clarionmag.com/cmag/v1/v1n5fourdllsandanexe.html
http://www.clarionmag.com/cmag/v1/v1n5fourdllsandanexe.html#comments
http://www.clarionmag.com/cmag/comments.frm?articleID=10627
http://www.clarionmag.com/cmag/discuss.frm?articleID=10627&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10627&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10627&position=3
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

The Clarion Advisor: SUB Tricks

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

The Clarion Advisor: SUB Tricks

by Dave Harms and John Morter

Published 2001-05-31

Have you noticed the negative position option for the second
parameter of the SUB function? You can use this option to check
the contents of the end of a string. SUB has the following syntax:

SUB(string,position,length)

The first parameter is the string you’re extracting a substring
from; the second parameter is the starting position of that
substring; and the third parameter is the number of characters to
return, beginning with the starting position.

If you use a negative number for the position, SUB uses the
absolute value of that number relative to the end of the string, and
then steps backwards for the number of characters specified by
the length parameter. If, for instance, you want check for a trailing
backslash on a directory name, you can use the following code to
extract the last character from the variable:

IF SUB(PathName,-1,1) = ' \'

The above code will only work correctly if you use a CSTRING,
however. If you use a STRING, you’ll need to clip the trailing
spaces:

IF SUB(CLIP(PathName),-1,1) = ' \'

Do you have a programming tip of interest to Clarion Magazine
readers? Send it to advisor@clarionmag.com.

David Harms is an independent software developer and the editor and publisher of
Clarion Magazine. He is also co-author with with Ross Santos of Developing Clarion
for Windows Applications, published by SAMS (1995). His most recent book is JSP,
Servlets, and MySQL, published by HungryMinds Inc. (2001).

John Morter is a member of the Victorian Clarion Users Group (Melbourne,
Australia). His moneymaking day job doesn’t actually involve Clarion (at least not

http://www.clarionmag.com/cmag/v3/v3n5advisor-sub.html (1 of 2) [6/4/01 11:26:42 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
mailto:advisor@clarionmag.com
mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.covecomm.com/java/index.html
mailto:john.morter@dana.com

The Clarion Advisor: SUB Tricks

officially), but Clarion occupies a lot of his spare time as a hobby to keep his techo-
developer background up to date. He sails in the bay during the summer on his
racing catamaran named Flat Chat, which is Australian slang for "at top speed" - or
"at high velocity".

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5advisor-sub.html (2 of 2) [6/4/01 11:26:42 AM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10626
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

by Dave Harms

Published 2001-05-31

In any programming environment it’s useful to represent certain
commonly-used values as constants. In Clarion, the EQUATE
keyword defines such a constant, and the two places you’ll find
most of these equates are in EQUATES.CLW (naturally) and
PROPERTY.CLW, both of which are in the Clarion libsrc\
directory. I’ve already covered the first half of PROPERTY.CLW –
here’s what’s left.

Sound equates

In Windows, standard sounds correspond to sound settings as
defined in the Control Panel. In a default Windows installation,
where neither the user nor any of the user’s software has mucked
about with the sound settings, all of the BEEP equates will, most
likely, call chord.wav, except for BEEP:SystemDefault which calls
ding.wav.

BEEP:SystemDefault EQUATE (0000H) ! ding.wav
BEEP:SystemHand EQUATE (0010H) ! chord.wav
BEEP:SystemQuestion EQUATE (0020H) ! chord.wav
BEEP:SystemExclamation EQUATE (0030H) ! chord.wav
BEEP:SystemAsterisk EQUATE (0040H) ! chord.wav

Spin box equates

The REJECT equates are used to test for invalid input on SPIN
controls. To test for an invalid value use something like the
following:

IF EVENT() = EVENT:Rejected
 CASE REJECTCODE()
 OF REJECT:RangeHigh
...

! Above top range on SPIN
REJECT:RangeHigh EQUATE(1)

http://www.clarionmag.com/cmag/v3/v3n5noviceequates2.html (1 of 13) [6/4/01 11:26:47 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

! below bottom range on SPIN
REJECT:RangeLow EQUATE(2)
! Other range error
REJECT:Range EQUATE(3)
! Invalid input
REJECT:Invalid EQUATE(4)

Color equates

There are two kinds of color equates in EQUATES.CLW. The first
set lists the sixteen basic Windows colors.

COLOR:Black EQUATE (0000000H)
COLOR:Maroon EQUATE (0000080H)
COLOR:Green EQUATE (0008000H)
COLOR:Olive EQUATE (0008080H)
COLOR:Navy EQUATE (0800000H)
COLOR:Purple EQUATE (0800080H)
COLOR:Teal EQUATE (0808000H)
COLOR:Gray EQUATE (0808080H)
COLOR:Silver EQUATE (0C0C0C0H)
COLOR:Red EQUATE (00000FFH)
COLOR:Lime EQUATE (000FF00H)
COLOR:Yellow EQUATE (000FFFFH)
COLOR:Blue EQUATE (0FF0000H)
COLOR:Fuschia EQUATE (0FF00FFH)
COLOR:Aqua EQUATE (0FFFF00H)
COLOR:White EQUATE (0FFFFFFH)

More interesting to most developers than the basic colors,
however, are the standard uses of colors. When you use one of the
following equates as a color attribute, the actual color used will
depend on the colors assigned to standard objects through the
Windows control panel. I learned one particular good use for
standard colors from Jeff Slarve. When Jeff has an entry field he
wants to display as read-only, he sets the Skip and Read Only
checkboxes, and sets the background color of the field to
COLOR:BTNFACE, which is also the default color for the window
background. This way the field is still visible (and can be copied),
but clearly not modifiable.

COLOR:NONE EQUATE (-1)
COLOR:SCROLLBAR EQUATE (80000000H)
COLOR:BACKGROUND EQUATE (80000001H)
COLOR:ACTIVECAPTION EQUATE (80000002H)
COLOR:INACTIVECAPTION EQUATE (80000003H)
COLOR:MENU EQUATE (80000004H)
COLOR:WINDOW EQUATE (80000005H)
COLOR:WINDOWFRAME EQUATE (80000006H)
COLOR:MENUTEXT EQUATE (80000007H)
COLOR:WINDOWTEXT EQUATE (80000008H)
COLOR:CAPTIONTEXT EQUATE (80000009H)
COLOR:ACTIVEBORDER EQUATE (8000000AH)
COLOR:INACTIVEBORDER EQUATE (8000000BH)
COLOR:APPWORKSPACE EQUATE (8000000CH)

http://www.clarionmag.com/cmag/v3/v3n5noviceequates2.html (2 of 13) [6/4/01 11:26:47 AM]

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

COLOR:HIGHLIGHT EQUATE (8000000DH)
COLOR:HIGHLIGHTTEXT EQUATE (8000000EH)
COLOR:BTNFACE EQUATE (8000000FH)
COLOR:BTNSHADOW EQUATE (80000010H)
COLOR:GRAYTEXT EQUATE (80000011H)
COLOR:BTNTEXT EQUATE (80000012H)
COLOR:INACTIVECAPTIONTEXT EQUATE (80000013H)
COLOR:BTNHIGHLIGHT EQUATE (80000014H)

Runtime control creation equates

Because Clarion provides an easy-to-use window formatter, few of
us need to create controls at runtime. But if you have a large
number of controls to display, or the number or type of controls on
the window is variable, you may want to create these controls on
the fly. This subject is worthy of an article all on its own, but for
now I’ll just refer you to the Help for CREATE(return new control
created).

CREATE:sstring EQUATE (1)
CREATE:string EQUATE (2)
CREATE:image EQUATE (3)
CREATE:region EQUATE (4)
CREATE:line EQUATE (5)
CREATE:box EQUATE (6)
CREATE:ellipse EQUATE (7)
CREATE:entry EQUATE (8)
CREATE:button EQUATE (9)
CREATE:prompt EQUATE (10)
CREATE:option EQUATE (11)
CREATE:check EQUATE (12)
CREATE:group EQUATE (13)
CREATE:list EQUATE (14)
CREATE:combo EQUATE (15)
CREATE:spin EQUATE (16)
CREATE:text EQUATE (17)
CREATE:custom EQUATE (18)
CREATE:menu EQUATE (19)
CREATE:item EQUATE (20)
CREATE:radio EQUATE (21)
CREATE:menubar EQUATE (22)
CREATE:application EQUATE (24)
CREATE:window EQUATE (25)
CREATE:report EQUATE (26)
CREATE:header EQUATE (27)
CREATE:footer EQUATE (28)
CREATE:break EQUATE (29)
CREATE:form EQUATE (30)
CREATE:detail EQUATE (31)
CREATE:ole EQUATE (32)
CREATE:droplist EQUATE (33)
CREATE:dropcombo EQUATE (34)
CREATE:progress EQUATE (35)
CREATE:sheet EQUATE (37)
CREATE:tab EQUATE (38)

http://www.clarionmag.com/cmag/v3/v3n5noviceequates2.html (3 of 13) [6/4/01 11:26:47 AM]

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

CREATE:panel EQUATE (39)
CREATE:sublist EQUATE (CREATE:list + 0100H)
CREATE:toolbar EQUATE (128)

Font and charset equates

The font and charset equates are meant to be used with the FONT
attribute, which can added to any window or control (not just
TOOLBARs, as the Help suggests). The FONT equates listed below
are font style equates for the stroke (thin, regular, bold), fixed
width, and other style attributes. FONT:weight is, as far as I know,
only used in the Web templates to test for the font weight
(boldness of stroke).

FONT:thin EQUATE (100)
FONT:regular EQUATE (400)
FONT:bold EQUATE (700)
FONT:weight EQUATE (07FFH)
FONT:fixed EQUATE (0800H)
FONT:italic EQUATE (01000H)
FONT:underline EQUATE (02000H)
FONT:strikeout EQUATE (04000H)

The following FONT equates represent new functionality as of
Clarion 5.5a, and are passed to the last parameter of FontDialog
and FontDialogA to restrict the set of fonts the dialog should
present for selection.

FONT:Screen EQUATE(0)
FONT:Printer EQUATE(1)
FONT:Both EQUATE(2)
FONT:TrueTypeOnly EQUATE(4)
FONT:FixedPitchOnly EQUATE(8)

The CHARSET equates specify Windows standard character sets,
and are a parameter of the FONT attribute:

CHARSET:ANSI EQUATE (0)
CHARSET:DEFAULT EQUATE (1)
CHARSET:SYMBOL EQUATE (2)
CHARSET:MAC EQUATE (77)
CHARSET:SHIFTJIS EQUATE (128)
CHARSET:HANGEUL EQUATE (129)
CHARSET:JOHAB EQUATE (130)
CHARSET:GB2312 EQUATE (134)
CHARSET:CHINESEBIG5 EQUATE (136)
CHARSET:GREEK EQUATE (161)
CHARSET:TURKISH EQUATE (162)
CHARSET:HEBREW EQUATE (177)
CHARSET:ARABIC EQUATE (178)
CHARSET:BALTIC EQUATE (186)
CHARSET:CYRILLIC EQUATE (204)
CHARSET:THAI EQUATE (222)
CHARSET:EASTEUROPE EQUATE (238)

http://www.clarionmag.com/cmag/v3/v3n5noviceequates2.html (4 of 13) [6/4/01 11:26:47 AM]

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

CHARSET:OEM EQUATE (255)

Drawing equates

You can draw rudimentary graphics with Clarion, although for
serious work you’ll probably want to go with API calls, or better yet
a third party product (like CapeSoft’s Draw) that makes drawing
Windows graphics easy. For simple lines, Clarion does let you
specify the standard line styles, using PEN equates. Look at the
SETPENSTYLE function, as well as SETPENCOLOR and SETPENWIDTH.

PEN:solid EQUATE (0)
PEN:dash EQUATE (1)
PEN:dot EQUATE (2)
PEN:dashdot EQUATE (3)
PEN:dashdotdot EQUATE (4)
PEN:null EQUATE (5)
PEN:insideframe EQUATE (6)

Logic equates

Not much to say here, but if you’ve ever wondered how Clarion
understands the keywords TRUE and FALSE, now you know.

FALSE EQUATE (0)
TRUE EQUATE (1)

List zone equates

I really should have included these equates in Part 1, as they’re
control-specific. If you need detailed information about mouse
movements over a list box, you’ll typically add an ALRT attribute to
the list box (such as ALRT(MouseLeft)) and then test for a variety
of list properties the list box receives EVENT:AlertKey. Several of
these properties are PROPLIST:MouseUpRow,
PROPLIST:MouseDownRow, PROPLIST:MousUpField, and
PROPLIST:MouseDownField. These properties tell you which row
and column the mouse was on when the alerted key was pressed
or released. But there are other areas on the list box such as
headers and possibly tree list icons. To trap mouse movements
relative to these areas you use PROPLIST:MouseDownZone,
PROPLIST:MouseMoveZone, and PROPLIST:MouseUpZone,
comparing the values against the equates listed below.

LISTZONE:field EQUATE(0)
LISTZONE:right EQUATE(1)
LISTZONE:header EQUATE(2)
LISTZONE:expandbox EQUATE(3)
LISTZONE:tree EQUATE(4)
LISTZONE:icon EQUATE(5)
LISTZONE:nowhere EQUATE(6)

Button equates

http://www.clarionmag.com/cmag/v3/v3n5noviceequates2.html (5 of 13) [6/4/01 11:26:47 AM]

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

Again, I should probably have included the button equates in Part
1 with the icon equates, since you’ll usually use these together
with icon equates in a MESSAGE() statement. Button equates not
only tell the MESSAGE() function which button(s) to display, but
optionally which button will be the default. For more information,
see the Help for MESSAGE(return message box response).

BUTTON:OK EQUATE (01H)
BUTTON:YES EQUATE (02H)
BUTTON:NO EQUATE (04H)
BUTTON:ABORT EQUATE (08H)
BUTTON:RETRY EQUATE (10H)
BUTTON:IGNORE EQUATE (20H)
BUTTON:CANCEL EQUATE (40H)
BUTTON:HELP EQUATE (80H)

Data type equates

There Windows data types signed and unsigned have different
values in 16 bit and 32 bit applications. EQUATES.CLW uses the
OMIT and COMPILE directives to create the correct equates
depending on which kind of application you’re compiling. Also
included is an equate for the BOOL data type.

 OMIT('***',_WIDTH32_)
SIGNED EQUATE(SHORT)
UNSIGNED EQUATE(USHORT)
_nopos EQUATE(08000H)

 COMPILE('***',_WIDTH32_)
SIGNED EQUATE(LONG)
UNSIGNED EQUATE(LONG)
_nopos EQUATE(080000000H)

BOOL EQUATE(SIGNED)

Directory equates

When you’re working with file directories, you’ll most likely use the
DIRECTORY function, which returns a queue containing a file
directory listing. This is an overloaded function which can take
either of two queue definitions, one for 8.3 filenames, and the
other for long filenames. These are typed queue definitions, so you
can’t use them directly. Instead you’ll create a queue derived from
the type, and pass that to the DIRECTORY function.

The ff_ equates let you mask the returned list of files so that you
only see files of the type you specified. You can add these equates
together to get the desired combination of attributes.

ff_:NORMAL EQUATE(0)
ff_:READONLY EQUATE(1)
ff_:HIDDEN EQUATE(2)

http://www.clarionmag.com/cmag/v3/v3n5noviceequates2.html (6 of 13) [6/4/01 11:26:47 AM]

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

ff_:SYSTEM EQUATE(4)
ff_:DIRECTORY EQUATE(10H)
ff_:ARCHIVE EQUATE(20H)
ff_:LFN EQUATE(80H)

!Old 8.3 filename support

ff_:queue QUEUE,PRE(ff_),TYPE
name string(13)
date long
time long
size long
attrib byte
 END

!full filename support

FILE:MaxFileName EQUATE(256)
FILE:MaxFilePath EQUATE(260)

FILE:Queue QUEUE,PRE(FILE),TYPE
Name STRING(FILE:MaxFileName)
ShortName STRING(13)
Date LONG
Time LONG
Size LONG
Attrib BYTE
 END

File dialog equates

One of the real headaches in past editions of Clarion was getting a
file dialog to return just a directory, instead of a file in the
directory. Happily, there is now FILE:Directory equate which you
can pass to FileDialog. If you don’t pass a value at all (on the
fourth, or flag, paramater), FileDialog shows an Open dialog.
Other dialog flag options available include: FILE:Save - save a
file; FILE:KeepDir - save and restore the current directory
(important if you’re opening and closing files and assuming that
the files are in the current directory); FILE:NoError – do not
report an error on a save if overwriting a file, on an open if the file
doesn’t exist; FILE:Multi – allow selection of multiple files
delimited by spaces if using short filenames, or vertical bars if long
filenames; and, of course, the above-mentioned FILE:Directory.

FILE:Save EQUATE(1)
FILE:KeepDir EQUATE(2)
FILE:NoError EQUATE(4)
FILE:Multi EQUATE(8)
FILE:LongName EQUATE(10H)
FILE:Directory EQUATE(20H)

The OLE queue

Another typed queue is oleQ, which you pass to the OLEDIRECTORY

http://www.clarionmag.com/cmag/v3/v3n5noviceequates2.html (7 of 13) [6/4/01 11:26:47 AM]

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

function to get a list of all installed OLE servers or OCX controls.

oleQ QUEUE,TYPE
name CSTRING(64)
clsid CSTRING(64)
progid CSTRING(64)
 END

The third and optional parameter to OLEDIRECTORY takes the
following equates which lets you choose whether to include 16 bit
controls, 32 bit controls, or both.

OCX:default EQUATE(0)
OCX:16bit EQUATE(1)
OCX:32bit EQUATE(2)
OCX:1632bit EQUATE(3)

Match equates

The Clarion MATCH function is a relatively new addition to the
language that lets you compare two strings using a variety of
techniques, each of which has a Match equate. A MATCH:Simple
does per-character comparison, case sensitive unless you use
MATCH:Simple + MATCH:NoCase. MATCH:Wild evaluates the first
string against the second string which can contain * and ?
characters. MATCH:Regular evaluates regular expression operators
in the second string, against the first string. Regular expressions
are an enormously powerful technique for matching text patterns.
MATCH:Soundex will do a "sounds like" match using a standard
soundex algorithm.

Match:Simple EQUATE(0)
Match:Wild EQUATE(1)
Match:Regular EQUATE(2)
Match:Soundex EQUATE(3)
Match:NoCase EQUATE(10H)

Paper equates

The following equates are passed to PRINTER{PROPRINT:PAPER} to
specify the paper size the report will use.

! Letter 8 1/2 x 11 in
PAPER:LETTER EQUATE(1)
! Letter Small 8 1/2 x 11 in
PAPER:LETTERSMALL EQUATE(2)
! Tabloid 11 x 17 in
PAPER:TABLOID EQUATE(3)
! Ledger 17 x 11 in
PAPER:LEDGER EQUATE(4)
! Legal 8 1/2 x 14 in
PAPER:LEGAL EQUATE(5)
! Statement 5 1/2 x 8 1/2 in
PAPER:STATEMENT EQUATE(6)

http://www.clarionmag.com/cmag/v3/v3n5noviceequates2.html (8 of 13) [6/4/01 11:26:47 AM]

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

! Executive 7 1/4 x 10 1/2 in
PAPER:EXECUTIVE EQUATE(7)
! A3 297 x 420 mm
PAPER:A3 EQUATE(8)
! A4 210 x 297 mm
PAPER:A4 EQUATE(9)
! A4 Small 210 x 297 mm
PAPER:A4SMALL EQUATE(10)
! A5 148 x 210 mm
PAPER:A5 EQUATE(11)
! B4 250 x 354
PAPER:B4 EQUATE(12)
! B5 182 x 257 mm
PAPER:B5 EQUATE(13)
! Folio 8 1/2 x 13 in
PAPER:FOLIO EQUATE(14)
! Quarto 215 x 275 mm
PAPER:QUARTO EQUATE(15)
! 10x14 in
PAPER:10X14 EQUATE(16)
! 11x17 in
PAPER:11X17 EQUATE(17)
! Note 8 1/2 x 11 in
PAPER:NOTE EQUATE(18)
! Envelope #9 3 7/8 x 8 7/8
PAPER:ENV_9 EQUATE(19)
! Envelope #10 4 1/8 x 9 1/2
PAPER:ENV_10 EQUATE(20)
! Envelope #11 4 1/2 x 10 3/8
PAPER:ENV_11 EQUATE(21)
! Envelope #12 4 \276 x 11
PAPER:ENV_12 EQUATE(22)
! Envelope #14 5 x 11 1/2
PAPER:ENV_14 EQUATE(23)
! C size sheet
PAPER:CSHEET EQUATE(24)
! D size sheet
PAPER:DSHEET EQUATE(25)
! E size sheet
PAPER:ESHEET EQUATE(26)
! Envelope DL 110 x 220mm
PAPER:ENV_DL EQUATE(27)
! Envelope C5 162 x 229 mm
PAPER:ENV_C5 EQUATE(28)
! Envelope C3 324 x 458 mm
PAPER:ENV_C3 EQUATE(29)
! Envelope C4 229 x 324 mm
PAPER:ENV_C4 EQUATE(30)
! Envelope C6 114 x 162 mm
PAPER:ENV_C6 EQUATE(31)
! Envelope C65 114 x 229 mm
PAPER:ENV_C65 EQUATE(32)
! Envelope B4 250 x 353 mm
PAPER:ENV_B4 EQUATE(33)
! Envelope B5 176 x 250 mm

http://www.clarionmag.com/cmag/v3/v3n5noviceequates2.html (9 of 13) [6/4/01 11:26:47 AM]

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

PAPER:ENV_B5 EQUATE(34)
! Envelope B6 176 x 125 mm
PAPER:ENV_B6 EQUATE(35)
! Envelope 110 x 230 mm
PAPER:ENV_ITALY EQUATE(36)
! Envelope Monarch 3.875 x 7.5 in
PAPER:ENV_MONARCH EQUATE(37)
! 6 3/4 Envelope 3 5/8 x 6 1/2 in
PAPER:ENV_PERSONAL EQUATE(38)
! US Std Fanfold 14 7/8 x 11 in
PAPER:FANFOLD_US EQUATE(39)
! German Std Fanfold 8 1/2 x 12 in
PAPER:FANFOLD_STD_GERMAN EQUATE(40)
! German Legal Fanfold 8 1/2 x 13 in
PAPER:FANFOLD_LGL_GERMAN EQUATE(41)
PAPER:LAST EQUATE(41)
PAPER:USER EQUATE(256)

A TPS equate

Here’s a lonely little TPS file equate. TPSREADONLY sets the TPS file
to read-only when using the ODBC driver. See the TopSpeed
Database Driver documentation for usage.

TPSREADONLY EQUATE(1)

Driver option equates

The Driver option equates let you query a file at runtime to
determine which features the file driver supports, using
file{PROP:SupportsOp,option} where option is one of the
following. Note that this group uses an ITEMIZE structure to
automatically assign equate numbers, beginning with 1.
Periodically the numbering is restarted. The second set of equates
lets you determine which data types a given driver supports.

 ITEMIZE(1),PRE(DriverOp)
ADD EQUATE
BOF EQUATE
BUILDfile EQUATE
APPEND EQUATE
BUILDdyn EQUATE
BUILDkey EQUATE
CLOSE EQUATE
COMMIT EQUATE
COPY EQUATE
CREATE EQUATE
DELETE EQUATE
DUPLICATE EQUATE
EMPTY EQUATE
EOF EQUATE
GETfilekey EQUATE
GETfileptr EQUATE
GETkeyptr EQUATE

http://www.clarionmag.com/cmag/v3/v3n5noviceequates2.html (10 of 13) [6/4/01 11:26:47 AM]

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

HOLD EQUATE
LOCK EQUATE(20)
LOGOUT EQUATE(22)
NAME EQUATE
NEXT EQUATE
OPEN EQUATE
PACK EQUATE
POINTERfile EQUATE
POINTERkey EQUATE
FLUSH EQUATE
PUT EQUATE
PREVIOUS EQUATE
RECORDSfile EQUATE
RECORDSkey EQUATE
BUILDdynfilter EQUATE
RELEASE EQUATE(36)
REMOVE EQUATE
RENAME EQUATE
ROLLBACK EQUATE(40)
SETfile EQUATE
SETfilekey EQUATE
SETfileptr EQUATE
SETkey EQUATE
SETkeykey EQUATE
SETkeyptr EQUATE
SETkeykeyptr EQUATE
SHARE EQUATE
SKIP EQUATE
UNLOCK EQUATE
ADDlen EQUATE
BYTES EQUATE
GETfileptrlen EQUATE
PUTfileptr EQUATE
PUTfileptrlen EQUATE
STREAM EQUATE
DUPLICATEkey EQUATE
WATCH EQUATE
APPENDlen EQUATE
SEND EQUATE
POSITIONfile EQUATE
POSITIONkey EQUATE
RESETfile EQUATE
RESETkey EQUATE
NOMEMO EQUATE
REGETfile EQUATE
REGETkey EQUATE
NULL EQUATE
SETNULL EQUATE
SETNONNULL EQUATE
SETproperty EQUATE
GETproperty EQUATE
GETblobdata EQUATE(75)
PUTblobdata EQUATE
BLOBSIZE EQUATE
SETblobproperty EQUATE

http://www.clarionmag.com/cmag/v3/v3n5noviceequates2.html (11 of 13) [6/4/01 11:26:47 AM]

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

GETblobproperty EQUATE
BUFFER EQUATE
SETviewfields EQUATE
CLEARfile EQUATE
RESETviewfile EQUATE
BUILDevent EQUATE
SETkeyproperty EQUATE
GETkeyproperty EQUATE
DOproperty EQUATE(88)
DOkeyproperty EQUATE
DOblobproperty EQUATE
VIEWSTART EQUATE(92)
VIEWSTOP EQUATE
GETNULLS EQUATE(96)
SETNULLS EQUATE
GETSTATE EQUATE
RESTORESTATE EQUATE
CALLBACK EQUATE
FREESTATE EQUATE(102)
DESTROY EQUATE(104)
 END

! Data Type Equates for use with
! file{PROP:SupportsType, DataType:n}

 ITEMIZE(1),PRE(DataType)
BYTE EQUATE
SHORT EQUATE
USHORT EQUATE
DATE EQUATE
TIME EQUATE
LONG EQUATE
ULONG EQUATE
SREAL EQUATE
REAL EQUATE
DECIMAL EQUATE
PDECIMAL EQUATE
BFLOAT4 EQUATE(13)
BFLOAT8 EQUATE
STRING EQUATE(18)
CSTRING EQUATE
PSTRING EQUATE
MEMO EQUATE
BLOB EQUATE(27)
 END

Other Includes

The EQUATES.CLW file isn’t the only place to find equates – many
are specific to the property syntax (PROPERTY.CLW), and there's
another set just for reports (PRNPROP.CLW). But those are
subjects for another time...

http://www.clarionmag.com/cmag/v3/v3n5noviceequates2.html (12 of 13) [6/4/01 11:26:47 AM]

The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)

David Harms is an independent software developer and the editor and publisher of
Clarion Magazine. He is also co-author with with Ross Santos of Developing Clarion
for Windows Applications, published by SAMS (1995). His most recent book is JSP,
Servlets, and MySQL, published by HungryMinds Inc. (2001).

Reader Comments

Add a comment

test, delete me
CW Assistant has an Equate Viewer/Helper that helps get
a...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5noviceequates2.html (13 of 13) [6/4/01 11:26:47 AM]

mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.covecomm.com/java/index.html
http://www.clarionmag.com/cmag/comments.frm?articleID=10625
http://www.clarionmag.com/cmag/discuss.frm?articleID=10625&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10625&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10625&position=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Loading DLLs At Runtime - Part 3

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Loading DLLs At Runtime - Part 3

by Larry Sand

Published 2001-05-29

Last week I explained the workings of LoadLibClass, a Clarion
class I’ve created to make it easy to call DLL functions by address.
This week I’ll put this class to work.

A common request is to find the free disk space for a drive.
Windows 95 provides a function, GetDiskFreeSpace, which does
this. However, at the time it was first released, Windows 95 only
supported partitions smaller than 2GB.

MSDN warns that "the GetDiskFreeSpace function may return
misleading values." (on partitions greater than 2 GB). It also
warns that "Even on volumes that are smaller than 2 gigabytes,
the values stored into *lpSectorsPerCluster,
*lpNumberOfFreeClusters, and *lpTotalNumberOfClusters values
may be incorrect." Furthermore, it goes on to say that the
GetDiskFreeSpace function is superseded by GetDiskFreeSpaceEx
but that function is only available on Windows 95 OSR2, 98, ME,
Windows NT 4.0 and higher, including Windows 2000.

So, what's a weary programmer who wants to find the free disk
space, regardless of Windows version, to do? Use that shiny new
load library class of course!

Implementing the load library class

I designed DiskInfoClass, presented in this section, to illustrate
how to implement the load library class. It is the beginning of a
class that you can extend with your own methods to gather disk
information. First I’ll provide a description of the relevant Windows
API functions, and then I’ll explain how to wrap these in class
methods to make calling them as simple as calling any other
Clarion method.

Two functions, different methods, same result

In the Win32 API, functions with names that contain the "Ex" suffix
are extended versions of older functions and they supercede the

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls3.html (1 of 9) [6/4/01 11:26:52 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

Loading DLLs At Runtime - Part 3

non-"Ex" version. You prototype the GetDiskFreeSpaceEx function
like this:

GetDiskFreeSpaceEx(LONG pszDirectoryName=0,|
 *ULARGE_INTEGER lpFreeBytesAvailable,|
 *ULARGE_INTEGER lpTotalNumberOfBytes,|
 *ULARGE_INTEGER lpTotalNumberOfFreeBytes |
),BOOL,RAW,PASCAL,DLL(_fp_)

The first parameter is a pointer to a cstring that contains the
directory name. This can be any directory on the disk, a UNC path
name, or a null pointer for the current directory's disk. Prototype
this parameter as a long to make it easy to pass a null pointer. In
normal use, assign the ADDRESS() of the string or a zero to the
pszDirectoryName parameter before you call the function.

The next three parameters are pointers to ULARGE_INTEGERs. This
variant of the disk free space function returns the disk information
as 64-bit integers, sometimes referred to as QUADs. Most
languages do not natively support these integers, including
Clarion. One way to use them is to prototype them as a group of
two unsigned longs (the RAW attribute on the function prototype
instructs Clarion to only pass the address), like this:

ULARGE_INTEGER GROUP,TYPE
LowDw ULONG
HighDw ULONG
 END

Notice that the declaration places the high double word after the
low double word in the group. Intel's architecture stores the least
significant byte first. This byte order is know as Little Endian or
Intel order. I’ll explain how to convert these integers into
something useful in Clarion later in this article.

GetDiskFreeSpace is the older variant of the two Windows API
disk space functions. It is prototyped like this:

GetDiskFreeSpace(LONG pszDirectoryName=0,|
 *ULONG lpSectorsPerCluster,|
 *ULONG lpBytesPerSector,|
 *ULONG lpNumberOfFreeClusters,|
 *ULONG lpTotalNumberOfClusters |
),BOOL,RAW,PASCAL,DLL(_fp_)

Like GetDiskFreeSpaceEx, this function takes a pointer to a
cstring that contains the root directory as its first parameter.
MSDN states that "a drive specification such as "C:" cannot have a
trailing backslash." However, in testing "C:\" is accepted. Even
more perplexing is that use of the drive specification without the
trailing backslash produces the error code 123, for an invalid
directory name, on some versions of Windows. The function also
accepts a null pointer to refer to the disk drive of the current
directory. Furthermore, this function doesn't support UNC path

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls3.html (2 of 9) [6/4/01 11:26:52 AM]

http://webopedia.internet.com/TERM/b/big_endian.html

Loading DLLs At Runtime - Part 3

names on Windows 95 before OSR2.

Unlike GetDiskFreeSpaceEx, GetDiskFreeSpace accepts pointers
to four unsigned LONGs to return its disk information instead of the
64-bit integers. Some simple math on these parameters yields the
disk space information.

Notice that both of these prototypes include the DLL(_fp_)
attribute. Remember that this means that you must declare a
function pointer variable for each. As I showed in Part 1, you must
declare these variables with the NAME attribute specifying the label
of the appropriate function in single quotes. Therefore, define the
function pointer variables like this:

fpGetDiskFreeSpaceEx
LONG,AUTO,NAME('GetDiskFreeSpaceEx')
fpGetDiskFreeSpace LONG,AUTO,NAME('GetDiskFreeSpace')

With that background information in your pocket, you're ready to
examine how the DiskInfoClass wraps the two disk free space
functions into a single method call. First, examine how the Init
method initializes the objects.

Listing 5. The Init method

DiskInfoClass.Init PROCEDURE()
RetVal LONG,AUTO
 CODE
 RetVal = 1
 fpGetDiskFreeSpaceEx = 0
 fpGetDiskFreeSpace = 0
 SELF.Kernel &= NEW LoadLibClass
 IF NOT SELF.Kernel &= NULL
 RetVal = |
 SELF.Kernel.LlcLoadLibrary('kernel32.dll', |
 Method:GetModuleHandle)
 IF SELF.Kernel.LibraryLoaded()
 fpGetDiskFreeSpaceEx = |
 SELF.Kernel.LlcGetProcAddress(|
 'GetDiskFreeSpaceExA')
 fpGetDiskFreeSpace =
 SELF.Kernel.LlcGetProcAddress(|
 'GetDiskFreeSpaceA')
 END
 END
 RETURN RetVal

Notice that the class definition (see DiskInfo.inc) contains the
Kernel property, a reference to the load library class
&LoadLibClass. I like to name the reference variable after the
library it manages, kernel32.dll in this case. The method creates
an instance of the LoadLibClass and assigns it to the Kernel
reference property.

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls3.html (3 of 9) [6/4/01 11:26:52 AM]

Loading DLLs At Runtime - Part 3

After the method instantiates the LoadLibClass, the Init method
tests that the reference to the Kernel object is not null before it
attempts to reference the Kernel object. Whenever the reference
is null, the object instantiation failed, and any use of that
reference will cause a GPF. In addition, the method returns non-
zero for failure.

When the DiskInfo object has a valid reference to a Kernel
object, the Init method initializes the Kernel object by calling the
LlcLoadLibrary method with the DLL file name and the load
method. In this case, the method uses the
Method:GetModuleHandle load method to get the handle of the
module. After the method successfully loads kernel32.dll, it
assigns the addresses of GetDiskFreeSpaceEx and
GetDiskFreeSpace to their respective function pointer variables.
It's not an error if fpGetDiskFreeSpaceEx is null, it just means
that the GetDiskFreeSpaceEx function is not available on this
system.

After the Init method completes successfully, the DiskInfo
object contains a reference to an initialized Kernel object (an
instance of the LoadLibClass managing the handle to the
Windows kernel). Furthermore, the function pointer variables
contain the address of their respective disk space function.

After your code calls the DiskInfoClass Init method, you must
call the GetDiskSpace method, passing a DISK_SPACE group with
the szDirectoryName element set to the directory of interest.

Listing 6. The GetDiskSpace method

DiskInfoClass.GetDiskSpace |
 PROCEDURE(*DISK_SPACE DiskSpace)
RetVal LONG,AUTO
 CODE
? ASSERT(NOT SELF.Kernel &= NULL)
 IF SELF.Kernel.LibraryLoaded()
 RetVal = SELF.DiGetDiskFreeSpaceEx(DiskSpace)
 IF RetVal
 RetVal = SELF.DiGetDiskFreeSpace(DiskSpace)
 END
 ELSE
 RetVal = 1
 END
 RETURN RetVal

The public GetDiskSpace method (see Listing 6) attempts to call
the DiGetDiskFreeSpaceEx method as its first choice. If that
method fails, it assumes that GetDiskFreeSpaceEx is not available
on this OS and attempts to call the DiGetDiskFreeSpace method.
When successful, the GetDiskSpace method fills the three disk
space elements of the DISK_SPACE group with the results from one
of the two API functions and returns zero. If for some reason
initialization of the Kernel object failed and you call this method, it

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls3.html (4 of 9) [6/4/01 11:26:52 AM]

Loading DLLs At Runtime - Part 3

returns a non-zero result.

The DiGetDiskFreeSpaceEx method wraps the Windows API
function GetDiskFreeSpaceEx. Consider this code for the
DiGetDiskFreeSpaceEx method: .

Listing 7. The DiGetDiskFreeSpaceEx method

DiskInfoClass.DiGetDiskFreeSpaceEx |
 PROCEDURE(*DISK_SPACE DiskSpace)
i64FreeBytesAvailable LIKE(ULARGE_INTEGER)
i64TotalBytes LIKE(ULARGE_INTEGER)
i64TotalFreeBytes LIKE(ULARGE_INTEGER)
RetVal LONG,AUTO
pszDirectoryName LONG,AUTO
 CODE
 RetVal = 0
 DiskSpace.FreeBytesAvailable = 0
 DiskSpace.TotalBytes = 0
 DiskSpace.TotalFreeBytes = 0
 IF fpGetDiskFreeSpaceEx
 pszDirectoryName = |
 CHOOSE(DiskSpace.szDirectoryName<>'',|
 ADDRESS(DiskSpace.szDirectoryName), 0)
 IF GetDiskFreeSpaceEx(pszDirectoryName, |
 i64FreeBytesAvailable,|
 i64TotalBytes, |
 i64TotalFreeBytes)
 !Convert the 64 bit unsigned integers
 ! into decimals
 ULIntToDec(DiskSpace.FreeBytesAvailable, |
 i64FreeBytesAvailable)
 ULIntToDec(DiskSpace.TotalBytes, |
 i64TotalBytes)
 ULIntToDec(DiskSpace.TotalFreeBytes, |
 i64TotalFreeBytes)
 ELSE
 RetVal = SELF.Kernel.GetLastAPIError()
 END
 ELSE
 RetVal = 1
 END
 RETURN RetVal

One of the first things that the DiGetDiskFreeSpaceEx method
does is to test if the function pointer is not null. When it is null, it
usually means that the GetDiskFreeSpaceEx function is not
available so the object should use the DiGetDiskFreeSpace
method instead.

Before the method can call the GetDiskFreeSpaceEx function, it
must assign the address of pDiskInfo.szDirectoryName to
pszDirectoryName. Because the function was prototyped to take a
long integer for this parameter, you must use the ADDRESS

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls3.html (5 of 9) [6/4/01 11:26:52 AM]

Loading DLLs At Runtime - Part 3

function, like this:

pszDirectoryName = |
 CHOOSE(DiskSpace.szDirectoryName<>'',|
 ADDRESS(DiskSpace.szDirectoryName), 0)

The CHOOSE function returns the address of the string if it is not
blank, or a zero when it is blank. The zero instructs
GetDiskFreeSpaceEx to return the disk information of the current
directory.

As I mentioned earlier, GetDiskFreeSpaceEx requires pointers to
three 64-bit unsigned integers as parameters, so the method
declares these as ULARGE_INTEGERs. GetDiskFreeSpaceEx passes
these 64-bit unsigned integers by address and fills them with the
disk space information for the specified directory.

Before you can use these 64-bit unsigned integers in your
program, you must convert them into a format that Clarion
understands. One way to do this is to use a variable declared as
DECIMAL(21). This decimal variable is sufficient to hold the
maximum value (18,446,744,073,709,551,615) of a 64-bit
unsigned integer. To convert 64-bit unsigned integers into
decimals, you must shift the high double word 32 bits to the left
and add the lower 32 bits to that result.

Normally when you want to shift a value a certain number of bits,
you use the BSHIFT function. In this case, however, BSHIFT will
not work. So how will you convert the group into the decimal?
(hint… shifting the bits left 32 times is the same as multiplying by
2^32.) Consider the listing for the ULIntToDec helper procedure:

ULIntToDec PROCEDURE(*DECIMAL dResult,|
 *ULARGE_INTEGER I64)
TWO_TO_32 EQUATE(4294967296) !2^32
 CODE
 dResult = I64.HighDw * TWO_TO_32 + I64.LowDw
 RETURN

This procedure takes the high order 32 bits, multiplies it by the
constant TWO_TO_32, and then adds the lower 32-bit value.
Assume that you use this on a large drive and it returns the
following values:

I64.HighDw = 00000008H
I64.LowDw = 8C8A6000H

I'm going to use hexadecimal notation to make it easier to see
what is happening in this example.

I64.HighDw starts out as a 32-bit value:

00000008H

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls3.html (6 of 9) [6/4/01 11:26:52 AM]

Loading DLLs At Runtime - Part 3

After it is multiplied by 2^32 the result is:

00000008 00000000H

Why did that work? Don't worry, there won't be any assembly
language this time. Clarion's automatic type conversion cast the
unsigned long to a decimal before it performed the multiplication.
Because of this type cast, no data are lost.

When you add the two values together, you get the desired result:

 00000008 00000000H
+ 00000000 8C8A6000H
 00000008 8C8A6000H

or in decimal:

 34,359,738,368
+ 2,357,878,784
 36,717,617,152

That is a whopping 34.1 GB of disk space.

If the DiGetDiskFreeSpaceEx method fails, the class falls back on
the DiGetDiskFreeSpace method. Whenever a program made with
this class runs on Windows 95 before OSR2, DiGetDiskFreeSpace
always executes. If you compare the code in Listing 8 to the code
Listing 7, you will see that they have more in common than not.

Listing 8. The DiGetDiskFreeSpace method

DiskInfoClass.DiGetDiskFreeSpace |
 PROCEDURE(*DISK_SPACE DiskSpace)
SectorsPerCluster ULONG,AUTO
BytesPerSector ULONG,AUTO
FreeClusters ULONG,AUTO
Clusters ULONG,AUTO
RetVal LONG,AUTO
pszDirectoryName LONG,AUTO
 CODE
 RetVal = 0
 DiskSpace.FreeBytesAvailable = 0
 DiskSpace.TotalBytes = 0
 DiskSpace.TotalFreeBytes = 0
 IF fpGetDiskFreeSpace
 pszDirectoryName = |
 CHOOSE(DiskSpace.szDirectoryName<>'', |
 ADDRESS(DiskSpace.szDirectoryName), 0)
 IF GetDiskFreeSpace(pszDirectoryName, |
 SectorsPerCluster, |
 BytesPerSector, |
 FreeClusters, |
 Clusters)
 DiskSpace.TotalFreeBytes = |

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls3.html (7 of 9) [6/4/01 11:26:52 AM]

Loading DLLs At Runtime - Part 3

 BytesPerSector * |
 SectorsPerCluster * |
 FreeClusters
 DiskSpace.TotalBytes = |
 BytesPerSector * |
 SectorsPerCluster * |
 Clusters
 DiskSpace.FreeBytesAvailable = |
 DiskSpace.TotalFreeBytes
 ELSE
 RetVal = SELF.Kernel.GetLastAPIError()
 END
 END
 RETURN RetVal

The only significant differences are in GetDiskFreeSpace's
parameters. As noted before, GetDiskFreeSpace accepts four
unsigned longs that represent the disk geometry. To calculate
values similar to GetDiskFreeSpaceEx, you only need to find the
product of BytesPerSector and SectorsPerCluster, and then
multiply it by the FreeClusters or Clusters for the
TotalFreeBytes and TotalBytes respectively. Since
GetDiskFreeSpace does not return information about available
free bytes, the method sets FreeBytesAvailable equal to
TotalFreeBytes.

Finally, the Destruct method releases the memory allocated for
the Kernel object. Disposing of the Kernel object fires its
Destruct method, which calls its LlcFreeLibrary method.

In Summary

You now know the difference between run-time and load-time
dynamic linking. You should also have a good understanding of
when run-time linking is useful, what function pointers are, and
how to create them to implement run-time dynamic linking in
Clarion.

The load library base class presented in this article gives you a
platform to derive and use via composition to give your class
access to the Windows API or other external libraries.

You've seen how to implement the LoadLibClass in another class.
The DiskInfoClass is the beginning of a class that you can extend
to retrieve disk information. The DiskInfoClass illustrates how to
dynamically load and call the Windows API GetDiskFreeSpaceEx
function. Furthermore, it shows how to fall back on the
GetDiskFreeSpace function if GetDiskFreeSpaceEx does not exist
on the OS.

Download the source

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls3.html (8 of 9) [6/4/01 11:26:52 AM]

http://www.clarionmag.com/cmag/v3/files/v3n5loadlibrary.zip

Loading DLLs At Runtime - Part 3

Larry Sand is an independent software developer who began programming with
Clarion in 1987. In addition to normal database development, he specializes
in connecting Clarion to external devices like SCUBA diving computers,
kilns, and satellite transceivers used in medical helicopters. In other
lives, he sailed Lake Superior as the owner/operator of shipwreck SCUBA
diving tours and later as a Master for the Vista Fleet. When Larry is not
programming you'll find him messing about in boats, or with boats.

Reader Comments

Add a comment

Thanks for this series Larry! It couldn't have come at a...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls3.html (9 of 9) [6/4/01 11:26:52 AM]

mailto:Larry@sand-associates.com
http://www.clarionmag.com/cmag/comments.frm?articleID=10611
http://www.clarionmag.com/cmag/discuss.frm?articleID=10611&position=1
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Clarion Magazine -

Clarion News

File Explorer 1.7 Shipping
CapeSoft's File Explorer version 1.7 is now shipping. File Explorer
is a way of including HTML in your program, either as a read-only
browser or as an HTML edtor. The main new feature is support
for the recently released Adobe Acrobat 5 reader. If you use File
Explorer in your app, then the client can have either Acrobat 4 or
Acrobat 5 loaded and your program will work smoothly. FE auto-
detects which OCX is loaded on the machine and behaves
accordingly. For the duration of the Big Birthday Bash File
Explorer costs $89. This price expires on 31 May 2001. After that
it's back to the normal price of $99.
Posted Friday, May 25, 2001

NetTalk 1.0 Beta 12 With DUN Available
NetTalk 1.0 Beta 12 is now available, with Dial-Up Networking
(DUN) support. Your program can automatically connect to
another machine, making full use of the Windows built-in DUN
features. It's even possible for your program to detect when a
Dial-Up connection is made, and automatically piggy-back its own
information across the link. The features supported are
numerous. Gold release is expected late in June.
Posted Friday, May 25, 2001

CapeSoft Draw Version 1.0 Beta 2 Available
CapeSoft Draw is now in beta 2. There have been some questions
about how Draw and Insight Graphing fit together. For the
Insight users, rest assured. Insight isn't getting dropped in any

http://www.clarionmag.com/cmag/news01-05.html (1 of 5) [6/4/01 11:26:54 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.capesoft.com/accessories/FileExplorer.htm
http://www.capesoft.com/docs/Nettalk/nettalk.htm
http://www.capesoft.com/accessories/drawsp.htm

Clarion Magazine -

way. Insight will be changed over to use the new Draw engine in
the near future. Of course drawing is a big part of drawing
graphs, but Insight does much more than just draw. Its main
achievement is in the way it collects the data from your data
files, collates it, and then presents it. Although Insight will use
the Draw engine internally, you won't need to purchase Draw in
order to use Insight. Draw is however a major step forward for
Insight as it allows for vertical text, and saving to PNG's (a web
format). And of course Draw is very useful on its own. Draw
creates graphics quickly, and the pictures don't have to be
redrawn every time the window is moved or refreshed. Animation
is flicker-free, and you can mix BMP files with drawing functions.
CapeSoft Draw is priced at $99, however for the duration of the
CapeSoft Birthday Bash you can get it for $59. From 1 June
onwards, until the end of the beta program, the price will be $79.
Posted Friday, May 25, 2001

CapeSoft Mailer 1.0 Beta 1 Released
CapeSoft Mailer is a bulk mail management system. It's not a
SPAM tool, and shouldn't be used as such. Rather it allows you to
create and maintain various mailing lists. You can then send an
email to the people on the list. Each person receives their own
email, with no multiple recipients. Mailer allows you to create the
Email in both HTML and Text formats. If you have recipients that
prefer to receive text-only emails then Mailer automatically sends
the text only version to them. If a person opts-out of your list
then their address is not physically deleted, rather it is marked as
"excluded". This prevents them being added to the list again in
the future. Although Mailer itself is not designed as an accessory,
but rather as a full working program, there are some features
available to Clarion developers. CapeSoft is shipping the DCT as
part of the basic package. This means you're easily able to
interface your program to the data files, building your own lists
etc. Secondly source code is available (for $499). Mailer makes
extensive use of NetTalk, File Explorer, File Manager 2, SecWin,
and WinEvent. These accessories are not included in the mailer
source code price. CapeSoft Mailer costs $99 per site. Resellers
received a 50% discount on the second and subsequent copies.
Posted Friday, May 25, 2001

CapeSoft MessageBox Version 1.0 beta 1 Released
Message Box is a simple tool which allows you to customize your

http://www.clarionmag.com/cmag/news01-05.html (2 of 5) [6/4/01 11:26:54 AM]

http://www.capesoft.com/utilities/mailer.htm
http://www.capesoft.com/accessories/mesboxsp.htm

Clarion Magazine -

MESSAGE, STOP and HALT windows. It gives you more control
over the look of the window, but at the same time it integrates
into your existing programs in a transparent way. The main
features of the CapeSoft MessageBox are: source only - no
precompiled DLLs; compatible with C4, C5, C5.5, ABC and
Legacy; compatible with other CapeSoft products, like Makeover,
Ezhelp and Special Agent. MessageBox adds features to the
Standard message box, like auto timeouts, sound, logging, etc.
INcluded is a utility that lets you build the MessageBox and view
it in real time. MessageBox is priced at $49, but will be on special
for $39 until the end of the (probably very short) beta program.
Posted Friday, May 25, 2001

The CapeSoft Big Birthday Bash Ends Soon
On 1 May 2001 CapeSoft officially turned 10, and for the month
of May all CapeSoft Clarion Accessories are on special.
Posted Friday, May 25, 2001

One Week Left On FrameText Special
FrameText from solid.software is available at a $10 discount only
until May 31 - after that date the price goes back to $59.
Posted Thursday, May 24, 2001

Search Engines Profile Exchange Updated
Encourager Software has created an centralized information
resource for software authors that need to submit their programs
and web sites to the various search engines. Encourager Software
grants a limited license for individuals or companies to install the
Viewer Version of Product Scope 32 PRO on 5 computers or less
and Search Engine Data Files without a paid registration. This is
not a file submittal program. Rather, it is a collection of
information designed to help you get to the sites in an organized
fashion.
Posted Tuesday, May 22, 2001

Buggy 2.1.4 Available
An update to the Buggy bug tracking tool is available to all
registered users.The trial version has also been updated.
Posted Wednesday, May 16, 2001

http://www.clarionmag.com/cmag/news01-05.html (3 of 5) [6/4/01 11:26:54 AM]

http://www.capesoft.com/
http://www.solidsoftware.de/frametxt.htm
http://encouragersoftware.com/profile/SearchPS.html
http://www.novosys.de/Buggy/Buggy.html

Clarion Magazine -

IMPEX 5.0 Adds HTML Export
IMPEX allows easy, user-controlled, drag-and-drop import and
export of data using templates which automatically read file
format information (such as Field Names, Field Types etc) from
the Data Dictionary (export) or from the file header (import). File
structures are constructed automatically. The demo will import
any dBase or ASCII file so you can test it on your own data files.
IMPEX will now output HTML as well, with end user control over
page and table attributes, and inclusion of other files (i.e. header
and footer). Other new features include: export to flat ASCII
files; set field order for all exports; template locates field names;
export to tab, pipe, comma and semicolon delimited ASCII. Demo
available.
Posted Monday, May 14, 2001

FrameText Special Offer
FrameText, from solid.software, is now available at a $10
discount through the end of May, 2001. FrameText is a
library/template add-on that allows Clarion applications to display
text on the client area of the MDI frame window (i.e. for
displaying licensing information, advertisements, tips of the day,
etc.). FrameText lets you specify: font name, style, charset and
color; justification (left, center, right); shadow/light color for 3D
effect (optional). Supports Clarion5 and 5.5, ABC and legacy
templates, 16 and 32 bit target platforms, in DLL and LIB
versions supporting both standalone and local compiles. Updates
and support are free. Until Thursday, May 31, FrameText will be
priced at $49 instead of $59. Also available at ClarionShop -
http://www.clarionshop.com.
Posted Monday, May 14, 2001

Stealth Software Mail & Fax Upgrade Pricing Changes
From June 1st, Stealth Software we will be only selling the
upgrade to the C55 version of the Mail and Fax templates through
clarionshop.com (as well as new licences of course). Through
clarionshop.com the upgrade will cost US$25. If you purchase
directly from Stealth before June 1st, you can still buy it for
US$20. So if you haven't yet upgraded from an earlier version to
the Clarion 5.5 version of the templates, please either email

http://www.clarionmag.com/cmag/news01-05.html (4 of 5) [6/4/01 11:26:54 AM]

http://www.sterlingdata.com/impex.htm
http://www.solidsoftware.de/frametxt.htm
http://www.stealthsoft.co.za/m&f.htm

Clarion Magazine -

(cliff@vine.co.za) before the end May and get them for US$20, or
after May from clarionshop.com for US$25.
Posted Thursday, May 10, 2001

Clarion To Excel Example
Anton Novikov has released a small class and example app
showing how to transfer data from Clarion to Excel. YOu can write
to one cell, one row, or an entire table. If you have problems with
the download email Anton at anfront@chat.ru.
Posted Wednesday, May 09, 2001

CapeSoft Draw Version 1.0 Beta 1 Released
CapeSoft Draw Version 1.0 beta 1 released. This drawing engine
is at the heart of the Insight graphing product. Some of the
advantages of CapeSoft Draw are: speed; images to not have to
be drawn every time the window is moved or refreshed; flicker-
free animation; mixing BMP files with drawing functions; save
results as BMP or PNG. CapeSoft Draw is priced at $99, but
during the CapeSoft Birthday Bash you can get it for $59.
Posted Wednesday, May 09, 2001

The CapeSoft Big Birthday Bash
On 1 May 2001 CapeSoft officially turned 10. That's 10 whole
years of Clarion programming going all the way back to Clarion
Professional for Dos 2.0, including Clarion 3 for Dos, and the
whole Windows line from CW 1.0. To celebrate this occasion
CapeSoft is running the Big Birthday Bash all the way during the
Month of May, with all CapeSoft Clarion Accessories at discounted
prices.
Posted Wednesday, May 09, 2001

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any form without
the expresswritten consent of CoveComm Inc., except as described in the subscription agreement,
is prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

http://www.clarionmag.com/cmag/news01-05.html (5 of 5) [6/4/01 11:26:54 AM]

http://cw.net.gaming.ru/
http://www.capesoft.com/
http://www.capesoft.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Creating Elliptical Windows in Clarion

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Creating Elliptical Windows in Clarion

by Brice Schagane

Published 2001-05-25

While attending ETC 2000, I heard James Fortune give an
excellent talk on User Assistance 2000. In his presentation, James
made several recommendations regarding help and how it is best
provided. I liked what I heard. James recommended CapeSoft’s
EzHelp, for its ability in providing contextual help to the end-user.
As a result, I ran right out and purchased a copy of EzHelp, along
with several other CapeSoft products.

James’ presentation also included a discussion on installation
programs. He recommended that any media, which contained
multiple installation files should provide a single interface program,
such as a CD browser. A CD browser is a small "teaser"
application, which launches upon disc detection, and presents
installation information to the end-user in a straight-forward
manner. It can be used to launch other applications, such as setup
programs, or provide additional product and service information.

When I installed CapeSoft’s software, I immediately recognized
their browser program and was especially impressed with the
program’s appearance. Instead of a standard, boring, square (or
rectangular) window, they used an elliptical window. I was
inspired!

Getting started

Now that I had the inspiration, I needed to figure out how to
create elliptical windows within my own applications. I got out my
handy-dandy WIN32 Programming API Bible (by Richard Simon,
Waite Group Press) and went to work. After a little digging, I found
an API function named CreateEllipticRgn. This sounded
promising. The CreateEllipticRgn requires four parameters, one
for each corner of a given rectangle, and returns a handle to the
newly created region. It seemed only logical that I pass it the
dimensions of a predefined window. By creating an elliptical region
that is the same width and height as my window, I can easily
approximate the boundaries of the resulting elliptic region. When
populating controls to my window, I must position them such that,
when I convert the window to an elliptic region, the controls are

http://www.clarionmag.com/cmag/v3/v3n5elliptical.html (1 of 6) [6/4/01 11:26:57 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/v2/v2n6etcsumm3.html

Creating Elliptical Windows in Clarion

still visible. In order for this to work, I would need to determine
the coordinates and/or dimensions of the targeted window.

The next API function I stumbled upon is named GetWindowRect.
That’s pretty clear to me. That’s exactly what I need, the
rectangular coordinates of the window. The GetWindowRect
function requires two parameters. The first parameter is the
handle to a window. The second is a RECT structure and is used by
the function to return the coordinates of the window’s bounding
rectangle. This function also returns a Boolean TRUE, if the
function is successful, and FALSE if the function ultimately fails.

Trial and error

Now that I had the functions GetWindowRect and
CreateEllipticRgn, I needed to put them to use. After a little
tinkering around, I discovered that I had missed something. I was
using the API calls to create an elliptical region, but the resulting
region was not being applied to my window. I somehow needed to
instruct Windows to restrict the boundaries of my window to that
of a specific region. After searching vigorously, I found a function
named SetWindowRgn in the MSDN Library (why this function isn’t
listed in the API Bible, I may never know).

The SetWindowRgn function sets the visible region of a window and
specifies whether or not the window should be redrawn. This
function requires three parameters. The first two parameters
consist of the handle to a window, and the handle to a region,
respectively. The window that is passed here, will be bound to the
boundaries of the specified region. The third parameter is a
Boolean flag(true or false), indicating whether or not the window
should be redrawn. SetWindowRgn also returns an integer value
indicating success (nonzero) or failure (zero).

Putting it to use

Surprisingly, the code required to create elliptical windows isn’t
complex at all. Now that I had established the foundations, I
needed to find some practical use for an elliptical window. Writing
a CD browser was somewhat pointless given the fact that I didn’t
have a need for one.

There are some differences between normal and elliptical windows,
and that affected my decision on what kind of window to create.
Unlike traditional windows, elliptical windows are best presented
without a title bar. That means the user loses the ability to drag
the window from one position to another and to close the window
using a system menu on the title bar. While moving the window
may or may not be an issue, I should always provide a mechanism
for closing the window. I thought about using a traditional close
button, but that might take away from the elliptical window’s flare.

My next thought was an elliptical Splash window. Splash windows
can be closed automatically after a specified amount of time. They

http://www.clarionmag.com/cmag/v3/v3n5elliptical.html (2 of 6) [6/4/01 11:26:57 AM]

Creating Elliptical Windows in Clarion

can also be setup to close at any time by simply clicking on it. An
elliptical splash window sounded like it would make an ideal test
subject.

For testing purposes, I used a splash window within the School
Manager application, one of Clarion’s sample applications.

Global Definitions

The first thing I needed to do was make sure that the application
compiled to 32-bit, since the API calls are all 32-bit. Under
Project|Properties, I verified that the target OS was set to
Windows 32-bit.

Next, I defined the prototypes and equates for the API calls, using
SoftVelocity’s Windows API INCLUDE File Constructor (also known
as the WinAPI program, located in the Clarion example files). I
created an include file named ‘WinRgnApi.clw’, as shown in Listing
1, and saved it to Clarion’s LibSrc directory.

Listing 1. Contents of WinRgnApi.clw Include file

 SECTION('Equates')
HANDLE EQUATE(UNSIGNED)
HRGN EQUATE(HANDLE)
HWND EQUATE(HANDLE)
BOOL EQUATE(SIGNED)
HGDIOBJ EQUATE(HANDLE)
RECT GROUP,TYPE
left SIGNED
top SIGNED
right SIGNED
bottom SIGNED
 END
 SECTION('Prototypes')
 MODULE('Windows.DLL')
 GetWindowRect(HWND, *RECT),BOOL,PASCAL,RAW
 CreateEllipticRgn(SIGNED, SIGNED, SIGNED, SIGNED)|
 ,HRGN,PASCAL
 SetWindowRgn(HWND,HRGN,BOOL),SIGNED,PASCAL
 END

Now that I had my Include file, I had to include it within my
application. Under Global Properties|Embeds, I performed the
following steps:

1. In the Section After Global INCLUDEs, I embedded the
following source code:

INCLUDE(‘WinRgnApi.clw','Equates')

2. In the Section ‘Inside the Global Map’, I embedded the
following source code:

INCLUDE(‘WinRgnApi.clw','Prototypes')

http://www.clarionmag.com/cmag/v3/v3n5elliptical.html (3 of 6) [6/4/01 11:26:57 AM]

Creating Elliptical Windows in Clarion

Up to this point, I had defined the elements necessary to call the
API functions from within my application. Next, I had to write the
code that actually defines an elliptical window, using the ‘SplashIt’
procedure’s window as a building block.

Local Definitions

The process of converting a procedural window to an elliptical
window required that I define some local variables to the
procedure. Using either the Local Data dialog or the ‘Data for the
procedure’ embed point, I defined the following five variables:

!Coordinates of the window’s bounding rectangle
WinRect LIKE(RECT)
DBSRgn HRGN !Handle to the New Region
DBSWidth LONG !Width of the window
DBSHeight LONG !Height of the window
SuccessFlag BYTE !Status of calls

Finally, I wrote the code necessary to create an elliptical window.
In the first available embed point, after the window is opened
(ThisWindow.Init at Priority 8030), I embedded this code:

 SuccessFlag = GetWindowRect(|
 WindowName{PROP:HANDLE},WinRECT)
 IF SuccessFlag
 DBSWidth = WinRect.right - WinRect.left
 DBSHeight = WinRect.bottom - WinRect.top
 DBSRgn = CreateEllipticRgn(0,0,DBSWidth,DBSHeight)
 SetWindowRgn(WindowName{PROP:HANDLE},DBSRgn,TRUE)
 END!_IF

The first line of code retrieves the coordinates of the named
window and returns TRUE if successful. I replaced WindowName with
the actual label of my window. In this case, it is simply "window".
The second line of code determines whether or not I should
continue creating my elliptical window. If GetWindowRect is
unsuccessful, the normal rectangular splash screen will display.
However, due to the planned changes to the window’s appearnce,
if GetWindowRect fails, the resulting window wouldn’t be very
pretty.

The two lines of code following IF SuccessFlag calculate the
width and height of the original window by subtracting the left
coordinate from the right coordinate and the top coordinate from
the bottom coordinate. The fifth line of code is used to create an
elliptic region within the current window. The first two zeros
specify the x and y coordinates for the new region and each is
relative to the top-left corner of the current window. As I
mentioned previously, specifying the width and height to be the
same as the current window will make it easier to position controls
within the elliptical region. This, however, is not required.

http://www.clarionmag.com/cmag/v3/v3n5elliptical.html (4 of 6) [6/4/01 11:26:57 AM]

Creating Elliptical Windows in Clarion

The sixth line of code tells Windows to restrict the visible portion of
the window to the boundaries of the region. The Boolean TRUE
indicates that the window should be redrawn.

Let’er RIP!

Now I was ready to compile and run my application. The compiler
generated a warning message: "Warning: calling function as
procedure". This is because the SetWindowRgn function returns an
integer value indicating success (nonzero) or failure (zero). To get
rid of this message, you could either trap for an error by setting a
variable equal to the return value, or add the ,PROC attribute to
the function’s prototype. Neither change is required. The worst
that could happen is that your window would remain square. To
this day, I haven’t encountered such a problem.

Once the application ran, I got an elliptical splash window, but it
still needed a little work. By removing the two larger panels,
adjusting the position of the other controls, and adding some
color, I generated a more appealing window similar to that shown
in Figure 1.

Figure 1. Elliptical Splash Window

Summary

In a few easy steps, I took a basic splash window and created a
much more appealing elliptical window. You too, can quickly and
easily, create elliptical windows within your own applications.
Elliptical windows add a special little touch that can help improve
your software’s overall image. The possibilities are endless.

You may also be interested in taking a look at the
CreateRoundedRectRgn API function. This function will allow you
to create a rectangular region with rounded corners. If you’re
really artistic or just looking for a good challenge, try the
CreatePolygonRgn API function, which can give your window the
appearance of practically any shape you desire.

Download the source code

http://www.clarionmag.com/cmag/v3/v3n5elliptical.html (5 of 6) [6/4/01 11:26:57 AM]

http://www.clarionmag.com/cmag/v3/files/v3n5ellipticalwindow.zip

Creating Elliptical Windows in Clarion

Brice Schagane works for the Kentucky Transportation Cabinet. He also runs a
small computer company by the name of Ghost Solutions, Inc. Brice has been using
Clarion since 1997.

Reader Comments

Add a comment

It is really nice to see such a clear demonstration of good...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5elliptical.html (6 of 6) [6/4/01 11:26:57 AM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10582
http://www.clarionmag.com/cmag/discuss.frm?articleID=10582&position=1
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Loading DLLs At Runtime - Part 2

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Loading DLLs At Runtime - Part 2

by Larry Sand

Published 2001-05-22

Last week I explained the theory behind calling DLL procedures by
address. This week I’ll take you through the steps of actually
calling such procedures.

There are five steps necessary to call a procedure by address after
it is prototyped with a function pointer.

1. Load the DLL with LoadLibrary
2. Get the address of the procedure with GetProcAddress
3. Assign the address from step 2 to the function pointer

variable
4. Call the procedure (The class does not perform this step)
5. Unload the DLL with FreeLibrary when done.

Listing 2 defines the load library class which manages the process
of loading the DLL, getting the addresses of the procedures in the
DLL, and finally unloading the DLL. The class doesn't provide a
method to call procedures from the DLL. To do this, you must
derive the class or use the class via composition.

Listing 2. Load library class definition (see LoadLib.inc)

LoadLibClass CLASS,TYPE,MODULE('LoadLib.clw'),|
 LINK('LoadLib.clw',|
 ABCLinkMode), |
 DLL(_ABCDllMode_)
LastError ULONG,AUTO
LlcLoadLibrary PROCEDURE(|
 STRING ModuleFileName,|
 UNSIGNED |
 LoadMethod=Method:LoadLibrary|
),LONG
LlcGetProcAddress PROCEDURE(STRING sProcedureName)|
 ,LONG
LlcFreeLibrary PROCEDURE(),LONG,PROC
LibraryLoaded PROCEDURE(),BOOL
GetLastAPIError PROCEDURE(),ULONG
LoadMethod UNSIGNED,PROTECTED

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls2.html (1 of 7) [6/4/01 11:27:01 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

Loading DLLs At Runtime - Part 2

hModule UNSIGNED(0),PROTECTED
szModuleFileName &CSTRING,PROTECTED
szProcedureName CSTRING(64),AUTO,PROTECTED
OnLoadLibraryFailure PROCEDURE(),VIRTUAL,PROTECTED
OnGetProcAddressFailure PROCEDURE(),VIRTUAL,PROTECTED
Destruct PROCEDURE(),PROTECTED
 END

Note: You must declare the API prototypes
and function pointers at Module or Global
scope. Failure to do this will cause
unpredictable behavior and your program will
most likely cause a GPF. To do this, include
the class header file (LoadLib.inc) in the
module where you wish to call the methods.
For an application, select the Module tab and
then embed the include statement in the
"Module Data Section" embed. Alternatively, if
you need global access to the class, embed
the include statement in the Global embeds
"After Global INCLUDES" embed point.

Before the object can get the address of a procedure, it must first
load the DLL or get the handle to a previously loaded DLL. Use the
Windows API functions LoadLibrary or GetModuleHandle to load
or get the handle to the DLL. Prototype these functions like this:

LoadLibrary(*CSTRING pszModuleFileName) |
 ,UNSIGNED,PASCAL,RAW,NAME('LoadLibraryA')
GetModuleHandle(*CSTRING pszModuleName) |
 ,UNSIGNED,PASCAL,RAW,NAME('GetModuleHandleA')

LoadLibrary maps the DLL named in the pszModuleFileName
parameter into the program's address space, increments the DLL’s
usage count, and returns a handle to the DLL. Whenever a
program loads a DLL into memory with LoadLibrary, Windows
increments its usage count. It's this usage count that Windows
uses to determine when to unload the DLL. Conversely, Windows
decrements the usage count when you call FreeLibrary and it's
only after the usage count reaches zero that Windows finally
unloads the DLL from memory. The returned handle is simply a 32-
bit integer that uniquely identifies the instance of the DLL.

In contrast, GetModuleHandle only returns the handle of a
previously loaded module (DLL). It does not map the DLL into the
address space of your program or increment its usage count.
Whenever you use GetModuleHandle to get the handle to the DLL,
you should not call FreeLibrary. The class manages this
distinction for you. If another process unloads the DLL, the handle
returned by GetModuleHandle can become invalid, so, use this
option with caution. It's intended for modules that you know will
not be unloaded by another process, such as the Windows kernel
(kernel32.dll).

Like many Windows API functions, LoadLibrary and

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls2.html (2 of 7) [6/4/01 11:27:01 AM]

Loading DLLs At Runtime - Part 2

GetModuleHandle come in two flavors, ANSI and Unicode. That's
the reason their prototypes contain the NAME attribute, and specify
LoadLibraryA and GetModuleHandleA as their respective external
names. These are the ANSI versions of the functions; the Unicode
versions are LoadLibraryW and GetModuleHandleW.

How will you know when there are two versions of an API function?
You can always read the SDK header files (.h) for the function. If C
header files make you see double, you can look at the end of the
function's documentation on MSDN. You'll find this line (or one like
it) for functions that are present in ANSI and Unicode:

Unicode: Implemented as Unicode and ANSI versions on Windows
NT/2000.

Furthermore, if the MDSN help for a function says "Unicode:
Unicode only", or something similar, then you'll need to convert
your ANSI strings to Unicode before calling that function, and back
to Multi-Byte ANSI strings when done. See Jim Kane's article for
more information.

This class does not follow the convention of using an Init method
for initialization, nor does it use a Kill method to deallocate its
resources. Instead, it performs its own initialization, and then
cleans up after itself. (Now if I could just convince my children to
do the same!) You perform the following steps to load a DLL, call a
procedure, and then unload the DLL: First, call the
LlcLoadLibrary method with the file name of the DLL. You only
call this method once per library. Next, call the
LlcGetProcAddress method with the name of each procedure in
the managed DLL and assign it to the procedures function pointer
variable. Finally, call the LlcFreeLibrary method or let the
Destruct method complete this step for you.

Now I'll describe the implementation of each of these methods. The
LlcLoadLibrary method is responsible for initializing the object
and calling LoadLibrary or GetModuleHandle based on the
optional LoadMethod parameter. If you don't specify the method,
LoadLibrary is the default.

Listing 2. LlcLoadLibrary Method

LoadLibClass.LlcLoadLibrary PROCEDURE(|
 STRING sModuleFileName,|
 UNSIGNED |
 LoadMethod=Method:LoadLibrary)
RetCode LONG,AUTO
 CODE
 RetCode = 1
 IF NOT SELF.LibraryLoaded()
 SELF.szModuleFileName &= NEW CSTRING(|
 LEN(CLIP(sModuleFileName))+1)
 IF NOT SELF.szModuleFileName &= NULL
 SELF.szModuleFileName = CLIP(sModuleFileName)

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls2.html (3 of 7) [6/4/01 11:27:01 AM]

http://msdn.microsoft.com/
http://www.clarionmag.com/cmag/v1/v1n8olepart2.html

Loading DLLs At Runtime - Part 2

 SELF.LoadMethod = |
 CHOOSE(LoadMethod < Method:Last AND |
 LoadMethod > 0,|
 LoadMethod, |
 Method:LoadLibrary)
 EXECUTE SELF.LoadMethod
 SELF.hModule = |
 LoadLibrary(SELF.szModuleFileName)
 SELF.hModule = |
 GetModuleHandle(SELF.szModuleFileName)
 END
 END
 IF SELF.LibraryLoaded()
 RetCode = 0
 ELSE
 SELF.OnLoadLibraryFailure()
 END
 END
 RETURN RetCode

The first thing that LlcLoadLibrary does is to check if it's already
managing a DLL. If it is, LibraryLoaded returns true and the
method doesn't do anything other than return 1 to indicate failure.

Note: This class follows the convention that a
function returns zero (0) for success and Non-
zero implies some kind of failure. Extended
error information is stored in the classes'
LastError property. These are the error
codes returned by the Windows API function
GetLastError. You can find the definition of
these error codes on MSDN (*** dh add link).

If the object isn't already managing a library, the method allocates
memory for the module file name. The file name is passed as a
string value parameter and LoadLibrary and GetModuleHandle
require a *cstring for this parameter. This allows you to call the
method with a constant string like this:

Di.LlcLoadLibrary('MyDLL.DLL')

Next, the method checks the validity of the load method value and
assigns it to the LoadMethod property. The method defaults to
Method:LoadLibrary, which is the safest method. The EXECUTE
structure assigns the handle returned by LoadLibrary or
GetModuleHandle to the hModule property. The class requires this
value as a parameter of the API calls to get a procedure's address
and to unload the library.

The object calls the virtual method OnLoadLibraryFailure
whenever it cannot obtain the handle to the DLL. Derive the virtual
OnLoadLibraryFailure method to handle this error as you see fit.

Before you can use a procedure from the DLL, you must assign the

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls2.html (4 of 7) [6/4/01 11:27:01 AM]

Loading DLLs At Runtime - Part 2

procedure’s address to the function pointer variable. To get the
address use the LlcGetProcAddress method. The
LlcGetProcAddress method wraps the Windows API function
GetProcAddress; assigning the passed procedure name to a
cstring, similar to LlcLoadLibrary, and testing the validity of the
returned address. You prototype GetProcAddress like this:

GetProcAddress(UNSIGNED hModule, |
 *CSTRING pszProcName |
),LONG, PASCAL, RAW

The LlcGetProcAddress method takes two parameters, the handle
to the module returned by LoadLibrary or GetModuleHandle, and
a pointer to the procedure name. The second parameter can
optionally accept the ordinal of the exported procedure. I leave it
an exercise for you to overload this method to accept an ordinal
instead of the procedures' name. Now consider how the class
implements the GetProcAddress function.

Listing 3. LlcGetProcAddress method listing

LoadLibClass.LlcGetProcAddress PROCEDURE(|
 STRING sProcedureName)
lpProcedure LONG,AUTO
 CODE
 IF SELF.LibraryLoaded()
 SELF.szProcedureName = CLIP(sProcedureName)
 lpProcedure = GetProcAddress(SELF.hModule,|
 SELF.szProcedureName)
 IF IsBadCodePtr(lpProcedure)
 lpProcedure = 0
 SELF.OnGetProcAddressFailure()
 END
 ELSE
 lpProcedure = 0
 END
 RETURN lpProcedure

When called, the method ensures that the object is managing a
DLL. That is, you already called the LlcLoadLibrary method. If
the object is managing a DLL, the method assigns the procedure
name passed as a string value parameter to the szProcedureName
property (a cstring). The Windows API GetProcAddress function
requires a cstring.

The method does not dynamically allocate the szProcedureName
property as the szModuleFileName property is in the
LlcLoadLibrary method. If you encounter procedure names
greater than 63 characters, modify this property. The
LlcLoadLibrary method set the hModule property to the handle of
the DLL..

GetProcAddress returns an address or zero if it fails. Additionally,
the method calls IsBadCodePtr to test for read access to returned

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls2.html (5 of 7) [6/4/01 11:27:01 AM]

Loading DLLs At Runtime - Part 2

address. Since zero is an invalid address, IsBadCodePtr returns
true. If your process does not have read access to the address, the
method calls the OnGetProcAddressFailure method. Derive this
method in your class to handle the error, if necessary. Some
procedures are not present in all versions of Windows, in which
case it is normal for GetProcAddress to fail. Your code can use this
fact to call an alternate procedure. The section on implementing
the LoadLibClass illustrates this technique.

Finally, the method returns the address of the procedure. Use this
address to call the procedure from your program. When the return
value is zero, the method failed to locate the address of the
procedure.

If you wish to use the same instance of the object to manage
another library, call LlcFreeLibrary before calling
LlcLoadLibrary. When you are done with the object call
LlcFreeLibrary, or let the Destruct method do it for you when
the object is disposed. LlcFreeLibrary only frees the library once,
so it doesn't matter if you explicitly call it as well as the Destruct
method.

Listing 4. LlcFreeLibary listing

LoadLibClass.LlcFreeLibrary PROCEDURE()
RetVal LONG,AUTO
 CODE
 DISPOSE(SELF.szModuleFileName)
 RetVal = 0
 IF SELF.LibraryLoaded()
 IF SELF.LoadMethod = Method:LoadLibrary
 IF NOT FreeLibrary(SELF.hModule)
 RetVal = 1
 SELF.LastError = GetLastError()
 END
 END
 SELF.hModule = 0
 END
 RETURN RetVal

LlcFreeLibrary disposes of the memory allocated for the module
file name in LlcLoadLibrary. Then it does one of two things
depending on the value of the LoadMethod property. The method
calls the Windows API FreeLibrary when LoadLibrary returned
the module handle. FreeLibrary decrements the DLL's usage count
each time it's called. When the DLL's usage count reaches zero,
Windows unloads the DLL from memory. On the other hand, the
method simply sets the hModule property to zero when
GetModuleHandle returns the module handle .

Now that you have this class to manage run-time dynamic linking,
you will want to use it do something useful. Next week I’ll show
you how to call a function in a Windows DLL, by address.

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls2.html (6 of 7) [6/4/01 11:27:01 AM]

Loading DLLs At Runtime - Part 2

Download the source

Larry Sand is an independent software developer who began programming with
Clarion in 1987. In addition to normal database development, he specializes
in connecting Clarion to external devices like SCUBA diving computers,
kilns, and satellite transceivers used in medical helicopters. In other
lives, he sailed Lake Superior as the owner/operator of shipwreck SCUBA
diving tours and later as a Master for the Vista Fleet. When Larry is not
programming you'll find him messing about in boats, or with boats.

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls2.html (7 of 7) [6/4/01 11:27:01 AM]

http://www.clarionmag.com/cmag/v3/files/v3n5loadlibrary.zip
mailto:Larry@sand-associates.com
http://www.clarionmag.com/cmag/comments.frm?articleID=10610
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Reading Tables With ADO

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reading Tables With ADO

by Dave Harms and Brian Staff

Published 2001-05-21

Have you ever wanted to write a generalized utility to handle a
data file which may exist on more than one backend database? Do
you need a utility to handle a file when you don't have/or want a
DCT layout? Have you ever wanted to use ADO (ActiveX Data
Objects) in Clarion as a standard way of managing your data?

SoftVelocity is working on a set of templates that wrap up Andy
Ireland's ADO code, and we're expecting great things. But you can
already do ADO with surprisingly little effort, using the code Jim
Kane described in his COM articles (all the code you need to make
this ADO code work is, however, included in the downloadable
source linked at the end of this article).

The RecordSet object

To use ADO, you create a RecordSet object which you use to
retrieve data from one or more data files. A RecordSet object
contains all the selected data as well as information about the data
(metadata), such as field names, data types, and so on.
RecordSets are a bit like ViewManager objects, except that you
have to tell a ViewManager explicitly which fields you’re working
with, whereas you can tell a RecordSet to get, say, all the fields in
a file, and then you can ask the RecordSet what those fields are
before you attempt to retrieve the data.

The RecordSet’s Open method takes five parameters, all of which
are optional:

Source – a variant data type which can be one of many things: a
SQL statement, a table name, a stored procedure, a URL, an ADO
Command object, or a file or Stream object containing a persisted
record set.

ActiveConnection – a variant data type holding a Connection
object, or a connection string identifying the data source

CursorType – a cursor type enum (see below)

http://www.clarionmag.com/cmag/v3/v3n5ado.html (1 of 6) [6/4/01 11:27:04 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Bauthor%3Akane+%2Btitle%3Aole&submit=Go

Reading Tables With ADO

LockType – a lock type enum (see below)

Options – information on how the source should be handled (see
below)

The sample application

The sample code (160 or so lines) we describe in this article will
allow you to use an ADO RecordSet object to read a TopSpeed file
- although this can be any data file if you have an ODBC driver for
it - and place the data in a standard Clarion LIST control. You can
download the code at the end of this article.

Here’s how the application works. To begin with, you need to know
some standard ADO equates.

The cursor location equates refer to the cursor, or marker, used to
keep track of your current position in the record set. Client cursors
seem to work much better than server cursors, especially in a
multi-user environment.

!---- CursorLocationEnum Values ----
adUseServer EQUATE(2)
adUseClient EQUATE(3)

Besides cursor location, you also need to choose a cursor type.
Cursors not only manage your current position, they may also
need to manage changes to the database (deletes, inserts) and
possibly communicate information about those changes to other
users. You pass the cursor type to the RecordSet object’s Open
method.

The adOpenDynamic equate indicates a dynamic cursor. With this
cursor you can navigate backwards and forwards through a
RecordSet, and you can see any changes made by other users.

The adOpenKeyset equate indicates a cursor like a dynamic cursor,
with the following differences: you can’t access records others
delete; you can’t see records others add; you can see data others
change.

The adOpenStatic equate indicates a static cursor. This cursor
keeps its own copy of the records you manipulate, so you can’t see
any changes others make.

The default cursor type is adOpenForwardOnly, which is the same
as a static cursor but only lets you scroll forward through the data
set. Generally speaking, adOpenForwardOnly will result in faster
operation than adOpenStatic, though at the obvious expense of
functionality.

!---- CursorTypeEnum Values ----
adOpenForwardOnly EQUATE(0)

http://www.clarionmag.com/cmag/v3/v3n5ado.html (2 of 6) [6/4/01 11:27:04 AM]

Reading Tables With ADO

adOpenKeyset EQUATE(1)
adOpenDynamic EQUATE(2)
adOpenStatic EQUATE(3)

The LockTypeEnum values indicate how ADO handles concurrency,
and you pass this value to the RecordSet’s Open method. If you
use adLockReadOnly, you can’t alter data at all;
adLockPessimistic indicates that the data source will lock records
as you retrieve the data to begin your edit; adLockOptimistic
indicates that the data source will lock records only when you issue
an update; and adLockBatchOptimistic, as you might guess,
applies optimistic locking to batch updates.

!---- LockTypeEnum Values ----
adLockReadOnly EQUATE(1)
adLockPessimistic EQUATE(2)
adLockOptimistic EQUATE(3)
adLockBatchOptimistic EQUATE(4)

The CommandTypeEnum values indicate the type of command used
to query a database and return data in a RecordSet object. Like
cursor type and lock type, the command type is passed to the
RecordSet’s Open method.

The adCmdText equate indicates that the command passed to Open
as the Source parameter is to be evaluated as a command. For
instance, if you wish to execute a SELECT * FROM MyTable, you
pass this string to Open as the Source, with an Options parameter
of adCmdText. The adCmdTable equate indicates that the Source is
a table name, and all fields in the table should be returned in the
RecordSet. The adCmdStoredProc equate, as you’d expect,
indicates that the Source is a stored procedure that should be
executed. The default is adCmdUnknown.

!---- CommandTypeEnum Values ----
adCmdUnknown EQUATE(0008h)
adCmdText EQUATE(0001h)
adCmdTable EQUATE(0002h)
adCmdStoredProc EQUATE(0004h)

The sample application includes a few more equates and variables,
most of which are straightforward. Note that the ADO RecordSet is
called oFileX, and is declared as an OLE object using Jim Kane’s
oleTclType base class.

oFileX &oleTClType

The purpose of the sample application is to connect to a data
source using ADO and retrieve the records into a queue for display
in a window. The first step is to set the name of the database, and
the value of the connect string. The sample application uses the
developer version of the TPS ODBC driver, but you can change this
to any data source you like. Note that although the TPS file is
actually called cust.tps, it’s only necessary to supply the table

http://www.clarionmag.com/cmag/v3/v3n5ado.html (3 of 6) [6/4/01 11:27:04 AM]

Reading Tables With ADO

name, not the physical file name (that is defined in the ODBC data
source definition:

ThisFileName = 'cust'
strConnect = 'DRIVER={{Topspeed Developer version}
 ;DBQ=C:\data\'

Now it’s time to create the ADO RecordSet object:

oFileX &= NEW oleTClType
oFileX.init('ADODB.RecordSet',0)

Next, create the SQL statement, and pass it to the RecordSet
object with the appropriate equates:

sql = 'SELECT * FROM ' & ThisFileName
oFileX.CallMethod('Open("'&sql&'", "'&strConnect&'",
 "'&adOpenForwardOnly&'", "'&adLockReadOnly&'",
 "'&adCmdText&'")')

You don’t need to know anything about the data source in advance
– the application will examine the resulting data and retrieve the
column (field) names and other data. This code returns the
number of columns in the table:

Cols = oFileX.GetProp('Fields.Count')

The sample code loops through the available columns and
retrieves the column names (up to the maximum supported by the
display queue), using them to format the queue’s columns:

LOOP j = 1 TO CLIP(Cols)
 s1 = |
 oFileX.GetProp('Fields('& j-1 &').Name')
 ?p1{PROP:Text}= CLIP(s1)
 ?List{PROPList:Format,j} = |
 (?p1{PROP:Width} + 4) |
 & 'L(2)M|~Hdr~(2)@s30@'
 ?List{PROPList:Header,j} = s1
 IF j >= max THEN BREAK.
END

The following loop retrieves the record data from RecordSet and
adds it to the display queue:

LOOP
 MyEOF = oFileX.GetProp('EOF')
 IF MyEOF <> 0 THEN BREAK.
 LOOP j = 1 TO CLIP(Cols)
 qs.colx[j] = |
 oFileX.GetProp('Fields('& j-1 & ').Value')
 IF j >= max THEN BREAK.
 END
 ADD(qs)

http://www.clarionmag.com/cmag/v3/v3n5ado.html (4 of 6) [6/4/01 11:27:04 AM]

Reading Tables With ADO

 oFileX.CallMethod('MoveNext()')
END

Now just close, kill, and dispose of the RecordSet:

oFileX.CallMethod('Close()')
oFileX.Kill()
DISPOSE(oFileX)

That’s how easy it is to use ADO with Clarion. The SoftVelocity
ADO templates, soon to be released, will make it even easier. In
the meantime, you may want to use some of this code for your
own ADO explorations.

Download the source

David Harms is an independent software developer and the editor and publisher of
Clarion Magazine. He is also co-author with with Ross Santos of Developing Clarion
for Windows Applications, published by SAMS (1995). His most recent book is JSP,
Servlets, and MySQL, published by HungryMinds Inc. (2001).

Brian Staff was born and raised in Rugby, England, and lived for 28 years in
Vancouver, Canada. He worked too many years for Honeywell on mainframes, and
spent six years as an independent developer, including four years developing
software for DirecTv. Brian currently develops point of sale systems and web
applications for JDA Software in Phoenix, Arizona (it's a dry heat). A member of
Team Topspeed since Feb 1996, Brian is also the author of the Xplore templates
and is a coach and volunteer web site developer for the local soccer community. He
is married to Valerie, has three soccer-playing daughters, and is a former
international level rugby referee.

Reader Comments

Add a comment

Excellent Article!
Thanks! This is all Brian's code - I just wrote it up. I'm...
It might serve a better purpose if you wrapped this code
in...
Ross - that's what Andy's supposed to be doing
Stop arguing already, I'm on the case!
<bg>
Ross, You're right of course. But Andy is working on...
I've updated the source - there was a problem (at least...
An alternate fix to the one in the updated zip (which
moved...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than

http://www.clarionmag.com/cmag/v3/v3n5ado.html (5 of 6) [6/4/01 11:27:04 AM]

http://www.clarionmag.com/cmag/v3/files/v3n5ado.zip
mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.covecomm.com/java/index.html
mailto:brianstaff@compuserve.com
http://www.clarionmag.com/cmag/comments.frm?articleID=10608
http://www.clarionmag.com/cmag/discuss.frm?articleID=10608&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10608&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10608&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=10608&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=10608&position=4
http://www.clarionmag.com/cmag/discuss.frm?articleID=10608&position=5
http://www.clarionmag.com/cmag/discuss.frm?articleID=10608&position=6
http://www.clarionmag.com/cmag/discuss.frm?articleID=10608&position=7
http://www.clarionmag.com/cmag/discuss.frm?articleID=10608&position=8
http://www.clarionmag.com/cmag/discuss.frm?articleID=10608&position=9
http://www.clarionmag.com/cmag/discuss.frm?articleID=10608&position=9
http://www.clarionmag.com/cmag/subscriptionagreement.html

Reading Tables With ADO

www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5ado.html (6 of 6) [6/4/01 11:27:04 AM]

http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

The Novice’s Corner: Understanding EQUATES.CLW (Part 1)

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

The Novice’s Corner: Understanding
EQUATES.CLW (Part 1)

by Dave Harms

Published 2001-05-18

In any programming environment it’s useful to represent certain
commonly-used values as constants. In Clarion, the EQUATE
keyword defines such a constant, and the two places you’ll find
most of these equates are in EQUATES.CLW (naturally) and
PROPERTY.CLW, both of which are in the Clarion libsrc\ directory.

PROPERTY.CLW contains equates specifically used with the
property syntax, while EQUATES.CLW contains many general-
purpose equates. The following is a brief annotation of the
contents of EQUATES.CLW. I’ve changed the order of some of the
equates, as they’re not always grouped by function in the file.

Event equates

Clarion equates typically have standardized prefixes, and event
equates are no exception. Events are also sometimes called
messages; for instance, when you click your mouse on the scroll
bar of a browse window, the Windows operating system detects
the click and sends an appropriate scroll event to your application.
You can find out which event has occurred by calling the EVENT()
function.

The following are field-level events; that is, they are specific to
controls on a window, rather than the window itself.

EVENT:Accepted is probably the most commonly-used event, since
it occurs whenever the user enters data or makes any other
selection on a control, and then moves to another control. You’ll
typically use template embeds instead of testing for this event
directly.

EVENT:Accepted EQUATE (01H)

The following are browse control events, and for the most part
Clarion developers don’t deal with these directly. In fact, there are
two distinct ways Clarion deals with browse events. In a list box

http://www.clarionmag.com/cmag/v3/v3n5noviceequates1.html (1 of 9) [6/4/01 11:27:10 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

The Novice’s Corner: Understanding EQUATES.CLW (Part 1)

without the IMM attribute, Clarion handles all the browse events
internally, and the programmer doesn’t have any direct access to
them. That’s fine for small list boxes where all the data fits in the
queue associated with the list box. But most browses are page
loaded. In this case the IMM attribute must be on the browse box
so that browse events make it through to the ACCEPT loop, where
(typically) the ABC classes and template-generated code respond
to the events, and display data accordingly.

EVENT:NewSelection EQUATE (02H)
EVENT:ScrollUp EQUATE (03H)
EVENT:ScrollDown EQUATE (04H)
EVENT:PageUp EQUATE (05H)
EVENT:PageDown EQUATE (06H)
EVENT:ScrollTop EQUATE (07H)
EVENT:ScrollBottom EQUATE (08H)
EVENT:Locate EQUATE (09H)
EVENT:ScrollDrag EQUATE (14H)
EVENT:ScrollTrack EQUATE (1DH)
EVENT:ColumnResize EQUATE (1EH)

The mouse movement events are generated when you have a
REGION control with the IMM attribute. If you’re creating something
like a drawing program, you’ll need to use this technique to
generate the mouse tracking events (and use the MOUSEX and
MOUSEY functions to track the mouse’s position).

EVENT:MouseDown EQUATE (01H)
EVENT:MouseUp EQUATE (0aH)
EVENT:MouseIn EQUATE (0bH)
EVENT:MouseOut EQUATE (0cH)
EVENT:MouseMove EQUATE (0dH)

A VBX on a window needs a way to notify the window that it (the
VBX) has some important information to convey. That’s the
purpose of EVENT:VBXevent. There are equates for various specific
VBX events as well.

EVENT:VBXevent EQUATE (0eH)
VBXEVENT:Click EQUATE (0)
VBXEVENT:DblClick EQUATE (1)
VBXEVENT:GotFocus EQUATE (4)
VBXEVENT:KeyDown EQUATE (5)
VBXEVENT:KeyPress EQUATE (6)
VBXEVENT:KeyUp EQUATE (7)
VBXEVENT:LostFocus EQUATE (8)
VBXEVENT:MouseDown EQUATE (9)
VBXEVENT:MouseMove EQUATE (10)
VBXEVENT:MouseUp EQUATE (11)

Alert keys are hot keys that are active for the entire window. Each
alert key press causes two events to trigger, first
EVENT:PreAlertKey, then EVENT:AlertKey. If you issue a CYCLE
statement after EVENT:PreAlertKey, then EVENT:AlertKey will be

http://www.clarionmag.com/cmag/v3/v3n5noviceequates1.html (2 of 9) [6/4/01 11:27:10 AM]

The Novice’s Corner: Understanding EQUATES.CLW (Part 1)

processed, otherwise it will be discarded. Among other things, you
can use this feature to override standard Windows hot keys, but
only under specific circumstances.

EVENT:AlertKey EQUATE (0fH)
EVENT:PreAlertKey EQUATE (10H)

Drag and drop processing is easy to implement in Clarion, and
probably a bit underused. See Mike Hanson's Drag & Drop article
in the COL archives for more.

EVENT:Dragging EQUATE (11H)
EVENT:Drag EQUATE (12H)
EVENT:Drop EQUATE (13H)

On tree-format list controls, the following events indicate that the
user is in the process of clicking, or already has clicked on an
expand/contract icon in the list.

EVENT:Expanding EQUATE (16H)
EVENT:Contracting EQUATE (17H)
EVENT:Expanded EQUATE (18H)
EVENT:Contracted EQUATE (19H)

If the user has entered bad data (invalid data for a string picture,
out of range spin value), the Clarion runtime will generate a
Rejected event.

EVENT:Rejected EQUATE (1AH)

The following events indicate that a list with a drop attribute is
dropping down, or has dropped down.

EVENT:DroppingDown EQUATE (1BH)
EVENT:DroppedDown EQUATE (1CH)

The Selecting and Selected events indicate that a control is about
to receive, or has already received, input focus.

EVENT:Selecting EQUATE (1FH)
EVENT:Selected EQUATE (101H)

When you move from one tab to another, the Clarion runtime
generates a TabChanging event, which you can use to prepare the
new tab or do other processing.

EVENT:TabChanging EQUATE (15H)

The following events apply to the window as a whole, rather than
to a specific field. Whenever you open or close a window,
minimize, restore, or maximize, or switch to or from a window,
that window is notified of the action with an appropriate message.

EVENT:CloseWindow EQUATE (201H)

http://www.clarionmag.com/cmag/v3/v3n5noviceequates1.html (3 of 9) [6/4/01 11:27:10 AM]

http://www.clarionmag.com/col/99-01-draganddrop.html
http://www.clarionmag.com/col/index.html

The Novice’s Corner: Understanding EQUATES.CLW (Part 1)

EVENT:CloseDown EQUATE (202H)
EVENT:OpenWindow EQUATE (203H)
EVENT:OpenFailed EQUATE (204H)
EVENT:LoseFocus EQUATE (205H)
EVENT:GainFocus EQUATE (206H)
EVENT:Suspend EQUATE (208H)
EVENT:Resume EQUATE (209H)
EVENT:Move EQUATE (220H)
EVENT:Size EQUATE (221H)
EVENT:Restore EQUATE (222H)
EVENT:Maximize EQUATE (223H)
EVENT:Iconize EQUATE (224H)
EVENT:Completed EQUATE (225H)
EVENT:Moved EQUATE (230H)
EVENT:Sized EQUATE (231H)
EVENT:Restored EQUATE (232H)
EVENT:Maximized EQUATE (233H)
EVENT:Iconized EQUATE (234H)

Time events are a way to cause code to execute at specific
intervals. To create a timer event, just put the TIMER(interval)
attribute on the window with a suitable interval value.

EVENT:Timer EQUATE (20BH)

DDE stands for Dynamic Data Exchange, which is a Windows
standard for inter-application communication. Not widely used by
Clarion developers, DDE does have its uses. Among other things,
you can use DDE to exercise some control over the Clarion
environment (this is how batch compilers work).

EVENT:DDErequest EQUATE (20CH)
EVENT:DDEadvise EQUATE (20DH)
EVENT:DDEdata EQUATE (20EH)
EVENT:DDEcommand EQUATE (20FH)!same as DDEexecute
EVENT:DDEexecute EQUATE (20FH)
EVENT:DDEpoke EQUATE (210H)
EVENT:DDEclosed EQUATE (211H)
!DDE link types
DDE:auto EQUATE (0)
DDE:manual EQUATE (-1)
DDE:remove EQUATE (-2)

Dockable toolboxes can be created in Clarion – see the Clarion
examples\docktb directory for an example, or read Steffen
Rasmussen’s article on Outlook-style menus
(http://www.clarionmag.com/cmag/v2/v2n8outlookmenu1.html).

EVENT:Docked EQUATE (235H)
EVENT:Undocked EQUATE (236H)

Later in EQUATES.CLW you’ll see other docking-related equates,
not for events, but for properties to be used with PROP:Dock.

DOCK:Left EQUATE(1)

http://www.clarionmag.com/cmag/v3/v3n5noviceequates1.html (4 of 9) [6/4/01 11:27:10 AM]

The Novice’s Corner: Understanding EQUATES.CLW (Part 1)

DOCK:Top EQUATE(2)
DOCK:Right EQUATE(4)
DOCK:Bottom EQUATE(8)
DOCK:Float EQUATE(16)
DOCK:All EQUATE(31)

When you do a BUILD on a file or a key, if you first set
PROP:ProgressEvents Clarion will send events, including the
following, back to your accept loop as the BUILD progresses.

EVENT:BuildFile EQUATE (240H)
EVENT:BuildKey EQUATE (241H)
EVENT:BuildDone EQUATE (242H)

Windows events are really just numbers, and within the range of
all possible event numbers those from 400H to 0FFFH are available
for the programmer’s own use. You can POST() these events and
they will appear in the target ACCEPT loop. It’s common to see
events defined as EVENT:User + n where n is any number (with
the result not exceeding EVENT:Last).

EVENT:User EQUATE (400H)
EVENT:Last EQUATE (0FFFH)

Standard equates

The STD equates define Windows standard behavior which you can
associate with Menu items, by placing the corresponding STD:
attribute in the Std ID field in the menu editor (there is a droplist
of equates as well).

STD:WindowList EQUATE (1)
STD:TileWindow EQUATE (2)
STD:CascadeWindow EQUATE (3)
STD:ArrangeIcons EQUATE (4)
STD:HelpIndex EQUATE (5)
STD:HelpOnHelp EQUATE (6)
STD:HelpSearch EQUATE (7)
STD:Help EQUATE (8)
STD:Cut EQUATE (10)
STD:Copy EQUATE (11)
STD:Paste EQUATE (12)
STD:Clear EQUATE (13)
STD:Undo EQUATE (14)
STD:Close EQUATE (15)
STD:PrintSetup EQUATE (16)
STD:TileHorizontal EQUATE (17)
STD:TileVertical EQUATE (18)

Cursors and icons

There are a number of standard Windows cursors, which you can
use by calling SETCURSOR(cursor equate). When you’re done and
you want to set the cursor back to the default, always call

http://www.clarionmag.com/cmag/v3/v3n5noviceequates1.html (5 of 9) [6/4/01 11:27:10 AM]

The Novice’s Corner: Understanding EQUATES.CLW (Part 1)

SETCURSOR() with no parameters to turn off the temporary
cursor.

CURSOR:None EQUATE ('<0FFH,01H,00H,00H>')
CURSOR:Arrow EQUATE ('<0FFH,01H,01H,7FH>')
CURSOR:IBeam EQUATE ('<0FFH,01H,02H,7FH>')
CURSOR:Wait EQUATE ('<0FFH,01H,03H,7FH>')
CURSOR:Cross EQUATE ('<0FFH,01H,04H,7FH>')
CURSOR:UpArrow EQUATE ('<0FFH,01H,05H,7FH>')
CURSOR:Size EQUATE ('<0FFH,01H,81H,7FH>')
CURSOR:Icon EQUATE ('<0FFH,01H,82H,7FH>')
CURSOR:SizeNWSE EQUATE ('<0FFH,01H,83H,7FH>')
CURSOR:SizeNESW EQUATE ('<0FFH,01H,84H,7FH>')
CURSOR:SizeWE EQUATE ('<0FFH,01H,85H,7FH>')
CURSOR:SizeNS EQUATE ('<0FFH,01H,86H,7FH>')
CURSOR:DragWE EQUATE ('<0FFH,02H,01H,7FH>')
CURSOR:Drop EQUATE ('<0FFH,02H,02H,7FH>')
CURSOR:NoDrop EQUATE ('<0FFH,02H,03H,7FH>')
CURSOR:Zoom EQUATE ('<0FFH,02H,04H,7FH>')

Here’s what the cursors look like:

As with cursors, Windows supplies a number of standard icons.

http://www.clarionmag.com/cmag/v3/v3n5noviceequates1.html (6 of 9) [6/4/01 11:27:10 AM]

The Novice’s Corner: Understanding EQUATES.CLW (Part 1)

ICON:None EQUATE ('<0FFH,01H,00H,00H>')
ICON:Application EQUATE ('<0FFH,01H,01H,7FH>')
ICON:Hand EQUATE ('<0FFH,01H,02H,7FH>')
ICON:Question EQUATE ('<0FFH,01H,03H,7FH>')
ICON:Exclamation EQUATE ('<0FFH,01H,04H,7FH>')
ICON:Asterisk EQUATE ('<0FFH,01H,05H,7FH>')
ICON:Pick EQUATE ('<0FFH,02H,01H,7FH>')
ICON:Save EQUATE ('<0FFH,02H,02H,7FH>')
ICON:Print EQUATE ('<0FFH,02H,03H,7FH>')
ICON:Paste EQUATE ('<0FFH,02H,04H,7FH>')
ICON:Open EQUATE ('<0FFH,02H,05H,7FH>')
ICON:New EQUATE ('<0FFH,02H,06H,7FH>')
ICON:Help EQUATE ('<0FFH,02H,07H,7FH>')
ICON:Cut EQUATE ('<0FFH,02H,08H,7FH>')
ICON:Copy EQUATE ('<0FFH,02H,09H,7FH>')
ICON:Child EQUATE ('<0FFH,02H,0AH,7FH>')
ICON:Frame EQUATE ('<0FFH,02H,0BH,7FH>')
ICON:Clarion EQUATE ('<0FFH,02H,0CH,7FH>')
ICON:NoPrint EQUATE ('<0FFH,02H,0DH,7FH>')
ICON:Zoom EQUATE ('<0FFH,02H,0EH,7FH>')
ICON:NextPage EQUATE ('<0FFH,02H,0FH,7FH>')
ICON:PrevPage EQUATE ('<0FFH,02H,10H,7FH>')
ICON:JumpPage EQUATE ('<0FFH,02H,11H,7FH>')
ICON:Thumbnail EQUATE ('<0FFH,02H,12H,7FH>')
ICON:Tick EQUATE ('<0FFH,02H,13H,7FH>')
ICON:Cross EQUATE ('<0FFH,02H,14H,7FH>')
ICON:Connect EQUATE ('<0FFH,02H,15H,7FH>')
ICON:Print1 EQUATE ('<0FFH,02H,16H,7FH>')
ICON:Ellipsis EQUATE ('<0FFH,02H,17H,7FH>')
ICON:VCRtop EQUATE ('<0FFH,02H,81H,7FH>')
ICON:VCRrewind EQUATE ('<0FFH,02H,82H,7FH>')
ICON:VCRback EQUATE ('<0FFH,02H,83H,7FH>')
ICON:VCRplay EQUATE ('<0FFH,02H,84H,7FH>')
ICON:VCRfastforward EQUATE ('<0FFH,02H,85H,7FH>')
ICON:VCRbottom EQUATE ('<0FFH,02H,86H,7FH>')
ICON:VCRlocate EQUATE ('<0FFH,02H,87H,7FH>')

This is what the standard icons look like.

http://www.clarionmag.com/cmag/v3/v3n5noviceequates1.html (7 of 9) [6/4/01 11:27:10 AM]

The Novice’s Corner: Understanding EQUATES.CLW (Part 1)

That’s the first half of EQUATES.CLW – click here for Part 2.

David Harms is an independent software developer and the editor and publisher of
Clarion Magazine. He is also co-author with with Ross Santos of Developing Clarion
for Windows Applications, published by SAMS (1995). His most recent book is JSP,
Servlets, and MySQL, published by HungryMinds Inc. (2001).

http://www.clarionmag.com/cmag/v3/v3n5noviceequates1.html (8 of 9) [6/4/01 11:27:10 AM]

mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.covecomm.com/java/index.html

The Novice’s Corner: Understanding EQUATES.CLW (Part 1)

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5noviceequates1.html (9 of 9) [6/4/01 11:27:10 AM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10606
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Using The TPS ODBC Driver

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Using The TPS ODBC Driver

by Vince Du Beau

Published 2001-05-17

In this article I will explore the possibilities of using the TPS ODBC
driver with other applications. You might be asking yourself, "Why
do I need this?" Imagine the following scenario:

Your client is about to sign an agreement for you to build a killer
application. Then you’re asked, "Will I be able to use the data in
Excel or Word?" You can of course explain that you need to rewrite
the quote to add export capability, or you can point out the TPS
ODBC driver, and show the client how to use it (billable time, of
course).

The ODBC driver I’m discussing here is the developer version that
comes with Clarion. It will display a notice every time you access
it. Do not distribute this driver to clients. Your clients will need to
purchase their own licenses.

Setting up the ODBC driver

In this example I will use the invoice database provided with the
Clarion examples. You first need to go into the ODBC
Administrator. This is usually found in the either the Control Panel
or the Administrative Tools, depending on your version of Windows

http://www.clarionmag.com/cmag/v3/v3n5tpsodbc.html (1 of 6) [6/4/01 11:27:13 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

Using The TPS ODBC Driver

Figure 1. The ODBC Data Source Administrator, User DSN
tab

On the User DSN tab, click on Add and you and you will be
presented with the Create New Data Source dialog. Scroll down
until you find the Topspeed drivers. You will find the normal driver
and a read-only version. Setting this up for a client, you might
want to choose the read-only version, as shown in Figure 2.

Figure 2. Creating a new data source

Click the finish button and you will the see Topspeed Data Source
Name Configuration. Fill the dialog in as in Figure 3, replacing the

http://www.clarionmag.com/cmag/v3/v3n5tpsodbc.html (2 of 6) [6/4/01 11:27:13 AM]

Using The TPS ODBC Driver

data directory with the location of your example files.

Figure 3. Configuring the TPS data source

At the bottom of the configuration dialog, you will notice fields for
Date and Time. If you specify fields from your table here, the
driver will convert them to ODBC compliant dates or times. You
can specify single fields, multiple fields or use wildcards for field
names. The online help gives more detail and also provides some
hints to converting Clarion LONG dates to other applications.

Making the connection

A good way to demo the ODBC capabilities to a client is by using
Excel. Here’s how to set up a simple spreadsheet using fields from
the Products table. After opening Excel, you have to use the Data -
> Get External Data -> New Database Query menu. This will bring
up the Choose Data Source dialog. Scroll down to the Invoice data
source, highlight, and click OK as in Figure 4.

Figure 4. Choosing an ODBC data source in Excel

You will then have to choose the table and fields that you want to

http://www.clarionmag.com/cmag/v3/v3n5tpsodbc.html (3 of 6) [6/4/01 11:27:13 AM]

Using The TPS ODBC Driver

use for your query. For the demo, I’ve chosen fields as shown in
Figure 5.

Figure 5. Selecting fields to import

The next two screens allow you to set filters and sort order. Click
Next, Next, and Finish to skip through these and finish the
process. The query will show a Returning Data to Microsoft Excel
dialog. This dialog will let specify where you want the data
returned in the spreadsheet. The properties button is what you will
select. This brings up the External Data Range Properties dialog.
You can play around with the options but for now I’ll set it up as in
Figure 6.

http://www.clarionmag.com/cmag/v3/v3n5tpsodbc.html (4 of 6) [6/4/01 11:27:13 AM]

Using The TPS ODBC Driver

Figure 6. The External Data Range Properties dialog

Click OK, OK and you will see the Product data in the spreadsheet.
Having checked the "Refresh data on file open" box, the
spreadsheet will reflect any changes made to the data when it is
open.

Summary

This was a very simple demonstration of using the TPS ODBC
driver. I think this driver offers a lot of potential for promoting
good will with clients by showing that their data is not isolated
because of this strange thing called Clarion.

Vince Du Beau is the host of the radio talk show talk Bit 'n Bytes on WALE from
Providence, Rhode Island. His company, Plover Development Group Inc., does
AS/400 consulting and custom PC development with Clarion.

http://www.clarionmag.com/cmag/v3/v3n5tpsodbc.html (5 of 6) [6/4/01 11:27:13 AM]

mailto:vdubeau@ploverdev.com

Using The TPS ODBC Driver

Reader Comments

Add a comment

Vince, Excellent article! And very good point about...
Vince: Nice article - you make ODBC setup simple and it...
Mac - It is installed when you install C5.5EE. Just look...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5tpsodbc.html (6 of 6) [6/4/01 11:27:13 AM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10557
http://www.clarionmag.com/cmag/discuss.frm?articleID=10557&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10557&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10557&position=3
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Loading DLLs At Runtime - Part 1

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Loading DLLs At Runtime - Part 1

by Larry Sand

Published 2001-05-16

Do you want to sell your software with optional modules that are
automatically recognized when installed? Do you ever need to call a
procedure that may not exist on your end user's system? Many
Windows API functions are only available when certain versions of
Internet Explorer are installed or your program is running on a
specific version of Windows. Will your program even load if you use
one of those functions?

When your application implicitly links a function in a DLL to your
program, and that DLL does not exist on the end users system, your
program will not load. When your user sees a run-time halt with a
message something like "The mydll.dll could not be found", they will
not be impressed. Even more insidious, what if the user's system has
the DLL but it's an older version that doesn't have the procedure that
you need? How can you avoid this kind of error? Run-time dynamic
linking is the answer.

There are two ways to call a procedure or function in a DLL: implicit
or load-time dynamic linking, and explicit or run-time dynamic
linking. You are already familiar with the first method as it's the one
Clarion normally uses. I’ll cover this briefly, then explain how you can
use run-time dynamic linking to your advantage in 32-bit
applications.

Libraries, Libraries, and more Libraries

In Windows programming, the word "library" can cause confusion
because it can mean different things. There are three kinds of
libraries:

● Dynamic link libraries (such as .DLL, .EXE, and Others)
● Object code libraries (.LIB)
● Import link libraries (.LIB).

I’ll assume you're already familiar with dynamic link libraries (for
more information, see Russ Eggen’s article in the COL archives.
Object code libraries are blocks of object code that you statically link
into your program. You create object code libraries in Clarion when
you compile an application with the target type set to Library. The

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls1.html (1 of 5) [6/4/01 11:27:16 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/col/98-05-dlls.html

Loading DLLs At Runtime - Part 1

last type, import link libraries, contain information that the linker
uses to resolve imported procedures' addresses and references to
object code modules.

Load-time dynamic linking requires that your program know where a
procedure's code is located at in the DLL. This is the job of the import
link library (.LIB). When you compile an application, Clarion creates
an import library with the .LIB file extension. Each of these import
library files contains the information that the linker uses to resolve
the addresses of exported procedures and a list of required .OBJ files.
Since EXEs normally don't export procedures, their libraries only
contain references to object code modules. You can also use the
Clarion LibMaker utility to create import libraries for 3rd party DLLs or
Windows API functions not included in Clarion's import library
Win32.LIB.

When Windows loads a program, it also loads all load-time
dynamically linked DLLs used by that program. For programs with
many DLLs and hundreds of exported procedures, this can take a
significant amount of time. If your program has modules for data
import or export, or specialized reporting that are not usually called, ,
you can reduce the load time and virtual memory requirements by
using run-time dynamic linking.

Run-time Dynamic Linking

Using run-time dynamic linking, your program only loads and maps
the DLL into its address space when you need to use one of its
procedures. You use the Windows API functions LoadLibrary,
GetProcAddress and FreeLibrary to perform this run-time linking. You
also use LoadLibrary to load some specialized dynamic link libraries
have extensions other than .DLL. However, this article assumes that
the library is a DLL.

Function pointers

In a newsgroup message, James Harper described a method of using
the DLL and NAME attributes on a procedure prototype to call a
procedure by address. Before his post, I always used a TopSpeed C
module to declare a function pointer and call the procedure. This
required quite a bit of extra typing, and remembering the syntax for
the C declaration is a pain. Consider the following C code, which
declares a function type, a function pointer, and then makes the
function call.

typedef long(far pascal fnptr)(long myLong);
typedef fnptr far* LPFUNC;
long pascal far CfLrL (fnptr fp, long myLong)
{
 return(((LPFUNC)fp)(myLong));
}

This C code calls any function that takes a long as its first parameter
and returns a long. The address stored in the variable fp controls
which function executes.

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls1.html (2 of 5) [6/4/01 11:27:16 AM]

Loading DLLs At Runtime - Part 1

Then in your Clarion map, you prototype this just like any other
external function.

MAP
 MODULE('SomeExternalModule')
 ...
 MyFunc(LONG FnPtr, LONG int1),LONG, PASCAL, NAME('CfLrL')
 END
END

The only requirement is that you assign the address of the procedure
to FnPtr before you call MyFunc. More on that later.

In contrast, James Harper's method dispenses with the C code by
using the fact that the DLL attribute on a prototype in 32 bit causes
the compiler to dereference a pointer. The online help for the DLL
attribute states: "The DLL attribute is required for 32-bit applications
because .DLLs are relocatable in a 32-bit flat address space, which
requires one extra dereference by the compiler to address the
variable." It is this one extra dereference that means the compiler
expects to find the address of the procedure in a variable.

Consider the following prototype and function pointer variable
declaration.

Listing 1. Prototyping an external function.

 MAP
 MODULE('SomeExternalModule')
 ...
 MyFunc(LONG int1),LONG, PASCAL, DLL(_fp_)
 END
 END
fpMyFunc LONG,NAME('MyFunc')

This procedure accepts a long integer as its parameter and returns
another long integer, just like the previous C style function prototype.
The differences between this prototype and the previous are the lack
of the FnPtr parameter, NAME attribute, and the addition of DLL
attribute.

Have you ever noticed the DLL attribute of a procedure coded as
DLL(dll_mode) in generated code? If you search through the
generated code for the definition of dll_mode you'll never find it. The
template writer made use of the fact that the DLL attribute is
considered active when the flag parameter is anything other than
zero (0). It is legal to use an undefined label like dll_mode to turn
the attribute on.

This article and accompanying classes use _fp_ notation as the DLL
flag attribute for a function pointer. This undefined label turns the
DLL attribute on. It is the same as using DLL(1). The _fp_ highlights
the fact that the prototype expects a function pointer variable to
contain the address of the procedure/function. Here’s the key to how
this technique works. The NAME('MyFunc') attribute of the variable

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls1.html (3 of 5) [6/4/01 11:27:16 AM]

Loading DLLs At Runtime - Part 1

fpMyFunc instructs the compiler to refer to the fpMyFunc variable
whenever it encounters a call to MyFunc. Because all of the symbols'
adresses are resolved by this circular reference, the linker is also
happy and doesn't complain. Before you invoke any procedure
declared this way, you must assign the valid address of a procedure
with a matching prototype to the function pointer variable (fpMyFunc
in this example):

fpMyFunc = <address determined at runtime>
Result = MyFunc(456)

Failure to follow this rule will get you an unpleasant visit from Dr.
Watson! Furthermore, leaving the DLL(_fp_) attribute off the
procedure prototype causes the compiler to use the address of the
fpMyFunc variable, when what you want is for the compiler to use the
address contained in the fpMyFunc variable. This will earn you
another house call from the doctor.

Need proof? Symbols, assembler mnemonics, and
hexadecimal, oh my!

Assume that you have a program that contains the declarations in
Listing 1. Say that your program contains the following code to
initialize the function pointer and call MyFunc. Note the fictional
address used in place of GetProcAddress (this is only for illustration).

fpMyFunc = 123456h !Use GetProcAddress()
Result = MyFunc(456)

Note: Don't attempt to run this code, it will GPF.

If you compile this code, start the debugger, and view the
disassembly you would see this assembly code starting at the
fpMyFunc assignment:

mov dword [MyFunc], 00123456
push 000001C8
call dword [MyFunc]
mov [RESULT],eax

The first line stores 00123456 hex (the fictional address) to the
memory pointed to by the MyFunc symbol. Why does it refer to the
symbol of the procedure prototype instead of the symbol for the
fpMyFunc variable? The answer is that since the fpMyFunc variable
declaration uses the NAME attribute, fpMyFunc refers to the
procedure's symbol MyFunc.

Line 2 pushes the value 01C8 hex (456 decimal) onto the stack for
the procedure's only parameter. The third line executes the
procedure's code starting at the address contained in the memory at
MyFunc. Remember that fpMyFunc and MyFunc are now the same
symbol (they are the same address), so the code executed is located
at the address assigned to fpMyFunc.

Finally, the result, returned in the 32-bit register eax, is stored in the

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls1.html (4 of 5) [6/4/01 11:27:16 AM]

Loading DLLs At Runtime - Part 1

Result variable. If you forget the DLL(_fp_) attribute on the
prototype, you will see this assembly language instead:

mov dword [MyFunc], 00123456
push 000001C8
call near MyFunc
mov [RESULT],eax

Do you see the difference? The third line now attempts to execute the
code located at the address of the MyFunc symbol instead of the
contents of MyFunc. The problem is that there's no code at that
address; it is the address of the function pointer variable. The square
brackets around a symbol instruct the assembler to refer to the
contents of the memory (a pointer), not the symbol itself.
Furthermore, this is a near call instead of a far call. A near call means
that the code is located within 64KB of the instruction.

Load Library Class

Now that you have a simple way to call a procedure using its address
(via a function pointer) , you only need to have a mechanism to find
the address to assign to the function pointer variable. This is where
the load library class comes into play, and that’s where I’ll resume
next week.

Larry Sand is an independent software developer who began programming with
Clarion in 1987. In addition to normal database development, he specializes
in connecting Clarion to external devices like SCUBA diving computers,
kilns, and satellite transceivers used in medical helicopters. In other
lives, he sailed Lake Superior as the owner/operator of shipwreck SCUBA
diving tours and later as a Master for the Vista Fleet. When Larry is not
programming you'll find him messing about in boats, or with boats.

Reader Comments

Add a comment

Excellent article! I already have a "load library" class...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls1.html (5 of 5) [6/4/01 11:27:16 AM]

mailto:Larry@sand-associates.com
http://www.clarionmag.com/cmag/comments.frm?articleID=10373
http://www.clarionmag.com/cmag/discuss.frm?articleID=10373&position=1
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

The Clarion Advisor: Avoiding GPFs With ANYs And QUEUEs

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

The Clarion Advisor: Avoiding GPFs With ANYs
And QUEUEs

by Dave Harms and Jeff Slarve

Published 2001-05-10

If you’ve ever used an ANY variable in a QUEUE, chances are you’ve
encountered at least one GPF. ANYs in QUEUEs require some special
handling, and unfortunately the Clarion documentation is not
completely accurate. The LRM states the following:

● You must either CLEAR the QUEUE structure or reference
assign NULL to the ANY variable (AnyVar &= NULL) before
adding a new QUEUE entry.

The documentation further explains what to do when you delete a
record from a QUEUE which contains an ANY:

• You must either CLEAR the QUEUE
structure, or reference assign NULL to the
ANY variable (AnyVar &= NULL), before
deleting the QUEUE entry.

Both of these statements suggest that CLEAR(q) and q.anyvar &=
NULL are equivalent, but this is not the case, as pointed out by
Alexey Solovjev in several newsgroup messages. In short, Alexey’s
recommendation is as follows:

● Use CLEAR before you add a record to a QUEUE.
● Use &= NULL before you delete a record from a QUEUE.

CLEAR and &= NULL are mutually exclusive statements, in this
usage. If you CLEAR the QUEUE or a field in the QUEUE, CLEAR
simply clears a space inside the QUEUE buffer for all fields in the
QUEUE, or just the field specified. CLEAR will not dispose of any
object already assigned to the QUEUE’s ANY variable. The &= NULL
assignment, however, clears space for that variable and also
destroys any previously assigned ANY, and that’s the key to the
majority of ANY GPFs. After you add a record to the QUEUE,
whatever you just added is still in the QUEUE buffer. If you then do
a NULL assignment:

http://www.clarionmag.com/cmag/v3/v3n5queueany.html (1 of 2) [6/4/01 11:27:18 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

The Clarion Advisor: Avoiding GPFs With ANYs And QUEUEs

q.anyvar &= NULL

you are actually destroying the object you previously created. You
have to do a CLEAR to empty the QUEUE buffer and create space for
the record you’re about to add, and then you can do a reference
assignment on the ANY variable in the QUEUE.

David Harms is an independent software developer and the editor and publisher of
Clarion Magazine. He is also co-author with with Ross Santos of Developing Clarion
for Windows Applications, published by SAMS (1995). His most recent book is JSP,
Servlets, and MySQL, published by HungryMinds Inc. (2001).

Jeff Slarve is an independent software developer and the creator of the critically-
acclaimed In Back automated file safeguard utility. Jeff has been a Clarion
developer since 1991, and is a member of the group formerly known as Team
TopSpeed.

Reader Comments

Add a comment

FWIW - If you issue Q.Field &= NULL to clear a field and...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5queueany.html (2 of 2) [6/4/01 11:27:18 AM]

mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.covecomm.com/java/index.html
mailto:jeff@jssoftware.com
http://www.jssoftware.com/In_Back/in_back.html
http://www.clarionmag.com/cmag/comments.frm?articleID=10596
http://www.clarionmag.com/cmag/discuss.frm?articleID=10596&position=1
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Quickbooks-Style Date Fields

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Quickbooks-Style Date Fields

by Andrew Guidroz II

Published 2001-05-10

This week, a client asked for an interesting feature. On an invoice
screen, this client often times "bumps" the due date just a bit in
order to make the terms of payment easier on the customer. The
users wanted an easier way to do this than keying in a new date. I
thought, "spin box" and changed the entry control. But this wasn’t
what they were looking for either.

The bookkeeper there uses QuickBooks™. There is a feature in
QuickBooks™ that allows the end user to press the + key to
increase the date by a day or press the – key to decrease the date
by a day. This should be pretty easy. Or so I thought.

Step one was to add alert keys to the field. Now, which keys are
those? I came up with 189 as the keycode for the minus sign and
443 for the plus sign. Everything looked great and, within the IDE,
I alerted those two keys. Then, in the embed for EVENT:AlertKey
for that particular control, I wrote the following:

IF Loc:DateField <> 0
 IF KeyCode() = 443
 Loc:DateField += 1
 ELSIF KeyCode() = 189
 Loc:DateField -= 1
 END
 DISPLAY(Loc:DateField)
END ! Loc:DateField <> 0

And that was that. Or so I thought.

The bookkeeper asked me why it still didn’t work. I walked over
and tested it and it seemed to work just fine. Then the bookkeeper
used the + and – keys on the numeric keypad. "DOH!" So I added
code to account for those keys.

IF Loc:DateField <> 0 |
 AND ?Loc:DateField{PROP:ReadOnly} <> TRUE
 IF KeyCode() = 443 OR KeyCode() = PlusKey
 Loc:DateField += 1

http://www.clarionmag.com/cmag/v3/v3n5qbkeys.html (1 of 5) [6/4/01 11:27:21 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

Quickbooks-Style Date Fields

 ELSIF KeyCode() = 189 OR KeyCode() = MinusKey
 Loc:DateField -= 1
 END
 DISPLAY(?Loc:DateField)
END ! Loc:DateField <> 0

And everything worked great. The bookkeeper loved it. And then
the next call came.

"The feature doesn’t work in the due date field on the other
invoicing system." Well, of course it doesn’t. I had to modify that
field also. And then I realized a template was about to happen.

First, how was I going to alert the keycodes programmatically
rather than within the IDE? After reading a bit, I found out that
Alert keys are stored as an array within Clarion. If you specify the
highest element of the array, which is 255, then the runtime will
automatically push it down to the first available entry in the array.
That makes life smoother. So at the end of the WindowManager
Init embed points, priority 9001, I wrote the following:

?Loc:DateField{PROP:Alrt,255} = 443
?Loc:DateField{PROP:Alrt,255} = 189
?Loc:DateField{PROP:Alrt,255} = PlusKey
?Loc:DateField{PROP:Alrt,255} = MinusKey

Now, the next thing I needed was the code to react to the event to
be in an embed point that is less specific to the individual control.
That seemed to be the WindowManager TakeEvent embed point at
priority 6300. And the code I added looked like this:

CASE EVENT()
OF EVENT:AlertKey
 CASE Field()
 OF ?Loc:DateField
 IF Loc:DateField <> 0 AND |
 ?Loc:DateField{PROP:ReadOnly} <> TRUE
 IF KeyCode() = 443 OR KeyCode() = PlusKey
 Loc:DateField += 1
 ELSIF KeyCode() = 189 OR KeyCode() = MinusKey
 Loc:DateField -= 1
 END
 DISPLAY(?Loc:DateField)
 END ! Loc:DateField <> 0
 END ! Case Field()
END ! Case EVENT()

Now, my code was shaping up. It was template time.

A control template was not going to cut it because that would
require repopulating my fields. What I wanted was an extension
template to add to a window that would give any date field on that
window this functionality. So, here comes the template. (NOTE:
The following template has some line breaks added so it will fit on
this page. For the actual template, see the download link at the

http://www.clarionmag.com/cmag/v3/v3n5qbkeys.html (2 of 5) [6/4/01 11:27:21 AM]

Quickbooks-Style Date Fields

end of the article.)

#EXTENSION(QuickenDateAndTime,
 'This adds Quicken Style Date fields.'),
 DESCRIPTION('This adds Quicken Style
 Date fields.'),PROCEDURE
#DISPLAY('This will work for entry
 fields with an @D in them.')
#ATSTART
#DECLARE(%MyControls),MULTI,UNIQUE
#FOR(%CONTROL),WHERE((%ControlType =
 'ENTRY' OR %ControlType = 'SPIN')
 AND ((INSTRING('@D',
 UPPER(%ControlStatement),1,1) <> 0)))
 #ADD(%MyControls,%Control)
#ENDFOR
#ENDAT
#AT(%WindowManagerMethodCodeSection,'Init'
 ,'(),BYTE'),PRIORITY(9001)
 #IF(%MyControls)
 ! The following alerts are for
 ! Quicken Style Date Fields
 #FOR(%MyControls)
 #FIX(%Control,%MyControls)
 %CONTROL{Prop:Alrt,255} = 443
 %CONTROL{Prop:Alrt,255} = 189
 %CONTROL{Prop:Alrt,255} = PlusKey
 %CONTROL{Prop:Alrt,255} = MinusKey
 #ENDFOR
 #ENDIF
#ENDAT
#AT(%WindowManagerMethodCodeSection,
 'TakeEvent','(),BYTE'),PRIORITY(6300)
 #IF(%MyControls)
 ! The following code handles
 ! the alert keys for Quicken Style Date Fields
 CASE EVENT()
 OF EVENT:AlertKey
 CASE Field()
 #FOR(%MyControls)
 #FIX(%Control,%MyControls)
 OF %Control
 IF %ControlUse <> 0 |
 AND %Control{PROP:ReadOnly} <> TRUE
 IF KeyCode() = 443 |
 OR KeyCode() = PlusKey! Pluskey
 %ControlUse += 1
 ELSIF KeyCode() = 189 |
 OR KeyCode() = MinusKey
 %ControlUse -= 1
 END
 DISPLAY(%Control)
 END ! %ControlUse <> 0
 #ENDFOR
 END ! Case Field()

http://www.clarionmag.com/cmag/v3/v3n5qbkeys.html (3 of 5) [6/4/01 11:27:21 AM]

Quickbooks-Style Date Fields

 END ! Case EVENT()
 #ENDIF
#ENDAT

The #ATSTART code creates a local variable called %MyControls
that will be used to store all fields on the window that are date
fields. Dates can be entered in ENTRY and SPIN controls. Also,
dates contain @D in the control picture, so it’s a simple matter to
loop through all the controls on a window and identify the dates.

The code in the WindowManager Init area places alert keys on
each control. I could also alert (and add code for) the other
Quicken™/Quickbooks™ date hotkeys (such as w for the first day
of the week, k for the last day of the week, etc).

The code in the WindowManager TakeEvent area creates a CASE
statement for each control, if any are present. Everything is pretty
easy so far. But how do I make this happen throughout my entire
program?

I began to write a template that looped through every procedure
and could be added to the global extensions. But I hit a wall
almost immediately with it. Then, I noticed the Application
attribute for an extension template. The documentation says

APPLICATION Tells the Application Generator to make
the #EXTENSION available only at the global level.

child(chain) The name of a #EXTENSION with the
PROCEDURE attribute to automatically populate into
every generated procedure when the #EXTENSION with
the APPLICATION attribute is populated.

This sounded exactly like what I needed. So, I wrote one other
small extension template…

#EXTENSION(QuickenDate,
 'This adds Quicken Style Date fields.')
 ,DESCRIPTION('This adds Quicken Style Date fields.')
 ,APPLICATION(QuickenDateAndTime)
#DISPLAY('This will work for entry fields ')
#DISPLAY(' with an @D in them.')

And that’s it. I add this extension template to the global
extensions for every app I have and it automatically adds the
QuickenDateAndTime procedure extension to every procedure. The
code only gets generated for those windows that contain date
entry or spin controls.

And, after a recompile, the bookkeeper is happy, I’m happy, and
the editor at Clarion Mag has a new article.

Download the source

http://www.clarionmag.com/cmag/v3/v3n5qbkeys.html (4 of 5) [6/4/01 11:27:21 AM]

http://www.clarionmag.com/cmag/v3/files/v3n5cmag-qb.zip

Quickbooks-Style Date Fields

Andrew Guidroz II, when he isn't handfeeding the tufted titmouse, writes software
for all facets of the insurance industry. His famous Cajun cookouts have become a
central feature of Clarion conferences throughout the U.S. Andrew's Cajun website
is www.coonass.com.

Reader Comments

Add a comment

Added to cw5.5d PE ABC, date increments by two days not...
Might the feature instead be added by extending the...
In reponse to Doug Johnson... Yup. That was another way...
To Gregg Matteson ... I just added the template directly...
Andrew, In your copious spare time, you might also add...
Clarion Online...
Andrew, While you work here is just fine, ...
In response to Mark... I wish I would have had more time...
to Lew: Yeah ... after I wrote it somebody told me there...
To Alan ... Oops . Looks like both the editor and...
Andrew.. Nice article....
Hi Andrew, Nice article. I did a similar thing in my...
Very nice article. I added additional items and brought it...
To Bruce Johnson ... That's exactly what I thought the...
To W B McDowell III: Humorous? I thought I was serious...
Great Info here, I used some of this information to alter...
To Mike ... Exactly. I really wish I had thought longer...
Didn't you read Bruce's article on CASE? Below is the...
Template Writer Utility (TWriter.EXE) would be good for...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5qbkeys.html (5 of 5) [6/4/01 11:27:21 AM]

http://www.coonass.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=10594
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=4
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=5
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=6
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=7
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=8
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=9
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=10
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=11
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=12
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=13
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=14
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=15
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=16
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=17
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=18
http://www.clarionmag.com/cmag/discuss.frm?articleID=10594&position=19
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Creating ODBC Data Sources At Runtime

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Creating ODBC Data Sources At Runtime

by Jon Waterhouse

Published 2001-05-09

One of the drivers that comes with Clarion is the ODBC driver.
Although Clarion deals with most of the problems of translating your
file access code (e.g. OPEN, CLOSE, NEXT) into calls to the particular
ODBC driver that looks after your data file, there is one area where
Clarion ignores a potentially useful set of features of the ODBC
design. These are the administration functions, which are required
before you can access any data source through ODBC.

When you are using most of the file drivers, all you need to know is
the file name. When you use ODBC, however, you specify the "file"
as a "Data Source Name" (DSN). The DSN contains the information
that points to a specific file or directory. In this article I’ll show you
how to use the administration functions to create an ODBC DSN at
runtime.

The problem

Imagine you have been sent one Access database for each of thirty
towns, where all of the databases have the same structure. Your job
is to amalgamate all of the data into one big file. If you were dealing
with flat files you would probably just loop through all of the files
you had to deal with. With the ODBC connection you have to have a
DSN set up for each file you want to use. This means one of two
things; either you manually set up (in ODBC sources in the Control
Panel) all of your DSNs before you start, or you create the DSNs
dynamically as you need them. As a long-term strategy, the second
solution definitely sounds better to me.

There are of course, several ways to skin this cat. In ODBC each
driver presents a standardized interface for a particular data source.
The ODBC DLLs that come with Windows deal with adding new ODBC
drivers, and pass data requests to the relevant driver. You therefore
have the choice of talking to the Windows ODBC manager, or
directly to the ODBC driver for the file you are interested in
(assuming you have documentation for that driver). The Clarion
ODBC interface approach is to talk to the ODBC manager.

NOTE: There is an ODBC back-end driver for TopSpeed
files, but that’s not what I’m talking about here.

http://www.clarionmag.com/cmag/v3/v3n5odbcadmin.html (1 of 7) [6/4/01 11:27:26 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

Creating ODBC Data Sources At Runtime

The main procedure in the ODBC admin DLL that deals with setting
up DSNs is called SQLConfigDataSource. This procedure calls a
procedure in each particular ODBC driver called ConfigDSN. I’ll look
at calling SQLConfigDataSource, because it is more general than
ConfigDSN, and will work whether your data source is Access, SQL
Server or any other database with an ODBC interface.

The documentation for SQLConfigDataSource gives the prototype
as:

BOOL SQLConfigDataSource(HWND hwndparent,WORD frequest
 ,LPCSTR lpszdriver ,LPCSTR lpszAttributes)

In Clarion this translates into:

SQLConfigDataSource PROCEDURE(ULONG ParentWindow,
 USHORT Request,*CSTRING DriverString,
 *CSTRING AttributeString),BYTE,RAW,PASCAL

In general, when using non-Clarion Windows DLLs, you can rely on
the following general rules:

● Handles are ULONGs
● A word is four bytes (a USHORT in Clarion), so a DWORD (double

word) is eight bytes, or a ULONG
● LP as a prefix stands for long pointer. Pointers to various types

of data in procedure calls are indicated by asterisks (*) in
Clarion

● The RAW attribute means that strings and groups are passed
without length information. In this example RAW is not strictly
necessary, but it will most often be required when using
external DLLs, so you might as well get in the habit of using it

● The PASCAL attribute means that procedure parameters are
passed left to right on the stack, compared to C which passes
them right to left on the stack, and the default calling
convention used by Clarion, which is to pass parameters using
registers. The PASCAL convention is used for all Windows API
calls.

The first parameter to SQLConfigDataSource can either be NULL (in
which case your activity will happen in the background without
displaying a screen to the user), or you can pass it the handle of
your procedure window (0{PROP:Handle}). The second parameter
indicates what you want to do — add, change or delete a DSN. The
documentation in the help file goes as far as telling you that valid
values are ODBC_ADD_DSN, ODBC_CONFIG_DSN etc. You will have to
look at the C header files that come with the Microsoft Data Access
Components Software Developers KIT (MDAC SDK), available free
from http://www.microsoft.com/data/download_260SDK.htm, to
find out that the values corresponding to these EQUATES (#defines
in C) are 1, 2, etc.

The final two parameters are where you specify, respectively, the
driver you want to add or configure, and details of your request.

http://www.clarionmag.com/cmag/v3/v3n5odbcadmin.html (2 of 7) [6/4/01 11:27:26 AM]

Creating ODBC Data Sources At Runtime

These details include what file you want attached to the DSN (for
Access) and what DSN you want to give your data source . This
attributes string can take several instructions of the form
Keyword=value. The documentation suggests that each argument
should be separated from the next by a NULL character, and the
string terminated with a double NULL. In practice semi-colons seem
to work just as well or better.

The basic steps to use this function in your application are:

1. Build a .lib file for the ODBCINST.DLL (which you will find in
Windows\system (or system32))

2. Use Application|Insert Module|External DLL to add the .lib file
you just created to your application

3. Add a Procedure to your application called
SQLConfigDataSource. Specify that it is an external procedure,
and type in the prototype as given above (starting with the first
parenthesis)

4. In the procedure where you want to set up your new DSN
create two local data fields, say DriverString and
AttribString, as CSTRINGs. The DriverString should be 33
characters, while the AttribString should be 255 characters.

5. Write the values you desire into your two CSTRINGs. In the
driver string you should put the driver name exactly as it
appears on the Drivers tab in the ODBC data sources control
panel application (e.g. Microsoft Access Driver (*.mdb)). In the
AttribString you need to put your keyword value pairs as
described in ODBCJET.HLP file (for Microsoft data sources). The
ODBC Setup Dialog Page is the most useful. For example, to
set up a DSN for an Access MDB database file, you could use
something like: AttribString =
'DSN=MyDataSource;DBQ=''C:\my data\AccessData.mdb'''
Don’t forget to double quotes where necessary.

6. Write a call in source, e.g. retval
=SQLConfigDataSource(0,1,DriverString,AttribString)

7. Open your file (which has the DSN and any other needed
values in the OWNER attribute) and use normally.

I suggested that you could use a scheme like this to process a whole
bunch of similar files. In theory you could create a single DSN (say
temp), use it, make another call to SQLConfigDataSource to change
the file the DSN points to (the DBQ= keyword value) and then read in
your next file. In practice this doesn’t work. If you reuse the DSN
you will keep on being connected to the first data source. Therefore,
you have to create a series of DSNs (temp1, temp2, etc.) and delete
each (ODBC_DELETE_DSN=3) as you finish with it.

That’s the basics. This scheme is demonstrated in the example
program at the end of this article, which simply creates several
DSNs on the fly.

The next step is to make the whole process of integration a little
easier. Step 1 is required, because Clarion needs the .lib file in order
to link in the ODBCINST.DLL. You can’t do without Step 5, either;
you have to specify the driver and the associated data source.

http://www.clarionmag.com/cmag/v3/v3n5odbcadmin.html (3 of 7) [6/4/01 11:27:26 AM]

Creating ODBC Data Sources At Runtime

However, steps 2,3,4 and 6 are potential candidates for a template;
actually two templates. The first template is a global extension and
declares the ODBC procedures in the global map. The second is a
CODE template which declares the two local variables and prompts
you for the driver and attribute strings. The templates can also wrap
some extra code around the plain vanilla call to
SQLConfigDataSource to get it to provide better error checking.

The SQLConfigDataSource procedure returns a 1 (success) or 0
(failure). There is also a function called SQLInstallerError that can
be called to give more information about errors. I’ve written a
procedure called CDSWrapper that first calls SQLConfigDataSource,
and then reports the particular error type if the function fails.

The global extension part of the template does four things:

1. Adds the ODBC library to the project
2. Adds the prototypes for CDSWrapper and all of the ODBC

procedures to be used to the map
3. Declares a bunch of EQUATEs
4. Generates the code for the CDSWrapper procedure

From a template writing perspective, the first two items are very
useful things to know how to do. You can borrow from the
techniques in this template to add outside libraries and global
procedures to your applications.

Adding the library to the project is accomplished by the #PROJECT
statement. This statement has the same effect as manually doing an
Application|Insert module.

The%CustomGlobalDecalarations embed point is also the place to
declare the CDSwrapper procedure and its prototype. This requires
three lines of code.

#ADD(%CustomGlobalMapModule,%Application & '.clw')
#ADD(%CustomGlobalMapProcedure,'CDSWrapper')
SET(%CustomGlobalMapProcedurePrototype,'
 (BYTE,BYTE,*CSTRING,*CSTRING),BYTE')

The first line says that the procedure is in is the %Application.clw
file. The second has the procedure’s name, and the third declares
the prototype. This is all that is needed to add the CDSWrapper
procedure to the map, but the application will still need prototypes
for all of the required procedures in the ODBC DLL. I have been lazy
and hard-coded the name of the DLL(LIB) file. If I was a bit more
professional about it I would extract the DLL name from the name of
the LIB file, which is stored in the %ODBClib token.

The EQUATEs are taken from the ODBC documentation that comes
with the MDAC software developers kit. They are used in the
CDSWrapper procedure. A number of the equates declare certain
data types and handles to be equivalent to other data types. For
example, HENV (an environment handle) is actually stored in a
Clarion ULONG.

http://www.clarionmag.com/cmag/v3/v3n5odbcadmin.html (4 of 7) [6/4/01 11:27:26 AM]

Creating ODBC Data Sources At Runtime

The CDSWrapper procedure is placed in the %ProgramProcedures
embed point and will therefore show up at the end of your
%Application.clw file. The procedure is a bit more elaborate than it
really needs to be, but this should give you a good start if you
decide you would like to use more of the administrative ODBC
functions.

The first line of code:

whandle = CHOOSE(display,0{PROP:Handle},0)

sets the window handle to be either 0 (if the code template specified
no display), or to the handle of the current window
(0{PROP:handle}). The next section of code is not really necessary.
What it does is load the names of all of the available ODBC drivers
on the machine into a queue. For reasons I don’t claim to
understand, this requires first setting up an "environment", which is
what the calls to SQLAllocHandle and SQLSetEnvAttr do. The driver
names are then retrieved in a loop that looks like this:

Get first driver
Loop
 If error
 Report error
 Break
 End !if
 Add driver to queue
 Get next driver
End ! loop

I mention this explicitly, because this type of loop structure is not
very common in Clarion. This loop could be used to build a list of
available drivers to be presented to the user.

The environment handle is then freed because it is not needed any
more. The next section requires that at least one driver was found in
the first part of the procedure. The driver name is checked against
the list of drivers that are stored in the queue. If the driver is not
there you are not going to be very successful setting up a data
source that relies on that driver, so you get an error message and
exit the procedure. If everything is still okay the procedure makes
the call to SQLConfigDataSource. If SQLConfigDataSource returns
an error, SQLInstallerError provides more information.
SQLInstallerError does display a reasonably informative error
message if you call SQLConfigDataSource with a non-existent driver
name.

As I mentioned, the procedure is really more elaborate than it needs
to be. The major value of the first part is that the SQLDataSources
procedure takes exactly the same arguments as SQLDrivers. Thus if
you want a list of all the currently available DSNs in a queue that
you can display, a very modest adjustment to the first part of this
procedure will give it to you. The CDSWrapper procedure returns
either 0 (failure) or 1(success).

http://www.clarionmag.com/cmag/v3/v3n5odbcadmin.html (5 of 7) [6/4/01 11:27:26 AM]

Creating ODBC Data Sources At Runtime

The second part of the template is a code template that can be
easily added to a procedure to set up a DSN. It translates into three
lines of code: one to set up the driver string (based on programmer
input), one to set the attribute string, and a third to call CDSWrapper
with the appropriate parameters. The template also sets up three
data fields each time you add the template (a return value
(CDSretvaluex), a driver string and an attribute string).

The four parameters required are:

1. Display the dialog box or not
2. Type of action (add, delete, user DSN or system DSN)
3. the driver string
4. the attribute string

Figure 1. The SetupDataSource prompts

The example application does very little; it simply sets up two data
sources. One is an Access data source (you will have to find an
access (.mdb) file on your machine to reference in the DBQ field,
which is set up without a dialog displayed). The other is a TopSpeed
data source (for which you need the TopSpeed ODBC driver,
included in CW5.5, but a separate purchase for earlier versions).
This is called with a dialog displayed, mostly because it does not
work otherwise. It returns a success code, but unfortunately does
not set up the data source. I have version 2 of the ODBC driver, and
this may be fixed in version 3.

Keep in mind that the template does not do the first step for you:
you will need to make the .LIB file from ODBCINST.DLL before you
use it. Also, the template can only set up data sources for drivers
that are set up on the machine. If you don’t have the TPS driver
(read only) or the Microsoft Access driver on your machine, you’ll
run into errors, or you’ll need to modify the example to work with
data sources you do have.

Summary

Learning how to use the ODBC administrative functions has certainly
made my life easier. The government department I work for has two

http://www.clarionmag.com/cmag/v3/v3n5odbcadmin.html (6 of 7) [6/4/01 11:27:26 AM]

Creating ODBC Data Sources At Runtime

applications that write to local databases; one database for each
regional office. Every six months or so I get two CD-ROMs containing
the data uploaded from each of the twenty or so offices. Previously I
would have to manually set up forty DSNs (twenty offices times two
data files) to read in the data to amalgamate into a single provincial
data base. Now, I just have to provide my program with the names
of the main directory and the subdirectories in which the data sits,
and the program can create a temporary DSN for each office data
base in turn.

For me, being able to use ODBC administrator functions just saves
time. However, it is not hard to think of situations where you have
to write a program that incorporates a legacy data source. If you can
incorporate this data without having to train users to set up DSNs on
their machines you will probably save yourself a lot of headaches.

Download the source

Jon Waterhouse has been using Clarion since the 2.1 days. His main work is as an
economist, and he finds that Clarion is well-suited for applications which impose order
on various sets of data. His projects include questionnaire data entry programs,
classification software (assigning projects to groups), plus some more interesting
scheduling applications. Jon has also used Clarion to link text information together,
and is currently developing a program that will store linked snippets of WordPerfect
documents and print custom documents composed of several of these snippets. He is
currently working for the Newfoundland Government on a project to measure the
performance of government employment programs.

Reader Comments

Add a comment

A note on WORD and DWORD: The bullet point should say:
A...
Surprise !!! My system can't find the ODBCINST.DLL, but...
I believe ODBCINST is installed only with the 16bit version...
Actually i can´t find the odbcinst.dll on my mahcine,...
Different versions of windows keep the same functions in...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5odbcadmin.html (7 of 7) [6/4/01 11:27:26 AM]

http://www.clarionmag.com/cmag/v3/files/v3n5odbcadmin.zip
mailto:jwaterhouse@thezone.net
http://www.clarionmag.com/cmag/comments.frm?articleID=10352
http://www.clarionmag.com/cmag/discuss.frm?articleID=10352&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10352&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10352&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10352&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=10352&position=4
http://www.clarionmag.com/cmag/discuss.frm?articleID=10352&position=5
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Reader Comments Now Available On All Articles

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader Comments Now Available On All Articles

Published 2001-05-08

You can now add your own comments to any ClarionMag or COL
Archive article. At the bottom of each article you'll see an "Add a
comment" link, as well as a list of any comments already posted.
Just follow the links to add your own comment or read what others
have to say.

Your comments will appear in plain text, so if you type in some
HTML you'll see the tags, not the effect of the tags, i.e. this
text will not be bold. I've disabled HTML to make it easier to
post Clarion code snippets, which often contain angle brackets.

My thanks to everyone who participated in the beta test. If you
have any thoughts on how this feature can be improved, please
email dharms@clarionmag.com

Reader Comments

Add a comment

I'm out of the office for a few days, so if you email me...
Sure wish Clarion mag would support Klingon fonts!
Do next and previous work?
Next and previous do work but only if there's something...
Hi Dave, Great feature! I like it! However the biggest...
There are two ways to handle paragraph breaks. One is to...
The article comments code now has improved formatting,
i.e....
You also now get a button back to the article after you...
Hi Dave. This is a nice feature, and makes Clarion...
Testing only, pls. ignore (g)

http://www.clarionmag.com/cmag/articlecomments.html (1 of 2) [6/4/01 11:27:28 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
mailto:dharms@clarionmag.com
http://www.clarionmag.com/cmag/comments.frm?articleID=10574
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=4
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=5
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=6
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=7
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=7
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=8
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=9
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=10

Reader Comments Now Available On All Articles

I've made some further changes (hopefully improvements)
to...
This new feature sure seems interesting. I am typing...
It would be useful to be able to see a page with details of...
I'm already working on it.
Wow, thanks - that will be very handy. (My) memory is
like...
Dave, One suggestion (or request for a feature please...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/articlecomments.html (2 of 2) [6/4/01 11:27:28 AM]

http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=11
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=11
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=12
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=13
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=14
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=15
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=15
http://www.clarionmag.com/cmag/discuss.frm?articleID=10574&position=16
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Replicating IDLE: All Quiet on the Keyboard?

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Replicating IDLE: All Quiet on the Keyboard?

by Steven Parker

Published 2001-05-03

The Language Reference Manual states the following:

IDLE Arms a procedure that periodically executes.

An IDLE procedure is active while ASK or ACCEPT are
waiting for user input. Only one IDLE procedure may be
active at a time. Naming a new IDLE procedure
overrides the previous one. An IDLE statement with no
parameters disarms the IDLE process. (Emphasis
added.)

I don’t think that this definition of IDLE has changed since I first
started using Clarion late in the last century. And this description
is just as abstruse now as it was then.

Looking at the terms helps. "ASK reads a single keystroke from the
keyboard buffer. Program execution stops to wait for a keystroke."
Ok, Ask waits for a keystroke. And, Accept is the event handler.
Therefore, in plain language, IDLE is an inactivity timer. When
there has been no keyboard activity for the period of time specified
in the IDLE statement, the procedure named will execute.

Unfortunately, IDLE has been broken since (at least) Clarion for
Windows 1.5. And, it is broken badly. For example, the
documentation states "Only one IDLE procedure may be active at
a time. Naming a new IDLE procedure overrides the previous one."
This is true in 16 bit; false in 32 bit (new IDLE procedures in 32 bit
are unlikely to execute at all) .

The documentation also states "The IDLE procedure executes on
thread one (1)--the same thread as the APPLICATION frame." This
is true in 32 bit, false in 16 bit (in 16 bit, an IDLE procedure only
needs to be in the same module as its caller).

In my first Windows app, a 16 bit program, I had to put this code:

 If KeyCode()

http://www.clarionmag.com/cmag/v3/v3n5idle.html (1 of 7) [6/4/01 11:27:36 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

Replicating IDLE: All Quiet on the Keyboard?

 Idle()
 Idle(Reset_,Cfg:Tab_Timeout)
 End

in a browse’s Accept Loop embed to get the same effect I that I
got in DOS from placing a simple call to IDLE in the After Opening
Screen embed. Clearly IDLE is not resetting – I think this is
technically described as "restarting" -- on a keystroke. (In 32 bit,
this code would do nothing at all.)

In 32 bit, an IDLE procedure must be in the same module as the
Frame and, while it responds correctly to keystrokes on the Frame,
it does not respond to keystrokes in any other procedure. In other
words, in 32 bit, an IDLE procedure is just a global timer and can’t
be reset from within the program in any of the ways implied in the
documentation.

And, even if IDLE weren’t broken, what if I need two inactivity
timers active simultaneously? I recently found myself in exactly
this position. A cash register displays a list of items that have been
rung up. When the sale is completed, the list should be blanked
after, say, 30 seconds (giving the cashier a chance to print a
second copy without having to retrieve the transaction). At the
same time, the register program should lock itself if there has
been no activity for two minutes. (In the program I’m working on,
both of these delays are user definable.) To do this requires two
IDLEs. However only one can be active at a time. In other words,
what I need can’t be done with IDLE (maybe it’s not so bad that
it’s broken).

What Does IDLE Do?

Fortunately, replicating the functionality of IDLE, without the one-
at-a-time restriction, is not very difficult. "It’s easy," Marshall
Brodien used to say "once you know the secret."

There is one caveat and that is that replacing IDLE’s functionality
is fairly straightforward for a single procedure or two. It is not if
you need a global IDLE, an IDLE active at the Application level, at
least not without substantial work (probably involving posting
events to the Frame’s thread).

To duplicate the core functionality of IDLE, I need to understand
what the statement does. And, what IDLE does is call a procedure,
named in the IDLE statement’s first parameter, when there has
been no activity for the period of time specified in the IDLE
statement’s second parameter. So I need to know the amount of
time and the action to take.

In "Windows-ese," IDLE may be described as calling a procedure
when there has been no event for a specified amount of time. This
immediately suggests the TakeEvent method as the ideal place to
check whether an event has occurred. If an event occurs, then I
want to restart the timing cycle. I can use the window’s TIMER

http://www.clarionmag.com/cmag/v3/v3n5idle.html (2 of 7) [6/4/01 11:27:36 AM]

Replicating IDLE: All Quiet on the Keyboard?

attribute to cause a timer event to fire periodically and trigger a
call to TakeEvent (actually, I have to use the TIMER attribute).

Because I intend to use virtual methods (embeds), I am not
limited to calling a procedure as a template or library call usually
is. I can execute whatever code I want to. Neither am I limited, as
I am by IDLE, to procedures that do not take parameters.

However, any event, including a timer event, will call TakeEvent. I
certainly do not want to restart the timing cycle if the only thing
that has happened is a timer event. To avoid resetting the time
when only the Event:Timer trips, I can check If Event() <>
Event:Timer and eliminate timer events from the equation
entirely.

On the other hand, if the window timer does trip, I want to check if
the time has run out. Thus, I know that I will be using
ThisWindow.TakeEvent and Window Events | Timer to implement
IDLE-like functionality.

Idling

My actual implementation of IDLE functionality employs two
variables. The first variable contains the default amount of
inactivity time, the default timeout, and is stored in a configuration
or INI file. The second is a local variable which is used in the
actual counting, set and reset by the first. This allows me the
flexibility of capturing the timeout in seconds or minutes and
converting it to whatever unit of measure I need.

If I set the window’s timer at 100 (one second) and the default
time is also in seconds, I do not have to "convert" anything.
However, if the default time was entered or stored in minutes, I
multiply by 60 to get the number of seconds. If I set the window
timer to 50 (one-half second), I would multiply a seconds variable
by 2 and a minutes variable by 120.

If I am using the built-in Clock() function then I have to convert
to 1/100th seconds to get a Clarion Standard time. Therefore,

1 second = 100
1 minute = 6000

Check the On-line Help for "Time: Standard Time" or look at my
Clarion Online articles for more.

Assume that my two variables are GLO:NumberSeconds and
Timeout. In TakeEvent, if there has been no event (or, more
precisely, no non-timer event), I want to recalculate the timeout:

If Event() <> Event:Timer
 Timeout = Clock() + (GLO:NumberSeconds * 100)
End

http://www.clarionmag.com/cmag/v3/v3n5idle.html (3 of 7) [6/4/01 11:27:36 AM]

http://www.clarionmag.com/cmag/search.frm?formID=true&query=title%3A%22Marking+Time%22&submit=Go

Replicating IDLE: All Quiet on the Keyboard?

Timeout now contains the Clarion standard time at which I need to
take action. Then, in the Timer event embed, if the last event was
only a timer event, I want to compare the current time to
Timeout:

If Event() = Event:Timer
 If GLO:NumberSeconds
 !user actually does want a timeout
 If Clock() > Timeout
 !do something
 End
 End
End

This will work perfectly if the application does not run across
midnight. If midnight rollover could occur, this code will cause
problems if the last non-timer event is less than
GLO:NumberSeconds before midnight.

Because Timeout is calculated by simple addition, it could end up
with a value higher than the maximum allowed by Clarion
(8,640,000). If I try to compensate by subtracting 8,640,000
whenever Timeout exceeds 864000, the time out action will
trigger immediately on the next timer event.

"StarDate" to the rescue

I do not know who devised the StarDate technique but it is
exceedingly ingenious. A StarDate allows a single variable,
typically a Real(15,8) or Decimal (13,6), to contain both the
date and the time. Therefore, two times can be compared using
StarDates without worrying about midnight rollover.

A StarDate is constructed by taking the Clarion standard date and
adding the time expressed as a fraction. Thus, the portion of a
StarDate to the left of the decimal (the integer portion) is the date
and the portion to the right (the fractional portion) is the time.

Time can be expressed as a fraction by dividing it by 8640000 (the
maximum number of clock ticks in a day). For example:

StarDate = Today() + (Clock() / 8640000)

StarDates are converted back into a date and a time by reversing
the arithmetic.

DateVar = Int(StarDate)

The time is the fractional portion and I get it by subtracting the
date:

TimeVar = StarDate - INT(StarDate)

http://www.clarionmag.com/cmag/v3/v3n5idle.html (4 of 7) [6/4/01 11:27:36 AM]

Replicating IDLE: All Quiet on the Keyboard?

To finish the conversion to a Clarion standard time, multiply by
8640000.

TimeVar *= 8640000

The IDLE code above, adjusted to handle midnight rollover,
becomes:

!TakeEvent
If Event() <> Event:Timer
 Timeout = Today() + |
 ((Clock() + (GLO:NumberSeconds * 100)) |
 / 8640000)
End

and

!Timer
If Event() = Event:Timer
 If GLO:NumberSeconds > 0
 !new day, adjust for midnight rollover
 If (Today() > INT(Timeout)) |
 AND (Clock() + 8640000 > |
 ((Timeout - INT(Timeout)) * 8640000)) |
 OR (Today() = INT(Timeout)) AND |
 (Clock() > ((Timeout - INT(Timeout)) * 8640000))
 !do something
 End
 End
End

Note: just because Today() > INT(Timeout) does not
ipso facto mean that GLO:NumberSeconds have elapsed.

The code above works by checking the dates first then making the
appropriate time comparison. Alternately, I could create a second
StarDate in the Timer embed and subtract:

 If Event() = Event:Timer
 If GLO:NumberSeconds
 StarDateNow = Today() + (Clock() / 8640000)
 If StarDateNow – Timeout > 0
 !do something
 End
 End
 End

This seems much easier to read. (Yes, I also could have checked
StarDateNow > Timeout.)

But wait … there’s more!

The techniques described above work. The first, of course, does
have a midnight rollover restriction. Calculating the time at which

http://www.clarionmag.com/cmag/v3/v3n5idle.html (5 of 7) [6/4/01 11:27:36 AM]

Replicating IDLE: All Quiet on the Keyboard?

to act has the virtue of working with any timer value, from 1 to
6553 (the maximum imposed by Windows), not only one second
timers. But, it seems to me that I should not really need to
calculate the time of day at which I need to time out the
procedure, at least not when I am willing to set my window timer
to one second.

Since I know the number of seconds (or minutes) after which to
time out, I should be able to simply count down the remaining
time. Something like:

If Event() = Event:Timer
 Timeout -= 1
 If Timeout = 0
 !do something
 End
 End

If I do this, then TakeEvent becomes a simple resetting Timeout to
its initial value:

 If Event() <> Event:Timer
 Timeout = GLO:NumberSeconds
 End

Or

 If Event() <> Event:Timer
 Timeout = GLO:NumberMinutes * 60
 End

In this case, midnight rollover is automatically handled (or, more
accurately, entirely ignored as time of day never enters the
computation at all). The sample apps accompanying this article
(one C5, one C55) implement this technique. Counting down
works. (My register program implements the StarDate technique.)

Counting down works with one small exception (and this "small
exception" also affects the first techniques discussed). If there is
an MDI Frame procedure and the "Display the date and/or time in
the current window" extension template is used, the timeout will
never be hit. This assignment:

Timeout = GLO:NumberSeconds

will be updated every time the date/time is updated. Placing this
code:

0{Prop:Timer} = 0

in ThisWindow.Init, Enter procedure scope (Priority 501) will turn
off the Frame’s timer. (Because this code is executed before the
current procedure’s window is opened, "0" still refers to the
Frame’s window.) In the C55 sample app, I implement turning off

http://www.clarionmag.com/cmag/v3/v3n5idle.html (6 of 7) [6/4/01 11:27:36 AM]

Replicating IDLE: All Quiet on the Keyboard?

the Frame timer. I do not do so in the C5 app; try inserting the
"Display the date" extension there and you will find that the
browse with the "IDLE" code never times out.

Multiple Timers

I started down this road because I needed multiple timers running
simultaneously. The fact that IDLE wasn’t working anyway really
wasn’t all that important. (Right.) Implementing multiple timers
now becomes a matter of declaring another variable and
duplicating two small code segments (to re-initialize the additional
variable(s) in TakeEvent and to do whatever needs to be done in
Event Timer).

Summary

IDLE is broken but that doesn’t mean that I lose the ability to set
up programmatic action after a period of inactivity. I’ve described
three different ways to implement IDLE functionality, though the
last clearly seems both the easiest to implement (least amount of
typing and easiest to read) and most effective (works intra- and
inter-day). If a one second timer in unacceptable, for whatever
reason, one of the other techniques will serve quite well. None,
however, seem appropriate outside of a single procedure. Oh, yes,
a template is also possible. One (crude but effective) is included in
the downloadable code.

Download the source

Steve Parker started his professional life as a Philosopher but now tries to imitate a
Clarion developer. A former SCCA competitor, he has been known to adjust other
competitors' right side mirrors - while on the track (but only while accelerating).
Steve has been writing on Clarion since 1993.

Reader Comments

Add a comment

Hi, The first instance of StarDate that I...
Good example of where Equates should be used. Miss a
zero...
Another good date format is this DateTime format that
sorts...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5idle.html (7 of 7) [6/4/01 11:27:36 AM]

http://www.clarionmag.com/cmag/v3/files/v3n5idle.zip
http://www.clarionmag.com/cmag/comments.frm?articleID=10572
http://www.clarionmag.com/cmag/discuss.frm?articleID=10572&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10572&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10572&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10572&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=10572&position=3
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

The Clarion Advisor: API Tricks

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

The Clarion Advisor: API Tricks

by Pierre Tremblay

Published 2001-05-03

Often, I need to use Windows API calls which involve passing a
CSTRING, and sometimes those API calls require a NULL instead of
a string. A lot of programmers will prototype the API call with a
LONG in order to support a call with a NULL (set the LONG to 0). The
problem is you then always need to pass the ADDRESS() of the
variable instead of the variable itself. When I face a situation like
this I simply define two prototypes, one with a LONG and one with
a *CSTRING, and I let the compiler sort out which one I’m calling.

For example, I sometimes need to break a string into tokens,
discarding a specific delimiter (such as , : ; . etc.). I use the API
_strtok function for this. The first call accepts the string to be
parsed and a string containing a list of delimiters. Subsequent calls
require a NULL as the first parameter, so _strtok knows to return
the next token. When _strtok returns a null, there are no more
tokens. I prototype the function this way:

module('Lib')
 StrTok(*cstring pCString, *cstring pDelim),
 cstring, raw, name('_strtok')
 StrTok(long, *cstring pDelim), cstring, raw,
 name('_strtok')
 end

Here’s some code that demonstrates the use of _strtok:

ACstring CSTRING(60)
TokenQ QUEUE,PRE()
AToken STRING(10)
 END
csDelim CSTRING(' ,;:')
AToken CSTRING(20)

 CODE
 ACString = 'This is a test string'
 AToken = StrTok(ACstring, csDelim)
 LOOP WHILE AToken
 TokenQ.AToken = AToken

http://www.clarionmag.com/cmag/v3/v3n5advisor-api.html (1 of 2) [6/4/01 11:27:38 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html

The Clarion Advisor: API Tricks

 ADD(TokenQ)
 AToken = StrTok(0, csDelim)
 END

You might use _strtok to parse a string from an INI file or a table
record; each token could represent a valid choice for an entry
field, for instance.

This approach isn’t limited only to CSTRINGs. You can use it for any
structure (i.e. a typed group) where the API call allows you to pass
a NULL instead of the structure itself.

Download the example application

Pierre Tremblay has worked in the programming and corporate world for the last 16
years, and has been as an independent contractor for TopSpeed Consulting Division
since April 1998. He is also a member of Team TopSpeed.

Reader Comments

Add a comment

What about just making the parameter ommittable? I seem
to...
another approach is to make a generic NullStr variable....
<*Cstring> does do what you want per Alexey the below...
Just to clarify ; The strtok() function is not a windows...
I wasnt aware that omitable parameter will default to a...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5advisor-api.html (2 of 2) [6/4/01 11:27:38 AM]

http://www.clarionmag.com/cmag/v3/files/v3n5apinull.zip
mailto:pierret@ibm.net
http://www.clarionmag.com/cmag/comments.frm?articleID=10571
http://www.clarionmag.com/cmag/discuss.frm?articleID=10571&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10571&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10571&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10571&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=10571&position=4
http://www.clarionmag.com/cmag/discuss.frm?articleID=10571&position=5
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Introduction to SQL - Part 4

Search

Home

COL Archives

Subscribe
New Subs
Renewals

Info
Log In
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Introduction to SQL - Part 4

by Dave Harms

Published 2001-05-01

April was a busy month, so I'm a little behind on this introduction
to SQL series. I’ve received several questions about the articles,
mainly related to the overall concepts of SQL development. These
questions suggest that there’s still some confusion among Clarion
developers over what SQL is all about.

I’ve been asked on a few occasions just how SQL development
differs from non-SQL (typically TPS) development. The answer to
this question is "it depends." You can choose a development style
anywhere on the continuum from "almost identical to TPS" to
"radically different from TPS."

I don’t care if it’s SQL

It’s quite possible to create a Clarion application that can run on
either a TPS database or a SQL database, and the only thing you
have to change is the driver. You will need to stick with data types
common to all the drivers you plan to use, but other than that you
don’t need to make any special accommodation. You don’t need to
think about your development in a different way, except to the
extent that you need to learn how to create or maintain a SQL
database. And you need to make sure that each of your tables has
a primary key.

I suspect that a lot of Clarion developers who do SQL start off with
this approach. Perhaps they’re looking for better network
performance, or maybe SQL is one of the client’s requirements. In
any case, the point is that you can treat SQL tables the same way
you treat TPS tables (or files, if you prefer that terminology). In
this situation your application assumes no intelligence other than
its own is at work manipulating the database, and the SQL server
functions simply as a repository for data. You ask for data, you get
it. You update data, it’s updated. You delete, it’s gone. A SQL
server used this way doesn’t take any additional action based on
what you ask it to do.

Your application will automatically take some minimal advantage

http://www.clarionmag.com/cmag/v3/v3n5sql4.html (1 of 8) [6/4/01 11:27:42 AM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/search.frm?formID=true&query=author%3Aharms+title%3Asql&submit=Go
http://www.clarionmag.com/cmag/search.frm?formID=true&query=author%3Aharms+title%3Asql&submit=Go
http://www.clarionmag.com/cmag/v3/v3n3introsql3.html

Introduction to SQL - Part 4

of any SQL database server’s special capabilities, primarily when
you’re dealing with a browse that uses related tables. In older
versions of Clarion browses read files directly, using the file driver;
in Clarion ABC all such file access is handled by a Clarion VIEW
structure, which is a sort of logical table which can contain related
tables. Here’s an example of a VIEW structure that combines three
tables using a JOIN to display authors and their articles:

BRW1::View:Browse VIEW(Names)
 PROJECT(nam:LastName)
 PROJECT(nam:FirstName)
 PROJECT(nam:NameID)
 JOIN(aat:AuthorID,nam:NameID)
 PROJECT(aat:ArticleID)
 JOIN(Art:PRIMARY,aat:ArticleID)
 PROJECT(Art:Title)
 PROJECT(Art:ArticleID)
 END
 END
 END

The primary table in this Clarion VIEW is the Names table. In the
AppGen file schematic, this is the first table listed in the browse
control, as shown in Figure 1. There are two additional tables in
the VIEW: AuthorArticle is a linking table which manages a many-
to-many relationship between Names and Articles.

Figure 1. The browse file schematic

If you use this VIEW with a flat-file database, Clarion will retrieve
all of fields in each table record, even though only a few of these
fields are actually listed in the VIEW. That means you get a lot

http://www.clarionmag.com/cmag/v3/v3n5sql4.html (2 of 8) [6/4/01 11:27:42 AM]

Introduction to SQL - Part 4

more network traffic than you really need, and performance will
suffer. If you use a SQL database, Clarion will generate a SELECT
statement instead, and that statement will only retrieve the
required fields. Here’s a SELECT statement that corresponds to the
above VIEW structure (I created this using the
\c55\bin\trace.exe utility):

SELECT A.NameID, A.FirstName, A.LastName,
 A.Company, A.Country, A.Email, A.UserID,
 B.AuthorArticleID, B.ArticleID,
 C.ArticleID, C.Title
 FROM Names A
 LEFT OUTER JOIN AuthorArticle B
 ON A.NameID= B.AuthorID
 LEFT OUTER JOIN Articles C
 ON B.ArticleID= C.ArticleID
 ORDER BY B.AuthorID ASC, B.ArticleID ASC,
 C.ArticleID ASC

Although there are numerous fields in the Names table, only seven
of these fields are named in the SELECT statement. You’re
probably wondering why seven, since just three are listed in the
VIEW. As near as I can tell, ABC adds these fields automatically
because they’re key components. At least seven is better than 38,
which is how many fields there really are in Names. Of course,
when you bring up an update form, ABC will retrieve all of the
fields in that row.

NOTE: In my tests with MySQL, ABC reports and
processes, unlike browses, automatically retrieved all
fields in the table(s), thereby removing the network
performance benefit enjoyed by ABC browses running
on SQL data.

In SQL, tables can be associated with a JOIN statement, such as
this:

Names A LEFT OUTER JOIN AuthorArticle B
 ON A.NameID= B.AuthorID

There are several different kinds of joins. In a LEFT OUTER JOIN
the SQL server will look for records for the left-side table, and find
matching records on the right side table. If there are no matching
records on the right side, the server supplies NULL values for the
right side fields. This is the kind of join most Clarion programmers
use, whether they realize it or not.

Notice that the Names table is defined in the SELECT statement as
Names A, not just Names. The A is an alias for the Names table.
Since you can have identical field names in different tables, you
often need to prefix the field with the table name, as in
Names.NameID. But that can leads to a lot of typing, so SQL allows
the use of an alias. In this case, A.NameID is the same as
Names.NameID. The Clarion view engine assigns these aliases

http://www.clarionmag.com/cmag/v3/v3n5sql4.html (3 of 8) [6/4/01 11:27:42 AM]

Introduction to SQL - Part 4

alphabetically, beginning with A.

Finally, the JOIN has to specify which are the linking fields. The
Clarion view engine uses the ON syntax:

ON A.NameID= B.AuthorID

All of the above code comes from a straight ABC application that
would work with SQL or TPS tables. The only difference is the file
driver. So even though you don’t make any special allowances for
SQL, you can still get some of the speed and performance benefits
of SQL.

Tuning for SQL

Although stock ABC SQL applications work, there’s a whole world
of functionality out there for SQL developers. Typical server
features include:

● mass updates – why write a process to do something, when a
single SQL will accomplish the same result?

● server-side autoincrementing of keys
● enforcing referential integrity
● stored procedures – SQL code which can be called at any

time
● triggers – ability to execute a stored procedure when a

particular event happens

I’ll take a brief look at each of these areas, and point out some of
the issues for Clarion developers.

Mass updates

Clarion developers are used to applying updates to one record at a
time. With SQL, you can update large numbers of records with a
single statement. For instance, let’s say I’ve been inconsistent in
storing country information in my Names table. In some cases, the
country value for the United States of America is ‘USA’, in others
‘US’. To change all instances of ‘US’ to ‘USA’ I can execute the
following statement using PROP:SQL:

UPDATE Names SET Country='USA' WHERE Country='US';

This kind of capability doesn’t necessarily have a bearing on how
you design your applications, except that you can probably
dispense with some of your own client-side code. Of course, you’d
never allow this kind of inconsistency to appear in your data in the
first place, right?

Server-side autoincrementing

Good database design requires you to have a unique identifier for
each row in a table, and in most cases you’ll accomplish this using
an autoincrement key. Traditionally, Clarion applications

http://www.clarionmag.com/cmag/v3/v3n5sql4.html (4 of 8) [6/4/01 11:27:42 AM]

Introduction to SQL - Part 4

autoincrement by retrieving the record in the table with the
highest key value, incrementing that value by one, inserting a
record with the new value (to reserve that auto-incremented
number), and changing the current action from an insert to a
change (even though the form still appears to be inserting a new
record). With a SQL database, you have the option of letting the
server do the auto-incrementing, which is generally faster and
more reliable. But this is not as straightforward as it may seem.

When you’re doing a simple insert into a table, everything is fine –
you may need to supply a NULL value for the primary key field, but
the server will take care of the rest. The difficulty arises when you
try to add related (child) records using the parent’s update form. If
you’ve just inserted the parent record, you won’t have a value for
the primary key field. That value exists, but your form has only
inserted the record; it hasn’t retrieved that record to find out the
field value.

There are various ways around this problem. For MS SQL Server,
Jim Kane has written some code to retrieve the @@identity
variable, which contains the value of the last autoincrement
identifier for the current connection. This way you can assign the
correct parent id to the child record.

SoftVelocity is working on templates that are designed to work
specifically with SQL databases, and presumably deal more
elegantly and directly with the SQL back end on autoincrementing
and other issues. For more information on the SQL templates
contact sqldev@softvelocity.com.

Enforcing referential integrity

I can’t claim much experience with server-side relational integrity
(RI), because most of my SQL work is with MySQL, which doesn’t
provide this capability. Most databases do let you set various
update and delete check constraints in much the same way as
you’re probably accustomed to setting these constraints in the
Clarion dictionary editor. If you decide to handle RI on the server,
you should select the appropriate server side constraint in the
Clarion dictionary editor, as shown in Figure 2.

http://www.clarionmag.com/cmag/v3/v3n5sql4.html (5 of 8) [6/4/01 11:27:42 AM]

mailto:sqldev@softvelocity.com

Introduction to SQL - Part 4

Figure 2. Choosing a server-side RI constraint

Setting server-side constraints in the dictionary doesn’t create any
server-side code; this is just a way of documenting that the server
will handle the RI issues.

Stored procedures and triggers

Closely related to RI issues is the use of stored procedures and
triggers. SQL is a query language, but it’s also a data definition
language, and in many ways a full-fledged programming language.
With most SQL servers you can store SQL code on the server, as a
procedure, and call that code from your Clarion applications with
PROP:SQL.

A trigger is similar to an RI constraint in that a particular event
(such as an update or delete) triggers an action. In fact, you can
implement RI constraints as triggers, if you like. The trigger can
contain all the necessary SQL code, or it can call stored procedures
instead of, or in addition to, its own SQL code.

Stored procedures and triggers have the most potential to radically
alter your approach to database development. Much of the code in
your application represents business rules, or standard approaches
to handling certain kinds of data. The more of those business rules
you move to the server, the simpler the client program becomes,
and the safer it is to let other applications work with the data,
since the server enforces the business rules no matter which client
updates the database. You can make the database itself relatively
bulletproof, with enough effort.

Moving all this code to the server can present disadvantages as

http://www.clarionmag.com/cmag/v3/v3n5sql4.html (6 of 8) [6/4/01 11:27:42 AM]

Introduction to SQL - Part 4

well as advantages. You’ll need to learn how to express your
Clarion code as SQL code, and that takes some effort. If you move
your application to another SQL platform, chances are you’ll also
have to rewrite some of your SQL code, since as Mike Gorman
points out, there really is no firm and fast SQL standard. And you’ll
be creating a much more complex database which requires a
greater level of understanding and perhaps administration.

Which way do I go?

The benefit you get from moving from a flat file database (like TPS
files) to a SQL database is proportional to the degree to which you
use the SQL server’s capabilities. If you simply change drivers
(assuming your datatypes are compatible with the SQL server),
and your browses typically do not retrieve most or all of the fields
in a table, then you should see better network performance. You
may see better raw data access speed on the server as well, but
I’ve never benchmarked raw TPS speed against any SQL server, so
I can only guess that there will be some wide variation, depending
on which SQL server you use.

Server-side processing like check constraints for referential
integrity and autoincrementing further reduces network traffic,
although auto-incrementing can cause some additional headaches,
as I described earlier.

If you go all out and implement triggers and stored procedures,
you can reduce network traffic by another notch or two. Although
minimizing network traffic is an important goal for most
developers, do keep in mind that you won’t improve performance
if the server doesn’t have the processor speed and/or bandwidth to
keep up with requests. You need to strike a balance between what
the client computers are capable of, what the server can do, and
how fast you can get data between the two. All other things being
equal, however, there are significant benefits to moving business
logic from the client machines to the SQL server.

Resources

Whitemarsh SQL
papers

http://www.wiscorp.com/sql99.html

SQL.ORG tutorials http://www.sql.org/online_resources.html

SoftVelocity SQL
templates (under
development)

sqldev@softvelocity.com

CCS SQL templates http://www.ccscowboy.com/

David Harms is an independent software developer and the editor and publisher of
Clarion Magazine. He is also co-author with with Ross Santos of Developing Clarion

http://www.clarionmag.com/cmag/v3/v3n5sql4.html (7 of 8) [6/4/01 11:27:42 AM]

http://www.wiscorp.com/sql99.html
http://www.sql.org/online_resources.html
mailto:sqldev@softvelocity.com
http://www.ccscowboy.com/
mailto:dharms@clarionmag.com

Introduction to SQL - Part 4

for Windows Applications, published by SAMS (1995). His most recent book is JSP,
Servlets, and MySQL, published by HungryMinds Inc. (2001).

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n5sql4.html (8 of 8) [6/4/01 11:27:42 AM]

http://www.covecomm.com/java/index.html
http://www.covecomm.com/java/index.html
http://www.clarionmag.com/cmag/comments.frm?articleID=10563
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

	clarionmag.com
	Clarion Magazine
	View Recently Posted Reader Comments
	The Clarion Advisor: SUB Tricks
	The Novice’s Corner:
Understanding EQUATES.CLW (Part 2)
	Loading DLLs At Runtime - Part 3
	News
	Creating Elliptical Windows in Clarion
	Loading DLLs At Runtime - Part 2
	Reading Tables With ADO
	The Novice’s Corner: Understanding EQUATES.CLW (Part 1)
	Using The TPS ODBC Driver
	Loading DLLs At Runtime - Part 1
	The Clarion Advisor: Avoiding GPFs With ANYs And QUEUEs
	Quickbooks-Style Date Fields
	Creating ODBC Data Sources At Runtime
	Reader Comments Now Available On All Articles
	Replicating IDLE: All Quiet on the Keyboard?
	The Clarion Advisor: API Tricks
	Introduction to SQL - Part 4

	EOIAOELPBOEJBOHBPNMKAIFBDELPNOGP:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	MCLEKHNMFOJAOEDFBCHKFMFMNJDKBDMBFP:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	form2:
	x:
	f1: true
	f2: [7]

	f3: Go
	f4:

	IIBBNEPFCGMLFEGJHCAGBGKHFELLOMIO:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	PCCEKGLKGMEBNKIPKKPHGJGAEMMLBBOA:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	BGPMMNCGMAPBAPOBGHKOLNPNCKNDDIMM:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	KNOMBBABPEKJKBCICNEEIELJGLGBBIOH:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	BMAMFCJPALGONINDFMDAKLNAPNEGEODALB:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	KDIPIHAGHEBDMJHGJEPBBCJKKHEOLDAD:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	JEKAAKOBHFNAEIFCEKOBOEGKKHCNELIN:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	GBFMAHJMMLCCOBNJMLIEHBPCEILIKBGLNO:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	AEDBLEFLIIKIEKADKBLJDOHJACLABKJK:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	NDIABHMBHMNKGKHKJEENAPDCAOFBFFPG:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	DIOHGDFNFNFIHIDICPBIMIHGCMIGLOON:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	MMEDNPKNKJNNCGOONMOCDODKOHNDDKHM:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	IECBCLIABKADOGLILLOILFDJBJMDFFEN:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	JEEEGJKGEGHJJFPEMGGHEOADKIIMCHEP:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	DNMJIKFOCFOLIHLGKLPENCELBHDNOEDI:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	CFFHADNFGAMIJODNEHMEJLHFKMIJDHHM:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

