
Clarion Magazine

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Creating #AT Statements The Easy
Way
Writing templates can be tricky, especially
when it comes to creating #AT statements
that correspond to ABC virtual method
embeds. Here's a template that makes
that task easy.
Posted Friday, June 29, 2001

Handling Multiple Update Forms
In a college placement office application,
Dr. Parker finds he needs to call different
forms based on whether the client school
is permitted to enter both off-campus and
on-campus jobs or on-campus jobs only.
And, just to keep it interesting, the
different forms are to be used only when
inserting new records.
Posted Friday, June 29, 2001

Windows-Style List Box Sorting
Revisited
Since Steffen Rasmussen's article on
Windows-style list box sorting was
published, some Clarion Magazine readers
have responded with solutions to improve
the code. In this article Steffen applies
some of these solutions, and offers a small
list box sorting template.
Posted Wednesday, June 27, 2001

Maintain Velocity Newsletter
The latest SoftVelocity newsletter is out -
topics include: Clarion 5.5 E release
upcoming, with over 80 fixes and
enhancements; the ClarioNet release; ASP
template beta; the upcoming XML beta;
SQL templates; the ADO data layer;
employment opportunities, and more.
Posted Monday, June 25, 2001

Extending ABC's Edit In Place - Part 2
Russ Eggen has heard it all when it comes
to Edit In Place (EIP). Well, here's a dirty

ZipFlash 2.2
Released

SealSoft xQuickFilter
Template v1.0

solid.software Closed
For Holidays

ABC Free Templates
Have A New Home

xSmart Macro
Version 2.2

Free Zip Code
Template

WinSet Lets Users
Change Windows
Properties

CapeSoft Tip of the
Month: Object Writer

CapeSoft Office
Messenger Updated

NetTalk v1 Beta 14
Shipping

Secwin Version 3.1
Beta 1 Released

File Explorer Version
1.8b Released

xWord Library
Version 1.3.1

PD Translation

How important
is it to you to
be able to
create (i.e.
write) COM
objects with
Clarion?

http://www.clarionmag.com/index.html?year=2001&month=6&limit=100 (1 of 3) [7/3/01 12:13:16 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/\\etc.kcug.org
http://www.softvelocity.com/news/mvelocityi6.htm

Clarion Magazine

little secret: ABC's EIP features are fully
functional. Part 2 of 2.
Posted Friday, June 22, 2001

Free ABC/Legacy Embed Utility
Here's a free utility that shows you which
ABC embeds correspond to which Legacy
embeds. English and French versions
available. By Eric Griset and Patrick
Corcuff.
Posted Thursday, June 21, 2001

Handcoding Tree Lists Part 2
In Part 2 of this article, James Cooke
shows how to handcode around a
deficiency in the ABC relational tree
control.
Posted Wednesday, June 20, 2001

Tip: How To Start A Browse With The
Last-Used QBE Query
Randy Rogers shows how easy it is to have
your browse start up with the most-
recently used QBE query in effect. (free
article)
Posted Tuesday, June 19, 2001

Extending ABC's Edit In Place - Part 1
Russ Eggen has heard it all when it comes
to Edit In Place (EIP). Well, here's a dirty
little secret: ABC's EIP features are fully
functional. Part 1 of 2.
Posted Friday, June 15, 2001

ClarioNet Released!
SoftVelocity Debuts New Specialized
Thin Client for Clarion Applications
SoftVelocity has released ClarioNet, a
specialized thin client for Clarion business
applications.
Posted Wednesday, June 13, 2001

Handcoding Tree Lists Part 1
James Cooke considersthe recent shift of
the software industry toward tree-rich user
interfaces, and decides this might be a
good time to examine some of the benefits
and key concepts of the tree control, as
well as how to make good use of them in
Clarion applications.
Posted Wednesday, June 13, 2001

Interview: James Orr On The Public
PIM
James M. Orr is the founder and Director

Dictionary

Simshape Templates
Special Ends June 21

http://www.clarionmag.com/index.html?year=2001&month=6&limit=100 (2 of 3) [7/3/01 12:13:16 PM]

http://www.clarionmag.com/cmag/downloads.html#new1

Clarion Magazine

of Marketing of the OpenDB Alliance, an
organization which is promoting the "Public
PIM" database design as a proposed
industry standard for employing many-to-
many relationships and recursive
relationships.
Posted Tuesday, June 12, 2001

Using Dynamic Indexes With TPS Files
Dynamic indexes are often overlooked as a
way to efficiently access data from
TopSpeed (TPS) files, especially if you are
dealing with files that hold large numbers
of records and a custom sort order and
filtered subset is required. By using a
dynamic index, you can eliminate the need
to create additional file keys.
Posted Friday, June 08, 2001

Understanding Stack And Heap
Memory In 32 Bit Clarion Applications
In Clarion, as well as in C and C++ (and
unlike Java), you need to be aware of
possible memory leaks and thus be aware
of the side effects of declaring variables.
John Gorter explains how 32 bit Clarion
applications use stack and heap memory.
Posted Tuesday, June 05, 2001

Weekly PDF For May 27 - June 3, 2001
All Clarion Magazine articles for May 27 -
June 3, 2001.
Posted Monday, June 04, 2001

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/index.html?year=2001&month=6&limit=100 (3 of 3) [7/3/01 12:13:16 PM]

http://www.clarionmag.com/cmag/v3/files/cmag-2001-05-31.pdf
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Creating #AT Statements The Easy Way

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Creating #AT Statements The Easy Way

by Andrew Guidroz II

Published 2001-06-29

Writing templates can be tricky, especially when it comes to
creating #AT statements that correspond to ABC virtual method
embeds. Here's a template that makes that task easy (available
for download at the end of the article). I based this code on
something Lee White wrote for Clarion4 (used with permission -
thanks, Lee!).

The template is in a TPW, so you'll need to add the statement
#INCLUDE('EMBEDS.TPW') to an appropriate TPL file. Once you've
done this, open any application, go to embed view, locate the
embed you want to generate an #AT statement for, and choose
the Embed_Info code template, as shown in Figure 1.

Figure 1. Selecting the Embed_Info code template.

http://www.clarionmag.com/cmag/v3/v3n6embeds.html (1 of 4) [7/3/01 12:13:43 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Creating #AT Statements The Easy Way

Figure 2. The Embed_Info code template in the embed
point.

Once you've inserted the template, go to Source View (the easiest
way is to click the Source button on the Embeds window). In the
example shown in Figures 1 and 2, the template generates the
following code (line break added):

!>> #AT(%BrowserMethodCodeSection,'1','ApplyFilter',
 '()'),PRIORITY(????)
!>> !! What follows is debugging info
!>> EmbedID........... = %BrowserMethodCodeSection
!>> EmbedParameters... = 1, ApplyFilter, ()
!>> Description....... = Browser Method Code Section
!>> Process........... = ProcessClass
!>> Object............ = BRW1
!>> TwoParams = 2
!>> ThreeParams....... = 15

Just copy and paste the generated #AT statement for use in your
own templates. The template source looks like this (line breaks
added):

#!
#!TEMPLATE(ABC_EmbedDefs,'Embed definitions')
 ,FAMILY('ABC')
#!--
#CODE(Embed_Info,'Embed definition and info')
#!--
#DECLARE(%TwoParams,LONG)

http://www.clarionmag.com/cmag/v3/v3n6embeds.html (2 of 4) [7/3/01 12:13:43 PM]

Creating #AT Statements The Easy Way

#DECLARE(%ThirdParams,LONG)
#DECLARE(%ParamString,STRING)
#IF(%EmbedParameters)
#CLEAR(%TwoParams)
#SET(%TwoParams,INSTRING(',',%EmbedParameters,1,1))
#IF(%TwoParams)
#IF(SUB(%EmbedParameters,(%TwoParams+2),1) <> '(')
#SET(%ThirdParams,INSTRING(',',
 %EmbedParameters,1,%TwoParams+2))
#SET(%ParamString,'''' & SUB(%EmbedParameters,1,
 (%TwoParams-1)) & ''',''' & SUB(%EmbedParameters,
 (%TwoParams+2),((%ThirdParams) - (%TwoParams+2)))
 & ''',''' & SUB(%EmbedParameters,(%ThirdParams+2)
 ,LEN(%EmbedParameters)) & '''')
#ELSE
#SET(%ParamString,'''' & SUB(%EmbedParameters,1,
 (%TwoParams-1)) & ''',''' & SUB(%EmbedParameters,
 (%TwoParams+2),LEN(%EmbedParameters)) & '''')
#END
!>> #AT(%EmbedID,%ParamString),PRIORITY(????)
#ELSE
!>> #AT(%EmbedID,'%EmbedParameters'),PRIORITY(????)
#ENDIF
#ELSE
!>> #AT(%EmbedID),PRIORITY(????)
#ENDIF
!>> !! What follows is debugging info
!>> EmbedID........... = %EmbedID
!>> EmbedParameters... = %EmbedParameters
!>> Description....... = %EmbedDescription
!>> Process........... = %ProcessType
!>> Object............ = %ThisObjectName
!>> TwoParams = %TwoParams
!>> ThreeParams....... = %ThirdParams

You can also download the template here.

Andrew Guidroz II, when he isn't handfeeding the tufted titmouse, writes software
for all facets of the insurance industry. His famous Cajun cookouts have become a
central feature of Clarion conferences throughout the U.S. Andrew's Cajun website
is www.coonass.com.

http://www.clarionmag.com/cmag/v3/v3n6embeds.html (3 of 4) [7/3/01 12:13:43 PM]

http://www.clarionmag.com/cmag/v3/files/v3n6embeds.zip
http://www.coonass.com/

Creating #AT Statements The Easy Way

Reader Comments

Add a comment

A bad #AT() just never appears in your generated code.
That...
C55BinTWriter.EXE is supposed to also provide this
feature...
To Carl: I tend to write most templates as some...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n6embeds.html (4 of 4) [7/3/01 12:13:43 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10701
http://www.clarionmag.com/cmag/discuss.frm?articleID=10701&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10701&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10701&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10701&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10701&position=3
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Handling Multiple Update Forms

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Handling Multiple Update Forms

by Steven Parker

Published 2001-06-29

In a college placement office application, I need to call different
forms based on whether the client school is permitted to enter
both off-campus and on-campus jobs or on-campus jobs only.
And, just to keep it interesting, the different forms are to be used
only when inserting new records. So, I need three forms. But how
to go about this?

It is easy enough to restrict insert or change or delete based on a
condition. For instance, after initializing the browse, in the
browse’s Init method, Priority 9300 or later, insert the following
code, which disables selected controls based on security levels:

Case SecurityLevel
Of 42
 BRWx.InsertControl = 0
 ?Insert{Prop:Disable} = True
Of 87
 BRWx.ChangeControl = 0
 ?Change{Prop:Disable} = 0
Of 3
 SELF.Destruct
End

Now suppose I need (or simply want) to call different update forms
based on one or more conditions. I envision code that looks
something like this:

Case ThisWindow.Request
Of InsertRecord ! condition 1
 If CFG:Permit ! condition 2
 OffCampusForm
 Else
 OnCampusForm
 End
Else
 StandardJobForm
End

http://www.clarionmag.com/cmag/v3/v3n6multiform.html (1 of 11) [7/3/01 12:13:53 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Handling Multiple Update Forms

In a checkbook application I wrote years ago, I decided that I
wanted three different forms: one for entering a credit (deposit),
one for a debit (check) and one for changing an existing record.
Not only did I want to prime different values for debits and for
credits, I wanted them to look like the forms provided by my bank.
In this case, multiple forms were not required, I simply wanted
them.

Multiple update forms are a little less straightforward than
conditionally restricting access to a form. There are no obvious
template prompts or ABC methods to affect this.

How Forms Are Called

First, some basics. Clarion uses the "Request-Response" model. It
is important to understand how this is used to accomplish record
updates. A global variable called GlobalRequest stores the
requested action, based on the button or key the user presses.
The form reads the value of this variable and "knows" what it is
expected to do.

Another global variable, GlobalResponse, is set by the form. If the
user completes the form, GlobalResponse is set to
RequestCompleted; if the user cancels, GlobalResponse is
RequestCancelled. Thus, the browse "knows" what happened in
the form.

GlobalResponse can be set in one of three distinct places. The Ok
button, obviously, is one of them. The Cancel button is not (well, it
is obvious, it just doesn’t happen to be one of the places where
GlobalResponse is set). Because the default value of
GlobalResponse is RequestCancelled (early in the INIT method,
this assignment is made) the Cancel button simply does not re-set
GlobalResponse.

The third is after a user cancels and is asked whether to save the
edits and answer "Yes" (in other words, if "Offer to save changes"
is the action selected for "On Aborted Add/Change" in the form’s
"Messages and Titles"). This is in TakeCompleted and,
consequently, code embedded in the Ok button will be by-passed if
the user clicks "Yes." For this reason developers like Dennis Evans
and Jim Katz who really know their ABCs recommend that
TakeCompleted be used instead of the Ok, Accepted embed.

Both of the request-response variables are threaded, so update
forms should not be called with the Start statement. If a form is
Started, the value in GlobalRequest will be lost (the value in the
form’s thread does not know the value in the browse’s thread).

Similarly, a form expects the record buffer to be empty for an
Insert (or empty except for primed variables). If the form is called
for an update (Change) or Delete, the buffer must contain the
record. Normally, the browse fills the buffer before calling the form
(updates the buffer with the selected record). But if the update

http://www.clarionmag.com/cmag/v3/v3n6multiform.html (2 of 11) [7/3/01 12:13:53 PM]

Handling Multiple Update Forms

procedure is Started and files are threaded, the buffer on the
form’s thread will always be empty, including fields that should
have been primed (buffer contents are not shared by the threads).

This is not to say that update forms cannot be Started, but it does
mean that an update form on another thread requires additional
care and code to ensure that the requested action and the target
record are provided to the form. (see Mike Hanson’s article Multi-
Threaded Browses and Forms).

Also, both GlobalRequest and GlobalResponse are stored in local
variables almost immediately after they are primed. In a form, for
example,

SELF.Request = GlobalRequest

is set at the very beginning of the INIT method, right after that
method sets up the Error Manager. While GlobalRequest is
cleared a few lines later, SELF.Request (a.k.a.
ThisWindow.Request) is the variable actually used in the form. So,
once this value has been stored locally, anything that may happen
to GlobalRequest is irrelevant.

GlobalResponse is read into Response immediate on return from
the form. Again, because the local variable is used,
GlobalResponse ceases to be relevant immediately. While this
may not entirely satisfy the worry over mashing globals and
doesn’t address any principles about the use of globals, it at least
minimizes the opportunity for problems.

The ABC Way

The ABC Libraries call an update procedure with the Run method
and two parameters. The first parameter is a number (an ordinal,
actually), the second is an Equate for the request (1 for Insert, 2
for Change, 3 for Delete and 4 for Select). The generated code for
a real browse-form looks like this:

ThisWindow.Run PROCEDURE(USHORT Number,BYTE Request)
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Run(Number,Request)
 IF SELF.Request = ViewRecord
 ReturnValue = RequestCancelled
 ELSE
 GlobalRequest = Request
 UpdateABCUSICD ! update procedure
 ReturnValue = GlobalResponse
 END
 RETURN ReturnValue

While not critical to the current question, it is useful to know that
the Parent call is where record priming (including auto
incrementing keys) takes place. Priming in the browse allows

http://www.clarionmag.com/cmag/v3/v3n6multiform.html (3 of 11) [7/3/01 12:13:53 PM]

http://www.clarionmag.com/col/99-04-multithread.html
http://www.clarionmag.com/col/99-04-multithread.html

Handling Multiple Update Forms

support for edit-in-place, explaining why this happens in the
browse, not the form where one would expect it. The import of this
is that a form called without a browse will not prime properly on its
own; you have to call the priming methods explicitly (see my COL
article Calling Form Procedures).

The code above shows how GlobalRequest is set, the form called
and GlobalResponse read. Note, however, that the first
parameter, Number, does not appear to be used. And, in fact, for
the typical browse-form combination, it isn’t.

The Number parameter is the value of BRWx.AskProcedure and in
the typical browse-form there is only one procedure called. (The
code generated looks remarkably like Clarion for DOS code,
doesn’t it?) If the browse uses only edit in place, there is no
procedure call and the update code shown above isn’t generated.
In fact, when edit in place is configured and there is no named
update procedure, this Run method isn’t generated at all. However,
if edit in place is checked and an update form is named, as shown
in Figure 1. the Run method is generated.

Figure 1. EIP and standard update form

In this case, it is possible to programmatically control whether edit
in place or a form is used by setting:

BRWx.AskProcedure = 0> !use EIP

or

BRWx.AskProcedure = 1!use form

at appropriate places (see Jim DeFabia’s Dr. De Phobia article

http://www.clarionmag.com/cmag/v3/v3n6multiform.html (4 of 11) [7/3/01 12:13:53 PM]

http://www.clarionmag.com/col/98-04-callingform.html
http://www.clarionmag.com/col/98-01-dephobia.html

Handling Multiple Update Forms

which discusses Edit-in-Pace and forms). The Number parameter,
oddly, is more likely to be used in a form, not a browse:

ThisWindow.Run PROCEDURE(USHORT Number,BYTE Request)
ReturnValue BYTE,AUTO
 CODE
 ReturnValue = PARENT.Run(Number,Request)

 IF SELF.Request = ViewRecord
 ReturnValue = RequestCancelled
 ELSE
 GlobalRequest = Request
 EXECUTE Number
 BrowseDepartments
 BrowseUserSorts
 BrowsePriceRules
 BrowseMixMatch
 BrowseSpecialTax
 BrowseBottleDeposit
 BrowseAddonField
 UpdateBOMItem
 UpdateSaleItem
 UpdateChildPLU
 END
 ReturnValue = GlobalResponse
 END
 RETURN ReturnValue

Each of the procedures named in this list are lookups.

Each lookup procedure named on the Actions tab of a control, and
this procedure has quite a few, is inserted into an Execute
structure, assigned a value (in the order populated) and, at the
appropriate time, the value of AskProcedure is updated and the
correct lookup called. This allows a single method to call all needed
procedures for all needed purposes. It may not contribute to
readability, but it certainly reduces the amount of code generated.

The ABC Way: Part Deux

If ThisWindow.Run calls a procedure or creates an Execute
structure after setting GlobalRequest, multiple update procedures
should not be a great challenge. It would seem easy enough to
emulate what the templates generate.

First, anywhere before the update call, the AskProcedure value
must be set. For example,

Of InsertRecord
 If CFG:Permit
 BRWx.AskProcedure = 14
 Else
 BRWx.AskProcedure = 17
 End

http://www.clarionmag.com/cmag/v3/v3n6multiform.html (5 of 11) [7/3/01 12:13:53 PM]

Handling Multiple Update Forms

Else
 BRWx.AskProcedure = 2
End

Now is it just a matter of constructing or modifying the Execute
structure. Unfortunately, there are no embeds available in
ThisWindow.Run to get code where it is needed in or around the
Execute structure (which isn’t even generated in the standard
case):

Figure 2. Embeds in Run procedure

Oh me, oh my, oh dear! Whatever is a poor developer to do? In
the end, the easiest thing to do seems to be to remove the
standard code using the OMIT directive, as shown in Figure 3. At
least, this is the most often recommended solution.

http://www.clarionmag.com/cmag/v3/v3n6multiform.html (6 of 11) [7/3/01 12:13:53 PM]

Handling Multiple Update Forms

Figure 3. Omitting the standard code

Omitting the Run code shown in Figure 3 results in the following
code being generated:

 omit('xxx') ! embed before
 IF SELF.Request = ViewRecord
 ReturnValue = RequestCancelled
 ELSE
 GlobalRequest = Request
 UpdateABCUSICD
 ReturnValue = GlobalResponse
 END
 xxx ! embed after

While the omitted code must be duplicated, it can be completely
customized and do exactly what is needed:

IF SELF.Request = ViewRecord
 ReturnValue = RequestCancelled
ELSE
 GlobalRequest = Request
 Execute Number
 Proc_1
 Proc_2
 Proc_3

http://www.clarionmag.com/cmag/v3/v3n6multiform.html (7 of 11) [7/3/01 12:13:53 PM]

Handling Multiple Update Forms

 End
 ReturnValue = GlobalResponse
END

When an update procedure must be called, simply ensure
BRWx.AskProcedure has been set. A simple assignment does the
job.

But Wait, There’s More!

The same effect can be achieved using a more legacy-oriented
style, that is, without having to set any properties (the OMIT is still
required but setting the AskProcedure isn’t):

IF SELF.Request = ViewRecord
 ReturnValue = RequestCancelled
ELSE
 GlobalRequest = Request
 Case Request
 Of InsertRecord
 If CFG:Permit
 OffCampusForm
 Else
 OnCampusForm
 End
 Else
 StandardForm
 End
 ReturnValue = GlobalResponse
End

or

IF SELF.Request = ViewRecord
 ReturnValue = RequestCancelled
ELSE
 GlobalRequest = Request
 Case SecurityLevel
 Of 42
 Proc_1
 Of 87
 Proc_2
 Else
 Proc_3
 End
 ReturnValue = GlobalResponse
End

Parameters

The technique of OMITting the standard code and substituting
customized code allows an often requested thing: calling update
procedures with parameters.

http://www.clarionmag.com/cmag/v3/v3n6multiform.html (8 of 11) [7/3/01 12:13:53 PM]

Handling Multiple Update Forms

IF SELF.Request = ViewRecord
 ReturnValue = RequestCancelled
ELSE
 GlobalRequest = Request
 MyUpdateProc(LOC:myParameter)
 ReturnValue = GlobalResponse
End

And, in my opinion, passing parameters to the update procedure is
the only reason (legitimate or otherwise) for using the OMIT
technique. For simply calling one of several update procedures, it
is too much work and it is too confusing; too many i’s to dot and
t’s to cross.

The Right Way, the Wrong Way …

There is an expression that goes "There are three ways to do
things: the right way, the wrong way and the Navy way." (I am
aware that there are many variations on this, all claiming to be the
original. My research shows this version is the oldest and,
therefore, the original.)

The Easy Way

Omitting a block of template code and then re-typing in order to
customize it seems awfully kludgey, to say the least. Overriding
the Run method sounds … unappetizing. (Maybe a pair of embeds
in a future version of the templates?)

There is a legacy way of calling multiple update forms. And, by
"legacy," here, I mean Clarion Professional Developer 2.0 (1988):
wedge procedures, so named because a procedure is wedged
between two other procedures and originally created to wedge in a
lookup where no provision for a lookup had been made.

It is important to realize that an "update" procedure does not have
to be a form. It can be any type of procedure. For example, the
"update" procedure for a browse of purchase orders is usually
another browse, a browse of the items in the highlighted purchase
order. Similarly, the update procedure for a browse of invoices is
usually a browse of line items. In other words, a browse can be an
"update" procedure. So, why not use a Source procedure for an
"update" procedure?-Why not indeed.

If the update procedure is created with the Source template, I can
test the value of GlobalRequest or any other variable or condition,
I can do so at any level of complexity I can handle and I can then
call the desired procedure:

Case GlobalRequest
Of InsertRecord
 If CFG:AllowAdd <> ‘Y’
 CampusJobs
 Else

http://www.clarionmag.com/cmag/v3/v3n6multiform.html (9 of 11) [7/3/01 12:13:53 PM]

Handling Multiple Update Forms

 EnterJobs
 End
Else
 UpdateJobs
End

Figure 4. Procedure tree with a wedge

The procedure tree shown in Figure 4 is from a production app and
is the entire code for the "update" procedure. Any of the code
samples above, forced into the Run method can be made into a
stand-alone Source procedure and, therefore, serve as an update
procedure.

All that I must do is ensure that the value of GlobalRequest is
preserved. And as long as a Source procedure is called on the
same thread and does not call another procedure along the way,
that value will be preserved.

If a lookup or validation is needed after calling the form but before
that form is opened, GlobalRequest will be re-set in the lookup
procedure. So, before calling the other procedure, save
GlobalRequest. Restore it afterward:

!save request
SaveRequest = GlobalRequest
If GlobalRequest = InsertRecord
 !prime switch
 EVE:EventType = GetEventType()
 If GlobalResponse = RequestCancelled
 Return
 End
End
!restore request
GlobalRequest = SaveRequest
!use switch
Case EVE:EventType

http://www.clarionmag.com/cmag/v3/v3n6multiform.html (10 of 11) [7/3/01 12:13:53 PM]

Handling Multiple Update Forms

Of ‘Interview’
 InterviewForm
Of ‘Workshop’ orof ‘Presentation’
 WorkShopForm
Of ‘Career Fair’
 CF_Form
End

This, too, is from a production app.

Summary

Pass a few parameters to an update procedure? Omit and code. A
kludge but it works. Otherwise, wedges. In fact, wedges are used
all the time. "Are you sure?" or log-in screens are wedges. They
are usually used at the beginning of a procedure. But why not on
the back end?

Wedge procedures, a tried and true technique allow multiple
update procedures and I commend them to your attention. In the
last example, if you trace the code, you’ll see I used two wedges
(a cosmic wedgie?).

Steve Parker started his professional life as a Philosopher but now tries to imitate a
Clarion developer. A former SCCA competitor, he has been known to adjust other
competitors' right side mirrors - while on the track (but only while accelerating).
Steve has been writing on Clarion since 1993.

Reader Comments

Add a comment

The BrowseUpdateButtons template should allow having
either...
Carl, excellent idea.

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n6multiform.html (11 of 11) [7/3/01 12:13:53 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10678
http://www.clarionmag.com/cmag/discuss.frm?articleID=10678&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10678&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10678&position=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Windows-Style List Box Sorting Revisited

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Windows-Style List Box Sorting Revisited

by Steffen Rasmussen

Published 2001-06-27

Since my previous article on Windows-style list box sorting was
published, some Clarion Magazine readers have responded with
solutions to improve the list box sorting code. I have used some of
these solutions and modified them a bit so they fit into the existing
code structure. To finish off I have created a small List Box sorting
template.

Depressing the header in the List Box

In the previous article I mentioned a couple of flaws in the code.
One flaw that I did not mention was the absence of an explanation
on how to refresh the list box after it had been depressed.
Although I mentioned that you needed to know when the mouse is
lifted from the region, I never showed where to implement the
code or what code to implement. My apologies to the reader. What
I forgot to mention was that in the embedded points MouseOut
and MouseUp for the region, the source should contain the code
ThisWindow.Reset.

One flaw that I did mention was when the column sorts in
ascending and descending order and uses a key and a non key to
accomplish this process, the user will not be able to see the header
button being depressed, when a field name is used to sort the list
box.

To solve this problem Nick Grasso came with an alternative
solution. In stead of implementing code in the region to update the
List Box when the mouse is moved out of the header (MouseOut)
or lifted from the header (MouseUp), Nick suggested using the API
function Sleep() to accomplish the same task.

To use an API function you have to include it into the Clarion
language so it can be interpreted correctly at compile time. In the
Global Properties select Embeds, then select the embedded point
Inside the Global Map. Choose source and type the following:

MODULE('WIN32.LIB')

http://www.clarionmag.com/cmag/v3/v3n6listbox2.html (1 of 6) [7/3/01 12:13:58 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org
http://www.clarionmag.com/cmag/v3/v3n1listbox.html

Windows-Style List Box Sorting Revisited

 Sleep(ulong),pascal !Windows API Sleep()
END

How does this then work? Lets look at the MODULE structure as
defined in the LRM:

MODULE(sourcefile)
 Prototype
END

The MODULE structure contains function prototypes. The source file
could be the name of the file containing the definitions for the
different procedures. But in this case the MODULE is being used to
create a new procedure definition in Clarion by calling the external
library for the Windows API call. The source file has to have a
unique name, which in this case is ‘WIN32.LIB’, but it could be
anything you like. You don’t have to specify the exact LIB file in
this case because WIN32.LIB is always in memory.

In the prototype section you define the Windows API Sleep()
function as

Sleep(ulong),pascal

where ulong is the data type and pascal is the calling convention.
The calling convention Pascal is compatible with the Windows API
and it specifies how the ulong parameter is passed. When
implementing this code remember that the MODULE cannot begin in
column 1 in the source file.

Now that the API Sleep() function has been defined it is just a
matter of implementing it into the existing code:

F KEYCODE () = MouseLeft
 IF ?Browse:6{PROPLIST:MouseDownRow} = 0
 LOC:SortKey = ?Browse:6{PROPLIST:MouseDownField}
 ?Browse:6{PROP:Edit,LOC:SortKey} = ?Region1
 ?Region1{PROP:YPos} = 0
 ! New Sleep():
 DISPLAY(?RegionHeader)
 ! Call the SLEEP API function
 Sleep(200)
 IF LOC:SortKey = LOC:PreSortKey
 LOC:SortKey=LOC:SortKey-(LOC:SortKey*2)
 ?Browse:6{PROPLIST:Header,|
 ABS(LOC:SortKey)} = '« ' & LOC:PreHeader
 ELSE
 ?Browse:6{PROPLIST:Header,|
 ABS(LOC:PreSortKey)} = LOC:PreHeader
 LOC:PreHeader = ?Browse:6{PROPLIST:Header,|
 ABS(LOC:SortKey)}
 ?Browse:6{PROPLIST:Header,ABS(LOC:SortKey)} |
 = '» ' & LOC:PreHeader
 END

http://www.clarionmag.com/cmag/v3/v3n6listbox2.html (2 of 6) [7/3/01 12:13:58 PM]

Windows-Style List Box Sorting Revisited

 LOC:PreSortKey = LOC:SortKey
 ELSE
 ?Browse:6{PROP:Edit,LOC:SortKey} = 0
 BRW6.TakeNewSelection()
 END
 ! New Reset:
 ThisWindow.Reset
END

In this case I have chosen to let the depressed header button
sleep for 200 milliseconds before it continues executing of the rest
of the code. In the period where the system is sleeping the
?Region1 is displayed as a depressed button.

Originally, instead of using Sleep() I had the code monitoring the
header in the list box for the mouse activities right click down, lift
mouse up and move mouse out of header, to control when the
depressed button is visible or not. Now when using the Sleep()
function it is only necessary to monitor for the mouse right click
down. So when the program has finished, executing the code for
depressing the header and sorting the list box it is just a matter of
resetting the window and making the changes take place right
after the 200 milliseconds has passed. The disadvantage is that
the user loses control over the amount of time passed before
changes take effect because the code is not waiting for the user to
lift the mouse up or out of the header. But then again, is this
necessary? If the user uses this sorting function as it is supposed
to be used, with a quick right mouse click and release on the
header, he or she will never notice it.

Resizing the columns

In Clarion you can resize each column by selecting the columns
right border and thereby adjusting the width of the column. A
minor flaw that I did not mention in the previous article is that it is
not possible to select the columns right border in the header area,
because this will just cause the column to sort instead of resize.
Charles Patnoi came with a simple solution to this problem.

In the existing code there is an IF structure which checks for a left
mouse button press in the header area. So in order to make it
possible to resize the columns in the header area, without sorting
the column, the program just has to see if the left mouse button
click is outside the field's right border resize zone; if so, execute
the following:

IF KEYCODE () = MouseLeft
 IF ?Browse:6{PROPLIST:MouseDownRow} = 0
 ! New code to determine mouse position:
 IF ?Browse:6{PropList:MouseDownZone} |
 = ListZone:Right
 CYCLE
 END
 LOC:SortKey = |

http://www.clarionmag.com/cmag/v3/v3n6listbox2.html (3 of 6) [7/3/01 12:13:58 PM]

Windows-Style List Box Sorting Revisited

 ?Browse:6{PROPLIST:MouseDownField}
 ?Browse:6{PROP:Edit,LOC:SortKey} = ?Region1
 ?Region1{PROP:YPos} = 0
 DISPLAY(?RegionHeader)
 Sleep(200)
 IF LOC:SortKey = LOC:PreSortKey
 LOC:SortKey=LOC:SortKey-(LOC:SortKey*2)
 ?Browse:6{PROPLIST:Header,ABS(LOC:SortKey)} |
 = '« ' & LOC:PreHeader
 ELSE
 ?Browse:6{PROPLIST:Header,|
 ABS(LOC:PreSortKey)} = LOC:PreHeader
 LOC:PreHeader = ?Browse:6{PROPLIST:Header,|
 ABS(LOC:SortKey)}
 ?Browse:6{PROPLIST:Header,ABS(LOC:SortKey)} |
 = '» ' & LOC:PreHeader
 END
 LOC:PreSortKey = LOC:SortKey
 ELSE
 ?Browse:6{PROP:Edit,LOC:SortKey} = 0
 BRW6.TakeNewSelection()
 END
 ThisWindow.Reset
END

Deselecting columns for sorting

Since Clarion Magazines readers have solved most of the flaws in
the previous article, I might as well get rid of the problem, namely
the one where clicking on a column header, which does not contain
any conditional browse behavior, will show the button selection as
well as a non-existing sort direction.

Each column is represented by a number from one to the
maximum number of columns in the list box. This number is used
to determine which column to sort. So the next step is to
determine which columns not to sort, and when one of these is
selected, skip the execution of the code. Ideally determining which
column not to sort should be based on the non-existence of any
predefined Conditional Browse Behavior. Unfortunately I haven’t
been able to automatically determine this, so if any of you readers
have a solution for this task let me know.

For the time being I am going to use a CASE structure that
contains the number for each column not to sort and if the number
isn’t among them execute the code:

IF KEYCODE () = MouseLeft
 IF ?Browse:6{PROPLIST:MouseDownRow} = 0
 IF ?Browse:6{PropList:MouseDownZone} |
 = ListZone:Right
 CYCLE
 END
 !New CASE structure:
 CASE ?Browse:6{PROPLIST:MouseDownField}

http://www.clarionmag.com/cmag/v3/v3n6listbox2.html (4 of 6) [7/3/01 12:13:58 PM]

Windows-Style List Box Sorting Revisited

 OF 3 ! Do not sort this column
 OF 5 ! Do not sort this column
 ELSE
 LOC:SortKey = |
 ?Browse:6{PROPLIST:MouseDownField}
 ?Browse:6{PROP:Edit,LOC:SortKey} = ?Region1
 ?Region1{PROP:YPos} = 0
 DISPLAY(?RegionHeader)
 Sleep(200)
 IF LOC:SortKey = LOC:PreSortKey
 LOC:SortKey=LOC:SortKey-(LOC:SortKey*2)
 ?Browse:6{PROPLIST:Header,ABS(LOC:SortKey)}|
 ='« ' & LOC:PreHeader
 ELSE
 ?Browse:6{PROPLIST:Header,|
 ABS(LOC:PreSortKey)} = LOC:PreHeader
 LOC:PreHeader = ?Browse:6{PROPLIST:Header,|
 ABS(LOC:SortKey)}
 ?Browse:6{PROPLIST:Header,ABS(LOC:SortKey)}|
 ='» ' & LOC:PreHeader
 END
 LOC:PreSortKey = LOC:SortKey
 END
 ELSE
 ?Browse:6{PROP:Edit,LOC:SortKey} = 0
 BRW6.TakeNewSelection()
 END
 ThisWindow.Reset
END

In the above code columns three and five are the columns not to
sort.

Now that all the code for this list box sorting has been created the
next step is to create a template for Clarion to automate the future
use of the code. I have included a small template, which can be
studied by the interested reader. I won’t go into the details of how
I wrote this template since there are already some excellent
articles in Clarion Magazine that cover the basic principles of
template creation.

Download the source

Steffen S. Rasmussen has graduated in Computer Science from Copenhagen
Business College. Since then he has worked as a programmer, system technician
and network administrator, and is currently IT manager. Clarion is a quite a new
language to Steffen since his only been working with it since January 2000. But
what better way to learn it than by trying to teach others! Steffen has also set up a
web site to collect as many examples of different user interfaces as possible to
inspire Clarion developers.

http://www.clarionmag.com/cmag/v3/v3n6listbox2.html (5 of 6) [7/3/01 12:13:58 PM]

http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Bwriting+%2Btitle%3Atemplates&submit=Go
http://www.clarionmag.com/cmag/v3/files/v3n6listboxpart2.zip
mailto:Radmila@vip.cybercity.dk
http://radmila.homepage.dk/

Windows-Style List Box Sorting Revisited

Reader Comments

Add a comment

Nice little template! One suggestion is to add an option...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n6listbox2.html (6 of 6) [7/3/01 12:13:58 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10700
http://www.clarionmag.com/cmag/discuss.frm?articleID=10700&position=1
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Extending ABC's Edit In Place - Part 2

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Extending ABC's Edit In Place - Part 2

by Russell Eggen

Published 2001-06-22

Last week I discussed the theory of Edit In Place (EIP), so now it’s
time to apply the theory. I’ve made a sample Clarion 5.5
application, available at the end of this article. It requires nothing
more than the ABC templates.

The application is a simple order entry application. If you
downloaded the application already, look at the BrowseItems
procedure. Open the Extensions dialog and highlight Update a
record from Browse Box on Item. Press Configure Edit In Place,
and you’ll see the dialog in Figure 8.

Figure 5. List box columns using EIP.

If you highlight ITM:List and press Properties, you see that this
column uses an EditSpinClass object.. The templates name these
objects a bit strangely. I don’t care for the names, but I do agree

http://www.clarionmag.com/cmag/v3/v3n6eip2.html (1 of 10) [7/3/01 12:14:02 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Extending ABC's Edit In Place - Part 2

with the reasoning behind it, as this scheme reduces the chances
of duplicate object names. As a general rule, I change the object
name to something that describes what it does and who it is. This
makes it easy when and if you need to refer to it in embedded
source. This case, I named it EIP:ITM:List for Edit in Place on
the List price field in the Item file.

It makes sense to make this a spin control as the user can click on
the increment or decrement buttons to adjust the value. I want
control to stop on a dime (pun intended), not a dollar amount
(which is the default). As part of the Init method, I need only one
line of code as shown in the Embeditor:

EditInPlace::IND:Cost.Init PROCEDURE(
 UNSIGNED FieldNumber,UNSIGNED ListBox,*? UseVar)

! Start of "Edit-In-Place Manager Method
 Executable Data Section"
! [Priority 5000]

! End of "Edit-In-Place Manager Method
 Executable Data Section"
 CODE
 ! Start of "Edit-In-Place Manager Executable
 Code Section"
 ! [Priority 2500]

 ! Parent Call
 PARENT.Init(FieldNumber,ListBox,UseVar)
 ! [Priority 5001]
 SELF.FEQ{PROP:Step} = .1 ! added code

 ! [Priority 5001]
 IF LOC:NoEdit
 EditInPlace::IND:Cost.SetReadOnly(1)
 END
 ! End of "Edit-In-Place Manager Executable
 Code Section"

Remember, whenever you are coding in a method, use the
keyword SELF when calling other methods in this method’s object,
or referring to variables that are a part of this object (but not local
to the method).

I have three price type fields in the list box, so I add the above
code to each one. If you look at the Help for a Spin control, there
are more attributes than simply "step". You can even change the
appearance of the spin arrows. I’ve done this on two of the
columns, each with different properties. This gives you an idea of
how creative you can get with simple embedded code. Run the
example application to see this, and inspect the embed points for
these column controls to see how this is done.

Auto-complete (or automatic lookups)

http://www.clarionmag.com/cmag/v3/v3n6eip2.html (2 of 10) [7/3/01 12:14:02 PM]

Extending ABC's Edit In Place - Part 2

In some other applications like Outlook Express or Quicken, a nifty
feature is "auto-complete." This is where you start typing the
name of the person you wish to send email or write a check to,
and the rest of the entry is completed for you. You can do this with
Clarion’s EIP features too, once you set it up.

Obviously, I am talking about entry controls, as they are simple to
use and set up, but you can apply these principles to drop combos.

In the example application, the procedure where the auto-
complete is located is EditHeader. This procedure is a Form for
updating the InvHdr (Invoice Header) table. It contains a child list
box for editing the InvDet (Invoice Detail) table. There is one
interesting thing to point out with this list control. A local variable
called LOC:ExtendedAmount is disabled when EIP is active. This is
controlled with the same dialog covered previously. The point is
that you can disable edits on columns where applicable.

The auto-complete feature is within the embeds for the
IND:ItemNumber column. This column is a STRING variable. The
example data files contain letters and numbers (although any data
type could be used). To make this work, I wrote code to do a
lookup as the user enters a character. Remember, EIP controls are
entry controls, created at runtime, with no attributes active as a
default. Thus two attributes are needed. These are UPR which
ensures everything is in upper case and IMM which generates an
EVENT:NewSelection for each keystroke. The code looks like this
as a source embed:

http://www.clarionmag.com/cmag/v3/v3n6eip2.html (3 of 10) [7/3/01 12:14:02 PM]

Extending ABC's Edit In Place - Part 2

Figure 6. The two property statements to ensure successful
functionality.

Note: Normally you would not use two embeds for two
lines of code; I did it here only to expose the code in the
embed tree.

The next thing is to trap the events. There is only one event
embed point for any EIP control. This is named TakeEvent. As the
name implies, TakeEvent traps (takes) any event. This is a no-
brainer as to which embed is needed for event trapping; you have
only one!

Before I dive into this code, let’s review what the code should do.
As a user types characters into this control, the code needs to see
if there are any matching records based on what was typed.
Sounds a bit like an incremental locator, doesn’t it? It does help to
think how an incremental locator works, finding the closest match
as the user enters data. You do need to find the closest match. To
make this work nicely, the other columns are filled with data per
the code for this control. All the user needs to do from that point
onward is decide if he found the correct data or not. All without
leaving the control.

I am talking about simple lookups. All Clarion programmers can do
simple lookups. So let me now show you the code where this is
done.

Listing 1. The code to lookup a related record.

CASE EVENT()
OF EVENT:NewSelection
 UPDATE(SELF.FEQ)
 OffSet = SELF.FEQ{PROP:SelStart} - 1
 IF OffSet
 !Try to fill in remaining item number
 ITM:ItemNumber = |
 SUB(DetailList.Q.IND:ItemNumber,1,OffSet)
 SET(ITM:ItemNumberK,ITM:ItemNumberK)
 IF Access:Item.NEXT() |
 OR UPPER(SUB(ITM:ItemNumber,1,OffSet)) <> |
 UPPER(SUB(DetailList.Q.IND:ItemNumber,1,OffSet))
 DetailList.Q.IND:ItemNumber = |
 SUB(DetailList.Q.IND:ItemNumber,1,OffSet)
 DetailList.Q.IND:Quantity = 0
 DetailList.Q.IND:Cost = 0
 DetailList.Q.IND:List = 0
 DetailList.Q.IND:Sell = 0
 DetailList.Q.IND:Print = ''
 ELSE
 DetailList.Q.IND:ItemNumber = ITM:ItemNumber
 DetailList.Q.IND:Quantity = 1
 DetailList.Q.IND:Cost = ITM:Cost
 DetailList.Q.IND:List = ITM:List
 DetailList.Q.IND:Sell = ITM:Sell

http://www.clarionmag.com/cmag/v3/v3n6eip2.html (4 of 10) [7/3/01 12:14:02 PM]

Extending ABC's Edit In Place - Part 2

 DetailList.Q.IND:Print = '0'
 END
 SELF.FEQ{PROP:SelStart} = OffSet + 1
 ELSE
 DetailList.Q.IND:ItemNumber = ''
 DetailList.Q.IND:Quantity = 0
 DetailList.Q.IND:Cost = 0
 DetailList.Q.IND:List = 0
 DetailList.Q.IND:Sell = 0
 DetailList.Q.IND:Print = ''
 END
 DISPLAY()
END

In essence, as the user types each character, the code tries to find
a matching record. If it does not, leave everything blank. When
you find the first matching record, fill it in. The user may continue
typing characters if it is not the correct record.

The key is trapping the EVENT:NewSelection event. This is
available only if the IMM attribute is active for the entry control.
OffSet is a local data variable defined in the data embed for this
method.

Figure 7. The application showing the auto-completion.

The above screen shot shows what happens when you are in insert
mode and after typing the number 6. There are many other
features available with EIP. They may not be obvious in the above
screen shot, but let me point out these features starting with the
most salient feature. Notice the use of images in the "Print?"
column. In the List Box Formatter, this column has the Icon
attribute added. This attribute is required.

The icon use is conditional. Two icons are used, one to indicate
that it will print on an invoice, and the other indicating it won’t.
See below for how this is done via template dialogs.

http://www.clarionmag.com/cmag/v3/v3n6eip2.html (5 of 10) [7/3/01 12:14:02 PM]

Extending ABC's Edit In Place - Part 2

Figure 8. Conditional icon dialog.

This column is a check control, using the EditCheck class. Figure 9
illustrates how this works.

Figure 9. Embed tree showing the code for the EditCheckClass.

Each property statement is shown in the embed tree. Looking at
the status message, you can see the location of the embed in
addition to the object it belongs to. The two property expressions,
PROP:TrueValue and PROP:FalseValue set the attributes of the
true and false states of the control. For display reasons, numeric
strings work best here, but you do not have to use them. It
depends on whether or not you wish to show the actual values in

http://www.clarionmag.com/cmag/v3/v3n6eip2.html (6 of 10) [7/3/01 12:14:02 PM]

Extending ABC's Edit In Place - Part 2

the column. In this case, the picture string is @N1B.

The next two embed lines show how to set the colors when the EIP
control is active. Of course, the PROP:Text attribute places a text
string in the control. In this instance, the text asks the user if the
record should be printed. The Description and Extended Total
columns are disabled while EIP is active. Simply uncheck the
"Allow Edit in Place" box to do disallow editing of this column at
runtime. You find this option located in the Column Specific dialog
discussed earlier.

The Sequence column increments by values of 10 when you add a
new line. This feature allows editing of this number if the user
wishes to override the value. For example, to insert a new line
between line 20 and line 30, change the next default value of 40 to
25. This is a nice feature allowing a user to place or order where
the line items display.

So how do you change the auto incrementing values to add 10 to
the last number? While this does not really have anything to do
with EIP, it is a nice feature. You see this effect while running a
procedure, but there is nothing in any particular procedure that
can control such behavior.

Remember, files are considered global data. Thus anything
affecting the behavior of files is in the global embeds. Look at the
screen shot below:

Figure 10. Changing the behavior of an auto incrementing
field

http://www.clarionmag.com/cmag/v3/v3n6eip2.html (7 of 10) [7/3/01 12:14:02 PM]

Extending ABC's Edit In Place - Part 2

As Figure 10 shows, it only takes one line of code needed to make
that work. Also notice the location of the embed by looking at the
status line. It reflects the tree structure. I also have an override in
the ValidateRecord method. I’ll leave that to you to explore.

EIP or update form?

This question of how to use EIP or an update form comes up often
enough it is worth discussing. When should you use EIP vs. the
Form procedure to edit the record? Can you do both? The answer
to the latter question is "Yes." Often some customers like a certain
feature in your program, but others do not like it and want to do a
task a different way. Some may not like EIP at a certain point in
your application and wish to use the Form procedure, or vice
versa.

I’ve always supported giving customers more than one way of
doing things, and the example application provides such a feature.
Look at the BrowseItems procedure. Open the window formatter
(or run the application). There is a check box that gives the user
the choice of how the wish to edit records.

The checkbox control is a local variable named LOC:UseForm. In
the ThisWindow.Update method (embed point), is the following
code:

IF LOC:UseForm
 !If user wants to use edit form
 !tell ABC to make it so.
 ItemList.AskProcedure = True
ELSE
 !else use EIP for all edits
 ItemList.AskProcedure = False
END

Figure 11. Application showing the EIP or Form option to the user.

This code is instructing ABC how to edit records. The
AskProcedure property identifies the procedure to update a
browse item. The AskProcedure property is setup for you in the

http://www.clarionmag.com/cmag/v3/v3n6eip2.html (8 of 10) [7/3/01 12:14:02 PM]

Extending ABC's Edit In Place - Part 2

procedure’s Init method by the templates. A value of zero (0)
indicates the BrowseClass object's own AskRecord method used to
do updates. Any other value uses a separate procedure registered
with the WindowManager object.

Note: The ABC default browse object name is BRW1. I changed this
object name to an easier to understand name before I wrote the
coded. If I had done this afterwards, I would get compiler errors,
as the templates do not interpret hand written source.

Summary

I started Part 1 of this article with the basics of how EIP works at
runtime, and why. I then explained why you would want to set
attributes for EIP controls. I showed you where to find the areas
you wish to change to meet your design specifications. I also
showed you nothing complex or difficult.

ABC provides some wonderful functionality for EIP and it does not
take much work on your part to add these features. Some may
argue that embedding hand code is not very RAD and SoftVelocity
should have better templates. I counter that argument by stating
EIP as it is done now is quite RAD; you have flexibility configuring
EIP to meet your needs. A better template is always a good idea,
but that should not detract from what is quite a workable system.

Run the example application that accompanies this article and
study the code. If you can improve on it, please add your
comments to this article and I will be more than pleased to post a
follow-up article. You will, of course, be given proper credit. In a
later article, I’ll discuss adding some template support to the
features covered here.

Download the C5.5 source code

Download the C5b source code

Russ Eggen has been using Clarion since 1986. Until about 1996, he was using it
for business applications, mostly accounting programs. Afterwards he joined
Topspeed as a consultant, and later as an instructor. He was a founding member of
SoftVelocity when that company formed from Topspeed in May 2000. He left
SoftVelocity in January 2001 and now works for a private NY firm. Russ enjoys
flying, scuba, and applied philosophy, and with great effort you might coax him into
political discussions.

http://www.clarionmag.com/cmag/v3/v3n6eip2.html (9 of 10) [7/3/01 12:14:02 PM]

http://www.clarionmag.com/cmag/v3/files/v3n6eip.zip
http://www.clarionmag.com/cmag/v3/files/v3n6eipc5b.zip
mailto:reggen@gte.net

Extending ABC's Edit In Place - Part 2

Reader Comments

Add a comment

A Clarion 5b version of the example source is now
available...
Thank you Dave. Anyone having any problems with it,
drop...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n6eip2.html (10 of 10) [7/3/01 12:14:02 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10676
http://www.clarionmag.com/cmag/discuss.frm?articleID=10676&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10676&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10676&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10676&position=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Clarion Magazine -

Clarion News

ZipFlash 2.2 Released
Sterling Data has released ZipFlash 2.2, a low cost way to add or
look up ZIP Codes. ZipFlash does ZIP and city/state lookups.
Options include: latitude/longitude; area code; time zone; and a
map showing the location of the city and a button to calculate the
distance between any two cities/ZIP codes. Demo available.
Posted Friday, June 29, 2001

SealSoft xQuickFilter Template v1.0
xQuickFilter is a control template which adds filtering capabilities
to list boxes. Filter by INSTRING or by currently selected data.
Hot keys are configurable in the template. Demo available.
Posted Wednesday, June 27, 2001

solid.software Closed For Holidays
The solid.software office will be closed from June 28 until July 10.
Products can still be ordered at ClarionShop; support questions
will be answered as soon as the office opens.
Posted Wednesday, June 27, 2001

ABC Free Templates Have A New Home
The ABCFree Templates and Tools have moved to
www.authord.com - the most recent update to the set was June
22.
Posted Tuesday, June 26, 2001

http://www.clarionmag.com/cmag/news01-06.html (1 of 4) [7/3/01 12:14:04 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.sterlingdata.com/
http://www.seal-soft.com/xqfilter.html
http://www.solidsoftware.de/
http://www.authord.com/Clarion/index.html

Clarion Magazine -

xSmart Macro Version 2.2
SealSoft's xSmartMacro is a programmer's macro utility which
makes coding embeds easier. Macros are stored in a tree
structure, and can contain variables which can be edited visually
(similar to the template #PROMPT statement). Macros can also
be exported/imported.
Posted Monday, June 25, 2001

Free Zip Code Template
Shane Vincent has made a free zip code template available for
download. This is just a code template right now, but may be
fleshed out more if there is a demand.
Posted Thursday, June 21, 2001

WinSet Lets Users Change Windows Properties
New from SealSoft is xWinSet, a product that lets end users
change Windows standard screen properties at runtime, including
font size, foreground and background colors, wallpaper, etc.
Styles are supported. Demo available.
Posted Thursday, June 21, 2001

CapeSoft Tip of the Month: Object Writer
Not in the mood to fork out some money this month? No matter.
If you're writing your own objects, or extending the ABC objects,
then check out the FREE CapeSoft Object Writer template.
Posted Thursday, June 21, 2001

CapeSoft Office Messenger Updated
One product built on NetTalk functionality is the CapeSoft Office
Messenger. This release improves on the core product, smoothing
a few rough edges, and has improved stability. At $6 per seat
(less for educational, not-for-profit, and volume sites) it certainly
doesn't break the budget.
Posted Thursday, June 21, 2001

http://www.clarionmag.com/cmag/news01-06.html (2 of 4) [7/3/01 12:14:04 PM]

http://www.seal-soft.com/xsmacro.html
http://www.shanedvincent.com/clarion/clarion.asp
http://www.seal-soft.com/
http://www.capesoft.com/
http://www.capesoft.com/utilities/messenger.htm

Clarion Magazine -

NetTalk v1 Beta 14 Shipping
Beta 14 of NetTalk now includes full support for UDP as well as
TCP. This means you can now send, and receive UDP packets.
Beta 14 also includes some internal tweaks which adds to the
stability of the product. NetTalk is rapidly approaching a version
1.0 Gold release, expected by the end of the month. Shortly after
that the special price of $199 will end and the normal price of
$299 will apply.
Posted Thursday, June 21, 2001

Secwin Version 3.1 Beta 1 Released
It's been over a year since the last release of Secwin. As you may
know version 3.0 was never officially out of beta although it was
certainly live in a large number of systems. The main problem
keeping it from going gold is the SQL support files. This version
still has not addressed the SQL issues completely, but there are
too many sufficient new features to hold back a release. The
primary goal of this release is to provide full compatability with
the Web Builder templates, and the recently released ClarioNet
product. It's also now compatible with Makeover. Another major
feature of this release is the ability for you to re-create any of the
built-in Secwin screens. The administration functions have also
been extended to allow full programmatic control of the security
files. Secwin costs $99.
Posted Thursday, June 21, 2001

File Explorer Version 1.8b Released
Version 1.8a of FileExplorer is now shipping. This release adds
Flash to the list of file formats supported. This means you can
now include Macromedia Flash files on your application windows.
Great for Login screens, as well as About screens etc. There's
also a whole trainload of new properties and methods giving you
more control than ever before. FileExplorer costs $99.
Posted Thursday, June 21, 2001

xWord Library Version 1.3.1
New in the latest release of SealSoft Company's xWord library are
methods for importing plain text from MS Word, and inserting
text in the clipboard. A new demo is also available.
Posted Thursday, June 21, 2001

http://www.clarionmag.com/cmag/news01-06.html (3 of 4) [7/3/01 12:14:04 PM]

http://www.capesoft.com/accessories/netsp.htm
http://www.capesoft.com/accessories/secwinsp.htm
http://www.capesoft.com/accessories/FileExplorer.htm
http://www.seal-soft.com/xword.html

Clarion Magazine -

PD Translation Dictionary
The PD Translation Dictionary is now available to contributors on
the download page of the ProDomus web site. This dictionary
contains environment files and a dictionary consisting of
translations from English to other languages. You can help out in
expanding this dictionary by becoming a contributor. Anyone
sending either translations files or environment files by
September 15, 2001 will be provided access to this file. Current
languages (some partial) include Danish, French, German,
Norwegian, Spanish, Czech, Turkish, and Polish. All could use
additional environment and translation files. Translation files
which we can use include clarion .env and .trn files as well as files
associated CWIntl,PD Translator, or PD Translator Plus). The
dictionary package also includes a small source code application
for extracting translations from the dictionary or adding
translations to the dictionary.
Posted Thursday, June 21, 2001

Simshape Templates Special Ends June 21
Eric Churton has announced the release of a new product for C5
and C5.5 (ABC only). The Simshape Templates let you create
buttons in different shapes, use various images for mouseover
events, and use images for checkboxes, all by making images
and regions behave like buttons. SimShape Templates are now
available from www.clarionshop.com at an opening special of $39
US up to June 21 2001, thereafter $49 US. Demo available.
Posted Tuesday, June 19, 2001

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any form without
the expresswritten consent of CoveComm Inc., except as described in the subscription agreement,
is prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

http://www.clarionmag.com/cmag/news01-06.html (4 of 4) [7/3/01 12:14:04 PM]

http://www.prodomus.com/
http://www.vertigo.co.za/simplesoft/simshape.htm
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Handcoding Tree Lists Part 2

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Handcoding Tree Lists Part 2

by James Cooke

Published 2001-06-20

Last week I explained the fundamentals of Clarion tree lists. Simply
put, a Tree Control is a standard listbox with the "Tree" checkbox
set to true, and one way to create a tree list is to create the data
yourself. It’s not that difficult to do.

Clarion also supplies the ABC Relational Tree Template, which
generates code to populate the simple Windows Tree Control with
relational database tables. However, the relational tree does not
give you everything! This week I will show you how to do what the
ABC relational tree cannot do.

Database Loaded Trees

ABC’s Relational Tree template is fantastic – but it only loads a
single one-to-many relationship at one time. For example, each
customer has many orders. What if you want to represent another
relationship on the same tree? For example, each customer has
many orders, but each customer has many backorders too. This
means that the Customer node needs to have two child nodes. One
will indicate orders, with all the customer’s orders listed in child
nodes below, and the other will indicate backorders, with each
backorder similarly listed.

http://www.clarionmag.com/cmag/v3/v3n6treelists2.html (1 of 7) [7/3/01 12:14:07 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Handcoding Tree Lists Part 2

Figure 8. ABC’s relational tree does not directly support dual
relationships

To handle this kind of dual relationship you will need to code the
tree manually. Try this out: define these files in a dictionary and
link up the relationships:

Customer FILE,DRIVER('TOPSPEED'),
 PRE(Customer),CREATE,BINDABLE
KeyCustomer KEY(Customer:Customer),
 NOCASE,OPT,PRIMARY
KeyName KEY(Customer:Name),DUP,NOCASE,OPT
Record RECORD,PRE()
Customer LONG
Name STRING(20)
 END
 END

Order FILE,DRIVER('TOPSPEED'),PRE(Order),
 CREATE,BINDABLE
KeyOrder KEY(Order:Order),NOCASE,OPT,PRIMARY
KeyCustomer KEY(Order:Customer),DUP,NOCASE,OPT
Record RECORD,PRE()
Order LONG
Customer LONG
Item STRING(20)
 END
 END
BackOrder FILE,DRIVER('TOPSPEED'),
 PRE(BackOrder),CREATE,BINDABLE
KeyBackOrde KEY(BackOrder:BackOrder),NOCASE,OPT,PRIMARY
KeyCustomer KEY(BackOrder:Customer),DUP,NOCASE,OPT
Record RECORD,PRE()
BackOrder LONG
Customer LONG
Item STRING(20)
 END

http://www.clarionmag.com/cmag/v3/v3n6treelists2.html (2 of 7) [7/3/01 12:14:07 PM]

Handcoding Tree Lists Part 2

 END

Populate the database files with some data, and then embed the
following code in a button labeled "Load database data"

Free(MyQueue) !Empty Tree
Post(Event:Accepted,?Button:AssignIcons)
MyQueue:Display = 'Customer Orders & Backorders'
MyQueue:Level = 0
MyQueue:Icon = 1
Add(MyQueue)

Set(Customer)
Loop
 next(Customer)
 if error() then break.
 MyQueue:Display = Customer:Name
 MyQueue:Level = 1
 MyQueue:Icon = 2
 Add(MyQueue)
 MyQueue:Display = 'Orders'
 MyQueue:Level = 2
 MyQueue:Icon = 3
 Add(MyQueue)
 Order:Customer = Customer:Customer
 Set(Order:KeyCustomer,Order:KeyCustomer)
 Loop
 Next(Order)
 If error() then break.
 If Order:Customer <> Customer:Customer |
 then break.
 MyQueue:Display = Order:Item
 MyQueue:Level = 3
 MyQueue:Icon = 4
 Add(MyQueue)
 End
 MyQueue:Display = 'Back Orders'
 MyQueue:Level = 2
 MyQueue:Icon = 3
 Add(MyQueue)
 BackOrder:Customer = Customer:Customer
 Set(BackOrder:KeyCustomer,BackOrder:KeyCustomer)
 Loop
 Next(BackOrder)
 If error() then break.
 If BackOrder:Customer <> Customer:Customer|
 then break.
 MyQueue:Display = BackOrder:Item
 MyQueue:Level = 3
 MyQueue:Icon = 4
 Add(MyQueue)
 End
End

This section of code basically loops through the database , and for

http://www.clarionmag.com/cmag/v3/v3n6treelists2.html (3 of 7) [7/3/01 12:14:07 PM]

Handcoding Tree Lists Part 2

each customer it creates a set of nodes for the order and a set of
backorders. Compile and run the app, click the button "Load
Database Data" and your tree should look something like Figure 9:

Figure 9. This tree displays multiple database relations

How about creating update forms for these nodes? This is not as
simple as in the relational tree, mainly because unlike the
relational tree a different update form may be called for "D" level
items. For example, if the parent is Back Orders then call
FrmBackOrder; if the parent is Orders then call FrmOrder. If the
node is a "B" level item, then it is simple – just call frmCustomer,
and if the node is a "C" level item then don’t do anything. The
simplest way to do this might be to use custom
Insert/Change/Delete buttons and embed the logic in each button’s
accepted embed point. Here’s how:

Declare a LONG local variable called Counter

Declare a BYTE local variable called CurrentLevel

Now place three buttons underneath the tree and label them
Insert, Change and Delete.

Embed the following code in the Change button:

Get(MyQueue,Choice(?List))
Case MyQueue:Level
 Of 1
 Customer:Customer = MyQueue:PK
 If Access:Customer.Fetch(Customer:KeyCustomer)
 Stop(error() & errorfile())
 Else
 GlobalRequest = ChangeRecord
 FrmCustomer
 If GlobalResponse = RequestCompleted

http://www.clarionmag.com/cmag/v3/v3n6treelists2.html (4 of 7) [7/3/01 12:14:07 PM]

Handcoding Tree Lists Part 2

 Post(Event:Accepted,?Button:LoadDB)
 End
 End
 Of 3
 CurrentLevel = ABS(MyQueue:Level)
 Loop Counter = Choice(?List) to 1 by -1
 Get(MyQueue,Counter)
 !Found the parent!
 If ABS(MyQueue:Level) < CurrentLevel then break.
 End
 Case Clip(MyQueue:Display)
 Of 'Orders'
 Get(MyQueue,Choice(?List))
 Order:Order = MyQueue:PK
 If Access:Order.Fetch(Order:KeyOrder)
 Stop(error() & errorfile())
 Else
 GlobalRequest = ChangeRecord
 FrmOrder
 If GlobalResponse = RequestCompleted
 Post(Event:Accepted,?Button:LoadDB)
 End
 End
 Of 'Back Orders'
 Get(MyQueue,Choice(?List))
 BackOrder:BackOrder = MyQueue:PK
 If Access:BackOrder.Fetch(BackOrder:KeyBackOrder)
 Stop(error() & errorfile())
 Else
 GlobalRequest = ChangeRecord
 FrmBackOrder
 If GlobalResponse = RequestCompleted
 Post(Event:Accepted,?Button:LoadDB)
 End
 End
 End
End

To allow for deletions, take the same code and embed it in the
delete button then do a search & replace for "Change" and set it to
"Delete". This is obviously a waste of code which is okay for the
purpose of this article, but in a production environment you might
place the code in a routine and put in a condition for
Add/Change/Delete.

When adding a record, there are two things you need to consider.
Firstly, to add a row your cursor needs to be over the parent
record. Secondly, primary and foreign keys need to be primed
correctly. Embed the following code into the Insert button: (The
APP that accompanies this article also includes source comments,
which have been removed here to improve readability)

Get(MyQueue,Choice(?List))
Case MyQueue:Level
 Of 0

http://www.clarionmag.com/cmag/v3/v3n6treelists2.html (5 of 7) [7/3/01 12:14:07 PM]

Handcoding Tree Lists Part 2

 GlobalRequest = InsertRecord
 Clear(Customer:Record)
 Access:Customer.TryPrimeAutoInc()
 FrmCustomer
 If GlobalResponse = RequestCompleted
 Post(Event:Accepted,?Button:LoadDB)
 End
 Of 2
 Case MyQueue:Display
 Of 'Orders'
 GlobalRequest = InsertRecord
 Clear(Order:Record)
 Access:Order.TryPrimeAutoInc()
 Loop Counter = Choice(?List) to 1 by -1
 Get(MyQueue,Counter)
 If MyQueue:Level = 1 then break.
 End
 Order:Customer = MyQueue:PK
 FrmOrder
 If GlobalResponse = RequestCompleted
 Post(Event:Accepted,?Button:LoadDB)
 End
 Of 'Back Orders'
 GlobalRequest = InsertRecord
 Clear(BackOrder:Record)
 Access:BackOrder.TryPrimeAutoInc()
 Loop Counter = Choice(?List) to 1 by -1
 Get(MyQueue,Counter)
 If MyQueue:Level = 1 then break.
 End
 BackOrder:Customer = MyQueue:PK
 FrmBackOrder
 If GlobalResponse = RequestCompleted
 Post(Event:Accepted,?Button:LoadDB)
 End
 End
End

By now it should be clear that using a filter would be a breeze – all
you need to do is check a condition before adding a node. This
means that you can handcode all levels of nodes to be range-limit
filtered (using keys) or simply by using sequential access.

People tend towards simplicity – a window full of listboxes and
buttons only serves to confuse. Without a tree, the example
application used in this article would have required a screen with
three listboxes and nine buttons and probably a bunch of listbox
headers and tooltips, panels and groups to clarify the relationship
between the listboxes. The tree control has enabled me to display
clearly the relationships between the data entities, as well as
manage updates – all using four controls instead of 12!

Coding this tree might take a bit longer, but making the effort to
achieve a solid understanding of this control will result in many
benefits. As demonstrated in this example the simple elegance of

http://www.clarionmag.com/cmag/v3/v3n6treelists2.html (6 of 7) [7/3/01 12:14:07 PM]

Handcoding Tree Lists Part 2

the Clarion language still allows programmers to deliver higher
quality hand-coded material faster than other mainstream tools.
Compliance with user expectations and industry standards,
providing simpler, intuitive user interfaces and meaningful data
representation will contribute to a greater acceptance of your
software in the marketplace.

Download the example application

James Cooke has been using Clarion since 2.1 days and has been a die hard for "the
cause" ever since. He and his family recently moved from South Africa to Texas and
is currently working in the banking industry. He spends most of his free time
basking in the sun by the pool with a good book or succumbing to that hard-to-kick
addiction that persistently haunts the Western cosmopolitan neighborhoods - the
yard sale.

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n6treelists2.html (7 of 7) [7/3/01 12:14:07 PM]

http://www.clarionmag.com/cmag/v3/files/v3n6treelist.zip
mailto:koosie@earthlink.net
http://www.clarionmag.com/cmag/comments.frm?articleID=10675
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Tip: How To Start A Browse With The Last-Used QBE Query

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Tip: How To Start A Browse With The Last-Used
QBE Query

by Randy Rogers

Published 2001-06-19

I recently added Query By Example (QBE) to a browse and was
pleased with the ease of implementing this functionality. I wanted
my application to open the browse using the most recently used
query (the default is to open the browse without any QBE filters).
After a lot of experimenting, I was able to accomplish what I
needed with two strategically placed lines of code.

Here's how to have a browse start with the most recent QBE
query. In the WindowManager.Init Method [8505] (after process
field templates) embed I added the following code:

BRW1.Query.Restore('tsMRU')

In the Browse on filename using ?Browse:1 (Browse Class)
ApplyFilter Method [4500] (before parent call) I placed this code:

SELF.SetFilter(SELF.Query.GetFilter(),'9 - QBE')

That’s all there is to it. Calling the Restore method with ‘tsMRU’
causes the QueryClass to fill its FieldQueue with the tsMRU
section of the program’s INI file. This is a queue of the field
contents for the most recently used query (hence the acronym
MRU). Other saved queries are stored in the INI file too!
GetFilter returns a properly constructed filter expression based
on the contents of the FieldQueue which I loaded earlier with
Restore.

The SetFilter method appends the query filter to any existing
filters because I specify the ‘9 – QBE’ id, which is used by the
templates. See the ViewManager SetFilter method help for
details.

Randy Rogers is a data processing professional with over 35 years of experience in
a wide variety of industries including accounting, municipal government, insurance,
printing, and pharmacoeconomics. He is the president of Keystone Computer

http://www.clarionmag.com/cmag/v3/v3n6qbetip.html (1 of 2) [7/3/01 12:14:09 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org
mailto:RROGERS@keystonecr.com

Tip: How To Start A Browse With The Last-Used QBE Query

Resources and creator of NetTools, Queue Edit-in-Place and Screen Capture Tools
for Clarion application developers. Randy has a degree in Mathematics from Florida
State University and has taught programming at the community college level.

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n6qbetip.html (2 of 2) [7/3/01 12:14:09 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10673
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Extending ABC's Edit In Place - Part 1

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Extending ABC's Edit In Place - Part 1

by Russell Eggen

Published 2001-06-15

Over time I’ve noticed a number of complaints about ABC’s Edit in
Place (EIP) features, or lack thereof. Let me fill you in on a dirty
little secret: ABC’s EIP features are fully functional.

I’ll admit, that statement may be a bit controversial. I assert that
the true cause of dissatisfaction with EIP is the lack of full template
support. In other words, you are required to add some embed
code yourself to make EIP work per your application’s design
specifications. While some say adding embed code is not very
RAD, I say adding a few lines of code does not detract from RAD.

As readers of Clarion Magazine may note, I like to start with the
basics (assume no prior knowledge) and then move the reader to
higher understanding. I plan to continue that practice with this
topic. My goal here is to start at the beginning and work my way
up to a template (in a future article) that you may add to your
existing ABC applications. A template makes sense as it alleviates
the need to write the same code in embeds for the same controls.
It won’t be the fully functional template I have in mind, but
enough to give you the idea.

The basics of EIP

How does EIP work anyway? The first place to look is the ABC
classes. Look at the following code.

EditClass.Init PROCEDURE(|
 UNSIGNED FieldNo,UNSIGNED ListBox,*? UseVar)
 CODE

 SELF.ListBoxFeq = ListBox
 SELF.CreateControl()
 ASSERT(SELF.Feq)
 SELF.UseVar &= UseVar
 SELF.Feq{PROP:Text} = |
 ListBox{PROPLIST:Picture,FieldNo}
 SELF.Feq{PROP:Use} = UseVar
 SELF.SetAlerts

http://www.clarionmag.com/cmag/v3/v3n6eip1.html (1 of 8) [7/3/01 12:14:13 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Extending ABC's Edit In Place - Part 1

What is that code doing? If you study it briefly, you notice this
code is doing more than may first appear!

The SELF object name is whatever the name of the local object is.
By local object, I mean a new object is created in this procedure,
but ABC has no idea what the name is. SELF as a placeholder for
this object’s name. This object name defaults to BRW1. The use of
SELF as the name of the object means that this method
(procedure) is not hard coded and is reusable. The use of this
placeholder shows the OOP advantage of "write once, use
anywhere" as SELF could be any object name.

Notice the use of the property expressions. Since UseVar is
declared as an ANY variable (see below), this means it takes on
whatever characteristic (data type, properties) is it assigned. This
is done via the reference assignment. Since the entry control is
created on the fly (runtime, not development time), it needs a
field equate (FEQ). This is done via the two lines starting with
SELF.Feq. Notice the use of the property expressions for
SELF.Feq. The FEQ also inherits the picture from the column, so
any valid picture token is inherited.

EditClass CLASS,TYPE
Feq UNSIGNED
UseVar ANY
ListBoxFeq SIGNED
ReadOnly BYTE
END

There is also a call to CreateControl, which is a method in this
class. Here is the code for CreateControl:

EditClass.CreateControl PROCEDURE
 CODE
 ASSERT(False)

A bit boring, isn’t it? . This is a "stub method", meaning that
overriding the method is expected. It is also a VIRTUAL method.
This is one of the benefits of VIRTUAL methods; the parent class
(ABC) will call the child method instead of its own method. In
other words, you have changed the behavior of ABC without
touching its code. For more on virtual methods, see The ABCs of
OOP - Part 3.

There are a few more methods in this class, but their discussion is
not important to what you need to know at this time. The
EditClass itself is rather small anyway, so you do not need to
devote much study effort to it.

Since I am discussing entry controls, which are the default ABC
EIP controls, here is the entire class definition for the
EditEntryClass (module and link attributes deleted for
readability):

http://www.clarionmag.com/cmag/v3/v3n6eip1.html (2 of 8) [7/3/01 12:14:13 PM]

http://www.clarionmag.com/cmag/v1/v1n5abcsofoop_part3.html
http://www.clarionmag.com/cmag/v1/v1n5abcsofoop_part3.html

Extending ABC's Edit In Place - Part 1

EditEntryClass CLASS(EditClass),TYPE
CreateControl PROCEDURE,VIRTUAL,PROTECTED
 END

This definition inherits from the parent EditClass. Inheritance
gives you the ability to use everything in a parent as if it was
defined in a child class. Thus, you only need to code what is
different or missing. Inspect the code for this new method and you
see why the ABC method had to be overridden – you specifically
need an entry control, which the parent
EditClass.CreateControl method does not create:

EditEntryClass.CreateControl PROCEDURE
 CODE

 SELF.Feq = CREATE(0,CREATE:Entry)

The zero (0) parameter for the CREATE statement means to use
the next available field equate number. CREATE:Entry is an equate
for the type of control you wish. Inspect EQUATES.CLW if you wish
to see the actual value, but all you really need to know is the
equate.

Let’s assume you have a description for an Item file. When you
browse the Item file, ITM:Description is one of the columns.
When you have EIP activated for this column, the templates write
the following code (edited to avoid wrapping):

EIP:ITM:Description CLASS(EditEntryClass)
Init PROCEDURE(UNSIGNED FieldNumber,|
UNSIGNED ListBox, |
*? UseVar),DERIVED
 END

Remember, the above local class is derived from the
EditEntryClass, which itself is a child of EditClass. The Init
method is defined in EditClass. Inheritance gives any child access
to this method as if it was defined in its CLASS structure.

The DERIVED attribute means you want the compiler to flag this
method as an error if the parent prototype changed. DERIVED
methods are implied VIRTUALs (you do not need to add that
attribute too). Imagine you have a class with a method declared
with the VIRTUAL attribute, and a derived class that overrides that
same method. Now you change the parent method’s parameter
list. That means that the child method’s prototype and the parent
method’s prototype no longer match, so the child is really no
longer a child, but a new "top level" method. If you use the
DERIVED attribute, the compiler will verify that there is an identical
virtual method signature in a parent class. Remember the rule
about VIRTUAL attributes: you must define a method with the
same name and prototype in the parent class and the child class,
with the VIRTUAL attribute on both.

http://www.clarionmag.com/cmag/v3/v3n6eip1.html (3 of 8) [7/3/01 12:14:13 PM]

Extending ABC's Edit In Place - Part 1

One interesting aspect of the prototype is the use of the *?
parameter. Remember that the UseVar passed to it is an ANY data
type and is passed by address. You do not know at design time
what kind of data is passed to an ANY data type; as the name
implies, it could be anything.

The code for the generated INIT method is as follows:

EIP:ITM:Description.Init PROCEDURE|
 (UNSIGNED FieldNumber,UNSIGNED ListBox,|
 *? UseVar)
 CODE
 PARENT.Init(FieldNumber,ListBox,UseVar)

This method, when run, calls the code in the parent
EditEntryClass, discussed earlier. And how is the Init method
called in your local procedure? Look in the BRW1.Init method,
which is executed when the browse window opens. If EIP is used,
the ABC templates write the code to call the Init methods for each
column that use EIP:

SELF.AddEditControl(EIP:ITM:Description,2)

The first parameter to AddEditControl is the object name; the
second parameter is the corresponding list box column for this edit
control. For each list column that uses an edit control for EIP, the
AddEditControl method executes the same code, not copies. This
is why the SELF keyword is so important. As each AddEditControl
method executes, it calls the same ABC code, but SELF contains a
different object name.

Now that the salient ABC class code is out of the way, you do have
embed points available to further modify how the control is setup.
You do this with property expressions. How do you know what
properties are associated with what control? Look at the Help for
Entry controls. There are a number of attributes listed for entry
controls. You control some of these in dialogs while designing your
window. For example, one could turn on or off CAPs. Look in the
text portion of the Help, you see the property statements for each
attribute. In this example, PROP:Cap is seen and this turns on or
off the CAP attribute at runtime.

Simply use this one line of code in the embed point:

Self.Feq{Prop:Cap} = True

SELF.Feq is the field equate for the just-created entry control
explained previously. How would you add tool tip text for this
control? How about changing the font? Justification?

So this code, at runtime, when entering a description, causes each
word to begin with an upper case letter.

http://www.clarionmag.com/cmag/v3/v3n6eip1.html (4 of 8) [7/3/01 12:14:13 PM]

Extending ABC's Edit In Place - Part 1

More ABC EIP classes

ABC ships with a few more classes to assist you in defining
precisely how you wish EIP to work. These classes are fully
functional, but you are still required to tune them for your
application’s design.

In order to change the default entry control to something else, you
need to know how to get to the Class dialog. A Class dialog exists
for every ABC object in your application, overridden or not. Using
these dialogs is easy, but it may not always be obvious how to get
to them. See Figure 1 below. The class dialog is always the last tab
on these dialogs. Since the topic is EIP, an by EIP, I mean the
ability to update the highlighted record.

Figure 1. Locating the update extension.

Selecting the properties for this extension shows this dialog (see
Figure 2):

Figure 2. The BrowseUpdateButtons dialog.

Pressing the Configure Edit in place button shows a dialog with
default edit behaviors. What you are interested in the Column
specific button. Pressing it shows an empty list box (when you first
use it). This dialog (shown below as Figure 3 in Insert mode)
allows you to insert capabilities for each column you wish to
change.

http://www.clarionmag.com/cmag/v3/v3n6eip1.html (5 of 8) [7/3/01 12:14:13 PM]

Extending ABC's Edit In Place - Part 1

Figure 3. EIP dialog in Insert mode.

The Field entry is required. There is a lookup button next to the
entry control to allow you to pick the field you wish to override.
For example, suppose you have a field in your Inventory that
controls the list price of the item. It would be nice to set the list
price without using the keyboard. A spin control is ideal for this.
Here is what the dialog would look like if you wish to change to a
spin control:

Figure 4. Using the EditSpinClass instead of the default
EditEntryClass.

To activate the Base Class drop down, you first must uncheck the
Use Default ABC: EditEntryClass. You don’t want an entry control.
Notice that ABC has a class called EditSpinClass. There are quite
a few other classes based on EIP (which are revealed when you
drop down the base class list control). If you look in the ABC
source for the EditSpinClass, you see this class definition:

http://www.clarionmag.com/cmag/v3/v3n6eip1.html (6 of 8) [7/3/01 12:14:13 PM]

Extending ABC's Edit In Place - Part 1

EditSpinClass CLASS(EditClass),TYPE
CreateControl PROCEDURE,VIRTUAL,PROTECTED
 END

There isn’t much to this class; it just creates a control and that’s it.
What does the CreateControl method look like? Inspect the code
as shown below:

EditSpinClass.CreateControl PROCEDURE
 CODE

 SELF.Feq = CREATE(0, CREATE:Spin)
 SELF.Feq{PROP:Step}=1
 SELF.Feq{PROP:RangeLow}=80000001h
 SELF.Feq{PROP:RangeHigh}=7FFFFFFFh

I’ve already covered the CREATE statement. If you look up
CREATE:Spin in the help, you will find the property statements
used in this code. It is expected that you override these ranges in
your application. Inspect the other CreateControl methods; you
will see they are simple, and in some cases set some properties for
you.

TIP: The purpose of ABC objects is to be overridden. By
themselves, ABC objects do absolutely nothing of value.
They exist to be derived based on your design. Once
this happens, you have working code.

So much for the theory. Next week, I’ll show you how to apply the
theory in a sample application.

Russ Eggen has been using Clarion since 1986. Until about 1996, he was using it
for business applications, mostly accounting programs. Afterwards he joined
Topspeed as a consultant, and later as an instructor. He was a founding member of
SoftVelocity when that company formed from Topspeed in May 2000. He left
SoftVelocity in January 2001 and now works for a private NY firm. Russ enjoys
flying, scuba, and applied philosophy, and with great effort you might coax him into
political discussions.

Reader Comments

Add a comment

Good article Russ. After reading it I was finally able to...
Dave, Glad it helped! Stay tuned for the next issue...
Thanks for explaining the underlying code for EIP. Up till...
Jan Jacob, That was the whole point of writing the...

http://www.clarionmag.com/cmag/v3/v3n6eip1.html (7 of 8) [7/3/01 12:14:13 PM]

mailto:reggen@gte.net
http://www.clarionmag.com/cmag/comments.frm?articleID=10665
http://www.clarionmag.com/cmag/discuss.frm?articleID=10665&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10665&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10665&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=10665&position=4

Extending ABC's Edit In Place - Part 1

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n6eip1.html (8 of 8) [7/3/01 12:14:13 PM]

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

ClarioNet Released!
SoftVelocity Debuts New Specialized Thin Client for Clarion Applications

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

ClarioNet Released!
SoftVelocity Debuts New Specialized Thin Client
for Clarion Applications

Published 2001-06-13

Media Relations: John Iacovelli, 954-785-4555 john.iacovelli@softvelocity.com
Sales Information: David Merenstein, 800-367-5444 david.merenstein@softvelocity.com

Internet/Intranet Clients Indistinguishable From Desktop Apps
in Looks and Performance

Pompano Beach, Florida. June 13 – SoftVelocity™, Inc.,
manufacturer of the Clarion™ development environment, today
announced the release of ClarioNET™. "ClarioNET is a new class of
specialized thin client for line of business applications," said Bob
Zaunere, CEO of SoftVelocity. "Imagine building a Windows
application with all the features your users expect, and then being
able to run it over the Internet without any license fees or
royalties, and without having to change any of your code.
ClarioNET enables one code base for deployment on your internal
network or the Internet. A Clarion application combined with the
ClarioNET client renders an exact duplicate of the application at
any remote location... globally or locally."

Specializing in business database applications, Clarion is in
widespread use as a development environment for line of business
applications. The ClarioNET solution divides a new or existing
Clarion application into an n-tier solution comprised of
presentation, application, and database layers. An end user
downloads a launcher, as small as 500KB, which can be used for
multiple sessions and/or applications. The launcher connects to a
server using the HTTP protocol in a series of compressed,
encrypted transactions. The server starts an instance of the
application, and downloads instructions to the client to create a
window and controls. To the end user, it looks and feels exactly
like any other Windows application, except for a small "LED"
indicator on the caption bar that indicates when the client is
sending or receiving information to or from the server. The client
supports all functions of a typical Windows application, including
printing reports to the client’s local printer.

Typically, when a new window is displayed, the client and server
exchange usually between one and nine kilobytes of data.

http://www.clarionmag.com/cmag/v3/v3n6clarionet.html (1 of 2) [7/3/01 12:14:14 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org
mailto:john.iacovelli@softvelocity.com
mailto:david.merenstein@softvelocity.com

ClarioNet Released!
SoftVelocity Debuts New Specialized Thin Client for Clarion Applications

Thereafter, only instructions to update data are exchanged, usually
less than one kilobyte per exchange. Unlike other remote client
products, no constant communications stream needs be
maintained with the server, helping to keep bandwidth
requirements down, and server activity to a minimum. In tests on
a Windows 2000® server with twenty clients opening views into
database tables, server CPU activity remained below 15%, and
memory usage below 25% on a 512MB system. Only the HTTP
protocol is used, insuring compatibility with most firewalls. The
ClarioNET solution requires either Microsoft Internet Information
Server, or the Clarion Application Broker (a specialized
web/application server) on the server side.

SoftVelocity Professional Services is deploying a ClarioNET
application for CSRS, (http://www.csrs.ca) a Canadian registry
service company based in Richmond, BC. CSRS offers registration
and search services throughout Canada. The PPSA Management
System delivers centralized database access and reporting for
clients wishing to register their loan securities with provincial
Personal Property Registries across Canada. Clients include all
major chartered banks as well as the big three automobile
financing companies.

ClarioNET was created by ClarioNET Solutions, Inc. of Corona Del
Mar California. The ClarioNET client is written in the Clarion
language, and is fully customizable. ClarioNET development
requires either Clarion Professional Edition or Clarion Enterprise
Edition, and the ClarioNET library. White papers containing
additional information are available at
http://www.softvelocity.com/clarionet.

About SoftVelocity
SoftVelocity, Inc. is the provider of the Clarion line of rapid application development tools.
Application developers have used Clarion for over two decades. Developers value its blazing speed
and ease-of-use. SoftVelocity offers Clarion sales, education, and technical assistance to the
worldwide community of Clarion users. SoftVelocity acquired the Clarion product line from TopSpeed
Corporation on May 1, 2000. SoftVelocity is a privately held company based in Pompano Beach,
Florida with distributors throughout the world. Access the www.softvelocity.com site for further
information.

Reader Comments

Add a comment

Awesome product. My only hope is that SV creates client...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n6clarionet.html (2 of 2) [7/3/01 12:14:14 PM]

http://www.csrs.ca/
http://www.softvelocity.com/clarionet
http://www.softvelocity.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=10658
http://www.clarionmag.com/cmag/discuss.frm?articleID=10658&position=1
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Handcoding Tree Lists Part 1

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Handcoding Tree Lists Part 1

by James Cooke

Published 2001-06-13

One of the primary reasons for the increasing popularity of tree
controls in user interfaces is that the user can be presented with a
wide variety of related information, but without being overwhelmed
with too much information at once. The user is able to achieve a
bird’s eye perspective of the information and optionally "drill down"
into the data for more detail. Clarion is one of the few tools on the
market that has built in functionality to represent relational data
using the Tree Control – and even so, most Clarion programmers
tend to avoid trees.

Considering the recent shift of the software industry toward tree-
rich user interfaces, this might be a good time to examine some of
the benefits and key concepts of the tree control, as well as how to
make good use of them in Clarion applications.

What is a tree control?

It is important to differentiate between the ABC Relational Tree
Template and the Tree Control. The ABC Relational Tree Template
is an ABC template that generates efficient code to populate the
simple Windows Tree Control with relational database tables.
Simply put, a Tree Control is a standard listbox with the "Tree"
checkbox set to true. Checking the Tree option will change the
FORMAT attribute of the tree by adding ‘T’. To illustrate, in a
standard list box, the FORMAT string might look like this:

FORMAT('80L(2)|M~Customer Name~@s20@')

With the "Tree" attribute the FORMAT statement gets a ‘T’:

FORMAT('80L(2)|MT~Customer Name~@s20@')

The ‘T’ tells Clarion that it must display the data of the control’s
queue as a tree and not as an ordinary listbox. It’s all very well for
the control to know it needs to display its data in tree format, but
how does the tree know at which level it needs to display the data?
That will mean some additional data added to the queue.

http://www.clarionmag.com/cmag/v3/v3n6treelists1.html (1 of 9) [7/3/01 12:14:18 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Handcoding Tree Lists Part 1

The Tree Control’s Queue

With a standard listbox there are no "system required" fields. You
just slap in the columns as and when you need them. The tree
control however requires several columns placed at the beginning
of the queue and in a particular order. These columns are as
follows:

Text STRING(255)
Icon SHORT
Level LONG

These columns are used to tell the tree a bit more about itself:

● Text is the text to display for that node on the tree
● Icon specifies the node’s icon
● Level specifies the amount of indentation from the left border

of the listbox – The root of the tree is always Zero, and every
subsequent shift to the right denotes an increase in level.
Looking at Figure 1, the black text is level 0; the green text
level 1; the red text level 2 and the blue text is level 3.

Figure 1. Denoting levels on a tree

Once these required columns are in place (at the start if the
queue) you can place your own specific columns after them.
Consider a simple example:

Create an application, define a window and declare the following
queue in the data formatter:

MyQueue QUEUE,PRE(MyQueue)
Display STRING(200)
Level LONG
Icon SHORT
 END

Place a listbox control on the window, and when prompted with
Select control template to use, select "Populate control without
control template." :

http://www.clarionmag.com/cmag/v3/v3n6treelists1.html (2 of 9) [7/3/01 12:14:18 PM]

Handcoding Tree Lists Part 1

Figure 2. Populating a basic listbox control

Now select the column MyQueue:Display to populate in the listbox:

Figure 3. Select the column to display in the listbox

Now click the Appearance Tab for that column set the Tree
checkbox value to checked:

http://www.clarionmag.com/cmag/v3/v3n6treelists1.html (3 of 9) [7/3/01 12:14:18 PM]

Handcoding Tree Lists Part 1

Figure 4. setting the listbox to display as a tree

Click OK (Save listbox formatter changes), right click on the listbox
and click Properties on the popup menu. In the General Tab, set
the From value to MyQueue.

The formatted window data should now look like this:

Window WINDOW('Caption'),AT(,,400,184),|
 FONT('Arial',8,,),GRAY
 LIST,AT(41,9,210,139),USE(?List1),|
 FORMAT('800L(2)|MT~Display~@s200@'),|
 FROM(MyQueue),#ORIG(?List1), |
 #FIELDS(MyQueue:Display)
END

You need code to add items to this queue: place a button on the
window with "Load Data" as its caption and embed this code to
execute when the button is accepted:

MyQueue:Display = 'zero'
MyQueue:Level = 0
Add(MyQueue)
MyQueue:Display = 'one'
MyQueue:Level = 1
Add(MyQueue)
MyQueue:Display = 'two'
MyQueue:Level = 2
Add(MyQueue)
MyQueue:Display = 'three'

http://www.clarionmag.com/cmag/v3/v3n6treelists1.html (4 of 9) [7/3/01 12:14:18 PM]

Handcoding Tree Lists Part 1

MyQueue:Level = 3
Add(MyQueue)

Run the program and click on the button, and you should have
something that looks like Figure 5:

Figure 5. After adding a root and three nodes

This is the essence of the tree control – you have created a queue,
bound it to a tree control and populated it with data. The buck
does not stop here, however. There are issues to be resolved like
expanding and contracting nodes, being able to add, change and
delete nodes, displaying node icons, database driven node creation
and filters. Lets look at these one by one:

To get a better picture of what is happening with the queue while
navigating the tree, populate another listbox next to the tree with
all the same attributes except the "Tree" attribute, but this time
populate all the columns (setting the Display width to 50) Your
window should now look like Figure 6.

http://www.clarionmag.com/cmag/v3/v3n6treelists1.html (5 of 9) [7/3/01 12:14:18 PM]

Handcoding Tree Lists Part 1

Figure 6. Two listboxes on one window, one with tree
attribute, one without, but using the same queue.

You may notice that in the tree, there only appear to be three lines
in the Tree whereas in the listbox on the right there are still four
items in the queue. Because both controls are showing the same
queue, this shows that the only difference between a tree listbox
and a standard listbox is the manner in which the queue data is
presented. Hidden nodes only seem to appear from nowhere when
the parent node is expanded.

Changing node properties

Retrieving a node with a mouse click and changing its properties is
a fundamental aspect of tree management. Since this is a queue,
the first thing you need to do is make sure the queue pointer is in
sync with the currently highlighted listbox row. Add a new button,
give it the caption Expand/Contract, and embed the following
code:

Get(MyQueue,choice(?List))
If MyQueue:Level > 0
 MyQueue:Level = ABS(MyQueue:Level) * -1
else
 MyQueue:Level = ABS(MyQueue:Level)
End
Put(MyQueue)

This code will retrieve the queue record relative to the currently
highlighted listbox pointer, and if the level of that node is greater
than zero (the node is expanded) it will be made negative; if the
level is less than zero it will be made positive. This effectively
toggles the expanded/contracted state of the node.

Changing the text of a node is just as simple: Create a local
variable called NodeText and place it under the tree as an entry
box. Next to it place a button with the caption Change. In this

http://www.clarionmag.com/cmag/v3/v3n6treelists1.html (6 of 9) [7/3/01 12:14:18 PM]

Handcoding Tree Lists Part 1

button, embed the following code:

Get(MyQueue,choice(?List))
MyQueue:Display = NodeText
Put(MyQueue)

Once again, this retrieves the queue record according to its
position relative to the listbox pointer, the value is changed and
then saved to the queue. That was easy. Now, how about deleting
items?

Deleting Tree Nodes

To delete a node place a button under the tree control with the
caption "Delete" and embed the following code:

Get(MyQueue,choice(?List))
Delete(MyQueue)

Now, run the program, click on the Load Data button, highlight the
last node and click Delete. The node disappears. That was easy,
right? Not quite. Run the program again then click on the node that
says "two". Delete it. Your listbox should now look like Figure 7:

Figure 7. The tree list after deleting a node in the middle of
a queue

Do you see the problem? Node number two was correctly deleted,
but its child (three) was left dangling. That is certainly incorrect –
the child node should have been removed automatically. Clearly
there is no such thing as an automatic cascading delete with a
tree. To do this, it will be necessary to remove each child node
explicitly. Do this by looping till the end of the current branch and
then looping backwards by the same number of nodes, deleting
each one as you go. The last node in a branch is indicated by the

http://www.clarionmag.com/cmag/v3/v3n6treelists1.html (7 of 9) [7/3/01 12:14:18 PM]

Handcoding Tree Lists Part 1

fact that the one following it will have a level less or equal to the
level of the node you are trying to delete.

Using Icons

Using icons in a listbox is not as straightforward as it may appear,
primarily because a row (or tree node) is given an icon number
rather than the icon name. Clarion automatically allocates the icon
number based on the order in which the icon was associated with
the listbox control using property syntax.

Huh? All right – here’s an example to clarify. Embed the following
in a button labeled "Assign icons to listbox".

?List{Prop:IconList,1} = 'a.ico'
?List{Prop:IconList,2} = 'b.ico'
?List{Prop:IconList,3} = 'c.ico'
?List{Prop:IconList,4} = 'd.ico'

This code associates each one of those icons to the listbox and
each icon may be referenced using its respective number.

Now go and change the code that actually adds the rows to the
queue (the button labeled Load Data) to the following:

MyQueue:Display = 'zero'
MyQueue:Level = 0
MyQueue:Icon = 1 ! new code
Add(MyQueue)
MyQueue:Display = 'one'
MyQueue:Level = 1
MyQueue:Icon = 2 ! new code
Add(MyQueue)
MyQueue:Display = 'two'
MyQueue:Level = 2
MyQueue:Icon = 3 ! new code
Add(MyQueue)
MyQueue:Display = 'three'
MyQueue:Level = 3
MyQueue:Icon = 4 ! new code
Add(MyQueue)

All you have done at this point is state that node 1 will use icon
number 1, which is "a.ico". Node 2 will use icon number 2, which is
"b.ico" etc. Compile and run the application and you will see that
each node displays its own icon.

That takes care of the basics of tree lists. Next week I’ll look at the
ABC Relational Tree template, and show how to handle a non-
standard type of file self-relationship.

James Cooke has been using Clarion since 2.1 days and has been a die hard for
"the cause" ever since. He and his family recently moved from South Africa to

http://www.clarionmag.com/cmag/v3/v3n6treelists1.html (8 of 9) [7/3/01 12:14:18 PM]

mailto:koosie@earthlink.net

Handcoding Tree Lists Part 1

Texas and is currently working in the banking industry. He spends most of his free
time basking in the sun by the pool with a good book or succumbing to that hard-to-
kick addiction that persistently haunts the Western cosmopolitan neighborhoods -
the yard sale.

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n6treelists1.html (9 of 9) [7/3/01 12:14:18 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10519
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Using Dynamic Indexes With TPS Files

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Using Dynamic Indexes With TPS Files

by Bill Florek

Published 2001-06-08

Dynamic indexes are often overlooked as a way to efficiently
access data from TopSpeed (TPS) files, especially if you are
dealing with files that hold large numbers of records and a custom
sort order and filtered subset is required. By using a dynamic
index, you can eliminate the need to create additional file keys.

You can retrieve data from a TopSpeed file by either sequential or
random access. However, to access records in some specified sort
order, you are limited in the options that are available to you. You
can use keys, views, or dynamic indexes.

Keys may be used to read data in a predefined sequence. This
methodology is very fast, regardless of the number of records in
the file. However, if you need to filter the data on fields other than
the key elements, you must read all records from the file to
determine which records do not belong to the filtered data subset.

Views may be used to create a user-defined sort sequence. Also, if
a filter is applied to a view, only the records that match the filter
criteria are returned. The problem with this methodology is speed.
If a data file contains a few hundred to a few thousand records,
this is a viable option. However, when dealing with tens or
hundreds of thousands of records, views give the illusion that the
application is "locked-up".

It should be noted that generated browse, report and process
procedures use views to access data. Views, when coupled with a
key from the primary file, produce acceptable results, as long as
record filtering on fields other than the key elements is not used.

Keys and views are not the only options available to you. Dynamic
Indexes, or "static keys", incorporate the features of keys and
views into a single structure.

Dynamic index basics

Before you can use a dynamic index with a TPS file, you must
declare the index as part of the file structure. This is accomplished

http://www.clarionmag.com/cmag/v3/v3n6dynindex.html (1 of 6) [7/3/01 12:14:24 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Using Dynamic Indexes With TPS Files

by creating a file key and selecting Runtime Index as its type.

Before using a dynamic index, you need to build the index. . The
following defines the Clarion language BUILD statement as it
pertains to creating a dynamic index:

BUILD (index , components , [filter]) where:

index is the label of the dynamic index.

components is a comma-delimited list of
fields to sort on

filter is an optional expression to filter the
records

See the Clarion language reference for a complete description of
the BUILD statement.

Dynamic indexes create a temporary file that is exclusive to the
user who built it (when the file is closed, the temporary file is
deleted). This allows multiple users to create indexes specific to
their needs without affecting anyone else. However, because an
index is a static structure, updates to the file are not reflected in
the index after it is built.

After the index is built, you may use it to access records in a
sequential or random access manner. The RECORDS() function will
return the actual number of records in the index, which is very
useful when creating a process procedure that uses a progress
bar.

Note: when using Clarion versions after 5501, the
RECORDS() function returns the total number of records
in the index plus the records in the file.

If an application is using the legacy templates, dynamic indexes
may be used as the key on generated procedures such as browses
and reports. However, if an index is used on a browse, the locator
must be set to NONE. If a locator is required, you must handle it
manually (that is, hand-code it).

In the ABC templates, generated procedures will not use a
dynamic index. If you specify an index as the key, no sort order
will be used. The reason ABC template procedures do not directly
support runtime indexes lies in the FileManager class. When a file
is "registered" with the FileManager, the file’s keys and associated
key fields are saved using the FileManager.AddKey method. This
method retrieves a key’s component fields using the key property
PROP:Components. Since a dynamic index has no fields defined
until the index is built, the FileManager has no components to
register. The key definition stored by the FileManager is used
when setting sort orders, range limiting files or processing
locators. Therefore, since no component fields are initially defined

http://www.clarionmag.com/cmag/v3/v3n6dynindex.html (2 of 6) [7/3/01 12:14:24 PM]

Using Dynamic Indexes With TPS Files

for a dynamic index, the FileManager does not know how to what
indexed fields it is dealing with. This would be similar to creating a
generated browse procedure where the primary file for the browse
does not use a key but has "additional sort fields" defined. The
view engine has to handle the record sorting internally.

Why use a dynamic index?

If the generated procedures using the ABC templates do not allow
the use of developer-defined runtime indexes, what possible use
could there be for them?

The volume of data stored in today’s business applications
continues to grow, and files with hundreds of thousands to millions
of records are becoming very common. When an application is first
designed, it is almost impossible and definitely impractical to
incorporate every conceivable sort order that may ever be required
by the application into a file definition. However, by adding a
dynamic index to the file definition, you essentially eliminate this
problem. Remember that this discussion on dynamic indexes
applies to TPS files and not SQL databases, although indexes are
vital there as well.

As I stated earlier, views suffer from a speed problem in situations
that require record filtering. The following example illustrates this
fact:

Test file two fields defined as
string(10) with 262,000
records and no keys

Test Criteria sort on field1 and filter on
field2 by using SUB(field2,1,1)
= ‘M’, resulting in 468
selected records

Results: Dynamic Index 1.08 seconds

Results: View using Order and
Filter

9.09 seconds

Results: File using Sequential
Access

4:06 minutes

This simple test shows that a dynamic index is much faster than a
view, and processing a file sequentially should not even be
considered unless the order is unimportant and few records will be
filtered out. Although this is a very simple test, the same type of
result holds true when very complex file structures are used.

Therefore, if you are presented with a situation that requires
sorting and filtering a file’s records so that they can be processed
in some manner, and the file has a large number of records, a
dynamic index may very well be the perfect solution.

http://www.clarionmag.com/cmag/v3/v3n6dynindex.html (3 of 6) [7/3/01 12:14:24 PM]

Using Dynamic Indexes With TPS Files

Typical use

Dynamic indexes can be substituted for keys or views in almost
any situation. One of the deciding factors in whether or not an
index should be used is the number of records in the file, although
performance will generally be better using a runtime index. As I
mentioned earlier, the ABC template generated procedures do not
directly support dynamic indexes, so the developer (a.k.a.
programmer) will need to do something that is becoming more
foreign every day: write code.

To illustrate a simple, yet powerful use of runtime indexes, look at
the following pseudo-code, which uses a BUILD statement to
determine exactly which records a report will process, and in what
order:

Access:file.open
Access:file.usefile
Open(ProgressWindow)
Display
Open(Report)
Build(DynNdx,sortorder,filter)
ProgressBar{prop:rangehigh} = |
 records(DynNdx) – records(File)
Set(DynNdx)
Loop
 If Access:file.next() then break.
 ProgressBar{prop:progress} = |
 ProgressBar{prop:progress} + 1
 Print(ReportDetailBand)
End
Close(Report)
Access:file.close

In this example, a report may be printed in any sort order and
filtered on any fields. Simply set the sortorder and filter
parameters of the BUILD statement to whatever is required to
generate the report. Also, as a side benefit, the progress bar is
truly accurate. (Note: when calculating the records contained in
the dynamic index, remember to subtract the file record count
when using Clarion versions after 5501, as shown in the listing)
Although you could use a view with order and filter properties, the
report would take much longer to generate and the end-user
would not be informed as to the true progress of the report.

By simply replacing the "report specific" code (such as the print
statement) with some other type of processing code, you can
accomplish any record-specific task.

As is evident in the example, no range or filter checking exists in
the main processing loop. Since all filtering, which is synonymous
with range checking, is done in the BUILD statement, none of this
code needs to written. On this premise, multi-file filtering becomes
a simple task with very little additional coding required. For

http://www.clarionmag.com/cmag/v3/v3n6dynindex.html (4 of 6) [7/3/01 12:14:24 PM]

Using Dynamic Indexes With TPS Files

example, the following code will process file1 in some key order
and only include records on the report if a related record exists in
the filtered subset of records in file2:

Access:file1.open
Access:file1.usefile
Access:file2.open
Access:file2.usefile
Open(ProgressWindow)
Display
Open(Report)
Build(File2DynNdx,sortorder,filter)
ProgressBar{prop:rangehigh} |
 = records(DynNdx) – records(File)
Set(File1Key)
Loop
 If Access:file1.next() then break.
 ProgressBar{prop:progress} = |
 ProgressBar{prop:progress} + 1
 File2.DynNdxSortField = File1.RelatedField
 Set(File2DynNdx, File2DynNdx)
 If ~Access:file2.next() AND |
 File2.DynNdxSortField = File1.RelatedField
 Print(ReportDetailBand)
 End
End
Close(Report)
Access:file1.close
Access:file2.close

The statement

If ~Access:file2.next() AND |
 File2.DynNdxSortField = File1.RelatedField

takes into account that there may be multiple file2 records that
match the file1 related field. The purpose of this type of coding
technique is not to process (or in this case, print) file2 records,
but to include file1 records in the result set if any related record
exists in the filtered subset of file2.

By replacing this statement with

If ~Access:file2.fetch(File2DynNdx)

and removing the SET(File2DynNdx, File2DynNdx) statement, a
unique relationship between file1 and file2 is accomplished. The
following example illustrates this technique:

● file1 is an invoice header file that contains a customer code
that relates to a customer file

● file2 is a customer file that contains various customer
information

● a dynamic index is built on the customer file in customer

http://www.clarionmag.com/cmag/v3/v3n6dynindex.html (5 of 6) [7/3/01 12:14:24 PM]

Using Dynamic Indexes With TPS Files

code order and only includes records that have a specific zip
code

● When processing through file1, records (invoices) may be
included or omitted from processing based on whether or not
the file1.fetch(DynNdx) is successful.

The methodology presented in this example may be easily adapted
to ABC generated procedures. To do this, place the file with the
dynamic index into the procedure’s file schematic under Other
Files. Do not place it under the primary file as a related file (it
would become part of the generated view and the purpose of the
dynamic index would be defeated). In the embeds for the
procedure, place the build index statement(s) after the files have
been opened in INIT. The record checking code that uses the
index could be placed into a variety of places, such as the
ValidateRecord or TakeRecord embeds..

Summary

Dynamic indexes, also known as runtime indexes, can be a useful
tool when dealing with TPS files that hold a large number of
records. When you need a custom sort order and/or filtered subset
of records for a processing task, a dynamic index will generally
produce much faster results than a view. However, to be able to
realize these benefits, you must first overcome the fear of hand
coding a procedure.

Bill Florek is an Electrical Engineer who has been using Clarion since the first
release of the 2.0 DOS version. For the last 16 years, he has developed (and
redeveloped) an A/R system for the health care industry that includes extensive
use of EDI files in various flavors, mainly for insurance claim transmittals. Many of
Bill's electrical circuit designs have been patented, and he has also designed
various PC add-on cards for specific engineering purposes, with control software
written in Clarion. In his spare time Bill plays snare drum with a competition-level
Scottish Pipe and Drum band, and used his own all-Clarion software to create sheet
music and MIDI playback files for Celtic-style drumming.

Reader Comments

Add a comment

Outstanding Article!!! extremely timely , worth the cost of...
Very good article: I've used Dynamic Indexes to some...
To answer Jim's question: Dynamic Indexes are specific...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n6dynindex.html (6 of 6) [7/3/01 12:14:24 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10565
http://www.clarionmag.com/cmag/discuss.frm?articleID=10565&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10565&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10565&position=3
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Understanding Stack And Heap Memory In 32 Bit
Clarion Applications

by John Gorter

Published 2001-06-05

In Clarion, as well as in C and C++ (and unlike Java), you need to
be aware of possible memory leaks and thus be aware of the side
effects of declaring variables. There are three pools of memory
where any of your declared variables can reside:

The Stack This is where the local variables reside for the
duration of the procedure call (the scope).

The Heap Variables allocated reside here until they’re
explicitly freed or de-allocated. MS Windows32
mentions two types of heap in the article
Managing Heap Memory in Win32, by Randy
Kath, which can be found in the MSDN. I won’t
elaborate on this as the differences are of no
relevance to this article.

Static
Storage

This is where the global and static variables
reside while the program is executing.

The Stack

Every procedure or function has its own stack. The stack is a piece
of memory used to store information related to procedure or
method calls. When a procedure is called, the system places the
return address of the next machine instruction to execute on the
stack so the CPU can go back were it came from and continue,
after the procedure finishes executing. The stack is a single
contiguous, strictly linear block of memory. Besides the bytes it
contains, a stack has a pointer that indicates which memory
address is the top of the stack.

Whenever a procedure is called, a stack frame is pushed onto the
stack, which includes room for all of the procedure’s parameters,
local variables and the return address (and possibly other
information). The size of the stack frame is partly calculated by the
number and type of declared local variables. When local variables

http://www.clarionmag.com/cmag/v3/v3n6memory.html (1 of 15) [7/3/01 12:14:29 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org
http://msdn.microsoft.com/library/techart/msdn_heapmm.htm
http://msdn.microsoft.com/

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

are larger than a certain size, they are automatically allocated on
the heap, but as I want to show the different allocation methods I
won’t use extraordinary large variables in the example code.

Whenever a procedure returns, it de-allocates its own stack frame
by re-adjusting the stack pointer to the position where it was
before the procedure was called. Procedures called later can and
will overwrite the local variables of the terminated procedure. This
re-adjusting of the stack pointer is also known as stack-unwinding
or simply unwinding the stack.

Here’s a small example program which calls a procedure and
assigns a LONG to a &LONG:

 program

 map
 LocalProcedure (), long, pascal
 end

glo:long &long

 code
 glo:long &= (localprocedure())
 stop(glo:long)
 stop(glo:long)

LocalProcedure procedure()
loc:long long
 code
 loc:long = 3
 return address(loc:long)

This (obvious) example shows a problem one might encounter.
When LocalProcedure is called, room for variable loc:long is
allocated on the stack. Lets see what happens. As Figure 1 shows,
LocalProcedure is initiated, the return address is stored on the
stack (00401038), and room is allocated for local variables (enter
4,0).

http://www.clarionmag.com/cmag/v3/v3n6memory.html (2 of 15) [7/3/01 12:14:29 PM]

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

Figure 1. Disassembly of the call to localprocedure (part1).

Next, the value 3 is stored in the local variable loc:long at
address 0063FE20h.

Figure 2. Instruction storing value in local variable.

The return value, the address of loc:long at address 0063FE20, is

http://www.clarionmag.com/cmag/v3/v3n6memory.html (3 of 15) [7/3/01 12:14:29 PM]

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

stored in register EAX, the register that holds the return value.

Figure 3. Arranging the return value.

The leave instruction restores the ESP (SP = Stack Pointer) to
point to the return address 00401038.

http://www.clarionmag.com/cmag/v3/v3n6memory.html (4 of 15) [7/3/01 12:14:29 PM]

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

Figure 4. Stackpointer re-adjustment.

The procedure finalizes by unwinding the stack and returning the
address of loc:long, which in turn is assigned to glo:long. The
first STOP() receives a parameter with the value equal to the value
pointed to by glo:long, which at the moment of calling is still 3.

As Figure 5 shows, just before the call to STOP(), the value
glo:long points to is stored in the EAX register. Note that it is not
overwritten yet and still contains the value 3!

http://www.clarionmag.com/cmag/v3/v3n6memory.html (5 of 15) [7/3/01 12:14:29 PM]

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

Figure 5. Passing the parameters to STOP().

The stack pointer in ESP points to the memory address which will
be used by the next procedure at address 00401000h. This is
illustrated in the following screenshot.

http://www.clarionmag.com/cmag/v3/v3n6memory.html (6 of 15) [7/3/01 12:14:29 PM]

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

Figure 6. Disassembly of the call to Stop() .

The internal procedure STOP allocates its own local variables etc,
executes and returns. Then the next STOP() is called, but now the
value pointed to by glo:long is a leftover from the preceding
STOP(), in this case 16. After the call to the STOP() procedure, the
stack is restored to the value it was before the call, address
0063FE2Ch. Note the leftovers from the procedure call in yellow
displayed in the following figure.

http://www.clarionmag.com/cmag/v3/v3n6memory.html (7 of 15) [7/3/01 12:14:29 PM]

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

Figure 7. The memory after the call to Stop() .

The value glo:long points to, this time 00000010h, is stored in
the EAX register as a parameter to CLA$PushLong, resulting in a
dialog box showing the value 16.

http://www.clarionmag.com/cmag/v3/v3n6memory.html (8 of 15) [7/3/01 12:14:29 PM]

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

Figure 8. Disassembly of the next call to Stop().

The Heap

Each process also has its own heap, which is a large pool of
memory. A process, in the simplest terms, is an executing
program. The heap, unlike the stack, is not allocated in contiguous
order. You can allocate heap memory using the NEW() function.
The heap manager, which I won’t discuss here, allocates the
memory and returns a pointer to this memory. The heap is where
most memory leaks occur.

Here’s another example, this time using the heap.

 program

 map
 LocalProcedure (), pascal
 end

 code
 LocalProcedure()

LocalProcedure procedure()
loc:long &long

 code

http://www.clarionmag.com/cmag/v3/v3n6memory.html (9 of 15) [7/3/01 12:14:29 PM]

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

 loc:long &= new long
 loc:long = 5
 stop(loc:long)
 dispose(loc:long)

Figure 8 shows the disassembly of LocalProcedure,which starts
by storing the return address (00401038h), allocating room for the
pointer (enter 4,0), and assigning a value to the pointer through a
call to Cla$NewMemZ.

Figure 9. Disassembly of heap memory allocation.

If Cla$NewMemZ is successful, it returns a pointer to the allocated
memory. The pointer is stored in the appropriate variable, which is
a local variable, which is allocated on the stack! When the
procedure terminates, the unwinding of the stack deletes the
pointer to the allocated memory. If there wasn’t a DISPOSE()
action before this unwinding starts, I’ve just caused a memory
leak! The system marks the memory allocated as reserved, but the
program cannot reach it because the pointer is not available
anymore.

The next figure shows the call to _free(), which takes a
parameter that points to the memory that can be released, in this
case the memory pointed to by loc:long (address 08000FD8h), so
the allocated memory is de-allocated before the stack-unwinding
starts.

http://www.clarionmag.com/cmag/v3/v3n6memory.html (10 of 15) [7/3/01 12:14:29 PM]

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

Figure 10. Freeing the allocated memory.

Static Storage

Global and static variables are stored in the static storage area of
the program. This is memory allocated for the entire duration of
the program. There are some reasons not to use global memory:

● If two different modules each have a public global variable
with the same name, the modules cannot be put together
into a single program.

● Re-entrant code usually modifies its own local data. This is
not possible when using global variables. Global memory is
shared by all procedures in the running process.

● Because global variables can be read and written from
everywhere in the code, it is difficult to analyse their effect
on a program’s behavior. Seemingly unrelated procedures
can have unexpected side effects when they depend on global
variables.

http://www.clarionmag.com/cmag/v3/v3n6memory.html (11 of 15) [7/3/01 12:14:29 PM]

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

Here’s one final example:

 Program

 map
 end

glo:long long

 code
 Glo:long = 7
 stop(glo:long)

Where the global variables reside can be read from the generated
map file, however, I assume that these globals are shown at
Relative Virtual Addresses (RVAs) based on a load-address of
00400000h. Since the EXE is the first module that is loaded when
an application starts, reallocations are not necessary because
there never will be a conflict at the given address and thus the
addresses in the map file for the EXE always display correct
values.

This is not always the case when dealing with DLLs. DLLs are
loaded at a "preferred address." Based on this address, function
pointers receive their values. However sometimes, when a DLL is
loaded in an address space of the executing procedure, another
DLL is already loaded at the given address. When this occurs, the
system redirects the function pointers to the right address with
help of the relocation table in the DLL, in a process called
relocating. For more information on this topic see Microsoft’s
online documentation, specifically the article Peering Inside The
PE: A Tour of the Win32 Portable Executable File Format by Matt
Pietrek.

The following figure shows the generated map file, which shows
where the uninitialised data is going to be mapped when loaded, in
this case address 00402000h.

http://www.clarionmag.com/cmag/v3/v3n6memory.html (12 of 15) [7/3/01 12:14:29 PM]

http://msdn.microsoft.com/
http://msdn.microsoft.com/library/techart/msdn_peeringpe.htm
http://msdn.microsoft.com/library/techart/msdn_peeringpe.htm

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

Figure 11. Map file generated for the current project.

When executing the program, glo:long, at address 00402000h, is
assigned a value of 7. This memory is allocated for the entire
duration of the program, hence pointers to this variable are safe to
use.

http://www.clarionmag.com/cmag/v3/v3n6memory.html (13 of 15) [7/3/01 12:14:29 PM]

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

Figure 12. Storing values in global variable.

Summary

There are three important memory areas, these are:

● Stack - local variables and parameters
● Heap - memory allocated with NEW(), pointer is placed on

stack
● Static storage - global and static variables

The main reason to use stack memory is simplicity; the compiler
takes care of allocating and de-allocating memory without giving
cause for concern over memory leaks.

There are two reasons I can think of to use heap memory. The
first reason concerns the extra overhead of stack page allocation.
Because the stack is set aside by the operating system in pages of
fixed memory, it is possible that slightly more memory is being
allocated than the same allocation on the heap. The second reason
involves the control over scoping issues. If an object is allocated
on the heap, a pointer to the object is placed on the stack. You can
then give the value of the pointer to another pointer outside the
scope of the function and use the object after the function
terminates.

http://www.clarionmag.com/cmag/v3/v3n6memory.html (14 of 15) [7/3/01 12:14:29 PM]

Understanding Stack And Heap Memory In 32 Bit Clarion Applications

If you need complete control for the scope of the variable, use
NEW() to allocate memory, which uses heap memory. Remember
always to DISPOSE() or you can have serious memory leaks.

John Gorter has been programming in Clarion for three years, before which he
studied business informatics. He has just passed the MCSD exams and is now busy
creating web applications with C55 Internet Connect. John lives in the Netherlands,
and when not programming, reads about programming.

Reader Comments

Add a comment

A must have book for any advanced developer library is...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n6memory.html (15 of 15) [7/3/01 12:14:29 PM]

mailto:gjohn@tebenet.nl
http://www.clarionmag.com/cmag/comments.frm?articleID=10599
http://www.clarionmag.com/cmag/discuss.frm?articleID=10599&position=1
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Interview: James Orr On The Public PIM

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Interview: James Orr On The Public PIM

Published 2001-06-12

James M. Orr is the founder and Director of Marketing of the
OpenDB Alliance, an organization which is promoting the "Public
PIM" database design as a proposed industry standard for
employing many-to-many relationships and recursive
relationships.

Where did you get the idea for the OpenDB Alliance, and
more specifically the Public PIM, your concept for a
common database structure for personal information
manager applications?

James: The idea came over a whole lot of years, really. I had
gone through just about every database resource, program, 4GL,
3GL, 5GL known to man, and I always seemed to hit a wall. I
always wanted many-to-many [relationships between tables], but
trying to find some information about many-to-many was like
pulling hen’s teeth. You go to all the major bookstores, and you
find all these books that are three inches thick, and you find a half
a page about many-to-many relationships. I’ve sort of self-taught
myself about foreign keys and many-to-many and the whole nine
yards. And it’s come down to those six tables that are in this
[Public PIM] working example that I’ve derived. It’ll do many-to-
many, it’ll do recursive [relationships], it’ll do whatever you want it
to do.

If you’re successful, what will happen?

Everybody will be using this structure, and communication
between programs could be an awful lot simpler. [Developers] will
think along the lines of Public PIM and its extensible structure. It’ll
be the status quo way of doing things, or you’ll be able to
recognize it as a style, and if it’s written in this style then you
know that you can do certain things.

So this is kind of like a design pattern for databases?

Exactly. And that’s really all it is. It’s a way of doing something.
But now I’m trying to present it to others, the Clarion world, DB2,
Informix, all of that, to just use it as a model, like a Hello World
[program]. If there’s anything open source about it, it is the

http://www.clarionmag.com/cmag/v3/v3n6interview-orr.html (1 of 5) [7/3/01 12:17:02 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Interview: James Orr On The Public PIM

structure, the naming conventions that I’m using, I’m hoping to
use those to make it intuitive to people to explain many-to-many,
to do things in a more aggressive way than they do in those three
inch thick books I was talking about. I think it certainly helps a lot
for newbies to the world of relational databases, and especially
with the web, because people are going to have to use more many-
to-many relationships [in web databases].

Your web site says: "This is an attempt to create a defacto
structure standard for accessing database data." Are you
interested in more than just PIM databases?

This goes back to my history of going to a lot of seminars. There is
always somebody asking "who’s got a problem?" There’ll be
someone back in the room of a hundred people, and he wants to
talk about blue widgets. There’s 99 other people in the room who
are trying to convert his problem into their problem and then think
about the particular database that they’re working with. My
thought is that the [Public PIM] [design] that we’re talking about
here is something that everybody else in the world knows about,
at least if they’re trying to do databases.

So it’s something that everybody can communicate on. It happens
to be using the same tables that a majority of the PIMs use. The
term Public PIM was really coined by Jesse Berst, and I just
borrowed it from him. Berst and one of the other authors [at his
site]. So here comes OpenDB, and the working example is just a
way to demonstrate [the concept], and how it works, and how it
can be very powerful. You can turn it into almost anything you
want to, plus it shares data.

The way I think of this database structure, it is as extensible as
XML is. If you want to design something, use the basis here and
you can create any kind of application you would choose to use.
That’s a bit of a problem with XML too. Before you sit down and
work with it, you think it must be some amazing thing. And really
it’s just a way of describing data. That’s pretty simple. It can be
used in sophisticated ways, but the underlying concept is simple.

That’s the challenge. You’ve got to get it down to a common
terminology, a common problem. Do you know how many different
thousands of PIMs there are? There are a tremendous number of
these PIMs that would become a lot more powerful if they used
[the Public PIM database design].

Does your design specify the actual table structures?

Dave : I guess a better answer would be that there are
rudimentary things that establish the structure and the things that
will allow multiple apps to share data so what a person learns from
the basic Tables would give them the tools to go farther with the
design even though I have some pretty strong feelings about
keeping it simple.

Do you define the foreign keys?

http://www.clarionmag.com/cmag/v3/v3n6interview-orr.html (2 of 5) [7/3/01 12:17:02 PM]

Interview: James Orr On The Public PIM

Yes, we use a particular naming convention as part of what we
consider an intuitive way to recall their use in the schema

You mentioned XML. Have you looked at defining a DTD for
the XML data interchange?

We don’t have a DTD at this time but the standard has been set
now for XML Schema so I am sure we will use it.I am working with
a company called Popkin right now, you might be familiar with
them. Their Envision XML product should be able to turn this
[database design] into a DTD and also be able then to export this
to Oracle or MySQL or any of those.

Is everything open source?

I don’t give everything away. My working example, I don’t give the
code away on that to everybody. But if I preloaded a database
with a buyer’s guide, and sold it to a magazine, then they have not
only a buyer’s guide but they also have a program to put their own
stuff in. I would love to be able to massage Outlook into doing
some of the things I’m now doing with [the Public PIM]. I just
haven’t found the right people to work with yet.

Do you have the example Public PIM in Access files only?

I have it in SQL 7 as well and always looking for people who want
to use different databases and LDAP

What’s your focus at the moment?

Well, I’m talking to you, and I’ve had a couple of other folks in the
publishing world [show interest]. That buyer’s guide? I’d like to
promote to publishing firms. The database itself [is well suited to]
keeping track of projects, and leads, and things like that. And
maybe they’ll write about it.

I’m just being very patient, and improving on everything that I
can, and chatting with everybody I can. It’s made some headway.
I’m trying to get going with the SQL 7 version [of the web PIM].

You have an online PIM database available to the general
public. Does that raise any security concerns? Could it
become a resource for, say, spammers?

I guess I’ll have to face that issue when I come to it. You can’t be
so cautious that you don’t get anything done, but I understand
what you’re saying.

What’s your background?

[I went] out of the Navy into working at IBM as a librarian in their
Houston office, then at the Carbide Employees Federal Credit
Union where I got into programming. I went to Service Bureau

http://www.clarionmag.com/cmag/v3/v3n6interview-orr.html (3 of 5) [7/3/01 12:17:02 PM]

Interview: James Orr On The Public PIM

Corporation, and to California with them. Then I switched to sales,
initially selling the credit union package. When I know something,
I can sell it really well. It’s just like [Public PIM] – if I can get the
tools in front of me, this will be easy to sell because it is simple.

Resources

Web site http://www.opendb.org

Mailing
Address

OpenDB Alliance
5203 Highway 3
Dickinson, Texas 77539-6833

Email asaptt@wt.net

ICQ 22993101

Telephone 281/337-0268

GIF of
main
screen

ftp://208.150.237.25/publicpim/publicpim.gif

GIF of ER
diagram.

ftp://208.150.237.25/publicpim/publicpimER.gif

Other ER diagram is done with relation from
www.msbsoftware.ch/relation.htm

ZIP of new
Access97
MDB with
recursive
structured
join tables

ftp://63.111.238.120/publicpim/

Working
Example
(download)

ftp://63.111.238.120/PublicPIM

Working
Example
(online)

www.opendb.org/WEBpp/test.asp

http://www.clarionmag.com/cmag/v3/v3n6interview-orr.html (4 of 5) [7/3/01 12:17:02 PM]

http://www.opendb.org/
mailto:asaptt@wt.net
ftp://208.150.237.25/publicpim/publicpim.gif
ftp://208.150.237.25/publicpim/publicpimER.gif
http://www.msbsoftware.ch/relation.htm
ftp://63.111.238.120/publicpim/
ftp://63.111.238.120/PublicPIM
http://www.opendb.org/WEBpp/test.asp

Interview: James Orr On The Public PIM

Reader Comments

Add a comment

OK, I'll ask the stupid question -- what does PIM stand...
Personal Information Manager, I believe.

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n6interview-orr.html (5 of 5) [7/3/01 12:17:02 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10411
http://www.clarionmag.com/cmag/discuss.frm?articleID=10411&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10411&position=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

	clarionmag.com
	Clarion Magazine
	Creating #AT Statements The Easy Way
	Handling Multiple Update Forms
	Windows-Style List Box Sorting Revisited
	Extending ABC's Edit In Place - Part 2
	Clarion Magazine -
	Handcoding Tree Lists Part 2
	Tip: How To Start A Browse With The Last-Used QBE Query
	Extending ABC's Edit In Place - Part 1
	ClarioNet Released!
SoftVelocity Debuts New Specialized Thin Client for Clarion Applications
	Handcoding Tree Lists Part 1
	Using Dynamic Indexes With TPS Files
	Understanding Stack And Heap Memory In 32 Bit Clarion Applications
	Interview: James Orr On The Public PIM

	ODPOCMCBFJMGCDHPOINFHKIJPMCFIHEH:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	FMAHFECIJHOKLLJMAHCDECBENFAKCKMLAM:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	CFMBKONNBMFDNENFCIPGMGGMFKNPHGCN:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	OABPDAOMJNBCEMMCOJENAHILBHEGEFAI:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	GDMFPHHKEKGMDNCCNILILOEBEHDGMJAN:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	CJCIMNPBIHELKENDEOPHJKAMNHIKDINH:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	LEKLFLCLIIDLOGEBONHKCJNHDKALPLFMFM:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	EFIJHIOJDOBBDDMMCJBBOIGKLDADIMEK:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	IEMALFANCGJBPPJLIFMFKMIJLNGBACMG:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	KDOLCANAKMLMFNKOCABKKAEJEPLCFFMC:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	PIFEAMLDIIEHFODAJKFPCGGDGEDDGHHG:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	DEKCOAPEBFOIKIBMLPIBGKPDINNMAOOD:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	FBPJGDLEENKPCDLKAJAHKBKFOLNBLFDA:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

