
Clarion Magazine

Clarion Magazine

Home COL Archives

Date Checking, Time Stamping
There are a number of reasons why you might want your
application to check and act on dates and times. Perhaps
you want to time your software out after a certain number
of days. If your software is a demo or leaseware, the ability
to do this is critical. Similarly, if you want to run automatic
end of day processing or check for fiscal year rollover, you
need to be able to verify dates. Steve Parker shows how
it's done.

Posted Monday, January 07, 2002

A Template For Copying Fields Between Files
If you're like most Clarion developers, you frequently have
to copy fields between files. Clarion's deep assignment is
perfect for this, right? Wrong, says Andrew Guidroz.

Posted Thursday, January 10, 2002

Handing COM Events - Part 1
The one area of COM that the Clarion OLE control is
particularly weak in is receiving events. When the OLE
control works, it works very well and is very simple to use.
However, more often than not, it does not work, and in a
case like that you'll need Jim Kane's OLE event code. Read
on. Part 1 of 2.

Posted Friday, January 11, 2002

November 2001 PDF Now Available
The November 2001 PDF is now available for download.

Posted Friday, January 11, 2002

The ClarionMag Sweepstakes January Draw Is
Coming Soon!
We've revised the draw dates for the Clarion Magazine
Sweepstakes! There will be an interim draw on January 31,
for subscriptions and product prizes; if you win on the
interim draw, you're still eligible for the final draw in

Enter the
ClarionMag

Sweeps!

Subscribe, Renew, or
Refer a Friend and

you could win a
Compaq iPAQ or an

ETC-III
registration!

There were 11 winners
in the January 31
interim draw.
No purchase required.

News

INN Bio: Mihai Palade

Advertise On The Clarion

Connection

Digital Alarm Clock Demo App

New Icetips Previewer Demo

New Home For Schoeffler &

Rau Datensysteme

SAPDB Available For Download

Icetips Previewer Released

SealSoft xXXL Pack

http://www.clarionmag.com/index.html?month=1&year=2002&limit=100&desc=false (1 of 4) [2/4/02 1:29:05 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/pdfs.html#
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/sweepsrefer-info.html

Clarion Magazine

February. Enter by renewing or subscribing, or by referring
new subscribers. First prize is your choice of a Compaq
iPAQ or an ETC 2002 conference registration. There are
other great prizes too!

Posted Monday, January 14, 2002

Weekly PDF for January 6-12, 2002
All ClarionMag articles for January 6-12, 2002 in PDF
format.

Posted Monday, January 14, 2002

Handing COM Events - Part 2
The one area of COM that the Clarion OLE control is
particularly weak in is receiving events. When the OLE
control works, it works very well and is very simple to use.
However, more often than not, it does not work, and in a
case like that you'll need Jim Kane's OLE event code. Read
on. Part 2 of 2.

Posted Wednesday, January 16, 2002

Write A Word Processor In Five Minutes
Inspired by a 30 page tutorial on creating a text editor in
Delphi, Vince Du Beau decided to see how he could
improve on the example in Clarion. The result: a word
processor in five minutes.

Posted Thursday, January 17, 2002

Bob Zaunere To Keynote ETC-III
Bob Zaunere has been confirmed as the keynote speaker at
ETC-III, May 21-24 2002 in Gatlinburg, Tennessee. Bob
Foreman will be presenting on ClarioNET. NOTE:
Conference space is limited, and ETC organizers report
registrations are coming in faster than for either of the
previous two ETC events.

Posted Friday, January 18, 2002

Interfacing With C++ Part 1
This article demonstrates how Clarion interfaces and C++
abstract base classes can be freely interchanged between
Clarion, TopSpeed C++ and Microsoft Visual C++. Not only
does this provide a convenient conduit for mixed language
development, it also allows objects to be shared across
languages. In practice it is possible to build a very powerful

DateTime Clock Special Pricing

Ends Thursday

CPCS For C55 Now supports

Internet Connect Under ABC

CPCS V5.50d Previewer

Supports Prompt, Tip, And

Icon Customization

New Icetips Previewer Demo

New Wizard Template And

Classes Released

DOS Printer v5 Released

AnalyZe.IT

Dennis Evans' Web Site

Clarion TWAIN Demo And

Template

SealSoft xWinSet v2.09

Released

Clarion Handy Tools Thin

Client Data Demo

SysDTP Date And Time Picker

xNotes v1.2 Released

Dennis Evans Featured INN

Bio

Gitano G Build Support

Free Data Dictionary For A

Software Project Management

System

Shareware Version of

EmailData Template

http://www.clarionmag.com/index.html?month=1&year=2002&limit=100&desc=false (2 of 4) [2/4/02 1:29:05 PM]

http://www.clarionmag.com/cmag/v4/files/cmag-2002-01-12.pdf
http://etc.kcug.org/

Clarion Magazine

C++ library by simply wrapping existing or third party code
within a Clarion compatible interface. Part 1 of 2.

Posted Friday, January 18, 2002

Interfacing With C++ Part 2
In this second of two parts, Gordon Smith concludes his
demonstration of how Clarion interfaces and C++ abstract
base classes can be freely interchanged between Clarion,
TopSpeed C++ and Microsoft Visual C++.

Posted Monday, January 21, 2002

Weekly PDF for January 13-19, 2002
All ClarionMag articles for January 13-19, 2002 in PDF
format.

Posted Wednesday, January 23, 2002

First Field, Required Field
When you cancel a form that has field validation code, does
that code still execute? If so, you have the "required field
lookup blues." Here's Dr. Parker's prescription.

Posted Friday, January 25, 2002

Weekly PDF for January 20-26, 2002
All ClarionMag articles for January 20-26, 2002 in PDF
format.

Posted Monday, January 28, 2002

Getting A Handle On The System Tray
One main benefit of Windows programming is being able to
have multiple applications open at once. The problem with
this is that if you have ten programs active at once, you
have ten programs cluttering up your task bar, and ten
icons to Alt-Tab through to land on your desired
application. So - the system tray to the rescue! This article
by James Cooke (not Gordon Smith, as earlier indicated -
my apologies James! ed.) covers the basic steps required
for parking an app in the system tray, and responding to
events on that icon.

Posted Wednesday, January 30, 2002

ABC/Legacy Available

CPCS Preview Now Handles

Varying Sized Pages

Freeware Capitalize Template

Updated

RAS (Dial-Up) Library Freely

Available

xWord Library v1.6 Released

Handy Tools Example Apps

Revised

EmailReport ABC Version 1.1

Free EFT/Credit Card Template

Beta

New Clarion Site

EnhancedScrollClass C3PA

Compliant And C5.507

Compatible

CPCS Adds Report

Concatenation Feature

New TeamIDD Pricing

Structure

Gitano Software Support

Forum

Upgrade To A Gitano Bundle

Promo

DOS Printer version 4

Released

xQuickFilter v2.09 Released

Sterling Data New Year Bundle

Discounts End Jan 10

http://www.clarionmag.com/index.html?month=1&year=2002&limit=100&desc=false (3 of 4) [2/4/02 1:29:05 PM]

http://www.clarionmag.com/cmag/v4/files/cmag-2002-01-19.pdf
http://www.clarionmag.com/cmag/v4/files/cmag-2002-01-26.pdf

Clarion Magazine

Juan Domingo Herrera

Featured In INN Bio

Compile Manager 2 Available

Translator Plus Legacy

Template Released

TeamIDD Distributed Source

Control

Shareware EmailReport ABC

RInstall Update

Fomin Report Builder Public

Support Forum

PSI's TimeTrak 1.1 Released

INN Bio For Jan 3, 2002

New Scripting Language For

Clarion And Business Users

ForeHelp Closes Doors

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/index.html?month=1&year=2002&limit=100&desc=false (4 of 4) [2/4/02 1:29:05 PM]

http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Date Checking, Time Stamping

Clarion Magazine

Home COL Archives
Topics > Tips/Techniques > Dates and Times

Date Checking, Time Stamping

by Steven Parker

Published 2002-01-07

There are a number of reasons why you might want your application to check and
act on dates and times. Perhaps you want to time your software out after a certain
number of days. If your software is a demo or leaseware, the ability to do this is
critical. Similarly, if you want to run automatic end of day processing or check for
fiscal year rollover, you need to be able to verify dates. Or, if you need to archive or
to purge archives ... well, you get the idea.

The conventional wisdom is that you cannot date-lock a Clarion program. You
cannot do so, says the conventional wisdom, because you are forced to use the
system clock and the system clock cannot be assumed to be correct. If you can’t
rely on the clock, then it also follows that you cannot reliably time-stamp either.

It is obvious that you cannot, in fact, rely on the system clock. Users can and do
change dates and times (I do so all the time when testing my applications). The
batteries that drive the clock can go bad. Some PCs simply lose time (I have a fairly
new notebook that reliably loses several minutes a week).

All of this has been obvious since I first addressed this problem in "Time Stamping
With Confidence" (Clarion for Windows Magazine, 1, 6, March/April 1997). Equally
obvious, to me at least, is that the conventional wisdom simply misses the point.
That’s why I wrote that article in the first place.

The point is not to ensure that each end user’s PC clock is dead accurate. The point
is that dates and times simply need to be reliable. That is, dates cannot be allowed
to roll back i.e., once a date is set, no earlier date-value can be accepted. The same
is true of times. If any given date-time measurement is later than any previous

http://www.clarionmag.com/cmag/v4/v4n01datestamp.html (1 of 9) [2/4/02 1:29:55 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=145

Date Checking, Time Stamping

measurement, that is good enough for reliable time stamping and, therefore, date
locking. The date and/or time may not be exactly correct but they are, at least, in
the correct order.

Phrased this way – and I am a long time believer in the fact that the answer to a
question often, if not usually, hinges on how the question is phrased – date locking
or date limiting your software is really no more difficult that limiting the number of
records in a file. I’ll explain that in a moment.

Once I reformulated the question and redefined the conditions, I found that
implementing date locking, time stamping, whatever you want to call it, is entirely a
matter of determining what needs to be checked, what order to do the checks and
what to do about the results. In other words, it’s all in the planning; the execution is
straightforward.

What I need to know

To add date/time stamping/locking to an application, you’ll need a few fields in an
encrypted configuration file. While encryption can be broken, anyone willing to go to
the lengths required is going to break most protection schemes, so I don’t think it
worth worrying overly much about these types of "customers." Encrypt the file. The
idea is not to make date/time locks unbreakable, that can’t be done (there’s always
someone out there more clever and more devious than you are), but sufficiently
inconvenient that most folks won’t bother.

Field Description

Date first used This is needed to
calculate the timeout
date.

Date last used This is needed to check
that the current start up
of program is at least as
late as the previous use.

Time last used Ditto.

http://www.clarionmag.com/cmag/v4/v4n01datestamp.html (2 of 9) [2/4/02 1:29:55 PM]

http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Btitle%3Acontrol+%2Btitle%3Afiles

Date Checking, Time Stamping

Number of days allowed If an action is to take
place after a pre-set
number of days, this
datum is necessary.

These define a file structure like this:

CONFIG FILE,PRE(CFG),DRIVER('TOPSPEED'),RECLAIM,OWNER('♥')
RECORD RECORD
FirstDate LONG
LastDate LONG
DaysAllowed SHORT
LastTime LONG
 . .

Acting after X days

Timing out a demo or taking action after a certain number of days is quite easy with
this configuration file.

Late in INIT:

Access:Config.Open
Set(Config)
Next(Config)
If Today() > CFG:FirstDate + CFG:DaysAllowed
 Message(‘Please pay for this program.’, &|
 ‘Evaluation Period Over’,ICON:Hand)
 Access:Config.Close
 Return Level:Fatal
End

You may notice that I do not check for errors in this code. There are two reasons for
this. First, in the app from which this is taken, the file was opened and checked for
errors a bit earlier. Second, I distribute a copy of the configuration file as part of the
installation and the file cannot be created by the app. If there is an error on opening
or reading the configuration file, something is seriously wrong and the user should
be dumped out of the program. If you decide to use this technique, "salt to taste."

If you need to take some specified action, just substitute a procedure call and
appropriate disposition for Access:Config.Close.

The real problem is ensuring that Today() > CFG:FirstDate + CFG:DaysAllowed
is reliable, that no more than the requisite number of days have passed and that
the user hasn’t rolled the system date back to try and beat you.

http://www.clarionmag.com/cmag/v4/v4n01datestamp.html (3 of 9) [2/4/02 1:29:55 PM]

Date Checking, Time Stamping

The strategy I developed recognizes that system clocks can be wrong, for whatever
reasons. However, because I am in control of what goes into or out of the
configuration file, I can enforce a certain degree of order.

I cannot guarantee that the date and time are correct. But I can ensure that dates
and times go in the generally approved direction: forward only. I can also minimize
the user’s ability to lie to me.

First program use

The basic test is:

If Today() > CFG:LastDate

However, it makes no sense to test this until I have a value in CFG:FirstDate.
FirstDate, of course, should be initialized the first time the program is started.

But the first time the program is started, I have nothing to check against.

Or do I?

Well, if the system date is correct, I really don’t have to worry. In fact, I only need
to be sure that the date isn’t outrageously behind (if it’s way ahead, that’s the
user’s problem).

To prevent starting a program on a PC with a very stale date, I adopted the
strategy of setting a base date and testing against that. I arbitrarily created the
base date by using the date I finished the application, setting it up during the final
make. That date was the base. So, I can test:

If ~CFG:FirstDate !no first date, must be first use
If Today() < Date(12,13,01) !date I started this article

If this condition is met, the date is hopelessly behind and I tell the user and
terminate.

If ~CFG:FirstDate
 If Today() < Date(12,13,01)
 Message(‘Your system reports an invalid date/time.’ |
 ‘This could negatively impact your data.’,’Warning’,|
 ICON:Hand)
 Return Level:Fatal
 End

http://www.clarionmag.com/cmag/v4/v4n01datestamp.html (4 of 9) [2/4/02 1:29:55 PM]

Date Checking, Time Stamping

End

If the date is current, the test will fail and I initialize the configuration variables:

If ~CFG:FirstDate
 If Today() < Date(12,13,01)
 Message(‘Your system reports an invalid date/time.’ |
 ‘This could negatively impact your data.’,’Warning’,|
 ICON:Hand)
 Return Level:Fatal
 Else !later than base date
 CFG:FirstDate = Today()
 CFG:LastDate = Today()
 CFG:LastTime = Clock()
 Access:Config.Update
 End
End

If I have provided a copy of the Config file, with a blank record, the Update method
is correct. Otherwise, Access:Config.Insert adds the new record.

If hard coding the base date into the program offends your sense of propriety (and
it should), add another field to the configuration file, manually place a value in it
and provide the file as part of your install. Then, the code above becomes:

If ~CFG:FirstDate
 If Today() < CFG:BaseDate
 Message(‘Your system reports an invalid date/time.’ |
 ‘This could negatively impact your data.’,’Warning’, |
 ICON:Hand)
 Access:Config.Close
 Return Level:Fatal
 Else
 CFG:FirstDate = Today()
 CFG:LastDate = Today()
 CFG:LastTime = Clock()
 Access:Config.Update
 End
End

This has the added advantage that, if someone should crack the encryption, unless
that person is familiar with Clarion dates, the data will be less than useful (in fact,
you should consider using misleading field labels to add to the confusion). Further,
putting the base date into the configuration file allows you to periodically update the
install without forcing you to remake the application.

Short take: this strategy ensures that the system date is not outrageously stale,
that it is, at worst, relatively recent.

http://www.clarionmag.com/cmag/v4/v4n01datestamp.html (5 of 9) [2/4/02 1:29:55 PM]

Date Checking, Time Stamping

There are two further checks needed: first program start today and restarting a
program.

Normal program start, morning

Assuming that the program has been started before (i.e., there is a FirstDate), a
very similar strategy handles the first startup of the program on any given day:

If Today() < CFG:LastDate !date rolled back?
 Message(‘Your system reports an invalid date/time.’ |
 ‘This could negatively impact your data.’,’Warning’, |
 ICON:Hand)
 Return Level:Fatal
Else !update date and time of last use
 CFG:LastDate = Today()
 CFG:LastTime = Clock()
 Access:Config.Update
End

Not rocket science, is it?

Restarting a program

If a program has never been started before

If ~CFG:FirstDate

must be true and

Today() < CFG:BaseDate

shouldn’t be. And these two conditions tell you that you have a valid first start.

The first time the app is run on any given day,

Today() > CFG:LastDate

will be true and you know to update the last date of use. But, if an app is re-started
later in the same day, none of the above conditions will be met. Instead,

Today() = CFG:LastDate

is true.

This is the most difficult case and it is the most important. This is the important
case because time stamps and audit trails are unusable if this case cannot be

http://www.clarionmag.com/cmag/v4/v4n01datestamp.html (6 of 9) [2/4/02 1:29:55 PM]

Date Checking, Time Stamping

resolved. In the case of timing an app out after a certain number of days, this is
where you can trap a user trying to set the system date back.

Perhaps the user uses a single date over and over again. Fine. But what are the
odds on their getting the time reset every time also?

At each date check, you read and store the time. If a date check failes, you don’t do
anything further with the time. The same is true if the date is greater than the last
use date. But, when Today() = CFG:LastDate, it follows that

Clock() < CFG:LastTime

cannot ever evaluate as true. If it does, either the system’s battery is failing, the
system clock is seriously losing time or the user is changing the settings. There are
no other explanations.

So, if Clock() < CFG:LastTime, the user gets the Message() and the program is
terminated.

The final code to ensure, if not accuracy, reliability of the system date and time is:

Access:Config.Open
Set(Config)
Next(Config)
If ~CFG:FirstDate !first use
 If Today() < CFG:BaseDate
 Message(‘Your system reports an invalid date/time.’, |
 ‘This could negatively impact your data.’,’Warning’, |
 ICON:Hand)
 Access:Config.Close
 Return Level:Fatal
 Else
 CFG:FirstDate = Today()
 CFG:LastDate = Today()
 CFG:LastTime = Clock()
 Access:Config.Update
 End
Else !not first use
 If CFG:DaysAllowed !if not 0
 If Today() > CFG:FirstDate + CFG:DaysAllowed
 !date-triggered action here
 End
 End
 If Today() < CFG:LastDate !bad date check
 Message(‘Your system reports an invalid date/time.’, |
 ‘This could negatively impact your data.’,’Warning’, |
 ICON:Hand)
 Access:Config.Close
 Return Level:Fatal

http://www.clarionmag.com/cmag/v4/v4n01datestamp.html (7 of 9) [2/4/02 1:29:55 PM]

Date Checking, Time Stamping

 Elsif Today() > CFG:LastDate !first time today
 !fiscal year rollover check here
 CFG:LastDate = Today()
 CFG:LastTime = Clock()
 Access:Config.Update
 Elsif Today() = CFG:LastDate !restart
 If Clock() < CFG:LastTime
 Message(‘Your system reports an invalid date/time.’,|
 ‘This could negatively impact your ‘ &|
 ‘data.’,’Warning’,ICON:Hand)
 Access:Config.Close
 Return Level:Fatal
 Else
 CFG:LastTime = Clock()
 Access:Config.Update
 End
 End
End

For applications that run 24 x 7, adapt and place in Event:Timer. And, for a little
more protection, you could update CFG:LastTime when the program shuts down.

For the paranoid among us

Some time ago I wrote an app for an insurance company. I named the configuration
file "Balances." They must have thought this was just one of the data files and they
never touched it. However, the fact is that most users aren’t going to try to crack
the encryption of the configuration, or any other, file. But, if one tries there are two
things that must be cracked.

To crack the file, first, the user must crack the encryption. While there are number
of Clarion developers who can do this, it is not totally simple. Second, they have to
crack the Clarion date and time algorithms. In other words, the user has to be ...
motivated.

Some years ago, there was a technique described in the Clarion Tech Journal (I
don’t recall the author but the technique is quite devious) that may increase your
comfort level. Create a second copy of the configuration file and place it in the root
directory (or some place the user is not likely to be looking). Set the file’s "hidden"
attribute. Open both files and compare the values in each field. If they do not match
(or, if you transform the values in one, do not match expectations), one of the files
have been hacked. Terminate the user … I mean the application.

When updating values, of course, write to both files.

Summary

http://www.clarionmag.com/cmag/v4/v4n01datestamp.html (8 of 9) [2/4/02 1:29:56 PM]

Date Checking, Time Stamping

Having control over the system date and time is often necessary to provide features
like audit trails, time limited usage or other date sensitive functionality. Enforcing
clock accuracy just is not possible. But, while you have no protection against a clock
that is perpetually off or users who re-set clocks, that does not mean that you
cannot ensure that date and time increment as expected – even if it takes manual
intervention by the user.

This is just another one of those cases where defining what you really need makes
the code easy. The code may not be rocket science, but the planning is.

Steve Parker started his professional life as a Philosopher but now tries to imitate a Clarion developer. A

former SCCA competitor, he has been known to adjust other competitors' right side mirrors - while on

the track (but only while accelerating). Steve has been writing on Clarion since 1993.

Reader Comments

Add a comment

Hi Steve, Good article, maybe instead of seperate date...
Greg, EXCELLENT idea. This would also simplify the...

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n01datestamp.html (9 of 9) [2/4/02 1:29:56 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=11030
http://www.clarionmag.com/cmag/discuss.frm?articleID=11030&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=11030&position=2
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

A Template For Copying Fields Between Files

Clarion Magazine

Home COL Archives
Topics > Design & Development > Conversions

A Template For Copying Fields Between Files

by Andrew Guidroz II

Published 2002-01-10

Assignment statements are what programming is all about. Programs move data
from one field to another constantly. If word processing and number processing
(spreadsheets) are what drove the PC revolution in everyone’s small office, file
processing (moving data among various files) is what drove most of us to using
Clarion.

One of the biggest complaints I hear when folks move from DOS Clarion to Windows
Clarion is that you cannot do columnar block copies in the editor. Why is this so
important? Folks use it in order to write blocks of assignment statements. But don’t
you wish the assignment statement was smarter?

In fact, there is a very impressive feature within Clarion known as the deep
assignment. From the online help:

The :=: sign executes a deep assignment statement which performs
multiple individual component variable assignments from one data
structure to another. The assignments are only performed between the
variables within each structure that have exactly matching labels,
ignoring all prefixes. The compiler looks within nested GROUP structures
to find matching labels. Any variable in the destination which does not
have a label exactly matching a variable in the source, is not changed.

So you can do the now famous record copy this way:

NewPrefix:Record :=: OldPrefix:Record

Just think of all the typing that saved! And think of the time it saved! And I hate it.

http://www.clarionmag.com/cmag/v4/v4n01blockassign.html (1 of 4) [2/4/02 1:29:58 PM]

http://www.clarionmag.com/
http://www.developerplus.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=126
http://www.clarionmag.com/cmag/topics.html?categoryid=126&subcategoryid=72

A Template For Copying Fields Between Files

Here are a pair of group structures for you:

NewGroup GROUP
Field1
Field2
Feild3
 END

OldGroup GROUP
Field1
Field2
Field3
 END

Say I write the following:

NewGroup :=: OldGroup

There is a problem. The first two field assignments work just fine:

NewGroup.Field1 = NewGroup.Field1
NewGroup.Field2 = NewGroup.Field2

However, the third assignment fails, because I misspelled the word FIELD in
NewGroup:

NewGroup.Feild3 = ''

Of course, I probably won’t realize this has happened because the deep assignment
operator is a black box.

Then there is the problem of adding a field to the old group and forgetting to add
the field in the new group. I hate it when that happens. And what if my assignment
needs something just a bit different? What if what I want to do is make the value of
each numeric field in the new record one more than the value in the old record? I’m
back to doing all that typing again.

As well, Clarion’s large, complex IDE, as good as it is, is not without its own bugs.
In-place conversion of a data file has been known to fail for various reasons
throughout the years. The most recent from the 5.5.07 release candidate:

6. Browser

FIX: If file is declared in the dictionary with a variable password, in-place
conversion can fail.

http://www.clarionmag.com/cmag/v4/v4n01blockassign.html (2 of 4) [2/4/02 1:29:58 PM]

A Template For Copying Fields Between Files

Now, who knows if that means the entire process will fail or just some of the
assignment statements? There must be a better way.

I finally wrote my own template for assigning data from one file to another. It
requires a file to copy from and a file to copy to. This template is a code template
that can be placed in any embed point, such as procedure routines, within a
method, etc. It generates matching assignments for each field that has the same
name. It also generates a comment line for every field that does not have a match
so you can look at the generated code and decide for yourself what you want to do
with the "extra" fields. There is also an option to generate all code as comments so
you can use just those lines you want by copy and pasting them. Here’s the code
that creates an assignment for matching fields:

#FOR(%NewFileFields)
 #FOR(%OldFileFields)
 #IF(UPPER(CLIP(%NewFileFields))
 = UPPER(CLIP(%OldFileFields)))
 %AllCommentsString %NewFilePrefix:%NewFileFields
 = %OldFilePrefix:%OldFileFields
 #BREAK
 #ENDIF
 #ENDFOR
#ENDFOR
#!

Note the use of the %AllCommentsString variable. The template has an option to
generate all code as commented so you can review the code without inadvertently
running it. If you want the code commented, %AllCommentsString is set to !
instead of an empty string.

The following code checks for missing fields in the old file (there is a similar block
for finding missing fields in the new file. In each case the template generates a
comment informing you of the missing field.

#FOR(%NewFileFields)
 #SET(%GotOne,'False')
 #FOR(%OldFileFields)
 #IF(UPPER(CLIP(%NewFileFields))
 = UPPER(CLIP(%OldFileFields)))
 #SET(%GotOne,'True')
 #BREAK
 #ENDIF
 #ENDFOR
 #IF(CLIP(%GotOne)='False')
 ! There is no old field for this new field.
 ! %NewFilePrefix:%NewFileFields = ! ????????
 #END

http://www.clarionmag.com/cmag/v4/v4n01blockassign.html (3 of 4) [2/4/02 1:29:58 PM]

A Template For Copying Fields Between Files

#ENDFOR

I typically use this template within the TakeRecord method of the ProcessManager
of a Process Window in order to handle file conversions. I place it in an embed in
the Procedure Routines sections of a procedure with an embed just prior to it
declaring it as a routine so I can use it thoughout my procedure. I also have it
wrapped up within an extension template that does more complex file conversions
(prompts for variable file names, etc). I find it very useful and I hope you do too.

Download the source

Andrew Guidroz II, when he isn't traveling around the countryside watching his 2001 SEC Champion LSU

Fighting Tigers, writes software for all facets of the insurance industry. His famous Cajun cookouts have

become a central feature of Clarion conferences throughout the U.S. Andrew's Cajun website is

www.coonass.com.

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n01blockassign.html (4 of 4) [2/4/02 1:29:58 PM]

http://www.clarionmag.com/cmag/v4/files/v4n01copy.zip
http://www.coonass.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=11038
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Handing COM Events - Part 1

Clarion Magazine

Home COL Archives
Topics > COM/OLE > COM/OLE

Handing COM Events - Part 1

by Jim Kane

Published 2002-01-11

The one area of COM that the Clarion OLE control is particularly weak in is receiving
events. When the OLE control works, it works very well and is very simple to use.
However, more often than not, it does not work. One such case is with Microsoft
Office products. If you want to get an event notification from Outlook when mail
arrives using the Clarion OLE control, you’re out of luck.

Some time ago I wrote an order processing system that relied on sales people
emailing orders. The orders were received and processed manually. Then the
company wanted to process the emails automatically. This meant detecting when
new mail arrived. Outlook was simply going to have to tell me when new mail
arrived, as it seemed horribly inefficient to constantly enumerate the inbox. Clearly
it was time to see how COM events work and teach Clarion some new tricks. In this
article I’ll build on information I’ve presented in other articles, here in Clarion
Magazine.

To determine if a COM object can generate events, open the object or its type
library in OLEVIEW. For Outlook, navigate to your Microsoft office/Office folder and
locate a file called MSOUTL9.OLB. The number may vary depending on the version
of office. I currently have version 9 of Outlook 2000. Once the type library is
displayed in OLEVIEW search the left hand pane for CoClass entries in the tree.
Find the application CoClass and open it. On the right hand pane you’ll find the
following:

[
 uuid(0006F03A-0000-0000-C000-000000000046),
 helpcontext(0x004de932),
 appobject

http://www.clarionmag.com/cmag/v4/v4n01comevents1.html (1 of 6) [2/4/02 1:30:01 PM]

http://www.clarionmag.com/
http://etc.kcug.org/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=120
http://www.clarionmag.com/cmag/topics.html?categoryid=120&subcategoryid=10
http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Bauthor%3Akane+%2Bcom

Handing COM Events - Part 1

]
coclass Application {
 [default] interface _Application;
 [default, source] dispinterface ApplicationEvents;
};

Notice the [default,source] just before ApplicationEvents. Interfaces with
,Source indicate they are ‘source’ or generate events. By examining the
ApplicationEvents dispatch interface (dispinterface) you can determine what
events the Outlook application object generates. Some objects will have many
source interfaces and can generate many different events.

While not directly needed for or related to events, the uuid above is also called a
CLSID and identifies the Outlook Application Object. This CLSID can be used to
create an instance of Outlook, or attach to a running instance of Outlook.

Now use the tree in OLEView and drill down to the ApplicationEvents interface.
This is what appears on the right side:

[
 uuid(0006304E-0000-0000-C000-000000000046),
 helpcontext(0x0053ec60)
]
dispinterface ApplicationEvents {
 properties:
 methods:
 [id(0x0000f002), helpcontext(0x0050df84)]
 void ItemSend(
 [in] IDispatch* Item,
 [in] VARIANT_BOOL* Cancel);
 [id(0x0000f003), helpcontext(0x0050df85)]
 void NewMail();
 [id(0x0000f004), helpcontext(0x0050df86)]
 void Reminder([in] IDispatch* Item);
 [id(0x0000f005), helpcontext(0x0050df87)]
 void OptionsPagesAdd([in] PropertyPages* Pages);
 [id(0x0000f006), helpcontext(0x0050df88)]
 void Startup();
 [id(0x0000f007), helpcontext(0x0050df89)]
 void Quit();
};

There are two important numbers to get from this screen. First, COM identifies
interfaces by universally unique identifiers, here shown as a uuid. Commonly a
uuid that identifies an interface is called an IID or interface id. In any case, copy it
to an equivalent Clarion group like this:

!0006304E-0000-0000-C000-000000000046
syncIID group

http://www.clarionmag.com/cmag/v4/v4n01comevents1.html (2 of 6) [2/4/02 1:30:01 PM]

Handing COM Events - Part 1

data1 ulong(06304EH)
data2 ushort(0)
data3 ushort(0)
data4 string('<0C0H><0><0><0><0><0><0><46H>')
 end

The particular event of interest is NewMail. Again rather than referring to an event
by its name, COM refers to it by its DISPID or ID. The DispID for NewMail, in
Clarion format, is 0F003H.

That is all the information (IID and DispID) needed to connect to Outlook and have
it send events to a Clarion program.

The steps to connect a Clarion program to a COM object, in this case Outlook, are:

1. Initialize COM – CoIntialize() API
2. Create an instance of Outlook, or attach to a running instance.
3. Ask Outlook if it supports events, and in particular the event interface called

syncIID. Unless it’s an older version of Outlook, it will.
4. Tell Outlook what Interface and procedure in your program to call when it has an

event. In COM terminology this is ‘Advise’ or ‘Connect’.
5. Store any information (parameters) that came with the event in global memory
6. Send a message to a Clarion window that an event was received and the information

is available in global memory.
7. Process the event reading the global memory
8. When done, disconnect, or in COM terminology ‘Unadvise’
9. Uninitialize COM

All the steps above are shown in the sample code that comes with this article. That
code attaches to a running instance of Outlook and monitors it for mail. To see it in
action, start Outlook, then compile and run the sample project outl.exe. As soon
as Outlook receives mail, you’ll see the message box pop up. In real life you could
then retrieve the email message or take any other appropriate action.

In a previous series of articles I introduced a class called StdComCl. This class can
do many of the things needed for this project, including step 1 and 9 plus a lot of
error handling. All that StdComCl is lacking is the event-specific code. To make
maximum use of StdComCl I decided to derive a new class from it called ConPtCl,
which is short for "connection point class." The downloadable code that accompanies
this article includes both StdComCl and the derived ConPtCl.

Step 1 using the StdComCl is very simple and is covered in more detail in earlier
articles. All that is needed is a call to ConPtCl.InitCOM(). This method calls
CoInitialize().

http://www.clarionmag.com/cmag/v4/v4n01comevents1.html (3 of 6) [2/4/02 1:30:01 PM]

http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Bauthor%3Akane+%2Bsax&submit=Go
http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Bauthor%3Akane+%2Bsax&submit=Go
http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Bauthor%3Akane+%2Bsax&submit=Go

Handing COM Events - Part 1

Step 2 involves calling the API GetActiveObject() like this:

getactiveobject(address(clsid:outl),0,lpobj)

The clsid is another COM identifier in this case for Outlook. You can get it out of
the Outlook type library using OleView. The output is lpObj, a long pointer to the
address of the running Outlook instance, or more specifically the address of its
Iunknown interface. The raw address is converted to an interface with the following
line of code (see the previously mentioned series of articles for details).

IUnk&=(lpObj) !create the iunknown interface

If Outlook isn’t running, the call to getActiveObject() will fail, lpObj will be zero,
and the code just closes down gracefully.

Step 3 is handled by the Connect method of ConPtCl. It calls the query interface
method of the Iunknown interface obtained in step 2 and asks if the object supports
the IconnectionPointContainer interface. If so, Connect asks the
IconnectionPointContainer.FindConnectionPoint() method if it supports the
interface (syncIID above) that is required for this code. If any of this fails, the
Connect method returns level:fatal and the program closes gracefully.

Step 4 is the most important. The code now tells Outlook where to call when it has
an event. The address to call is passed to the advise() method of the
IconnectionPoint interface obtained in step 3. The problem is Outlook expects to
call a COM Idispatch interface. How do you make one of those? Fortunately it’s
pretty simple.

All you need to do is create a class that implements an Idispatch interface. The
CWDSyncCl class in the accompanying code does just that. Most of the methods
simply return 0 or S_OK. The only method of interest is Invoke, which receives the
messages sent from Outlook. When Invoke is called, this method receives the
dispid (0F003H is the one of interest in this project) and an array of parameters. I
covered the details of how Idispatch.Invoke handles parameters in a previous
article. The code here takes the dispid of the event received and its parameters
and passes it to CWDSyncCl.TakeEvent(). In many cases you’ll want to derive
CwDsyncCl and add some code to the TakeEvent() method. In the sample code, the
only event of interest has a dispid of 0F003H so to filter out all other events you do
this:

http://www.clarionmag.com/cmag/v4/v4n01comevents1.html (4 of 6) [2/4/02 1:30:01 PM]

http://www.clarionmag.com/cmag/v3/v3n7extendcom.html
http://www.clarionmag.com/cmag/v3/v3n7extendcom.html

Handing COM Events - Part 1

cwdsynccl.takeevent procedure(long dispID, |
 long Paramcount, long lpParam, *long lpResult)
 code
 if dispid<>0F003H then return.
 Parent.TakeEvent(dispid,paramcount,lpparam,lpresult)
 Return

The parent.TakeEvent() method has two important jobs. First it has to put any
parameters for the event pointed to by lpParam into global memory (memory
allocated by the win32 API GlobalAlloc() call). TakeEvent then sends a message
to a Clarion window to notify the window that an event was received. One thing to
keep in mind is when CWDsynccl is called it is being called by Outlook and not by
your Clarion program. The thread that accesses it belongs to COM and/or Outlook.
Both the calling COM object and the Clarion Window access the global memory. If
both were to access it at once, errors would be sure to occur. To avoid that, a
critical section (which I’ve written about in another ClarionMag article series) is
used to allow only one or the other to access the global memory at one time. All the
member variables are private and only accessed when the critical section allows it.
The code that does this is in blockCl.inc/blockCl.clw and is quite simple. If you have
not use critical sections much you may want to take a quick look to convince
yourself there isn’t much to them. In order to keep things simple, I let ConPtCl set
up blockcl and choose various block sizes and global memory size. The default
settings allow for up to 15 parameters to accompany any event. While I doubt that
will ever be a problematic limit, it is something to keep in mind. Conversely if you
are willing to accept a lower limit for the number of parameters, you could reduce
memory requirements drastically.

The parameters passed with events are passed as variants. I covered variants and
the details of how a dispatch interface passes parameters in a previous article. One
complexity in copying variant parameters to the global memory is some variant
types like BStrings contain an address rather than the data itself (data passed by
address rather than by value). This complicates matters because the data pointed to
by the address in the variant may be destroyed before you process the event. To
avoid that problem you can use a special API call, VariantCopyInd(), which copies
not only the variant structure but also what the variant points to. Later you will call
a class method called variantFree to free this memory allocated by copying.

That’s all for this week – next week I’ll explain how to notify the Clarion program
that an Outlook mail event has happened.

Download the source

http://www.clarionmag.com/cmag/v4/v4n01comevents1.html (5 of 6) [2/4/02 1:30:01 PM]

http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Bauthor%3Akane+%2Btitle%3Aapi
http://www.clarionmag.com/cmag/v3/v3n7extendcom.html
http://www.clarionmag.com/cmag/v4/files/v4n01comevents.zip

Handing COM Events - Part 1

Jim Kane was not born any where near a log cabin. In fact he was born in New York City. After attending

college at New York University, he went on to dental school at Harvard University. Troubled by vast

numbers of unpaid bills, he accepted a U.S. Air Force Scholarship for dental school, and after graduating

served in the US Air Force. He is now retired from the Air Force and writing software for ProDoc Inc.,

developer of legal document automation systems. In his spare time, he runs a computer consulting

service, Productive Software Solutions. He is married to the former Jane Callahan of Cando, North

Dakota. Jim and Jane have two children, Thomas and Amy.

Reader Comments

Add a comment

Hi Jim, Just to let you know, the Code is not thread...
Hi Jim, What version of OleView do you use. Mine won't...
Rick - I think that's the current version (see...
Thanks, Dave. You're right 2.1.057 is the latest at the...

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n01comevents1.html (6 of 6) [2/4/02 1:30:01 PM]

mailto:jkane@satx.rr.com
http://www.prodoc.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=11040
http://www.clarionmag.com/cmag/discuss.frm?articleID=11040&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=11040&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=11040&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=11040&position=4
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

The ClarionMag Sweepstakes January Draw Is Coming Soon!

Clarion Magazine

Home COL Archives
Topics

The ClarionMag Sweepstakes January Draw Is Coming Soon!

Published 2002-01-14

Link to this
Sweepstakes Page!

Add a link to this page
on your web site, and
email
dharms@clarionmag.com
- we'll add an exchange
link here.

Sweeps Sponsors

● Carl Barnes Computer
Consulting

● Gitano Software

Sweeps Partners

● Encourager Software
● Brady & Associates

Enter the Clarion Magazine Sweepstakes and you
could win one of the following:

First Prize (winner to choose one)

● a Compaq iPAQ Pocket PC, or
● a registration to the ETC Clarion Conference in

Gatlinburg in May, 2002

Additional Prizes

● a two year Clarion Magazine subscription or
renewal, value $150

● a one year Clarion Magazine subscription or
renewal, value $80

● five six month Clarion Magazine subscriptions or
renewals, value $40 each (already awarded)

● a copy of CW Assistant, valued at $99 (already
awarded)

● two copies of the Clarion Source Search utility,
valued at $45 each. (already awarded)

● a copy of G-Cal, valued at $99 (already awarded)
● a copy of G-Calc, valued at $69 (already

awarded)
● a copy of G-Buddy, valued at $99 (already

awarded)

Note: all of the above subscriptions/renewals can also be taken as back
issues, in whole or in part

http://www.clarionmag.com/cmag/sweeps.html (1 of 2) [2/4/02 1:30:03 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
mailto:dharms@clarionmag.com
http://www.carlbarnes.com/
http://www.carlbarnes.com/
http://www.gitanosoftware.com/
http://www.encouragersoftware.com/profile/clarlinks.html
http://www.clariondeveloper.com/clarionlinks.htm
http://www.carlbarnes.com/
http://www.carlbarnes.com/

The ClarionMag Sweepstakes January Draw Is Coming Soon!

How To Enter

There are four ways you can enter the Clarion Magazine Sweepstakes:

● Refer a friend to Clarion Magazine (you supply your friend's name and email
address, and we send your friend a one-time only email); or

● Take out a new subscription to Clarion Magazine (for a free sampler click here); or

● Renew your existing Clarion Magazine subscription; or

● Mail a handwritten postcard (see the rules for details).

That's all there is to it! The sweepstakes ends February 28, 2002, so get your entry
(or entries) in now! And start canvassing your friends and co-workers - remember,
for every person you refer to Clarion Magazine, you get an entry in the
sweepstakes. The more entries you have, the better your chances!

Rules

The official rules are available here.

Reader Comments

Add a comment

Is it true this contest ended last January 15, 2001?
Sweepstakes ends January 15, 2002! So much for my...

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/sweeps.html (2 of 2) [2/4/02 1:30:03 PM]

http://www.clarionmag.com/cmag/sweepsrefer-info.html
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/freeindex.html
http://www.clarionmag.com/cmag/renewals.html
http://www.clarionmag.com/cmag/sweepsrules.html
http://www.clarionmag.com/cmag/sweepsrules.html
http://www.clarionmag.com/cmag/comments.frm?articleID=10912
http://www.clarionmag.com/cmag/discuss.frm?articleID=10912&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=10912&position=2
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Eleven Winners In ClarionMag Sweeps First Draw

Clarion Magazine

Home COL Archives
Topics

Eleven Winners In ClarionMag Sweeps First Draw

Published 2002-02-01

The following people are winners in the Clarion Magazine Sweepstakes interim
draw:

● Six month Clarion Magazine subscription/renewal: Eric Griset

● Six month Clarion Magazine subscription/renewal: David LeYanna

● Six month Clarion Magazine subscription/renewal: Gary Stanley

● Six month Clarion Magazine subscription/renewal: Uro Mencinger

● Six month Clarion Magazine subscription/renewal: Nick Tsigouro

● CW Assistant utility, valued at $99: Ramon Reed

● Clarion Source Search utility, valued at $45: S. Hills

● Clarion Source Search utility, valued at $45: Janice Cournoyer

● G-Cal, valued at $99: Chantal St. Jean

● G-Calc, valued at $69: Sherae Gronbach

● G-Buddy, valued at $99: Antonio Oliveira

The above-named have been notified by email. All winners (and all others who have
entered the Sweepstakes) are eligible for the final draw at the end of February. The
grand prize is the winner's choice of a Compaq iPAQ or an ETC-III conference

http://www.clarionmag.com/cmag/v4/v4n01sweepsa.html (1 of 2) [2/4/02 1:30:05 PM]

http://www.clarionmag.com/
http://www.lindersoft.com/lspsfx10.htm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.carlbarnes.com/
http://www.carlbarnes.com/
http://www.carlbarnes.com/
http://www.gitanosoftware.com/tools.htm
http://www.gitanosoftware.com/tools.htm
http://www.gitanosoftware.com/tools.htm

Eleven Winners In ClarionMag Sweeps First Draw

registration. See the sweeps page for details.

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n01sweepsa.html (2 of 2) [2/4/02 1:30:05 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=11096
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Clarion News

Clarion Magazine

Home COL Archives
Topics > News > ClarionMag 2001 News

Clarion News

Published 2001-11-21

INN Bio: Mihai Palade
This week's INN bio subject is Mihai Palade, a Clarion programmer from Romania. A
recent software engineering graduate, he's now studying for his Master's in
Measurement Systems at the "Politehnica" University of Bucharest. But at his day
job, he works with Clarion. Read about the surprising (maybe surprising to some)
way he was introduced to Clarion, and see a little of his corner of the world.
Posted Thursday, January 31, 2002

Advertise On The Clarion Connection
The Clarion Connection now accepts paid advertising for products, services and
events related to Clarion. The right frame shows four ads, chosen randomly each
time the page is seen. The rate is 0.03 (USD) per view (1000 views minimum
charge). Your advertisement can be managed online using a secure server to
change the graphic, link, alt-text or to make payments using MasterCard or Visa.
Other payment methods can be arranged.
Posted Wednesday, January 30, 2002

Digital Alarm Clock Demo App
Ville Vahtera has uploaded a new "digital" clock demo to Steve Parker's download
center. This app is freeware.
Posted Wednesday, January 30, 2002

New Icetips Previewer Demo
A new Icetips Previewer demo is now available. The Standard Demo reports
demonstrate "smooth" scrolling through pages using the PageUp and PageDown
keys. They also show printing the current page without leaving the Previewer, which
can be very handy. The Page of pages report demonstrates a way to support this
feature in the Icetips Previewer. You can now get the Icetips Previewer and the

http://www.clarionmag.com/cmag/news.html?year=2002&month=1&limit=100& (1 of 11) [2/4/02 1:30:10 PM]

http://www.clarionmag.com/
http://www.lindersoft.com/lspsfx10.htm
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=129
http://www.clarionmag.com/cmag/topics.html?categoryid=129&subcategoryid=140
http://www.icetips.com/
mailto:rubyt@acm.org
http://www.par2.com/getit/CW_Digital_Clock.zip
http://www.icetips.com/wizards/downloads.htm

Clarion News

Icetips Reporter in a bundle for 199. The Icetips Wizards + Icetips Previewer bundle
is also $199. After January 31st the price for both bundles goes to $249.
Posted Wednesday, January 30, 2002

New Home For Schoeffler & Rau Datensysteme
The Schoeffler & Rau Datensysteme web site now has a new home at
www.schoeffler.biz/cw.html. Please update your links.
Posted Wednesday, January 30, 2002

SAPDB Available For Download
Kelvin Chua reports that version 7.3.00.20 of SAP DB Software is available now for
downloading.
Posted Wednesday, January 30, 2002

Icetips Previewer Released
Icetips Software has released a fully-customizable report previewer. The Previewer
Wizard creates a previewer procedure in your application. This is just a normal
window procedure, with all the embedded code available for modification. Since the
previewer is an app procedure, you can have multiple previewers in your
application. Features include: extension template to apply previewer to reports;
page list; fast search; easy viewing, deleting, and printing of pages. The Icetips
Previewer is available through January 31, 2002 for US$99.00. As of February 1,
the price goes up to $149.00. Compatible with Clarion 4, Clarion 5, Clarion 5.5, ABC
and Legacy as well as the CPCS reporting templates in both Legacy and ABC. The
Previewer demo includes four different previewers. Until February 1 you get the
Icetips Checkbox fixer thrown in as a bonus with any Icetips product or combination
you buy.
Posted Monday, January 28, 2002

SealSoft xXXL Pack
SealSoft has a 15-product bundle available for $740.
Posted Monday, January 28, 2002

DateTime Clock Special Pricing Ends Thursday
Special pricing (33% discount) for the Sylvan Computing clock/calendar classes
ends on January 31, 2002. These classes include: Date keys - use quicken style
keys to enter modify the dates. (-,+ Move date by one, CTRLT = Today() etc.);
Calendar dropdown - a 100% Clarion control that mimics the mscal.ocx; Clock
dropdown - also a non-modal drop down window. Demo available. Binary version is
now US$20.

http://www.clarionmag.com/cmag/news.html?year=2002&month=1&limit=100& (2 of 11) [2/4/02 1:30:10 PM]

http://www.schoeffler.biz/cw.html
http://www.sapdb.org/framesets/sap_db_downloads.htm
http://www.icetips.com/wizards/previewer.htm
http://www.seal-soft.com/xxxl.html
http://www.sylvancomputing.com/DateTimeInfo.htm

Clarion News

Posted Monday, January 28, 2002

CPCS For C55 Now supports Internet Connect Under ABC
CPCS v5.50d has now been modified to support Internet Connect under ABC-based
applications. This is in addition to Web Builder, which was already supported under
ABC. Only Internet Connect is supported under Legacy applications. Support for WB
or IC is activated automatically by adding the appropriate SV web template.
Posted Monday, January 28, 2002

CPCS V5.50d Previewer Supports Prompt, Tip, And Icon Customization
The CPCS Help and PDF files for v5.50d have been modified to better document the
ability to customize icons in the Previewer. This capability have been in CPCS for
quite some time, but the help and PDF file text did not specifically mention that
icons could be customized (although there were examples of doing so in the
help/PDF files).
Posted Monday, January 28, 2002

New Icetips Previewer Demo
Arnor Badvinsson has uploaded a new (900k) demo of the Icetips Previewer. This
demo uses two previewers, but instead of previewing a report, it is an imageviewer.
It has one basically standard Icetips Previewer, the other one modified a bit to
preview a queue created with the Directory() function. You can view bmp, gif, jpg,
jpeg and pcx files there, and print them. Of course when you print from the image
viewer, it calls the other Icetips Previewer first.
Posted Monday, January 28, 2002

New Wizard Template And Classes Released
Sylvan Computing has released scWizard, a tool that helps create a Wizard form.
This extension is applied to a window that has a SHEET, Next Button, Back Button,
And a Finish Button. Once populated there is no code you need to write to provide
navigation through the wizard dialog. There are virtual methods provided so the
programmer can capture the event of changing wizard pages and for validation.
scWizard is US$30.
Posted Monday, January 28, 2002

DOS Printer v5 Released
Dave Beggs has just released DOS Printer version 5. This utility allows you to print
from DOS to any Windows printer. New in this release: you can specify wildcards in
the filenames - i.e. set it to print c:\temp*.txt; you can specify the left margin (for
those laser printers that can't print close to the paper edge). DOS Printer is

http://www.clarionmag.com/cmag/news.html?year=2002&month=1&limit=100& (3 of 11) [2/4/02 1:30:10 PM]

http://www.cpcs-inc.com/
http://www.cpcs-inc.com/
http://www.icetips.com/wizards/files/itpimgdemo.exe
https://www.swreg.org/cgi-bin/b.cgi?s=2877&p=2877scWizard&v=0&d=0&q=0&t=%20
http://dosprint.tripod.com/dosprint/index.html

Clarion News

US$19.99.
Posted Monday, January 28, 2002

AnalyZe.IT
AnalyZe.IT lets you make a Management Information System from your application
data, creating 2/3D graphics or tabular reports. You can distribute reports with
Preview.IT. Features include: RunTime Variables; various formats including PDF,
XML,HTML,RTF,LL etc.; report scheduling; report emailing; report FTP.
Posted Monday, January 28, 2002

Dennis Evans' Web Site
Dennis Evans has posted some coding notes on the web. Currently these include a
brief discussion of using a derived WindowManger and the register function to
enable/disable menu options. Future updates will depend completely on the usage.
Posted Monday, January 28, 2002

Clarion TWAIN Demo And Template
Ville Vahtera has posted a TWAIN demo using the freeware EzTwain library with
Clarion. The included template currently only handles the library part, not the blobs.
The app demonstrates using the library as well as how to place scanned images into
blob file and restore them back. The cwtwain.exe file can be downloaded from Steve
Parker's download center.
Posted Monday, January 28, 2002

SealSoft xWinSet v2.09 Released
The latest release of xWinSet (2.09) contains a fix to objects blinking on a window
with a large number of controls. New demo and install available.
Posted Monday, January 28, 2002

Clarion Handy Tools Thin Client Data Demo
In October Clarion Handy Tools added Browser Data Server Technology. This is a
set of templates and classes (part of the standard CHT toolkit) that help you build a
Clarion application that can act as a data server to any HTML 4.0 capable browser.
Data queries are entered from a "Query Page" and the result set is returned to you
in the form of an HTML data table. Now the CHT includes a thin client application
that can connect to this same "Browser Server" application and display data in a
more traditional desk top application format. This browse is hard to tell from any of
our browse demo applications; the difference is that the data base is remote and
that data are served up as you do queries on the browse query control. The app
also has a configurable data buffering capability which for a user defined period of

http://www.clarionmag.com/cmag/news.html?year=2002&month=1&limit=100& (4 of 11) [2/4/02 1:30:10 PM]

http://www.clarionshop.com/
http://home.earthlink.net/~bevdennis/
http://www.par2.com/
http://www.seal-soft.com/download.html
http://www.cwhandy.ca/hndnewo7a_1/index.html

Clarion News

time (default 5 minutes) maintains a copy of all query result sets should the same
query be repeated within the time limit. Demo available at
http://www.cwhandy.com/pcdemos/hndhtgtdemo.exe (960KB).
Posted Monday, January 28, 2002

SysDTP Date And Time Picker
SysDTP is a Date and Time Picker from solid.software. This is another in the
company's series of wrapper classes for common controls of the WIN32 API. SysDTP
is the drop-down calendar control you'll know from applications like Outlook Express
or even the Windows Explorer. This calendar control implementations gives your
application the native Windows look and feel. Features include: Drop-down calendar
for date entry; Up/down controls for time entry; Optional checkbox to allow empty
dates; Fully customizable fonts and colors; Internationalization from control panel
or user format strings. SysDTP supports both ABC and Legacy templates in
applications compiling to 32bit only. LIB and DLL versions available for standalone
and local runtime libraries. Demo available. SysDTP is US$39 from ClarionShop.
Posted Wednesday, January 23, 2002

xNotes v1.2 Released
This release of xNotes contains just one bug fix - reminder popups in a minimized
program could result in the program hanging. New demo and install available.
Posted Wednesday, January 23, 2002

Dennis Evans Featured INN Bio
This week, the Icetips News Network profiles Dennis Evans, of one of San Antonio's
newest residents.
Posted Tuesday, January 22, 2002

Gitano G Build Support
Gitano Software customers that are using the G build can now get new downloads
for Gitano products. These are not public releases and will not be until SoftVelocity
officially releases the G build. Registered user can obtain the link for each utility by
accessing the Gitano support forum (you must be registered to access the
developers forum), or email.
Posted Tuesday, January 22, 2002

Free Data Dictionary For A Software Project Management System
Greg Berthume has a free data dictionary that contains a number of project
management files/tables already created and related. Just start building the app
and add whatever third party add-ons you desire. Custom solutions also available.

http://www.clarionmag.com/cmag/news.html?year=2002&month=1&limit=100& (5 of 11) [2/4/02 1:30:10 PM]

http://www.solidsoftware.de/sysdtp.htm
http://www.seal-soft.com/download.html
http://www.icetips.com/
mailto:jfmoreno@gitanosoftware.com
http://members.aol.com/gberthume

Clarion News

See the downloads page.
Posted Tuesday, January 22, 2002

Shareware Version of EmailData Template ABC/Legacy Available
A shareware version of Vivid Help's EmailData Template for ABC/Legacy is now
available. Please remember that shareware version and only the shareware version
needs the EXE file in your working directory to work properly.
Posted Tuesday, January 22, 2002

CPCS Preview Now Handles Varying Sized Pages
CPCS v5.50d is now available. This new build has a modified CPCS Preview which
accommodates previewing of different sized pages in the same report. This change
is implemented to more fully support the Concatenate Reports template recently
added to Feature Enhancement Set# 1. Current users of CPCS v5.50d can install
this new build using their current authorization codes.
Posted Tuesday, January 22, 2002

Freeware Capitalize Template Updated
Sterling Software's freeware CapFlash 2 template now includes an ABC demo app.
CapFlash is an extension template to be used on a Process - it will convert a file of
all upper case to Proper Case ("capitalize") with the following options: You can enter
into the template a list of words which are always lower case - such as del, la, de
etc.; There is also a user-defined list of words which are always UPPER case - such
ABC, USA, AFB etc.; Individual fields (such as State) can be excluded; Names
beginning with Mc,Mac or O' are also provided for. CapFlash is compatible with
CW2002 to C5.5, ABC and Legacy.
Posted Tuesday, January 22, 2002

RAS (Dial-Up) Library Freely Available
Ville Vahtera's free RAS library is now available from Steve Parker's Par2 web site.
Install includes library, demo app, and template. The demo is made for Clarion 5PE
and up, but you can use the template with Clarion 4 and later.
Posted Tuesday, January 22, 2002

xWord Library v1.6 Released
New in xWord Library 1.6: you can now set TemplateFile and DataFile before
executing MergeDocuments; there are four new methods (MergeSetTemplate,
MergeSetDataFile, MergeGetTemplate, MergeGetDataFile). New install, demo, and
docs available.
Posted Wednesday, January 16, 2002

http://www.clarionmag.com/cmag/news.html?year=2002&month=1&limit=100& (6 of 11) [2/4/02 1:30:10 PM]

http://www.vividhelp.com/download/emldatsw.EXE
http://www.cpcs-inc.com/
http://www.sterlingdata.com/capflash.htm
http://www.par2.com/
http://www.seal-soft.com/download.html

Clarion News

Handy Tools Example Apps Revised
The Clarion Handy Tools currently ship with 34 example applications. These are
being checked and revised for 2002 to reflect the latest capabilities of the toolkit.
Applications include: FTP client; programmable FTP engine (push files to or pull files
from a remote FTP server); email inbox reader using Outlook or Outlook Express;
email client; email address extractor and list manager; bulk mail sender;
internet/intranet data server; extensions to the ABC browse including header-click
browse column sorting, built-in locators, greenbar support, etc.; record marking;
various window capability extensions; and more.
Posted Wednesday, January 16, 2002

EmailReport ABC Version 1.1
A new version of VividHelp's EmailReport template is now available for download.
New features include: EmailTo now can be populated from a variable, so you can
send reports to as many addressees as needed; report pages can be resized in the
email message body, making it possible to fit big reports into the email.
Posted Wednesday, January 16, 2002

Free EFT/Credit Card Template Beta
Andy Stapleton is looking for beta testers for a new template/DLL for handling EFT
(ACH) and credit card transactions via www.paywire.com. PayWire is a billing
service company handles recurring business transactions and also provides secure
FTP upload and collections processing.
Posted Wednesday, January 16, 2002

New Clarion Site
Kelvin Chua has moved the contents of www.accpro.com.sg/clarion to
www.clarionpost.com. The new site includes user-updateable Clarion links.
Posted Monday, January 14, 2002

EnhancedScrollClass C3PA Compliant And C5.507 Compatible
ThinkData has retooled the installation of the EScroll to be C3PA compliant with
respect to the installation directories. It is also fully compatible with the latest
Clarion 5.507 release. An updated demo is available.
Posted Monday, January 14, 2002

CPCS Adds Report Concatenation Feature
CPCS has added a new Report Concatenation feature to its Creative Reporting
Solutions product. This new feature allows you to concatenate (append) multiple

http://www.clarionmag.com/cmag/news.html?year=2002&month=1&limit=100& (7 of 11) [2/4/02 1:30:10 PM]

http://www.cwhandy.com/
http://www.vividhelp.com/
mailto:ccscowboy@ccscowboy.com
http://www.clarionpost.com/
http://thinkdata.com/cgi-bin/merchant2/merchant.mv?Screen=PROD&Store_Code=TS&Product_Code=ESCROLL
http://www.cpcs-inc.com/

Clarion News

CPCS reports to create a single "final" report which can then be previewed, printed,
and/or (via other CPCS addons) faxed, converted to PDF, or emailed. This new
feature has been added to the CPCS Feature Enhancement Set #1 addon which can
be purchased and downloaded directly from the CPCS website. Current owners of
this addon can download the updated install file and use their current authorization
codes to install this new build free of charge.
Posted Monday, January 14, 2002

New TeamIDD Pricing Structure
TeamIDD, a distributed source control application, now has a new pricing structure.
To register a project, regardless of the number of developers or files involved is
25.00 USD, free until Jan 18. To check in a file is 0.25 USD, except for the first 5
days when there is no charge. To add a developer to a project is free. To download
the client program to your computer(s) is free. TeamIDD communicates with its
host computer using the Secure Socket Layer where all communication is
encrypted; the TeamIDD server is hosted at a data center owned by Xodiax, one of
only five IBM certified data centers in the USA. Note: If you downloaded the client
program, please download the new, secure client. The old client will be phased out.
Posted Monday, January 14, 2002

Gitano Software Support Forum
A new support forum is now available for all Gitano Software customers. There are
two boards, 'General', and 'Developers'. You can log in anonymously to the 'General'
board, but access to the 'Developers' board requires registration.
Posted Monday, January 14, 2002

Upgrade To A Gitano Bundle Promo
Upgrade your Gitano Software utilities to a bundle and Gitano will deduct 100% of
your original price from the bundle price. If you do not have current versions of the
utilities you must first upgrade to them. To purchase, simply order the bundle at the
regular price and Gitano will deduct the difference before charging your card. This
offer is good until Feb 15th 2002.
Posted Monday, January 14, 2002

DOS Printer version 4 Released
DOS Printer is a C5b ABC program which prolongs the life of CPD 2.1 programs. It
sits in the system tray and monitors for the presence of a specified text file. When it
finds it, it converts the ANSI line type characters to their nearest courier equivalent
and prints it to a pre-set windows printer. If you have DOS clients who have trouble

http://www.clarionmag.com/cmag/news.html?year=2002&month=1&limit=100& (8 of 11) [2/4/02 1:30:10 PM]

http://www.industrydd.com/
http://www.gitanosoftware.com/cgi-bin/yabb/YaBB.pl
http://www.gitanosoftware.com/order.htm
http://dosprint.tripod.com/dosprint/

Clarion News

printing to USB printers, or non-DOS compatible printers, or who would like to print
to fax or PDF type drivers then check it out.
Posted Monday, January 14, 2002

xQuickFilter v2.09 Released
New in xQuickFilter 2.09: a small bug fix regarding entries containing single
quotation marks; option to assign a hot key which will assign a hot field to another
variable. New demo and install available.
Posted Thursday, January 10, 2002

Sterling Data New Year Bundle Discounts End Jan 10
Sterling Data is offering New Year bundle discounts of up to 40% on most of its
products. This offer ends January 10, 2002.
Posted Thursday, January 10, 2002

Juan Domingo Herrera Featured In INN Bio
The subject of this week's Icetips News Network Bio is Juan Domingo Herrera of
Buenos Aires, Argentina.
Posted Thursday, January 10, 2002

Compile Manager 2 Available
A new release of Gordon Smith's Compile Manager 2 (release 5.005) is now
available. This is a 32 bit version.
Posted Monday, January 07, 2002

Translator Plus Legacy Template Released
ProDomus has released Translator Plus Legacy Templates for C5 and C55. These
apply Translator Plus Class Libraries to Legacy applications. The package includes
modified standard templates that make it possible to translate the many otherwise
inaccessible strings generated by the legacy template chain. It also includes a
redirection file to use these templates without the need to modify the standard
installed files. The release includes a new class that can be used to pop up a user
selection window. While there are many ways to initialize the selection of a
language files and locale for picture translation, this provides a very simple-to-
implement starting point. Users of Translator Plus may upgrade to this version at no
charge. Users of PD Translator or CW Intl may purchase the Translator Plus editions
at a 50% discount.
Posted Monday, January 07, 2002

TeamIDD Distributed Source Control

http://www.clarionmag.com/cmag/news.html?year=2002&month=1&limit=100& (9 of 11) [2/4/02 1:30:10 PM]

http://www.seal-soft.com/
http://www.sterlingdata.com/
http://www.icetips.com/
http://www.bssoft.com/
http://www.prodomus.com/
http://www.industrydd.com/

Clarion News

Industry Data Design has released its TeamIDD multi-developer distributed source
control package. TeamIDD works over the internet, and handles all files, not just
.APP and .DCT files. To register a project, regardless of the number of developers or
files involved is 25.00 USD, or no charge until Jan 18. To check in a file is 1.00 USD,
except for the first five days when there is no charge. There is no charge to add a
developer to a project, or to download the client program to your computer(s).
When you check in a file, the client program transmits it to the IDD server, where it
is stored in a database in IDD's constantly staffed, redundant and fullly backed up
data center. Your teammates see the new version is available within 60 seconds (if
they happen to be in). In a single operation, TeamIDD will retrieve all the files that
are out of date on your teammate's computers.
Posted Monday, January 07, 2002

Shareware EmailReport ABC
A shareware (try before you buy) version of EmailReport ABC template is now
available from Vivid Help.
Posted Monday, January 07, 2002

RInstall Update
RInstall has been updated to version 1.b, and is available for download using a new
password (if you are a user and have not received an email regarding the update,
email bdl@riebens.co.za). The update adds two new embed points and also fixes a
problem with the seed key for the serial number and unlock code generator.
Posted Monday, January 07, 2002

Fomin Report Builder Public Support Forum
There is now a public support forum for Fomin Report Builder. This enhanced
support resource is designed to replace the old technical support practice of emaling
the author directly. This is a public support forum; anybody may ask question and
anybody may answer using web interface. Only "help", "how to", "is it possible" or
similar questions regarding the product are allowed. A FAQ section is also available.
Posted Friday, January 04, 2002

PSI's TimeTrak 1.1 Released
PSI's TimeTrak 1.1 has been released. This version cleans up some minor bugs and
adds some additional reporting capability. Plus it includes the ability to export
billable time. Export has a sister feature, import. With the two it is easy gather
timesheets from subcontractors and consolidate the information into one billing
report to the client.
Posted Friday, January 04, 2002

http://www.clarionmag.com/cmag/news.html?year=2002&month=1&limit=100& (10 of 11) [2/4/02 1:30:10 PM]

http://www.vividhelp.com/
http://www.riebens.co.za/
http://www.fomintools.com/frb
http://www.psupport.com/products.htm

Clarion News

INN Bio For Jan 3, 2002
In our first biography of the new year, the Icetips News Network is pleased to
present an interview with another well-known Clarion developer. He has been a
Clarionite for quite awhile, was once a third-party developer, and is still active on
the technical newsgroups. Find out what he likes best about being a consultant and
see some great photos of northern California and beautiful examples of his
handiwork.
Posted Friday, January 04, 2002

New Scripting Language For Clarion And Business Users
In January QD Software will releasing a beta version of a scripting language written
in Clarion. While this tool has been developed for business users it has also some
options that will be of use to Clarion Developers. This scripting tool includes support
for: data dictionaries; scripting code generation; application frames - MDI, toolboxs,
dockable toolbars; database services (RI and field validation, group breaks SQL
support); run time window creation; scripting methods and subroutines; program
control statements; field object creation; browses; EIP. Browse and list box control
are separated for future development; additional features are planned.
Posted Friday, January 04, 2002

ForeHelp Closes Doors
After seven years of serving the Help authoring community with ForeHelp products,
ForeFront is closing its doors. ComponentOne plans to integrate some key ForeHelp
technology into an upcoming release of Doc to Help. ForeFront will ship product
through Thursday, January 10 at a special 60% discount. Payment must be made at
time of purchase with a credit card. Effective immediately, there is no technical
support for ForeHelp products.
Posted Wednesday, January 02, 2002

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/news.html?year=2002&month=1&limit=100& (11 of 11) [2/4/02 1:30:10 PM]

http://www.icetips.com/
mailto:qd@qd.co.nz
http://www.forehelp.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=10979
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Handing COM Events - Part 2

Clarion Magazine

Home COL Archives
Topics > COM/OLE > COM/OLE

Handing COM Events - Part 2

by Jim Kane

Published 2002-01-16

Last week I began explaining how to get a Clarion program to receive events from
an OLE control. When the Clarion OLE control works, it works very well and is very
simple to use. However, more often than not, it does not work. I had a particular
need to notify a Clarion program when Outlook received an email. Building on work
I’ve previously discussed in Clarion Magazine, I took the following steps:

1. Initialize COM – CoIntialize() API
2. Create an instance of Outlook, or attach to a running instance.
3. Ask Outlook if it supports events, and in particular the event interface called

syncIID. Unless it’s an older version of Outlook, it will.
4. Tell Outlook what Interface and procedure in your program to call when it has an

event. In COM terminology this is ‘Advise’ or ‘Connect’.
5. Store any information (parameters) that came with the event in global memory
6. Send a message to a Clarion window that an event was received and the information

is available in global memory.
7. Process the event reading the global memory
8. When done, disconnect, or in COM terminology ‘Unadvise’
9. Uninitialize COM

Last week I covered the first five steps. Now its time to send a Windows message to
a Clarion window telling the Clarion window that an event was received. This event
is set up in the call to ConPtCl.Init():

ConPtCl.init(window, 609H, thread(), 'Thanksgiving', cwdsynccl)

The first three parameters are the Clarion window, Clarion event, and Clarion thread
that should receive notification when an event comes in from the COM object. In the
sample code, the one and only window on the one and only thread gets an event

http://www.clarionmag.com/cmag/v4/v4n01comevents2.html (1 of 5) [2/4/02 1:30:13 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=120
http://www.clarionmag.com/cmag/topics.html?categoryid=120&subcategoryid=10

Handing COM Events - Part 2

609H when a connected COM object generates an event. As mentioned above, a
(Windows API) message is sent from CWDsyncCl to the Clarion window. While you
could just pick a random Windows message to send, for safety your best bet is to
supply a unique string and use it in RegisterWindowMessage(), which in turn
generates a unique Windows message for you. By using RegisterWindowMessage()
you are sure to get a unique Windows message not used by Windows or any other
application calling RegisterWindowMessage().

The code in CWDsync.Init() generates the Windows message and subclasses the
target Clarion window. When the subclass code receives the unique message, it
posts (using POST()) the Clarion message (609H) to the Clarion thread passed to
ConPtCl.init(). While this may seem like a long way to go to get event
information into a Clarion Accept loop, it is thread safe. This is important since the
events may come in while another Clarion thread is active, and any run-time library
calls from the COM event when the runtime library doesn’t expect it will cause
errors. Fortunately, the CWDsync class takes care of all the details. If you are not
familiar with subclassing, the technique I used here is the one I described in an
earlier article (http://www.clarionmag.com/cmag/v2/v2n3subclass.html).

Now for the fun part – processing the event (step 7). When event 609H arrives the
only two requirements are to read the data CWDsync put into blockcl and free any
memory allocated when variant parameters were copied. This code does just that:

! in accept loop
of 609H
 loop
 if ConPtCl.GetNextEvent(EventId, parametercount, |
 Address(parameterArray)) |
 then break.
 !display/process the event
 Message(‘Mail Received’)
 !clean up
 ConPtCl.VariantFree()
 end

EventID is the dispID you found earlier using OLEView. The parameterArray is
defined like this:

ParameterArray like(vartype),dim(15)

Vartype is defined in conpt.inc and represents a variant:

vartype group,type
thetype ushort
wreserved1 ushort

http://www.clarionmag.com/cmag/v4/v4n01comevents2.html (2 of 5) [2/4/02 1:30:13 PM]

Handing COM Events - Part 2

wreserved2 ushort
wreserved3 ushort
data1 long
pad long
 end

The main purpose of variants is to make VB run slowly! The first ushort contains an
constant that specifies the data. Some common values are 3=long, 2=short,
8=Bstring. The actual equate values for the types are available on MSDN. Data1
contains the actual data if the data type is a short or long but for a Bstring it
contains the address of the Bstring. Consider storing a byte in VB – it would take
16 bytes to store the byte since all data is stored as variants! In addition you would
spend a lot of time and code forever checking the data type. It is no wonder VB has
a reputation for being slow.

The upside of VB’s use of variants as a native data type is that no conversions are
necessary for COM – the COM types are VB native types. I’m very glad Clarion does
not use native COM types and gets the speed. I can bear the burden of converting
to and from COM types for COM work.

When the variantFree method above is called, it calls the API variantClear()
function which clears the variant structure (group), and also frees any memory the
variant may point to such as a Bstring. Unless you are very sure there are no
parameters or the parameters do not require any clean up, it is a very good idea to
call ConPt.VariantFree(). In those cases where there are no parameters or you
are not interested in the parameters, you can pass 0 or omit the third parameter of
GetNextEvent() to save yourself the trouble of declaring the parameter array.

An SMTP example

Also in the downloadable
code is an example of
getting COM Events while
using the Clarion OLE
Control. The example
uses a free SMTP control
(www.ostrosoft.com). On
an error the control
creates an error event
that passes a bstring
along with that event. If

When ever you are done, post(EVENT:CloseWindow)
to end the accept loop. Before disconnecting from
Outlook you need to first tell Outlook to stop calling
the CWDSyncCl (step 8). To do this you call the
unadvised() method on the IconnectionPoint
interface obtained way back in step 3. Fortunately
the ConPtCl tracks all that and can tell Outlook to
stop sending events without any further help then
tells cwdsyncCl to shut down by calling its kill
method.

The only thing left to do at this point, is to release
the Iunknown interface to Outlook obtained in step
2. That is done by calling Iunk.Release(). Perhaps

http://www.clarionmag.com/cmag/v4/v4n01comevents2.html (3 of 5) [2/4/02 1:30:13 PM]

http://www.ostrosoft.com/

Handing COM Events - Part 2

you look at that code,
you will see the
conversion from Bstring
to Clarion string is done
just before the call to
ConPtCl.VariantFree().
When testing the code
you can force an error by
calling the connect
method and leaving the
server property blank.
When all the properties
are properly set, you will
get a ‘connect’, ‘send’,
and ‘close connection’
event as the email is
sent. In that example, no
special code was needed
in
CWDSyncCl.takeevent()
so the TakeEvent()
method was not derived
and the cWDSyncCl was
not passed as a
parameter to the
connect() method. The
ConPtCl class then uses
New() to create an
instance of the class for
you when it is not
passed.

you are wondering what would happen if the user
closed the running instance of Outlook you
connected to in step 2 while your program is still
running. Actually nothing happens. Outlook
disappears from the desktop but it still appears on
the task list. Outlook doesn’t close down because
when you attach to Outlook, GetActiveObject()
automatically increases the reference count on
Outlook; this happens when you get the address of
Outlooks interface. Until you release that interface
by calling its release method, there is no danger of
Outlook closing down before you want it to.

Although the sample code uses early binding to
interact with Outlook, you could just as easily used
the Clarion OLE control and still get events. ConPtCl
has an alternative Connect() method that takes a
window and OLE control Field equate label rather
than the address of an interface and can use that.
The code just uses the OLE control’s prop:object to
get the address of it’s interface and then calls the
other connect method using the address obtained
with prop:object.

Whenever you need events, the steps to follow are:

1. Examine the object in ole view to get the IID and
dispid for the interface and event(s) you want.
Also make note of any parameters.

2. Create an instance of CWDSyncCl and supply a
takeEvent method if you need to filter out some
events the interface can supply or do any special
parameter handling.

3. Create an instance of ConPtCl.
4. Decide what Clarion window on which thread will receive what Clarion event when an

event arrives. Pick a unique string to allow generation of a window event. Put all this
information in to ConPtCl.Init().

5. Obtain a the address of an interface on the COM object supplying the events or get
the window and ole control field equate and pass that information along with the IID
of the event interface obtained in step 1 to ConPtCl.connect()

6. When the events start rolling in call ConPtCl.cwdsynccl.blockcl, to read the
dispids that determine what event was passed and any parameters.

http://www.clarionmag.com/cmag/v4/v4n01comevents2.html (4 of 5) [2/4/02 1:30:13 PM]

Handing COM Events - Part 2

7. When done call ConPtCl.unadvised() to shut things down then release the com
object producing the events.

That’s about it. When a COM object has only one interface that can produce events,
the built-in Clarion event handling may be worth a try owing to it’s simplicity, but
when that fails, the method I’ve described here will always let you get the events
you need.

Download the source

Jim Kane was not born any where near a log cabin. In fact he was born in New York City. After attending

college at New York University, he went on to dental school at Harvard University. Troubled by vast

numbers of unpaid bills, he accepted a U.S. Air Force Scholarship for dental school, and after graduating

served in the US Air Force. He is now retired from the Air Force and writing software for ProDoc Inc.,

developer of legal document automation systems. In his spare time, he runs a computer consulting

service, Productive Software Solutions. He is married to the former Jane Callahan of Cando, North

Dakota. Jim and Jane have two children, Thomas and Amy.

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n01comevents2.html (5 of 5) [2/4/02 1:30:13 PM]

http://www.clarionmag.com/cmag/v4/files/v4n01comevents.zip
mailto:jkane@satx.rr.com
http://www.prodoc.com/
http://www.clarionmag.com/cmag/comments.frm?articleID=11052
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Write A Word Processor In Five Minutes

Clarion Magazine

Home COL Archives
Topics > Design & Development > User Interface

Write A Word Processor In Five Minutes

by Vince Du Beau

Published 2002-01-17

Recently I read a 30 page document that explained how to create a text editor in
Delphi. Inspired, I decided to see how I could do this same task better and faster in
my beloved Clarion. What I came up with was a very minimal word processing
application that takes about 5 minutes to create. You will need Clarion 5.5 (or later)
to follow along.

The application

If you haven’t already done so, go into Setup -> Application Options and uncheck
the "Require Dictionary" option, as shown at the top of Figure 1. You won’t need
any tables for this application.

http://www.clarionmag.com/cmag/v4/v4n01wp.html (1 of 6) [2/4/02 1:30:15 PM]

http://www.clarionmag.com/
http://etc.kcug.org/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=126
http://www.clarionmag.com/cmag/topics.html?categoryid=126&subcategoryid=83

Write A Word Processor In Five Minutes

Figure 1. Turning off the dictionary requirement in Application Options

Create a new application in Clarion in whatever directory you wish. Call it WP.app.
Make sure that the "Use Quick Start" option is unchecked, and click on OK. In the
application properties, uncheck the "Application Wizard" and click OK again. You’re
going to create the application’s only procedure manually.

You should now be in the application’s procedure tree view. Double click on the
Main(ToDo) procedure and select Window – Generic Window Handler for the
procedure type.

http://www.clarionmag.com/cmag/v4/v4n01wp.html (2 of 6) [2/4/02 1:30:15 PM]

Write A Word Processor In Five Minutes

Figure 2. Selecting a generic Window procedure template

Click on the "Window" button and select window as the structure. Bring up the
properties box for the window. Under General Tab change the Text to "Word
Processor" and change the border to resizable. Under the Extra Tab check the
Immediate, Status Bar, and Maximize Box options. Click OK.

From the control toolbox, select the Control Template icon and then from the control
list, choose the RTF Control template.

http://www.clarionmag.com/cmag/v4/v4n01wp.html (3 of 6) [2/4/02 1:30:15 PM]

Write A Word Processor In Five Minutes

Figure 3. Selecting the RTF control

Place the control on the window and bring up the property box. On the Position tab,
set the top left corner X and Y positions to zero, and the width and height to Full.
Click OK, save the window and exit to the procedure properties.

Figure 4. Setting the RTF control's position

Click on the "Extensions" button for the procedure and then the "Insert" button.

http://www.clarionmag.com/cmag/v4/v4n01wp.html (4 of 6) [2/4/02 1:30:15 PM]

Write A Word Processor In Five Minutes

Select the Window Resize extension. Click the OK button and OK again to save the
window.

From the Project Menu, click Run. The project will compile and run your new word
processor with complete font control, cut and paste, save, and undo/redo.

Figure 5. The word processor in action

Summary

To create a complete word processor, you would need to add menus and a lot of
other niceties (using the code templates that accompany the RTF control). But the
next time someone wants to see what Clarion can do, whip out your laptop and
build the word processor in five minutes or less.

Download the source

Vince Du Beau is an independent consultant working in New Jersey. He has been using Clarion since

1989. His company, Plover Development Group, Inc., does AS/400 consulting and custom PC

development with Clarion.

http://www.clarionmag.com/cmag/v4/v4n01wp.html (5 of 6) [2/4/02 1:30:15 PM]

http://www.clarionmag.com/cmag/v4/files/v4n01wp.zip
mailto:vdubeau@optonline.net

Write A Word Processor In Five Minutes

Reader Comments

Add a comment

Excellent, just excellent.
excellent. put the text into a memo field or blob and you...
This was the most impressive example of Clarion's...
I was thinking, "please continue with a print button", as I...
There is a print button there although it doesn't...

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n01wp.html (6 of 6) [2/4/02 1:30:15 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=11057
http://www.clarionmag.com/cmag/discuss.frm?articleID=11057&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=11057&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=11057&position=3
http://www.clarionmag.com/cmag/discuss.frm?articleID=11057&position=4
http://www.clarionmag.com/cmag/discuss.frm?articleID=11057&position=5
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Interfacing With C++ Part 1

Clarion Magazine

Home COL Archives
Topics > OOP > Interfaces

Interfacing With C++ Part 1

by Gordon Smith

Published 2002-01-18

This article demonstrates how Clarion interfaces and C++ abstract base classes can
be freely interchanged between Clarion, TopSpeed C++ and Microsoft Visual C++.
Not only does this provide a convenient conduit for mixed language development, it
also allows objects to be shared across languages. In practice it is possible to build
a very powerful C++ library by simply wrapping existing or third party code within a
Clarion compatible interface.

Interfaces

Interfaces are the key to using C++ abstract base classes in Clarion. But what are
interfaces? The Clarion Help system describes them this way:

"INTERFACE: A collection of methods to be used by the class that
implements the interface."

"An INTERFACE is a structure, which contains the methods
(PROCEDUREs) that define the behavior to be implemented by a CLASS.
It cannot contain any property declarations. All methods defined within
the INTERFACE are implicitly virtual. A period or the END statement must
terminate an INTERFACE structure."

That’s the Clarion Help perspective. I prefer to describe an interface as a contract: it
is a public declaration that class x supports contract y, thus any procedure or
method that is willing to accept contract y can work with class x without knowing
anything specific about class x.

Interfaces represent a great level of abstraction, which is demonstrated by the

http://www.clarionmag.com/cmag/v4/v4n01interfacevc1.html (1 of 6) [2/4/02 1:30:18 PM]

http://www.clarionmag.com/
http://www.developerplus.com/
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=127
http://www.clarionmag.com/cmag/topics.html?categoryid=127&subcategoryid=61

Interfacing With C++ Part 1

WindowManager.addItem method. This method will accept as a parameter any class
that has implemented a WindowComponent interface. In other words anyone who has
developed a class which displays stuff on a window (calendar etc.) and who wants
to make this class work within a WindowManager, simply needs to implement the
WindowComponent interface for that class, thus fulfilling the contract.

The interface definition simply sets out the methods that any class which
implements the interface must have. That’s the contract: the interface guarantees
the class will have certain methods. In the case of the WindowComponent interface,
the WindowManager knows that any class passed to its addItem method will have
Kill, Reset, ResetRequired, SetAlerts, TakeEvent, Update, and UpdateWindow
methods which it can call. The obvious benefit is that the window manager needs no
other knowledge about the visual component class.

NOTE: Without interfaces the same result could be achieved by using a
WindowComponent base class. Unfortunately this becomes very limiting in
languages which do not have multiple inheritance (Clarion, Java, C#).
This goes someway towards explaining the current trend in modern
languages to only have single inheritance and to support interfaces.

This example also highlights the correct flow for interface design; in general people
learning about OOP and interfaces make the mistake of writing a class and then
trying to come up with an applicable interface for that class. That’s the wrong way
to approach it. It is better to design the interface from the receivers point of view
(in the above case the receiver is the WindowManager).

Ok, enough preamble. It isn’t this articles aim to teach you all about interfaces (for
more information see the Interfaces topic), but to demonstrate how to mix and
match Clarion interfaces with C++ "interfaces."

Mix and match

Now all you C++ people will be shouting that C++ doesn’t have interfaces. This is
true, kind of. C++ does however have multiple inheritance, and it has the ability to
declare abstract base classes.

An abstract base class is a base class that contains pure virtual methods. These are
methods declared in such a manner that they must be implemented in a derived
class, but need not be implemented in the base class. Does that sound familiar?

http://www.clarionmag.com/cmag/v4/v4n01interfacevc1.html (2 of 6) [2/4/02 1:30:18 PM]

http://www.clarionmag.com/cmag/topics.html?categoryid=127&subcategoryid=61

Interfacing With C++ Part 1

In fact, if you declare a Clarion interface and a C++ abstract base class with
identical methods, they become interchangeable. That is, it is possible to pass a
Clarion-implemented interface into a C++ procedure and pass a C++ class (which
has been derived from the matching abstract base class) into a Clarion procedure.
Since both have stated that they support the named interface, they are equivalent
and interchangeable.

Example 1: Clarion implemented interface, passed to a TopSpeed C++
procedure:

For this example, I’ve defined the following trivial interface called
TwoSignedInterface. This interface is a contract, which states that the
implementing class contains two signed variables. Here is the Clarion definition of
the interface:

TwoSignedInterface interface
getSignedA procedure, signed
getSignedB procedure, signed
 end

The C++ equivalent looks like this:

class TwoSignedInterface
{
public:
 virtual signed getSignedA() = 0;
 virtual signed getSignedB() = 0;
};

What makes this an abstract base class is simply the use of virtual methods, which
have = 0 on the end.

Now on the Clarion side the implementing class looks like this:

TestClass class, implements(TwoSignedInterface), type
A signed
B signed
 end
 ...
TestClass.TwoSignedInterface.getSignedA procedure()

 code
 return self.A

TestClass.TwoSignedInterface.getSignedB procedure()

 code
 return self.B

http://www.clarionmag.com/cmag/v4/v4n01interfacevc1.html (3 of 6) [2/4/02 1:30:18 PM]

Interfacing With C++ Part 1

And on the C++ side the receiving procedure, which takes a TwoSignedInterface,
is as follows:

extern "C" signed cppAddTwoSigned(TwoSignedInterface &tsi)
{
 return tsi.getSignedA() + tsi.getSignedB();
}

The extern means that the procedure has external linkage, i.e. is available outside
the examcpp1.cpp module; the C is used to tell the compiler/linker to use the
standard C naming convention, as opposed to the C++ naming convention. This
naming convention is not to be confused with the Clarion C attribute for procedures -
in other words it changes how the procedure name is mangled.

Finally the Clarion declaration of the C++ procedure looks like this:

cppAddTwoSigned procedure(*TwoSignedInterface tsi),
 signed, name('_cppAddTwoSigned')

If I had not used the C naming convention the declaration would have looked like
this:

cppAddTwoSignedB procedure(*TwoSignedInterface tsi),
 signed, name('_cppAddTwoSignedB@FR18TwoSignedInterface')

Not very nice! Also these naming conventions can change between compilers. A
quick look at the Visual C++ example will show this. What is worse is, in VC++ the
default mangled name is not compatible with Clarion LIB files, making it impossible
to statically link to it. In general people writing API libraries will stick to the C
naming convention as it allows the library to be used with multiple languages (and
this includes people mixing C with C++).

Where is PASCAL, RAW?

Anyone familiar with API calls will be used to seeing PASCAL,RAW at the end of API
function declarations. These attributes alter the calling convention (not to be
confused with the naming convention I talked about earlier, again do not confuse
the Clarion C attribute with C’s extern "C"). PASCAL and C specify that parameters
are passed on the stack; while C pushes the parameters left to right, PASCAL pushes
them right to left. The RAW attribute tells Clarion not to push the length of any string
/ group (which it would by default).

http://www.clarionmag.com/cmag/v4/v4n01interfacevc1.html (4 of 6) [2/4/02 1:30:18 PM]

Interfacing With C++ Part 1

NOTE: If you declare const *cstring instead of *cstring and do not
have the RAW attribute the length is not pushed onto the stack.

As this first example only uses the TopSpeed compilers, which all share a standard
calling convention (register based), there is no need to specify a different
convention.

Example 2: TopSpeed C++ implemented interface, passed to a Clarion
procedure:

Example 2 is the exact opposite to example 1. All classes are implemented in C++
and the addition is done in a Clarion procedure. Here is the Clarion definition of the
interface:

TwoSignedInterface interface
getSignedA procedure, signed
getSignedB procedure, signed
 end

The C++ equivalent looks like this:

class TwoSignedInterface
{
public:
 virtual signed getSignedA() = 0;
 virtual signed getSignedB() = 0;
};

Both are unchanged from example 1, as we would expect. Now on the C++ side the
implementing class looks like this:

class TestClass : public TwoSignedInterface
{
public:
 virtual signed getSignedA();
 virtual signed getSignedB();

 signed A;
 signed B;
};
...
signed TestClass::getSignedA()
{
 return A;
}

signed TestClass::getSignedB()
{
 return B;

http://www.clarionmag.com/cmag/v4/v4n01interfacevc1.html (5 of 6) [2/4/02 1:30:18 PM]

Interfacing With C++ Part 1

}

And on the Clarion side the receiving procedure, which takes a
TwoSignedInterface, is as follows:

clwAddTwoSigned procedure(*TwoSignedInterface tsi)

 code
 return tsi.getSignedA() + tsi.getSignedB()

Nothing remarkable here, it is just the exact opposite to example 1; the key point is
that the two interfaces remain identical for both examples. For symmetry I even
programmed the main entry point in C++ (something I haven’t tried before!).

Next week I'll describe how to wrap a C++ standard template for use within
Clarion.

Download the source

Prior to joining TopSpeed Development Centre, Gordon Smith worked for an Irish company developing

software for multi-national pharmaceutical companies. He was also a member of the 3rd party

accessories program (Compile Manager 2) and developed the Clarion Class Browser.

Reader Comments

Add a comment

Gordon, Excellent article! I will be re-reading this...
At last - I cannot describe how pleased I am to come across...
Very cool stuff! Thanks...

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n01interfacevc1.html (6 of 6) [2/4/02 1:30:18 PM]

http://www.clarionmag.com/cmag/v4/files/v4n01interfacevc.zip
http://www.clarionmag.com/cmag/comments.frm?articleID=11058
http://www.clarionmag.com/cmag/discuss.frm?articleID=11058&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=11058&position=2
http://www.clarionmag.com/cmag/discuss.frm?articleID=11058&position=3
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Interfacing With C++ Part 2

Clarion Magazine

Home COL Archives
Topics > OOP > Interfaces

Interfacing With C++ Part 2

by Gordon Smith

Published 2002-01-21

This is part two of an article that demonstrates how Clarion interfaces and C++
abstract base classes can be freely interchanged between Clarion, TopSpeed C++
and Microsoft Visual C++. Not only does this provide a convenient conduit for mixed
language development, it also allows objects to be shared across languages. In
practice it is possible to build a very powerful C++ library by simply wrapping
existing or third party code within a Clarion compatible interface.

Last week I showed how to pass a Clarion interface to a TopSpeed C++ procedure,
and vice versa. Now its time to do something practical with this knowledge.

Example 3: MS Visual C++ implemented interface, VC++ creator procedure
and VC++ destructor procedure:

This example (hopefully) uses a somewhat real world example. It wraps the C++
standard template library’s (STL) Output File Stream ofstream for use within
Clarion. This STL class provides a simple way to output text to a file on disk; one
reason it might be useful within Clarion is the ability to have several open files at
once (without having to declare a separate file structure for each instance, as you
would normally have to do). The VC++ project is called example3; it has been
tweaked it to generate a DLL called msvc_example3.dll; I also created a Clarion
compatible LIB file (called msvc_ex3.lib) using Clarions libmaker utility.

One of the great things about using interfaces to call between DLLs is that an
interface has no effect on the exported list of procedures, so chopping and changing
the interface will not require running the DLL through libmaker!

http://www.clarionmag.com/cmag/v4/v4n01interfacevc2.html (1 of 5) [2/4/02 1:30:20 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=127
http://www.clarionmag.com/cmag/topics.html?categoryid=127&subcategoryid=61

Interfacing With C++ Part 2

Here’s the Clarion code:

...
newOutputFile procedure(const *cstring filePath),|
 *IOutputFile, pascal, raw, name('_newOutputFile@4')
disposeOutputFile procedure(*IOutputFile f), |
 pascal, raw, name('_disposeOutputFile@4')
...

IOutputFile interface, com
appendText procedure(const *cstring text)
appendLine procedure(const *cstring text)
 end

This is the Clarion equivalent of the normally published header file. There are two
procedures and one interface: the procedures are used to create/destroy the
instance of the class that implements the interface (see how the name mangling is
different to the TopSpeed C++ compiler). Check out the COM attribute on the
interface, before getting too excited (and before you start installing all your ActiveX
controls); it is merely a shorthand convenience for the following:

IOutputFile interface
appendText procedure(const *cstring text), pascal
appendLine procedure(const *cstring text), pascal
 end

What is a bit nasty is that it doesn’t automatically include the RAW attribute, but in
this example they are all CONST so it is ok. Next is the actual example:

tstA &IOutputFile, auto
cstrPathA cstring('c:\testA.txt')
cstrText1a cstring('Gordon')
cstrText1b cstring('Smith')

 code
 tstA &= newOutputFile(cstrPathA)

 tstA.appendText(cstrText1a)
 tstA.appendText(cstrSpace)

 disposeOutputFile(tstA)

Nothing special here, it just creates an instance of the interface, uses it and
disposes it.

Here is the matching VC++ interface for IOutputFile:

class IOutputFile
{
public:

http://www.clarionmag.com/cmag/v4/v4n01interfacevc2.html (2 of 5) [2/4/02 1:30:20 PM]

Interfacing With C++ Part 2

 virtual void __stdcall appendText(const char *text) = 0;
 virtual void __stdcall appendLine(const char *line) = 0;
};

The only difference from the TopSpeed example is the use of __stdcall; this tells
the VC++ compiler to use the following calling conventions:

● Parameters are passed on stack, right to left (corresponding to the Clarion PASCAL
attribute).

● Name-decoration convention: An underscore (_) is prefixed to the name. The name
is followed by the at sign (@) followed by the number of bytes (in decimal) in the
argument list. Therefore, the function declared as int func(int a, double b) is
decorated as follows: _func@12

It isn’t an accident that the VC++ convention matches the Clarion side, because this
calling convention is what VC++ uses to declare its windows API prototypes.

Next is the class that implements the interface. All the code is inline, which means it
is included in the definition:

class OutputStream : public IOutputFile
{
public:
 OutputStream(const char * filePath)
 {
 ofs = new std::ofstream(filePath);
 }
 ~OutputStream()
 {
 delete(ofs);
 }
 virtual void __stdcall appendText(const char * text)
 {
 *ofs << text;
 }
 virtual void __stdcall appendLine(const char *line)
 {
 *ofs << line << "\r\n";
 }

private:
 std::ofstream * ofs;
};

This is straightforward stuff. There is a constructor/destructor that will
create/destroy ofs (which is an instance of the STL (using namespace STD) Output
File Stream). Next come the implemented interface methods - these do the actual
work (one with a <13,10> or \r\n in C++).

http://www.clarionmag.com/cmag/v4/v4n01interfacevc2.html (3 of 5) [2/4/02 1:30:20 PM]

Interfacing With C++ Part 2

Finally there are the new/dispose procedures:

extern "C" __declspec(dllexport) IOutputFile *
 __stdcall newOutputFile(const char * filePath)
{
 return new OutputStream(filePath);
}

extern "C" __declspec(dllexport) void
 __stdcall disposeOutputFile(IOutputFile * s)
{
 delete((OutputStream *)s);
 return;
}

The only new thing here is the __declspec(dllexport), which forces VC++ to
export the procedures, making it equivalent to adding a procedures mangled name
to a Clarion exp file.

Note that the individual methods are resolved within the interface based on offset
(not name). Any differences between your declarations will be fatal; all methods
must have matching parameter lists, return types, calling conventions and be in the
same sequence (they do not need to have matching names). In general this is fine,
but there is one nasty gotcha with the MS VC++ compiler: it will not preserve the
order of overloaded methods (I think it sorts them based on the number of
parameters, but am not 100% sure). So if you want to use overloaded names on
the Clarion side you will need some judicious naming on the VC++ side. For
example, consider the following Clarion interface:

SampleInterface interface, com
getText procedure(unsigned pos)
getText procedure(unsigned startPos, unsigned endPos)
getText procedure
 end

You would to prototype the interface like this on the VC++ side:

class SampleInterface
{
public:
 virtual void __stdcall getTextA(unsigned pos) = 0;
 virtual void __stdcall getTextB(unsigned startPos,
 unsigned endPos) = 0;
 virtual void __stdcall getTextC() = 0;
}

Summary

http://www.clarionmag.com/cmag/v4/v4n01interfacevc2.html (4 of 5) [2/4/02 1:30:20 PM]

Interfacing With C++ Part 2

In practice, my core library contains a single VC++ DLL with all my commonly used
wrappers; where possible I statically link the wrapped functionality to reduce the
number of third party DLLs I need to ship. Examples of C++ implemented interfaces
include the STL String, STL Input File Stream, STL Output File Stream (make sure
you get the latest bug fixes for these as the ones shipped with MSVC 6.0 are out of
date), an example of a Clarion implemented interface include a set of callback
methods being passed to the open source Expat SAX XML parser (a SAX parser is
one which runs through the XML, calling back to predefined procedures when it gets
an open tag, close tag body text etc.).

Hopefully this article will enhance your experience of OOP programming by enabling
the use of different languages. At the very least it may help people trying to call
into a VC++ DLL from Clarion. Have fun!

Download the source

Prior to joining TopSpeed Development Centre, Gordon Smith worked for an Irish company developing

software for multi-national pharmaceutical companies. He was also a member of the 3rd party

accessories program (Compile Manager 2) and developed the Clarion Class Browser.

Reader Comments

Add a comment

Hi Gordon, re...'In general this is fine, but there is...

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n01interfacevc2.html (5 of 5) [2/4/02 1:30:20 PM]

http://www.clarionmag.com/cmag/v4/files/v4n01interfacevc.zip
http://www.clarionmag.com/cmag/comments.frm?articleID=11060
http://www.clarionmag.com/cmag/discuss.frm?articleID=11060&position=1
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

First Field, Required Field

Clarion Magazine

Home COL Archives
Topics > Forms > Forms, validation

First Field, Required Field

by Steven Parker

Published 2002-01-25

It’s funny how things work out sometimes. I had just spent several hours updating
code designed to prevent embedded code executing when the Cancel button was
pressed. Then came the posting on one of the newsgroups: "I have embed code for
some fields that I want to prevent from firing if the user presses cancel. How can I
do this?"

While it was nice to be able to help out another developer, in all candor, it was nicer
to know that I wasn’t the only one having this problem (read: "having this sort of
bizarre requirement").

The problem this developer and I had run into is more complicated than it first
appears to be. It is not confined to canceling and it does not always happen when
canceling. The better known variation is that embedded code executes when a field
has not been completed or modified in any way.

Confused?

Welcome to what I called the "Required Field Look Up Blues" when I first wrote
about it in "Beating Those Required Field Look Up Blues," Clarion Tech Journal, 6, 2,
March/April 1994. Clearly this is not a new issue (in fact, that article was a follow-up
to "The Double Loop Does … You," Clarion Tech Journal, 6, 1, January/February
1994).

The phenomenon of embedded code executing even though the field had not been
touched is caused by the double loop (which I’ll explain in a moment). The
execution of code when canceling is not. Yet both are direct consequences of way

http://www.clarionmag.com/cmag/v4/v4n01firstfield.html (1 of 13) [2/4/02 1:30:25 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=130
http://www.clarionmag.com/cmag/topics.html?categoryid=130&subcategoryid=65

First Field, Required Field

Clarion windows are constructed.

How a Clarion window operates

OOP and ABC notwithstanding, the basic logic of a Clarion window has not changed
since Designer was introduced in Clarion Professional Developer (for DOS) in 1986.

A Clarion window is a loop functioning substantially as follows:

Accept
 Case Event()
 !check non-control specific events
 End
 Case Selected()
 !check Event:Selected for each control
 End
 Case Accepted()
 !check Event:Accepted for each control
 End
End

(The actual code, in ABC forms, is not quite this simple. However, the logic is.)

Non-control specific events that are checked at the top of the loop include such
things as the timer, gain/lose focus, open or close window and the like. Case
Selected() occurs when a control is selected (i.e., you tab onto it or click it) and
Case Accepted() occurs when a control is accepted (key strokes entered and/or
tabbed off of, a button clicked, etc.)

So, a Clarion window is basically an event checking loop (in fact, it always has
been). Therefore, if there is code embedded in one of these events, when the
appropriate Case evaluates True, it will execute whether you expected it to or not.

The double loop

An Ok button (usually in Form procedures) populated on a window adds a little
extra to the typical window. The developer’s problem with Forms is that, while the
window may open with the first field selected, the user can move to any other field
on the form and can do so at any time, in any of several ways. Consider a basic
retail store inventory entry form:

http://www.clarionmag.com/cmag/v4/v4n01firstfield.html (2 of 13) [2/4/02 1:30:25 PM]

First Field, Required Field

Figure 1. Basic inventory form

The UPC Code would typically be a required field. But a user could arbitrarily click
on Description, make an entry and press "Ok."

If this form could be saved, if it were possible to save it, with UPC Code blank, just
how is required field checking carried out?

Required field checking is a function of two settings. First, the field must have the
Required attribute (see Figure 2).

http://www.clarionmag.com/cmag/v4/v4n01firstfield.html (3 of 13) [2/4/02 1:30:25 PM]

First Field, Required Field

Figure 2. Required attribute

Usually this attribute is read from the dictionary, where the developer checks
"Cannot be Zero or Blank" on the Validity Checks tab. But even if this attribute is
not set in the dictionary, it can be set here, on the form. That is, by checking this
box in a single procedure, a field can be made required for that procedure, even if it
is not elsewhere. Likewise, by unchecking it here, a field can be made optional for a
single procedure.

It is also possible to change whether or not a field is required in code. Any time
after the window has been opened, add the following:

?INV:UPCCode{Prop:Req} = True

or, even

http://www.clarionmag.com/cmag/v4/v4n01firstfield.html (4 of 13) [2/4/02 1:30:25 PM]

First Field, Required Field

?INV:UPCCode{Prop:Req} = False

Second, the Ok button has to be told to check Required fields:

Figure 3. Turn on Required Fields checking

Again, all this is normally picked up from the dictionary, at least when you are using
a wizard to initially create the form. But when you are creating a form without a
wizard, it will not be checked. If required fields left blank are not being caught, this
check box is likely not on.

What turning on the Ok button’s Required option does is to cause the templates to
add the Select statement (notice the absence of parameters) to the button’s
actions. Again, more complicated code is generated by the ABC templates but the
logic is the same.

http://www.clarionmag.com/cmag/v4/v4n01firstfield.html (5 of 13) [2/4/02 1:30:25 PM]

First Field, Required Field

The on-line help states "SELECT with no parameters initiates AcceptAll mode (also
called non-stop mode)."

[AcceptAll] is a field edit mode in which each control in the window is
processed by generating EVENT:Accepted for each. This allows data entry
validation code to execute for all controls, including those that the user
has not touched. AcceptAll mode immediately terminates when any of the
following conditions is met:

SELECT(?)

Window{PROP:AcceptAll} = 0

A REQ control is left blank or zero.

Read that again because that is how required field checking is enforced.

This means that every embed is executed when the window is in non-stop mode,
explaining why embedded code may be executed twice.

If I embed:

INV:UnitPrice = (INV:Cost * INV:Markup) / INV:PackQty

double execution doesn’t make a big difference. It may cost a few clock ticks but
the data isn’t going to be changed in unexpected ways.

But suppose I conditionally hide/unhide tabs. Then many cycles are going to be
wasted. Or suppose I want to compute costs and margins only once (recalculating
can overwrite a manual change) or I increment a value or counter (it would
increment twice or it could increment simply by looking at the form and pressing
Ok). In these cases, checking for non-stop mode allows me to short circuit the
code:

If ~0{Prop:AcceptAll}
 DO CalculateCost
End

or

If ~FormWindow{Prop:AcceptAll}
 DO RetainPriceorMargin
End

http://www.clarionmag.com/cmag/v4/v4n01firstfield.html (6 of 13) [2/4/02 1:30:25 PM]

First Field, Required Field

In this way, I ensure that the routines are called only when the field has actually
been changed and, then, only immediately after that change is made.

A more … interesting (ok, more frustrating) case occurs when attempting to
intercept the "Creates Duplicate Key" message that so many of us … appreciate.
You can do this by checking the DUPLICATE function, in the field’s Accepted embed:

If ThisWindow.Request = InsertRecord
 Get(Inventory,0)
 If Duplicate(INV:UPCKey)
 Message('This Code already exists in the inventory.'|
 ,'Duplicate UPC',ICON:Hand)
 Select(?)
 Cycle
 End
End

However, when I press Ok and go into non-stop mode, DUPLICATE will return True
even though the value is unique (or, at least, it was the first time it was checked).
Changing this to:

If ThisWindow.Request = InsertRecord |
 and ~0{Prop:AcceptAll}
 Get(Inventory,0)
 If Duplicate(INV:UPCKey)
 Message('This UPC already exists in the inventory.'|
 ,'Duplicate UPC',ICON:Hand)
 Select(?)
 Cycle
 End
End

prevents the check from happening a second time. In so doing, I also prevent a
spurious "error" message.

The double loop, at first sight, may seem like a bad design decision but, in addition
to the fact that it can be easily by-passed, it ensures that each embed executes at
least once and that required fields are completed. The alternative would be to check
each field, either required or doing a calculation, in the Ok button. Manually. Much
worse, I think, than the double loop.

Canceling

Canceling a form does not initiate non-stop mode. So how can embedded code
execute when the user cancels?

http://www.clarionmag.com/cmag/v4/v4n01firstfield.html (7 of 13) [2/4/02 1:30:25 PM]

First Field, Required Field

It can’t.

But it does.

Sometimes.

If you run the demo app and select the "Vanilla" procedures, you will find that you
can tab around to your heart’s content. You can Cancel without problem and
required fields left blank are caught when you press "Ok." All of this works exactly
as you would expect.

If you select the inventory browse/form from the "Standard Mods" menu (which
adds a lookup to manufacturer in the inventory form), you will find the same. All
goes exactly as you would expect.

But is it what you want?

Of course it is just this ability to move all over the form, at will, that is the problem.
A user can pass the uniquely identifying field, UPC Code in this case, without having
to enter it. Ditto the lookup. It is not until the user tries to save the form that they
are forced to make an entry in that field. (Indeed, the apparent ability to leave a
required field empty was part of my motivation for writing "Beating Those Required
Field Look Up Blues.")

Some believe that stopping the user and forcing entry of such important fields
immediately is better than making them do so after they think they’re done with the
form. I am one who happens to believe this. (In this case, especially, as the form is
designed to find the next available number if none is entered here. If I didn’t
enforce the entry immediately, I could end up with a wasted auto-number.)

To force tabbing off a field to behave as if an entry had been made (like the old
DOS GLO:ForceValidate switch), many of us have learned to add:

?INV:UPCCode{Prop:Touched}

to the Selected embed for the field.

With this code embedded, it is no longer possible to tab off this field without making
an entry (see "Standard Mods" | Manufacturers to see this in action).

Prop:Touched is logically equivalent to making an entry in a field. From the Help:

http://www.clarionmag.com/cmag/v4/v4n01firstfield.html (8 of 13) [2/4/02 1:30:25 PM]

First Field, Required Field

When non-zero, indicates the data in the ENTRY, TEXT, SPIN, or COMBO
control with input focus has been changed by the user since the last
EVENT:Accepted. This is automatically reset to zero each time the control
generates an EVENT:Accepted. Setting this property (in EVENT:Selected)
allows you to ensure that EVENT:Accepted generates to force data
validation code to execute, overriding Windows' standard
behavior—[standard Windows behavior is that] simply pressing TAB to
navigate to another control does not automatically generate
EVENT:Accepted.

And this is where the problems start. If you bring up the manufacturer form to
insert a new record, then reconsider and press Cancel, you will get the Message() I
populated in the Accepted embed.

Pressing Ok on the message and canceling again will close the form. This sort of
behavior is not acceptable. But what’s a developer to do?

When a user presses Cancel, ~0{Prop:AcceptAll} will not stop the code from
executing ({Prop:AcceptAll} is False, so ~0{Prop:AcceptAll} is True and the
condition passes).

Testing ~(Self.Response = RequestCancelled) is no more helpful. For, while the
window has been cancelled, Self.Response is often zero in a Clarion window but
GlobalResponse expects 1 and 2 as values.

In other words, you’re checking for a value of 2. But ThisWindow.Response may
contain 0 or 2. I found it is zero when tabbing through a field on ChangeRecord but
2 when action is InsertRecord, which is less than helpful. Furthermore, if you
embed

If ~(Self.Response = RequestCancelled)
!code

in the required field’s Accepted embed, it will not be checked when the Cancel
button is pressed (see the demo app’s "Standard Mods" Manufacturer form) and the
embed will still execute. And, if no fields have been Accepted, I wouldn’t expect it
to.

Confused?

What is a developer to do?

http://www.clarionmag.com/cmag/v4/v4n01firstfield.html (9 of 13) [2/4/02 1:30:25 PM]

First Field, Required Field

It seems as if I can enforce field validation or I can have an acceptable Cancel but
not both.

Back to DOS

In my DOS applications the required field was either the first field on the form or
the first non-display field (for a short while, I entertained the hope that putting
another field first would alleviate the problem). Every case I had was like this.
That’s why I started calling it the "first field-required field" problem.

My solution to this make-an-entry-or-you-can’t-cancel problem was to add the
Escape key as an alerted key for the first required field. Then, in that field’s
Selected embed I placed either:

If KeyCode() = EscKey
 Do ProcedureReturn
End

or

If KeyCode() = EscKey
 Select(?Cancel)
 Press(EnterKey)
End

(The ProcedureReturn Routine was introduced fairly late in the CDD development
cycle and that indicates just how old this solution really is.)

This technique works because the ALRT() attribute causes the nominated key to
select and complete the field (see the DOS Language Reference, 7-37). That is,

If KeyCode() = specified key

is added to the Case KeyCode()check at the top of the Accept loop. This is the
logical equivalent of adding it to the non-control specific event checking of a window
described earlier.

It took a reminder from Jeff Slarve and Carl Barnes to get me back on track: Alert
key processing precedes all other field processing.

My final answer

Unfortunately, the final answer is not quite so simple.

http://www.clarionmag.com/cmag/v4/v4n01firstfield.html (10 of 13) [2/4/02 1:30:25 PM]

First Field, Required Field

For the many cases, circumventing the effects of {Prop:Touched} can be achieved
by Alerting a key for the Cancel button, a key not likely to be used, as shown in
Figure 4.

Figure 4. Alerting MouseLeft for the Cancel button

Because Alert keys are handled first, you can close the window in the
Event:AlertKey embed (see Figure 5).

http://www.clarionmag.com/cmag/v4/v4n01firstfield.html (11 of 13) [2/4/02 1:30:25 PM]

First Field, Required Field

Figure 5. Forcing the window to close

However, embedded code in the "touched" field (with {Prop:Touched} set) will still
execute. Because of {Prop:Touched}, per the Language Reference, the Accepted
embed must execute and must do so before Cancel can post. This also explains why
ThisWindow.Response is unreliable – the Cancel button has not had a chance to set
the value.

As discussed above, I cannot successfully check ThisWindow.Request, so I created
my own. I have local variable, Aborted, and I set it in the AlertKey embed (see
Figure 5, above). Then I updated my embedded code to check for this variable:

If ThisWindow.Request = InsertRecord and |
 ~0{Prop:AcceptAll} and ~Aborted !Check UPC Code
 If ~INV:UPC !no UPC Code entered
 INV:UPC = GetNextUPC()
 Display(?INV:UPC)
 Select(?INV:UPC)
 Else !code entered, check for duplicate
 Get(Invtry,0)
 If Duplicate(INV:UPCKey)
 Message('This UPC already exists in the inventory.'|
 ,'Duplicate UPC',ICON:Hand)
 INV:UPC = GetNextUPC()
 Select(?)

http://www.clarionmag.com/cmag/v4/v4n01firstfield.html (12 of 13) [2/4/02 1:30:25 PM]

First Field, Required Field

 Cycle
 End
 End
 If FirstLoop
 FirstLoop = 0
 Select(?INV:Description)
 End
End

Et voila, the code does not execute when the user cancels.

Summary

It wouldn’t surprise me in the least to discover that my DOS solution, alerting the
Escape key on the field with embedded code worked unchanged in Windows. Clarion
after all is still Clarion and a Clarion screen and a Clarion window are remarkably
similar.

If I’m coding in a Loop, many things suddenly get a lot easier – if I know or can
figure out where I am in the Loop. Let’s see, reports are loops ("Completely
Dynamic Report Orders and Breaks (Part 1)"), processes are loops and, now,
windows are loops.

Am I seeing a pattern here?

Steve Parker started his professional life as a Philosopher but now tries to imitate a Clarion developer. A

former SCCA competitor, he has been known to adjust other competitors' right side mirrors - while on

the track (but only while accelerating). Steve has been writing on Clarion since 1993.

Reader Comments

Add a comment

The Ok button you refer to at times probably should be...
You are quite right, when using a Window template, the Save...

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n01firstfield.html (13 of 13) [2/4/02 1:30:25 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=11072
http://www.clarionmag.com/cmag/discuss.frm?articleID=11072&position=1
http://www.clarionmag.com/cmag/discuss.frm?articleID=11072&position=2
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Getting A Handle On The System Tray

Clarion Magazine

Home COL Archives
Topics > Tips/Techniques > Tips & Techniques

Getting A Handle On The System Tray

by James Cooke

Published 2002-01-30

One main benefit of Windows programming is being able to have multiple
applications open at once. The problem with this is that if you have ten programs
active at once, you have ten programs cluttering up your task bar, and ten icons to
Alt-Tab through to land on your desired application. So – the system tray to the
rescue! This article will cover the basic steps required for parking an app in the
system tray, and responding to events on that icon.

Step 1: load the image

Create a new 32 bit application called trayicon.app with a single procedure called
MAIN and define a window for it. Define APPLE.ICO as the icon for the window (this
icon is supplied with the example application that accompanies this article).

http://www.clarionmag.com/cmag/v4/v4n01systray.html (1 of 11) [2/4/02 1:30:29 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=69

Getting A Handle On The System Tray

Figure 1. Defining the window and icon

Because you have added the icon to the window’s definition, Clarion adds the icon
as a resource into its project and links it into the executable. This will allow you to
deploy the executable on its own, without having to include a bunch of icons.

One thing to understand is that Clarion provides the programmer with a much
simplified means of managing images. Windows does not deal directly with
filenames - rather, it provides the programmer with an API function called
LoadImage(), which preloads an image into memory and provides the programmer
with a handle to that image. This handle is merely the memory address of the
image, and you use it when referencing the image in your code.

Add this Windows API prototype in the global map:

MODULE('Whatever')
 LoadImage(Unsigned,*Cstring,Unsigned,Signed,Signed,|

http://www.clarionmag.com/cmag/v4/v4n01systray.html (2 of 11) [2/4/02 1:30:29 PM]

Getting A Handle On The System Tray

 Unsigned),Unsigned,Pascal,Raw,Name('LoadImageA')
END

A note on the Windows API: adding a prototype to the global map has the effect of
extending the Clarion language. The new language statement is provided by the
Windows operating system; and as such is available to all Windows languages. You
can find details on all Windows API functions at the Microsoft Developer Network
web site (msdn.microsoft.com)

Define these local variables:

IconName CSTRING(80)
HAppleIcon ULONG !Handle of icon returned by LoadImage()

Embed this code after opening the window:

IconName = 'apple_ico'
HAppleIcon = LoadImage(SYSTEM{PROP:AppInstance},|
 IconName,1,16,16,0)

This code loads the icon into system memory, and makes it available to your
application via the HAppleIcon handle.

Step 2: Add the icon to the tray

Add the Shell_NotifyIcon prototype to the global map:

Shell_NotifyIcon(Unsigned,Signed),Long, Pascal,Name ('Shell_NotifyIconA')

Your API section should now look like this:

MODULE('Whatever')
 LoadImage(Unsigned,*Cstring,Unsigned,Signed,Signed,|
 Unsigned),Unsigned,Pascal,Raw,Name('LoadImageA')

 Shell_NotifyIcon(Unsigned,Signed),Long, Pascal,Name|
 ('Shell_NotifyIconA')
END

The Shell_NotifyIcon function expects two parameters. The first is an indicator of
whether you are adding, changing or deleting an icon; the second is the address of
a GROUP structure which contains a collection of important information about the
icon, and a series of flags. These flags are defined as global constants.

Embed these constant definitions in the global section, after global includes:

http://www.clarionmag.com/cmag/v4/v4n01systray.html (3 of 11) [2/4/02 1:30:29 PM]

http://www.msdn.microsoft.com/
http://www.msdn.microsoft.com/

Getting A Handle On The System Tray

NIF_MESSAGE EQUATE(1) !Flag used by Shell_NotifyIcon
NIF_ICON EQUATE(2) !Flag used by Shell_NotifyIcon
NIF_TIP EQUATE(4) !Flag used by Shell_NotifyIcon
NIM_ADD EQUATE(0) !Flag used by Shell_NotifyIcon
NIM_DELETE EQUATE(2) !Flag used by Shell_NotifyIcon
Event:NIM EQUATE(440h)!User Defined callback event

Define the group by embedding these local data definitions into MAIN:

NotifyIconData GROUP,PRE(NID)
cbSize ULONG
hWnd UNSIGNED
uID UNSIGNED
uFlags UNSIGNED
uCBmessage UNSIGNED
hIcon UNSIGNED
ToolTip CSTRING(64)
 END
ID_AppleIcon EQUATE(100)
Err LONG

Now prime the above group with the relevant values (after the LoadImage code):

NID:cbSize = SIZE(NotifyIconData)
!the number of bytes in this GROUP

NID:hWnd = Window{Prop:Handle}
!the handle of the process that uses this image

NID:uId = ID_AppleIcon
!The applications' ID for this icon. A contstant

NID:uFlags = NIF_ICON + NIF_MESSAGE + NIF_TIP
!Indicate how the icon is displayed

NID:uCBmessage = Event:NIM
!A Callback event. (Locally declared event that Windows
! uses to notify us of events outside
! the application)

NID:hIcon = HAppleIcon
!The handle of the Apple ICon

NID:ToolTip = 'Apples are good for you.'
!The tooltip used for the icon

At this point, you are ready to add the icon to the system tray: Place two buttons on
the window and set the text of the first to Add and the second to Remove.

Embed this code into the Add button:

Err = Shell_NotifyIcon(NIM_ADD,ADDRESS(NotifyIconData))

http://www.clarionmag.com/cmag/v4/v4n01systray.html (4 of 11) [2/4/02 1:30:29 PM]

Getting A Handle On The System Tray

Embed this code into the Remove button:

Err = Shell_NotifyIcon(NIM_DELETE,ADDRESS(NotifyIconData))

That’s it! Run the application and click the two buttons – when you click the Add
button an apple will appear in the system tray, when you click the Remove button it
will disappear. Hover the mouse over the apple – the tip should read, "Apples are
good for you." Another thing: close down the application before removing the icon,
and the apple stays there. That’s because Windows has not had an explicit
instruction to remove it. However, since one of the NotifyIconData members that
passed it was the handle of the process, Windows is able to use that handle to
check if the process is still running. Since the application is closed, the handle is
invalid, and Windows deletes the image the moment the image fires any events.
Move your mouse over the image, and you will see it disappears automatically;
Windows responds to the MouseOver event, discovers the handle is invalid and
destroys the image.

Step 3: Trapping tray icon events

It’s well and good being able to display an icon; but the challenge is to render some
sort of communication between Windows and the application. This is necessary
because the application needs to respond to events that happen in the tray, which
the Clarion APP has no access to. There is only one event that is of importance to
this application: when the user right-clicks the icon, the application needs to be
notified so that it can execute some relevant code, for example a popup menu with
some options on it.

This is where Event:NIM becomes useful. Remember, before calling
Shell_NotifyIcon the GROUP variable NID:uCBmessage was assigned the value
contained in Event:NIM. This means that Windows will fire off the application’s
event Event:NIM when it needs to send the application a message.

In order to trap that Event:Nim, it will be necessary to use a subclass procedure. All
a subclass procedure does is it allows a procedure to trap Windows events that
Clarion does not trap automatically. It can then call other Clarion code or post an
event to a window in your application.

Define the subclass procedure

The subclass procedure makes use of a single Windows API call. Add this prototype
to the global map:

http://www.clarionmag.com/cmag/v4/v4n01systray.html (5 of 11) [2/4/02 1:30:29 PM]

Getting A Handle On The System Tray

CallWindowProc(ulong,uLONG,UNSIGNED,UNSIGNED,uLONG),|
 ulong,PASCAL,NAME('CallWindowProcA')

Your API section should now look like this:

MODULE('Whatever')
 LoadImage(Unsigned,*Cstring,Unsigned,Signed,Signed,|
 Unsigned),Unsigned,Pascal,Raw,Name('LoadImageA')

 Shell_NotifyIcon(Unsigned,Signed),Long, Pascal,Name|
 ('Shell_NotifyIconA')

 CallWindowProc(ulong,uLONG,UNSIGNED,UNSIGNED,uLONG),|
 ulong,PASCAL,NAME('CallWindowProcA')
END

Define a new Source procedure called MainSubClassFunc

Set the prototype to: (Unsigned,Unsigned,Unsigned,Long),Long,Pascal

Set the parameters to: (hWnd,wMsg,wParam,lParam)

Embed the following in the code section:

Case wMsg
Of Event:NIM
 !check for tray icon window message
 Case Band(lParam, 0FFFFh)
 OF WM_RBUTTONUP
 Post(Event:NIM:MouseRight)
 End
 Return(0)
End
 Return(CallWindowProc(OrigWndProc,hWnd,wMsg,wParam,lParam))
 !process other window messages in
 !standard CallBack procedure

This code traps the external Event:NIM (fired by Windows) and posts an internal,
user-defined event (Event:NIM:MouseRight) to the MAIN procedure. This "pass-the-
parcel" idea is the essence of subclassing events, and can be used for many
different applications.

In order for this code to compile, you will also need to define two more constants.
Add the following constants to the Global Includes section:

WM_RBUTTONUP EQUATE(205h)
 !Windows' value for RightMouseUp
Event:NIM:MouseRight EQUATE(442h)

http://www.clarionmag.com/cmag/v4/v4n01systray.html (6 of 11) [2/4/02 1:30:29 PM]

Getting A Handle On The System Tray

 !User Defined event for this app

The Global Includes section should now look like this:

NIF_MESSAGE EQUATE(1) !Flag used by Shell_NotifyIcon
NIF_ICON EQUATE(2) !Flag used by Shell_NotifyIcon
NIF_TIP EQUATE(4) !Flag used by Shell_NotifyIcon
NIM_ADD EQUATE(0) !Flag used by Shell_NotifyIcon
NIM_DELETE EQUATE(2) !Flag used by Shell_NotifyIcon
Event:NIM EQUATE(440h)!User Defined callback event

WM_RBUTTONUP EQUATE(205h)
 !Windows' value for RightMouseUp
Event:NIM:MouseRight EQUATE(442h)
 !User Defined event for this app

Since it is necessary for the two procedures to share a common variable, and the
use of global variables is taboo, you’ll need to place both procedures in the same
module. By declaring a module level variable you allow the two procedures to
communicate easily without making that variable visible to the rest of the
application.

Change the module of MainSubClassFunc to trayi001.clw (assuming that is the
name of the main procedure). When Clarion Generates the code both procedures
will be generated into trayi001.clw. This is illustrated in Figure 2.

Figure 2. Changing the procedure’s module.

Click OK, then go to MODULE view in the Application tree. Delete trayi002.clw (it’s
just hanging around doing nothing) and add this Module level variable to the data
section for trayi001.clw.

http://www.clarionmag.com/cmag/v4/v4n01systray.html (7 of 11) [2/4/02 1:30:29 PM]

Getting A Handle On The System Tray

OrigWndProc LONG

Uncheck the Allow Repopulate checkbox to prevent the procedures from being
reassigned to other modules later on. Click OK to save the settings and to return to
the application tree.

Figure 3. Defining a module level variable and setting repopulate options

Now you need to tell the Main procedure to use the subclass procedure. Embed this
code after opening the window:

OrigWndProc = Window{PROP:WndProc}
Window{PROP:WndProc} = ADDRESS(MainSubClassFunc)

This code has now assigned MainSubClassFunc to handle all external events for the
window. There is one last step, which is to trap events sent by the
MainSubClassFunc. Embed the following code in the MAIN procedure’s
TakeWindowEvent embed point, priority 6300:

CASE EVENT()
OF EVENT:NIM:MouseRight
 Message('Howdy!')
END

http://www.clarionmag.com/cmag/v4/v4n01systray.html (8 of 11) [2/4/02 1:30:29 PM]

Getting A Handle On The System Tray

Run the application, and right click on the apple in the tray. The message "Howdy"
should pop up.

That’s the essence of the tray icon. The next few steps will show you how to
"minimize the application to the system tray".

Step 4: Minimize the application to the icon tray

Minimizing the application to the icon tray is easy –simply hide the application when
the window is minimized and add the icon to the tray; when the application is
restored, delete the icon from the tray. Make sure that the MAIN window has the IMM
(immediate) attribute and add the following code in the window’s Iconized event:

0{prop:hide}=1
!Hide the window
Err = Shell_NotifyIcon(NIM_ADD,ADDRESS(NotifyIconData))
!Add an icon to the tray

Add this code in the window’s Restored event:

0{prop:hide}=0
Post(Event:GainFocus)
Err = Shell_NotifyIcon(NIM_DELETE,ADDRESS(NotifyIconData))

Change the code in the TakeWindowEvent embed to the following, to pop up a
menu over the system tray:

CASE EVENT()
OF EVENT:NIM:MouseRight
 Execute Popup('Show me|Say Howdy!|-|Exit ' & |
 'Application|Cancel')
 0{prop:Iconize}=FALSE
 Stop('Howdy!')
 Post(Event:CloseWindow)
 END
END

Run the application, and don’t click any buttons. Minimize the app. It should
disappear and an apple should appear in your Tray. Right click the apple, and you
should have something popping up that looks like Figure 4.

http://www.clarionmag.com/cmag/v4/v4n01systray.html (9 of 11) [2/4/02 1:30:29 PM]

Getting A Handle On The System Tray

Figure 4. A Clarion popup menu after right-clicking the apple

Try out the various options on the menu. This should illustrate that even though the
application is "in the tray" it is still active and you have full control over it.

Sometimes there is a small problem with getting the window to appear at the top of
the other applications. Some believe it is a variation in the configuration of the
operating system, others say it is an operating system-specific problem. Whatever
the reason is, there is always one tool in your toolbox that fixes most things: a
hammer. This particular hammer changes the Z-order of a window – it makes sure
that the window you apply it to gets the top priority, and Windows complies by
reshuffling all the windows to get the specified window to the top.

Add this Windows API prototype to the global map:

SetWindowPos(UShort,UShort,Short,Short,Short,Short,|
 UShort),BYTE,PASCAL

Your API section should now look like this:

MODULE('Whatever')
 MODULE('Whatever')
 LoadImage(Unsigned,*Cstring,Unsigned,Signed,Signed,|
 Unsigned),Unsigned,Pascal,Raw,Name('LoadImageA')

 Shell_NotifyIcon(Unsigned,Signed),Long, Pascal,Name|
 ('Shell_NotifyIconA')

 CallWindowProc(ulong,uLONG,UNSIGNED,UNSIGNED,uLONG),|
 ulong,PASCAL,NAME('CallWindowProcA')

 SetWindowPos(UShort,UShort,Short,Short,Short,Short,|
 UShort),BYTE,PASCAL
END

Change the code in the WindowEvents Restored embed to this:

If SetWindowPos(0{PROP:Handle},-1,0,0,0,0,BOR(2,1)).

This blunt instrument is not always necessarily, and does not always work.

http://www.clarionmag.com/cmag/v4/v4n01systray.html (10 of 11) [2/4/02 1:30:29 PM]

Getting A Handle On The System Tray

However, when you do need it and it does work, it makes your day that much
better!

There are several commercial and freeware templates which add system tray
functionality for you, and I would suggest you consider using them. However,
sometimes the resulting effect is not exactly what you want, and the knowledge of
how the system tray works will enable you to tweak the templates or classes to
meet your requirements exactly.

Download the source

James Cooke has been using Clarion since 2.1 days and has been a die hard for "the cause" ever since.

He and his family recently moved from South Africa to Texas and is currently working in the banking

industry. He spends most of his free time basking in the sun by the pool with a good book or succumbing

to that hard-to-kick addiction that persistently haunts the Western cosmopolitan neighborhoods - the

yard sale.

Reader Comments

Add a comment

James, On Terminal Server/Citrix we have found the...

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent

of CoveComm Inc., except as described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n01systray.html (11 of 11) [2/4/02 1:30:29 PM]

http://www.clarionmag.com/cmag/v4/files/v4n01systray.zip
mailto:jamescooke_tx@yahoo.com
http://www.clarionmag.com/cmag/comments.frm?articleID=11088
http://www.clarionmag.com/cmag/discuss.frm?articleID=11088&position=1
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

	clarionmag.com
	Clarion Magazine
	Date Checking, Time Stamping
	A Template For Copying Fields Between Files
	Handing COM Events - Part 1
	The ClarionMag Sweepstakes January Draw Is Coming Soon!
	Eleven Winners In ClarionMag Sweeps First Draw
	Clarion News
	Handing COM Events - Part 2
	Write A Word Processor In Five Minutes
	Interfacing With C++ Part 1
	Interfacing With C++ Part 2
	First Field, Required Field
	Getting A Handle On The System Tray

