
Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

August 2000 Index
Creating An MS OutLook-Style Menu In Clarion
Microsoft Outlook uses an innovative menu style that’s become quite popular.
Now Steffen Rasmussen shows how to create the same style of menu in a Clarion
application.
(Aug 29,2000)

Five Rules for Managing Complexity: Part 2
In Part 2 of this five part series, Tom Ruby explains how to eliminate redundant
data in your database design.
(Aug 29,2000)

August 2000 News
Clarion news, notes, and happenings from around the globe.
(Aug 30,2000)

BitList Template Update
Jeff Slarve has released an updated version of his BitList template, which lets you
store bit flags in LONG variables. The individual bits can be easily displayed and
updated. Even when gigabytes are cheap, this is a useful technique. Run the
demo to see how it all works.
(Aug 29,2000)

COL: Error! Error! That Does Not Compute!
From the COL archives.
(Aug 29,2000)

Tool Talk: I, Object
Looking for a way to make writing business objects even easier? Enter CapeSoft's
free ObjectWriter.
(Aug 22,2000)

Five Rules for Managing Complexity: Part 1
Tom Ruby kicks off a five part series on managing application complexity with a
rule about repeating fields.
(Aug 22,2000)

Learning To Write A Business Object
Writing useful objects in Clarion still isn't as easy as using existing ABC objects,
but the potential is there. Alan Telford shows how to create a business object that
solves a real-world problem.
(Aug 16,2000)

Legacy to ABC: There is Another Way! Part 3
Daunted by the challenge of migrating your apps from Legacy to ABC? Simon
Brewer shows how to do it one piece at a time with a hybrid of Legacy and ABC

Clarion Magazine -

http://www.clarionmag.com/v2n8/pub/index.html (1 of 2) [9/6/2000 3:40:21 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/
http://www.clarionmag.com/opensource/products.html#new

code. Part 3.
(Aug 16,2000)

Code Documentation: The Achilles´ Heel Of Clarion
Documentation is essential for maintaining an application. Unfortunately there is
no way to automatically document code in Clarion, and manual documentation is
laborious and prone to errors. Stefan Rasmussen outlines a systematic approach
to documenting your code.
(Aug 8,2000)

Displaying Related Fields In ABC EIP
Alan Telford explains how to display related fields when using ABC Edit-In-Place.
(Aug 8,2000)

Legacy to ABC: There is Another Way! Part 2
Daunted by the challenge of migrating your apps from Legacy to ABC? Simon
Brewer shows how to do it one piece at a time with a hybrid of Legacy and ABC
code. Part 2.
(Aug 8,2000)

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine -

http://www.clarionmag.com/v2n8/pub/index.html (2 of 2) [9/6/2000 3:40:21 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Creating An MS
OutLook-Style Menu In
Clarion
(Aug 29,2000)

Five Rules for Managing
Complexity: Part 2
(Aug 29,2000)

August 2000 News
(Aug 30,2000)

BitList Template Update
(Aug 29,2000)

Creating An MS
OutLook-Style Menu In
Clarion

by Steffen Rasmussen

Microsoft Outlook uses an innovative menu style that’s
become quite popular. A while ago I decided to try creating
this kind of menu for my Clarion apps. At first I thought it
would be easiest to have the menu be a part of every
procedure. As the application grew so did the workload, and making changes to the
overall structure of the menu forced me to change every single procedure where the
menu was implemented to keep the same look and feel. So it turned out that the "easy"
way actually was very hard and time consuming. What I needed was an independent
procedure which could contain this menu and control the calls to the other procedures. In
this way I would only have one procedure to edit when I needed to make changes in the
menu. A really great spinoff is that by making the menu in this way I can still use all the
different templates and wizatrons that come with Clarion and third party products.

Figure 1. An application using an MS Outlook style menu.

Clarion Magazine - Creating An MS Outlook-Style Menu In Clarion

http://www.clarionmag.com/v2n8/sub/v2n8outlookmenu1.html (1 of 11) [9/6/2000 3:40:34 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/
http://www.clarionmag.com/opensource/products.html#new

Designing The Menu

The basis of this menu is a Window procedure. In this example I will call it MainMenu.
To create it use the Window – Generic Window Handler template. If you’re following
along you will now have an empty window with a title bar called "caption."

Right click the window and select properties. In the window properties you have to make
some adjustments, since this menu has to be an integrated part of the application.

First of all remove the window title bar by deleting the text in the General field. The
Frame Type is None and Initial Size is Normal.

Figure 2. Window General properties

Clarion Magazine - Creating An MS Outlook-Style Menu In Clarion

http://www.clarionmag.com/v2n8/sub/v2n8outlookmenu1.html (2 of 11) [9/6/2000 3:40:34 PM]

Select the Extra tab and set the Options and Dock state as shown in Figure 3:

Figure 3. Window Extra properties.

Clarion Magazine - Creating An MS Outlook-Style Menu In Clarion

http://www.clarionmag.com/v2n8/sub/v2n8outlookmenu1.html (3 of 11) [9/6/2000 3:40:34 PM]

Press Ok to accept the window properties changes.

The next step is to populate the window with the elements needed for the menu. Since
this is an overall menu which is going to contain links to just about every procedure in
the program, you will need a sheet where you can group the menu elements into different
categories. You can call this ?SheetMain, where each tab contains its own set of
categories. Make the tab location below with joined scroll buttons.

You're also going to need two buttons. One for minimizing and maximising
(?ButtonResize) and another for floating and docking (?ButtonDock) the menu.

When resizing the menu there will be quite a few elements that have to be hidden and
unhidden. Instead of programming this functionality into every object you might as well
place these objects into one group (?GroupHide) to hide and unhide them all at once.

Now for the objects that will have to go into ?GroupHide. Place within this group a
panel (?Panel1) with an outer bevel of –1 and an inner bevel of –1. This panel is going
to be used to colour the background of the different menus.

Apart from the panel there are also going to be five procedure selection buttons. Make
these buttons flat. Each button will be given the name of the group and a sequential
number from 1 to 5 and the default text name will be deleted. In a later article I will
come back to these buttons to assign a button name, an icon and a calling procedure.
Apart from the buttons there is also a control group box with the exact same size as the

Clarion Magazine - Creating An MS Outlook-Style Menu In Clarion

http://www.clarionmag.com/v2n8/sub/v2n8outlookmenu1.html (4 of 11) [9/6/2000 3:40:34 PM]

buttons, and with a Bevel outer –1, within each tab. This group is going to create the
illusion that the button is depressed so the user can see which button has been selected.

The observant reader would probably suggest using flat radio buttons instead. This could
have been used and it would save some programming but the problem with flat radio
buttons is that when selected they "reduce" the colour of the button. On a grey
background I think this is okay, but when using other colours it changes the overall look
and the colour difference is too much. So by just using the boxed group I get the illusion
I want with no colour changes.

That’s nearly it for the objects. The last thing is placing four selection buttons. These
selection buttons are going to represent four different menu groups which will contain
the procedure buttons.

Figure 4. The window menu elements

Now that all the menu elements are placed in the window you just have to rearrange
them so it begins to look like an OutLook menu. You have to keep the elements in their
intended position within the group, sheet, tab or window. One way to do this is by
assigning the object an exact position within the objects properties position tab. An
alternative way is to drag and drop the objects. When doing this the Move Control in
Clarion pops up and asks "Move Button into Tab?" Since you just spent a lot of time
arranging the elements within the sheet and the group and presumably don’t want to have
to do it all over again, you answer No.

To make it easier to make future adjustments to the menu make the ?GroupHide so

Clarion Magazine - Creating An MS Outlook-Style Menu In Clarion

http://www.clarionmag.com/v2n8/sub/v2n8outlookmenu1.html (5 of 11) [9/6/2000 3:40:34 PM]

small that visually its elements are outside the group. To prevent the elements moving
from their position when repositioning the group you will have to resize the group. So if
you want to move the group to the left resize it by making it wider and placing its left
border where you intend it to be. Now just take the right border and resize it into
position.

Picture 5: The rearranged Window menu elements

Now it looks much more like a menu.

Implementing The Menu Functionality

I could choose to have just the OutLook menu on the left side of window, but in some
circumstances this has some disadvantages. Some users don’t like the OutLook menu so
they have to have the option to turn it off. Others have a small screen resolution (for
example 600 x 480 pixels) and therefore don’t have any room for this menu even if they
like to, and so forth.

In an attempt to satisfy the different user needs I have implemented two extra buttons,
?ButtonResize and ?ButtonDock, which you won’t find in the OutLook menu.
Clicking on ?ButtonResize minimizes the menu and changes the button function to a

Clarion Magazine - Creating An MS Outlook-Style Menu In Clarion

http://www.clarionmag.com/v2n8/sub/v2n8outlookmenu1.html (6 of 11) [9/6/2000 3:40:34 PM]

maximizing button. To tell the difference between these two states the icon is also
changed. Likewise with the ?ButtonDock. It also has two window states, float and
docked left. By making the menu float, users with a small resolution can still have the
menu, and when the menu is not used they can minimize it.

Because the window can be in these four combined states (maximized, minimized, float
and docked left) you will have to save the state the window is in, e.g. when minimized
and floating it should still float when it is maximized. To do this you have to create two
local data variables for the procedure MainMenu:

Float Byte
MinimizedMenuBar Byte

For implementing this dock and float functionality into the ?ButtonDock you will
have to place the following source in Control Events.?ButtonDock.
Accepted:

!IF menu is floating
IF Float = 1
 !Change icon
 ?ButtonDock{PROP:Icon} = 'PinUp.ico'
 !The window can only Dock left
 WINDOW{PROP:dock} = Dock:Left
 !Make the window Dock:Left
 WINDOW{PROP:docked} = Dock:Left
 !Set local variable Dock:Left
 Float = 0
 !If the menu bar is minimized
 IF MinimizedMenuBar = 1
 !Set position top left corner
 SETPOSITION(?ButtonDock,0,20)
 ELSE
 SETPOSITION(?ButtonDock,96,21)
 !Set position top right corner
 END
!IF menu is NOT floating
ELSE
 !Change icon
 ?ButtonDock{PROP:Icon} = 'PinDown.ico'
 !Menu is minimized left
 IF MinimizedMenuBar = 1
 SETPOSITION(?ButtonDock,0,20)
 !The window can only Dock left
 WINDOW{PROP:dock} = Dock:Left
 !Make the window Dock:Left
 WINDOW{PROP:docked} = Dock:Left
 !The menu bar has full size
 ELSE
 !The window can only Float
 SETPOSITION(?ButtonDock,96,21)
 WINDOW{PROP:dock} = Dock:Float
 !Make the window float
 WINDOW{PROP:docked} = Dock:Float

Clarion Magazine - Creating An MS Outlook-Style Menu In Clarion

http://www.clarionmag.com/v2n8/sub/v2n8outlookmenu1.html (7 of 11) [9/6/2000 3:40:34 PM]

 END
 !Set local variable to float
 Float = 1
END

The Float variable is used when the menu bar is minimized. In the minimized state it is
always docked left, but it still keeps its docked state in the variable Float so that when
it is maximized it can retain its original state. The resize button also has to have some
code that can maximize and minimize the menu when selected. In the embed list for
?ButtonResize place the following source in Control
Events.?ButtonResize. Accepted:

 !IF menu is floating
IF Float = 1
 !Change icon
 ?ButtonDock{PROP:Icon} = 'PinUp.ico'
 !The window can only Dock left
 WINDOW{PROP:dock} = Dock:Left
 !Make the window Dock:Left
 WINDOW{PROP:docked} = Dock:Left
 !Set local variable Dock:Left
 Float = 0
 !If the menu bar is minimized
 IF MinimizedMenuBar = 1
 !Set position top left corner
 SETPOSITION(?ButtonDock,0,20)
 ELSE
 !Set position top right corner
 SETPOSITION(?ButtonDock,96,21)
 END
!IF menu is NOT floating
ELSE
 !Change icon
 ?ButtonDock{PROP:Icon} = 'PinDown.ico'
 !Menu is minimized left
 IF MinimizedMenuBar = 1
 SETPOSITION(?ButtonDock,0,20)
 !The window can only Dock left
 WINDOW{PROP:dock} = Dock:Left
 !Make the window Dock:Left
 WINDOW{PROP:docked} = Dock:Left
 !The menu bar has full size
 ELSE
 SETPOSITION(?ButtonDock,96,21)
 !The window can only Float
 WINDOW{PROP:dock} = Dock:Float
 !Make the window float
 WINDOW{PROP:docked} = Dock:Float
 END
 !Set local variable to float
 Float = 1
END

Clarion Magazine - Creating An MS Outlook-Style Menu In Clarion

http://www.clarionmag.com/v2n8/sub/v2n8outlookmenu1.html (8 of 11) [9/6/2000 3:40:34 PM]

Previously I mentioned that the menu could have four different states, but as you can see
from the code above it is actually only three. This is because when the menu is
minimized it can only dock left and not float.

Reposition Menu Elements Upon Selection

Now for the menu selection functionality. When the user selects a group button all the
group buttons have to move accordingly to make room for the selected groups procedure
buttons. This rearrangement of the groups has to be triggered every time a group is
selected and when the window is resized.

Instead of implementing this code in every category button you can place the code once
in a routine (See ABC Embeds Are Easy for an explanation of routines) and then use it
by calling it from each group button.

GLO:GroupNumber = 1 !Button Number selected

DO RoutineProcedureStart !Show active procedure

As you can see, this is just what is done in this example. The GLO:GroupNumber
(BYTE) is assigned a value for the group button number and the second line calls a
procedure RoutineProcedureStart.

Procedure Routines (MainMenu)
!******* Reposition the Group Buttons ********
!Last Number = Distance from bottom
?ButtonGroupTwo{PROP:Ypos} = 19
!Last Number = Distance from bottom
?ButtonGroupThree{PROP:Ypos} = 32
!Last Number = Distance from bottom
?ButtonGroupFour{PROP:Ypos} = 45

CASE GLO:GroupNumber
 OF 1
 ?Panel1{PROP:Fill} = 0FF7A48H !Blue
 ?ButtonGroupTwo{PROP:Ypos} = (GLO:Height-58)
 ?ButtonGroupThree{PROP:Ypos} = (GLO:Height-45)
 ?ButtonGroupFour{PROP:Ypos} = (GLO:Height-32)
 OF 2
 ?Panel1{PROP:Fill} = 0C08000H !Another Blue
 ?ButtonGroupThree{PROP:Ypos} = (GLO:Height-45)
 ?ButtonGroupFour{PROP:Ypos} = (GLO:Height-32)
 OF 3
 ?Panel1{PROP:Fill} = 0FF8080H !Purple
 ?ButtonGroupFour{PROP:Ypos} = (GLO:Height-32)
 OF 4
 ?Panel1{PROP:Fill} = 0400080h !Brown
 END
END

Here the group button is placed in its correct position depending on which group is
selected (GLO:GroupNumber). Unfortunately this isn’t all. You have to take into
account that the procedure buttons also have to relocate with the group buttons. So

Clarion Magazine - Creating An MS Outlook-Style Menu In Clarion

http://www.clarionmag.com/v2n8/sub/v2n8outlookmenu1.html (9 of 11) [9/6/2000 3:40:34 PM]

http://www.clarionmag.com/v1n11/sub/v1n11embedsareeasy.html

include the following in the same procedure:

!******* Reposition the Buttons acording to Group ********

SETPOSITION(?ButtonOne,,GLO:GroupNumber*13+10)
SETPOSITION(?ButtonTwo,,GLO:GroupNumber*13+50)
SETPOSITION(?ButtonThree,,GLO:GroupNumber*13+90)
SETPOSITION(?ButtonFour,,GLO:GroupNumber*13+130)
SETPOSITION(?ButtonFive,,GLO:GroupNumber*13+170)

What this code does is to take the group number which was assigned to the variable
GLO:GroupNumber when the group was selected. This group number is than
multiplied by thirteen, which is the height of the group selection button. If for example
group three is selected these three groups will be stacked on top of each other. So now
you have the total height of the groups. To this value you add the distance to each button.

Resizing A Toolbox Window

The Toolbox window unfortunately can’t be resized with the normal Control Template.
So you have to code the functionality into the procedure.

To start off you have to determine how high the program frame is at any given moment,
as that determines the height of the toolbox. That means you have to transfer some data
from the main frame procedure to the toolbox procedure. In the Global Properties select
Embeds, and in After Global Data implement the following source:

EVENT:RefreshWindow EQUATE(EVENT:User)

Return to the Global Properties and select Data. Insert GLO:ToolBoxThread, Long
and GLO:Height, Short.

Exit Global properties and in the embeds for Main(Frame) after Local Objects.
Resizer (WindowResizeClass). Resize PROCEDURE(). CODE:

!Get height of Frame
GLO:Height=ThisWindow{PROP:Height}
!Height of Frame minus Menu and Toolbar
GLO:Height=GLO:Height-25
POST(EVENT:RefreshToolBox,,GLO:ToolBoxThread)

When a resize of the frame has occurred it posts the event refresh ToolBox to the
GLO:ToolBoxThread. Now you have to return to the MainMenu procedure to catch
this event.

First of all store the thread number of the toolbox window in GLO:ToolboxThread
after the embed point Window Events.OpenWindow:

GLO:ToolboxThread =

Thread()

As well, GLO:ToolboxThread is reset when the window is closed. Window
Events.CloseWindow:

GLO:ToolboxThread = 0

Next catch the event resize. After the embed point Local Objects
ThisWindow(Window Manager). TakeEvent PROCEDURE(). CODE.

Clarion Magazine - Creating An MS Outlook-Style Menu In Clarion

http://www.clarionmag.com/v2n8/sub/v2n8outlookmenu1.html (10 of 11) [9/6/2000 3:40:34 PM]

Parent Call:

IF EVENT() = EVENT:RefreshToolBox
 If Glo:ToolboxThread
 DO RoutineInitButton
 END
END

When the window is resized the height of the menu has to change accordingly, as doi the
positions of the different buttons. Instead of using this embedded point for this task you
might as well reuse the procedure you created previously and include the new window
height code.

!**** Reposition the MainMenu ****
!Set size for window
ThisWindow{PROP:Height}=GLO:Height
!Set size for panel
?Panel1{PROP:Height}=(GLO:Height-23)
!Set size for sheet
?SheetMain{PROP:Height}=(GLO:Height-2)

As you can see in the source code the different OutLook style menu elements are given a
height depending on the GLO:Height of the window Frame.

To make all this work it’s very important that the frame font and size are the same as the
MainMenu procedure. If they aren’t the menu size and position will not be as intended.

Starting The Menu

In order to make the menu a part of the initial window (Frame) upon start up, you have to
call MainMenu. This procedure call has to be initiated right after the program starts in
the Main(Frame) embed point, Window Events.OpenWindow:

START(MainMenu,5000) !Start the procedure MainMenu

Now compile and take a look.

As you can see there is still some work to do. In the next article I’m going to look at how
to dynamically change the menu procedure calls.

Download the source

Steffen S. Rasmussen has graduated in Computer Science from Copenhagen Business College. Since
then he has worked as a programmer, system technician and network administrator, and is currently IT
manager. Clarion is a quite a new language to Steffen since his only been working with it since January
2000. But what better way to learn it than by trying to teach others! Steffen has also set up a web site to
collect as many examples of different user interfaces as possible to inspire Clarion developers.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Creating An MS Outlook-Style Menu In Clarion

http://www.clarionmag.com/v2n8/sub/v2n8outlookmenu1.html (11 of 11) [9/6/2000 3:40:34 PM]

http://www.clarionmag.com/v2n9/sub/v2n9outlookmenu2.html
http://www.clarionmag.com/v2n8/pub/outlookmenu.zip
mailto:Radmila@vip.cybercity.dk
http://radmila.homepage.dk/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Creating An MS
OutLook-Style Menu In
Clarion
(Aug 29,2000)

Five Rules for Managing
Complexity: Part 2
(Aug 29,2000)

August 2000 News
(Aug 30,2000)

BitList Template Update
(Aug 29,2000)

Five Rules For Managing
Complexity

by Tom Ruby

Part 2

When you are designing the database, or the data dictionary,
you are actually constructing your program’s model of the
universe. Since the entire universe is awfully big, you
concentrate just on the tiny part of the universe that your
program deals with. The more realistic your model of the universe is, the more able your
program will be to do its job and deal with things you didn’t think about at the start.

In Part 1, I introduced the idea of sticking to rules in order to reduce the complexity of
your application and to speed up development. I presented Rule Number 1 and two
guidelines. To summarize Part 1:

Guideline 1:
Don’t take shortcuts. They might save you a few minutes now, but they’ll
cost you days later.

Guideline 2:
It is a lot less painful to fix a painful mistake now than it will be later on.

Rule Number 1:
Eliminate repeating fields.

In Parts 2 through 5, I’ll continue to introduce rules (five in all besides the guidelines),
show you why they are valuable, and explain how to apply them in your Clarion projects.

You can make up rules for all sorts of things. I’ve seen rules about how big buttons
should be and where they should be located. I’ve seen rules about how lists should be
displayed and about what fonts to use. Many of these serve to enforce a standard look
and feel to the application and to save the developer time in deciding how to arrange a
window. One rule I like to use is:

Guideline 3:
A list is resizable, a form is not.

Clarion Magazine - Five Rules For Managing Complexity - Part 2

http://www.clarionmag.com/v2n8/sub/v2n8complexity2.html (1 of 8) [9/6/2000 3:40:36 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/
http://www.clarionmag.com/opensource/products.html#new

Now, this isn’t a hard and fast rule that says "never make a form procedure resizable,"
but it is a principle to guide me in deciding how or if to make a window resizable. You
see, when a user stretches a list, they obviously want to see more entries. But if they
stretch a form what do they want to see? Do they want to see more blank space? If the
form is mostly a list, then it’s obvious they want to see more entries in the list. The
edit-in-place example from Part 1 contains a form that might be resized.

Anyway, enough procrastinating. Here’s Rule Number 2:

Rule Number 2:
Eliminate redundant data

To explore this rule, I’ll concoct a ridiculous example. Herb is writing a program for a
garage. It is a really big garage with dozens of mechanics, and he would like to keep
track of who is skilled at what sort of job. Herb might think of a table like this:

Mechanic Table
NameMechanic
DateBirth
SocialSecurity
RateHourly
Skill

But, of course, a mechanic probably has more than one skill. A common solution is to
just list the mechanic multiple times in the table. But now Sue Pipebender is getting
married. She has 241 entries in this table, and somebody has to go through all those
entries and change her name. Oh well, what are secretaries for anyhow?

Herb might make his table like this:

Mechanic Table

NameMechanic DateBirth SocialSecurity RateHourly Skill1
Level1 Skill2 Level2 Skill3 Level3 Skill4 Level4

But Rule Number 1 tells us to avoid this sort of thing, so Herb builds two tables:

MechanicTable
NameMechanic
DateBirth
SocialSecurity
RateHourly

SkillTable
NameMechanic
Skill
Level

So now each mechanic has a list of skills. This looks pretty good, except he wants to be
able to search by skill, and somebody will likely enter, "Wheel Alignment" for Crusty
McGinnes, "Alignment" for Joe Schmoe and "Align" for Guido. They could write the
"approved" skill names on a piece of paper and tape it to the monitor but hey, this is the
21st century (well, almost). Use a Post-It instead!

Herb, you can do better than that. Make a table of skills so you can put a drop list to pick
the skill from. So now the tables look like this:

Clarion Magazine - Five Rules For Managing Complexity - Part 2

http://www.clarionmag.com/v2n8/sub/v2n8complexity2.html (2 of 8) [9/6/2000 3:40:36 PM]

MechanicTable
NameMechanic
SocialSecurity
DateBirth
RateHourly

MechanicSkillTable
NameMechanic
Skill
Level

SkillTable
Skill

There’s nothing really wrong with this setup except when Herb changes a mechanic’s
name, he has to change the names of all the related records in the middle table. Using
referential integrity, Clarion will take care of this for you, except…

Clarion always edits a record in memory and writes the record to the table when the user
completes the form. If you put the list of skills on the mechanic form, when you go to
change Sue Pipebender’s name to Sue Arcwelder, her skills disappear! That’s because
there aren’t any records that say Sue Arcwelder in the MechanicSkill table. They
come back when you save the record and the record is actually changed causing the RI
code to change all the Sue Pipebender entries in the middle table to Sue Arcwelder. The
users won’t like this at all. What is Herb to do?

Look closely at Herb’s MechanicSkillTable. It lists the mechanic’s name and the
name of the skill, but it doesn’t really have to. The middle table’s job is just to say "this
mechanic has that skill," and it doesn’t really care what the mechanic’s name is. So here
is where Rule Number 2 comes in. The purpose of Rule Number 2 is not really to reduce
the storage required, but to make updates happen efficiently without surprises. I’ll
rearrange Herb’s tables just a little.

MechanicTable
SysIDMechanic
NameMechanic
SocialSecurity
DateBirth
RateHourly

MechanicSkillTable
SysIDMechanic
SysIDSkill
Level

SkillTable
SysIDSkill
NameSkill

I added a hidden field to the mechanic table and to the skill table which is used solely to
link (or relate) them to the MechanicSkillTable. Notice I said it’s a hidden field. I never
display this field! Why? The user doesn’t care what the SysIDMechanic is, so why show
it to her? Also, these hidden fields don’t mean anything so they never have to be
changed. It might be tempting to use the mechanic’s social security number for this
linking field, but social security numbers sometimes change, particularly when they were
mistyped in the first place. The Social Security Number might be an important key field
for looking up a mechanic’s record, but don’t use it as your primary key.

Sometimes, people suggest making the Social Security Number unique will fix the
problem, but what if you’re entering a new employee record and a previously entered
record has an incorrectly entered number and it’s causing the new record to be rejected?
Hey, I saw it happen, but it still didn’t convince the DP department to use a hidden key
field.

Sometimes this hidden field is called a "surrogate key."

A field which is meaningless to the user never has to change. I’ll express this in
Guideline 4:

Clarion Magazine - Five Rules For Managing Complexity - Part 2

http://www.clarionmag.com/v2n8/sub/v2n8complexity2.html (3 of 8) [9/6/2000 3:40:36 PM]

Guideline 4:
Link your tables by a hidden field that is completely meaningless outside the
system.

So what does this gain? For one thing, updating the mechanic’s name is now
instantaneous. No other records have to be updated. Sure, Herb could buy a power server
to hold these tables and run a fast data engine on it, but can even a power server update a
bunch of records faster than it can update no records?

I went ahead and used a hidden linking field for the skill. Why? For the same reason.
Supposing somebody mistyped "Water Pump." To correct it, they just have to look up
"Water Pmup" in the skill browse and fix it. Immediately, everyone who was skilled in
"Water Pmup" becomes skilled in "Water Pump." By the way, a form on this skill browse
listing all the mechanics who have a skill would be a really convenient place for the users
to ask, "Who can balance wheels?" When the garage wants to go to skill codes, all they
have to do is edit the skill names, and instantly, all the mechanics that know how to
"Flush Cooling System," have skill code 2432. I don’t know why the garage would want
to do this. Perhaps a skill code sounds more computerish.

"But I want to show the name of the skill on the browse, not some stupid SysID."
Indeed! I don’t want to show the SysID on the browse either, in fact, I never want to
show the SysID. When you build your tables in the dictionary editor or whatever your
favorite tool is, specify a key for each of your linking fields. Then specify a relation
between the tables.

Always put your relation in the dictionary. "But there’s business reasons not to relate
these two tables." Nonsense. The tables and relationships are describing the world to the
program. These business reasons sited are actually business rules that limit how do you
things and they are reflected in the program code, or in the procedures and triggers of
your SQL database.

Here is the rule I use to make keys:

Guideline 5:
Use keys to help the application identify records it is interested in.

There are two places where Guideline 5 applies. First, you make your linking fields,
which I usually call SysIDs, into keys. This lets the application quickly find all the
MechanicSkill records that apply to a mechanic, and the Skill record that applies
to a MechanicSkill record. Second, you make a key (or an index if you’re dealing
with SQL) to help a browse identify "the next eight records to show."

Now that you have a relationship between the tables, it is trivially easy to make the
browse show the skill name instead of the skill SysID. You just add the Skill table
under the MechanicSkill table and pick the field that contains the skill name. The
relationship tells the templates how to connect the Skill with the MechanicSkill.
The same thing applies to reports. If you want to make a report showing all the skills
each mechanic has, just put the three tables in the file schematic. Somehow, looping
through the child records on a report just became pretty easy.

Sometimes, data is not redundant but looks like it is. Think about a sales and inventory
system. There might be three tables that look like this:

Clarion Magazine - Five Rules For Managing Complexity - Part 2

http://www.clarionmag.com/v2n8/sub/v2n8complexity2.html (4 of 8) [9/6/2000 3:40:36 PM]

Customer

SysIDCustomer
NameCustomer

Sold

SysIDCustomer
SysIDInventory
DateSold Price

Inventory

SysIDInventory
Description Price

Obviously, the Sold table tracks who bought what and when, but what is that price field
doing there? Wouldn’t it be better to skip the price field in the Sold table and look
instead at the price field in the Inventory table? No, actually they are two different
price fields sloppily named the same thing. The tables should look like this:

Customer

SysIDCustomer
NameCustomer

Sold

SysIDCustomer
SysIDInventory
DateSold Quantity
PriceSold

Inventory

SysIDInventory
Description Price

You see, the Inventory record shows what the store is asking for the item now, but
the Sold record shows what the store was asking for the item when it was sold.
Supposing the storekeeper wanted to keep more information about the price history? You
might build him four tables like this:

Customer

SysIDCustomer

NameCustomer

Sold

SysIDCustomer

SysIDItemPrice

DateSold

Quantity

ItemPrice

SysIDItemPrice

SysIDItem

DateStarting

DateEnding

Price

Inventory

SysIDItem

Description

Now ItemPrice contains a history of the price of each item, with starting and ending
date. I didn’t put the Price Sold in the Sold table because that can be found in the
ItemPrice record. This would work unless the store negotiates prices with the customer,
in which case PriceSold would have to be added back to the Sold record.

To further illustrate, think about a company that ships things to its customers. Each
customer has an address, so you might think you could skip putting the address in the
shipment record like this:

Customer

SysIDCustomer
NameCustomer
CompanyCustomer
Address City
State Zip

Shipment

SysIDShipment
SysIDCustomer
DateShipped

ShipmentDetail

SysIDShipment
SysIDInventory
Quantity

Inventory
SysIDInventory
Description

Clarion Magazine - Five Rules For Managing Complexity - Part 2

http://www.clarionmag.com/v2n8/sub/v2n8complexity2.html (5 of 8) [9/6/2000 3:40:36 PM]

Be careful. This can only record shipments shipped to the customer’s address. Perhaps
the customer wants the shipment shipped to his client or his mother. Maybe the client
moved. You probably want the data to look more like this:

Customer
SysIDCustomer
NameCustomer
CompanyCustomer
Address
City
State
Zip

Shipment
SysIDShipment
SysIDCustomer
DateShipped
AddressShipped
CityShipped
StateShipped
ZipShipped

ShipmentDetail
SysIDShipment
SysIDInventory
Quantity

Inventory
SysIDInventory
Description

Usually, the AddressShipped field is just copied from the Address field, but the
customer might want it shipped somewhere else. Do you want your users telling their
customers they can’t do that just because the program can’t accommodate it? This might
seem like a lot of redundant data, but actually it isn’t. Consider a customer that moves:
you change the address in the customer record, but as you deal with them, you have a
record that the TV they bought last year was shipped to 11535 IL HWY 9, while the
monitor they just bought was shipped to 19215 N 100th Rd. This can be valuable
information if a question comes up, and it’s really cheap to store this extra address.
Remember, remove redundant data to make updating it fast and reliable. Keep historic
data when necessary.

You’ll want to automate the process so the computer is printing the shipping label from
the database. If a question comes up as to where the shipment went, you have the address
it was shipped to right here.

Just be sure to automatically get all the information from the database to the shipping
label! I’ll illustrate this with a true story. Most of the names have been omitted to
protect… you know the drill.

A client wanted to ship me a piece of equipment to test a new program on, so he went to
the manufacturer’s online ordering web site and entered the order. The order never came.
The manufacture’s customer service department had to go searching all over. My client
had entered the order as:

Name: Tom Ruby

Company: His Company Name

Address: 19215 N 100th Rd

City: Industry

State: IL

Clarion Magazine - Five Rules For Managing Complexity - Part 2

http://www.clarionmag.com/v2n8/sub/v2n8complexity2.html (6 of 8) [9/6/2000 3:40:36 PM]

But the clerk looking at the screen, typed the order into their fulfillment system like this:

Company: His Company Name

Address 129215 N 100th Rd

City Industry

State IL

Now, Industry is a small place, and the UPS driver knows me pretty well. If the
equipment had been shipped to Tom Ruby at the incorrectly entered address, the UPS
driver would have figured it out. Or, if it had been shipped to His Company Name at the
right address, the UPS driver would have figured it out. But with neither my name, nor
my address, the equipment wound up at the receiving department of a coal mine for
several days while they scratched their heads wondering who would have ordered
something from His Company Name. The shipping department had confirmation that the
item had been delivered to 129215 N 100th rd and thought all was fine. The order entry
system had recorded that the item was shipped to 19215 N 100th Rd, and all was fine.
Since everything was fine, the manufacturer was at a loss to figure out why I didn’t have
it. Had the shipping address been automatically copied to the shipping label, there
wouldn’t have been a problem.

Another example: you would think that the big credit-card issuing banks with their huge
DP departments would get their data design right, but alas. Have you ever lost a credit
card? They have to close the account and open another one just like it, and you’ll get two
bills, one showing charges and payments made on the old account, and the other showing
charges and payments made on the new account. Do you see what the problem is? (Yes,
you in the back.) That’s right: the card number is the primary key and all the transaction
records use the card number to connect back to the account record. If they used a
surrogate key to relate everything back to the account record, all they would have to do is
set the card number field of the account record to the new card number. Probably they
want to keep the card numbers in a separate table so they can record that this card
belonged to that account but was stolen.

So to recap, here are the two Guidelines and Rule Number 2:

Guideline 3:
A list is resizable, a form is not.

Guideline 4:
Link your tables by a hidden field that is completely meaningless outside the
system.

Guideline 5:
Use keys to help the application identify records it is interested in.

Rule Number 2:
Eliminate Redundant Data

Next time, Rule Number 3.

Clarion Magazine - Five Rules For Managing Complexity - Part 2

http://www.clarionmag.com/v2n8/sub/v2n8complexity2.html (7 of 8) [9/6/2000 3:40:36 PM]

Tom Ruby, who is no relation to the man who shot Lee Harvey Oswald, is an
independent contractor living in the middle of a hayfield in Central Illinois with his
wife Susan and two red-headed sons, Caleb and Ethan. He has been using Clarion
for Windows since the summer of '95. Before that, he was a "TopSpeeder" using
Modula II, so he has never used the DOS versions of Clarion.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Five Rules For Managing Complexity - Part 2

http://www.clarionmag.com/v2n8/sub/v2n8complexity2.html (8 of 8) [9/6/2000 3:40:36 PM]

http://www.netins.net/showcase/tomruby/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Creating An MS
OutLook-Style Menu In
Clarion
(Aug 29,2000)

Five Rules for Managing
Complexity: Part 2
(Aug 29,2000)

August 2000 News
(Aug 30,2000)

BitList Template Update
(Aug 29,2000)

Read The July 2000 News

Clarion News

August 29, 2000

Buggy 1.1 Available
An update to Buggy, the Bug tracking tool, is available to all registered
users. The major improvement is the ability to automatically send
EMails to customers and responsible persons upon user-definable
events.

SetupBuilder 3.10 Coming Soon, Price Increasing Sept 1
SetupBuilder’s price is increasing from $119 to $149 on September 1.
Purchase SetupBuilder 3.0 now for $119 and you will get a free update
to the new version (of course, all registered SetupBuilder 3.0 users will
get a free update). Major enhancements in 3.10 include support for unattended installations, Spanish,
Russian, and Portuguese language modules, Windows and Clarion version condition files, support for
administrator privileges on Windows NT and 2000, NT4 Service Pack 6a and Windows 2000 Service
Pack 1 detection, multiple OS version checking, removal of "in-use" files, and more Clarion code
examples.

Gitano Software C5.5 CR1 Compatibility List
The following Gitano utilities are compatible with C5.5 CR1 and are now available for download:
G-Cal, G-Calc, G-Notes, G-RegPlus, G-RegDistributor, and G-Buddy

UltraTree Platinum Premium 5.7 Adds Style Sheets
UltraTree Platinum now fully supports listbox text style sheets. You can now use a different font in
each section of the tree, use heading styles for headers, normal styles for the data, or even mix fonts in
the same row. Styles can be customized by end users. No coding required. Style sheets require Clarion
5 or Clarion 5.5, and are exclusively a premium feature. Platinum Premium also supports tagging of
records and tagging of subtrees, and will export tagged rows for reporting. Clarion 5.5 Candidate
Release 1 is supported.

CPCS Faxing v1.0 Released
CPCS has released the CPCS Faxing AddOn v1.0.The Faxing AddOn allows you to fax CPCS reports
directly from your program to one or more recipients. Faxing is performed by WinFax PRO v9.03 or
later (a copy of WinFax PRO is required on each machine that needs to fax). A demo program, and help
file can be downloaded from the CPCS website. The Faxing AddOn is $129.

Wild Wild Wares Templates Updated
New templates, updates and demos at Wild Wild Wares include enhancements to the Hover control,
registry PutReg and GetReg functions, windows message subclassing, screen saver enable/disable, style
sheets, debug templates, bug reporter, and more.

Clarion Third Party Profile Exchange Updated
The Clarion Third Party Profile Exchange now contains 202 product profiles, and 165 vendor profiles.
New in this edition, the CPCS Faxing AddOn and the Winword Previewer.

Clarion Magazine - August 2000 News

http://www.clarionmag.com/v2n8/pub/v2n8news.html (1 of 5) [9/6/2000 3:40:37 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/
http://www.clarionmag.com/opensource/products.html#new
http://www.clarionmag.com/v2n7/pub/v2n7news.html
http://www.novosys.de/Buggy/Buggy.html
http://www.lindersoftware.com/
http://www.gitanosoftware.com/
http://www.paragondandd.com/customers.htm
http://www.cpcs-inc.com/download.htm
http://web.starlinx.com/jean-marc/wildwild.htm
http://www.encouragersoftware.com/

August 22, 2000

James Fortune’s ETC Presentation Now Available
James Fortune has set up a page for his ETC2000 presentation on writing (or not
writing) help for applications. James’ PowerPoint presentation is available in two
versions, with and without sound. Also on the site, more ETC pics.

Ragazzi Templates/Utilities Update
New versions of the Ragazzi templates, utility DLL, and Developer’s Toolkit have been
uploaded. These care compatible with Clarion 5.5, Candidate Release 1.

Queue Edit in Place Template Update
Keystone Computer Resources has announced an update to their Queue Edit in Place
Template templates. Version 1.00.002 includes enhanced support for multiple Queue
Edit in Place Controls and colored columns, and is compatible with Clarion5.5EE.

Nettools Enterprise Edition Update
Keystone’s NetTools Enterprise Edition templates have been updated. Version 1.00.020
includes additional function prototypes, enhanced installation, and automatic template
registration. Compatible with Clarion5.5EE.

ARCO Word Reporter Version 1 Released As Freeware
To celebrate the success of the current release of ARCO Word Reporter, ARCO
Software has released version 1 as freeware. ARCO Word Reporter integrates MS Word
as a reporting engine, with Word’s full formatting power. Please note that ARCO
provides no support for freeware versions of its software.

Gitano Software Survey
Gitano Software has a short online survey for Clarion developers. Results will be
published after the survey is complete.

New Winword Previewer
Oleg Fomin, author of Fomin Report Builder, has released Winword Previewer, a
template which allows Clarion applications to send reports to MS Word for previewing
and minimal editing.

Goodhew Heads New Clarion Products/Services Company
Randy Goodhew, a long time Clarion software developer, author, and lecturer, along
with a group of partners, investors and advisors, has formed eQuarion Corporation. "Our
goals are to provide Clarion users with an array of products and services that will
enhance their use of Clarion and to assure a growth path toward industry standards.",
says Randy Goodhew. "It is vital that Clarion developers be able to co-exist in the
current Windows environment of multi-language and component driven development."
The company sees Clarion as a "primary or subordinate tool for developing
mixed-language and database oriented applications," and is working toward partnerships
with industry-standard development tool suppliers. Permanent offices will be located
near Cincinnati, Ohio and the domain www.equarion.com has been registered for use as
a website (now under construction for later this year). A future press release will be
issued when additional information is available.

Clarion Magazine - August 2000 News

http://www.clarionmag.com/v2n8/pub/v2n8news.html (2 of 5) [9/6/2000 3:40:37 PM]

http://www.sterlingdata.com/
http://www.developerplus.com/
http://www.accountforce.demon.co.uk/jfa/Clarion/Conferences/etc_2000.htm
http://www.software-by-ragazzi.com/
http://www.keystonecr.com/cw_qeip2.htm
http://www.keystonecr.com/cw_nettools2.htm
http://www.arcosoftware.com/devtools/devtools.html
http://gitanosoftware.com/survey.htm
http://members.xoom.com/fominrb/wp.htm
mailto:rgoodhew@fuse.net

August 15, 2000

C5.5 Candidate Release Available
Clarion 5.5 Release Candidate 1 is now available for download. The beta still has some
rough edges, but contains a number of new features like RTF and HTML help
support. Frequent electronic releases are planned until all the bug fixes and new features
have been delivered. Feedback is appreciated. To get the candidate release you fill out a
user profile and the download instructions are mailed to you. This registration process
was created using the as yet unreleased ASP templates! These templates are designed for
high volume requirements and are getting some early testing as a large number of users
are expected to download the candidate release. PDF manuals will be posted for
download on Thursday. Clarion 5.5 Professional users will receive upgrade instructions
within a few days.

New Clarion Web Ring
Gitano Software has created "The Master Web Ring", a conglomerate of resources for
the Clarion community. Anybody that has anything of value to the Clarion community
can be included. Content and link style guidelines apply.

LSZip Installation Changes
A version of LSZip is now available that does not require a password to be installed.
Only the UserName and UserPIN are required. All known warez site keys are locked
now.

UltraTree Platinum Update
UltraTree release 5.62 is now available for download by registered users. Tagging can
now be enabled or disabled at individual row granularity. A virtual method is called
during loading of each row in a tagging-enabled tree section. If it returns FALSE,
tagging is disabled for that row. Several additional methods and properties support the
feature. New methods return the "leafness" of the row whose number is passed as an
argument. If runtime translation is in use, PopupClass.SetTranslator calls are now an
optional feature. As well, the User Guide has been revised.

New Telephony Page
Craig Ransom has created a new "Lair Page" for telephony using ExceleTel's TeleTools.
The page contains essential instructions for using TeleTools with Clarion 5b.

Silicon Raid Almost Free Bug Tracker Update
The link to download the "almost free" bug and defect tracker known as Silicon Raid has
been updated. Shawn Mason is also looking for input on function point per bug/defect
tracking.

WSpell Spellchecker Demo
Leonid Chudakov has made available a demo showing WinterTree’s WSpell
spellchecker ActiveX control. Requires 30 day trial version of WSpell.

August 8, 2000

Gitano Utilities Update
The Gitano G-RegDev, G-RegPlus, and GRDistributor utilities have been updated and are available for
download. These are free updates to all registered users.

BaseCw International Version Updated
The new international version of BaseCw (V3.0 freeware) from Eric Griset is available. This product

Clarion Magazine - August 2000 News

http://www.clarionmag.com/v2n8/pub/v2n8news.html (3 of 5) [9/6/2000 3:40:37 PM]

http://www.softvelocity.com/
http://www.gitanosoftware.com/clarionsource.htm
http://www.lindersoftware.com/
http://www.paragondandd.com/plat_demos.htm
http://www.pcferret.com/teletools.html
http://www.issda.com/Setup_SRaid.exe
http://cwstuff.homepage.com/clarion_products.htm
http://www.gitanosoftware.com/
ftp://ftp.cia-informatique.com/pub/clarion/

manages mail and news message archives. If you were previously using BCW V2.0, you can also
download a utility to convert your BCW2.0 database to V3.0.

SetupBuilder Language Modules Updated
The SetupBuilder 3.0 Installation System now supports the following languages: Danish, Dutch,
English (US), French, German, Norsk (Bokmal), Russian, Spanish and Slovenian.

Insight 1.0 Beta 2b Released
Beta 2b of the Insight graphing product is now available. New in this beta is the ability to interact with
the graphs; the user can change the graph type, print the graph, save it as a file, and so on. Drill-down
graphs are also supported, as is auto-shading. This product is a Clarion DLL and not an OCX. Insight
will usually cost $299, but will be priced at $199 for the duration of the beta program. Beta users get
free upgrades to the gold release, and beyond.

NetTalk 1.0 Beta 8 Released
NetTalk Beta 8 is now available. There has been a lot of work on the SimpleConnect feature, and email
support is now included, including MIME, SMTP and POP3. Documentation has also been overhauled.
The normal price for NetTalk is $299, but it's currently on at $199 during the beta program. Beta users
will automatically get a free upgrade to the gold release, and beyond.

Special Agent Version 1.24 Released
CapeSoft’s Special Agent has had a minor upgrade. This release focuses on reducing the amount of
generated code, and better support for IMM windows. Compatibility with a number of third party
characters is under development. Special Agent costs $199.

WinEvent Version 2.7 Released
WinEvent is a library that simplifies the creation of background applications. It also includes a number
of functions for reading and writing to serial ports. This update adds some advanced Comms functions,
which allow you to set the state of the hardware lines. In addition support for mouse clicks on the Icons
in the System Tray has been improved. WinEvent costs $30.

CapeSoft To Support Clarion 5.5
CapeSoft will be recompiling all version-dependent DLLs as soon as Clarion 5.5 becomes available.
Updated will be posted on the web site.

Bruce Johnson To Speak At Brazilian DevCon
CapeSoft’s Bruce Johnson will be attending the Brazillian Devcon August 21 and August 22, 2000, in
Sao Paulo. For more information on the Devcon contact Sergio Baratojo at
sergio.baratojo@lifetech.com.br.

solid.software Office Closed For Holidays
The solid.software office will be closed from August 7 until August 20. All orders and support mails
will be processed as soon as Chris & co. are back from holidays in Switzerland.

DeveloperPLUS Introductory Pricing To End Soon
Lee White’s DeveloperPlus, an e-commerce and software delivery service for Clarion Developers, will
end its introductory pricing soon. DeveloperPLUS provides enabling technologies and services that
allow developers to offer their products online without the costs and overhead involved with sales and
fulfillment. Customers can pay by Visa, MasterCard, Amex, Discover and Novus.

RemFlash Goes Gold
RemFlash a reminder template which also provides "Instant Messenger" capabilities when used in a
networked configuration. Features include easy implementation of reminders, visible warnings when a
reminder is due, option to beep or play a WAV, and complete or reactivate a reminder. Priced at $149
with all source and no runtime royalties.

Silicon Raid: Free Bug And Defect Tracker
Silicon Raid is a mostly free bug and defect tracker. Features include: per program/per revision
tracking, unlimited queries/reports, revision report for manuals, help files etc, replication of bugs,
PDF/DOC manual. Free for one person shops, extra licenses are $59.95. The install password is "YO".
The initial login is "1" and the password is "1" (for those who won't read the install screens).

Clarion Prize Draw

Clarion Magazine - August 2000 News

http://www.clarionmag.com/v2n8/pub/v2n8news.html (4 of 5) [9/6/2000 3:40:37 PM]

http://www.lindersoftware.com/
http://www.capesoft.com/
http://www.capesoft.com/
http://www.capesoft.com/
http://www.capesoft.com/
http://www.capesoft.com/
http://www.capesoft.com/
mailto:sergio.baratojo@lifetech.com.br
http://www.solidsoftware.de/
http://www.developerplus.com/
http://www.sterlingdata.com/
http://www.xdrive.com/share/965418256370vHh9KsHjqBXVNE0kUG4M
http://www.sterlingdata.com/draw.htm

Sterling Data is holding a free prize draw worth up to $195 through August 13, 2000. The prize is any
one of LogFlash, SearchFlash, IMPEX, CopyFlash, BackFlash, and RemFlash.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - August 2000 News

http://www.clarionmag.com/v2n8/pub/v2n8news.html (5 of 5) [9/6/2000 3:40:37 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

ClarionMag
Main Page

COL Archive
Main Page

Log In Subscribe Frequently Asked Questions
Links To Other Sites Open Source Project Issues in PDF Format

Free Software Advertising Contact Us

A Free Service of Clarion Magazine - Read the Press Release

"Error! Error! That Does Not Compute!"

by George Cobaugh

NOTE: Clarion Magazine was not able to obtain an archive of the original source code for this article. If
you have the source, we'd very much appreciate it if you would email it to editor@clarionmag.com so
we can post it for other readers.

We’ve come a long way from the sixties, where this famous quote from a popular television series was the type of
error message we expected from a computer (at least when we were kids). Now, we are application developers and
we have to think of the end users when we process or trap errors. Also, when we get a support call and this is the
error message that is relayed to us from our program, we don’t have a clue what might be the problem. Then we
sound pretty lame when we inform our customer that we don’t know what this error means.

In the past, we have mostly relied on Clarion to process our errors for us. A lot of times I have been asked the
question: How can we change the error messages that are generated by the templates and runtime library in Clarion?
My answer would always be: Change the templates (for part A) and you really can’t (for part B). The end result for
most of us would be to just ‘go with the flow’ and use the generated errors.

When we would trap our own application errors, it would be by providing a form of the MESSAGE statement.
Sometimes CASE MESSAGE would be used to give the end user a choice of how to handle the error. Most of the
time, we would put the same MESSAGE structure in several places in our programs with very little change in the
text. Just type it over and over.

Now, we have an advantage of OOP and C4, we have an object called GLOBALERRORS that we can use to our
advantage. Here is where Clarion processes the internal messages it generates, by making a call to this object. It is
one of the Base Classes included with the ABC classes and is included in every program we write using the ABC
templates. We can use this object like all the other objects in C4 ABC. We can change the properties and call the
methods from anywhere in our application because this object is instantiated globally.

A common error that is processed by Clarion is the duplicate key error. If we use some cryptic naming

Clarion Magazine: The Clarion Online Archives

http://www.clarionmag.com/col/v1n10/errorerror.html (1 of 5) [9/6/2000 3:40:38 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/policies/subscribe.html
http://www.covecomm.com/
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/col/pressrelease1.html
mailto:editor@clarionmag.com

conventions for the files, fields, and keys in our dictionary, the message generated can be a little confusing for our
end users. For example, if we have a file named FILE1 with a key called F1:K2, this doesn’t mean anything to
anyone but us. The message generated by default would look like this:

We would know that we have a duplicate key, and we, as the developer, would know which key it was, and which
field probably caused it. Our end user, on the other hand, would probably not be able to know what they did wrong,
or what data caused the error. At least until they have encountered this a time or two. On the other hand, if they saw
this:

They would have a better chance of recognizing what it was that caused it, and be able to correct the situation on
their own without calling us in the middle of the night and waking us up, and depriving us of our beauty sleep. It tells
them that it was a duplicate field, and tells them which field is probably the duplicate. They only have to change the
text field, and the problem goes away. This would require a template change in the standard templates. OOP makes
this easier now.

Another function of the Error Class is the messages that are used for things like: The delete message, when we delete
a record from the browse. The message to add another record if we have this selected in the Messages and Titles
properties of our form procedures. The ToDo message for procedures we have not yet defined in our application.
Etc... These messages would require a template change to change the messages in the CW2.003 (and before) standard
templates. These would be permanent changes and would reflect in all of our applications from that point on, or we
would have to use and maintain separate template sets for separate programs. Now, we have this functionality as an
object. Since it is an object, we can change the properties at runtime, and call the methods when we need to use this
object. OOP makes this easier.

Finally, we have our own application specific errors that were handled with the MESSAGE or CASE MESSAGE
functions before. Guess what? That’s right, OOP makes this easier. We can handle all of these things with the object
GOBALERRORS that the ABC template so kindly creates for us globally.

I’m going to show you how we can use the ‘out of the box’ errors class to create our own custom error messages and
change the existing default error messages by using this Class. It is really quite easy to do. Let’s look at some of the
things that have been provided for our enjoyment.

A data structure to contain the error ID, the severity level of the error, and the text for the caption bar and the
message.

1.

A list of common window and file errors that we can use and/or override with our own messages.2.

A set of macro symbols to facilitate the inclusion of information into our messages, such as %field and %file
to allow for common messages with substitution of field names, and file names.

3.

Clarion Magazine: The Clarion Online Archives

http://www.clarionmag.com/col/v1n10/errorerror.html (2 of 5) [9/6/2000 3:40:38 PM]

The methods to call to add, change, remove, and process the errors.4.

The Data Structure

AppErrors GROUP
Number USHORT(7)
 USHORT(Msg:RebuildKey)
 BYTE(Level:Notify)
 PSTRING('Invalid Key')
 PSTRING('%File key is invalid.')
 USHORT(Msg:FieldOutOfRange)
 BYTE(Level:Notify)
 PSTRING('Range Error')
 PSTRING('%Field must be between %Message')
 USHORT(Msg:MyError1)
 BYTE(Level:Notify)
 PSTRING('This is my error number 1')
 PSTRING('%Field is %Message')
 USHORT(Msg:MyError2)
 BYTE(Level:Notify)
 PSTRING('This is my error number 2')
 PSTRING('%File is locked. Wait a few minutes and '|
 &'try again.')
 USHORT(Msg:MyError3)
 BYTE(Level:Fatal)
 PSTRING('This is my error number 3')
 PSTRING('This is a fatal error and will end the '|
 &'program')
 USHORT(Msg:UnknownError)
 BYTE(Level:Fatal)
 PSTRING('Unknown Error')
 PSTRING('This is an unknown fatal error '|
 &'and will end program')
 USHORT(Msg:ProcedureToDo)
 BYTE(Level:Notify)
 PSTRING('Process Not Completed')
 PSTRING('The process you have selected '|
 &'has not been completed yet. '|
 &'It will be available in a later update.')
 END

This is the data structure that contains the ID, messages, and severity level of the errors. This is a sample of a
structure that is used in the sample app included with this article. It can be found in the Global Data embed point. It
includes the override of some Clarion messages, and the addition of some application messages. The first USHORT
in the group structure is a constant that informs the object that this structure contains 7 messages. The other
USHORT is repeated for each message and contains an equate for the message ID. The standard Clarion messages
have the equates in the ABERROR.INC file. The datastructure for the default messages can be found in the
ABERROR.TRN file. This structure, by using the same equates (ID’s) as the default structure, causes my new
messages to be displayed anytime the program encounters one of these situations. To add these messages to the
GLOBALERRORS object, you must call the method AddErrors to include/override the messages defined in the data
structure above. I placed this call in the window manager init method embed in the Main procedure in my app.

GlobalErrors.AddErrors(AppErrors)

Clarion Magazine: The Clarion Online Archives

http://www.clarionmag.com/col/v1n10/errorerror.html (3 of 5) [9/6/2000 3:40:38 PM]

The parameter is the label of the data structure containing my messages.

I also used the AddErrors method to override some messages at the procedure level. These were: the Duplicate Key
message shown above, the Delete Record message, and the Add Another Record message. These can be found in the
frmFile form procedure in the sample app. Also, when you override the messages at the procedure level, you have to
remove them when you leave the procedure. So, I made a call to the RemoveErrors method in the Window Manager
Kill embed. This removed my overrides and reinstated the Clarion default messages for any other procedures. In this
way, you can make the standard messages custom at the procedure level and create your messages in context with the
procedures.

You might notice that there is a BYTE field in each message structure that contains an equate starting with Level:.
This is the severity level of the message. There are 5 levels provided by default with the class. Level:Benign, User,
Notify, Fatal, and Program. Level:Benign returns Level:Benign and does no further processing. Level:User displays
the message and returns Level:Benign or Level:Cancel depending on the user selection of the YES or NO button on
the message window. Level:Notify displays the message and returns Level:Benign . Level: Fatal displays the
message and halts the program. Level:Program is treated the same as Level:Fatal.

The methods used to handle the processing of the custom messages are:

SetField(‘FieldName’) This method sets the value of the %field expansion macro.

SetFile(‘FileName’) This method sets the value of the %file expansion macro

AddErrors(DataStructure) adds/overrides the messages declared in DataStructure to the error object.

RemoveErrors(DataStructure) removes the messages declared in DataStructure from the error object, and
reinstates the original messages if they were overridden by an item in DataStructure.

ThrowMessage(ErrorID,’Message Text’) sets the value of the %message expansion macro and processes the error.

Throw(ErrorID) process the error.

These are the methods used in the sample program provided with this article. Other methods of note are:

ThrowFile(ErrorID,’FileName’) sets the value of the %file expansion macro and process the error.

SetFatality(ErrorID,SeverityLevel) changes the severity of the error specified by ErrorID.

You can look up the other methods used by this object in the Application Handbook included with C4. I have only
shown those methods I have used in the sample app along with a couple of others that you might use.

To make things even easier, I created a function in the app to handle the ‘Throw’ methods used to eliminate even the
few lines of repetitive code needed to process the errors. The structure of this function is such that it calls the
appropriate ‘Throw’ method and the SetField, or SetFile method based on four optional parameters. The prototype of
the function is:

DoError (<USHORT>,<STRING>,<STRING>,<STRING>)

The code in this function processes the proper ‘Throw’ method based on the inclusion of certain parameters.

IF NOT OMITTED(2)
 GlobalErrors.SetField(xField)
END
IF NOT OMITTED(3)
 GlobalErrors.SetFile(xFile)
END
IF NOT OMITTED(1)
 IF NOT OMITTED(4)
 GlobalErrors.ThrowMessage(xErrID,xMsg)

Clarion Magazine: The Clarion Online Archives

http://www.clarionmag.com/col/v1n10/errorerror.html (4 of 5) [9/6/2000 3:40:38 PM]

 ELSE
 GlobalErrors.Throw(xErrID)
 END
ELSE
 GlobalErrors.Throw(Msg:UnknownError)
END

As you can see, I only have these method calls in one place in the app, and each time I need to process an error or
message, I just add one line of code:

DoError(Param1,Param2,Param3,Param4)

By omitting any parameter(s), I can control how and which type of error message is called.

Please play with the sample included here and see how easy it is to add your own custom errors and messages, as
well as override the standard clarion errors/messages. Check out my override of the ToDo message. It can even be
used as a marketing tool for your application for added functionality.

This is another example where OOP actually simplifies our life, after we learn how it works. I was dragged into the
OOP world kicking and screaming when C4 first went Beta, and then I started testing and playing with it. Now, I
don’t know how I got along without it. So many things are so much easier to manipulate now. Even Errors and
Processing Messages.

If you have any comments or questions about the sample app, or this article, please email me at
gcobaugh@ktsoftware.com. I might even answer<g>. Until we meet again, right here in our own little corner of
cyberspace, Happy Coding.

Copyright 2000 by CoveComm Inc. All Rights Reserved.
Originally published by Online Publications Inc, 1997-1999.

Clarion Magazine: The Clarion Online Archives

http://www.clarionmag.com/col/v1n10/errorerror.html (5 of 5) [9/6/2000 3:40:38 PM]

mailto:gcobaugh@ktsoftware.com

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Tool Talk: I, Object
(Aug 22,2000)

Five Rules for Managing
Complexity
(Aug 22,2000)

August 2000 News
(Aug 22,2000)

Tool Talk: I, Object

By Tom Hebenstreit, Reviews Editor

Hmmmm. Let’s see – last week Alan Telford had a nice
article on getting what he called Business Objects integrated
into his applications, and this week I will be discussing pretty
much the same concept using another freely available tool.

Do we see a trend here?

You bet your bippy we do. It is my opinion that many Clarion developers are becoming
more and more convinced of the utility of objects, even those who aren’t fans (or even
users) of ABC. Unfortunately, as soon as they get excited about writing and using their
own classes and objects, they run smack-dab into a wall: There are no tools at all in the
box to help you write and use your objects (no, I’m not including the source editor as a
RAD tool!).

A Little History

A few years back, I was at a DevCon where then TopSpeed CEO Bruce Barrington
proclaimed that Borland, with their mantra of objects-objects-objects, was barking up the
wrong tree. TopSpeed’s superior answer was, as you might guess,
templates-templates-templates.

Only a few years later, I find it somewhat ironic that after jumping whole hog into
objects-objects-objects themselves, the only way that TopSpeed provided for you to
integrate your own object classes into their RAD environment was via the distinctly
non-RAD method of hand-coding everything.

Excuse me, but someone is missing the point here, and I don’t think it’s me. (And yes, I
know that Clarion is now a SoftVelocity product, but I don’t feel that SV should be
whacked on the head for this long-standing omission in the Clarion IDE. At least not
yet…)

Fortunately for the hand-code-a-phobics among us, a few kind souls have come up with
solutions to this dilemma. And how did they do it? By using
templates-templates-templates, of course.

Getting Objective

Clarion Magazine - Tooltalk: I, Object

http://www.clarionmag.com/v2n8/sub/v2n8tooltalk.html (1 of 6) [9/6/2000 3:40:39 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/

The good people at CapeSoft provided the original solution to the problem over two
years ago in the form of a free template set called ObjectWriter, currently at version 1.5.
The stated goal for ObjectWriter is to try and make custom classes and objects more
visible within the Clarion IDE, as well as taking greater advantage of the IDE and
templates to automate much of the tedious detail work that hand-coded classes require.

Does that sound familiar? It should, as that is the basic premise of Alan Telford’s article
and templates as well.

By the way, if you haven’t read Alan’s article yet, go ahead and take a look at it now – it
will save some time and I won’t have to wade through some of the basic concepts again
here (thanks, Alan!). I’ll also be pointing out a few areas where the two template sets use
different approaches.

Installing ObjectWriter

The ObjectWriter templates have a professional quality install that pretty much does it
all for you. Clear instructions are provided in an HTML file that is easy to view and
print.

ObjectWriter stores the INC and CLW class files it generates in your Clarion \LibSrc
folder, right along with ABC and any other classes you may have floating around.
Classes can be made ABC compliant by flipping a switch, but it is not a requirement.
You can use your classes in both ABC and Legacy application, depending on how you
code them, of course. By that I mean you cannot create a class that uses ABC methods,
and then expect it to work in Legacy (and vice-versa).

In my case, I am using ObjectWriter to add classes to an ABC-based multi-DLL
application where I want to both share certain global objects across the EXE and DLLs,
and also create local objects as needed.

Let’s start at the beginning and see just how hard it is to create a class and share it in
multiple applications.

Slowly I turned, Step By Step

The first thing I did was create a separate application where I could store all of my class
definitions. This isn’t really necessary, but after some experimentation it just seemed
logical to keep all of my classes together.

Within this app, the first thing to do was add a global extension template that activated
ObjectWriter.

Figure 1. The ObjectWriter Global extension template

Clarion Magazine - Tooltalk: I, Object

http://www.clarionmag.com/v2n8/sub/v2n8tooltalk.html (2 of 6) [9/6/2000 3:40:39 PM]

http://www.capesoft.com/

As you can see, your choices are pretty simple. In my case I chose not to include my
classes within the ABC chain. Why? Because they will contain information exclusive to
my application, and if I make them part of the ABC chain they would automatically be
included in the dictionary DLL of every other multi-DLL application I write (meaning
lots of hassles and compile errors). I also checked the Set Member On button, because I
knew these classes were going to require access to and knowledge of the applications
data files.

Now, it would have been entirely possible to do what I wanted to do using ABC
compliant classes and keeping the Member switch off. For example, I could have
abstracted the file handling similar to the way that the ABC FileManager does things,
but that was also entirely more effort than I wanted to expend in this case. Why build an
airplane if you only need to cross the street?

Moving along, the next step was to create two special modules, using new options
provided by the templates. The first would be the class include (INC) file, while the
second would be the actual code (the CLW) file. To do this I just used the Application |
Insert Module menu options. As shown in figure two, there are two new module types
provided by ObjectWriter.

Figure 2. The ObjectWriter Module options

Clarion Magazine - Tooltalk: I, Object

http://www.clarionmag.com/v2n8/sub/v2n8tooltalk.html (3 of 6) [9/6/2000 3:40:39 PM]

Creating one of each, I now had a place to put my classes. In the INC module, I added a
new procedure called StateClass using the ObjectWriter Class Description template.
This is really the key template in ObjectWriter, as it is here that you specify your class
properties and methods. How? There are two extra buttons on the procedure properties:
Properties and Methods. You just type in the properties, specifying the data types and
other pertinent information. For Methods, you use the fully qualified name and specify if
the method is public, private or protected; and also whether it is normal or virtual. When
I say fully qualified, I mean that you have to include the class name. For example, the
procedure name for the Init method of my StateClass was named
StateClass.Init.

Once you have entered your properties and method names and saved the Class definition
procedure, your methods appear on the application procedure tree as a ToDo just like
any other new procedure. When you double click on them, you can choose the procedure
type and then enter the prototypes, etc. just like you normally would. I pretty much
always choose the Source procedure, but CapeSoft says that they have had success using
the Window Procedure as well – and that can mean no hand-coding windows and accept
loop processing.

So, after adding a couple of simple classes to my application, it ended up looking like
this:

Figure 3. App procedure tree using ObjectWriter

Neat, clean and visually clear – I like it. Click on the Class definition to change
properties; click on the method to write the code. ObjectWriter handles everything else.
It generates the INC and CLW files, handles setting all of the required mode flags, and
basically makes it reasonable to work with your own classes within the Clarion IDE.

If you read Alan’s article, you’ll see one major difference between his templates and
ObjectWriter: His templates place all method code within one procedure, while
ObjectWriter normally places each method within its own AppGen procedure.

Which way is better? That depends on the types of classes you write. If you have
myriads of tiny methods, the OW method may become cumbersome (but no more so

Clarion Magazine - Tooltalk: I, Object

http://www.clarionmag.com/v2n8/sub/v2n8tooltalk.html (4 of 6) [9/6/2000 3:40:39 PM]

than any large app).

Sharing The Wealth

Ok, you have these fabulous classes all ready to go now – so how do you use them in the
other DLLs or an application EXE?

Elementary, my dear Watson. ObjectWriter has another global extension that you add to
your other apps called, amazingly enough, "Use other objects in this application." There,
all you do is specify the name of the class INC file. For example, I had named my class
INC and CLW files ObjCls32. By entering that in the list of objects I wanted to use, I
now had complete freedom to use the class in my application. To illustrate, I could
declare an instance of the StateClass you saw in Figure 3:

MyStates StateClass ! From ObjectWriter app/DLL

I could then use it like this:

MyStates.Init
Message('MyState class||Mystates.RecCount: ' |
 & MyStates.RecCount & ' on ' |
 & format(MyStates.OpenDate,@D17),'**TEST**',ICON:HAND)

In this trivial example, the Init method opened and read a file, also setting some
properties such as the number of records in the file and the date opened.

Wrapping It All Up

I have only skimmed over many of the more advanced features of ObjectWriter, but I
hope you now have a decent feel for how simple it is to use.

Of course, neither ObjectWriter or Alan’s templates address the real problem, and that is
that this type of functionality should be built into the IDE.

Having two free solutions at hand does take a lot of the pain out of the process though,
and they both prove that it wouldn’t be that hard for SV to implement something
natively within the IDE.

By the way, both templates are also the product of real-world situations. Bruce Johnson
of CapeSoft has told me that they use ObjectWriter to help build many of their other
products, and Alan’s was obviously oriented around practical goals.

I haven’t used Alan’s templates yet, but I can vouch for how much easier ObjectWriter
has made my life in that multi-DLL application I am building. I highly recommend that
you check out both tools – you certainly can’t complain about the price.

So… thanks guys! The Clarion community owes you a big round of applause!

ObjectWriter can be downloaded free of charge from http://www.capesoft.com.

A longtime Clarion user, Tom Hebenstreit is an admitted tool junkie who refuses to go straight and
code without his arsenal of third party products. During those rare moments when he isn't either using
or writing about Clarion, he indulges his twin passions for blues and beer by performing around
Southern California in a variety of totally-obscure-but-famous-any-day-now rock and blues bands.

Clarion Magazine - Tooltalk: I, Object

http://www.clarionmag.com/v2n8/sub/v2n8tooltalk.html (5 of 6) [9/6/2000 3:40:39 PM]

http://www.capesoft.com/
mailto:reviews@clarionmag.com

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Tooltalk: I, Object

http://www.clarionmag.com/v2n8/sub/v2n8tooltalk.html (6 of 6) [9/6/2000 3:40:39 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Tool Talk: I, Object
(Aug 22,2000)

Five Rules for Managing
Complexity
(Aug 22,2000)

August 2000 News
(Aug 22,2000)

Five Rules for Managing
Complexity

by Tom Ruby

Part 1

Programs are very complex things because users demand that they solve complex
problems. You know to be wary when the customer says, "All it needs to do…" because
there is always more to it than that. Your task is to analyze that complexity and produce
a program that deals with it, leaving the user to think, "All I need to do is…"

This is a pretty tall order, and the last thing we need to do is add more complexity to the
problem ourselves. Within our programs, dictionaries and embeds, we want our work to
be as simple and straight forward as we can make it so we can concentrate on the
complexity of the problem, not on the complexity of our solution.

So first, here is a guideline. It’s not a hard and fast rule you must follow, but an example
of a principle which can save you some hair.

Guideline 1
Don’t take shortcuts. They might save you a few minutes now, but they’ll
cost you days later.

Guideline 1 suggests a strategy, or overall guide, which might be, "Make up a set of
rules and stick to them." Consider a rule I follow when making dictionaries,, "Make field
names descriptive and don’t abbreviate them." It is always a temptation to name a field
something like Date. Hmmmm. There already is a field in this table called Date, and it
is the date the record was entered. So I call the new field DateDue. But now I have an
extra piece of information to keep in my head, and this information is about the solution
to the problem, not about the problem, so it adds to the complexity of the task
needlessly. This bit of information is, "The date entered is Date, while the due date is
DateDue."

Keeping Guideline 1 in mind, I make the other date field more descriptive and change it
to EntDate. Oops. This is an abbreviation. Why is that bad? Because it adds another
piece of information to keep track of. I have to remember that I abbreviated Date Entered
as EntDate. So I fix it by making it EnteredDate.

Now I feel much better, but before long, I have an annoying compile error because I

Clarion Magazine - Five Rules For Managing Complexity - Part 1

http://www.clarionmag.com/v2n8/sub/v2n8complexity1.html (1 of 6) [9/6/2000 3:40:40 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/

typed DueDate instead of DateDue. Ok, so it isn’t a big mistake, but how many times
throughout the project do you want to get a compile error because of this mistake? So
let’s make an arbitrary rule, "The type of the field comes before the use of the field." It
could easily be the other way around and it will work fine. In fact, my own rule for
naming fields is the opposite. It doesn’t matter - the purpose of the rule is just to remove
unnecessary complexity.

The rule also makes it clear that the tax amount field is AmountTax and the tax
percentage field is PercentTax. Already this rule has saved four scraps of unneeded
information about the solution, and will probably save more later on.

Yes, I know Clarion has that handy fieldbox, plus Data Modeler and the View
Dictionary feature. I love them all and use them heavily, but which is better, looking up
a field name or just knowing it instinctively? There’s a lot these tools can help you with,
but you don’t need to be using them to solve problems you could have designed out at
the start.

"Naw, let’s not change it ‘cause I’ll have to reedit all the embeds in that procedure."
Again, how many times throughout the project do you want to make the mistake and get
an annoying compile error? Change it now while the fix is easy to make. This brings up
Guideline 2, which is more of an observation than a rule:

Guideline 2
It is a lot less painful to fix a painful mistake now than it will be later on.

As I explained to my son Ethan a few days ago, "It hurts to get a nasty splinter out, but it
will hurt more to get it out next week. Do you really want to put up with it till then?" He
opted to let me take the splinter out. So I’ll bite the bullet and edit the embeds in the
procedure. My, the Embeditor is handy for things like this.

Let’s talk about abbreviations a bit. Would you make a field name
AmountFederalInsuranceContributionsAct, or AmountFICA? FICA is
indeed an abbreviation for Federal insurance Contributions Act, but FICA is also the
name of a fairly complex, not to mention wordy, concept. I’d consider FICA a name and
call the field AmountFICA, but I wouldn’t abbreviate it as FICAAmt.

I could go on with examples all day, but I won’t. Take it from twentymumble years of
sometimes frustrating experience: Stick to your rules!

To recap:

Guideline 1
Don’t take shortcuts. They might save you a few minutes now, but they’ll
cost you days later.

Guideline 2
It is a lot less painful to fix a painful mistake now than it will be later on.

The First Rule

And now, without further ado, here is Rule Number 1:

Rule Number 1
Eliminate repeating fields.

People often paraphrase this rule by saying, "Arrays are bad," but this tells only part of

Clarion Magazine - Five Rules For Managing Complexity - Part 1

http://www.clarionmag.com/v2n8/sub/v2n8complexity1.html (2 of 6) [9/6/2000 3:40:40 PM]

the story. I have actually seen people eliminate the bad array by defining their data like
this:

EmployeeRate1
EmployeeRate2
EmployeeRate3
EmpRate4 ! must have got tired of typing
EpmRate5 ! didn’t proof read
EmpRt6

and so on.

And this changes fairly logical and easy to maintain code like this:

LOOP I = 1 TO 6 BY 1
 YadaYada
 EmployeeRate[I] Yada
 Yada
 Yada(EmployeeRate[I])
 Yada
END

Into a mess like:

Yada Yada
EmployeeRate1 Yada Yada
Yada Yada Yada Yada
Yada EmployeeRate1 Yada Yada Yada
Yada Yada
EmployeeRate2 Yada Yada Yada
Yada Yada
Yada EmployeeRate2 Yada Yada Yada
Yada Yada Yada
(lots more nonsense)
Yada
Yada EmpRate4 Yada
Yada Yada Yada Yada

So what’s so bad about this? You can easily build it using cut and paste or an editor
macro, right? Well, it turns out that the second Yada should be

Gobbledegook EmpPlanA
Gobbledegood EmployeePlaB

and so on for all umpteen bunches of code! Somebody has a long day of tedious editing
to do. Do you think they’re not going to goof somewhere? What if the you code
EmployeePlanC where you should have put EmployeePlaB? Just try figuring that
bug out while the client is looking at screwed up calculations! Then you have to read
through that 24 page embed, line by line, looking at these field names which all look
alike but are subtly different. Are you sure you’re not going to flub up while fixing
them?

So getting rid of the array by replacing it with bunches of fields is not a good idea, but
what’s wrong with the array concept itself? The array causes a big limitation in the

Clarion Magazine - Five Rules For Managing Complexity - Part 1

http://www.clarionmag.com/v2n8/sub/v2n8complexity1.html (3 of 6) [9/6/2000 3:40:40 PM]

functionality of the program, and it adds a bit of complexity you can do without.

When you put an array in your data, you place a limitation on your program’s
usefulness. I call this "The Extension Cord Effect." Ever notice how often an extension
cord is just a little too short? You could just always buy nine foot extension cords instead
of six foot cords, but you know, the longer cords somehow just need to be a couple
inches longer. Of course, you could always buy 100 ft outdoor cords, but then you’d
have all this orange cord laying around, tripping up the kids and tangling the vacuum
cleaner.

The same thing happens to an array in your data design: You’ve allowed for eight
employee deductions, but doggone it, you get a phone call interrupting your dinner
because one of the customers needs 24, so you have to dig out the source code, make a
change and update their database replacing the eight element array with a larger one.
Then everybody gets space for 24, while most use only three, and it works fine until
somebody needs 25. Why in the world would they need 25? I don’t know, but if the user
thinks they need 25, the program shouldn’t tell them they can’t have 25. And you did
remember to make all occurrences of LOOP I = 1 TO 24 BY 1 into LOOP I =
1 TO 25 BY 1, didn’t you? Everywhere? Are you sure? How sure are you?

A repeating field, be it an array or multiple fields, adds another extra bit of complexity to
the project, and you certainly don’t want to be making it more complex than it needs to
be. You need a way to tell if the array element is used and skip over those that aren’t.
You need to put the code to do this everywhere you use the data out of the repeating
fields, and you have to remember, yet again, how you coded the unused fields. You
probably also need to move them around when the user deletes one because users always
like the blanks at the bottom.

What to do? Put the repeating fields in a separate table, one field, or set of fields, per
record, along with the employee’s identifier so you know which records belong to which
employee. For this example, the EmployeePlan table would contain three fields: the
employee identifier, the rate field and the plan field. Now the code looks like this:

PLA:Employee = employee identifier
SET(EmployeePlanKey,EmployeePlanKey)
LOOP
 IF Access:EmployeePlan.Next() <> LEVEL:Benign OR |
 PLA:Employee <> employeeidentifier THEN BREAK END
 Yada Yada Yada Yada Yada Yada
 PLA:EmployeeRate Yada Yada
 END
END

Oops, remember to change the second Yada to

Gobbledegook EMP:Plan

You don’t have to worry about skipping unused records, because there aren’t any unused
records and the simple loop works for as many plans as are or aren’t used. You also
don’t have to worry about how many records there are. The loop will just process all of
them whether you have 200,000 entries, one entry or zero entries.

"But my users will hate another browse and form," you say. I don’t blame them. There
are better ways. The most obvious solution is Clarion’s Edit-In-Place feature. You put a
browse for the plan records on the employee form and range limit it to the employee

Clarion Magazine - Five Rules For Managing Complexity - Part 1

http://www.clarionmag.com/v2n8/sub/v2n8complexity1.html (4 of 6) [9/6/2000 3:40:40 PM]

identifier field. Then you add the update buttons and check Use Edit-In-Place. In the
example application, I changed the class of the second column and added a single line of
embed code to make it a drop list.

If your users, or your clients, are really stuck on the idea that there are a certain number
of these repeating fields, you can fake them out on the form while still getting rid of the
repeating fields. Remember, user interface design is in large part psychology. The trick
is to make a set of fields on the form and write these to the child table. In the
FRMFakeOut procedure, I used an intermediate queue to allow the user to "roll" the list
through the edit fields. It acts like 10 fields and the users don’t realize that you made
your life easier, besides getting their program done faster and with less grief. Is the client
going to freak out over the scroll up and down buttons? Hide them, but leave some
hidden configuration parameter to unhide them with PROP:Hide, just in case.

Problems With Reports

Making the number of fields potentially unlimited can present reporting challenges. "But
only four columns fit across the paper." Now that’s a problem. Paper is just 8 ½ inches
wide in the US. The rest of you have it worse with 210 millimeter wide paper. With any
report, you have to ask, "What does the user want to know by looking at this report," and
secondly, "What is the user going to do with this piece of paper after looking at it."

When the computer was the great machine hidden away in a special room where only the
white coated priests could enter, reports were of extreme importance. That was the only
way information could get from the computer to the users. These days, we put computers
everywhere. The high school kid at Wal*Mart who makes minimum wage works in front
of a computer. We don’t mess with those 3 ½ inch thick books of 14 inch greenbar paper
anymore because it is much more convenient to put the information on a screen than to
look it up in that huge printout. Ask your users what they are going to do with that 248
page "Master Inventory Report." I once had a client demand this very important report,
but it was never used. You see, the Inventory browse was much more useful to his
employees.

That aside, what do the users want the report for? I’m guessing the problem is a report
that shows a line for each employee and a column for each something else. It is more
important to find out what the user wants to know from the report than how they want
the report formatted. Perhaps only the four latest records for each employee are
significant, or four different totals of all the records for each employee would be more
interesting. Perhaps the only reason they want it is because they always had it. Are they
looking for something specific in the grid, like a number that is much greater than or less
than the others? Or are they looking for an unusually high column total?

I failed to ask the "purpose" question once and ran two mainframe jobs, each producing
a four inch thick stack of 14 inch greenbar paper, to satisfy a coworker’s request. Turns
out all she wanted to know was how many records there were. I could have told her that
immediately when she first asked for the report rather than four days and eight inches of
paper later!

Say that after the analysis you’re still faced with a report with only four columns for
each employee. Do you need to restrict the data design for this report, or does the report
itself exhibit the "extension cord problem?" That is, what happens when, and not if,
somebody needs the seventh column? Rather than restricting your data design based on
this report, you need to design the report to deal with the inevitable.

Clarion Magazine - Five Rules For Managing Complexity - Part 1

http://www.clarionmag.com/v2n8/sub/v2n8complexity1.html (5 of 6) [9/6/2000 3:40:40 PM]

What Good Are Arrays In Tables?

"How can it be so bad if Clarion allows it?" Clarion allows you to put arrays in data
tables because it has to. There are three reasons Clarion has to allow it.

The main reason is if they didn’t, some numskull will complain loudly in a public place
that Clarion is totally unusable because it lacks this important feature.

The most important reason is that we always have to deal with data from other programs.
That’s the whole reason we have drivers like dBaseIII. Is there an advantage in storing
some table in a dBaseIII file rather than a TPS, Btrieve or SQL table? No. The reason we
use the dBase driver is that some other program requires its input or output to be in
dBaseIII files. That’s why Clarion allows arrays in the data files, because the nit who
wrote the other program you have to interface with didn’t know any better.

I said there are three reasons, didn’t I? The third reason is they have to support people
who are too busy with problematic projects to read an article like this about how to
design the problems out of a project.

Sometimes you have what looks like a repeating field but isn’t. Consider a table which
represents 1099 forms. There are a lot of numbers on the 1099, and if you’re looking at
an old program somebody else wrote, they might have stored these in an array. To me,
fields named DollarsRents, DollarsRoyalties, DollarsOther and so on
are more meaningful than AMT[1], AMT[2] and suchlike. These 11 fields are not
repeating fields, so don’t feel bad about putting them in the 1099 table.

To recap, here are the two Guidelines and Rule Number 1:

Guideline 1
Don’t take shortcuts. They might save you a few minutes now, but they’ll
cost you days later.

Guideline 2
It is a lot less painful to fix a painful mistake now than it will be later on.

Rule Number 1
Eliminate repeating fields.

Next time, Rule Number 2 and some more guidelines.

Download the example application

Tom Ruby, who is no relation to the man who shot Lee Harvey Oswald, is an
independent contractor living in the middle of a hayfield in Central Illinois with his
wife Susan and two red-headed sons, Caleb and Ethan. He has been using Clarion
for Windows since the summer of '95. Before that, he was a "TopSpeeder" using
Modula II, so he has never used the DOS versions of Clarion.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Five Rules For Managing Complexity - Part 1

http://www.clarionmag.com/v2n8/sub/v2n8complexity1.html (6 of 6) [9/6/2000 3:40:40 PM]

http://www.clarionmag.com/v2n8/pub/complexity1.zip
http://www.netins.net/showcase/tomruby/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Learning To Write A
Business Object
(Aug 16,2000)

Legacy to ABC: There is
Another Way! Part 3
(Aug 16,2000)

August 2000 News
(Aug 16,2000)

Learning To Write A Business
Object

by Alan Telford

Clarion is defined as a business programming language. Its
main strength is having a data dictionary and code-generating
templates which use that dictionary to generate browses,
forms and reports, with very little hand coding required. Clarion is also an OO language.
However Clarion has not made writing your own objects as easy as writing your own
browse or form.

There are many examples of OOP around. Most of them are utility objects (resizing a
window) or programmer objects (error class, file manager). But few if any are what I
would call business objects. And being a business programmer I want to write business
objects – objects that know about my data files. These objects would handle payroll
procedures, manipulate invoices, deliveries, etc. In this article I will show you one way
to go about it.

I want to add a business object like I add a browse. Select a template, add some files, add
some embed code – then click the lightning bolt and start using it. This kind of object
knows about the data files that are inside the dictionary. It’s not a generic object and
won’t go in the Clarion5\Libsrc folder, but will be stored inside my application. The
disadvantage of course is that the object is tied to my specific application, but the
advantages are:

The ABC templates have automatically declared the dictionary file, and given it a
FileManager and RelationManager object, and initialized these objects

●

The populate field listbox is available enabling the programmer to double click on
a field or key saving typing and possible errors that may occur.

●

I can simply back up the APP and DCT and know I’ve got the lot without having
to hunt for some separate class objects.

●

Public Holidays

As one example of a business object I need to know whether a date is a public holiday or
not. The only information I need to know about public holidays is a date and a name. So
add this file to your dictionary. Since it’s inside the dictionary, simply choose browse
wizard to add a browse and form for updating.

Clarion Magazine - Learning To Write A Business Object

http://www.clarionmag.com/v2n8/sub/v2n8busobjects.html (1 of 9) [9/6/2000 3:40:42 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/

Holidays FILE,DRIVER('TOPSPEED'),
 PRE(HOL),BINDABLE,CREATE,THREAD
K_Date KEY(HOL:Date),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
Date DATE
Name STRING(20)
 END
 END

When calculating a payroll an employee will get paid with a different contract or a
higher hourly rate on public holidays. If I was hand-coding this I could write:

HOL:Date = Date
IF Access:Holidays.fetch(HOL:K_Date) = LEVEL:Benign
 ! employee gets paid more
END

But this makes my payroll procedure aware of how holidays are stored. A good object
should hide more information that it reveals. And if this test is repeated 5-10 times
throughout my payroll calculation procedure there will be 5-10 copies of the code. I
don’t like duplicating code. One easy solution to code duplication would be to turn this
into a procedure call:

IF IsPublicHoliday(date)
 ! employee gets paid more
END

But the goal is to learn about writing objects. What I’d really like to have is an object
called Holiday which knows about all the public holidays. Then I could just ask this
object if a holiday exists on a date. E.g.

IF Holiday.exists(date)
 ! employee gets paid more
END

This code certainly looks like OOP and is self commenting. So how do I write this
holiday object?

Making A Local Class

The most basic way to start writing OOP is right inside one of your procedures. Declare
the class inside the Local Data embed point, and then write the class methods inside the
Local Procedures embed point

Step 1. Inside embed point Local Data – Other Declarations type the following:

HolidayClass Class,Type
Exists Procedure(Long p:Date),Byte
 end
Holiday HolidayClass

The first 3 lines declare a new type of class called HolidayClass, and then the last line

Clarion Magazine - Learning To Write A Business Object

http://www.clarionmag.com/v2n8/sub/v2n8busobjects.html (2 of 9) [9/6/2000 3:40:42 PM]

declares an object called Holiday of this type.

Step 2. Write the actual method. This goes in the Local Procedures embed point.

HolidayClass.Exists Procedure(Long p:Date)
 CODE
 HOL:Date = p:Date
 RETURN |
 Choose(Access:Holiday.fetch(HOL:K_Date) = LEVEL:Benign)

Adding More Methods

There are many more questions you could ask of a Holiday object.

How many public holidays fall in the payroll period?●

What is the name of this public holiday?●

What’s the next public holiday on or after a given date?●

Of course my payroll procedure shouldn’t calculate the information itself. It should ask
the questions directly of the Holiday object. For the above examples this could be
written:

! how many public holidays fall in the payroll period?
Message(‘NumberOfHolidays = ‘ |
 & Holiday.count(startdate, enddate))
! what is the name of this public holiday
Message(‘Name of holiday is ‘&holiday.getName(Date))
! what’s the next public holiday on or after today.
Holiday.set(today())
NextHoliday = Holiday.next()

The changes to the class declaration are:

HolidayClass Class,Type
Exists Procedure(Long p:Date),Byte
count Procedure(Long p:startdate, Long p:enddate)
getName Procedure(Long p:Date), String
next Procedure,Long
set Procedure(Long p:Date)
 end
Holiday HolidayClass

And the new class methods for Local Procedures are:

Clarion Magazine - Learning To Write A Business Object

http://www.clarionmag.com/v2n8/sub/v2n8busobjects.html (3 of 9) [9/6/2000 3:40:42 PM]

HolidayClass.count Procedure(Long p:StartDate,
 Long p:EndDate)
! Count the number of holidays in date range
! p: StartDate to p: EndDate
HolidayCnt Long,auto
 CODE
 HolidayCnt = 0
 HOL:Date = p:Start
 SET(HOL:K_Date, HOL:K_Date)
 loop until Access:Holidays.next() OR HOL:Date > p:End
 HolidayCnt += 1
 END
 RETURN HolidayCnt
HolidayClass.getName Procedure(Long p:Date)
! Return the name of the public holiday
! on the given date
 CODE
 HOL:Date = p:Date
 Access:Holidays.fetch(HOL:K_Date)
 Return HOL:Name
HolidayClass.set Procedure(Long p:Date)
! Position holiday file at specified date
 CODE
 CLEAR(Holidays)
 HOL:Date = p:Date
 set(HOL:K_Date, HOL:K_Date)
HolidayClass.next Procedure
! Find the next holiday
 CODE
 RETURN Choose(Access:Holidays.next() = |
 LEVEL:Benign, HOL:Date, 0)

So have I really achieved anything? Yes. The holiday object is taking responsibility for
everything to do with public holidays. The payroll procedure is ignorant of how the
holidays are stored. When it needs information it has to ask the holiday object As long as
I keep the class declaration the same, I can rewrite the holiday code anyway I want
without breaking my payroll procedure.

TIP: The best way to learn OOP is to start writing OOP. So the next time you need to
embed some complex code for a procedure, instead of doing it the old way and writing a
ROUTINE why not write a local CLASS instead. All the benefits of OOP will still apply
just on a smaller level. This is a very safe way to learn writing business objects.

Making The Holiday Object Accessible Throughout The Application

There is a major shortcoming with the above approach. The object can only be used in
that one procedure. As soon as you try using the Holiday object inside another procedure
you will get an error message. Objects have scope just like data. There are a number of
ways to overcome this:

To make the Holiday object accessible at the global level you could move the class
declaration from Local Data embed to Global Data embed point, and move the

●

Clarion Magazine - Learning To Write A Business Object

http://www.clarionmag.com/v2n8/sub/v2n8busobjects.html (4 of 9) [9/6/2000 3:40:42 PM]

class definitions from Local Procedures to Program Procedures. This is easy to
do but clutters your global embed points.

To make the Holiday object accessible at the module level you could move the
class declaration from Local Data embed to Module Data Section embed point,
and move the class definitions from Local Procedures to Module Data Section.
The Holiday object would be accessible from any procedure which is in the same
module. But what if I want to access from another module?

●

The most flexible way to make an object available from any procedure is to copy
the ABC template approach. (Right click on any ABC window and have a look).
All the include files are declared at the Module level before the procedure name.
All the local objects (Toolbar, Window, Browses) are declared as local data. This
is a flexible approach but it requires the programmer to maintain a separate INC
file, and then include the INC file at module level

●

Maintaining the INC file

Clarion can generate source code, so why not let it maintain the INC file?

Included in the attached ZIP file as a template which allows you to write both the class
declaration and definition inside your application. Unzip into your tempate directory
(Clarion5\Template) and then register the template (MTMaxtel.tpl).

Add a new procedure, give the name Holiday_Class and then instead of Browse
choose MT_Class_Declaration.

Figure 1. MT_Class_Declaration template

Under Class name enter HolidayClass

For INC file name enter ifholiday.inc

Figure 2. MT_Class_Declaration settings

Clarion Magazine - Learning To Write A Business Object

http://www.clarionmag.com/v2n8/sub/v2n8busobjects.html (5 of 9) [9/6/2000 3:40:42 PM]

This template has two main embed points.

Include File for writing the class declaration.●

Source File for writing the class methods.●

So copy the class declaration from your Local Data embed point into the Include File
embed point, and copy the class methods from Local Procedures into Source File.
Generate your application and you will see the include file ifholiday.inc automatically
appear.

Figure 3. Source Embed points

Clarion Magazine - Learning To Write A Business Object

http://www.clarionmag.com/v2n8/sub/v2n8busobjects.html (6 of 9) [9/6/2000 3:40:42 PM]

This template has a lot of additional functionality. Please experiment with it. On the first
tab are options to generate an external CLW file which could even be placed inside the
Clarion5\Libsrc folder as an ABC-compliant class. The second tab has options to export
the class from the DLL. On the third tab you can enter additional classes to include in
this INC file. Each additional class creates two extra embed points – one embed for the
class declaration, and one embed for the class methods.

This allows you to use an APP to maintain all your class objects, with all the advantages
this brings.

Using The Business Object

So now I have a template which allows me to easily create classes inside an APP file. To
use one of these objects I still need to declare the object in local data, and declare the
include file in the module. Sounds like a good job for another template.

Add the MTIncludeObject extension template to the procedure.

For ABC templates, always choose declare object in "Data Section."

"Data Section, Before Window" is useful for legacy Browse/Form templates.

"Declaration Section" is the embed point for Report templates.

Figure 4. MTIncludeObject template

Clarion Magazine - Learning To Write A Business Object

http://www.clarionmag.com/v2n8/sub/v2n8busobjects.html (7 of 9) [9/6/2000 3:40:42 PM]

Then simply add a list of objects (Name, Class, Include File) into the list.

Figure 5. MTIncludeObject settings

The Include File will automatically be placed at the module data level.

The objects will be declared as local data (unless "Declare in MODULE" is selected)

Summary

Clarion’s approach of writing classes inside Clarion5\Libsrc folder is appropriate for
utility classes which are generic to all applications. But if you want to write a business
object which has direct knowledge of the data files inside your dictionary, then choose to
write the objects inside your application.

A good way to start is by writing local classes directly inside a procedure. This can
replace a number of routines, or be used to prototype a future business object you’re
starting to write.

Then if you want to make your business object accessible throughout your application,
use the two templates provided with this article:

MT_Class_Declaration which allows you to write both the declaration and the
methods for a class inside your application. This means the object is instantly aware of
the files in your dictionary. All the benefits of normal embed code writing are available
to you now. Note: ensure there is only one MT_Class_Declaration per module
inside your application.

Clarion Magazine - Learning To Write A Business Object

http://www.clarionmag.com/v2n8/sub/v2n8busobjects.html (8 of 9) [9/6/2000 3:40:42 PM]

MTIncludeObject allows you to easily declare your business objects for use inside
any other procedures in your application.

Business OOP programming is not as hard as it sounds. This may not be the way that
Topspeed (SoftVelocity) imagined it, but it sure does work.

Note: All that I’ve done applies to Clarion LEGACY templates just as well as ABC
templates. You can write your business objects in either type of app.

Download the source

Alan Telford has been programming in Clarion since 1994. He is the Chief Software Developer at

Maxtel Software Ltd, a New Zealand software company specializing in writing back office computer

solutions for McDonald's Family Restaurants and other similar markets.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Learning To Write A Business Object

http://www.clarionmag.com/v2n8/sub/v2n8busobjects.html (9 of 9) [9/6/2000 3:40:42 PM]

http://www.clarionmag.com/v2n8/pub/v2n8busobj.zip
mailto:alant@maxtel.co.nz
http://www.maxtel.co.nz/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Learning To Write A
Business Object
(Aug 16,2000)

Legacy to ABC: There is
Another Way! Part 3
(Aug 16,2000)

August 2000 News
(Aug 16,2000)

Legacy to ABC:
There is Another Way!

by Simon Brewer

Part 3

Today is payday. In Part 1 and Part 2 of this article, I’ve
demonstrated - and you’ve programmed - a hybrid Legacy/ABC app. Today you’ll
extend that app by converting Legacy procedures to ABC, but just the ones you want to.
You’ll see that it can be done in as small or as large chunks as you wish with nearly
ultimate safety and recoverability.

The Golden Rule – Again!

Before I begin, I must recap the golden rule from Part 2 of this story: ABC procedures
must call ABC procedures; they must not call Legacy procedures. That’s an important
rule in deciding exactly which procedures to convert.

Take a look at Figure 19. It’s a snippet of the Application Tree from the Legacy app you
created way back in Part 1. I chose this particular section because it has a variety of
procedures, including reports. You should be able to locate this section in your app.

Figure 19. Excerpt from Wizard-created Legacy Club Manager application.

Arbitrarily, I’ve decided you’ll convert the BrowseStates procedure to ABC, which,
applying the golden rule, means the UpdateStates procedure must also be converted.

Clarion Magazine - Legacy to ABC Part 3

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc3.html (1 of 8) [9/6/2000 3:40:44 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/
http://www.clarionmag.com/v2n7/sub/v2n7legacytoabc1.html
http://www.clarionmag.com/v2n7/sub/v2n7legacytoabc1.html

Furthermore, the UpdateMembershipTypes and PrintCOM:CommitteeKey
procedures seem ripe for conversion too.

In all honesty these procedures have been chosen entirely at random. It’s worth pointing
out that you could convert just one procedure if you wanted, or any number. I suggest
you keep the number small and manageable. In fact, I recommend that you keep to
"sub-trees" or sub-applications to help maintain your own sanity.

It’s worth noting that a fair amount of the old 80:20 Rule applies to most applications;
that is, about 20% of your application requires about 80% of the effort. Therefore, for
any conversions you do using this hybrid method, it’s good to pick all of the simple
procedures, such as those with few or no embeds that use standard templates, and convert
them first. Pretty soon you’ll have an 80% complete ABC application, and you can
clearly see the harder procedures nicely separated from the others. That’ll make
decisions such as whether to convert or re-write those remaining procedures a lot easier.
Suddenly they won’t look nearly as hard!

Ok let’s start. If you don’t know how the converter works, well, join the club! One thing
I do know about the converter is that it converts a whole application from Legacy to
ABC in one go. That’s not your aim or mine, so there needs to be an interim step – the
creation of a dummy application.

A Dummy Legacy Application

You can create a dummy Legacy application and transfer the procedures to be converted
very simply following these steps:

Create a new Legacy (Clarion template chain) application specifying the ClubMgr
dictionary but without using the Application Wizard, as shown in Figure 20.

1.

When the empty application is created, from the Main Clarion menu choose File,
Import From Application.

2.

Select the Legacy application created way back in Part 1 from the file dialogue.3.

Select the four procedures mentioned above from the Select Items to Import
dialogue.

4.

Figure 20. Creating Dummy Legacy Application.

Your dummy application tree should now look like that shown below in Figure 21.

Figure 21. Application Tree for Dummy Legacy Application.

Clarion Magazine - Legacy to ABC Part 3

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc3.html (2 of 8) [9/6/2000 3:40:44 PM]

Convert or Bust!

It’s now time to run the converter. I’ve found that the converter recreates most of my
procedures quite well so I don’t need to tinker with it. I’m sure you’ll have a similar
experience for most of your procedures; the others, well, I’ll just sympathise.

The converter program takes an entire Legacy application and creates an entire ABC
application. For that reason, it's not possible for you to convert these procedures and
place them directly into a larger app. Instead, you must go through another stage – a
dummy ABC app.

To run the converter over the dummy Legacy application, do the following:

From the Main Clarion menu choose File, Convert Application.1.

Follow the Conversion Wizard through selecting defaults and choose a suitable
name for your dummy ABC application, as shown in Figure 22.

2.

I tend to hit the Apply button to the myriad of questions the converter asks me –
you may need to be more scrupulous!

3.

Figure 22. Application conversion wizard naming options.

Finally you’ll end up with a converted ABC application which, on the surface, looks
exactly the same as the dummy Legacy application. Under the covers it’s a very different
story – these procedures are now ABC. That doesn’t mean they’ll work yet – they may
have embedded code to alter, for example. But now's not the time to work on that
problem; you must wait until they’re in your ABC Procedure DLL.

Clarion Magazine - Legacy to ABC Part 3

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc3.html (3 of 8) [9/6/2000 3:40:44 PM]

Transfer To ABC Procedure DLL

Remember the ABC Procedure DLL created during Part 2? That’s where you first saw
ABC procedures at work with your Legacy application. In that case, you created new
ABC procedures. Today you’re going to extend that DLL with the converted procedures
from your Legacy app.

To do that, follow these steps:

Open the ABC Procedure DLL app created during Part 2.1.

From the main Clarion menu choose File, Import From Application.2.

Select the dummy ABC application from the next dialogue.3.

From the Select Items to Import dialogue, select the four converted procedures, as
shown in Figure 23.

4.

Figure 23. Selecting converted ABC procedures to import.

Your ABC Procedure App should now look like that shown in Figure 24.

Figure 24. ABC procedure app showing imported procedures.

You’ll notice that the UpdateStates form is showing as an exported procedure. This
attribute need only be on if the procedure will be called from the Legacy app (or another
DLL). In this case, you know that only the BrowseStates procedure will ever call it,
so go into the Procedure Properties for UpdateStates and turn off the Export
Procedure check box.

Clarion Magazine - Legacy to ABC Part 3

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc3.html (4 of 8) [9/6/2000 3:40:44 PM]

If you have embeds, now is the time to begin reviewing them and getting them ready for
ABC. Some embedded code will no longer work, like calls to the CheckOpen function,
the ResetWindow routine or the ProcedureReturn routine. There are far too many
possibilities to mention here but you’ll soon work it out. At least you now have the
ability to do trial-and-error on a small, manageable scale.

When satisfied, Make this enlarged DLL.

The Final Link

It’s time to call these newly converted procedures from the Legacy app. However, before
that’s done, you’ll need to save a copy of the Legacy procedures you’re replacing. There
are a few ways to do that, but I find the least confusing method is to make a copy of the
procedures under a new name within the Legacy app and leave the original procedure
names as they were. If you rename instead of copy, you could end up preserving the link
to the old procedure from, say, a main menu, and that’s not what you want. Keeping the
saved copy of the procedures within the Legacy app makes it very easy to revert back if
required.

A side benefit of keeping the original procedure names is that if you have some
embedded code which calls a procedure, it should be able to find it without further
alterations.

To make a safety copy of the old Legacy procedures, follow these steps:

Open the Legacy app.1.

Highlight each procedure in turn and select Procedure, Copy from the main
Clarion menu.

2.

Give each copied procedure a meaningful name – good conventions would be to
prefix the name with "old" or "leg".

3.

Having safely copied the original Legacy procedures, it’s now time to delete the
originals. Begin at the bottom of each calling tree and delete from there upwards. For
example, given that you’ve converted the sub-tree containing the BrowseStates and
UpdateStates procedures, the UpdateStates procedure is at the bottom of the
tree so it gets deleted first followed by BrowseStates. Doing it this way will make it
easier to ensure you don’t end up with any duplicate procedures hanging around.

Having deleted the procedures you should now have three ToDo procedures in your tree,
those being BrowseStates, UpdateMembershipTypes and
PrintCOM:CommitteeKey. To re-invoke them using the ABC versions converted
earlier, they must be linked to the ABC Procedure DLL library. You should remember
back in Part 2 that you added the ABC Procedure DLL library to your Legacy app, so
that’s already available.

For each of these procedures in turn, perform the following steps:

Double-click on the procedure and choose External – External Procedure from the
Select Procedure Type dialogue.

1.

In the Procedure Properties window select the correct library from the Module
Name drop-down list box, as shown in Figure 25.

2.

Figure 25. Procedure Properties for External Procedure.

Clarion Magazine - Legacy to ABC Part 3

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc3.html (5 of 8) [9/6/2000 3:40:44 PM]

You may now Make and Run the Legacy application. That’s it, you’re truly underway
with your first conversion!

Note that when you're converting your own applications, the procedures you delete may
not conveniently show up in the application tree as ToDo procedures. Not to worry, you
just need to select Procedure, New from the main Clarion menu and continue from there.

Reversion

Let’s say you weren’t happy with the way one of these procedures is operating in ABC
and you want to revert to the Legacy version. The easiest way to do that is to alter the
"calling" procedure to call the saved Legacy copy of the procedure. If that isn’t practical,
follow these steps:

Go into your ABC Procedure DLL and turn off the Export Procedure check box on
the Procedure Properties window of the procedure(s) in question.

1.

Make the ABC Procedure DLL.2.

Open the Legacy application and delete the "External" version of the procedure(s).
This may or may not leave a ToDo procedure in its place depending on the calling
tree.

3.

For each procedure you wanted to restore, copy the saved version of each
procedure back to its original name – I mean Copy, not Rename.

4.

Make the Legacy application.5.

Step one above shows up an interesting aspect of this hybrid method, or any multi-DLL
application for that matter - you can’t have two procedures with the same name in the
same application if at least one of them is exported. To clarify, if you have a procedure
Exported from a DLL, any other EXE or DLL that includes your library which has an
identically named procedure will have a duplicate name conflict.

You may remember that one of the first steps when creating the DLLs during this tutorial
was that you went into the Main procedure, made it a Source procedure and turned off
the Export Procedure check box. It was to avoid exactly the type of conflict mentioned
above.

Clarion Magazine - Legacy to ABC Part 3

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc3.html (6 of 8) [9/6/2000 3:40:44 PM]

If you do need to revert remember that you must not break the Golden Rule principles.

Ongoing Conversion

In case it’s not obvious to you, the conversion you’ve been carrying out so far can be
done in a continuous loop until you have no more procedures left to convert. That is, you
re-create the Dummy Legacy application over again, import some more Legacy
procedures to it, convert to Dummy ABC, import to the ABC Procedure DLL, save the
original Legacy procedures and make the link to the ABC DLL. Then do it again, and
again, and again.

Your application will soon start looking like Figure 26, as the ABC portion of your
application increases and the Legacy portion decreases. If procedures don’t convert to
your satisfaction or you’re worried about them, rewrite them from scratch within the
ABC Procedure DLL rather than converting them.

Figure 26. Advanced stage of hybrid conversion.

Finally, you can entirely dispense with the Legacy part of the application and enjoy pure
ABC as shown in Figure 27.

Figure 27. Final Application.

Final Hints

One important item that I haven’t yet covered is your new-found ability to introduce
inconsistency into your app using the hybrid method. A great example of this is in the
hybrid application you’ve just developed, so start it up.

Clarion Magazine - Legacy to ABC Part 3

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc3.html (7 of 8) [9/6/2000 3:40:44 PM]

In the Reports menu choose Print By Committee, which starts the ABC report you
converted earlier. If your Clarion templates are at default values, the Print Preview
window will come up at design (default) size. Now choose any other report (which is
obviously Legacy) from the menu and the Print Preview window will come up
maximized.

Why? Well the ABC side of your app is using the ABC PrintPreview class while the
Legacy side of your app still uses the old ReportPreview function in the Standard
Functions template. In other words, they’re two very different functions and, in this case,
their default behavior is different.

This is not an isolated case – it’s quite possible that any template-based function could
differ between the two template chains. However, you’re only going to be able to
determine that by trial and error. In most cases, as in the example above, they will be
small and fixable if they cause problems.

Another case where this could occur is in the use of third-party templates where the ABC
version could well be much advanced over its Legacy equivalent. That may have other
ramifications too, such as your code not converting properly. I suggest you seek advice
from the supplier of the templates if you encounter any problems.

Conclusion

This tutorial has been drawn out deliberately to explain every aspect of conversion quite
explicitly. If you’re reading this and thinking "I must’ve missed something, it seems too
straightforward" then you probably haven’t missed anything.

If you’re confused then chances are you’ve never dealt with a multi-DLL application
before. All I can say to you is that attention to the finer points of the tutorial is vital to
make it work; the method shown here will work for your application if you follow the
instructions to a tee (the only unknown being the converter program).

I should also point out that it is possible you may confront problems I have not
encountered in my testing. If you do, I implore you to stick with it and get over the
hurdles – remember, this is Clarion and you have a formidable arsenal of possibilities in
your hands; use them. Always test carefully and move forward, not backward. Work in
small sections and isolate the problem areas. You will succeed.

I sincerely hope this article has helped solve your Clarion upgrade problems. Goodbye
Legacy, hello ABC!

Simon Brewer is Software Development Manager for First Ecom, an Internet development company
using Clarion. Prior to that he spent 17 years at Email Major Appliances, major Clarion users and
Australia's largest manufacturer of whitegoods. In his spare time he is also the President of the South
Australian Clarion User Group and a co-organiser of the ConVic conferences.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Legacy to ABC Part 3

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc3.html (8 of 8) [9/6/2000 3:40:44 PM]

mailto:simon@first-ecom.hm
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Code Documentation: The
Achilles´ Heel Of Clarion
(Aug 8,2000)

Displaying Related Fields
In ABC EIP
(Aug 8,2000)

Legacy to ABC: There is
Another Way! Part 2
(Aug 8,2000)

August 2000 News
(Aug 8,2000)

Code Documentation:
The Achilles´ Heel Of Clarion

by Steffen Rasmussen

Documentation is essential for maintaining an application.
Unfortunately there is no way to automatically document
code in Clarion, and manual documentation is laborious and
prone to errors. Programmers are compelled to keep a strict
discipline in order to maintain consistency. Because of the
involved labour in many instances there isn’t any code
documentation at all and if there is, it’s insufficient. As a result a lot of time is consumed
in code "interpretation" and in extreme cases, reprogramming the whole application is a
necessity.

So where does the programmer document the code? Well there aren’t separate template
prompts for embedded source comments, so it will have to be in the source itself. Apart
from this the programmer has to understand how to use the tools in the programming
environment in order to maintain a manageable code base.

The whole programming environment consists of individual sections of source code
interacting with each other. When the programmer implements source embed into this
structure he or she has to keep in mind that it has to be an individual unit. In other words
even though there is a lot of different code in exactly the same embed point with the
same priority, each functional group should be kept in its own source embed. In this way
one might have 10 different source modules in the same place. This can be used to
enhance the code readability in the embed tree.

Figure 1. The menu's embedded source.

Clarion Magazine - Documenting Your Code

http://www.clarionmag.com/v2n8/sub/v2n8documentation.html (1 of 7) [9/6/2000 3:40:46 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/

One way to document source code is to start with a predefined header in the source that
informs the programmer what this code contains. In this way the programmer can
quickly form an idea about the code with out actually reading it.

So what does this predefined header contain?

Well as a minimum it should have the following:

TITLE: This is the name of the source block. The name should be as descriptive as
possible so the programmer quickly can determine if this is the source he or she is
looking for. Notice that by having the title in the first row (see screen dump above) it’s
much easier for the programmer to get an overall impression of the source blocks.

PURPOSE: Here the programmer uses a couple of lines to describe the purpose or
objective of the module. Pseudocode can be used for this task.

INPUT: What kind of input does this source get.

OUTPUT: What kind of output does this source produce.

VARIABLES: Which variables are used by this module. The variable name is written as
specified in the local data section of the procedure. Global variables are likewise written
as in the global data section of the program. Personally I have chosen to make it easy to
distinguish between the two variable types by having the global variables to be preceded
with the extension GLO:, e.g. GLO:ToolBoxThread.

EMBEDS: As the application evolves so does the embedded code which is scattered all
over the program. Therefore it is essential that each source block keeps track of the other

Clarion Magazine - Documenting Your Code

http://www.clarionmag.com/v2n8/sub/v2n8documentation.html (2 of 7) [9/6/2000 3:40:46 PM]

http://www.developerplus.com/

procedures and modules it interacts with, e.g. by storing the name and locations of those
other procedures and modules.

PROCEDURE SETINGS: Are there any local properties in this procedure which have
to be taken into account when creating this code? State the property and the setting.

AUTHOR(S): Where does this module originate from, e.g. name of the programmer,
book or other resource.

REMARKS: Contains any information that can clarify the code for the reader, including
code history if appropriate. Instead of using remarks, the module header could if desired
be more detailed and contain, for example, the module number, version number, date,
date modified, who modified it, what was modified etc. Keep in mind, however, that
although these extensions to the module header could be an advantage they can also have
a downside. In essence keeping documentation to a minimum reduces the possibility of
inconsistency in the documentation when updated.

Apart from the module header it is also very important to document each line of code as
appropriate.

Let me introduce you to a small example on how documentation can be done:

Creating A Splash Screen, With Documentation

In Clarion the programmer has the option to automatically create a splash screen. When
the application starts the splash screen appears right after the frame. There are a lot of
other applications out there that show the splash screen while the application is being
loaded, and when loading is finished the splash screen disappears. So how do I get the
same functionality?

Start off with what is known. The Main properties contains a procedure splash screen
extension where it’s possible to define the name of the splash screen. Call it
SplashWindow.

In the procedure SplashWindow properties I will let the Display Time (in seconds) be 8.
Since I don’t want the user to close the splash window by clicking on it, I uncheck the
check box. Now I have an application with a splash screen that appears after the program
has started.

Figure 2. SplashWindow properties.

Clarion Magazine - Documenting Your Code

http://www.clarionmag.com/v2n8/sub/v2n8documentation.html (3 of 7) [9/6/2000 3:40:46 PM]

I can’t change the way different parts of the program are called during start up, so
instead I will hide the application frame until the splash screen is finished.

To hide the window I choose Embeds in the frame procedure. Here I will have to find the
point where the window is opened so it can be hidden. In Local Objects. ThisWindow
(WindowManger).Init PROCEDURE().CODE.Open the window. I place the source code

TARGET{PROP:Timer} = 100
TARGET{PROP:Hide} = 1

Now the window is hidden and timer activated. TARGET is a built-in variable in Clarion
that normally refers to the window that currently has focus. TIMER can be omitted if the
extension template "Display the date and/or the time in current window" is used.

The next step is to unhide the window. There should be a smooth transition between
closing the splash window and unhiding the window. One way to do this is to use the
timer. First of all I’m going to define a local variable Start in the data section of the
Frame. This variable will keep track of the time.

Figure 3. Creating the Start local variable.

Clarion Magazine - Documenting Your Code

http://www.clarionmag.com/v2n8/sub/v2n8documentation.html (4 of 7) [9/6/2000 3:40:46 PM]

In the Embeds for the frame select Local Objects.ThisWindow
(WindowManager).TakeWindowEvent PROCEDURE()CODE and after Top of
CYCLE/break support place the following code in the SOURCE embed:

OF EVENT:Timer
 CASE Start
 OF 1
 OF 2
 OF 3
 OF 4
 OF 5
 TARGET{PROP:Hide} = 0 !UnHide Window Frame
 OF 6
 OF 7
 OF 8
 OF 9
 END
 IF Start<10 !Start is only used the first 10 seconds
 Start+=1 !Increment Start with 1 second
 END

That’s it…nearly. Although I have documented some of the code lines I’m still missing
the code description in the header as described earlier. One could argument that because
there isn’t so much code it’s superfluous. But even though this is just the preliminary
phase of the program it is essential to start documenting at once.

I may as well start with the first embedded source: Local Objects.Abc Objects. Window
manger. Init PROCEDURE().CODE.Open the window.

Clarion Magazine - Documenting Your Code

http://www.clarionmag.com/v2n8/sub/v2n8documentation.html (5 of 7) [9/6/2000 3:40:46 PM]

TITLE:

Hide window

PURPOSE:

Hide window while loading program and show splash screen.

INPUT: -

OUTPUT:

TARGET{PROP:Hide} = 1

VARIABLES:

- EMBEDS: Local Objects.Abc Objects.Window Manager.Init
PROCEDURE. | CODE. TITLE: UnHide window.

PROCEDURE SETINGS:

Splash procedure: SplashWindow

AUTHOR(S):

Steffen S. Rasmussen

REMARKS:

TIMER can be omitted if the extension template' Display the date | and/or the time in
current window' is used. In the embedded source: Local Objects.Abc Objects.Window
Manager.Init PROCEDURE.CODE. Top of CYCLE/break

TITLE:

UnHide window

PURPOSE:

To trigger the event when the main window is unhidden.

INPUT: -

OUTPUT:

TARGET{PROP:Hide} = 0

VARIABLES:

Start

EMBEDS:

Local Objects.Abc Objects. Window manger.Init |
PROCEDURE().CODE.TITLE: Hide window

PROCEDURE SETINGS:

Splash procedure: SplashWindow

AUTHOR(S):

Steffen S. Rasmussen

REMARKS:

For readability there is used a case structure that
contains a trigger point for each second. In each trigger
point the programmer can chose when and what is to be
initiated. In this case the window is unhidden after 5
seconds. After 10 seconds the trigger is disabled.

After documenting all the source the last place to document this code is in the Local

Clarion Magazine - Documenting Your Code

http://www.clarionmag.com/v2n8/sub/v2n8documentation.html (6 of 7) [9/6/2000 3:40:46 PM]

Variable Start:

Figure 4. Adding comments to the Start variable.

That’s it.

Although it is a tedious job, documenting code is a necessity that will pay back in the
long run. Hopefully there will come a time when Clarion can assist the programmer in
code documentation and maintenance to a much larger extent than it does today. Until
then documentation will always be the Achilles´ heel of Clarion.

Download the example app

Steffen S. Rasmussen has graduated in Computer Science from Copenhagen Business College. Since
then he has worked as a programmer, system technician and network administrator, and is currently IT
manager. Clarion is a quite a new language to Steffen since his only been working with it since January
2000. But what better way to learn it than by trying to teach others! Steffen has also set up a web site to
collect as many examples of different user interfaces as possible to inspire Clarion developers.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Documenting Your Code

http://www.clarionmag.com/v2n8/sub/v2n8documentation.html (7 of 7) [9/6/2000 3:40:46 PM]

http://www.clarionmag.com/v2n8/pub/v2n8documentation.zip
mailto:Radmila@vip.cybercity.dk
http://radmila.homepage.dk/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Code Documentation: The
Achilles´ Heel Of Clarion
(Aug 8,2000)

Displaying Related Fields
In ABC EIP
(Aug 8,2000)

Legacy to ABC: There is
Another Way! Part 2
(Aug 8,2000)

August 2000 News
(Aug 8,2000)

Displaying Related Fields
In ABC Edit-In-Place

By Alan Telford

Edit-In-Place (EIP) is really useful but requires some effort for
all but the most basic of requirements. Consider the case where
the user has a browse with a date field.

Do you know which day of the week 3 May 2000 was? Neither
does the user. So the user likes to have the day name displayed
automatically next to the date field. The date field is an
editable field from the database, whereas the day name is a
local data field for display only. How can you setup EIP so that the day name is always
displayed correctly?

Figure 1. Browse with date and day name.

Figure 2. List box formatter view of browse.

Clarion Magazine - EIP Tips

http://www.clarionmag.com/v2n8/sub/v2n8advisor-eip.html (1 of 4) [9/6/2000 3:40:47 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/

On your browse, click on the Change button, select Configure Edit in Place, and then
select Column Specific.

Figure 3. Column specific settings.

In my example, HOL:Date is the database field for the date. This should be enabled

Clarion Magazine - EIP Tips

http://www.clarionmag.com/v2n8/sub/v2n8advisor-eip.html (2 of 4) [9/6/2000 3:40:47 PM]

http://www.developerplus.com/

using the standard EditEntryClass.

List:Dayname is the local data field used to display the day name in the browse and
during EIP.

Next you have to embed the actual code. Go to the embed list. Under local objects, find
the EditInPlace::HOL:Date object, and then embed the following code after the
parent call of the TakeEvent method.

Figure 4. Embedding code to do the lookup.

The embed code is as follows:

Case ReturnValue
OF EditAction:None
OROF EditAction:Cancel
ELSE
 ! equivalent of EVENT:Accepted
 Update(SELF.Feq)
 Brw1.Q.list:Dayname = NameOfDay(Brw1.Q.HOL:Date)
 PUT(Brw1.Q)
 display()
END

Note that the real code is wrapped about with a Case ReturnValue statement. This
changes the embed point into the equivalent of Event:Accepted for a field on a Form
template. But notice the subtle differences. Instead of:

list:Dayname = NameOfDay(HOL:Date)
display()

you actually have:

Brw1.Q.list:Dayname = NameOfDay(Brw1.Q.HOL:Date)
PUT(Brw1.Q)
display()

Clarion Magazine - EIP Tips

http://www.clarionmag.com/v2n8/sub/v2n8advisor-eip.html (3 of 4) [9/6/2000 3:40:47 PM]

In EIP you are updating the browse queue and not the actual fields, so you must prefix
both HOL:Date and list:Dayname with Brw1.Q. And don’t forget the
PUT(Brw1.Q) which ensures the listbox displays accurately upon exiting EIP.

Did you notice I’ve cheated slightly? I’ve used the NameOfDay() function. To create
this, Insert a new procedure from the main application tree and call it NameOfDay. Enter
the prototype and parameters as in Figure 5.

Figure 5. Name Of Day function.

Under the Processed Code embed point enter:

Return choose(p:Date%7+1, 'Sunday','Monday','Tuesday',|
'Wednesday','Thursday','Friday','Saturday')

So now your user can see the day name as soon as they have entered a date. One more
happy user!

Alan Telford has been programming in Clarion since 1994. He is the Chief Software Developer at Maxtel

Software Ltd, a New Zealand software company specializing in writing back office computer solutions for
McDonald's Family Restaurants and other similar markets.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - EIP Tips

http://www.clarionmag.com/v2n8/sub/v2n8advisor-eip.html (4 of 4) [9/6/2000 3:40:47 PM]

mailto:alant@maxtel.co.nz
http://www.maxtel.co.nz/
http://www.maxtel.co.nz/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Code Documentation: The
Achilles´ Heel Of Clarion
(Aug 8,2000)

Displaying Related Fields
In ABC EIP
(Aug 8,2000)

Legacy to ABC: There is
Another Way! Part 2
(Aug 8,2000)

August 2000 News
(Aug 8,2000)

Legacy to ABC:
There is Another Way!

by Simon Brewer

Part 2

In part one of this article I discussed the reasons why many of
us still have Legacy applications, and offered some hope for
their future in an ABC world. I showed how to begin
converting a Legacy application to a hybrid Legacy/ABC application. I’m hoping I made
good headway in dispelling the old myth that ABC conversions are difficult! In this
article I’ll explain how to build some pure ABC into the hybrid application and take the
next step towards conversion.

Beware: Open Files!

Before starting on the code, I’ll digress and talk about file "open status" handling, which
is (hopefully) the only stumbling block you’ll encounter.

In Legacy, each open file is tracked using a global counter variable named
filename::used. These counters increment every time a file is required and decrement
whenever it is finished with. If it reaches zero, the corresponding file is closed.

ABC uses different variables (properties) nested within the FileManager class, yet the
hybrid application you created in Part One didn’t complain that it couldn’t find the older
style global variables. Why? Because the simple act you did of setting the global When
Done With Files option to Keep File Open conveniently de-referenced those variables –
they’re now ignored (for lack of a better word!) by the compiler.

Unfortunately, there is no equivalent to the When Done With Files setting in ABC.
Don’t go looking for it because it’s not there. In fact, the logic for closing files in ABC is
buried quite deep within the FileManager class and can not be over-ridden. That’s
quite a problem because it could allow an ABC procedure to close a file that’s still in use
by an active Legacy procedure.

The fix requires a one-line change to the FileManager class source file. I know, I
know, no one should ever alter the templates or classes shipped with Clarion. However,
the benefits far outweigh the potential risk in this particular case.

Clarion Magazine - Legacty to ABC Part 2

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc2.html (1 of 7) [9/6/2000 3:40:49 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/
http://www.clarionmag.com/v2n7/sub/v2n7legacytoabc1.html

To make the change, open the abfile.clw file in your \clarion5\libsrc (or c55\libsrc)
directory and search for the statement CLOSE(SELF.File) of which there will be
only one occurrence. Simply comment the statement by placing an exclamation mark in
front of it and save the file. You’ll need to re-make the ABC Global Data DLL from Part
One to bring this change in. That wasn’t too hard now, was it?

To recap, the change made above will mean that any file opened in every ABC
application you write will remain open until the application is closed or you execute an
explicit CLOSE(file) source statement. Thankfully, the constraints once imposed by
networks and DOS are mostly gone, so generally speaking this change is not going to
cause any problems. However, it’s important you understand the implications.

The Golden Rule

Before I continue with this part of the tutorial, I’ll lay down a single conversion rule that
I suggest you follow. That rule is to start conversions or make ABC additions to your
hybrid Legacy/ABC app from the bottom of the Application Tree upwards. In other
words, Legacy procedures may call ABC procedures; ABC procedures should only call
other ABC procedures.

There are three good reasons for this rule:

It is much easier to understand when done this way.1.

It helps limit the number of entry points to the DLL ("Exported" procedures).2.

A DLL cannot call a procedure located in an EXE.3.

The latter point is fundamental to Clarion apps, whether Legacy or ABC. The hybrid
method I’m demonstrating is based upon a Legacy EXE calling procedures in an ABC
DLL, so this constraint applies. The other points are generally helpful reasons for
adopting this rule.

To illustrate, please refer to the Application Tree snippet shown in Figure 1. It’s an
extract from the Legacy app you created in part one. Applying the rule to this extract, the
procedures UpdateCommitteeMembers, UpdateCommittees and
BrowseCommittees must be converted to ABC in that order. They can, of course, be
converted all at once.

Figure 1. Extract from Legacy Application Tree.

If any of these procedures had embedded code calling another Legacy procedure, one not
shown in the Application Tree, that procedure would also have to be converted. For
example, in my apps I often use a small procedure named Unxer to capture unexpected
error conditions after hand-coded file operations. Because I call it so often, I tend not to
update the Application Tree for it. If I had made any call to that procedure within the
UpdateCommittees form, I’d need to convert the Unxer procedure to ABC before,
or with, the form.

The ABC Procedure DLL

To begin procedure conversion, you’ll need to extend the hybrid Legacy/ABC app by

Clarion Magazine - Legacty to ABC Part 2

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc2.html (2 of 7) [9/6/2000 3:40:49 PM]

http://www.developerplus.com/

adding another DLL. Although you could technically begin adding procedures to the
ABC Global Data DLL created in part one, it is more beneficial to leave that alone and
create a new one. Therefore, you’ll need to create another empty ABC DLL in a similar
manner to which you created the ABC Global Data DLL last time.

Follow these steps:

Create a new ABC application as shown in Figure 2. Specify the ClubMgr
dictionary, set the Destination Type to Dynamic Link Library (DLL) and do not
use the Application Wizard.

1.

When the application is created, make the Main procedure an empty Source
procedure and turn off the Export Procedure check box on its Procedure
Properties window.

2.

Under the Global section, in the General tab, check the Generate Template
Global Data as External check box.

3.

In the File Control tab under File Attributes, External set to All External and
check the All Files Declared in Another APP check box.

4.

From the Application section of the main Clarion menu, select Insert Module,
choose External DLL and insert the Global Data DLL library name for the DLL
created in part 1 (Figure 3).

5.

Figure 2. Creating New ABC Procedure DLL.

Figure 3. Inserting ABC Global Data DLL Library.

Clarion Magazine - Legacty to ABC Part 2

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc2.html (3 of 7) [9/6/2000 3:40:49 PM]

You may now Make this DLL. If you’re performing a conversion of a real Legacy app
with a number of global data declarations, and you need access to those declarations in
the ABC equivalent procedures that will reside in this new DLL, now is the time to copy
them over. You should use the ellipsis (…) button to the right of the Global Data button
to perform this task. If you copy them from the Legacy app that already includes this
ABC Global Data DLL, each declaration will already have the External – DLL Storage
Class on it as described in part one.

The First ABC Procedure

As I said in part one, the method I’m describing can be used to both convert and extend
your application with ABC. The first task you’ll be doing is adding a new ABC
procedure and calling it from the Legacy app. In fact, you’ll add a both Browse and Form
and call the Browse from the Legacy app.

Follow these steps:

From the main Clarion menu select Procedure, New and name the new procedure
ABCBrowseCommittees.

1.

Select Procedure Type of Browse and ensure the Procedure Wizard check box
is on. Ignore the Wizatron option in the following option box if it shows.

2.

Follow the Browse wizard selecting the Committees file, name the update
procedure as ABCUpdateCommittees, de-select the Provide Buttons for
Child Files check-box and accept all other defaults.

3.

Because of the relationship between the Committees file and the
CommitteeMembers file, you’ll actually end up with an extra Form procedure
named UpdateCommitteeMembers. Rename this to
ABCUpdateCommitteeMembers.

4.

On the Procedure Properties window of the two forms, turn off the Export
Procedure check boxes.

5.

The final application tree should look like that shown in Figure 4. Make this new DLL.

Figure 4. ABC Procedure DLL with new ABC Browse & Form Procedures.

Calling the New ABC Procedure

Now to call the new ABCBrowseCommittees Browse from the Legacy app. Open up the
Legacy app created in part one and perform the following steps:

Go into the Menu Editor on the Main (Application Frame) window and add an
item to the Browse menu entitled ABC Browse Committees. Set this item to call a
procedure named ABCBrowseCommittees (Figure 5).

1.

Save the menu and your Application Tree should now show the procedure
ABCBrowseCommittees as a ToDo procedure (Figure 6).

2.

From the Application section of the main Clarion menu, select Insert Module,
choose External DLL and insert the ABC Procedure DLL library name for the
DLL you just created (Figure 7).

3.

Clarion Magazine - Legacty to ABC Part 2

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc2.html (4 of 7) [9/6/2000 3:40:49 PM]

Double click on the ABCBrowseCommittes procedure and choose External from
the selection list. On the Procedure Properties window, choose the library you
inserted in (3) from the drop-down Module Names list (Figure 8).

4.

Figure 5. Adding menu item to Main procedure.

Figure 6. Application Tree showing new ABC procedure.

Figure 7. Inserting ABC Procedure module.

Figure 8. Choosing ABC Procedure library from Procedure Properties dialogue.

Clarion Magazine - Legacty to ABC Part 2

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc2.html (5 of 7) [9/6/2000 3:40:49 PM]

That’s it. Make and Run the Legacy EXE and try out the ABC Browse Committees
browse. You should find it works just fine! Try using the forms etc.

Add Some ABC Functionality

To make life more interesting, go back into the new ABC Procedure app and turn on
Edit-In-Place or make some other ABC specific changes. Re-make the DLL and run the
EXE again. This should also work just fine. Please experiment as much as you wish at
this stage.

Now, hark back to the diagrammatic representations of your app shown in Part One, and
compare it with Figure 9, which is what your app looks like now. You can clearly see
how the ABC component is growing.

Figure 9. Hybrid Legacy/ABC app.

No apologies for making this tutorial quite long-winded. In reality you’ve probably done
just 40 mouse clicks to get to this stage, but I’ve deliberately been taking this tutorial
slowly so I leave nothing to chance – I want you to really understand what’s going on.
Also, no apologies for not including any source code to date because I feel you really
need to perform the tutorial to grasp this conversion method.

Clarion Magazine - Legacty to ABC Part 2

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc2.html (6 of 7) [9/6/2000 3:40:49 PM]

Wow, it looks like I’m out of time again. I was planning to go on and show you how to
convert your existing Legacy procedures to ABC in this part of the article, but I see that
I’ve included quite enough for you to get comfortable with for now. Stay tuned for next
week’s enthralling finale – conversion or bust!

Simon Brewer is Software Development Manager for First Ecom, an Internet development company
using Clarion. Prior to that he spent 17 years at Email Major Appliances, major Clarion users and
Australia's largest manufacturer of whitegoods. In his spare time he is also the President of the South
Australian Clarion User Group and a co-organiser of the ConVic conferences.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Legacty to ABC Part 2

http://www.clarionmag.com/v2n8/sub/v2n8legtoabc2.html (7 of 7) [9/6/2000 3:40:49 PM]

mailto:simon@first-ecom.hm
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

	clarionmag.com
	Clarion Magazine - August 2000
	Creating An MS Outlook-Style Menu In Clarion
	Five Rules For Managing Complexity - Part 2
	August 2000 News
	The Clarion Online Archives
	Tooltalk: I, Object
	Five Rules For Managing Complexity - Part 1
	Learning To Write A Business Object
	Legacy to ABC Part 3
	Documenting Your Code
	EIP Tips
	Legacty to ABC Part 2

	ADHMDHKODFKJKELDOEIOLOKCNLJPMKMP:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	LDMOIEHPLCENECMJGPEDGENGLBNDFNDN:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	HBFKOEDHPMIGFFKKOCKPCJIICFLIENAD:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	LOOIPDDDLHHNIPEHIJNOGEEFNMJKFDNG:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	MPOLCKIKCHJLCJBACGGDLLFJEIPPJKKL:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	BLHBEDELCJGPNBOJFBOJIMECAHJJGOOE:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	FHDNLEOKFOKDEJJIBAOOKJCPNCIJJLNM:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	LIKLDFOMOKBKOKGPJJKHHHNAOIGKPKLE:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	FFAIPOBMCPJANNMEFMDAJMFMAHGJAGCGABHA:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	LMBLLCLOAIFCNAOHPMJPLKAFPPFGMMPN:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	FPJLBJNNPBOGPOFDMGAKPNNKPLMPPJDP:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	CMLHFMFMJEHACPLCOAMMJIDBGOCIFMDALEBG:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

