
Clarion Magazine

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Subscribe/Renew; Back Issues On
Sale
You can save 25% on back issue
purchases during our Summer Back
Issue Sale. Just follow the link to the
order form (login required) and if you're
missing any back issues, the order form
will calculate the cost and apply a 25%
discount. If you don't see any back issue
options on the order form, that means
you're all caught up. You can also use
this form to extend your ClarionMag
subscription.
Posted Friday, August 03, 2001

Understanding Recursion - Part 1
What is recursion? Ask that question of
any group of developers and chances are
pretty good you will receive several
different answers. Some of the answers
will be correct and others will
be...interesting.
Posted Friday, August 03, 2001

Using The Web Browser OCX
Have you ever wanted to display an
HTML page from within your application
without all the hard work and heartache
of interfacing to Internet explorer? How
about viewing and editing a document or
spreadsheet without loading up Word or
Excel? Well now you can! Ever since
Internet Explorer 4 Microsoft has been
supplying the Web Browser OCX, a
wonderful little control which will do all
this for you, and what’s more it is
incredibly easy to use!
Posted Thursday, August 02, 2001

A FileManager For Marked Deleted
Records
Dennis Evans recently created a
template and two classes to manage
records marked as deleted (rather than
physically deleted), as described in a

xAppWallpaperManager
Version 1.2

xQuickFilter v2.0.2
Released

FQL Clarion Scripting
Language Near Release

Clarion Third Party
Profile Exchange
Update

SealSoft Releases
xTipHotKey Class 2.0

Do you see a
need for Linux
versions of
your
applications?

http://www.clarionmag.com/index.html?limit=16 (1 of 4) [8/7/01 1:16:52 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/\\etc.kcug.org
http://www.clarionmag.com/cmag/purchase.frm
http://www.clarionmag.com/cmag/purchase.frm
http://www.clarionmag.com/cmag/news01-08.html#item3
http://www.clarionmag.com/cmag/news01-08.html#item3
http://www.clarionmag.com/cmag/news01-08.html#item2
http://www.clarionmag.com/cmag/news01-08.html#item2
http://www.clarionmag.com/cmag/news01-08.html
http://www.clarionmag.com/cmag/news01-08.html
http://www.clarionmag.com/cmag/news01-08.html#item5
http://www.clarionmag.com/cmag/news01-08.html#item5
http://www.clarionmag.com/cmag/news01-08.html#item5
http://www.clarionmag.com/cmag/news01-08.html#item4
http://www.clarionmag.com/cmag/news01-08.html#item4
http://www.paragondandd.com/platinum.htm
http://www.nicetouch.com/clarion/default.htm
http://www.ktsoftware.com/

Clarion Magazine

recent ClarionMag article. This page
contains usage notes on the class, and a
link to the source.
Posted Wednesday, August 01, 2001

Weekly PDF for July 22-28, 2001
All Clarion Magazine articles for July 22-
28, 2001 in PDF format.
Posted Monday, July 30, 2001

I Didn't Need That Much Detail
Some clients like big reports. Very big
reports. Reports that make mortal print
drivers quiver and the Clarion IDE barf
up cookies. Andrew Guidroz brings out
his Binford 6500 IDE Grappler and shows
how to fit big reports into that small
space in the IDE.
Posted Thursday, July 26, 2001

When Clarion COM Will Not Do
Jim Kane reviews some COM
fundamentals, and then shows how you
can take matters into your own hands
and extend Clarion’s COM abilities for
those times where Clarion's native COM
will not do what you want.
Posted Tuesday, July 24, 2001

Weekly PDF for July 15-21, 2001
All Clarion Magazine articles for the week
of July 15-21, 2001, in PDF format.
Posted Monday, July 23, 2001

Recovering Deleted Records
Fans of the old Clarion (DAT) file format
know that unless you use the RECLAIM
attribute, deleted records still exist in
the data file. That isn't the case for most
other drivers. Here's how to make
records recoverable, using two new
methods in Clarion 5.5.
Posted Thursday, July 19, 2001

Avoid My SQL Mistakes!
For newcomers to SQL, the pitfalls are
many. Mauricio Nicastro has been there
and done that. In this article he
describes the setbacks he encountered
converting his applications to SQL, and
the solutions to those problems.
Posted Wednesday, July 18, 2001

Using Procedure Category to Split
Apps into DLLs

http://www.clarionmag.com/index.html?limit=16 (2 of 4) [8/7/01 1:16:52 PM]

http://www.clarionmag.com/cmag/v3/files/cmag-2001-07-28.pdf
http://www.clarionmag.com/cmag/v3/files/cmag-2001-07-21.pdf

Clarion Magazine

In Clarion 4 a new field named Category
was added to the Procedure Properties
window. A new tab with Procedures
sorted by Category was also added to
the Application Tree window. As Carl
Barnes explains, these new features can
be a great help when it comes time to
split an application up into DLLs.
Posted Monday, July 16, 2001

Weekly PDF for July 1-7, 2001
All Clarion Magazine articles for July 1-7,
2001 in PDF format.
Posted Friday, July 06, 2001

"Sometimes" Lookups
Clarion's ability to validate data with
lookups is great, but what happens when
you want to only do the lookup
sometimes? Steve Parker tells all.
Posted Friday, July 06, 2001

Implementing Read-Only
Checkboxes
Many Clarion developers have
discovered that the READONLY attribute
is not available for checkbox controls.
Although you can use the DISABLE
attribute, it is often desirable to use the
READONLY attribute for the sake of
consistency in the user interface. Jeff
Slarve shows how it's done.
Posted Thursday, July 05, 2001

Using MATCH In Filters and Regular
Expressions
Filters for reports and browses seem to
get increasingly complicated over time.
In this article Carl Barnes show a trick
you can do with MATCH() that will let
you create more powerful filters, and
which do not require any more code than
a simple INSTRING() but can search for
multiple substrings.
Posted Tuesday, July 03, 2001

A Column by Any Other Name Is Not
A Data Element
This Whitemarsh paper describes an
approach to achieve enterprise-wide
data standardization through the
specification, implementation, and
maintenance of data elements within the
context of a metadata-repository, CASE-
like environment.

http://www.clarionmag.com/index.html?limit=16 (3 of 4) [8/7/01 1:16:52 PM]

http://www.clarionmag.com/cmag/v3/files/cmag-2001-07-07.pdf
http://www.clarionmag.com/cmag/v3/columnbyanyothername.pdf
http://www.clarionmag.com/cmag/v3/columnbyanyothername.pdf

Clarion Magazine

Posted Monday, July 02, 2001

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/index.html?limit=16 (4 of 4) [8/7/01 1:16:52 PM]

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Understanding Recursion - Part 1

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Understanding Recursion - Part 1

by Dennis Evans

Published 2001-08-03

What is recursion? Ask that question of any group of developers
and chances are pretty good you will receive several different
answers. Some of the answers will be correct and others will
be...interesting.

Why all the different answers and confusion about the subject? I
really don’t know, but I suspect it has to do with the fact that the
definitions found in many programming books are confusing and
vary from one to the next. In addition, there are different types of
recursion; head, tail and mutual are the common types.
Introductory level textbooks seldom discuss the different types,
and again the definitions in the advanced level books often vary.
Recursion is not a complex subject and it does not require a great
deal of study, but you probably won't learn it gradually. Instead
you're more likely to struggle with the idea of recursion, then all at
once understanding will happen and you will wonder what all the
fuss was about.

One of the best definitions of recursion I have ever read is this:
"Recursion is nothing more than a different way of looking at
repetition."1 Repetitive problems are commonplace in
programming. Attempting to solve a repetitive problem within the
constraints of a computer program can be difficult since there are
only two ways to solve such a problem: one is recursion, and the
other is iteration.

Recursion and iteration

Both recursion and iteration simply perform an action or process
on an object a finite number of times. The difference is how the
repetition is controlled and what is processed. Procedures using
iteration are controlled with a looping statement and will perform
the same task on the same object. Recursive procedures are
controlled by a conditional statement and perform the same task
on a smaller version of the object. Of the two, iteration is used
more often because it is generally more efficient, and the solution
is often intuitive. What I'll attempt to accomplish in this article is
to explain the difference between iteration and recursion,

http://www.clarionmag.com/cmag/v3/v3n7recursion1.html (1 of 6) [8/7/01 1:19:58 PM]

http://www.clarionmag.com/cmag/subscribe.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Understanding Recursion - Part 1

specifically tail recursion. In addition, I will examine what happens
when a program uses recursion, and I’ll answer the most
important question of when to use recursion instead of iteration.

Tail recursion

I'll be using tail recursion because it is a commonly used type, not
because it is simpler or faster or betterthan other types of
recursion. Tail recursion does however have one advantage over
some of the other types. : any procedure written using tail
recursion may also be written using iteration. I will begin with a
brief explanation of the stack, local scope and procedure calls.
Next, will be an example of iteration from Clarion that is often
confused with recursion. Then I will solve a simple programming
problem using both recursion and iteration, compare the code from
the two solutions, and discuss the details of recursion and what
takes place inside the computer during recursion. There is nothing
complex in the remainder of this article and you do not need to be
a computer science type to understand the text. I will assume you
are comfortable with procedures and that you are familiar with
parameters and local variables.

The stack

The following description of a stack, scope and procedure calls will
be a general account of what these objects are and how they are
used. For a detailed discussion see the article 'Understanding
Stack and Heap Memory in 32 bit Clarion Applications,' by John
Gorter.

 A stack is a location in memory used to provide temporary
storage. The stack has a fixed stating point and will grow upwards
towards the heap using available memory. Review Mr. Gorter's
article if you are not sure what the heap is or how it is used. When
temporary storage is required the stack will increase in size by the
number of bytes required to store the object. A long variable
would increase the stack by four bytes; a STRING(10) would cause
an increase of ten bytes and so on. Placing a variable on the stack
is traditionally called pushing, and removing a variable is call
popping.

http://www.clarionmag.com/cmag/v3/v3n7recursion1.html (2 of 6) [8/7/01 1:19:58 PM]

http://www.clarionmag.com/cmag/v3/v3n6memory.html
http://www.clarionmag.com/cmag/v3/v3n6memory.html

Understanding Recursion - Part 1

Figure 1. Example memory layout

Objects are pushed and popped on the stack in Last In First Out
(LIFO) sequence. In other words, if a program pushes variables A,
B and C onto a stack, they will be popped off the stack in the order
C, B and A. The location of the variables is tracked internally by
the software with a stack pointer. Every procedure call made uses
the stack to store some specific information, including the
parameters, if any, and data local to the procedure.

Figure 2. Local scope

Assume for the moment that a program somewhere is running and
the stack pointer is currently refers to a memory location with an
address of 1000. The program calls a procedure with two
parameters, both LONGs. The prototype would be something like:

ProcOne procedure(long X, long Y)

http://www.clarionmag.com/cmag/v3/v3n7recursion1.html (3 of 6) [8/7/01 1:19:58 PM]

Understanding Recursion - Part 1

Inside ProcOne is another procedure call to ProcTwo. ProcTwo has
one string parameter of 10 bytes in length. The stack pointer
starts at memory address 1000. When the call to procedure one is
made the program increases the size of the stack by eight bytes,
four bytes for each of the LONG parameters. The call to ProcTwo
increases the size of the stack by ten bytes. The result is the scope
of the variables X and Y is local to ProcOne. ProcTwo can not
access the variables X and Y because it does not know where they
are located in memory, or that they even exist. There are other
ways that compilers enforce the scope of variables and data, but
for the purpose of recursion this is the method of interest.

In addition, the stack is used to store some other information
during a procedure call. Exactly what is stored and the sequence
the items are stored in is not critical at the programming level. You
only need to know that the information is stored and the action
does have a significant impact on performance when using
recursive procedures.

Procedure calls

Fortunately the compiler, the operating system, and the hardware
handle the details of making a procedure call. However in order to
understand recursion, you need to understand some of the actions
that take place during a procedure call. Again, this is going to be a
thumbnail view. Assume a program has a procedure defined with a
prototype of MyProc(long X, string S). When a program
encounters a call to MyProc execution stops and a very specific set
of actions are performed. A piece of memory called a Stack Frame,
sometimes referred to as an Activation Record, is created.2 The
term Stack Frame refers to the block of memory used by a single
procedure, and allocated on the stack. Part of the stack frame is
the caller’s responsibility and part belongs to the callee. The caller
evaluates the parameters and pushes them onto the stack.

http://www.clarionmag.com/cmag/v3/v3n7recursion1.html (4 of 6) [8/7/01 1:19:58 PM]

Understanding Recursion - Part 1

Figure 3. A stack frame

Calling convention

The above example uses the
C calling convention or style
of passing parameters.
Parameters are stored on
the stack in the order they
are defined, from left to
right. The Pascal style is the
exact opposite; parameters
are stored from right to left.
Most compilers, using the C
and Pascal style, push the
parameters onto the stack.
The callee will then remove
the parameters from the
stack by placing them into a
register, or the callee will
use the parameter as an
address to locate the
parameter in memory.
Clarion uses a slightly
different approach, what is
referred to as the JPI calling
convention. JPI style places
the parameters directly into
the registers, bypassing the
additional step of pushing
the parameters onto the
stack. Each of these three
styles has some advantages
and disadvantages. None of
this has anything to do with
recursion; I’ve included it
simply as some general
information.

After the caller pushes the
parameters onto the stack,
information needed to resume
execution is placed on the stack.
This information includes the
current state of the registers and
the next program instruction to
execute. The callee will then
reserve space for local variables
created inside the procedure.
These are the local named
variables you add to the
procedure.

Next, the callee will reserve space
on the stack for any temporary
values created during the
execution of the procedure.
Temporary values are the result
of expressions like (a + b) * c.
An expression written in that
manner will be evaluated in
sequence, something like: Temp_1
= a + b, Temp_2 = Temp_1 * c
where Temp_1 and Temp_2 are
compiler generated variables2.
Once all those actions are
completed the callee’s code will
execute. If the callee calls another
procedure, the entire process is
repeated, but this time the callee
becomes the caller (the gray
shaded area in Figure 3). All of
the stack space used for each
procedure call is temporary, when
the callee completes the memory
is returned to the program.

Please remember that all of the
above is a generic example and
the exact sequence will vary slightly from one platform to another
and from compiler to compiler. The exact sequence is not all that
critical; just know the sequence happens for each and every
procedure call, and is very expensive in CPU time and clock cycles.
Granted, the CPU deals with nanoseconds, but the calling
sequence for a procedure still requires considerable effort on the
part of the processor.

You should now have a good grasp of how procedure calls use the
stack; this information is essential to understanding how recursion
really works. Next week I’ll apply this theory to recursive calls in
Clarion.

http://www.clarionmag.com/cmag/v3/v3n7recursion1.html (5 of 6) [8/7/01 1:19:58 PM]

Understanding Recursion - Part 1

References

1. Nell Dale and Chip Weems, ‘Pascal’, Second Edition. (One
of the better introductory programming texts available.)

2. Ravi Sethi, ‘Programming Languages, Concepts and
Constructs’, Second Edition

Dennis E. Evans is retired from the U.S. Army. During his time in the military he
spent twelve years in the Armored field and eight years in information
management. He currently works as an independent contractor and resides in
Marion, Illinois with his wife Beverly and their two children Christopher and Jessica.
His hobbies include historical simulations, reading and studying different
programming languages.

Reader Comments

Add a comment

As Dave Harms once told me the really difficult part about...
1. By convention followed by Intel processors, the (call)...
Mr. Solovjev, You are absolutely correct, systems...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n7recursion1.html (6 of 6) [8/7/01 1:19:58 PM]

mailto:bevdennis@earthlink.net
http://www.clarionmag.com/cmag/comments.frm?articleID=10607
http://www.clarionmag.com/cmag/discuss.frm?articleID=10607&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10607&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10607&position=3
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Using The Web Browser OCX

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Using The Web Browser OCX

by Matt Grossmith

Published 2001-08-02

Have you ever wanted to display an HTML page from within your
application without all the hard work and heartache of interfacing
to Internet explorer? How about viewing and editing a document
or spreadsheet without loading up Word or Excel? Well now you
can! Ever since Internet Explorer 4 Microsoft has been supplying
the Web Browser OCX, a wonderful little control which will do all
this for you, and what’s more it is incredibly easy to use!

The Microsoft web browser OCX allows the developer to display
HTML pages, Word documents and Excel spreadsheets on a
window. It has a simple set of methods for navigating around and
supports all the normal web browsing and document editing stuff.

To use this control in your application, create a new window and
place an OLE (a.k.a. OCX) control template on it. Using the right-
click properties tab of the OCX control, enter a use variable for the
OCX - I used "?Nav". Set the 32-bit check box to true, and the
control type to OCX. From the object type drop down box select
"Microsoft Web Browser". This will actual display as
"Shell.Explorer.2" (See Figure 1)

http://www.clarionmag.com/cmag/v3/v3n7webocx.html (1 of 3) [8/7/01 1:20:01 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Using The Web Browser OCX

Figure 1. Setting the OCX properties

Next slap on an entry field for a URL. The entry field is a 500
character STRING where the user can enter the document or web
address they want to view. I called mine LCL:URL. Place the
following code in the Control event handling, after generated code
– Accepted embed point:

Post(Event:Accepted,?GoButton)

In this line of code ?GoButton is the field equate for the "Go"
button, which you add next. Make sure the button’s field equate
matches the equate in the POST statement.

The Go button will instruct the OCX to navigate to the resource
described by the LCL:URL variable. Place the following code in the
Control event handling, after generated code – Accepted embed
point to tell the OCX to load the page specified by the URL. In this
code ?Nav is the name given to the OCX and LCL:URL is the
variable containing the desired resource.

?Nav{'Navigate(URL="' & Clip(LCL:URL) & '",Flags=14)'}

Add a file dialog button to allow the user to browse for a local
HTML or other file. For the file dialog button place the following
code in the Control event handling, after generated code –
Accepted embed point.

IF FileDialog('Pick a file...', |
LCL:URL,|
'HTML Files|*.html|HTM Files|*.htm|Word documents|*.doc
|Excel spreadsheets|*.xls|All Files|*.*'|

http://www.clarionmag.com/cmag/v3/v3n7webocx.html (2 of 3) [8/7/01 1:20:01 PM]

Using The Web Browser OCX

,10000b)
 display()
end

Other buttons you could add are the "Back", "Forwards", "Home",
"Stop" and "Refresh" buttons most browsers have. Just place the
following code in the "Control event handling, after generated code
– Accepted" embed for each button.

Action Code

Stop ?Nav{‘Stop’}

Back ?Nav{‘GoBack’}

Forward ?Nav{‘GoForward’}

Refresh ?Nav{‘Refresh’}

Compile and run the program. Use the file dialog button to find a
local HTML file, or type a URL into the entry field, then press the
GO button. The page should be displayed. Now try it with a Word
document or Excel spreadsheet. I think you will be pleased!

Reader Comments

Add a comment

Well done for documenting this Matt, however the
following...
Here are some links with a little information on ...
Source code of the article example. I wrote this example...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n7webocx.html (3 of 3) [8/7/01 1:20:01 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10759
http://www.clarionmag.com/cmag/discuss.frm?articleID=10759&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10759&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10759&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10759&position=3
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

A FileManager For Marked Deleted Records

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

A FileManager For Marked Deleted Records

by Dennis Evans

Published 2001-08-01

A recent Clarion Magazine article (Recovering Deleted Records)
explained how to use new methods in Clarion 5.5 to "delete"
records in a table by setting a deleted flag (allowing for recovery
of deleted data). I’ve created a template and two classes to
implement this feature. The following are some usage notes on the
classes (the source is available below). The zip file contains a
readme with usage notes.

The FileManagerDelete Class

FileManagerDelete is a class derived from the FileManager, and
may be used to mark records in a table as deleted. The marked
records can then be archived, recovered or permanently deleted.
The class contains one data member, DeleteField and three
methods, SetDeletedField, DeleteRecord and Deleted. Some
obvious improvements to the class would be UnDelete and
PermanentDelete methods.

Property Description

DeleteField The DeleteField class member is
assigned a reference to the field used to
mark deleted records. During program
execution the FileMangerDelete class
uses the DeleteField property to
compare the current value of the field
and assign values to the field.

Method Description

http://www.clarionmag.com/cmag/v3/v3n7deletefmnotes.html (1 of 5) [8/7/01 1:20:04 PM]

http://www.clarionmag.com/cmag/subscribe.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

A FileManager For Marked Deleted Records

SetDeletedField This method contains one line of code
and will be called once in each browse,
process or report procedure that uses the
class. The method expects one
parameter, Fld, which is a reference to
the file field used to mark the records as
deleted. The method assigns the
reference to the DeleteField property:

Self.DeleteField &= Fld

After the method is called the
DeleteField property points at the same
location in memory that the file field
does; changes to one are reflected in the
other.

DeleteRecord This method is a virtual method derived
from the FileManager class. It accepts
one parameter called Query which has a
default value of '1' (see the ABC
documentation for the specifics on the
Query parameter). The DeleteRecord
method is called from the
RelationManager Delete method, and
assigns TRUE to the field used to mark
records as deleted and then writes the
record to the disk. By default the method
returns Level:Benign to the calling
method and any errors are handled by
the RelationManager class.

Deleted This is also a virtual method overloaded
from the FileManager. The derived
method simply compares the value of the
DeletedField and returns Level:Fatal
for a record that has been marked as
deleted, or Level:Benign for a record
that has not been marked. The current
version uses a BYTE field and the CHOOSE
statement:

RETURN CHOOSE (Self.DeleteField,|
 Level:Fatal, Level:Benign)

The CHOOSE statement evaluates the
DeleteField and returns Level:Fatal if the
field is set to true, or level:Benign if the
field is set to false.

The BrowseFilterDeleted Class

http://www.clarionmag.com/cmag/v3/v3n7deletefmnotes.html (2 of 5) [8/7/01 1:20:04 PM]

A FileManager For Marked Deleted Records

This class is derived from the ABC BrowseClass and contains one
data member and two methods. The data member is used to build
the filter criteria so records marked as deleted are not displayed in
a browse. The class also uses one equated value,
DeletedPriority equate('9 - zDeleted'), to set the filter
priority.

Property Description

DeleteFieldStr This property is a string variable that will
contain the field name used to mark
records.

Method Description

SetFilterField This method is used to set the
DeleteFieldStr property. It will be
called once during the procedure,
something like:

BrwCustomer.SetFieldStr(|
 'Cus:MarkedDeleted').

SetDeletedFilter This method is used to turn the filtering
of marked records on and off. The
method accepts one parameter, a BYTE
with a default value of true. When the
method is called with a parameter of true
(or without a parameter) the filter criteria
is added to the current sort order of the
browse. Records marked deleted are
filtered from the result set. When called
with the parameter set to false, the filter
is cleared and the marked records will
appear in the browse.

SetDeletedFilter uses the equate value
DeletedPriority, and it is worth noting
what exactly is happening. The
ViewManager class will use filter
expressions of different priorities. The
filters are added to the
view{prop:filter}in descending order. The
view engine uses what are called 'short
circuit' Boolean evaluations, which means
it will stop evaluation expressions when
any false condition is found. The filter
priority 9 - zDeleted will be ordered
in the ViewManager’s filter list before
any of the standard filters or QBE
expressions from the ABC classes, and
after any range limits.

Assume for the moment that the browse

http://www.clarionmag.com/cmag/v3/v3n7deletefmnotes.html (3 of 5) [8/7/01 1:20:04 PM]

A FileManager For Marked Deleted Records

is filtering deleted records and has a QBE
filter active. The deleted record filter will
be evaluated first, then the QBE criteria.
If the view engine determines the filter
expression for the marked (deleted)
records is true, the QBE filter will not be
evaluated and the record is discarded.
Arranging filters into logical priorities can
have a significant impact on
performance.

Performance issues

Everyone is aware that filtering records can be slow, as each
record must be read and compared then retained or discarded.
Using the BrowseFilterDeleted class to filter marked records
should not have any noticeable performance issues. The browse
will actually be slower, however, since an additional byte must be
read from the disk and an additional comparison is performed.
Each of these actions takes a certain amount of time.

If used correctly the filtering marked records should not be
noticeable to the user. If the table has 2 to 4 percent of the
records marked as deleted and the deleted records are distributed
throughout the table performance lose will be minimized. On the
other hand, if the number of marked records is in the 15 to 20
percent range, performance may degrade noticeably. Actually if
the table contains that large of a percentage of marked records
you have a lot more serious problems than a slow browse. Records
marked as deleted should be removed from the table in a
reasonable time frame. They could be permanently deleted,
archived or whatever. Just avoid large percentages of deleted
records.

Download the source

Dennis E. Evans is retired from the U.S. Army. During his time in the military he
spent twelve years in the Armored field and eight years in information
management. He currently works as an independent contractor and resides in
Marion, Illinois with his wife Beverly and their two children Christopher and Jessica.
His hobbies include historical simulations, reading and studying different
programming languages.

http://www.clarionmag.com/cmag/v3/v3n7deletefmnotes.html (4 of 5) [8/7/01 1:20:04 PM]

http://www.clarionmag.com/cmag/v3/files/deletefm.zip
mailto:bevdennis@earthlink.net

A FileManager For Marked Deleted Records

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n7deletefmnotes.html (5 of 5) [8/7/01 1:20:04 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10757
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

I Didn't Need That Much Detail

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

I Didn't Need That Much Detail

by Andrew Guidroz II

Published 2001-07-26

Our life is frittered away by detail ... Simplify, simplify.
..

Henry David Thoreau

Some of my clients like big reports. Very big reports. Reports that
make mortal print drivers quiver and the Clarion IDE barf up
cookies.

One client has a many-DLL phone service program with a database
of 150 tables. But there is only a single report procedure for all of
that data, which comes from various files supported by a host of
EXEs. One report! How can that be?

This client likes to mix and match various detail lines and files and
file relationships. Sometimes users will generate a report in
invoice/detail style. Or perhaps the user only wants the total line
from the invoices. Or maybe the user wants the total line of every
invoice, plus the credit rating and total profit made on those clients
who have a certain zip code, and who buy more than twice a
month and less than 10 times a month.

The report that defines all of these details together can get very
large. Add one detail too many and the Report Formatter in the
Clarion IDE will give the infamous Heap Overflow error. Where do
you go? What do you do?

In this article I’ll cover various techniques that I have used to
make big reports "fit" inside the Clarion IDE better.

Smaller variable names

I employ what Carl Barnes’ calls the "Cajun File Naming
Convention". I use big, verbose variable names, like
Loc:InvoiceTotalBeforeTaxes. I have to restrain myself when
writing big reports. The smaller the variable name, the better the
report formatter likes it because it limits the overall size in bytes of
the report structure. In the worst case, you may have to define

http://www.clarionmag.com/cmag/v3/v3n7bigreports.html (1 of 6) [8/7/01 1:20:12 PM]

http://www.clarionmag.com/cmag/subscribe.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

I Didn't Need That Much Detail

some local variables with terribly short names.

Shorten field equates

Long field names can mean long field equate names for variables
populated more than once on a report. The IDE adds the third
parameter to the USE attribute to prevent duplicate FEQs for
multiple instances of the same variable. If you aren’t going to refer
to that control in your code, then you can shorten the FEQ to
something small and nearly meaningless. For instance:

STRING(@s25),AT(2813,198),|
 USE(Add:City,,?Add:City:2),#ORIG(Add:City)

can become:

STRING(@s25),AT(2813,198),|
 USE(Add:City,,?X1),#ORIG(Add:City)

Remove unnecessary field equates

This one can save a lot of room. In a report, I drop a string control
onto a detail. The Report Formatter generates the following in the
report details:

STRING('String 30'),AT(1583,146),|
 USE(?String30),TRN,#ORIG(?String30)

If this string is never going to be referred to in my code and never
modified, I don’t need a USE property at all. So it becomes:

STRING('String 30'),AT(1583,146),|
 TRN,#ORIG(?String30)

This also applies to graphic controls like LINE and BOX.

Unnamed is unnecessary

Many times, when you are setting properties on a control, the
Clarion IDE tries to be helpful and reads a USE variable that you
previously removed called ?Unnamed or some derivation of
?Unnamed:ControlNumber. These can be removed from your
report source also.

Unnecessary template anchors

The templates use the #ORIG attribute to "anchor" template code
to an existing control. If your controls aren’t referenced by a
template (and very few report controls are), you can safely delete
this attribute. Keeping in mind the above tips, you can reduce this
code:

STRING('String 30'),AT(1583,146),|

http://www.clarionmag.com/cmag/v3/v3n7bigreports.html (2 of 6) [8/7/01 1:20:12 PM]

I Didn't Need That Much Detail

 USE(?String30),TRN,#ORIG(?String30)

to this code:

STRING('String 30'),AT(1583,146),TRN

Unnecessary offsets

Most of the numeric controls that I populate on reports only
require right justification. Decimal justification with large offsets
are overkill and too verbose. This code:

STRING(@n-10.2),AT(6531,219),USE(Cus:Balance)|
 ,DECIMAL(12), #ORIG(Cus:Balance)

becomes:

STRING(@n-10.2),AT(6531,219),USE(Cus:Balance),RIGHT

Reduce font settings

If you are using a single set of font attributes for every control of a
report, set them on the report and not every control. If a detail
has a different set of font attributes from the entire report, set
those attributes on a detail basis. If a control will have different
font attributes depending on its USE variables value (like BOLD for
balances less than zero), then let the default be no font settings
and add the font settings at run time. This can be accomplished by
using the property syntax in one of two ways. You can use
SETTARGET to the report and then set the control font settings. My
preferred method is to use the full control target syntax
Report$?MyControl{Prop:XXX} = SomeValue.

All of these things can help, and can give you room to double the
size of a report that the IDE can handle. But what happens when
that isn’t enough either? How do you put ten pounds of hog fat
into a five pound bucket?

Pseudo Hand-Coded Reports

As your report grows even more, all of your detail lines won’t fit in
the Clarion IDE Report Formatter at one time – you’ll get a GPF.
But are you really working on every detail at once? Probably not.
So here is some light at the end of the tunnel.

In my case, I tend to hand code the actual calls to produce the
details printing. By that I mean, I first go to the Report Properties
button on the procedure properties screen, and then the Filters
tab. There, I type 1 = 0 as the filter expression for every detail
within my report. Since 1=0 always evaluates to false, the
generated code will never print a detail, so I’ll need to hand code
each PRINT statement, usually within the TakeRecord method of
the report. My reports are originally "wizarded" reports within ABC
so I am not talking about hard core hand coding here.

http://www.clarionmag.com/cmag/v3/v3n7bigreports.html (3 of 6) [8/7/01 1:20:12 PM]

I Didn't Need That Much Detail

First, go into the source of the Report. You can reach it by pressing
the ellipses to the right of the Report button on the procedure
properties window. Select the entire report structure and copy it to
the clipboard. Go to the embed tree and find

Local Data
 Generated Declarations
 Window Structure

and add a source embed with a priority of 5050. You now have a
procedure with your report declared twice. How do you get rid of
the original one?

Beneath the previous added a new source embed. In it, tab once
(you don’t want the compiler to incorrectly interpret this code as a
label) and type:

OMIT(‘TheReport’)

Add another source embed here with a priority of 6300, tab once,
and type:

! TheReport

The first embed is before the generated report, the second is after,
as shown in Figure 1. Now the compiler will ignore the original
report altogether, and you have only one report (the one you
copied) defined. In order to modify that report, return to the
embed point that contains the report structure and type Ctrl-F.
This will call up the Report Formatter without as much overhead as
is used when you call the formatter from the Report button on the
procedure properties window. This Report Formatter is weaker
than the standard AppGen one in that it doesn’t know how to
provide the fields toolbox. So, how can I still build my details with
the toolboxes?

I go back to the original Report Formatter and report. I delete all
but the details I want to work on. I can then safely design my print
lines with access to all variables from the File Tree and not worry
about memory space. Then, I can go to the report source and copy
and paste my new detail to my Report embed.

http://www.clarionmag.com/cmag/v3/v3n7bigreports.html (4 of 6) [8/7/01 1:20:12 PM]

I Didn't Need That Much Detail

Figure 1. Omitting the generated report.

The only constraint now becomes the size of a source embed
point, which is around 64K. If this is not enough, just divide the
report into many different embed points.

By trimming the fat from your report structure, economizing on
shared attributes, and using a "working copy" of the report, you
can fit some really large reports into the IDE. Each of these steps
buys you more room and still gives you the flexibility of using the
Report Formatter.

Andrew Guidroz II, when he isn't handfeeding the tufted titmouse, writes software
for all facets of the insurance industry. His famous Cajun cookouts have become a
central feature of Clarion conferences throughout the U.S. Andrew's Cajun website
is www.coonass.com.

http://www.clarionmag.com/cmag/v3/v3n7bigreports.html (5 of 6) [8/7/01 1:20:12 PM]

http://www.coonass.com/

I Didn't Need That Much Detail

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n7bigreports.html (6 of 6) [8/7/01 1:20:12 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10752
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Recovering Deleted Records

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Recovering Deleted Records

by Dave Harms

Published 2001-07-19

If you've ever used the Clarion (DAT) file driver, you may
remember that DAT files don't reclaim used space unless you put
the RECLAIM attribute on the data file definition. This means that
deleted records still physically exist and can be recovered. The
TopSpeed (TPS) driver, on the other hand, automatically reclaims
used space, so once a TPS record has been deleted, for all
practical purposes it's beyond recovery. You may find the same is
true of your SQL database, although most SQL servers provide a
data logging capability that lets you track and recover database
changes.

There is, however, a fairly easy way to make deleted record
recoverable. As Dennis Evans recently pointed out in the
newsgroups, Clarion 5.5 added a new DeleteRecord method to
the FileManager, and you can override this method to implement
your own record deletion scheme.

To make your data recoverable, first modify the table you want to
protect by adding a field to mark a record as deleted. In the
example application (below) I modified PEOPLE.TPS (from the
MailList example application) by adding a STRING(1) field called
Deleted, in which I can store a value of 'Y' to indicate a deleted
record. You could also use a BYTE field and store a 1 or a 0;
perhaps it would give better performance, perhaps not. I'd be
interested to hear opinions on the subject. In any case I don't
expect the difference would be great, and 'Y' and 'N' are certainly
easily understood by anyone browsing the data.

http://www.clarionmag.com/cmag/v3/v3n7delete.html (1 of 5) [8/7/01 1:20:25 PM]

http://www.clarionmag.com/cmag/subscribe.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Recovering Deleted Records

Figure 1. The DeleteRecord embed point

The next step is to derive a new DeleteRecord method. Go the
Global Embeds, and as shown in Figure 1, under Abc Objects look
for the File Managers heading, and choose the FileManager object
for the table you want to protect. Under the DeleteRecord
method, add the following source code before the parent call,
using a priority of 4999 or less:

PEO:Deleted = 'Y'
PUT(People)
RETURN LEVEL:Fatal

The DeleteRecord method is the one ABC uses to delete the
record in your table, and by placing this code in the embed point
you create a new virtual method. This method replaces (but also
calls) the stock ABC method which has the following code:

FileManager.DeleteRecord PROCEDURE(BYTE Query)
CODE
DELETE(SELF.File)
RETURN(Level:Benign)

As you can see, it's essential that you place your code before the
parent method call embed and short circuit that call with a RETURN
statement, or else the record will be physically deleted.

Now that you've marked your record as deleted, you need to filter
it from any browses, processes, or reports. In this example, I used
the code:

http://www.clarionmag.com/cmag/v3/v3n7delete.html (2 of 5) [8/7/01 1:20:25 PM]

Recovering Deleted Records

PEO:Deleted <> 'Y'

in the browse's Record Filter prompt, as shown in Figure 2.

Figure 2. Filtering the deleted records

You're not done yet

There is one other bit of code you probably should add. Along with
the DeleteRecord method, Clarion 5.5 added a Deleted method,
which the Relation Manager uses to determine if a related record
should be considered active. The default Deleted method always
returns LEVEL:Benign, so as long as the record physically exists,
RI code will execute against that related record. This could cause
problems if, say, you have a restrict constraint on deletes. Imagine
you've implemented an invoice header/detail set of tables, and
you're using your own DeleteRecord to mark invoice details as
deleted. You can delete all of the details, but you won't be able to
delete the header because the RI code will still see the deleted
details records. Clear as mud?

To get the RI code to behave properly, you'll need to override the
FileManager's Deleted method as well as the DeleteRecord
method. Here's the code I used in the example application:

IF PEO:Deleted = 'Y' THEN RETURN LEVEL:Fatal.

You can return anything other than LEVEL:Benign, which has a
value of zero - the test in the RelationManager code is IF
SELF.Me.Deleted() THEN CYCLE.

Figure 3 shows both embed points for the People table's
FileManager instance.

http://www.clarionmag.com/cmag/v3/v3n7delete.html (3 of 5) [8/7/01 1:20:25 PM]

Recovering Deleted Records

Figure 3. The DeleteRecord and Deleted embed points

If you're creating a multi-DLL application, you don't need to
duplicate this code for each DLL. Normally you declare all files as
external, except in one files and shared globals DLL. As soon as
you mark a table as external, the FileManager embed points
become unavailable for that table, so the only place you can (and
should) put the code is in the files and shared globals DLL. .

If you're using this approach for all of your tables, you'll probably
want to consider writing some templates to streamline the embed
creation, particularly for browse, process, and report filtering. Or
you might want to consider getting the FileManager to do the
filtering on a global basis. I'll leave that as the proverbial exercise
for the reader. If you come up with a solution, post it at the end of
this article.

Download the source (C55 only)

David Harms is an independent software developer and the editor and publisher of
Clarion Magazine. He is also co-author with with Ross Santos of Developing Clarion
for Windows Applications, published by SAMS (1995). His most recent book is JSP,
Servlets, and MySQL, published by HungryMinds Inc. (2001).

http://www.clarionmag.com/cmag/v3/v3n7delete.html (4 of 5) [8/7/01 1:20:25 PM]

http://www.clarionmag.com/cmag/v3/files/v3n7delete.zip
mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.covecomm.com/java/index.html

Recovering Deleted Records

Reader Comments

Add a comment

Dave, I enjoyed this. Give up more of the...
You're most welcome - and thanks to Dennis Evans for...
Template and source available - Dennis Evans has provided
a...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n7delete.html (5 of 5) [8/7/01 1:20:25 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10742
http://www.clarionmag.com/cmag/discuss.frm?articleID=10742&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10742&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=10742&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=10742&position=3
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Avoid My SQL Mistakes!

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Avoid My SQL Mistakes!

by Mauricio Nicastro

Published 2001-07-18

The aim of this article is to show all the problems that I had to go
through when I began to work with SQL. I’m hopeful that this
could be helpful to those who, like me, are still not experts at
working with this kind of database. Many of the things that I
describe here may seem obvious, but the fact is that after being in
a fix over and over you realize that they are not so obvious. The
difficulties I encountered were the following:

Slow browses

All SQL tables must have at least one unique index. Whenever it is
possible, I define autonumber fields that will be part of the
principal key. At one time, I had a table with this field in two
different keys: Code and Description.

● KeyCode = Code + AutonumberField
● KeyDesc = Description + AutonumberField

I assured my client that the execution of the program would be
faster with SQL.! The browse had two tabs and when I changed
from a tab to the other, I had to wait 20 seconds in order for the
browse could show me something. It wasn’t a big table (approx.
20000 records), and as you can imagine, my client wanted to
make a programmer martyr of me; I didn’t want to be Saint
Programmer, not at so young an age!

I revised everything, worked with SQL Query Analyzer, looked for
some problematic embedded code, but I couldn’t find any
anomalies. Just by chance, I found a manual in my bookshelves
which contained the solution: all Clarion’s indexes must be defined
with the Case Sensitive field checked. If you don’t do this, the
operation is slow because the view engine will turn all the fields
into uppercase while it is collecting the data.

Sending commands to the server

I had a requirement to do some mass updates to the data. The

http://www.clarionmag.com/cmag/v3/v3n7avoid.html (1 of 4) [8/7/01 1:20:28 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Avoid My SQL Mistakes!

selective replacement of prices in a products table, for example,
can be done in two different ways. One way is to make a loop
using an index that matches as much as possible the selective
criteria (this is the usual way when working with TPS tables). The
other is to let the SQL server do the work. For example, in a
general price list, I might need to increase by 10% the prices of
those products bought from provider X. Here’s how I would write
this code in SQL:

Products{ Prop:SQL } = |
 'update products set price = price * 1.10 ' |
 & 'where ProviderCode = ‘ & Pro:Code

Now, is that right? It seems so; however, there is a small mistake:
If Pro:Code is a CSTRING field, like any string it must be in single
quotes. Thus the query, in this case, must be:

Products{ Prop:SQL } = |
 'update products set price = price * 1.10 ' |
 & 'where ProviderCode = ' & ''' Pro:Code & '''

Remember that it is necessary to write three single quotes, one to
open, the real quote, and the last to close.

Date Fields

The Clarion dictionary editor is not able to recognize a SQL date-
time field. Instead, you will see a STRING (8) field, followed by a
group declared OVER the STRING(8). This group has TIME and
DATE fields. Let’s say you have to order the browse by date with
the use of a locator.

The point here is this: how is this index created? What are the key
components? As a way of trying to figure all this out, I used the
trial and error method, and then came to learn that it is necessary
to use the Field_DATE in the index key, because the name of this
field will be used in the ORDER BY statement sent to the database
server. Date ordering won’t work if you use the string or the group
field.

Filtered locators

Filtered locators are very useful, because while you are typing the
browse is filtering. Besides, if the "Find Anywhere" field is checked
it is possible to find the string the user types if it matches
anywhere in the corresponding table field, not just when the start
of the locator value matches the start of the table field. In my
case, I don’t know if it was my mistake, a Clarion problem or what,
but I couldn’t get Find Anywhere working. In my browse I had to
filter a hot field and when I typed in the locator, the same letters
appeared in the field and never worked. I tried with a variable as
locator, then with the field, and it was impossible. As a result, I
decided that the engine would do the work for me. I created a
variable where I typed the string I was looking for, and in the

http://www.clarionmag.com/cmag/v3/v3n7avoid.html (2 of 4) [8/7/01 1:20:28 PM]

Avoid My SQL Mistakes!

accepted embedded point, I wrote:

IF Loc:Description <> ''
 BRW1::View:Browse{ Prop:SqlFilter } =|
 'Description LIKE ''%' |
 & clip(Loc:Descripcion) & '%'''
ELSE
 BRW1::View:Browse{ Prop:SqlFilter } = ''
END !IF
BRW1.ResetQueue(Reset:Queue)
BRW1.ResetFromFile()

This code works, and very well, but of course only with SQL
databases, as these normally support the LIKE matching function.
You can add another variable and make it work as the "Find
Anywhere" check.

Refresh the window

Sometimes you will encounter the typical invoice browse: header
and detail. You want to add a new invoice, so you open the form,
accept the entries and when you go back to the header browse …
the invoice you have just added is not there!! You can do this:

BRW1.ResetQueue(Reset:Queue)
BRW1.ResetFromFile()

In this way, you refresh the queue and force the program to
retrieve the data from the table.

Process

When you work with SQL you have to tell the engine which fields
you need, by listing those fields in the browse’s Hot Fields tab.
With TPS files the entire record is always available; with SQL only
those fields the browse/procedure/report knows about, because
they’re listed in the file schematic or in the hot fields, will be used
in the corresponding SQL statement.

Parent-child relationships

Parent-child relationships can also be a problem. Take the invoice
case as an example once more. Sometimes you use an
autonumber field that is in charge of maintaining this relationship.
In this case the question is: which program will autonumber this
field? Your Clarion application, or the database server? I have read
that I should leave this work to the engine. The problem is that the
engine does this job in the same moment it is adding the record;
consequently, all the children do not have a number which enables
them to keep the relationship. If you want this working properly,
you may add some code to retrieve the number of the field, then
put this value to each child record and, finally, save everything.
But if you are a Clarion Magazine reader (see Stephen Mull's article
on converting to SQL) , you may note that it is better to use a

http://www.clarionmag.com/cmag/v3/v3n7avoid.html (3 of 4) [8/7/01 1:20:28 PM]

http://www.clarionmag.com/cmag/v1/v1n10convertingtosql.html

Avoid My SQL Mistakes!

CSTRING(18) field to keep this relationship. In the Field Priming on
inset button, you can do the following:

RecordID = today() & clock()

That does work, though many of you might argue that there is a
risk of getting duplicates keys when working with a large number
of clients simultaneously. My counter-argument to this point is that
I have worked with more than 150 terminals at the same time and
that has never happened. I cannot say that it is not possible,
however, it is not likely to happen.

These are all the interesting setbacks I had to sort out so far. If
you’re just getting started with SQL, I hope you find this article
useful.

Mauricio Nicastro is a newcomer to the Clarion world. He has been working with
databases for over ten years, and began writing programs in Clipper (which is also
the name of his dog). In his spare time Mauricio usually plays soccer.

Reader Comments

Add a comment

The statement "All SQL tables must have at least one
unique...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n7avoid.html (4 of 4) [8/7/01 1:20:28 PM]

mailto:mauricionicastro@ciudad.com.ar
http://www.clarionmag.com/cmag/comments.frm?articleID=10677
http://www.clarionmag.com/cmag/discuss.frm?articleID=10677&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10677&position=1
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Using Procedure Category to Split Apps into DLLs

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Using Procedure Category to Split Apps into DLLs

by Carl Barnes

Published 2001-07-16

Most Applications start as a single App file. As time goes by more
and more procedures get added and the App file and the resulting
EXE can become very large. This can cause problems for the
Clarion IDE, compile times get very long, and any change to the
application means re-deploying a large EXE. The only cure to this
problem is to split the App into multiple smaller App files and
compile each of those as DLLs (or LIBs). There are already several
articles in Clarion Magazine that talk about the process (listed
below); in this article I’ll show you how I use the Procedure
Category to organize that breakup process.

In Clarion 4 a new field named Category was added to the
Procedure Properties window. A new tab with Procedures sorted by
Category was also added to the Application Tree window. These
features give you a new logical way to group and view procedures
in an application.

The reason for adding Category was that under ABC the Browse
and Form templates are implemented as the Window template with
extension templates. This reduced the effectiveness of viewing the
Application by Template since all Browses, Forms and Windows
showed under the Window template. Now when a Form procedure
is added the template is "Window" but the Category is "Form."

The new Category field can be very useful when moving (or
copying) procedures between application files. When breaking a
single large EXE into multiple DLLs you will move a lot of
procedures between App files. (The example here is small with just
12 procedures and three App files, the last time I did this for hire
there were 150 procedures and nine App files.) This is usually
messy and somewhat stressful to keep organized. (To reduce
stress hum the song "Breaking up is hard to do", although you
should only sing if you have a private office.) A good way to keep
things organized and have a visual plan is to put the name of the
future DLL into the Category of each procedure. An example of this
is shown in Figure 1.

http://www.clarionmag.com/cmag/v3/v3n7category.html (1 of 9) [8/7/01 1:20:33 PM]

http://www.clarionmag.com/cmag/subscribe.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Using Procedure Category to Split Apps into DLLs

Figure 1. Setting the procedure category.

The future DLL name should be entered for every procedure that
will be moved. Any procedures not assigned a DLL category name
will default to their template name. (Since I did not want to lose
the existing category names identifying Form and Browse windows
I placed my DLL name in front of the existing name, e.g.
"UpdateDLL Form".) Figure 2 shows the category view of the Tutor
example application where the future DLL name has been entered
for all procedures. I use this view to show my procedures sorted
and grouped by the future DLL name.

Figure 2. Showing procedures by category.

Since the Category name shows in all views of the Application tree
this makes it easy to see and understand exactly how your App will
be split up, and how that will affect the calling relationships. Think

http://www.clarionmag.com/cmag/v3/v3n7category.html (2 of 9) [8/7/01 1:20:33 PM]

Using Procedure Category to Split Apps into DLLs

of it as a WYSIWYG DLL split tool. In Figure 3 the circled procedure
was to be put in the Reports DLL, but after looking at the call tree I
decided it might be better to put it in the Updates DLL since that is
the only place it is used. This will save having the procedure
exported which saves time when running the EXE. On the other
hand Gordon Smith suggests putting all reports in their own DLL
because reports change frequently and it will be more convenient
to patch the Users install.

Figure 3. Using the category to check the calling
relationship.

Now that I have a clear plan of the future DLL for each procedure I
can use Category during the import. Figure 4 is a screen shot of the
Import From Application view by Category. This makes it very
simple to find the right procedures to import as every procedure
that is destined for this DLL is sorted together.

http://www.clarionmag.com/cmag/v3/v3n7category.html (3 of 9) [8/7/01 1:20:33 PM]

Using Procedure Category to Split Apps into DLLs

Figure 4. Importing by category.

If you intended to move the procedures out of the current App file,
then you can use the Application view by Category when you delete
procedures as well, since everything you want to delete will be
grouped together.

Getting exports right

You can also use the category to keep track of which procedures
will need to be exported. Looking at the original call tree any
procedure on level 1 of the tree will need to be exported (unless it’s
in the EXE). Also any procedure below level 1 in a branch where
the calling procedure is in a different DLL will need to be exported,
as seen with SingleInvoiceReport and ViewCustomers. This
would also be a good time to check that procedures that are part of
the main EXE never appear below level 1 of the tree. Nothing can
be exported from an EXE (more on that point below).

To mark a procedure as requiring Export simply add the word
"Export" after the name of the future DLL. Once the procedure is
imported into the DLL App the "Export" in the Category will serve
as a reminder to check the exported box on the Procedure
Properties. Figure 5 shows a revised calling tree with the exports
marked.

http://www.clarionmag.com/cmag/v3/v3n7category.html (4 of 9) [8/7/01 1:20:33 PM]

Using Procedure Category to Split Apps into DLLs

Figure 5. Marking procedures for export.

The WYSIWYG display of this information highlights a potential
problem with the design where the Reports and Updates DLLs call
each other. CustInvoiceReports calls ViewCustomers, and
ViewOrders calls SingleInvoiceReport. Most articles on splitting
into DLLs suggest avoiding this cross-calling chicken-and-egg
situation. On the other hand I have seen it work fine every time.
The first compile might not work. It just takes a second make of
the project to get the link to work.

If you truly want to avoid this situation of cross calling I would
suggest you sketch out a calling tree of the DLL structure and
assign each DLL a level number. (An example of this is in the
MultiProj tutorial discussed below.) The EXE would be Level 0, the
Updates DLL would be level 1. Since Updates call Reports, the
Reports DLL would be level 2. Put these level numbers in the
Category field too. Then when reviewing your call tree you can
verify that along the branches of the tree the level numbers never
decrease. (One annoyance with this is if you change the DLL
structure and the level numbers change you will have to edit the
level in every procedure’s Category.) Figure 6 is a screen shot with
level numbers, where you can see the problem of a level 2 DLL
calling a Level 1 DLL.

http://www.clarionmag.com/cmag/v3/v3n7category.html (5 of 9) [8/7/01 1:20:33 PM]

Using Procedure Category to Split Apps into DLLs

Figure 6. Adding DLL calling levels to the category.

The downside

There is a downside and that is that the Category name replaces
the Template name in the Application views (except the Template
view). In the screen shots above you no longer see (Frame),
(Browse), (Window) or (Report) next to the procedure name. You
now see (ReportDLL) which is the Category name. To fix this you
have to delete the Category name. Generally I do not care about
the template name so I only clean this up and remove the DLL
names as needed. Since I have to open each exported procedure to
check the exported box, I typically will fix the Category name on
those during that process.

Exporting procedures from an EXE

As noted above you cannot export procedures from an EXE. But
that does not mean that a DLL cannot call a procedure that resides
inside your EXE, it just means the compiler and linker will not help
you do it. This type of call is typically referred to as a "callback"
and can be implemented easily using the methods described in
Larry Sand’s excellent article "Loading DLLs at Runtime"
http://www.clarionmag.com/cmag/v3/v3n5runtimedlls1.html. You
would prototype the procedure exactly as Larry shows using a
variable with the NAME() attribute to specify a function pointer
variable. To get the value of the function pointer you would not use
LoadLibrary() and GetProcAddress() as show in the article. The
EXE would have to call the DLL once and pass it the ADDRESS() of

http://www.clarionmag.com/cmag/v3/v3n7category.html (6 of 9) [8/7/01 1:20:33 PM]

http://www.clarionmag.com/cmag/v3/v3n5runtimedlls1.html

Using Procedure Category to Split Apps into DLLs

the desired procedure, or the EXE could store the address in a
global variable that the DLL imported. After this address was
assigned to the function pointer variable, you could call the EXE
procedure from the DLL. I cannot think of many good reasons to go
to all of this work, the main one would be a procedure you wanted
to keep secure. Exported procedures from a DLL are public and
could be called by anyone without much trouble. A "callback"
procedure in an EXE would be much harder to hack. A second
possibility might be job security.

Using modules for organization

A second tip for being more organized with your Apps is to group
your procedures logically into modules rather than let them be
assigned in the order they were added to the App. I like to keep all
procedures in a calling tree branch in the same module, for
example, a browse and its form. Also group procedures that relate
to each other, such as all of the Customer procedures should be in
the same module. Then when you’re doing modifications you spend
less time hunting around for the procedure.

Other tips

When I break an App into DLLs I start by making an APP called
Empty.DLL. This is a DLL that will be the starting point for all of my
other DLLs. It contains all of the global variables, embed points and
application template extensions that will be needed in every DLL. It
is also handy to keep around for any time you want to add a new
DLL to the project.

The Category method discussed above can be useful any time you
want to move procedures from one App to another. Rather than
write down a list of procedure names simply type something into
the Category. For example, I never really delete procedures, I
move them to an OldStuff.App that I keep (but never compile) for
obsolete code. To make the move easy I change the procedures’
category to "Obsolete", which makes them easy to find them when
importing into OldStuff.App and when returning to the original App
to delete them.

Summary

As I’ve show above the Procedure Category can be used to keep
you organized when you are moving or copying procedures
between App files. Here is a summary of the steps I use when
splitting an App into DLLs.

1. Enter the future DLL name into the category of each
procedure

2. Retain any existing category names by putting the DLL name
first

3. Check Procedures by Category view to find procedures not
assigned a DLL

4. Review the App Tree to see if the DLL structure makes sense

http://www.clarionmag.com/cmag/v3/v3n7category.html (7 of 9) [8/7/01 1:20:33 PM]

Using Procedure Category to Split Apps into DLLs

5. Use the App Tree to mark exported procedures
6. Create the new DLL App
7. Select Import From Application from the File menu
8. Select the Category Tab
9. Select all the procedures for the DLL and import them

10. Open each procedure and remove the DLL name and handle
exports

For More Help on Splitting into DLLs

You will find some excellent information in the past Clarion
Magazine articles "Four DLLs And An Executable" by Gordon
Smith at
http://www.clarionmag.com/cmag/v1/v1n5fourdllsandanexe.html
and "Using Dynamic Link Libraries" by Russ Eggen at
http://www.clarionmag.com/col/98-05-dlls.html

A nice discussion with plenty of diagrams and lots of helpful
instructions can be found in the "Writing Multi-DLL Applications"
tutorial that is part of the documentation for CapeSoft’s Multi-
Proj and can be found online at
http://www.capesoft.com/docs/multiproj/mptutor.htm

In your Clarion Examples directory you will find the DLLTutor
directory which contains the Tutor example Tutorial.App split out
into multiple DLLs. I was not able to find any documentation
associated with this example. My above screen shots are based
on this App and so is the MultiProj Tutorial. This is a nice-sized
example to learn from and is done the correct way.

As well, the Clarion Help "How Do I…" section has a subsection
named "Compiling and Linking" with topics that provide
information on splitting Apps and using DLLs.

Carl Barnes is an independent consultant working in the Chicago area. He has been
using Clarion since 1990, is a member of Team TopSpeed and a TopSpeed Certified
Support Professional. He is the author of the Clarion utilities CW Assistant and
Clarion Source Search.

http://www.clarionmag.com/cmag/v3/v3n7category.html (8 of 9) [8/7/01 1:20:33 PM]

http://www.clarionmag.com/cmag/v1/v1n5fourdllsandanexe.html
http://www.clarionmag.com/col/98-05-dlls.html
http://www.capesoft.com/docs/multiproj/mptutor.htm
mailto:carl@carlbarnes.com

Using Procedure Category to Split Apps into DLLs

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n7category.html (9 of 9) [8/7/01 1:20:33 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10732
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

"Sometimes" Lookups

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

"Sometimes" Lookups

by Steven Parker

Published 2001-07-06

I once characterized lookups as "a subject that just never seems to
go away" (see Lookups: You Don’t Always Want to Validate, Clarion
Online, 2, 9, April 1999). It doesn’t and it hasn’t.

The Clarion templates provide three ways of doing lookups/data
validation for fields requiring entries (see Lookups in C4, Clarion
Online, 2, 1, August 1998). But what if you want to allow the end
user to leave a field blank but validate against a list of "approved"
choices when the field actually contains data?

In this case, either the field must be empty or its value must validate
against another file. In other words, sometimes I want to do a
lookup, sometimes I don’t.

What if you want to allow users to enter whatever they like, with an
optional lookup?. In this case the user can leave the field empty,
make an entry or call a lookup.

Where might such a bizarre configuration of an entry field be
appropriate? I first ran into the need for this in a checkbook
application. Many payees are one-time (or once in a great while)
payees. If a payee is infrequent, I see no need to store the name in a
lookup file. However, there are many payees to whom checks are
written or with whom charges of goods and services are made
regularly. It is convenient to look up these payees (i.e., not have to
type their names in).

Again, sometimes I want to do a lookup; sometimes I don’t (for you
Peter Paul Mounds and Almond Joy fans, "sometimes you feel like a
nut, sometimes you don’t").

Empty or In File

To implement an empty-or-in-file type of "sometimes" lookup, it is
important to understand a few basics about the way the templates
generate lookup code. Most lookups are created using the entry
field’s Actions tab:

http://www.clarionmag.com/cmag/v3/v3n7sometimes.html (1 of 7) [8/7/01 1:20:42 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org
http://www.clarionmag.com/col/99-04-lookups.html
http://www.clarionmag.com/col/99-04-lookups.html
http://www.clarionmag.com/col/98-08-c4lookups.html
http://www.clarionmag.com/col/98-08-c4lookups.html

"Sometimes" Lookups

Figure 1. Entry field Actions tab

For most data validation, lookups provided by these prompt are not
only appropriate but the easiest and best way to create lookups. They
are the easiest because no further code is required.

What is important is that there are two places where a lookup may be
called: "When the Control Is Selected" and "When the Control Is
Accepted."

If a lookup is called from Event:Selected, the lookup is mandatory,
whether the field is required or not. That is, if a lookup is nominated
on Event:Selected, the lookup procedure will always be called.
Period. The reason for this is that the lookup is called immediately on
tabbing onto the control (that’s what "when selected" means, after
all). It is possible for the end user to cancel the lookup. This will leave
the field empty, as desired. But it is not the way I would want an
"empty or in file" scenario to operate.

Moving the lookup call to "When the Control Is Accepted" improves
program behavior considerably. With the lookup here, the user may
tab through the field and … will the lookup be called?

If a field may be empty, it is obvious that the field is not required.
So, if the "Required" attribute is not checked for the field (see Figure
2 – it doesn’t matter what the dictionary says as long as this
checkbox is off), required field checking is not enforced. In this case,
the lookup will be called only if the user has makes an entry in the
field.

http://www.clarionmag.com/cmag/v3/v3n7sometimes.html (2 of 7) [8/7/01 1:20:42 PM]

"Sometimes" Lookups

Figure 2. Making a field not required

Examining the generated code (see Figure 3) explains why this works
and works so simply. The key is the line:

IF PEO:State OR ?PEO:State{Prop:Req}

Figure 3: Default code in TakeAccepted for a lookup

The lookup will be called if the field has any contents (IF PEO:State)
or if the field is required, whether it has contents or not
(?PEO:State{Prop:Req}). This is precisely what is desired.
Therefore, if the form field is not required and is empty, no lookup
will be called.

Voilà, empty or in file validation!

A More Flexible Alternative

A very valuable but often overlooked template is the
CallProcedureAsLookup code template, shown in Figure 4. Notice the
prompts for this template. Except for the expected "Lookup
Procedure," the procedure to call, each prompt represents an embed.
Each represents functionality not available in lookups created from
the Actions tab.

http://www.clarionmag.com/cmag/v3/v3n7sometimes.html (3 of 7) [8/7/01 1:20:42 PM]

"Sometimes" Lookups

Figure 4: Prompts for CallProcedureAsLookup

The Code Before field is for code that will execute immediately before
calling the lookup. Suppose, for example, I don’t want to call lookups
on Tuesday. The code:

If Today() % 7 = 2 then Return Level:Notify.

will short circuit the call on Tuesdays.

If ~PEO:State then Return Level:Notify.

is less ridiculous looking and will prevent the lookup when the State
field has no contents (and this is what is wanted here).

The Code After, Completed field allows an assignment to the target
field (made automatically in the standard lookup template but, with
this template, it must be made manually), and/or assignments to
additional fields (similar to the "More Field Assignments" button). But
it also allows execution of any code at all. For example:

If EV:Type = ‘Open’ then ?EV:Schedule{Prop:Disable} = True.

NOTE: Because the prompts are just a single
line, you must adapt your code writing style: no
carriage returns are allowed. If this is a burden,
Include() a file containing your code.

The Code After, Cancelled field lets you embed any code you want to
execute before GlobalResponse is set to RequestCancelled. For
example:

Select(?)

http://www.clarionmag.com/cmag/v3/v3n7sometimes.html (4 of 7) [8/7/01 1:20:42 PM]

"Sometimes" Lookups

puts the user back on the field when the lookup is cancelled.Because
there are no restrictions on code entered here, a function or
procedure call is entirely acceptable. Using Include() files, quite
complex code is possible.

Examining the generated code (Figure 5) shows that both of the
"Code After" embeds are generated before the TakeAccepted method
returns. The standard lookup prompts do not have sufficient
granularity to allow code in these places. This is why the
CallProcedureAsLookup template can be a very powerful addition to
your coding arsenal.

Figure 5: Default CallProcedureAsLookup Code

On-Demand Lookups

Now to the case in which the user is to be allowed to enter whatever
they want or call a lookup. I once characterized these as "non-
validating validation." The desired behavior is that a field be able to
contain a value that is not in the validation file. Payees in a
checkbook or even in Accounts Payable are a perfect examples.

It is easy to tell whether a control is empty or not. It is easy to tell
whether the form is in Non-Stop Mode (i.e., the form has been
completed and 0{Prop:AcceptAll} = True). It is easy to let the
user enter whatever they want to enter, that is what entry controls
are for. What is not so easy is knowing when to call the lookup.

By definition, a lookup requires that whatever value is in the field also
be in the validation file. And that is contrary what is needed here.
Here, I do not want field contents validated under all circumstances.
In fact, I don’t want field validation under any circumstances. Any
validation would force a lookup when a one-time payee was entered
and this is not the desired behavior.

The only way to solve this conundrum is to realize that in this case
there will be a lookup procedure but there will be no lookup. Since
the field must accept anything the user enters, it must be the user
that indicates that a lookup is wanted. Think of this more as a quick
complete (without the keystroke matching) than a lookup. So, the
solution is that user must tell the program that they want to select
from a list. This is done by pressing a hotkey (you create the hotkey
by right click the control, pressing "Alert," configuring the desired key
and regenerating the embed tree to get the AlertKey and PreAlertKey
embeds). Add the CallProcedureAsLookup template and name the
lookup procedure, as in Figure 6:

http://www.clarionmag.com/cmag/v3/v3n7sometimes.html (5 of 7) [8/7/01 1:20:42 PM]

"Sometimes" Lookups

Figure 6: Hotkey lookup

In the Code After, Completed prompt, make the assignment and
display the selected value (the Display statement is not, strictly,
required; it is required if you want to see the selected value):

PEO:State = STA:State;Display

In a Hotkey lookup, an entry field is just a standard entry field. That
is, it accepts input, any input, from the user. If the user presses the
Hotkey (hence the designation "hotkey lookup"), then and only then
is the lookup called. On completion of the lookup, the selected value,
if any, is assigned to the target field. The developer, using the
embeds in the CallProcedureAsLookup template, determines exactly
what happens on each possible event, which is exactly what is
needed.

In fact, if the user begins the entry and the lookup browse has a
locator, the closest match will automatically be selected. For
example, if I type "so" and press the hotkey, "SoftVelocity" will be
the highlighted record in my payee lookup. All I need to do is press
the Enter key and the field is complete:

CHK:Payee = PAY:Payee;Display,Select(?+1)

In the code shown, the next field is automatically selected after the
field assignment is done.

Summary

Lookups are normally used on fields that must have an entry and

http://www.clarionmag.com/cmag/v3/v3n7sometimes.html (6 of 7) [8/7/01 1:20:42 PM]

"Sometimes" Lookups

must have an "approved" entry, or so says the conventional wisdom.
With an understanding of the way lookup code is generated, you can
implement an "empty or in file" scenario in one mouse click. With the
CallProcedureAsLookup Template, you can also easily add "quick
complete" to an application.

What does the conventional wisdom know, anyway?

Download the source code

Steve Parker started his professional life as a Philosopher but now tries to imitate a
Clarion developer. A former SCCA competitor, he has been known to adjust other
competitors' right side mirrors - while on the track (but only while accelerating). Steve
has been writing on Clarion since 1993.

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n7sometimes.html (7 of 7) [8/7/01 1:20:42 PM]

http://www.clarionmag.com/cmag/v3/files/v3n7sometimes.zip
http://www.clarionmag.com/cmag/comments.frm?articleID=10712
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Implementing Read-Only Checkboxes

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Implementing Read-Only Checkboxes

by Jeff Slarve

Published 2001-07-05

Many Clarion developers have discovered that the READONLY
attribute is not available for checkbox controls. Although you can
use the DISABLE attribute, it is often desirable to use the READONLY
attribute for the sake of consistency in the user interface. For
example, a DISABLED control cannot retain focus, and the tooltip
does not work for disabled controls (in Clarion). Plus, sometimes a
disabled checkbox simply doesn’t look too good.

Since I haven’t yet seen a truly elegant way to set a checkbox to
READONLY, and although I am sure that one exists out there
somewhere, I constructed a ReadOnlyCheck class out of rubber
bands and duct tape. This class keeps track of the value that you
(the developer) say that a checkbox USE variable should be, and
reassigns the value if the checkbox is clicked or accepted in some
way.

Although there is occasionally a slight flicker when the checkbox is
checked, emphasizing the futility that caused me to write this class
in the first place, it seems to work okay, and I haven’t been able
to trick it into allowing the user to change the value yet.

How it works

The ReadOnlyCheck class stores the field equate (FEQ) of each
READONLY checkbox in a queue along with the value that each
checkbox is supposed to retain:

FEQQ Queue,Type
FEQ Long
Value ANY
 End

The "Value" field is an ANY because a checkbox can have different
data types represented in the TRUEVALUE and FALSEVALUE
properties. I guess it would have been pretty safe to use a STRING
here, but I opted for an ANY.

http://www.clarionmag.com/cmag/v3/v3n7rocheckbox.html (1 of 2) [8/7/01 1:20:44 PM]

http://www.clarionmag.com/cmag/subscribe.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Implementing Read-Only Checkboxes

You set a checkbox to READONLYwith the AddItem() method,
which adds the checkbox’s FEQ and value to the queue.
Conversely, if you wish to remove the read-only behavior from the
checkbox, then you use the RemoveItem() method.

You need to place the ReadOnlyCheck.TakeEvent() method inside
the ACCEPT loop (this is a good candidate for an extension
template) where it traps Event:Accepted for any of the controls
that exist in the queue. When a protected checkbox gets an
Event:Accepted, the class slaps the intended value back into the
control.

If you need to programmatically change the value of a control that
is set to READONLY with this class, then you should use the
SetValue() method instead of changing the value of the USE
variable itself. If you don’t do this the class won’t know your
intentions, and will change the value back to the way it originally
was.

Other than that, the class is relatively low maintenance and seems
to serve its intended need.

Download the source

Jeff Slarve is an independent software developer and the creator of the critically-
acclaimed In Back automated file safeguard utility. Jeff has been a Clarion
developer since 1991, and is a member of the group formerly known as Team
TopSpeed.

Reader Comments

Add a comment

Jeff, I've not done this recently, but I was able to set...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n7rocheckbox.html (2 of 2) [8/7/01 1:20:44 PM]

http://www.clarionmag.com/cmag/v3/files/v3n7checkbox.zip
mailto:jeff@jssoftware.com
http://www.jssoftware.com/In_Back/in_back.html
http://www.clarionmag.com/cmag/comments.frm?articleID=10711
http://www.clarionmag.com/cmag/discuss.frm?articleID=10711&position=1
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Using MATCH In Filters and Regular Expressions

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

Using MATCH In Filters and Regular Expressions

by Carl Barnes

Published 2001-07-03

Filters for reports and browses seem to get increasingly
complicated over time. In this article I will show a trick you can do
with MATCH() that will let you create more powerful filters, and
which do not require any more code than a simple INSTRING() but
can search for multiple substrings. Steven "Mr. Filter" Parker
should love this.

I often find I want to do multiple string searches at once like this
one, which uses a number of INSTRINGs and OR conditions:

(INSTRING(stateList, State1, 1) |
OR INSTRING(stateList, State2, 1) |
OR INSTRING(stateList, State3, 1) |
OR INSTRING(stateList, State4, 1))

You can replace the INSTRINGs and ORs with a single MATCH
statement, which I’ll explain in more detail in a moment:

MATCH(statelist, State1 &’|’& State2 |
&’|’& State3 &’|’& State4, Match:Regular)

Using MATCH in a report filter

It started out as a simple task: I needed to look for a single value
in a comma delimited list of values. INSTRING was the obvious
choice. For example, in a Dealer file is a field with a list of States
in which the Dealer does business:

Dlr:BizStates = 'IN,OH,KY,TN,PA'

A report requested the State Code to print, stored it in
Loc:State2Print and had a Filter of
INSTRING(Loc:State2Print,Dlr:BizStates,3).

But as you can image it rapidly became necessary to run the
report for multiple states. A simple filter with a single INSTRING()
would no longer work. It would have been pretty easy to write

http://www.clarionmag.com/cmag/v3/v3n6match.html (1 of 8) [8/7/01 1:20:48 PM]

http://www.clarionmag.com/cmag/subscribe.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org

Using MATCH In Filters and Regular Expressions

code into the ValidateRecord method and LOOP though multiple
INSTRING()s, but I really wanted to use a Filter and not one with
twenty INSTRINGs strung together with OR.

My solution was to use the MATCH() statement (new in C5) and a
regular expression. In a regular expression, or regex, the pipe is
the alternate OR operator. So I just need to list the States to be
printed in a string with a pipe character between each one as
shown:

Loc:States2Print = 'NJ|NY|PA|DE'

Then on the Report I changed the filter from

INSTRING(Loc:State2Print,Dlr:BizStates,3)

to

MATCH(Dlr:BizStates,Loc:States2Print,|
 Match:Regular+Match:NoCase)

and in a single statement I had the equivalent of a many-to-many
INSTRING() type search. Notice that the
MATCH(string,substring(regex)) statement uses the reverse
syntax of INSTRING(substring,string); the string to be
searched is the first parameter in MATCH(), the substring or
regular expression is second. This potential "gotcha" is noted
clearly in the 5.5 help for MATCH() but was not explained well in
the 5.0 help. Another difference is MATCH() only returns true or
false and not the position of the found substring. The position of a
regular expression is available in the new 5.5 STRPOS function,
which I’ll discuss a little later on.

A regular expression primer

Regular expressions are a very powerful way to search strings,
offer many options, and, at least to me, are a lot of fun. Regular
expressions came from Unix utilities like sed, awk and grep. The
various implementations are very "flavored" – there isn’t just one
way to do regex. There are also extensions that offer many more
options; Perl and JavaScript have many of these.

The implementation in Clarion is fairly basic and a little different
from the Unix "standard." Clarion uses curly braces {} for
grouping where Unix uses parenthesis () for grouping. Some
flavors do use curly braces {min,max} for variable repeat
matching (which Clarion does not support). The Clarion Help and
LRM incorrectly say that MATCH uses parenthesis for grouping;
trust me, it’s curly braces.

On a basic level, you can compare regex to DOS wildcards ? and *.
Most everyone knows how to use these with the DOS DIR
command, for example:

http://www.clarionmag.com/cmag/v3/v3n6match.html (2 of 8) [8/7/01 1:20:48 PM]

Using MATCH In Filters and Regular Expressions

DIR AB*.TP?"

In DOS, a question mark makes a single wild character. In regex
the period is used for this purpose so "TP?" would be "TP.".

The DOS wildcard "*" means "any character" repeated an
unlimited number of times or not at all. In regex, the * doesn't
mean "any character" all by itself; instead, it indicates that the
character preceding the asterisk may be repeated zero or more
times. So DOS * would be done in regex with period-asterisk ".*"
meaning "any character repeated zero or more times." Regex kicks
things up a notch by allowing for three different repeaters as
described in the below table:

. Matches a single character and is required unless ? or
* follows

? The previous character may appear 0 or 1 time, this
makes the previous character optional

* The previous character may appear 0 or more times,
this makes the previous character optional and it may
appear an unlimited number of times

+ The previous character must appear 1 or more times,
this makes the previous character required and it may
appear an unlimited number of times

If the period specifies any character, how do you match a period?
The problem is that the period, asterisk, pipe and all the special
characters are used as "meta characters" that perform a function.

To match a regex meta character you must precede it with a
backslash. So the DOS "DIR AB*.TP?" would be written in regex as
"DIR AB.*\.TP.":

● AB of course means "match AB"
● .* is any character repeated zero or more times
● \. matches a period
● TP is an exact match, like AB above
● . matches any character

MATCH has 10 meta command characters that allow you to do
much more than DOS wild cards. They can be combined and
nested to perform complex pattern matching. A few of my
favorites described in the table below.

| Alternation aka OR: Allows specifying alternates, e.g.
"4|4th|Four|Fourth" would match any of those ‘four’
strings.

http://www.clarionmag.com/cmag/v3/v3n6match.html (3 of 8) [8/7/01 1:20:48 PM]

Using MATCH In Filters and Regular Expressions

{} Grouping: It is very useful to combine a group of
characters with a repeat count or alternation, e.g.
"{4|Four}{th}?" would also match 4, 4th, four, fourth.

[] Character Set: Lists specific characters to match, e.g.
"[0123456789]" would match only digits.

A dash "-" in a character set specifies a range, e.g. "[0-
9A-Fa-f]" would match a hexadecimal digit "0" through
"F". The reason both upper and lower case ranges are
given is character sets are always case specific, the
Match:NoCase switch does not effect them. Use
UPPER() on both strings to work around this.

A caret "^" used at the start of character sets specifies
the characters are not to be matched e.g. "[^0-9]"
would match any character that is not a digit. A
character must be present unless you put an * or ?
repeat count.

^ Beginning of Line: When placed at the beginning of the
line indicates that the match must begin at character
one. E.g. to match a CLW file name that begins with
"AB" the regex "^AB.*\.CLW" would require the "AB"
to be in position one.

$ End of Line: When placed at the end of the line
indicates that the match must occur at the end of the
line. E.g. "[0-9] [0-9] [0-9]\.CLW$" would match
generated Clarion would files that end with a three
digit number and the CLW extension.

If you want to learn more about regex the first place to start is the
Clarion help on the MATCH() statement. O'Reilly has a book titled
"Mastering Regular Expressions" (ISBN: 1565922573) that is very
good; it covers all the basics and deals extensively with the
various flavors and extensions. If you search the web for "Regular
Expressions" you will get many hits that are just as good as the
book; some of these are listed at the end of this article. Remember
that Clarion will not support many of the regex extensions.

Using a MATCH explorer

If you're going to use MATCH() in your code I would strongly
suggest building yourself an Explorer program to let you test your
expressions to verify that they are working as expected. It’s very
easy to miss one important character. This will also save you a lot
of time compiling and testing. I’ve included a program I call Match
Explorer with this article. It allows testing all forms of MATCH:
Simple, Wild, Regular and Soundex. It also will format the Clarion
MATCH() code for you to copy to the clipboard and paste into your
App. Figure 1 shows the MATCH Explorer..

http://www.clarionmag.com/cmag/v3/v3n6match.html (4 of 8) [8/7/01 1:20:48 PM]

Using MATCH In Filters and Regular Expressions

Figure 1. Using the MATCH Explorer to test four different
expressions

For a more help with MATCH regular expressions you can download
Clarion Source Search from my website. It has a Regular
Expression Assistant which can be used free even in an
unregistered copy. The Regular Expression Assistant has a parser
that explains your regex in words, a tester like Match Explorer, the
Clarion regex syntax and a few more bells. Figure 2 shows the
expression parser, and Figure 3 shows the syntax help.

Figure 2. The Regular Expression Assistant parsing a regex

http://www.clarionmag.com/cmag/v3/v3n6match.html (5 of 8) [8/7/01 1:20:48 PM]

Using MATCH In Filters and Regular Expressions

Figure 3. Syntax help in the Regular Expression Assistant

STRPOS()

Clarion 5.5a added a new STRPOS() function that is like MATCH()
but returns the position in the string like INSTRING(), rather than
just true or false. This function always does a regular expression
match and does not allow for simple, DOS wildcard or Soundex
matching. This will be very handy for searching large strings and
especially raw HTML or RTF code.The syntax is similar to MATCH()
and the opposite of INSTRING():

Position=STRPOS(string, substring(regex), NoCase)

Specify True or "1" for the last parameter for a case insensitive
search. If this omitted the comparison will be case sensitive. You
may also UPPER() the strings. The prototype from BUILTINS.CLW
is shown below:

STRPOS(STRING s,STRING p,BYTE
nocase=FALSE),LONG,NAME('Cla$REGULAR')

As with MATCH(), I would suggest you use an Explorer program to
test your expressions and be certain they are working as you
expected. I’ve also included a STRPOS explorer application in the
download at the end of this article. Figure 4 shows the STRPOS
Explorer in action.

http://www.clarionmag.com/cmag/v3/v3n6match.html (6 of 8) [8/7/01 1:20:48 PM]

Using MATCH In Filters and Regular Expressions

Figure 4. The STRPOS Explorer

Summary

Many times developers use multiple INSTRINGs and logical
operators for filtering that result in some long and complex filters.
By using the MATCH example given in this article you may be able
make your filters smaller and smarter when searching for multiple
substrings. Any time you find yourself "OR-ing" together several
INSTRINGs think about trying a regular expressions. If you learn a
bit more about regular expressions you can do some pretty fancy
pattern matching. If you have further questions about regular
expressions please email them to me or post them at the end of
this article, and I will use them in a follow-up article.

Download the source

Web Resources for Regular Expressions:

● Pattern Matching and Regular Expressions:
http://www.webreference.com/js/column5/

● Java Regular Expression Resources
http://www.meurrens.org/ip-Links/java/regex/index.html

● GNU Regex Manual http://www.meurrens.org/ip-
Links/java/regex/gnu.c.library/regex_toc.html

● Learning to Use Regular Expressions by Example
http://www.phpbuilder.com/columns/dario19990616.php3

http://www.clarionmag.com/cmag/v3/v3n6match.html (7 of 8) [8/7/01 1:20:48 PM]

http://www.clarionmag.com/cmag/v3/files/v3n6match.zip
http://www.webreference.com/js/column5/
http://www.meurrens.org/ip-Links/java/regex/index.html
http://www.meurrens.org/ip-Links/java/regex/gnu.c.library/regex_toc.html
http://www.meurrens.org/ip-Links/java/regex/gnu.c.library/regex_toc.html
http://www.phpbuilder.com/columns/dario19990616.php3

Using MATCH In Filters and Regular Expressions

Carl Barnes is an independent consultant working in the Chicago area. He has been
using Clarion since 1990, is a member of Team TopSpeed and a TopSpeed Certified
Support Professional. He is the author of the Clarion utilities CW Assistant and
Clarion Source Search.

Reader Comments

Add a comment

Carl, First, thanks for the article. Very...
For a report with very specific requirements I normally...

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n6match.html (8 of 8) [8/7/01 1:20:48 PM]

mailto:carl@carlbarnes.com
http://www.clarionmag.com/cmag/comments.frm?articleID=10697
http://www.clarionmag.com/cmag/discuss.frm?articleID=10697&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10697&position=2
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Clarion Magazine -

Clarion News

GREGPlus Sale Ends July 31
Gitano Software has put GREGPlus on special until July 31, 2001.
All new orders will receive $50 off per product, and all upgrade
orders will receive $25 off per product. To obtain your discount
you mustorder via the link above. If you buy it from any other
source Gitano Software will not be able to deduct the amount.
The discount will be deducted from your total before your card is
charged.
Posted Monday, July 30, 2001

Service Interruptions At SoftVelocity Web Site
SoftVelocity's ISP is doing some (non-elective) maintenance on
its data servers, which means that ASP pages will be
intermittently affected. This impacts User Profiles and the Bugs
Reporting system.
Posted Thursday, July 26, 2001

PDF-XChange Now Complete
The final set of drivers (NT) are now complete and available to
owners of PDF-XChange. The class and template have now been
updated to include: simpler Init() and Kill() methods including
printer selection; CPCS support now - Larry Teames will make
PDF Mailer PDF-XChange Compatible shortly; and updated help.
All existing drivers have also upgraded and C5 support has been
improved and is now complete. Some simple VB examples are
included for those that use VB. There are just a few days left to
purchase at the Promo price if you missed the Beta pricing. PDF-

http://www.clarionmag.com/cmag/news01-07.html (1 of 5) [8/7/01 1:17:44 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
https://www06.tierranet.com/gitanosoftware.com/Merchant/merchant.mv?
http://www.softvelocity.com/
http://www.docu-track.com/tools-pdfx.htm

Clarion Magazine -

XChange is available at $499 including the API, and the direct
output drivers for all Windows operating systems are included, at
around a third the price of comparable products.
Posted Thursday, July 26, 2001

SealSoft's xFunction 1.1 (Free)
SealSoft has released version 1.1 of the free xFunction toolkit.
New in this version: xGetMemorySize(); xSetEngMonth();
xGetDrivers(). Installs for Clarion 5 and 5.5 are available, as is a
demo.
Posted Thursday, July 26, 2001

Clarion Handy Tools O6B-3 Available
Handy Tools build O6B-3 is now available at the subscriber
download site. This is an update build to O6B and furthers the
enhancements added in O6B-1 and 2. One of the improvements
made in this minor build is greater compatibility with other 3rd
party products.
Posted Tuesday, July 24, 2001

xAppWall Manager v1.0
SealSoft has released xAppWall Manager, a library with extension
template for easy management of frame background images.
Multiple images can be in fixed order, or random.
Posted Tuesday, July 24, 2001

Win9x/ME Versions Of PDF-XChange Released
Tracker Software Products has added Win9x/Me versions of the
PDF-XChange driver, in both end user and Developer SDK
editions. The NT version will be available during the week of 30th
July; that version will complete the set for all current Windows 32
bit operating systems. The royalty-free developer SDK/API is
available for $499 until July 31st - the full retail price of $699 will
apply as of August 1st, 2001. The Clarion Class provided free will
be extended and released once the NT drivers are complete.
Posted Tuesday, July 24, 2001

http://www.clarionmag.com/cmag/news01-07.html (2 of 5) [8/7/01 1:17:44 PM]

http://www.seal-soft.com/
http://www.cwhandy.dns2go.com/hndnewo6b/index.html
http://www.seal-soft.com/xappwallmanager.html
http://www.docu-track.com/tools-pdfx.htm

Clarion Magazine -

CPCS Support Delay
CPCS support will be unavailable from 7/21/01 - 7/29/01. Larry
says it's time for a little R&R.
Posted Saturday, July 21, 2001

Clarion to EXCEL Converter Released
Sterling Data's IMPEX now supports export to Excel XLS files,
using ExcelBond, an IMPEX add-on written in C by Alexander
Ageev. Cost is $79.
Posted Thursday, July 19, 2001

PDF-XChange Beta Pricing Ends Friday, July 20
Tracker Software is about to release the Win9x/Me drivers for
PDF-XChange, a royalty-free PDF creation SDK including drivers
and an API. PDF-XChange also comes complete with a Clarion-
specific template and class set. PDF-XChange pricing is currently
at $399, but after Friday, July 20, 2001, the price goes up to
$499 until gold release on August 1, when the full retail price of
$699.00 goes into effect. Developers will receive the
Win9x/Me/2000 drivers (when ready) with the NT drivers to
follow (inclusive in price) as soon as they are complete towards
the end of the month.
Posted Thursday, July 19, 2001

SysPack Special
Until August 19, 2001, solid.software is offering the SysPack
bundle for $199. SysPack contains: SysAni, an animation player
for Clarion; SysTrack, a trackbar (aka slider) control; SysHotKey,
lets your users specify key combinations; SysList, a list view
control with the large icon, small icon, list and detail views; and
SysProgress, a progress control. All of these are wrapper classes
for the common controls of the WIN32 API, and are written
entirely in Clarion with accompanying templates. Documentation
and example applications are also included. E-mail support and
updates are free.
Posted Thursday, July 19, 2001

Paragon Office Summer Schedule
Paragon Design & Development offices will be closed from 5:00

http://www.clarionmag.com/cmag/news01-07.html (3 of 5) [8/7/01 1:17:44 PM]

http://www.cpcs-inc.com/
http://www.sterlingdata.com/
http://www.docu-track.com/tools-pdfx.htm
http://www.solidsoftware.de/products.htm
http://www.paragondandd.com/

Clarion Magazine -

PM MST (GMT-0700) Tuesday, July 17, until 8:00 AM MST,
Tuesday, July 24, 2001. No technical support will be provided
during this period. Product sales via the paragondandd.com Web
server will be handled normally during this period. See separate
notice today of a brief scheduled server outage, unrelated to the
office closure.
Posted Wednesday, July 18, 2001

Paragon Server Availability
The Paragon Design & Development server will be unavailable for
approximately 4 to 6 hours on Thursday, July 19, due to the
planned move of the datacenter housing the server. The down
time will begin at approximately 9AM EDT (GMT-0400) on July
19.
Posted Wednesday, July 18, 2001

New Application Prototyper
Riebens Systems has released a buy-in beta of the Application
Prototyper, which allows designers/developers to manage the
application development project and create project
documentation based on the Software Engineering Laboratory
(SEL) standards from NASA. Application Prototyper currently
allows developers to prototype the software product screens
according to the customer requirements. Integration with the
business rules application as well as business process prototyping
is expected soon. A free distributable remote screen previewer
will be available shortly. The price during the beta program is
$99, with final pricing expected to be between $199 and $299. In
final release Application Prototyper will allow a
designer/developer to design business processes associated with
a software development product, design a screen map (much like
a website map), prototype the application screens and capture
the data elements associated with an application screen.
Posted Tuesday, July 17, 2001

SealSoft Releases xPictureBrowse v1.0
SealSoft's xPictureBrowse is a class with control template that
makes it easy to preview and select a graphic file. You can use
xPictureBrowse to assign pictures to wallpaper or image controls.
Demo available.
Posted Monday, July 16, 2001

http://www.clarionmag.com/cmag/news01-07.html (4 of 5) [8/7/01 1:17:44 PM]

http://www.paragondandd.com/
http://www.riebens.co.za/
http://www.seal-soft.com/

Clarion Magazine -

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any form without
the expresswritten consent of CoveComm Inc., except as described in the subscription agreement,
is prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

http://www.clarionmag.com/cmag/news01-07.html (5 of 5) [8/7/01 1:17:44 PM]

http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

When Clarion COM Will <i>Not</i> Do

Search

Home

COL Archives

Information
Log In
Membership/
Subscriptions
FAQ
Privacy Policy
Contact Us

Downloads
PDFs
Freebies
Open Source

Site Index

Call for
Articles

Reader
Comments

When Clarion COM Will Not Do

by Jim Kane

Published 2001-07-24

I thought it might be fun to review some COM fundamentals and
then show how you can take matters into your own hands and
extend Clarion’s COM abilities for those times where Clarion's native
COM will not do what you want, such as when you need to use safe
arrays. The reason I say it might be fun is because I like COM this
week – in other words all my COM projects have been going well, so
I like it! Don’t ask next week, my luck never lasts that long.

COM seems difficult for beginners because it has a unique
vocabulary. To quickly review and translate COM to Clarionese, here
are some very loose but pragmatic definitions:

COM Clarion

Object Class

CoClass Class

Interface A group of procedures. Each CoClass
contains one or more Interfaces. Every
interface is a member of a CoClass.

GUID Globally unique identifier – a 128 byte
number that is said to be globally unique.

CLSID A GUID that uniquely identifies a CoClass.

IID An interface ID or GUID that uniquely
identifies a COM interface.

ProgID A human-friendly string that can substitute
for a CLSID. There are API functions to
translate a CLSID to ProgID or ProgID to
CLSID. Both are stored in the registry once a
COM object is installed on a computer

Computer A thing that you have a love hate relationship
with.

http://www.clarionmag.com/cmag/v3/v3n7extendcom.html (1 of 11) [8/7/01 1:27:24 PM]

http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/cmag/search.frm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/login.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/faq.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/v3/\\etc.kcug.org
http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Bauthor%3Akane+%2BCOM&submit=Go

When Clarion COM Will <i>Not</i> Do

Method A procedure/function contained in an
interface.

Put A procedure that stores a value inside a COM
object.

Get A procedure that retrieves a value from a
COM object.

Iunknown An interface that starts with 3 particular
methods: QueryInterface, AddRef, and
Release. Every single COM interface contains
the Iunknown methods as its first three
methods plus other additional custom
methods of the interface designer’s choosing

Idispatch An interface that includes all the Iunknown
methods and adds four more methods, the
most significant of which is Invoke.
Idispatch may or may not contain additional
methods.

DispInterface An interface one that includes all the methods
of Idispatch and nothing more.

Dual
interface

An interface that includes all the Idispatch
methods plus other custom methods. A caller
can either call the custom methods directly or
call Idispatch.Invoke which in-turn calls the
custom method

Vtable Thank you for asking – this is really an
assembler (my eyes glow with delight)
concept, but alas it’s nothing magical, just a
list of addresses for every method in an
interface.

Early binding This is what happens when you call an
Iunknown interface or dual interface, which is
done using the Clarion Interface keyword.
Early binding does not use the Idispatch
methods.

Late binding This means you intend to call
Idispatch.Invoke() on an object, which is
what the clarion OLE control does. Late
binding is slower than early binding.

http://www.clarionmag.com/cmag/v3/v3n7extendcom.html (2 of 11) [8/7/01 1:27:24 PM]

When Clarion COM Will <i>Not</i> Do

SafeArray A safe array is a normal array that has
various API functions available so if different
threads try to access the array at one time,
only one can access the array at a time. It’s
an array with thread safety, and the API is
pretty straightforward. Safe arrays can be
implemented in Clarion; in Visual Basic all
arrays are safe arrays.

Variant A variant is a data type much like a Clarion
ANY variable in that it can have a lot of
different data types. It is prototyped as a
group of 16 bytes. The first two bytes of the
group contains an equate for the type of data
the variant represents. There are 20+
possible types like byte, ushort, short,
long, ulong, decimal (not like Clarion’s
decimal type), SafeArrays of any other type,
etc. Another long field contains the value of
the data. The rest of the variant group is
usually blank.

I would suggest you print out that list and memorize it. Then tell
your kids you have a test on it tomorrow and have them quiz you on
it. It will delight the wee folks if you get one wrong, but try not to –
you parents have a reputation to uphold.

Calling a COM object is really no different than calling any API
function. To call a procedure in a DLL you need a LIB or need to load
the library with a call to the loadlibrary() API function. To call a
COM interface you call CoInitialize() to tell COM you’re coming,
and then you call CoCreateInstance(), specifying the CLSID and
IID for the interface you want. CoCreateInstance returns the
address of the interface.

In Clarion COM, when you create an OLE control CoInitialize() is
called for you. In the create() statement for the OLE control on the
window, or in Prop:Create, you supply the ProgID. Clarion converts
the ProgID to a CLSID and calls CoCreateInstance() Either way the
COM object is created and the address of the interface of interest is
obtained.

If you called CoIntialize() and CoCreateInstance yourself, you
now have the address of the interface containing the method you
want to call. If you instead used the Clarion OLE control, that control
stores the address of the interface internally. You can get the
address using PROP:Object. Take for example this simple code that
creates an ADO command object:

Program
Map
End
Window WINDOW('ado test'),AT(,,361,184),|
 FONT('MS Sans Serif',8,,FONT:regular),|

http://www.clarionmag.com/cmag/v3/v3n7extendcom.html (3 of 11) [8/7/01 1:27:24 PM]

When Clarion COM Will <i>Not</i> Do

 SYSTEM,GRAY,DOUBLE
 OLE,AT(37,13,70,90),USE(?CmdObj)
 END
 END
Code
 open(window)
 ?cmdobj{prop:Create}='ADODB.Connection'
 ?cmdobj{'OPEN("DATA SOURCE=SERVERNAME;'|
 & 'PROVIDER=SQLOLEDB.1;Initial Catalog=pubs' |
 & ';UID=SA;PWD=",,,)'}
 !cObj is a CSTRING(20)
 cObj=?cmdobj{prop:object}
 if cobj[1]<>'`'
 message('could not connect')
 close(window)
 return
 end
 Message(‘Address of the ADO Connection Interface: ‘ |
 & cObj[2 : len(Clip(cObj))])

If you wish to run this code, you’ll need to edit the connection string
contained in the open method to reflect your server name, userid,
and password. Clarion COM stores addresses of objects in CStrings
where the first character is an apostrophe. The message statement
passes over the first character which is an apostrophe and displays
the address of the command object’s one and only interface.

Once you have the address of an interface, you can prototype the
interface and call any of its methods you want. What you know for
sure about this interface is it is an Idispatch interface (if it wasn’t it
couldn’t be called from VBScript in web pages). So the following
prototype is a subset of the connection interface.

IUNKNOWNTYPE INTERFACE,COM,type
QueryInterface PROCEDURE (long iid_Requested, |
 *LONG lpInterface),HRESULT
AddRef PROCEDURE (),Long,PROC
Release PROCEDURE (),Long,PROC
 END
IDISPATCHTYPE INTERFACE(IUNKNOWNTYPE),COM,Type
GetTypeInfocount Procedure(*Unsigned pctinfo),hresult
GetTypeInfo Procedure(unsigned itinfo, |
 Unsigned lcid, |
 *long pptinfo)|
 ,hresult
GetIdsOfNames Procedure(long riid, |
 long rgsznames, |
 unsigned cnames, |
 unsigned lcid, |
 *long rgdispid),hresult
Invoke Procedure(long dispidmember, |
 long riid, |
 unsigned lcid, |
 ushort flags, |
 long pdispparams, |
 long pvarresult,|

http://www.clarionmag.com/cmag/v3/v3n7extendcom.html (4 of 11) [8/7/01 1:27:24 PM]

When Clarion COM Will <i>Not</i> Do

 long pexceptinfo, |
 *unsigned puArgErr)|
 ,hresult
 End

By calling Idispatch.Invoke() with different dispidMember
constants you can call any non-dispatch method in the command
object such as Open or OpenSchema. Invoke is a central entry point
to all the methods the command object has to offer. Here’s the
relevant data and code:

Data:

Idispatch &Idispatchtype

Code

Idispatch&=(cObj[2 : len(clip(cobj))])

With that done you can now call any method in the interface using
Idispatch.Invoke(). That puts you in the driver seat Now it’s just
COM vs. you the programmer. Unfortunately Idispatch.Invoke has
a lot of parameters, but many of them are simple constants. The
prototype is this:

 Invoke Procedure(long dispidmember, |
 long riid, |
 unsigned lcid, |
 ushort flags, |
 long pdispparams, |
 long pvarresult, |
 long pexceptinfo, |
 *unsigned puArgErr),
 hresult

Fortunately most of the parameters have a constant value and can
be largely ignored, while others you just look up. The only difficult
parameter is pDispparams, which is a group that describes an array
of the parameters you are passing in. I’ll show how to handle it
shortly.

What prompted this article was a request on the newsgroups to call
the OpenSchema method of the ADO Command object. Unfortunately
one of the required parameters is a SafeArray, and Clarion doesn’t
natively support safe arrays. OLEView shows the definition of the
OpenSchema method as follows:

[id(0x00000013)]
HRESULT OpenSchema(
 [in] SchemaEnum Schema,
 [in, optional] VARIANT Restrictions,
 [in, optional] VARIANT SchemaID,
 [out, retval] _Recordset** pprset);

Note the first line containing an ID of 13H. This is the DispID. Every

http://www.clarionmag.com/cmag/v3/v3n7extendcom.html (5 of 11) [8/7/01 1:27:24 PM]

When Clarion COM Will <i>Not</i> Do

method in a Idispatch interface has a long constant that is
essentially an equate for the method name. In this case the
OpenSchema method has a DispID of 13. That takes care of the first
parameter of Invoke – it is 13H.

The next parameter, called riid, is a dopey API constant. For what
ever reason, the address of a constant defined in my StdCom class
called IID:null is always passed.

The third parameter is LCID or language ID. I usually pass either
409H, since I only speak English (the Texan variant with a New York
accent), or 0 for language neutral. Either way it works. The flags
parameter just signals if this is a method or property. Since it is a
method just pass Disp_Method or 1. For a property Get use
Disp_Get or 2, and for a property Put use Disp_Put or 4.
Pexeptinfo and puargErr are involved in error reporting. Since I
don’t really need these I pass 0 for both.

Although you may think you are on a roll in understanding all these
Invoke parameters, the two toughest ones await: pDispParams and
pVarResult. Keeping definitions simple, pDispParams is a group
that describes an array of input parameters and pVarResult is the
one output parameter or return value. In this case the output
parameter is a pointer to an ADO RecordSet object. You can identify
the output from the OLEView definition above where [out, retval]
appears just before the data type RecordSet. What will be returned
is the address of a variant group that has a variant type of
Idispatch, and the value will be a long or the address of an
Idispatch interface. You know this because elsewhere in the type
library in OleView the RecordSet type is defined as an Idispatch
interface. It also makes sense.

So after the call to Idispatch.Invoke the variant group pointed to
by the VarResult parameter will contain a pointer to the Idispatch
interface of a record set object. You’ll put it back into a form Clarion
can use and be able to read the record set using normal Clarion OLE
control code.

That leaves the pDispParam parameter of Idispatch.Invoke. It is
prototyped like this:

dispparms group
lparrofargs long
lpdispofargs long
NumArgs long
numNamedArgs long
 end

This is a group that describes the parameters you are passing to the
OLE method to be called. The second and fourth fields in the group
are for passing named parameters. These are rarely of use so I will
not cover them. Set those two items to zero. NumArgs is just the
number of input parameters in the method being called. In this case
there are three input parameters and one ‘retval’ so NumArgs is set

http://www.clarionmag.com/cmag/v3/v3n7extendcom.html (6 of 11) [8/7/01 1:27:24 PM]

When Clarion COM Will <i>Not</i> Do

to 3. DispParams is the address of an array of variant groups where
the first group in the array is the last input parameter. pDispParam
can be prototype in Clarion like this:

!variant structure
VariantType GROUP,TYPE
VT USHORT
wReserved1 USHORT
wReserved2 USHORT
wReserved3 USHORT
Value LONG
extrapad ULONG
 END

!group of variants - used to pass 3 parameters
varparm group
var1 like(varianttype) !schema id not used
var2 like(Varianttype) !safearray
var3 like(varianttype) !adschematables=20
 end

Setting up the variants is pretty straight forward. Before using the
variant group, call the API function VariantInit() to clear the
structure. Then set the VT element to specify the type of data the
variant will represent. There is an API constant for every possible
type of data. To have the variant represent a long, set the VT field
to VT_I4 (which has a value of 3). After the VT field is filled, put the
value of the parameter in the Value field. For the three parameters
for the OpenSchema method set up the final code this way:

variantINIT(address(varparm.var1))
variantINIT(address(varparm.var2))
variantINIT(address(varparm.var3))

!create variants for the parameters -
! first on the line is put at the end of the array
! in other words the array of variants is
! packed backwards

!first parameter is an ADO constant = 20
varparm.var3.vt=vt_I4
varparm.var3.value=20

!second parameter is safe array
varparm.var2.vt=vt_array+vt_variant
varparm.var2.value=SArrayCl.psa

!3rd parameter is schema id and
!will always be empty
varparm.var1.vt=vt_empty
varparm.var1.value=0

The second parameter is an array of variants packaged into a safe
array. The array is one dimensional and the first dimension has four
items in it – three empty variants and a string. To set up the safe
array first I load a Clarion array with the maximum number of array

http://www.clarionmag.com/cmag/v3/v3n7extendcom.html (7 of 11) [8/7/01 1:27:24 PM]

When Clarion COM Will <i>Not</i> Do

elements in each dimension:

Data:

ArrIndex long,dim(1) !1 dimension safearray

Code

ArrIndex[1]=4

This tells my safe array class that the safe array will have one
dimension and the one dimension will have four elements. The other
items passed to the safe array class init method are the data type
and size of each element in the safe array. In this case I’m using
vt_variant and the size of the variantType structure:

if SArrayCl.Init(vt_Variant,size(variantType),|
 arrIndex[]) then
 message(SArrayCl.ErrorStr,'init')
 safearrayerror=true
end

For each element in the array (four of them) call the PutVariant
method with the value of the element to add it to the safe array.
Use the same array, arrIndex[] to tell the class what the index of
the safe array element you are filling

!idx 1 is vt_empty
arrindex[1]=1
if ~safearrayerror and |
 SArrayCl.Putvariant(arrIndex, vt_empty,0) then
 message(SArrayCl.ErrorStr,'put')
 safearrayerror=true
end
!idx 2 is vt_empty
arrindex[1]+=1
if ~safearrayerror and |
 SArrayCl.Putvariant(arrIndex, vt_empty,0) then
 message(SArrayCl.ErrorStr,'put')
 safearrayerror=true
end
!idx 3 is vt_empty
arrindex[1]+=1
if ~safearrayerror and |
 SArrayCl.Putvariant(arrIndex, vt_empty,0) then
 message(SArrayCl.ErrorStr,'put')
 safearrayerror=true
end

For the last item, which is a BString, I set cwstr=’VIEW’ and then
call my string class (strcl) to convert the Clarion string to a BString
in one step.

!idx 4 is a bstring pointer
arrindex[1]+=1

http://www.clarionmag.com/cmag/v3/v3n7extendcom.html (8 of 11) [8/7/01 1:27:24 PM]

When Clarion COM Will <i>Not</i> Do

!convert to bstring
strcl.cwtoBstrAlloc(cwstr, lpbstr)
!Copy the bstring into the safe array array
if ~safearrayerror and |
 SArrayCl.Putvariant(arrIndex, vt_bstr,lpbstr) then
 message(SArrayCl.ErrorStr,'put')
 safearrayerror=true
end

Now that all the parameters are packed into variants you are ready
to call the invoke method then free the safe array:

!013H is the dispId for open schema from oleview
!iid:null is dopey constant
!409H is English language
!1=dispatch_method since this is a method
!dispparams which you just made
!var is where the result goes
!0,0 is used for error info -
!I'm just too lazy to use it.
hr#=Idisp.invoke(013H,address(iid:null),|
 409H,1,Address(dispparms),address(var),0,0)
!free the safe array and the bstring it contains
if sarraycl.kill() then message('safe array kill error').

Note in the original type library description cut and pasted from
OleView the second parameter, Restrictions, which is a safe
array, is marked [In, optional]. The important part is the [In].
This means the method caller allocates the memory for the
parameter, and may (must) dispose of the memory any time after
the method call returns. If the COM object wants to it can make a
copy of the data, but it can not rely on the data continuing to exist
after the method returns. You take care of cleaning up the safe
array memory by calling the sarraycl kill method.

At this point if hr#>=0 there is no error, and the result or
[out,retval] RecordSet object you want is returned in the var
group passed to Invoke. You can expect the type or VT field of the
variant var to be vt_Dispatch or an Idispatch pointer to a
RecordSet object. The code to test the result and construct a
CString containing the Idispatch pointer that the Clarion OLE
control can understand is shown below, where cRS is a
CString(20). Clarion expects an Idispatch pointer to be in a
CString with a ` as the first character. For the record [Out]
parameters have memory allocated for them by the COM object,
and the caller of the method needs to dispose of the memory
allocated, if any, for the [Out] parameter. In this case the out
parameter is just a long and did not require any memory allocation
so you have nothing to clean up. Had the [Out] parameter been a
BString, you would have to free the memory allocated by the COM
object for the BString.

!test the hresult. 0 or greater
! is a good result
!also test the output variable is

http://www.clarionmag.com/cmag/v3/v3n7extendcom.html (9 of 11) [8/7/01 1:27:24 PM]

When Clarion COM Will <i>Not</i> Do

! an IDispatch pointer and not blank
if hr#<0 or var.vt<>vt_dispatch or ~var.value then
 message(hr#,'OpenSchema failed')
else
 !the var variant contains a pointer
 ! to the record set
 !now you make the pointer into the
 ! format Clarion understands
 cRS='`'&var.value
end

Now you can use normal Clarion code to read the record set. For
example to determine the number of fields in each record in the
record set:

 Loop !For each record
 if ?cmdobj{crs & '.EOF'}<>0 then break.
 cFields = ?cmdobj{crs & '.FIELDS'}
 count=?cmdobj{cFields & '.Count'}
 Message(‘This record contains ‘ & count & ‘ fields.’)
End

The complete sample code available for download shows how to
read all the schema information returned. To read the value of the
schema information, call Invoke()again to read the value property
of the field object. This provides another example similar to the one
above of calling invoke. By calling Invoke directly you can better
handle some of the returned values which are NULL. Clarion OLE
doesn’t handle VT_NULL very well but the code that calls invoke()
to get the value does.

So there you have it. Once you understand how Idispatch works,
you can call its invoke method and have complete control over the
input and output parameters. With that kind of control you an easily
supplement the bits of pieces of COM Clarion doesn’t handle too
well, then go back to letting Clarion do most of the work and
continue on. It’s nice to know you can have full control when you
want to. I guess I’m just a control freak; at least my teen age
children think so!

Download the source

Jim Kane was not born any where near a log cabin. In fact he was born in New York
City. After attending college at New York University, he went on to dental school at
Harvard University. Troubled by vast numbers of unpaid bills, he accepted a U.S. Air
Force Scholarship for dental school, and after graduating served in the US Air Force.
He is now retired from the Air Force and writing software for ProDoc Inc., developer
of legal document automation systems. In his spare time, he runs a computer
consulting service, Productive Software Solutions. He is married to the former Jane
Callahan of Cando, North Dakota. Jim and Jane have two children, Thomas and Amy.

http://www.clarionmag.com/cmag/v3/v3n7extendcom.html (10 of 11) [8/7/01 1:27:24 PM]

http://www.clarionmag.com/cmag/v3/files/v3n7extendcom.zip
mailto:jkane@satx.rr.com
http://www.prodoc.com/

When Clarion COM Will <i>Not</i> Do

Reader Comments

Add a comment

Copyright © 1999-2001 by CoveComm Inc. All Rights Reserved. Reproduction in any
form without the express written consent of CoveComm Inc., except as described in the
subscription agreement, is prohibited. If you find this page on a site other than
www.clarionmag.com, email covecomm@mbnet.mb.ca

http://www.clarionmag.com/cmag/v3/v3n7extendcom.html (11 of 11) [8/7/01 1:27:24 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10746
http://www.clarionmag.com/cmag/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

	clarionmag.com
	Clarion Magazine
	Understanding Recursion - Part 1
	Using The Web Browser OCX
	A FileManager For Marked Deleted Records
	I Didn't Need That Much Detail
	Recovering Deleted Records
	Avoid My SQL Mistakes!
	Using Procedure Category to Split Apps into DLLs
	"Sometimes" Lookups
	Implementing Read-Only Checkboxes
	Using MATCH In Filters and Regular Expressions
	Clarion News
	When Clarion COM Will <i>Not</i> Do

	IGCDOEMPPNCMENDCOJEEPCNPEBCHGLGN:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	PMMAHMCPFMFMBKNFEMNMADGNDEMHIIGOCL:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	PLPCAEGFKMALBDAIKFAEJPDICIGEIJFP:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	IPHKIELJPEKAEMJEIOFEEMGMOHEKOKJM:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	ELKCKIOOIEKJMOFPGMKADAHLNOFPJFNO:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	CKAOMGPCCMAMBAKOFHGKEGHFOAMBFDBN:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	DFNGIBNBEDMGBIIPKFKPJBAOGGIAJEOG:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	DDOMDDKAHJEBPIHLPNFMFMHNFGIGEGIAEF:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	FFOJNICNBAHDLBBEGFAPNJCNMNEOPMPA:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	ABJDNNPMIANCOMEJHGLKINNILEPDCBKM:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	HDFDLJCJGGENPLJDBLCDALHKEMAHLIFMDA:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

	PPKHOKOPPKJDNEIDPLFLBDFGACEJDHLB:
	form1:
	x:
	f1: true
	f2:

	f3: Go
	f4:

