
Clarion Magazine

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

PDF for November, 2002
All Clarion Magazine articles for November, 2002 in PDF format.
Posted Monday, December 02, 2002

Data Structures and Algorithms Part XII - Trie This
In this article Alison Neal introduces a data structure known as the Trie,
which is basically a type of general tree, containing words rather than
numbers. The Trie is an immensely useful data structure when storing
strings in memory. The Trie has been used for such things as
computerized Boggle and Yahtzee games, and file compression
algorithms.
Posted Wednesday, December 04, 2002

Parsing Strings In ASCII Files
Konrad Byers' recent article on a class for accessing and processing
ASCII files really spoke to Steve Parker. In this article, Dr. Parker
combines that class with some string parsing code to extract field data
from an ASCII file record.
Posted Thursday, December 05, 2002

Viewing An Excel Spreadsheet In A Clarion Browse
You can get data for a browse box from some surprising sources. Ayo
Ogundahunsi shows how easy it is to use a linked server to display data
from an Excel spreadsheet in a Clarion browse.
Posted Thursday, December 05, 2002

Weekly PDF For December 1-7, 2002
All ClarionMag articles for December 1-7, 2002 in PDF format.
Posted Monday, December 09, 2002

Countdown To CLARION 6 Early Access Release
An Early Access (EA) release of Clarion 6 is expected during the week of
December 16th. And yes, it will be Clarion 6 not 5.6, as this release was
deemed to have too many features for a dot release. Bookmark this page
for the latest news on C6EA.
Posted Monday, December 09, 2002

News

SealSoft xAnalogClock 1.2

Clarion 6 EA Program Now Full

Another RADrace Victory For
Clarion!

File Manager 3 Beta 9a

New ImageEx 2 Demo

ConVic 2003

CPCS Christmas Schedule

SealSoft New Year Discount

wPDFControl Wrapper

New Icetips Bulletin Board

Clarion Template/API Forum

Clarion Source Code For Sale

Clarionfoundry Open To Public Again

IceTips December Newsletter

Icetips Holiday Specials

Possible Florida UG Conference

ImageEx2 Beta 3

http://www.clarionmag.com/index.html?year=2002&month=12&limit=100&desc=false (1 of 3) [03/01/2003 12:36:26 PM]

http://www.clarionmag.com/
http://www.developerplus.com/
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/v4/files/cmag-2002-11.pdf
http://www.clarionmag.com/cmag/v4/files/cmag-2002-12-07.pdf
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/news.html

Clarion Magazine

Data Structures and Algorithms Part XIII - Trie Hard
In her last installment, Alison Neal introduced a data structure called the
Trie, which is used for storing strings in computer memory. In this article
Alison continues her discussion of the Trie, and covers some of the other
methods that are contained in the Trie Class, namely the Search, Print and
Kill methods.
Posted Thursday, December 19, 2002

DNA for Clarion: Manipulating Browse Cells With A
VLBPROC (Part 1)
Virtual List Boxes (VLBs) are one of the least-understood and most under-
appreciated features of the Clarion language. In this two-parter, Stephen
Bottomley explains VLBs, and introduces a class that you can use
standalone, or to control the display of an existing browse. Part 1 of 2.
Posted Thursday, December 19, 2002

DNA for Clarion: Manipulating Browse Cells With A
VLBPROC (Part 2)
Virtual List Boxes (VLBs) are one of the least-understood and most under-
appreciated features of the Clarion language. In this two-parter, Stephen
Bottomley explains VLBs, and introduces a class that you can use
standalone, or to control the display of an existing browse. Part 2 of 2.
Posted Friday, December 20, 2002

The Clarion Advisor: Displaying Clarion Dates In Excel
If you have a CSV file or other data that contains an unformatted Clarion
date, and you wish to view the date in Excel, you'll need to convert the
Clarion standard date to an Excel date. Here's how you do it.
Posted Friday, December 20, 2002

Web Validation From Your Clarion App Using NetTalk
Recently, Mark Riffey had a need to for one of my Clarion programs to
access a SQL database, hosted on the web, in order to determine if the
customer's access to a service had expired. It was a fairly simple task
using CapeSoft NetTalk, as Mark demonstrates.
Posted Friday, December 20, 2002

CLASSy ASCII File Importing
Earlier this month Steve Parker wrote an article on importing ASCII files
into a database using Konrad Byers' ASCII file class. In this article, Steve
describes a class by Dave Harms that makes fixed record length ASCII
importing configurable at runtime.
Posted Friday, December 20, 2002

S.C.A. Micro Legacy Templates

ClarionPost Reopens

Last Chance For List & Label
Discount

Simsoft Christmas Stocking - Save
$58US

International Clarion Meetup Day

Save 10% On Image Man OCX

RInstall V1.f (Beta) Update

INN Bio & News for 3-Dec-2002

Clarion Handy Tools Newsgroup
Server

Shapemaker SMX

Subject: Nextage Imaging Update

xFText v2.0 Released

DOS Printer v7.4

BigTamer Update

ZipApp Free Backup Program

Search the news archive

http://www.clarionmag.com/index.html?year=2002&month=12&limit=100&desc=false (2 of 3) [03/01/2003 12:36:26 PM]

http://www.clarionmag.com/cmag/searchnews.frm

Clarion Magazine

ClarionMag Office Holiday Schedule
The Clarion Magazine office is now closed for the holidays, and will
reopen January 6, 2003. Subscriptions and renewals will be processed
automatically, as usual. I will respond to emails and phone messages as
soon as possible when the office opens. A Merry Christmas and Happy
New Year to all!
Dave Harms, Publisher
Posted Saturday, December 21, 2002

Looking for more? Check out the site index, or search the back issues.
This site now contains more than 700 articles and a total of over a million
words of Clarion-related information.

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/index.html?year=2002&month=12&limit=100&desc=false (3 of 3) [03/01/2003 12:36:26 PM]

http://www.clarionmag.com/index.html#1
http://www.clarionmag.com/cmag/siteindex.html
http://www.clarionmag.com/cmag/search.frm
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Data Structures and Algorithms Part XII - Trie This

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Tips/Techniques > Clarion Language

Data Structures and Algorithms Part XII - Trie This

by Alison Neal

Published 2002-12-04

In this article I will introduce a data structure known as the Trie. A Trie is basically a type of
general tree, containing words rather than numbers. The Trie is an immensely useful data
structure when storing strings in memory. The Trie has been used for such things as
computerized Boggle and Yahtzee games, and file compression algorithms.

The best possible illustration for the Trie's use, though, is in Internet search engines. The Trie
is built to contain whole words and maintain a count of how many times a word occurs. In so
doing this structure makes the search of web pages and the weighting of pages by the
recurrence of a particular word quite simple.

It’s easy to imagine an Ordered Linked List being used for this purpose as well; all I’d have to
do is store a word in each node and add a count variable to the Ordered List structure, so that I
could count the number of word recurrences. However, that would be a very slow way of
going about things in comparison to using the Trie structure.

In my previous articles on Trees I pointed out that when a search is performed on an Ordered
Linked List, every node has to be visited (starting at the head) until the logical position of the
item being searched for is reached. I then showed that a Tree could make this search far more
efficient as, if the value being sought was lower than the current node, the search would move
left, or if the required value was higher than the current node, then the search would move to
the right. This could effectively halve the search time of an Ordered Linked List.

The Trie takes this idea one step further. It is a given that in the English language there are
only 26 letters (A to Z). So the value of the first letter in a word is only ever going to be
between 1 and 26, and the value of the second letter is also going to be between 1 and 26, the

http://www.clarionmag.com/cmag/v4/v4n12tries1.html (1 of 7) [03/01/2003 12:37:10 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=143
http://www.clarionmag.com/cmag/v4/v4n06sorts1.html
http://www.clarionmag.com/cmag/search.frm?formID=true&query=%2Bauthor%3Aneal%2B%2Btree

Data Structures and Algorithms Part XII - Trie This

same for the third, and so on. This naturally lends itself to a structure containing an array of 26.

Here is the definition of the Trie Structure:

nBranches EQUATE(27)
maxLen EQUATE(80)

dNode CLASS,TYPE
n ULONG(0)
s CSTRING(maxLen+1)
 END

bNode CLASS,TYPE
n ULONG(0)
p LONG(0),DIM(nBranches)
 END

root LONG(0)
currD &dNode
currB &bNode

The first thing to note about this structure is that there are two types of nodes, bNodes (branch
nodes) and dNodes (data nodes), and neither of them contains a reference variable. So how are
they being linked? When a new node is created, rather than storing the reference variable, I am
storing the address of the new node in the LONG variables. This is what allows me to use two
different types of node within the same structure.

In C/C++ I would have to cast the pointer types from one type of node to the other; in Clarion I
can just read the address and assign it to a reference variable as required. Note that both the
branch nodes and the data nodes contain the variable n, which means I can assign a branch
node to a data node type reference variable and still check to see whether n has a value. Thus,
I’ve used the n to identify whether a node should be a branch node or a data node (see Figure
1.).

Figure 1. A Trie with three words added.

With data nodes the n variable always contains the count of word occurrences, which will be at
least 1, as the node wont exist unless the word in question has occurred at least once. The

http://www.clarionmag.com/cmag/v4/v4n12tries1.html (2 of 7) [03/01/2003 12:37:10 PM]

Data Structures and Algorithms Part XII - Trie This

branch nodes will always be zero because they don’t contain any words.

Figure 1 shows how the Trie will look if the words "ANIMAL"," IMAGINE" and "IRATE"
are added to it. "ANIMAL" is the only word beginning with the letter A, so it has a data node
of its own. "IRATE" and "IMAGINE", however, both start with the letter I, so they require a
branch node for the I place keeper, and have a data node associated with their second letter M
and R.

So how did I do it?

She scores a Trie

The Trie class I have written (downloadable at the bottom of this article) includes the
following methods:

Method Description

Init Open the file to be read and insert words
into the Trie

Kill Dispose of the Trie

Inst Insert a word into the Trie

Search Search the Trie for a specific word

Pr Print the contents of the Trie

The init method is reasonably simple; it opens a data file and scans each line for legitimate
words (it treats all non-alphabetic characters as white space, and converts alphabetic characters
to upper case). On finding a word it calls the Inst (Insert) method, passing the word to be
added, the root of the Trie (a LONG, which is zero for the first word and after that the value
returned by Inst) and a position variable to mark the character in the string that is of concern
in this recurse, since Inst will be called recursively. The first time Inst is called for any
word, of course, the position should be 1.

Trie.inst PROCEDURE(*STRING s,LONG r,*ULONG m)
PP LONG(0)
q LONG(0)
t &DNode
p &BNode
j LONG(0)
i LONG(0)
 CODE

http://www.clarionmag.com/cmag/v4/v4n12tries1.html (3 of 7) [03/01/2003 12:37:10 PM]

Data Structures and Algorithms Part XII - Trie This

 pp = r
 q = pp
 IF q = 0 THEN RETURN SELF.NewNode(s).

 t &= (q)
 IF t.n > 0
 IF s = t.s
 t.n += 1
 RETURN q
 END
 pp = SELF.NewNode(' ')
 q = pp
 j = SELF.pos(t.s[m])
 p &= (q)
 p.p[j] = ADDRESS(t)
 END
 i = SELF.pos(s[m])
 m+=1
 p &= (q)
 p.p[i] = SELF.inst(s,p.p[i],m)
 q = pp
 RETURN q
!--
Trie.NewNode PROCEDURE(STRING s)
!--
 CODE
 IF s
 SELF.CurrD &= NEW(dNode)
? ASSERT(~SELF.CurrD &= NULL)
 SELF.CurrD.n = 1
 SELF.CurrD.s = s
 RETURN ADDRESS(SELF.CurrD)
 ELSE
 SELF.CurrB &= NEW(bNode)
? ASSERT(~SELF.CurrB &= NULL)
 SELF.CurrB.n = 0
 RETURN ADDRESS(SELF.CurrB)
 END
 RETURN 0

!--
Trie.pos PROCEDURE(STRING ch)
!--

 CODE
 IF ch
 RETURN val(ch[1]) - val('A') + 2
 END
 RETURN 1

Here’s what’s happening in the example shown in Figure 1. When I first add the word
"ANIMAL", the root is going to be equal to 0, as nothing has been added before, so the
NewNode method is called passing the word "ANIMAL" and returning the address of the data
node that is created. The Trie now looks like Figure 2.

http://www.clarionmag.com/cmag/v4/v4n12tries1.html (4 of 7) [03/01/2003 12:37:10 PM]

Data Structures and Algorithms Part XII - Trie This

Figure 2. The Trie with one word added

As there is only one word there is no requirement for a branch node to start with.

On the next word insertion, s is "IMAGINE", m is 1, and the root contains the address of the
node shown in Figure 2. This time q is not equal to zero as it now contains a memory address.
Now t is made to refer to the root node and a check is made to see whether the node is a data
node, or a branch node. Remember the branch node should always have an n value of 0, and a
data node will be at least 1.

T is a data node, but the string it holds does not match the string that I want to add to the Trie –
it is not a recurrence of the same word. If it were a recurrence then n would have been
incremented by one, and the method would have returned.

A new node is now created, and as a string is not passed the NewNode method creates a
branch node, which contains an array of LONGs. Q is then made to equal this new branch node,
as Q is now the new root node, the address of the old root node (see Figure 2) needs to be
stored in the appropriate position. The pos method provides this position in the array. Figure 3
shows how the Trie looks at this stage.

Figure 3. The Trie with two words added

The init method hasn’t finished yet, as it still has to add the word "IMAGINE" to the
structure. The appropriate position in the structure based on the first letter in the word "I" is
provided by a call to the pos method (10); then a recursive call is made to the inst method
passing "IMAGINE", the appropriate node in the structure (position 10 in the array), and m
which is now equal to 2.

In this call to the inst method, r is now 0, because position 10 in the array has had nothing
assigned to it yet, so a new data node is created with the word "IMAGINE" assigned to it, and
on returning to the original inst method, the node’s address is assigned to position 10 in the

http://www.clarionmag.com/cmag/v4/v4n12tries1.html (5 of 7) [03/01/2003 12:37:10 PM]

Data Structures and Algorithms Part XII - Trie This

array, giving Figure 4.

Figure 4. The Trie with two words added

Now I want to add the word "IRATE" to the structure. The inst method is called passing
"IRATE", the address of the root branch node, and m the string position holder (1).

This time through q does not equal 0, and the root node's n variable is not greater than 0 - as
with branch nodes, n is always equal to 0. The appropriate position of the first character in the
word "IRATE" (I = 10) is found, m is incremented to 2 (to signify that the next call will care
about the second letter of the word) and a recursive call is made to the inst method, passing the
Address of the tenth node in the array (the node containing the word "IMAGINE").

Again q is not equal to 0, but the n variable is greater than 0. The word to be added and the
word already stored do not match and so n is not incremented. Instead a call is made to the
NewNode method without passing a string, so that the address of a new branch node is
returned.

This new branch node will fill the position currently held by the data node containing the word
"IMAGINE," in the same way that the last branch node took the root position when the word
"IMAGINE" was first added. Remember how the data node containing the word "ANIMAL"
was then linked via address to the appropriate branch? This time the data node containing the
word "IMAGINE" is linked, and a new data node is added in a recursive call for the value
"IRATE". This finally gives the completed Trie, illustrated in Figure 4.

http://www.clarionmag.com/cmag/v4/v4n12tries1.html (6 of 7) [03/01/2003 12:37:10 PM]

Data Structures and Algorithms Part XII - Trie This

Figure 4. The Trie with all three words added.

Summary

The Trie data structure is on my list of fun things to do with words. It may seem overwhelming
at first with the two different types of node being linked together by address, but once it is
understood it is simplicity itself. The Trie, as I’ve mentioned, is extremely useful for ordering
words, counting recurrences of words in text, and for games such as boggle and Yahtzee.

In my next article I will cover the other Trie methods, including search, print and kill.

Download the source

Alison Neal has been using Clarion since 2000, whilst working for Asset Information Systems (AIS) in Auckland, New Zealand.

Some years ago (at the tender age of 19) Alison graduated from the Central Institute of Technology in Wellington, New Zealand

with a major in Cobol. She also has a BA in English literature and has studied Computer Science, Philosophy and Information

Systems. AIS is an independent division of Asset Forestry Ltd, and has a team of five programmers developing almost exclusively

in Clarion. AIS also offers web (ClarioNET) and email services for the customer who needs everything. The company has many

and varied customers bridging across a wide range of industries including Telecommunications, Forestry & Agriculture,

Manufacturers, Military & Government, Legal & Financial, and Retail.

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n12tries1.html (7 of 7) [03/01/2003 12:37:10 PM]

http://www.clarionmag.com/cmag/v4/files/v4n12tries.zip
mailto:alison@asset.co.nz
http://www.infosystems.co.nz/
http://www.clarionmag.com/cmag/comments.frm?articleID=11792
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Parsing Strings In ASCII Files

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Tips/Techniques > Tips & Techniques

Parsing Strings In ASCII Files

by Steven Parker

Published 2002-12-05

Konrad Byers’ recent article on a class for accessing and processing ASCII files really spoke
to me. I am constantly dealing with all manner of ASCII files, both fixed length (which his
class deals with) and delimited, in more varieties than Carter has little pills.

I support an application which uses a variety of ASCII files to import employee data into a
customer file (different payroll/personnel systems, different ASCII files). And for each import,
I have to declare a file layout and a NAME() variable. I have to make sure the variable is
declared in the right way and in the right place or I’ll get compiler or runtime errors. I have to
make sure the variable is initialized at the correct time. I have to check to see whether the file
is actually there (the import is run automatically as part of an end of day procedure so user
selection is not an option). "Etc., etc. and so forth."

All of this, just as Konrad observes in his article, is a royal pain in the keyboard.

Konrad’s class eliminates almost all of the work I need to do when reading and processing
these files. I just instantiate the class (create an object), create a variable (to contain a line of
text, i.e. the record read) and I’m off to the races.

I don’t have to worry about NAME(). I don’t have to do much error checking either; the class
handles it.

Following his example, all I have to do is put

Include(‘AnyAscii.inc’), ONCE

in the Global Data area of my application and

http://www.clarionmag.com/cmag/v4/v4n12parsing1.html (1 of 8) [03/01/2003 12:37:21 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=69
http://www.clarionmag.com/cmag/v4/v4n11anyascii.html

Parsing Strings In ASCII Files

InputFile AnyAsciiFileClass !instantiate
AsciiText CString(257) !"record"

in the data section of my procedure. Then, my processing code is literally straight out of the
article (okay, slightly modified for my coding style):

If InputFile.OpenFile('\incoming\data\giftshop.out')
 Return !there is an error, don't process
End
Loop While ~InputFile.Read(AsciiText)
 !make field assignments here
End
InputFile.CloseFile()

Konrad’s class covers it all. Except for one minor detail.

The file I am importing (to use a real example) looks like this:

IMPASCII File,Pre(IMP),Driver('ASCII''),Name(Pattern_)
Record Record
EmployeeID String(16)
BadgeNumber String(16)
LastName String(15)
Firstname String(15)
NotUsed String(15)
Balance String(10)
 End
 End

But the AnyAsciiFileClass only knows about a single string variable. I can’t very well
make field assignments to CUS:Number, CUS:BadgeNumber, CUS:LastName, etc.,
from a single 256 character field.

What I need to somehow do is to divide up the AsciiText variable. I need to divide it into
readily identifiable chunks, chunks that correspond to my file fields.

What I need to do is parse AsciiText into useable pieces.

Clarion provides three ways to parse strings: The SUB function, string slicing, and OVER
declarations. Let’s look at them.

Using SUB

SUB(string,position,length)

Supported since there was a Clarion, "The SUB procedure parses out a sub-string from a string
by returning length characters from the string, starting at position." SUB requires I know where

http://www.clarionmag.com/cmag/v4/v4n12parsing1.html (2 of 8) [03/01/2003 12:37:21 PM]

Parsing Strings In ASCII Files

I want to start reading (position) and how many characters I want to read (length). For a batch
import, this is fairly straightforward.

For the file structure above, my processing code would be:

CUS:Number = SUB(AsciiText,1,16)
CUS:Badge = SUB(AsciiText,17,16)
CUS:LastName = SUB(AsciiText,33,15)
CUS:FirstName = SUB(AsciiText(48,15)
CUS:Balance = SUB(AsciiText,78,10)

And if I count wrong? I laid this out on a coding sheet, the kind with numbered columns, and
still got it wrong twice.

SUB allows me to start from either end of the string. That means

CUS:Balance = SUB(AsciiText,-1,10)

is exactly the same, in this case, as

CUS:Balance = SUB(AsciiText,78,10)

and

SUB(AsciiText,-24,15) = SUB(AsciiText(48,15)

The docs tell me that SUB uses more memory (and, therefore, is slower) than string slicing:

String slicing (a.k.a. implicit arrays)

Starting sometime in the CDD3 cycle, all string variable types (Strings, CStrings and PStrings)
acquired an implicit array declaration. This means that

MyString String(20)

is identical to

MyString String(1),DIM(20)

That is, a string can also be addressed as if it were an array. In practice, this means that I can
read the first character of MyString with

MyString[1]

which is the same as SUB(MyString,1,1) or the fifth through eighth with

http://www.clarionmag.com/cmag/v4/v4n12parsing1.html (3 of 8) [03/01/2003 12:37:21 PM]

Parsing Strings In ASCII Files

MyString[5 : 8]

which is identical to

(SUB(MyString,5,3))

In the case of the file I am importing, I know that EmployeeID is the first field, therefore, it
begins at position 1. I know that it is 16 characters long. So I can get the customer number this
way:

CUS:Number = AsciiText[1 : 16]

I know that BadgeNumber begins immediately after EmployeeID, so it begins at position
17. It is 16 characters long, so it must end at position 32 (count 16 starting with 17). So, this is
the slice:

CUS:Badge = AsciiText[17 : 32]

And so forth. Note that I leave a space on either side of the colon. This is because constants,
variables and expressions may all be used in an implicit array (SUB also supports variables and
expressions). For example, in the following code, X contains everything from the beginning of
the string up to but not including the first pipe character:

X = MyString[1 : Instring(‘|’,MyString,1,1) - 1]

If a variable or expression is used, you must separate it from the colon with a space, or the
compiler may interpret the colon as part of a label. Because of the possibility of an error, I just
adopted the habit of always including the space whenever I slice strings.

The big drawback to string slicing (and this is documented) is that string slicing does no
bounds checking. If one of the implicit array elements in an expression is out of range, very
weird things are going to happen.

"Very weird" meaning you will not get a compiler error or warning. But you may see fairly
bizarre (and almost impossible to debug) behavior. (Yeah, I got the T shirt.)

The SUB function and string slicing do the same job and give the same results. But string
slicing is often more readable.

A really cool use for string slicing

When I look at the bar code on my pastrami wrapper, I see 200202 004632. But the last time I
bought pastrami, it was 200202 008674.

http://www.clarionmag.com/cmag/v4/v4n12parsing1.html (4 of 8) [03/01/2003 12:37:21 PM]

Parsing Strings In ASCII Files

Two UPC codes for the same product? I don’t think so.

The Uniform Commercial Code (UCC) includes a standard for random (or variable) weight
codes (see Guideline 11: Variable Measure (Includes Random Weight and Count)).

Under this standard, if the first character of a bar code is "2," the bar code is a random weight
bar code. The third through sixth characters are the "Price Lookup Unit" (i.e., an internal
inventory identifier assigned by the seller) and eight through 11 are the price.

If I were writing a POS application where barcode labels were produced by scales, I’d code my
price calculations this way:

IF EntryString[1] = '2' !random weight bar code
 INV:PLU = EntryString[3:6] !prime lookup
 Get(ABINVTRY,INV:PLUKey) !lookup from inventory
 If ~ErrorCode() !calculate quantity purchased
 EnteredQuantity = (EntryString[8:11]/100) / INV:UnitPrice
 Else
 Message('Item not found in inventory', |
 'Error',ICON:Hand)
 Return
 End
Else
 !standard inventory validation here
End

OVER (set shared memory location)

SUB is an old friend and most languages have a similar function. String slicing is (relatively)
new. But, OVERing a variable probably is not one of the things you think of when you think of
parsing strings.

Until Kurt Pawlikowski demonstrated it to me, I was among those who did not think of OVER
in connection with string parsing. Of course, I have the additional "advantage" of having a
long time mental block about this attribute.

OVER, as I vaguely recall, used to be described as a way of allowing two variables to use the
same memory. The current description in the Language Reference Manual is much more
helpful: "Allows one memory address to be referenced two different ways."

This, I understand. It is just like a Group structure, which allows you to refer to individual
fields, or all fields at once: multiple ways of referring to fields: "A GROUP structure allows
multiple variable declarations to be referenced by a single label."

Consider the example given in the docs:

http://www.clarionmag.com/cmag/v4/v4n12parsing1.html (5 of 8) [03/01/2003 12:37:21 PM]

http://www.uc-council.org/reflib/00810/02-TOC/02-06.html

Parsing Strings In ASCII Files

CustNote FILE,PRE(Csn) !Declare CustNote file
Notes MEMO(2000) !The memo field
Record RECORD
CustID LONG
 . .
CsnMemoRow STRING(10),DIM(200),OVER(Csn:Notes)

CsnMemoRow is the same as a set of 200 ten-character blocks laid end –to end. And, it begins
at the same place (in memory) that CSN:Notes begins. So, CSN:Notes[1 : 10] = (is
the same as CsnMemoRow[1]and CSN:Notes[21 : 30] = (is the same as)
CsnMemoRow[3]

(Actually, I’m not certain string slicing works on memos. At least in the past, I
have had trouble slicing memos. In cases where I needed to parse a memo, I
declared a string, of the same size, OVER the memo and sliced the string.)

Now, suppose I declare a GROUP and I declare it OVER the AsciiText variable from my
original ASCII record example. That means that the fields within the GROUP will contain
discrete parts of AsciiText (since a GROUP is, essentially, a string, a sort of super-string).
Suppose I create the fields within the group to match the format of the incoming file:

Incoming Group,PRE(INC),OVER(AsciiText)
EmployeeID String(16)
BadgeNumber String(16)
LastName String(15)
Firstname String(15)
NotUsed String(15)
Balance String(10)
 End

My processing code, then, becomes:

If InputFile.OpenFile('\incoming\data\giftshop.out')
 Return !there is an error, don't process
End
Loop While ~InputFile.Read(AsciiText)
 CUS:Number = INC:EmployeeID
 CUS:Badge = INC:BadgeNumber
 !Etc.
End
InputFile.CloseFile()

And this looks remarkably like my existing code. Very comforting, very. (See the demo app
for a real example.)

Recasting the random weight bar code example from above, I could have a local data
declaration like this:

http://www.clarionmag.com/cmag/v4/v4n12parsing1.html (6 of 8) [03/01/2003 12:37:21 PM]

Parsing Strings In ASCII Files

RanWeight Group,PRE(LOC),OVER(EntryString)
NotUsed String(2)
PLU String(4)
AlsoNotUsed String(2)
Price String(4)
WhoCares String(1)
 End

And my processing becomes:

IF EntryString[1] = '2' !random weight bar code
 INV:PLU = LOC:PLU !prime lookup
 Get(ABINVTRY,INV:PLUKey) !lookup from inventory
 If ~ErrorCode() !calculate quantity purchased
 EnteredQuantity = (LOC:Price/100) / INV:UnitPrice
 Else
 Message('Item not found in inventory', |
 'Error',ICON:Hand)
 Return
 End
Else
 !standard inventory validation here
End

I don’t know how the two approaches compare for efficiency - the tradeoff is the extra data
declaration(s) vs. whatever processing string slicing requires.) But the OVER approach
certainly is eminently readable.

Summary

For simple parsing needs, SUB and string slicing are fast and efficient. On the other hand,
OVER is not the first thing you would think of when parsing strings. But, as Kurt demonstrated
to me, when you need to do high speed, repetitive, sequential parsing ("batch processing"), it
fills the bill quite nicely, Quite nicely indeed and combined with Konrad’s classes, looks very
much like a "method of choice" in the making.

Download the source

Steve Parker started his professional life as a Philosopher but now tries to imitate a Clarion developer. He has been attempting to

subdue Clarion since 2007 (DOS, that is). He reports that, so far, Clarion is winning. Steve has been writing about Clarion since

1993.

http://www.clarionmag.com/cmag/v4/v4n12parsing1.html (7 of 8) [03/01/2003 12:37:21 PM]

http://www.clarionmag.com/cmag/v4/files/v4n12parsing1.zip
mailto:sparker@par2.com

Parsing Strings In ASCII Files

Reader Comments

Add a comment

Great article, I string slice memos all the time. It works...

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n12parsing1.html (8 of 8) [03/01/2003 12:37:21 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=11803
http://www.clarionmag.com/cmag/discuss.frm?articleID=11803&position=1
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Viewing An Excel Spreadsheet In A Clarion Browse

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Databases > SQL

Viewing An Excel Spreadsheet In A Clarion Browse

by Ayo Ogundahunsi

Published 2002-12-05

In my article – Migrating The Inventory Application To SQL Server, Part 4, I discussed
Linked Servers, and used a Linked Server to import a list of States from an Excel Spread sheet
into SQL Server. I want to do something different in this article. Using a Linked server, I will
view the Excel data in a Clarion Browse, without first importing the data into SQL server. This
is very simple, as you will soon find out.

There are five steps required to view an Excel spreadsheet in a Clarion browse: Set up the
spreadsheet; set up the Linked Server; create a view; import the view into Clarion; create the
Clarion browse.

Step 1: Setting up the Spreadsheet

In order to be able to access the cells in the spreadsheet, I need to define a range for the data I
need to view. In the sample Excel file, I have assigned the label MOVIE_LIST to the cell
range A1:H364 (see Figure 1).

http://www.clarionmag.com/cmag/v4/v4n12excel.html (1 of 5) [03/01/2003 12:38:09 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=131
http://www.clarionmag.com/cmag/topics.html?categoryid=131&subcategoryid=5
http://www.clarionmag.com/cmag/v4/v4n03converting.html

Viewing An Excel Spreadsheet In A Clarion Browse

Figure 1. Setting Range in Excel Spreadsheet

Step 2: Setting up the Linked Server

I won’t go into the detail of to seting up a Linked Server as I’ve done so in an earlier article.
The MS SQL script below will create a Linked Server to an Excel Spreadsheet located in:
C:\INVNTORY\MovieList1.xls.

sp_addlinkedserver N'MovieLExcel', N'Jet 4.0',
 N'Microsoft.Jet.OLEDB.4.0',
 N'C:\INVNTORY\MovieList1.xls', NULL, N'Excel 8.0'
GO
sp_addlinkedsrvlogin N'MovieLExcel', false, sa, N'ADMIN', NULL
GO

Copy this code into your Query Analyzer and execute it.

Step 3: Create a view

The next thing I need to do is create a SQL View. Copy, paste, and execute the script below to
create a View.

CREATE VIEW MOVIE_XLS as
SELECT MovieTitle, TitleCode,Cost,MovieDate
FROM MovieLExcel...MOVIE_LIST MOVIE_LIST1

http://www.clarionmag.com/cmag/v4/v4n12excel.html (2 of 5) [03/01/2003 12:38:09 PM]

http://www.clarionmag.com/cmag/v4/v4n03converting.html

Viewing An Excel Spreadsheet In A Clarion Browse

The View I created looks like Figure 2 when queried from the Enterprise Manager.

Figure 2. Querying created View

Step 4: Import the view into Clarion

Now that you can access the spreadsheet from a view, it is quite easy to put the spreadsheet
data into a browse. First, using the Clarion Synchronizer (or File|Import) you import the view
into the Clarion Dictionary.

While experimenting, I discovered that all fields are imported into Clarion as
CSTRING(256). So you can create the table manually if you don’t want to mess around with
the synchronizer. Just remember to use an external name that matches the name of the View
created in Step 3.

Here is what my file structure looks like:

MOVIE_XLS FILE,DRIVER('MSSQL'),|
 OWNER('MSSQL:ConnectionString'),|
 NAME('dbo.MOVIE_XLS'),PRE(MOV),|
 BINDABLE,THREAD
SK_MovieTitle KEY(MOV:MovieTitle),DUP,NOCASE,OPT
SK_Title_Code KEY(MOV:TitleCode),DUP,NOCASE,OPT
Record RECORD,PRE()

http://www.clarionmag.com/cmag/v4/v4n12excel.html (3 of 5) [03/01/2003 12:38:09 PM]

Viewing An Excel Spreadsheet In A Clarion Browse

MovieTitle CSTRING(256)
TitleCode CSTRING(256)
Cost CSTRING(256)
MovieDate CSTRING(256)
 END
 END

Step 5: Create a Browse.

Use the Browse template wizard to create a browse. Remember to make it view-only; do not
attach an update form. To update data coming from a linked server, you need to use an SQL
command like OPENQUERY. If you try to update the normal way, you will get an error.

Figure 3 shows what my created browse looks like, and it works just like any Clarion browse.

Figure 3. Browsing an Excel Spreadsheet

As you can see, it is easy to view an Excel spreadsheet using a Clarion browse. This goes for
any file structure that you add as a linked server, even a text file.

Ayo Ogundahunsi presently lives in Henderson, Nevada, about ten minutes from Las Vegas. He works for Impac Medical Systems

Inc., the leading company in cancer therapy software (written in Clarion). Impac has its headquarters in Mountain View,

California. Ayo is married to Ayodola, and they have two boys, Darren and Joshua.

http://www.clarionmag.com/cmag/v4/v4n12excel.html (4 of 5) [03/01/2003 12:38:09 PM]

mailto:ayodele@dolasoft.com
http://www.impac.com/
http://www.impac.com/

Viewing An Excel Spreadsheet In A Clarion Browse

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n12excel.html (5 of 5) [03/01/2003 12:38:09 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=11804
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Countdown To CLARION 6 Early Access Release

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics

Countdown To CLARION 6 Early Access Release

Published 2002-12-09

Welcome to the Clarion 6.0 Beta Watch. No, it's not something you wear on your wrist, but
you might want to check it just about as often. On this page Clarion Magazine will track all the
latest news on the upcoming Clarion 6.0 beta. Information is in date order, so the most recent
information is at the end of this document.

December 6, 2002: From a newsgroup posting by Bob Zaunere

Initial shipments of an Early Access (EA) release of Clarion 6 are expected to
begin during the week of December 16th. And yes, it will be Clarion 6 not 5.6, as
this release was deemed to have too many features for a dot release. All
documentation of the new features is being finalized and assembled into PDFs and
Help files, and when completed will be available on the SoftVelocity web site. The
EA program is not a mass beta - participation is limited, and the program is
targeted at third party developers and advanced developers who can provide
detailed bug reports.

The focus for the EA release is for compatibility testing, and as such we want
developers to focus on using and learning the new thread model, and testing of
existing applications.

To get an EA copy of Clarion 6, developers must purchase either an upgrade or
new license of Clarion 6. Pricing for Clarion 6 will remain the same as for Clarion
5.5 for both upgrades and new licenses.

Clarion 6 is substantially complete; however the initial release will not include all

http://www.clarionmag.com/cmag/v4/clarion6betawatch.html (1 of 5) [03/01/2003 12:38:16 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
news://news.softvelocity.com/3df11442$1@news.softvelocity.com

Countdown To CLARION 6 Early Access Release

of the new technology and components.

The initial release will include:

● Runtime libraries implementing the new thread model
● IDE with many productivity enhancements
● Updated ABC, Clarion and ADO Templates
● Other new templates
● Updated ABC libraries
● XML class and parser support
● Updated drivers implementing the new thread model, and many

enhancements
● New ADO support
● Support for XP manifests
● Completely rewritten 32bit Help file
● Documentation of new features in PDF format.

Evidently there are some other goodies to follow. EA participants will have access
to a private forum. There will also be live chat sessions with SV developers and
product managers, and online training material covering aspects of the new
thread model, and other topics made available at no additional cost. Contact
SoftVelocity if you wish to participate in the EA program.

SoftVelocity, Inc.
2769 East Atlantic Boulevard
Pompano Beach, FL 33062
Phone: 954-785-4555
Sales : 877-733-4555
Fax : 954-946-1650

Sales: sales@softvelocity.com
General Information : info@softvelocity.com

December 7, 2002: From a newsgroup posting by Bob Zaunere

Overseas customers can contact their local distributor. All distributors can deliver
for the EA program.

December 7, 2002: From a newsgroup posting by Bob Zaunere

http://www.clarionmag.com/cmag/v4/clarion6betawatch.html (2 of 5) [03/01/2003 12:38:16 PM]

news://news.softvelocity.com/3df212a5@news.softvelocity.com
news://news.softvelocity.com/3df3aeb7$1@news.softvelocity.com

Countdown To CLARION 6 Early Access Release

Mouse wheel support is in the RTL, so the mouse wheel works for either template
chain, or without any template.

General release is expected in Q1 2003.

Support for XP Manifests is provided in the project system to link in a manifest
resource. Bob says he hasn’t seen any shading issues with Message() dialogs.

December 8, 2002: From a newsgroup posting by Bob Zaunere

The documentation is being completed, and will be posted before the EA release
ships. The documentation is a work in progress, so as time progresses there will be
additional materials, and updates to initial documentation.

December 9, 2002: From a newsgroup posting by Bob Zaunere

The EA release for C6 is targeted at compatibility testing of the platform, and to
identify and resolve any migration issues. As such it won't include all new
features, and you should not request access for the purpose of looking at new
features.

December 9, 2002: From a newsgroup posting by Bob Brooker

SoftVelocity is monitoring the EA participation requests and will close entrance
into the program when (or presumably before – ed.) the number becomes
unmanageable.

December 9, 2002: Upgrade Price

Upgrading Clarion 5.5 Enterprise Edition to Clarion 6 Enterprise Edition:
US$799

Upgrading Clarion 5.5 Enterprise or Professional Edition to Clarion 6
Professional Edition: US$350

http://www.clarionmag.com/cmag/v4/clarion6betawatch.html (3 of 5) [03/01/2003 12:38:16 PM]

news://news.softvelocity.com/3df212a5@news.softvelocity.com
news://news.softvelocity.com/3df4aa58$4@news.softvelocity.com
news://news.softvelocity.com/3df4d02c$1@news.softvelocity.com

Countdown To CLARION 6 Early Access Release

December 9, 2002: From a newsgroup posting by Scott Ferrett

In the 16bit C6 IDE you can press Alt-F2 on any entry control and get an entry
dialog.

December 10, 2002: From a newsgroup posting by Bob Brooker

"The final feature set of Clarion 6 has not been established yet... not all subsystems
are scheduled to be included in the EA, it is primarily for platform, migration and
compatibility testing. It is not [SoftVelocity's] intent to provide the EA program as
a mechanism to get a "sneak peak" at new features. Specific features intended for
Clarion 6 when it ships will be discussed in [SoftVelocity's] newsletters, website
and product specification sheets."

December 10, 2002: From a newsgroup posting by Bob Brooker

"[SoftVelocity has] not stated that Clarion 6 user interface controls are fully XP
"themeable"… Clarion 6 has XP manifest support and works within the parameters
of that support."

December 10, 2002: From a newsgroup posting by Bob Brooker

"There are some minor template changes required [to make Clarion/ASP
compatible with Clarion 6] and there will be an update
for the Clarion/ASP template set prior/concurrent to Clarion 6 being released. The
templates work with Clarion 6 as they do in Clarion 5.5."

Reader Comments

Add a comment

http://www.clarionmag.com/cmag/v4/clarion6betawatch.html (4 of 5) [03/01/2003 12:38:16 PM]

news://news.softvelocity.com/VA.000009f2.01cf3685@yahoo.com.remove.this
news://news.softvelocity.com/3df5e951@news.softvelocity.com
news://news.softvelocity.com/3df5e51c$1@news.softvelocity.com
news://news.softvelocity.com/3df74bfb@news.softvelocity.com
http://www.clarionmag.com/cmag/comments.frm?articleID=11808

Countdown To CLARION 6 Early Access Release

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/clarion6betawatch.html (5 of 5) [03/01/2003 12:38:16 PM]

http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Clarion News

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > News > ClarionMag 2001 News

Clarion News

Published 2001-11-21

SealSoft xAnalogClock 1.2
xAnalogClock v1.2 is now available. This is a bugfix release. A new demo and install are now
available. The new Install Kits password will be emailed to registered users.
Posted Friday, December 20, 2002

Clarion 6 EA Program Now Full
According to the Netherlands Clarion distributor, the Clarion 6.0 Early Access Program is now
full, and no more applications are being accepted.
Posted Friday, December 20, 2002

Another RADrace Victory For Clarion!
The star-race-team of RADventure, Erik Pepping and Peter Rakke, has succeeded in winning
the prestigious RADrace two years in a row, an unprecedented accomplishment. They used
Clarion 5.5 Enterprise Edition in combination with RADventure tools. The RADrace is an
yearly event where teams of developers compete to complete as much as possible of a real life
business case application within a very limited timeframe (2 business days). Part of the
challenge is the inevitable change-of-mind of the customer requirements at a very late stage.
This years assignment was a European museum ticket and access program; requirements
included business rules, email and a web access interface.
Posted Friday, December 20, 2002

File Manager 3 Beta 9a
CapeSoft's File Manager 3 beta 9a is now available for download. ODBC users will be pleased
to know that there is now "first release" support for MySQL and Oracle through ODBC. Please
send your comments, suggestions, queries, and bug reports to fm3@capesoft.com.
Posted Friday, December 20, 2002

http://www.clarionmag.com/cmag/news.html?year=2002&month=12&limit=100& (1 of 7) [03/01/2003 12:38:27 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=129
http://www.clarionmag.com/cmag/topics.html?categoryid=129&subcategoryid=140
http://www.seal-soft.com/cgi-bin/ps_view.pl?id=products&comm=xaclock
http://radventure.e-bs.nl/english/nieuws-item.php?ID=30&UID=20021218172955207.89.142.172
http://radventure.e-bs.nl/english
http://www.capesoft.com/fm3d.htm.

Clarion News

New ImageEx 2 Demo
A new demo of ImageEx2 is now available. This version includes an animated rotating cube
and a box-cover editor.
Posted Friday, December 20, 2002

ConVic 2003
Yes, there will be another ConVic this year. ConVic 2003, an Australian Clarion developers'
conference, will be held in Geelong, Victoria, March 28-30, 2003. The conference will be
accompanied by a two-day training course titled Using Clarion for Client/Server Database
Development.
Posted Friday, December 20, 2002

CPCS Christmas Schedule
CPCS will be closed for Christmas from Sat. Dec. 21, 2002 till Sun. Dec. 29, 2002. All email
and newsgroup messages received during that period will be handled as soon as possible after
Dec. 29, 2002.
Posted Monday, December 16, 2002

SealSoft New Year Discount
SealSoft is offering a New Year's discount on all products purchased from December 15, 2002
till January 7, 2003. The discount is equal to 20% + discount by personal discount card.
Posted Monday, December 16, 2002

wPDFControl Wrapper
A Clarion wrapper for the wPDFControl DLL from wpcubed GmbH (www.wpcubed.com) is
now available from Klarisoft. The wPDFControl DLL lets you create full featured PDF files
directly from Clarion application. Built in WMF support means you can save Clarion reports
directly to PDF files. The DLL also supports direct drawing to PDF file, graphic primitives,
true type fonts, images, bookmarks, outlines, hyperlinks, password protecting, and
compression. No need for the ActiveX registration as the wrapper works directly with the
DLL. A trial version of the wPDFControl DLL is available from www.wpcubed.com. The
wrapper is available as a source or compiled DLL version and works with both Legacy and
ABC template chains.
Posted Monday, December 16, 2002

New Icetips Bulletin Board
IceTips has set up a new bulletin board. The old board is now closed and all old messages have
been removed. The IceTips board is a service for all Clarion developers, and IceTips will also
use it to communicate with beta testers in the future rather than by email.
Posted Monday, December 16, 2002

http://www.clarionmag.com/cmag/news.html?year=2002&month=12&limit=100& (2 of 7) [03/01/2003 12:38:27 PM]

http://www.solidsoftware.de/
http://www.convic.org/
http://www.cpcs-inc.com/
http://www.sealsoft.com/
http://www.klarisoft.com/
http://www.icetips.com/bboard/index.php

Clarion News

Clarion Template/API Forum
Roel Abspoel is setting up a forum with template and API downloads for Clarion. The forum is
free. Mainly it is a place where Roel keeps some references, but feel free to post your own
templates and API info if you like.
Posted Monday, December 16, 2002

Clarion Source Code For Sale
Tiger Programs is offering the Tiger SIR application's source code for sale. This application is
designed to run with a PC with touch screen and Pocket PC's. It's fully supported by Clarion 5
and 5.5 using the Terminal Server services of the Pocket PC. This sale is contingent on a
minimum of 50 buyers. The total cost of the application with all current versions is US$1,600
Posted Monday, December 16, 2002

Clarionfoundry Open To Public Again
You no longer need a login and password to access Clarionfoundry. There is also a new
section in Clarionfoundry called Clarion6, which will be addressing the various deployment,
conversion, new features etc.
Posted Monday, December 16, 2002

IceTips December Newsletter
The IceTips December newsletter is now available. It is completely free and has information
about current IceTips projects, Clarion 6 compatible upgrades, and some technical tips as well.
Posted Monday, December 16, 2002

Icetips Holiday Specials
Icetips Software is running a 25% special Holiday Sales on selected items, the Icetips
Previewer, Icetips Magic Buttons and Icetips Magic Entries. Icetips Previewer, now $149, save
$50; Icetips Magic Buttons, now $59, save $20; Icetips Magic Entries, now $59, save $20;
Icetips Magic Bundle, now $93, save $32. Purchase the Previewer and the Magic bundle for
$242 and save $82. Upgrades to Clarion 6 compatible versions are free of charge.
Posted Monday, December 16, 2002

Possible Florida UG Conference
Please let Mark Goldberg know if you would be interested in attending a Clarion Developers
Meeting in Orlando. This event is currently in the early planning stage, and would be for
members of all Florida Clarion User Group members, although anyone may participate. To
make this easier for all, the event would be held at the Orlando Airport hotel (site of one of the
Devcons in the past), possibly in February 2003. The initial idea is to hold this on a
Friday/Saturday type deal, with a nice social meet and greet dinner after the first day. Then
Saturday will be about a half day (maybe a full one).
Posted Monday, December 16, 2002

http://www.clarionmag.com/cmag/news.html?year=2002&month=12&limit=100& (3 of 7) [03/01/2003 12:38:27 PM]

http://www.abspoel.com/forum/index.php?c=6
http://www.tigerprograms.com/
http://www.clarionfoundry.com/
http://www.icetips.com/newsletters/december2002.htm
http://www.icetips.com/
mailto:FLUG@MonolithCC.com

Clarion News

ImageEx2 Beta 3
Beta 3 of ImageEx 2 is now available. The installation password has not changed, so please
use the one that was sent to you on purchase. New features include: Clickable hotspots
(rectangles, ellipses & polygons) for the viewer control; Screen capture functions for capturing
the entire desktop, single windows or rectangles; Improved PictureDialog. See the online
documentation for a complete list of changes. A new demo is also available. This will be the
last beta version of ImageEx, so this might be your last chance to save $50 on purchase, as the
price will go up to $199 with the gold release.
Posted Monday, December 16, 2002

S.C.A. Micro Legacy Templates
As requested, there is a new template set for Clarion/Legacy templates Pricing is the same as
the ABC templates: $15. You can buy both for $22.50.
Posted Monday, December 16, 2002

ClarionPost Reopens
After a few months of restructuring, www.clarionpost.com is again open. ClarionPost.com
provides all the third party Clarion developers a centralized location to enter their links
Posted Monday, December 16, 2002

Last Chance For List & Label Discount
Combit have said the new version of List & Label (version 9) will be released next
Wednesday. Orders taken before then for either upgrades or new licenses will be discounted by
$50. Simon Burrows also reports that the RTF object that is in the layout designer is available
as a separate control, so you 'should' be able to include this as a separate RTF control within
your Clarion app.
Posted Friday, December 06, 2002

Simsoft Christmas Stocking - Save $58US
Until the end of December 2002 you can now obtain the Simsoft Christmas Stocking for just
109$US. The stocking is filled with: Simsoft Templates (normal price $69US); Simshape
Templates (normal price $49US); Simpad Templates (normal price $49US). Existing users can
upgrade from existing bundles for the difference in price.
Posted Friday, December 06, 2002

International Clarion Meetup Day
The first International Clarion Meetup Day will be January, 14th at 7:00pm local time
everywhere. Meetup creates real-world group gatherings for almost 80,000 people right now,
about anything anywhere. Meetup has built a technology and a network of venues (cafes, bars,

http://www.clarionmag.com/cmag/news.html?year=2002&month=12&limit=100& (4 of 7) [03/01/2003 12:38:27 PM]

http://www.solidsoftware.de/
http://sca.com.mx/clarion/
http://www.clarionpost.com/
http://www.combit.com/
http://www.simsoft.co.za/
http://clarion.meetup.com/

Clarion News

etc.) that can help any interest group easily organize local monthly meetups in over 530 cities
across 27 countries.
Posted Friday, December 06, 2002

Save 10% On Image Man OCX
Data Techniques is offering a 10% discount on their ImageMan controls. These are the
imaging controls that The Nextage ImageMan templates are built around.
Posted Wednesday, December 04, 2002

RInstall V1.f (Beta) Update
The RInstall template and application version 1.f (Beta) has been updated. This release allows
you to disable certain API calls which can cause a clash with other templates calling the same
API calls.
Posted Wednesday, December 04, 2002

INN Bio & News for 3-Dec-2002
This week, the Icetips News Network is pleased to feature a rather well-known Clarion
programmer who claims "I don't do software development". Riiiight... he also says, "data is
executed policy and therefore the definition of data is the essence of corporate policy".
Hmmm. Well, don't think it's all serious, Gramps manages to make fun of quite a few things
along the way, including Arnor's hairline.
Posted Wednesday, December 04, 2002

Clarion Handy Tools Newsgroup Server
On December 2, 2002 The Clarion Handy Tools Page released its O7B2.0 build to subscribers.
This build includes significant advancements in a number of areas such as SMTP email,
Browser Server, SQL support, Encryption and Compression support and more. This is a "pre-
final" version of the O7B2.0 build because it was released a couple of weeks ahead of the
scheduled Dec 15th date. Final "What's New" docs for the build will be posted in the form of
an update on or about Dec 15th. One of the example applications included with the O7B2.0
build kit is a full-fledged newsgroup server built with Clarion and The Clarion Handy Tools.
You can use it as the starting point for your own newsgroup server, since the source
application is available in your tool kit. This server is running and available for CHT support.
The on-line help explains how to set up a desktop icon that gives you instant access to the
latest messages using an auto-login string.
Posted Wednesday, December 04, 2002

Shapemaker SMX
Logic*Central has released Shapemaker SMX, an new product that applies the Shapemaker
technology to buttons. You can design your button with the SMX Designer (like the
Shapemaker Polydesigner) and compile it in Clarion. It is not an OCX, but all-Clarion code

http://www.clarionmag.com/cmag/news.html?year=2002&month=12&limit=100& (5 of 7) [03/01/2003 12:38:27 PM]

http://www.componentsource.com/BuyComponents/ProductCatalog/ProductPage.asp?Browse=Y&Key=0&ProductOptions=1623_64X1624_56X
http://www.riebens.co.za/Downloads/RInstalle.zip
http://www.icetips.com/
http://www.cwhandy.com/
http://www.logicentral.com/

Clarion News

with these features among others: ButtonColor; Text; Icons; Alignment; Text and Icon effects;
Text Styles; Text fonts. Template and SMX designer will be ready for sale at the end of the
year or in the first week in January 2003.
Posted Wednesday, December 04, 2002

Subject: Nextage Imaging Update
New versions of both the Imagining Templates and the ImageMan Templates are now
available. Changes include: Bug fix for compile problems if you do not populate the thumbnail
template in your application; Bug fix for a problem with print procedure control not including
the include file; ADF scanning bug fix.
Posted Wednesday, December 04, 2002

xFText v2.0 Released
xFText 2.0 is now available. This is the advanced version, with changes to the templates and
class methods. There is no black box DLL - everything is Clarion code and WinAPI calls.
Supports single exe, multi Dll (Local Mode, Standalone Mode), 32-bit. Features include:; Set
global margins for text; Set all attributes of font. Name, size, style, color, charset; Write text
into any place of Frame. Left-Top, Center-Top, Right-Center etc.; Set "Normal", "Light" and
"Dark" color of text for 3D text imitation; Set offset for X- and Y-position; Set offset for
LightColor and DarkColor for 3D texts; Add, change and remove frame text in runtime; Add
bitmap image on Frame; Set all parameters via variables. New demo and install kit available.
Attention registered users - install password was changed and will be sent to you via email.
Posted Wednesday, December 04, 2002

DOS Printer v7.4
David Beggs has released DOS Printer 7.4. This utility sits in the system tray waiting for a
specified file (wildcards ok) to exist. When that file exists, DOS Printer converts it to a
windows report format and prints it to any Windows printer or printer driver you like. You can
also pick a file and print it. DOS Printer can also email the file (including its formatting), or
print it to a fax driver, PDF maker or any other sort of Windows printer driver. Price
$US19.99. Developer (i.e. distribution) licensing available on request.
Posted Wednesday, December 04, 2002

BigTamer Update
A new release of the BigTamer templates, with new pricing, is now available.
Posted Wednesday, December 04, 2002

ZipApp Free Backup Program
This free utility from Darron Pitman does recursive zips of your development files, creating
new zips each time rather than overwriting.
Posted Wednesday, December 04, 2002

http://www.clarionmag.com/cmag/news.html?year=2002&month=12&limit=100& (6 of 7) [03/01/2003 12:38:27 PM]

http://www.thenextage.com/tools.htm
http://www.seal-soft.com/cgi-bin/ps_view.pl?id=products&comm=xftext
http://dosprint.tripod.com/
http://www.kwiksystems.com/clarion.htm
http://www.mcs.org.uk/ZipApp.htm

Clarion News

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/news.html?year=2002&month=12&limit=100& (7 of 7) [03/01/2003 12:38:27 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=10979
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Data Structures and Algorithms Part XIII - Trie Hard

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics

Data Structures and Algorithms Part XIII - Trie Hard

by Alison Neal

Published 2002-12-19

In my last article I introduced a data structure called the Trie, which is used for storing strings
in computer memory. In this article I will continue my discussion of the Trie, and cover some
of the other methods that are contained in the Trie class, namely the Search, Pr (print) and
Kill methods.

The Search Method

Below is the code I have written for the Search method:

Trie.Search PROCEDURE(*STRING s)
ch STRING(1)
m ULONG(1)
i ULONG(0)
q &bNode
t &dNode
r LONG(0)
 CODE

 IF SELF.root = 0 THEN RETURN FALSE.

 r = SELF.root

 LOOP WHILE r <> 0 AND m <= LEN(CLIP(s))
 q &= (r)
 IF q.n <> 0 THEN BREAK.
 ch = UPPER(s[m])
 m+=1
 i = SELF.pos(ch)
 IF i < 1 OR i > nBranches THEN RETURN FALSE.
 r = q.p[i]
 END
 IF r = 0 THEN RETURN FALSE.

http://www.clarionmag.com/cmag/v4/v4n12tries2.html (1 of 5) [03/01/2003 12:38:34 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html

Data Structures and Algorithms Part XIII - Trie Hard

 t &= (r)
 RETURN CHOOSE(CLIP(t.s) = CLIP(UPPER(s)), TRUE, FALSE)

The purpose of the Search method is to only tell me whether a word exists in the Trie structure
by returning either true or false. Looking at the example from the previous article (Figure 1.)
let’s assume that I want to find the word "IMAGINE".

Figure 1. The trie from Part 1.

If there was nothing in the Trie, and the root (LONG) was still zero – i.e. didn’t contain a
memory address - then the Search method would automatically return false. However this is
not the case in this example, so r is made to equal the root which contains the memory address
for the root Branch Node.

The structure is then looped through, until such a stage as r no longer contains a valid memory
address, or the string character position keeper (m) is higher than the length of the string. Next,
q is made to refer to the node whose memory address is stored in r (the root to start). Since the
n variable tells me whether the node type is a Branch Node (bNode) or Data Node (dNode), a
check is made to ensure that the current node is a Branch Node, that is that the n value is equal
to zero. If it is not, then the search has reached the lowest point in the structure that it can go to
and must break out of the loop. In this example the root node does have an n value of zero,
because it is a Branch Node.

At this stage the first character of the search string is analysed to find out where in the array
the process should look next. The search string is "IMAGINE", its first character is "I", and
therefore the position in the array that the process should look to is 10. I = 10, which is not
less than one, and not greater then the nBranches equate. This check makes sure that the
search doesn’t overrun the bounds of the array, which is defined to the size of the number of
letters in the alphabet.

Now r is made to equal the memory address that is stored in the 10th position of the array, and
the loop cycles. If nothing were stored in this position then the loop would terminate, as r
would equal 0. In the example this memory address refers to a second Branch Node, as shown

http://www.clarionmag.com/cmag/v4/v4n12tries2.html (2 of 5) [03/01/2003 12:38:34 PM]

Data Structures and Algorithms Part XIII - Trie Hard

in Figure 1.

This time through the loop n still equals 0, as this is a Branch Node, and the second letter in the
search string is "M", which is position 14 in the array. So r now holds the memory address of
the Data Node containing the word "IMAGINE".

In the next iteration the n value is 1, and therefore the process breaks out of the loop. A check
is made directly after the loop to make sure that the process hasn’t reached a natural end,
meaning r equals 0 and therefore does not contain a memory address. If this were the case
then false would be returned.

As r does not equal zero it must be assumed that the node presented must contain a string, and
that string is the closest match to the word being searched for in the Trie. If the strings are a
complete match then the process returns true, otherwise false.

This is a very simple search function, which could be expanded on quite significantly. For
example, a useful search function could return a list of all words that start with the letters
passed to it, or it could return a list of words that the search term closely (like a spell checker).

The Pr Method

Here is the code I have written for the print method:

Trie.pr PROCEDURE()
 CODE
 CREATE(ExportFile)
 OPEN(ExportFile)
? ASSERT(~ERRORCODE())
 SELF.prnt(SELF.root)
 CLOSE(ExportFile)
Trie.prnt PROCEDURE(LONG r)
i ULONG
t &dNode
q &bNode
 CODE
 IF r
 t &= (r)
 IF t.n
 Exp:Line = t.n &' ' &t.s
 ADD(ExportFile)
 ELSE
 q &= (r)
 LOOP i = 1 TO nBranches
 IF q.p[i] THEN SELF.prnt(q.p[i]).
 END
 END
 END

http://www.clarionmag.com/cmag/v4/v4n12tries2.html (3 of 5) [03/01/2003 12:38:34 PM]

Data Structures and Algorithms Part XIII - Trie Hard

The Pr method, like the Search method, traverses the Trie, but unlike the Search method it
visits every Node. Here’s how the code works, using the example given in Figure 1.

The pr method creates and opens the export file and then calls the prnt method, passing the
memory address stored in the root. As the root does contain a memory address, t is made to
reference that node. A check is then performed to see what type of node this is. In this instance
it is a branch node, so q (bNode type) is made to refer to the node, and each of the array
elements are looked at. In the example, position one contains nothing, so on the first recurse
nothing happens. The check is made for r – the memory address – and as this is zero, the
procedure just ends without doing anything and returns to the original calling instance of the
prnt procedure.

Position two contains the address of the data node containing the string "ANIMAL", so on the
second recurse t.n is true, and thus the word and the count (n) of the word occurrences are
added to the export file. The procedure then returns to the original caller, and the loop
continues making a recursive call each time and passing a zero value, until reaching the tenth
position, which contains the memory address for the second branch node.

As r is not zero and n is zero, the loop is executed once more, this time looping through the
second branch node. On reaching positions 14 and 19, the code adds "IMAGINE" and
"IRATE" to the export file. The loop then continues to the last position, and the procedure
terminates, returning to the loop of the original branch node. The first loop then continues to
the end of the array, with nothing more to add to the export file and the procedure terminates
successfully.

The Kill Method

The code I have written for the Kill method is as follows:

Trie.Kill PROCEDURE()
 CODE
 SELF.rem(SELF.root)
Trie.rem PROCEDURE(LONG r)
t &dNode
q &bNode
i ULONG(0)
 CODE
 IF r
 t &= (r)
 IF t.n = 0
 q &= (r)
 LOOP i = 1 TO nBranches
 IF q.p[i] THEN SELF.rem(q.p[i]).
 END
 END
 DISPOSE(t)

http://www.clarionmag.com/cmag/v4/v4n12tries2.html (4 of 5) [03/01/2003 12:38:34 PM]

Data Structures and Algorithms Part XIII - Trie Hard

 END

The Kill method, like the Pr method, traverses the Trie, visiting every node in the structure.
This method works in a very similar way to the Pr method inasmuch as it checks to see if a
node is valid, then determines what type of node it is. If the node is a branch node type, then
the procedure loops through the array and makes a recursive call, passing the value stored in
the array position as the next node of relevance. If the branch node has already been checked,
or the node is a data node, then it will DISPOSE of the current node.

Summary

The methods associated with the Trie structure could be expanded extensively to perform some
really useful functions. For instance, with a little modification the Search method can return all
words that contain specific letters, or are made up of particular letters. In this way the Trie can
be used as a spell checker, to return those words, which are similar to the word to be checked.
Its uses are countless. The most common use of a type of Trie is in Huffman’s file compression
algorithm. This algorithm however also requires the use of a structure known as the Priority
Queue, so in my next article I will provide some insight into what a Queue actually is, and how
it’s supposed to work. That will lay the groundwork for the Priority Queue structure, and
Huffman’s file compression algorithm.

Alison Neal has been using Clarion since 2000, whilst working for Asset Information Systems (AIS) in Auckland, New Zealand.

Some years ago (at the tender age of 19) Alison graduated from the Central Institute of Technology in Wellington, New Zealand

with a major in Cobol. She also has a BA in English literature and has studied Computer Science, Philosophy and Information

Systems. AIS is an independent division of Asset Forestry Ltd, and has a team of five programmers developing almost exclusively

in Clarion. AIS also offers web (ClarioNET) and email services for the customer who needs everything. The company has many

and varied customers bridging across a wide range of industries including Telecommunications, Forestry & Agriculture,

Manufacturers, Military & Government, Legal & Financial, and Retail.

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n12tries2.html (5 of 5) [03/01/2003 12:38:34 PM]

mailto:alison@asset.co.nz
http://www.infosystems.co.nz/
http://www.clarionmag.com/cmag/comments.frm?articleID=11824
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 1)

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Tips/Techniques > Clarion Language

DNA for Clarion: Manipulating Browse Cells With A VLBPROC
(Part 1)

by Stephen Bottomley

Published 2002-12-19

It seems there has been an increased interest in virtual list boxes, what they can be used for,
how to use them and how to create a template for them. While this article won’t be the
definitive answer, I hope it will help answer a few of those questions and give you some idea
as to whether a virtual list box might be of use to you.

What is a Virtual List Box?

A virtual list box is a mechanism whereby you can communicate with a list control without
using a queue. Unlike using the physical structure of the queue to define and store data and
property information a virtual list box uses a callback function to virtualize or mimic the
functionality of the queue to determine how many rows and columns to display and the data
and property information to be shown in each cell.

How does it work?

First you populate a list box control on the window, the FROM attribute is optional depending
on how you will use the virtual list. Then you will use the two runtime properties
PROP:VLBval and PROP:VLBproc to tell the list box the address of the class that it will be
using to supply information in place of a queue (PROP:VLBval) and the address of the
callback function (which will actually be a method of the PROP:VLBval class) that it will
call to mimic the information usually supplied by a queue(PROP:VLBproc).

Once PROP:VLBval and PROP:VLBproc have been assigned, any queue used in the FROM
attribute will be ignored. The list box will only call the VLBPROC to request the different types
of information, number of rows, number of columns, is there a need to change the data

http://www.clarionmag.com/cmag/v4/v4n12vlb1.html (1 of 9) [03/01/2003 12:38:47 PM]

http://www.clarionmag.com/
http://www.developerplus.com/
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=143

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 1)

currently displayed, and lastly, for each cell, what data should be displayed.

The warning

While not VLBPROC specific it should be noted that in versions prior to C5.5E there was a bug
that if the program changed PROPLIST:Color or other properties that require queue field(s)
(which implicitly includes calls to a VLBPROC for those fields) for storing values at run time
for (<not last> and <not first>) column, the RTL builds the temporary format string
incorrectly.

The basics

What you need is a class that will fulfill all the requirements of a virtual list box but it should
also be designed in such a way as to be useful for different purposes, a base class. Let’s take a
look at how this might be constructed.

JtCmDnaClass CLASS,TYPE
Feq SIGNED,PROTECTED
Window &Window
Changed PROCEDURE,BYTE,VIRTUAL
Cols PROCEDURE,SHORT,VIRTUAL
Init PROCEDURE(WINDOW w,SIGNED Feq)
Rows PROCEDURE,LONG,VIRTUAL
Splice PROCEDURE(LONG Row,SHORT Col),STRING,VIRTUAL
VlbProc PROCEDURE(LONG Row,SHORT Col),STRING,PRIVATE
 END

As you can see, we have defined a base class. In it’s own right it won’t do a great deal but
creates the platform from which the contents of each cell in your list box can be manipulated.
The base class contains a holder for the list boxes Field Equate (FEQ), a reference to the
window that the list box is on(Window), an Init method and a generic VLBPROC callback
method. The other four methods are all virtual and will be used by any derived class to do the
actual work of defining list box properties and the makeup of the cells.

Initialization

The Init method handles both the initialization of the two class properties as well as setting
the two list box properties with the required information it needs in order to become a virtual
list box. The VLBPROC method calls the appropriate virtual method in response to the value of
the Row parameter. –1 for the number of rows the list contains, -2 for the number of columns, -
3 to let the list box know if anything has changed and the list should be re-filled. Anything else
in the Row parameter indicates that you should return the actual data to splice into the cell at
the row and column numbers specified in the parameters.

JtCmDnaClass.Init PROCEDURE(WINDOW w,SIGNED Feq)

http://www.clarionmag.com/cmag/v4/v4n12vlb1.html (2 of 9) [03/01/2003 12:38:47 PM]

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 1)

 CODE
 SELF.Feq = Feq
 SELF.Window &= w
 SELF.Window $ SELF.Feq{PROP:VLBval} = address(SELF)
 SELF.Window $ SELF.Feq{PROP:VLBproc} = address(SELF.VLBproc)
JtCmDnaClass.VlbProc PROCEDURE(LONG Row,SHORT Col)
 CODE
 case row
 of -1
 return SELF.Rows()
 of -2
 return SELF.Cols()
 OF -3
 return SELF.Changed()
 else
 return SELF.Splice(Row,Col)
 end

To complete the base class the default code for the four virtual methods needs to be filled in:

JtCmDnaClass.Changed PROCEDURE
 CODE
 return 0
JtCmDnaClass.Cols PROCEDURE
 CODE
 return 0
JtDnaClass.Rows PROCEDURE
 CODE
 return 0
JtCmDnaClass.Splice PROCEDURE(LONG Row,SHORT Col)
 CODE
 return('')

What now?

Now you need to find a use for a virtual list box that either can’t be better handled by a queue
or, a list box that is currently handled by a queue but could gain some benefit from additional
information.

One idea springs to mind. That is to make a single class that can extend the display properties
of list boxes created using different types of browse templates (a mix of standard, legacy
and/or third party browse templates)

Gene Modification 101: Let’s build a Zebra

Like Virtual List Boxes, another subject that comes up from time to time in the news groups is
the ability to greenbar a browse. Greenbarring is where each line of a list alternates between
two colour sets in a Zebra stripe effect (see Figure 1). I’ve created a template-based solution
that is freely available from my website but there are two major drawback with the template-

http://www.clarionmag.com/cmag/v4/v4n12vlb1.html (3 of 9) [03/01/2003 12:38:47 PM]

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 1)

only approach. First, it can only be used for specific browse type. I had to build a completely
different template to do the same thing for the Clarion browse template as well as the ABC
browse and would need another one for each type of browse template I used. Drawback two,
none of what I had created could be used for standard list controls.

Figure 1. A list with a greenbar effect.

What if you could create a means to greenbar a list that is template and code independent?
Would that be nice?

The considerations

With this manipulation of the gene pool your virtual list will be taking over control of a list
box that is being used by other code using a queue to display information. The result should be
able to be used independent of template chain considerations or even independent of template
generated code all together. The one exception of course is where a VLB is already being used.

The possibilities for features are extensive but let’s stick to a fairly basic Zebra. What we are
going to do is use the VLBProc to "uncouple" the original queue from the list box control and
than act as a conduit between the queue and the list control to pass the original display data and
also splice into that stream the information required to add the stripe effect to the list.

The Zebra class

Just like a list box with a queue, the list box format must have the COLOR attribute set for each
data column that will be colored. Also, the virtual column structure of your Zebra class will
still have to know which columns are the colour columns. Your Zebra also needs to know what
colour each of its stripes will be. Set the Color check box as shown in Figure 2.

http://www.clarionmag.com/cmag/v4/v4n12vlb1.html (4 of 9) [03/01/2003 12:38:47 PM]

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 1)

Figure 2. Setting the color attribute for a column

To do this you can use a queue to store the column number and colour options of the colour
columns. Each element will contain the column number that it acts upon plus the normal and
stripe colour. Then create the class definition by inheriting the DNA base class and adding the
extra properties and methods required.

JtCmDnaZebraColourOptionQ QUEUE,TYPE
Col SHORT
Normal LONG
Stripe LONG
 END

JtCmDnaZebraClass CLASS(JtCmDnaClass),TYPE
Changes LONG,PRIVATE
DDQ &QUEUE,PRIVATE
Options &JtCmDnaZebraColourOptionQ,PRIVATE
AddStripe PROCEDURE(SHORT Col,LONG Normal = -1,LONG Stripe = -1)
Changed PROCEDURE,BYTE,VIRTUAL
Cols PROCEDURE,SHORT,VIRTUAL
Construct PROCEDURE,PRIVATE
Destruct PROCEDURE,PRIVATE
IsColorCol PROCEDURE(SHORT Col),BYTE,PROC,PRIVATE
Init PROCEDURE(WINDOW w,SIGNED Feq,QUEUE Ddq)
Rows PROCEDURE,LONG,VIRTUAL
Splice PROCEDURE(LONG Row,SHORT Col),STRING,VIRTUAL
 END

http://www.clarionmag.com/cmag/v4/v4n12vlb1.html (5 of 9) [03/01/2003 12:38:47 PM]

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 1)

Additional properties and methods:

● Changes: Will be used to track change conditions of the default data queue.
● DDQ: A reference to the default data queue being used to display the list box

data
● Options: The class implementation of the colour option queue
● AddStripe: Adds stripe information for each colour column
● Construct: Called automatically when the object is instantiated
● Destruct: Called automatically when the object is destroyed
● IsColorCol: Determines if a column is one of the colour columns
● Init: Overloads the base class Init method with one extra parameter

The remaining four virtual methods, Changed, Cols, Rows and Splice will also contain
Zebra specific code.

The cloning

The Zebra virtual list box will be an enhanced clone of the default list box. To this end it will
need to know the structure it is being created from. This is done using the Init, Changed,
Cols, and Rows methods.

The Init method initializes the DDQ property with a reference to the default data queue
(remembering that once the VLBPROC has been initialised the list box will ignore the queue
originally assigned to the FROM attribute). It calls the Init method from the base class and then
initializes the change state of the default data queue.

JtCmDnaZebraClass.Init PROCEDURE(WINDOW w,SIGNED Feq,QUEUE Ddq)
 CODE
 SELF.DDQ &= Ddq
 SELF.Init(w,Feq)
 SELF.Changes = changes(SELF.DDQ)

The Changed method will track differences in the default data queue to determine if the list
display needs to be updated.

JtCmDnaZebraClass.Changed PROCEDURE
Changes LONG
 CODE
 Changes = changes(SELF.DDQ)
 if Changes <> SELF.Changes
 SELF.Changes = Changes
 return 1
 else
 return 0
 end

http://www.clarionmag.com/cmag/v4/v4n12vlb1.html (6 of 9) [03/01/2003 12:38:47 PM]

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 1)

The Cols method counts the number of columns displayed in the list box.

JtCmDnaZebraClass.Cols PROCEDURE
Counter SHORT,AUTO
 CODE
 Counter = 0
 loop
 Counter += 1
 if not SELF.Feq{PROPLIST:Exists,Counter}
 Counter -= 1
 break
 end
 end
 return(Counter)

The Rows method returns the number of records currently loaded in the default data queue.

JtCmDnaZebraClass.Rows PROCEDURE
 CODE
 return(records(SELF.DDQ))

The enhancement

The enhancements are created through the AddStripe method. This method is called to add
or change stripe information for each colour column. Every entry in the option queue will
contain the associated colour column number as well as the normal and stripe colour
information. There will be four entries for each displayed column, just like a normal list box
using a queue (normal foreground, normal background, selected foreground, selected
background).

JtCmDnaZebraClass.AddStripe PROCEDURE(SHORT Col,|
 LONG Normal = -1,LONG Stripe = -1)
PutRec BYTE
 CODE
 PutRec = SELF. IsColorCol (Col)
 SELF.Options.Col = Col
 SELF.Options.Normal = Normal
 SELF.Options.Stripe = Stripe
 if PutRec
 put(SELF.Options)
 else
 add(SELF.Options,+SELF.Options.Col)
 end

Gene splicing

The last two methods are used to manipulate the information that will be stored in each cell of
the enhanced clone.

http://www.clarionmag.com/cmag/v4/v4n12vlb1.html (7 of 9) [03/01/2003 12:38:47 PM]

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 1)

IsColorCol detects if the information being requested by the list box is one of the Zebra
stripe colour columns.

JtCmDnaZebraClass. IsColorCol PROCEDURE(SHORT Col)
 CODE
 SELF.Options.Col = Col
 get(SELF.Options,SELF.Options.Col)
 if errorcode()
 return(False)
 else
 return(True)
 end

The Splice method fills each cell with the required information. It does this by first
synchronizing the default data queue with the requested row. It checks if the requested column
is one of the Zebra stripe colour columns. If not, the data from the default data queue is
returned to the cell. If it is, there is a check to see if same column in the default data queue
contains a value other than the default COLOUR:None. If it is not the default colour then the
default data queue colour is used. This allows any conditionally colored cells to be displayed
as expected. Otherwise the splicing tests to see if the requested row is odd or even and replaces
the default data queue colour with the appropriate Zebra colour from the option queue.

JtCmDnaZebraClass.Splice PROCEDURE(LONG Row,SHORT Col)
 CODE
 get(SELF.DDQ,Row)
 SELF.Options.Col = Col
 get(SELF.Options,SELF.Options.Col)
 if errorcode()
 return what(SELF.DDQ,Col)
 else
 return choose(what(SELF.DDQ,Col) <> -1|
 ,what(SELF.DDQ,Col),choose(not band(row,1)|
 ,SELF.Options.Normal,SELF.Options.Stripe))
 end

Bringing the Zebra to life

Like any genetic manipulation techniques, each step needs to be performed in the correct
sequence at the right time. Fortunately for the Zebra, now that all the genetic information is
complete, the steps to life are few and pretty simple.

First requirement is a queue loaded list box to clone from with at least one column set with the
COLOR attribute. Next is an instance of the Zebra class, third is the initialization of the
default Zebra information and lastly the addition of the Zebra stripe enhancement information.

Once the class information has been added to your project (usually by use of INCLUDE
statements in the Global Data area of your project or application) creating an instance of the

http://www.clarionmag.com/cmag/v4/v4n12vlb1.html (8 of 9) [03/01/2003 12:38:47 PM]

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 1)

Zebra class is straightforward. This should be done in the data section of the procedure that
contains the list box you want to add stripes to.

Zebra JtCmDnaZebraClass

Next you need to initialize the Zebra with the information from the list box it is going to clone.
Because the Zebra class is going to use property assignments to take control of the list box
then like any other property assignments, this must be done after the window is open. In the
statement below, Window is the label of the window definition that contains the list box.
?Browse:5 is the USE variable of the list box that will be cloned. Queue:5 is the label of
the default data queue assigned to the list box’s FROM attribute.

Zebra.Init(Window,?Browse:5{PROP:Feq},Queue:5)

Lastly you need to determine which columns will have stripes and what the normal and striped
colors will be. Each call to AddStripe will be for one of the four colour columns associated
to each colored display column. Assuming Column 1 has the COLOR attribute set, to make the
normal text green, normal background teal, selected text and background colors standard this
would be:

Zebra.AddStripe(2,COLOR:Blue,COLOR:Yellow)
Zebra.AddStripe(3,COLOR:Aqua,COLOR:Teal)
Zebra.AddStripe(4,COLOR:Aqua,COLOR:Yellow)
Zebra.AddStripe(5,COLOR:Gray,COLOR:Navy)

You now have a living breathing Zebra, and what could be easier? The answer, for generated
applications at least, would be if you didn’t have to figure out which columns were the colour
columns and apply the information manually to each one. Next time I’ll show how that’s done.

Download the source

Steve Bottomley is a long time user of Clarion, a member of Team Topspeed, and works for the Australian Government.

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n12vlb1.html (9 of 9) [03/01/2003 12:38:47 PM]

http://www.clarionmag.com/cmag/v4/files/v4n12vlb.zip
mailto:stephenb@dynamite.com.au
http://www.clarionmag.com/cmag/comments.frm?articleID=11825
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 2)

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Browses > Browses, Using

DNA for Clarion: Manipulating Browse Cells With A VLBPROC
(Part 2)

by Stephen Bottomley

Published 2002-12-20

Last time I introduced a set of classes that use Clarion’s Virtual List Box (VLB) capability to
add greenbars to any ABC or Legacy browse. This week I’ll add a set of templates that make
these classes even easier to use, and I’ll also demonstrate a handcoded use of the greenbar
class.

Enter the template. Actually it’s templates. In order to maintain the theme of template
independence and also maximize hands free flexibility plus include some future proofing it
will be three simple code templates. They are:

● The Global Template will add the INCLUDE statements.
● The Data Template will create an instance of the class.
● The Initialization Template will set all the colour columns with the selected

colors.

The template header

If you’re going to create the code templates as a standalone template set rather than
incorporating them into a current chain you need to add the template header. This includes a
unique label, a description and the template families it can be used in.

This header includes the ABC and CW20 template families and could be extended is you use
your own template chain.

#TEMPLATE(JtCmDna,'(JaDuTech-CM) DNA for Clarion'),|
 FAMILY('ABC'),FAMILY('CW20')

http://www.clarionmag.com/cmag/v4/v4n12vlb2.html (1 of 6) [03/01/2003 12:38:58 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=123
http://www.clarionmag.com/cmag/topics.html?categoryid=123&subcategoryid=28

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 2)

The global template

This template has one prompt for the Zebra class at this stage and could be easily extended to
include other classes that inherit the DNA base class. This template is placed in the Global
Data embed of your application.

#CODE(JtDnaCmGlobals,'(JaDuTech-CM) DNA Global Exports'),|
 DESCRIPTION('(JaDuTech-CM) DNA Global Exports')
 #PROMPT('Zebra',CHECK),%JtDnaIncludeZebra,DEFAULT(1)
#ENDBOXED
 INCLUDE('JtCmDna.inc'),ONCE
#IF(%JtDnaIncludeZebra)
 INCLUDE('JtCmDnaZebra.inc'),ONCE
#ENDIF

The Class template

The class template is placed in the Local Data embed of the procedure you want to add Zebra
stripes too. It instantiates the selected class and allows the programmer to give the object a
unique label. Once again, it only contains an option for the Zebra class but could be easily
extended to cover others.

#CODE(JtCmDnaClass,'(JaDuTech-CM) DNA Class Selection'),|
 DESCRIPTION('(JaDuTech-CM) DNA Class Selection')
#PROMPT('Interface Type',OPTION),%JtDnaInterface,DEFAULT('Zebra')
#PROMPT('Zebra',RADIO)
#PROMPT('Object Name:',@S255),%JtDnaClass|
 ,DEFAULT('JtDna' & %ActiveTemplateInstance)

Figure 1 shows the code template window.

Figure 1. The code template window

The initialization template

The initialization template is placed in an embed after the window has been opened. It allows

http://www.clarionmag.com/cmag/v4/v4n12vlb2.html (2 of 6) [03/01/2003 12:38:58 PM]

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 2)

the programmer to select which list box will be cloned, which instance of the class (the label
supplied in the Class Template) to use and the colour of each of the stripes. This template
simply calls the Init method and loops through the list box fields looking for those that have
the COLOR attribute set. For each one, call the AddStrip method with the selected colour
information.

#CODE(JtCmDnaZebra,'(JaDuTech-CM) Browsebox Zebra'),|
 DESCRIPTION('(JaDuTech-CM) Browsebox Zebra'),REQ(JtCmDnaClass)
#ATSTART
 #DECLARE(%JtDnaValueConstruct)
 #DECLARE(%JtDnaCounter)
 #DECLARE(%JtDnaCol)
#ENDAT
#SHEET
 #TAB('Properties')
 #DISPLAY ('')
 #PROMPT('Select List box',CONTROL),%JtDnaControl,REQ
 #PREPARE
 #FIX(%Control,%JtDnaControl)
 #ENDPREPARE
 #VALIDATE(%ControlType = 'LIST','Must select a list control')
 #PROMPT('Object Name:',@S255),%JtDnaClass,DEFAULT('JtDna' |
 & %ActiveTemplateInstance)
 #ENDBOXED
 #DISPLAY ('')
 #ENDTAB
 #TAB('Defaults')
 #BOXED('Set Normal colours')
 #PROMPT('&Foreground Normal:',COLOR),|
 %JtDnaNormalForegroundNormal,DEFAULT(-1)
 #PROMPT('&Background Normal:',COLOR),|
 %JtDnaNormalBackgroundNormal,DEFAULT(-1)
 #PROMPT('&Foreground Selected:',COLOR),|
 %JtDnaNormalForegroundSelected,DEFAULT(-1)
 #PROMPT('&Background Selected:',COLOR),|
 %JtDnaNormalBackgroundSelected,DEFAULT(-1)
 #ENDBOXED
 #DISPLAY('')
 #BOXED('Set Zebra colours')
 #PROMPT('&Foreground Normal:',COLOR),|
 %JtDnaZebraForegroundNormal,DEFAULT(-1)
 #PROMPT('&Background Normal:',COLOR),|
 %JtDnaZebraBackgroundNormal,DEFAULT(-1)
 #PROMPT('&Foreground Selected:',COLOR),|
 %JtDnaZebraForegroundSelected,DEFAULT(-1)
 #PROMPT('&Background Selected:',COLOR),|
 %JtDnaZebraBackgroundSelected,DEFAULT(-1)
 #ENDBOXED
 #ENDTAB
#ENDSHEET
#FIX(%Control,%JtDnaControl)
%JtDnaClass.Init(%Window,%Control,%ControlFrom)
#SET(%JtDnaCounter,0)
#FIX(%Control,%JtDnaControl)

http://www.clarionmag.com/cmag/v4/v4n12vlb2.html (3 of 6) [03/01/2003 12:38:58 PM]

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 2)

#IF(%Control NOT=%JtDnaControl)
 #ERROR('List box control not found!')
 #ABORT
#ENDIF
#FOR(%ControlField)
 #SET(%JtDnaCounter,%JtDnaCounter + 1)
 #SET(%JtDnaValueConstruct,%ControlField)
 #IF(%ControlFieldHasColor)
 #SET(%JtDnaCol,%JtDnaCounter + 1)
%JtDnaClass.AddStripe(%JtDnaCol,%JtDnaNormalForegroundNormal,|
 %JtDnaZebraForegroundNormal)
 #SET(%JtDnaCol,%JtDnaCounter + 2)
%JtDnaClass.AddStripe(%JtDnaCol,%JtDnaNormalBackgroundNormal,|
 %JtDnaZebraBackgroundNormal)
 #SET(%JtDnaCol,%JtDnaCounter + 3)
%JtDnaClass.AddStripe(%JtDnaCol,%JtDnaNormalForegroundSelected,|
 %JtDnaZebraForegroundSelected)
 #SET(%JtDnaCol,%JtDnaCounter + 4)
%JtDnaClass.AddStripe(%JtDnaCol,%JtDnaNormalBackgroundSelected,|
 %JtDnaZebraBackgroundSelected)
 #SET(%JtDnaCounter,%JtDnaCounter + 4)
 #ENDIF
 #IF(%ControlFieldHasStyle)
 #SET(%JtDnaCounter,%JtDnaCounter + 1)
 #ENDIF
 #IF(%ControlFieldHasIcon)
 #SET(%JtDnaCounter,%JtDnaCounter + 1)
 #ENDIF
 #IF(%ControlFieldHasTree)
 #SET(%JtDnaCounter,%JtDnaCounter + 1)
 #ENDIF
#ENDFOR

Figure 2. The initialization template window.

http://www.clarionmag.com/cmag/v4/v4n12vlb2.html (4 of 6) [03/01/2003 12:38:58 PM]

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 2)

Of course the templates could be combined into one or two for your favorite browse template.

There you have it, two classes, three templates and from now on, three minutes to genetically
modifying any queue loaded list box into a Zebra.

How easy is it?

Here's how you can hand code a list box using the Zebra class.

 PROGRAM
 !Make sure we include the class source
 INCLUDE('JtCmDnaZebra.inc'),ONCE
 MAP
Main PROCEDURE
 END
 CODE
 Main
Main PROCEDURE
Counter SHORT,AUTO
!Create an instance of the Zebra class
Zebra JtCmDnaZebraClass
ZebraQ QUEUE
Id STRING(10)
nFg LONG
nBg LONG
sFg LONG
sBg LONG
 END
Window WINDOW('Caption'),AT(,,111,100),SYSTEM,GRAY,RESIZE
 LIST,AT(0,0),USE(?List),FULL,VSCROLL,|
 FORMAT('20L(2)|M*'),FROM(ZebraQ)
 END
CODE
 open(Window)
 !Initialise the Zebra
 Zebra.Init(Window,?List,ZebraQ)
 !Add stripe infdormation for each colour entry
 Zebra.AddStripe(2,-1,-1)
 Zebra.AddStripe(3,-1,16776960)
 Zebra.AddStripe(4,-1,-1)
 Zebra.AddStripe(5,-1,16744448)
 Accept
 case event()
 of EVENT:OpenWindow
 setcursor(CURSOR:Wait)
 loop Counter = 1 to 100
 ZebraQ.Id = 'Record ' & Counter
 ZebraQ.nFg = COLOR:None
 ZebraQ.nBg = COLOR:None
 ZebraQ.sFg = COLOR:None
 ZebraQ.sBg = COLOR:None
 add(ZebraQ)

http://www.clarionmag.com/cmag/v4/v4n12vlb2.html (5 of 6) [03/01/2003 12:38:58 PM]

DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 2)

 end
 setcursor
 end
 end
 close(Window)

Figure 3 shows the list box in action.

Figure 3. The Zebra list box

I’ve covered the basics of using a VLBProc. What has been created here could obviously be
extended to include user defined runtime colours and toggling the effect on/off. How about
getting cells to flash on under certain conditions? I leave it to your imagination to take over
from here.

Download the source

Steve Bottomley is a long time user of Clarion, a member of Team Topspeed, and works for the Australian Government.

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n12vlb2.html (6 of 6) [03/01/2003 12:38:58 PM]

http://www.clarionmag.com/cmag/v4/files/v4n12vlb.zip
mailto:stephenb@dynamite.com.au
http://www.clarionmag.com/cmag/comments.frm?articleID=11826
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

The Clarion Advisor: Displaying Clarion Dates In Excel

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Tips/Techniques > Dates and Times

The Clarion Advisor: Displaying Clarion Dates In Excel

by Jeff Slarve

Published 2002-12-20

If you have a CSV file or other data that contains an unformatted Clarion date, and you wish to
view the date in Excel, you'll need to convert the Clarion standard date to an Excel date.

Fortunately, that's easy to do. Just create a formula in another column, subtracting 36161 from
the value and formatting it as a date. Clarion standard dates and the Excel DATE() function
both have an arbitrary "Day 1" - for Excel, this is 1/1/1900, while Clarion's Day 1 is
12/28/1800 (although the first usable date is Day 4, or 1/1/1801). The number 36161 is the
difference in days between these two dates.

Jeff Slarve is an independent software developer and the creator of the critically-acclaimed In Back automated file safeguard

utility. Jeff has been a Clarion developer since 1991, and is a member of the group formerly known as Team TopSpeed.

Reader Comments

Add a comment

Jeff, Thanks, great tip. Actually, since I have to...

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n12exceldates.html [03/01/2003 12:39:04 PM]

http://www.clarionmag.com/
http://www.developerplus.com/
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=145
mailto:jeff@jssoftware.com
http://www.jssoftware.com/In_Back/in_back.html
http://www.clarionmag.com/cmag/comments.frm?articleID=11827
http://www.clarionmag.com/cmag/discuss.frm?articleID=11827&position=1
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

Web Validation From Your Clarion App Using NetTalk

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Internet > General Internet

Web Validation From Your Clarion App Using NetTalk

by Mark Riffey

Published 2002-12-20

Recently, I had a need for one of my Clarion programs to access a SQL database hosted on the
web in order to determine if the customer’s access to a service had expired. It was a fairly
simple task using CapeSoft NetTalk, so I’ll demonstrate how I did it.

I’ve made up a scenario where the Clarion program is started with the customer’s customer
number as a command line parameter. The customer number is passed to a web page as a
parameter. The parameter is used to query a database and return an expiration date for the
service that this program provides. The Clarion application parses this page to extract the
necessary information.

So, how do I access my web-based database?

If the program was for in-house use and needed to access a web-hosted SQL database, I would
have the program access the database directly by coding the server, database, username and
password on the owner parameter of the appropriate file in the DCT.

The gotcha when using direct SQL access is that you must open port 1433 (the default MS
SQL port for remote access). Since this is an application that a customer would use, I don’t
want to introduce any firewall issues, which will cause unnecessary technical support, which is
something none of us usually wants. As a result, I’ll use port 80 (the default browser port) and
a web validation page with the Clarion program so that potential firewall issues are eliminated.

The validation process requires that the Clarion program confirm the service expiration date.
Among other things, the expiration date is kept on the hosted SQL server database which is
automatically updated by an in-house customer database maintenance app.

http://www.clarionmag.com/cmag/v4/v4n12webvalidate.html (1 of 5) [03/01/2003 12:39:12 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=124
http://www.clarionmag.com/cmag/topics.html?categoryid=124&subcategoryid=152
http://www.capesoft.com/

Web Validation From Your Clarion App Using NetTalk

In my scenario, the program in question is used to provide a monthly service. The monthly
subscription service is a low cost item that shouldn’t require intervention and is ideally
automated by a system such as this.

First, the Clarion program uses COMMAND() to get the customer number from the command
line. It uses that parameter to complete the URL to retrieve, which in this case is:

http://www.granitebear.com/cmagvalidate.asp?custno=<somevalue>

(where "somevalue" is the customer number).

In order to retrieve the page, the program will "act like a browser" using NetTalk’s WebClient
object. I won’t go into the specifics of how WebClient works, since that documentation is
available with the product. The following code tells the NetTalk client to go to the site/page in
question:

setcursor (CURSOR:Wait)
loc:webdata = '' ! Clear the text on the screen
! You start by telling the object what to download.
! You can choose to either download the whole page or just
! the web page header.
ThisWebClient.SetAllHeadersDefault()
ThisWebClient.CanUseProxy = 1
ThisWebClient.HeaderOnly = 0 ! We want the whole page
ThisWebClient.Fetch('www.granitebear.com/cmagvalidate.asp?custno=' |
 & loc:custno)
if ThisWebClient.Error
 Message ('This WebSite could not be downloaded. Error ' |
 & ThisWebClient.Error & ' = ' & ThisWebClient.InterpretError())
 setcursor
end

The Clarion program will send an HTTP GET request to that address, retrieve the resulting
page, and parse the page. The page returns the service expiration date in the format
VALIDATE=datewhich the program can then process.

When the page is returned, NetTalk posts the PageReceived event. Here’s the code I used
to parse the page. Most of the code is used to figure out what the ASP date is. ASP date
formatting isn’t as easy as format(datefield,@d02), unfortunately.

if ThisWebClient.PageLen <= 0
 loc:webdata = ''
elsif ThisWebClient.PageLen < 30000
 loc:webdata = ThisWebClient.Page [1 : ThisWebClient.PageLen]
else
 loc:webdata = |
 '<<13,10,13,10>' |
 & ThisWebClient.Page[ThisWebClient.PageLen - 28000|

http://www.clarionmag.com/cmag/v4/v4n12webvalidate.html (2 of 5) [03/01/2003 12:39:12 PM]

http://www.granitebear.com/cmagvalidate.asp?custno=<somevalue

Web Validation From Your Clarion App Using NetTalk

 : ThisWebClient.PageLen]
end!if
setcursor
if instring('INTERNAL SERVER ERROR',loc:webdata,1,1)
 loc:webdate = 0
else
 i# = instring('VALIDATE=',loc:webdata,1,1)
end!If
!format is VALIDATE=12/22/2002
! but asp is lame at formatting dates so
! we have to check each of 4 formats
if loc:webdata[i#+10] = '/' and loc:webdata[i#+13] = '/'
 ! 1/22/3333
 ! 0111111111
 ! 9012345678
 loc:webdate = date(loc:webdata[i#+9],loc:webdata[i#+11:i#+12]|
 ,loc:webdata[i#+14:i#+17])
elsif loc:webdata[i#+10] = '/' and loc:webdata[i#+12] = '/'
 ! 1/2/3333
 ! 0111111111
 ! 9012345678
 loc:webdate = date(loc:webdata[i#+9],loc:webdata[i#+11],|
 loc:webdata[i#+13:i#+16])
elsif loc:webdata[i#+11] = '/' and loc:webdata[i#+14] = '/'
 ! 11/22/3333
 ! 01111111111
 ! 90123456789
 loc:webdate = date(loc:webdata[i#+9:i#+10],loc:webdata[i#+12:i#+13]|
 ,loc:webdata[i#+15:i#+18])
elsif loc:webdata[i#+11] = '/' and loc:webdata[i#+13] = '/'
 ! 11/2/3333
 ! 0111111111
 ! 9012345678
 loc:webdate = date(loc:webdata[i#+9:i#+10],loc:webdata[i#+12],|
 loc:webdata[i#+14:i#+17])
end!if
if loc:webdate > 0
 if loc:webdate < today()
 glo:onlinestatus = 1 ! failed
 setcursor()
 Message ('Your subscription ended ' & format(loc:webdate,@d17),|
 'Cmag Web Validate',icon:asterisk)
 elsif loc:webdate = today()
 setcursor()
 Message ('Your subscription ends today.',|
 'Cmag Web Validate',icon:asterisk)
 glo:onlinestatus = 2 ! ok
 elsif loc:webdate > today() and loc:webdate < today() + 10
 setcursor()
 Message ('Your subscription ends on ' & format(loc:webdate,@d17),|
 'Cmag Web Validate',icon:asterisk)
 glo:onlinestatus = 2 ! ok
 elsif loc:webdate > today()
 glo:onlinestatus = 2 !ok
 end!if
else

http://www.clarionmag.com/cmag/v4/v4n12webvalidate.html (3 of 5) [03/01/2003 12:39:12 PM]

Web Validation From Your Clarion App Using NetTalk

 setcursor()
 message ('A customer number was not included when starting ' |
 & 'this program. Contact someone.','Cmag Web Validate',icon:hand)
end!if

The example program displays the HTML in a text field solely for the purposes of this article,
but normally you wouldn’t have to do that. I would also use
post(event:accepted,?button1) to automate the "click" of the button that starts the
validation process when this code went to production. I didn’t do this in the example code so
that you could see the process work step by step.

What about the web side of things?

On the web side, the primary task I have to perform is retrieving the customer number from the
URL. Once I’ve done that, I can use it to query my database (or whatever validation I am
required to do).

To retrieve the URL parameter in ASP, I used Request.QueryString("custno").
Request is an object representing the incoming request from the user’s browser.
QueryString("custno") simply tells the ASP interpreter that I want to know the value
of the custno parameter from the original URL. The incoming URL looks like this:

www.granitebear.com/cmvalidate.asp?custno=somevalue

so the result returned by QueryString("custno") is "somevalue" (without the quotes).

In the example code, I just used a simple if structure to allow a return of different values for
testing purposes, but it is just as easy to execute a database query using that value.

Now I can query my online database from my Clarion program and avoid firewall issues as
well. I used the easy-to-use NetTalk, but you could do this almost as easily with a few API
calls to Wininet.dll. Ron Schofield has some articles on this on his openclarion.org web site.

Download the source

Mark Riffey has worked in the software industry, primarily in development and technical support for two internationally known

enterprise software vendors, the world's premier information systems services company, a Fortune 100 manufacturer, and now

Granite Bear Development. His business philosophy is simple: Be fair to your customers and yourself, surround yourself with

brilliant people, work hard, be a good listener and have a little fun. Mark and his wife Jacki have two boys, Alex and Jonathan.

Mark's other interests include Boy/Cub Scouting, backpacking/hiking and almost anything else outdoors, classic blues guitar, golf

and photography.

http://www.clarionmag.com/cmag/v4/v4n12webvalidate.html (4 of 5) [03/01/2003 12:39:12 PM]

http://www.granitebear.com/cmvalidate.asp?custno=somevalue
http://www.openclarion.org/
http://www.clarionmag.com/cmag/v4/files/v4n12webvalidate.zip
mailto:mr@granitebear.com

Web Validation From Your Clarion App Using NetTalk

Reader Comments

Add a comment

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n12webvalidate.html (5 of 5) [03/01/2003 12:39:12 PM]

http://www.clarionmag.com/cmag/comments.frm?articleID=11828
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

CLASSy ASCII File Importing

Clarion Magazine

Ads · Comments · Writers! · Privacy · Contacts · PDFs · Freebies · Open Source

Topics > Tips/Techniques > Tips & Techniques

CLASSy ASCII File Importing

by David Harms and Steven Parker

Published 2002-12-20

Class by Harms

Analysis by the other guy

In Parsing Strings In ASCII Files, I (Steve) showed how to import ASCII files into a database
file without using a file declaration. Konrad Byers’ ASCII file classes, a Group declared
Over a string and a few assignments did all the work.

I also showed how to use the SUB function or string slicing to parse incoming data into units
suitable for assignment to a target file’s fields. One method takes time to allocate memory, the
others use processing cycles. Your choice.

While any of these techniques work and are completely reliable, they are not especially
dynamic. These techniques are tried and true and classic (see "Import" in the demo app). But if
you find you need to handle another ASCII file, you need to create a second procedure to
import it. (Or, copy and modify an existing procedure.)

A Parsing Class

After Dave saw my first article, he suggested a class to handle parsing the ASCII records. That
way all the developer needs to do is pass the required data to the class and make field
assignments as necessary.

What information is required?

First, the class must know each field’s Label. A Label provides a way to refer to a variable.

http://www.clarionmag.com/cmag/v4/v4n12classyascii.html (1 of 7) [03/01/2003 12:39:21 PM]

http://www.clarionmag.com/
http://www.clarionmag.com/cmag/subscribe.html
http://www.clarionmag.com/cmag/ads.html
http://www.clarionmag.com/cmag/recentcomments.html
http://www.clarionmag.com/cmag/writers.html
http://www.clarionmag.com/cmag/privacy.html
http://www.clarionmag.com/cmag/contactinfo.html
http://www.clarionmag.com/cmag/pdfs.html
http://www.clarionmag.com/cmag/downloads.html
http://www.clarionmag.com/cmag/cospfiles.html
http://www.clarionmag.com/cmag/topics.html
http://www.clarionmag.com/cmag/topics.html?categoryid=125
http://www.clarionmag.com/cmag/topics.html?categoryid=125&subcategoryid=69
http://www.clarionmag.com/cmag/v4/v4n11anyascii.html

CLASSy ASCII File Importing

Second, the class must know the field’s length. Given the field length, its beginning and ending
points in the ASCII string can be computed.

Lastly, the class must know the maximum length of the incoming string. Without this tidbit of
information, it would be possible to (accidentally) use a subscript exceeding the length of the
incoming data string. Very bad things would happen because string slicing does not do bounds
checking and the compiler returns no warnings (much less errors).

Oh, one more thing, the class needs a way to store all this information.

Here’s the declaration for cciFixedRecordClass, a small class that handles these
requirements:

!ABCIncludeFile

OMIT('_EndOfInclude_',_cciFixedRecordPresent_)
cciFixedRecordPresent EQUATE(1)

FixedRecordQueue queue,type
FieldName String(128)
StartPos long
EndPos long
 end

cciFixedRecordClass CLASS,TYPE,MODULE('ccifxdrc.clw'),|
 LINK('ccifxdrc.clw',_ABCLinkMode_),DLL(_ABCDllMode_)
FixedRecordQ &FixedRecordQueue
Record &String
RecordLength long(0)
AddField procedure(String fieldName,long len)
Construct procedure
Destruct procedure
GetFieldValue procedure(String fieldName),String
SetRecord procedure(*String rec)
SetRecordLength procedure(long len)
 end

EndOfInclude

AddField

The AddField method takes two parameters: a field Label and the field’s length. This
method has to be called for each field in the incoming file and the fields must be called in the
order in which they occur in the ASCII file. AddField tells the class which Labels to use
and the lengths of each field. It also computes the beginning and points of the field within the
string:

cciFixedRecordClass.AddField procedure(String fieldName,long len)

http://www.clarionmag.com/cmag/v4/v4n12classyascii.html (2 of 7) [03/01/2003 12:39:21 PM]

CLASSy ASCII File Importing

 code
 if ~records(self.FixedRecordQ)
 self.FixedRecordQ.StartPos = 1
 else
 get(self.FixedRecordQ,records(self.FixedRecordQ))
 self.FixedRecordQ.StartPos = self.FixedRecordQ.EndPos + 1
 end
 self.FixedRecordQ.EndPos = self.FixedRecordQ.StartPos + (len -1)
 self.FixedRecordQ.FieldName = FieldName
 add(self.FixedRecordQ)

The first time AddField is called, it is being called to handle the first field. So, the field’s
starting position must be one (1). Thereafter, the starting position must be the previous field’s
ending position plus one (1). (Now you see why calling order is important.)

The ending position is the current starting position plus the length parameter minus one (this
correctly counts the initial position).

SetRecordLength

The SetRecordLength method takes a numeric parameter and can be called before or after
AddField. It simply sets a property holding the maximum length of the ASCII record – the
class uses this to do the bounds checking string slicing does not do. See the demo app for the
lazy programmer’s way to compute the length.

In the main processing loop, SetRecord ensures that a variable in the class contains the
current ASCII record. The current ASCII record is the parameter for SetRecord.

GetFieldValue

Finally, GetFieldValue uses the field Label as its parameter to retrieve the information
about the field. It gets the beginning and ending positions, checking that the data requested is
within the length of the ASCII record:

cciFixedRecordClass.GetFieldValue procedure(String fieldName)
 code
 self.FixedRecordQ.FieldName = FieldName
 get(self.FixedRecordQ,self.FixedRecordQ.FieldName)
 if errorCode()
? message('Field ' & clip(FieldName) & ' not found in file definition')
 return ''
 end
 if self.FixedRecordQ.EndPos > self.RecordLength
 message('Subscript out of range')
 return ''
 end
 return(self.Record[self.FixedRecordQ.StartPos : self.FixedRecordQ.EndPos])

http://www.clarionmag.com/cmag/v4/v4n12classyascii.html (3 of 7) [03/01/2003 12:39:21 PM]

CLASSy ASCII File Importing

GetFieldValue then uses standard string slicing to return the field’s data. The returned
data is ready for assignment.

Final question: "Where is all this information held?" In a queue. But because a queue
cannot be declared in a class, it is declared outside the class and a reference to a queue of that
type is declared in the class. The constructor creates the queue:

cciFixedRecordClass.Construct procedure
 code
 self.FixedRecordQ &= new(FixedRecordQueue)

Similarly, the destructor frees and cleans up the queue:

cciFixedRecordClass.Destruct procedure
 code
 free(self.FixedRecordQ)
 dispose(self.FixedRecordQ)

Because code in Constructors and Destructors is executed automatically, creating and
destroying the queue in this way requires no action by the developer.

See the Import – cci menu option in the demo app to see this in action.

Going Dynamic

So far, cciFixedRecordClass moves parsing of the incoming string into a class and out
of the main processing but is no more dynamic than the classic techniques.

Compare the processing code using a Group, Over (and this is only slightly different from
the code using Sub or string slicing):

Loop While ~InputFile.Read(AsciiText)
 CUS:Number = INC:EmployeeID
 CUS:Badge = INC:BadgeNumber
 CUS:LastName = INC:LastName
 CUS:FirstName = INC:FirstName
 CUS:Balance = INC:Balance
 If Access:Customer.TryFetch(CUS:CusNumkey)
 Access:Customer.Insert
 Else
 CUS:Badge = INC:BadgeNumber
 CUS:LastName = INC:LastName
 CUS:FirstName = INC:FirstName
 CUS:Balance = INC:Balance
 Access:Customer.Update
 End
End

http://www.clarionmag.com/cmag/v4/v4n12classyascii.html (4 of 7) [03/01/2003 12:39:21 PM]

CLASSy ASCII File Importing

with the processing loop using the cciFixedRecordClass:

Loop While ~InputFile.Read(AsciiText)
 RecordClass.SetRecord(Asciitext)
 CUS:Number = RecordClass.GetFieldValue('EmployeeID')
 CUS:Badge = RecordClass.GetFieldValue('BadgeNumber')
 CUS:LastName = RecordClass.GetFieldValue('LastName')
 CUS:FirstName = RecordClass.GetFieldValue('FirstName')
 CUS:Balance = RecordClass.GetFieldValue('Balance')
 If Access:Customer.TryFetch(CUS:CusNumkey)
 Access:Customer.Insert
 Else
 CUS:Badge = RecordClass.GetFieldValue('BadgeNumber')
 CUS:LastName = RecordClass.GetFieldValue('LastName')
 CUS:FirstName = RecordClass.GetFieldValue('FirstName')
 CUS:Balance = RecordClass.GetFieldValue('Balance')
 Access:Customer.Update
 End
End

and you will note that these two codelets not only don’t appear very different; there is no
striking difference in logic. In fact, the OOP version is a lot more typing.

By the way, if you’re uncomfortable with the two blocks of field assignment code being inline
in your code, you can move them to a routine or local method and insert the appropriate call:

Loop While ~InputFile.Read(AsciiText)
 RecordClass.SetRecord(Asciitext)
 CUS:Number = RecordClass.GetFieldValue('EmployeeID')
 If Access:Customer.TryFetch(CUS:CusNumkey)
 Do LoadRecord
 Access:Customer.Insert
 Else
 Do Loadrecord
 Access:Customer.Update
 End
End

However, to handle a second ASCII file, a second procedure is still necessary.

If you’ve created a vertical market application, your end users may have a dozen different
ASCII file layouts that they need to import into the application’s customer file. In this case, a
dozen different import procedures are necessary. It’s far better to create a configurable import
capability.

One way of doing this is to create a file in the dictionary that contains the fields, in the order in
which they appear in the ASCII file and their lengths. The layout for this file might look like
this:

http://www.clarionmag.com/cmag/v4/v4n12classyascii.html (5 of 7) [03/01/2003 12:39:21 PM]

CLASSy ASCII File Importing

FileSpec FILE,DRIVER('TOPSPEED'),PRE(FIL),CREATE,BINDABLE,THREAD
FileSpecKey KEY(FIL:CustomerID,FIL:Sequence),NOCASE,OPT
Record RECORD,PRE()
CustomerID LONG !serial number
Sequence LONG !field order
FieldName STRING(40)
FieldLength LONG
 END
 END

The CustomerID field might use the software serial number. This would allow a single file
to be distributed and relieve the developer from having to maintain a copy of this file for each
end user.

Then, the following code would take care of ensuring that the cciFixedRecordClass gets
the information it needs to parse the file:

L = 0 !initialize length counter
FIL:Sequence = 0 !clear key node
FIL:CustomerID = LOC:CustomerID !set key
Set(FIL:FileSpecKey, FIL:FileSpecKey)
Loop
 Next(FileSpec)
 If ErrorCode() or FIL:CustomerID <> LOC:CustomerID
 Break
 End
 L += FIL:FieldLength
 RecordClass.AddField(FIL:FieldName,FIL:FieldLength)
End
RecordClass.SetRecordLength(L)

In the main processing loop, where the assignments are made, all possible (allowed) fields are
assigned. If a particular import specification does not contain a particular field, nothing
happens, no assignment is made. Note that the class code includes a debug mode line for use
during testing if a particular field does not exist in the procedure.

Because the end user never sees this file and you have complete control over the field names, it
is all perfectly safe. Your customer may give you "Social Security Number" but it’s still
"EmployeeID" to you, the dictionary file and the class methods. And, it is also perfectly
transparent.

See "Dynamic Import" in the demo app to see this in action. Two different import files, with
two different layout are provided.

Summary

cciFixedRecordClass may not be very large. But it is very convenient. It eliminates
errors due to typos when creating import procedures (like a template, the code is pretested –

http://www.clarionmag.com/cmag/v4/v4n12classyascii.html (6 of 7) [03/01/2003 12:39:21 PM]

CLASSy ASCII File Importing

we think). And, with a little imagination, you can use it to handle a wide variety of fixed-field-
length imports into a given file.

Download the source

David Harms is an independent software developer and the editor and publisher of Clarion Magazine. He is also co-author with

with Ross Santos of Developing Clarion for Windows Applications, published by SAMS (1995). His most recent book is JSP,

Servlets, and MySQL, published by HungryMinds Inc. (2001).

Steve Parker started his professional life as a Philosopher but now tries to imitate a Clarion developer. He has been attempting to

subdue Clarion since 2007 (DOS, that is). He reports that, so far, Clarion is winning. Steve has been writing about Clarion since

1993.

Reader Comments

Add a comment

Sweet work, guys. Very handy.

 Copyright © 1999-2002 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express written consent of CoveComm Inc., except as

described in the subscription agreement, is prohibited.

http://www.clarionmag.com/cmag/v4/v4n12classyascii.html (7 of 7) [03/01/2003 12:39:21 PM]

http://www.clarionmag.com/cmag/v4/files/v4n12classyascii.zip
mailto:dharms@clarionmag.com
http://www.covecomm.com/java/index.html
http://www.covecomm.com/java/index.html
mailto:sparker@par2.com
http://www.clarionmag.com/cmag/comments.frm?articleID=11829
http://www.clarionmag.com/cmag/discuss.frm?articleID=11829&position=1
http://www.covecomm.com/
http://www.clarionmag.com/cmag/subscriptionagreement.html

	clarionmag.com
	Clarion Magazine
	Data Structures and Algorithms Part XII - Trie This
	Parsing Strings In ASCII Files
	Viewing An Excel Spreadsheet In A Clarion Browse
	Countdown To CLARION 6 Early Access Release
	Clarion News
	Data Structures and Algorithms Part XIII - Trie Hard
	DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 1)
	DNA for Clarion: Manipulating Browse Cells With A VLBPROC (Part 2)
	The Clarion Advisor: Displaying Clarion Dates In Excel
	Web Validation From Your Clarion App Using NetTalk
	CLASSy ASCII File Importing

