
Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

September 2000 Index
Creating An MS OutLook-Style Menu In Clarion: Part 2
Microsoft Outlook uses an innovative menu style that’s become quite popular.
Now Steffen Rasmussen shows how to create the same style of menu in a Clarion
application. Part 2.
(Sep 5,2000)

The Clarion Advisor: Better Debugging With DebugView
The Clarion Advisor goes debugging again, this time with a free utility and an easy
API call.
(Sep 5,2000)

The Nuts And Bolts Of Passing Parameters: Part 1
Any time you divide a program up into procedures, you need a way for those
procedures to communicate. In this two part article, James Cooke explores the
many facets of passing parameters.
(Sep 12,2000)

Five Rules for Managing Complexity: Part 3
In the third of this five part series, Tom Ruby explains how to eliminate columns
that don't belong in your database.
(Sep 12,2000)

Outlook Menu Templates
Steffen Rasmussen has provided an additional download for his MS Outlook-style
menu articles. This new download includes menu templates.
(Sep 12,2000)

Using CHOOSE() To Concatenate Data
If you're used to concatenating strings the traditional Clarion way, you'll want to
read what Carl Barnes has to say about concatenating with the CHOOSE()
function.
(Sep 15,2000)

The Nuts And Bolts Of Passing Parameters: Part 2
Any time you divide a program up into procedures, you need a way for those
procedures to communicate. In this two part article, James Cooke explores the
many facets of passing parameters.
(Sep 15,2000)

Five Rules for Managing Complexity: Part 4
Isolate independent multiple relationships.What's that mean? Tom Ruby tells all,
in the fourth part of this five part series.
(Sep 15,2000)

Five Rules for Managing Complexity: Part 5

Clarion Magazine - September 2000

http://www.clarionmag.com/v2n9/pub/ (1 of 2) [9/15/2000 2:07:56 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/

Tom Ruby concludes his series on managing complexity with some surprising
thoughts about one-to-one relationships.
(Sep 15,2000)

September 2000 News
Clarion news, notes, and happenings from around the globe.
(Sep 15,2000)

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - September 2000

http://www.clarionmag.com/v2n9/pub/ (2 of 2) [9/15/2000 2:07:56 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Creating An MS
OutLook-Style Menu In
Clarion: Part 2
(Sep 5,2000)

The Clarion Advisor:
Better Debugging With
DebugView
(Sep 5,2000)

Creating an "MS OutLook"
Menu In Clarion

by Steffen Rasmussen

Part 2

In the previous article I described how to create the overall structure of an OutLook style
menu by populating the different menu selection buttons. Now I’ll show you how to
quickly finish the menu by completing the Action tab with a procedure call for every
button in the menu.

Or so I thought. The application that I’m developing exceeds 100 different procedures
combined in different ways. So if I have to create a menu for each possible combination
I’m going to end up with so many tabs, buttons and code that in a month or two it would
be impossible to make any head or tail of the procedure. Reusing the code is also
practically impossible. All in all I had to rethink the whole approach, although I’m
terribly behind schedule.

I could just use the menu as a toolbar that never changes. This would be quite easy but I
want the menu to show the menu items the user needs at any given time and nothing
else. So the menu has to change dynamically depending on which procedure the user has
opened.

What I really needed was a reusable menu procedure that preferably could be
transformed into a template. But how do I do that?

First of all keep it simple. Unfortunately keeping it simple is often the most difficult part
of programming.

I have the overall structure, so the next step is to getting the menu to interact with the
different browse and update procedures. The menu selections buttons are dependent
upon which procedure is in view. So instead of having the menu containing every
possible combination of procedure selections, it makes more sense to have the procedure
dynamically change the menu. In this way I can reuse the menu in all my applications
with out changing anything in the menu. What I would have to do though, is to create
some code that dynamically changes the menu selection buttons.

The Menu Strategy

Clarion Magazine - Creating An MS Outlook Style Menu: Part 2

http://www.clarionmag.com/v2n9/sub/v2n9outlookmenu2.html (1 of 11) [9/15/2000 2:09:58 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/
http://www.clarionmag.com/v2n8/sub/v2n8outlookmenu1.html

As the reader probably could guess this menu program has been through many changes
during the development and there will probably be a lot more in the future. But at this
stage I have to clarify how the menu is going to be used to call the program procedures.

Initially the only procedures called from the OutLook menu are Browse
procedures.

●

A Browse procedure should only be called from within one category.●

When a Browse procedure is opened it is not closed before the user closes the
application. Note that the maximum allowed open threads is 64, so if it is a big
application you will have to make sure that the user does not open any more then
the maximum allowed threads.

●

All procedure calls are made from the OutLook menu.●

The Update procedures are also called from the OutLook Menu but are initially
called from a Browse procedure when a file is Created or edited.

●

When a Browse procedure is first opened it cannot be closed again before the
program terminates. I’ll come back to this later.

●

For each group it should be possible to start a procedure even if an other
procedure is activated in an other group.

●

As development progresses so will this ToDo list. But for now I will show you how I
have chosen to solve most of these challenges.

Let’s get back to the menu.

The Menu Functionality

If you have been with me so far you would have finished the overall structure of the
menu. Now you just have to program the menu functionality into the different menu
buttons.

The menu has four categories and within each category there are five buttons, which to
the user will appear as buttons for perhaps 20 or more procedures. Each button will
change functionality depending on which Group, Window and procedure button is
selected. And to add to this each procedure button will also have to change icon, Button
name and procedure name. All this information has to be exchanged between the
different procedures and the menu. You could do this by defining a global variable for
each set of information that has to be exchanged, but it will just make it too difficult to
administrate all these global variables. Another option is to use one global variable
containing all this information in an array.

To define a global array select Global and then the Data button. Choose Insert and
populate the fields as done in the figure below:

Figure 1. Edit Field Properties for the global array.

Clarion Magazine - Creating An MS Outlook Style Menu: Part 2

http://www.clarionmag.com/v2n9/sub/v2n9outlookmenu2.html (2 of 11) [9/15/2000 2:09:58 PM]

Notice the Dimensions fields. This is where the array is created. Figure 1 shows a
multidimensional array in four dimensions.

For those of you who haven’t made an acquaintance with arrays I’ll give a brief
explanation. An array is a collection of individual data items, which all together can be
treated as a single piece of data. Each data item can be accessed directly and in any
order. A one-dimensional array consists of one row of data. A two dimensional array
consist of a row and a column of data. A three dimensional array adds an other
dimension to the two dimensional array so there are x, y and z coordinates, and so forth.

In Figure 1 there are four dimensions [1, 2, 3, 4] For each dimension you will have to
declare a maximum size, which in this case is [4, 5, 64, 3]. This means that the first
dimension can consists of maximum four data elements. The second dimension can
consists of maximum five data elements, the third of 64 and the fourth three.

The first dimension contains the numbers from 1 to 4, which represents the four Group
Buttons. The second dimension contains information about which Button (1-5) is used.

The third dimension contains the window number (1-64) and the fourth dimension
contains the buttons icon, the name of the button and the name of the procedure. Apart
from this array you will also need a global array to keep track of which button and
window is selected:

GLO:ArrayButton[4,64,1]
GLO:ArrayWindow[5,1]

The GLO:ArrayButton consist of [Group number, Window number, Button number]
and the GLO:ArrayWindows[Button number, Window number]

Clarion Magazine - Creating An MS Outlook Style Menu: Part 2

http://www.clarionmag.com/v2n9/sub/v2n9outlookmenu2.html (3 of 11) [9/15/2000 2:09:58 PM]

So why not just use the original Array[4, 5, 64, 1] since it contain all the values? The
reason is that this array contains the "finished" menu structure, and in order to use it you
have to know what menu item the user selected in order to get the correct array address.

Now you just have to put the array to use by populating the data elements as needed.

Start by populating the global data fields:

GLO:WindowThread, Long !Thread number
GLO:GroupNumber, Byte

Next in the embedded code for each of ?ButtonGroupOne, ?ButtonGroupTwo,
?ButtonGroupThree and ?ButtonGroupFour implement the following:

Control Events. ?ButtonGroupOne. Accepted:

GLO:GroupNumber = 1 !Button Number selected
DO RoutineProcedureStart !Show active procedure

Control Events. ?ButtonGroupTwo. Accepted:

GLO:GroupNumber = 2 !Button Number selected
DO RoutineProcedureStart !Show active procedure

etc..

Notice the second line: DO RoutineProcedureStart. Here a routine is called to
update all the buttons in the ToolBox, because each time a category is selected it should
call the active procedure, which is connected to this group. In the Embedded Source
Procedure Routines:

RoutineProcedureStart

ROUTINE DO RoutineInitButton !***************** Call
Procedure ***************** IF
GLO:ArrayButton[GLO:GroupNumber,|
GLO:ArrayWindow[GLO:GroupNumber,1]),1]<>0
ProcedureStart(GLO:ArrayStart[GLO:GroupNumber,|
(GLO:ArrayButton [GLO:GroupNumber,|
(GLO:ArrayWindow[GLO:GroupNumber,1]),1]), |
(GLO:ArrayWindow[GLO:GroupNumber,1]),3],25000) !UnHide
"Button selected frame" ?GroupSelectedButton{PROP:HIDE} =
0 ELSE !Hide the "Button selected frame"
?GroupSelectedButton{PROP:HIDE} = 1 END

At a glance this could look like gobbledygook, but if you know how to read it, it forms a
synthesis. In the first line the procedure is defined, then an other procedure is called
(which you created in Part I of this article). In the third line a somewhat cryptic IF
statement is started, but if you break it down it is not that difficult. The IF structure is
used to determine if any button in the group has been selected. If so, the procedure is
called and the ?GroupSelectedButton is unhidden. If no button is selected, the
?GroupSelectedButton is hidden. In pseudocode it would look something like:

Clarion Magazine - Creating An MS Outlook Style Menu: Part 2

http://www.clarionmag.com/v2n9/sub/v2n9outlookmenu2.html (4 of 11) [9/15/2000 2:09:58 PM]

IF ArrayButton[Group, Window, Button] <> no selection
 START(ArrayStart[Group, Button, Window,
Procedure],25000)
 UnHide ?GroupSelectedButton
ELSE
 Hide ?GroupSelectedButton
END

The pseudocode doesn’t explain the START command but read on and you will begin to
understand.

First of all there is a minor detail that has to be set in order. In part one you repositioned
all the menu elements except for one, and that is the ?GroupSelectedButton. This
was postponed until now, after the introduction of the array. This code is as previously
located in RoutineInitButton:

!****** Find the Y-coordinate for the selected Button

CASE GLO:ArrayButton[GLO:GroupNumber,|
 (GLO:ArrayWindow[GLO:GroupNumber,1]),1]
OF 1
 GETPOSITION(?ButtonOne,,Y)
OF 2
 GETPOSITION(?ButtonTwo,,Y)

Etc..

This code means that within the selected group find the number of the selected button.
When the number is found get the Y coordinate of this button (the X coordinate never
changes). Use the Y coordinate to position the ?GroupSelectedButton exactly under the
selected button:

!*********** Position the selection frame ************
!Reposition the "Button selected frame"
SETPOSITION(?GroupSelectedButton,,Y)

Dynamically Changing Procedure Calls

Until this point there haven’t been any defined procedure calls for the five buttons.
Under normal circumstances all that should be done is to change the button properties to
make a procedure call. Unfortunately this can’t be used when the procedure to be called
will change dynamically.

So how do you do that?

In the Clarion language you would normally call a browse with the START command,
for example:

START(BrowseCustomer,25000)

But it isn’t possible to directly change the called procedure in this statement
dynamically, so what do you do?

For starters take a look at some of the internal works of Clarion. Open the file

Clarion Magazine - Creating An MS Outlook Style Menu: Part 2

http://www.clarionmag.com/v2n9/sub/v2n9outlookmenu2.html (5 of 11) [9/15/2000 2:09:58 PM]

BUILTINS.CLW in the \C55\Libsrc directory, which is included in every MAP. You’ll
see the following procedure type declarations.

_PROC(),TYPE
_PROC1(STRING),TYPE
_PROC2(STRING,STRING),TYPE
_PROC3(STRING,STRING,STRING),TYPE

If you continue to look down the list in the BUILTINS.CLW you will find:

START(_PROC,UNSIGNED=0),SIGNED,PROC,NAME('Cla$START')
START(_PROC1,UNSIGNED=0,STRING),
 SIGNED,PROC,NAME('Cla$START1')
START(_PROC2,UNSIGNED=0,STRING,STRING),
 SIGNED,PROC,NAME('Cla$START2')
START(_PROC3,UNSIGNED=0,STRING,STRING,STRING),
 SIGNED,PROC,NAME('Cla$START3')

As you can see there is also four different START functions. Each of these forms of
START takes a procedure as the first parameter, and those procedure prototypes are
determined by the _PROC procedure types. Logically when programming in Clarion it
appears that there is only one START, but depending on which parameter list is used the
appropriate alias (Cla$Start,Cla$Start1, Cla$Start2, or
Cla$Start3) will be called.

How can you use this information?

One way is to create your own function. Since the BUILTINS.CLW is included in every
MAP the only thing you would have to do is create your own START alias. In the
embedded source Inside the Global Map write the following:

MODULE('cls')
 ProcedureStart(long,long),long,proc,name('Cla$START')

END

Here you have just created your own function called ProcedureStart. This supplies
the procedure call used above in RoutineProcedureStart. Values from the array
are passed to the procedure, like this:

ProcedureStart(GLO:ArrayStart[GLO:GroupNumber,|
 (GLO:ArrayButton [GLO:GroupNumber,|
 (GLO:ArrayWindow[GLO:GroupNumber,1]),1]), |
(GLO:ArrayWindow[GLO:GroupNumber,1]),3],25000)

How does this then work? Lets look at the MODULE structure:

MODULE(sourcefile)
 Prototype
END

The MODULE structure contains the prototypes. The source file could be the name of the
file containing the definitions for the different procedures just like the BUILTINS.CLW

Clarion Magazine - Creating An MS Outlook Style Menu: Part 2

http://www.clarionmag.com/v2n9/sub/v2n9outlookmenu2.html (6 of 11) [9/15/2000 2:09:58 PM]

which you looked at previously. But in this case the MODULE is being used to create
your own procedure definition. This procedure calls an external library. The source file
has to have a unique name which in this case is ‘cls’ but it could be anything you like.
Now in the prototype section you duplicate the calling structure of the BUILTINS.CLW
in order to make the same kind of calling prototype (START) just with a different name.

So what is the difference? In this prototype the procedure is not predefined as in the
BUILTINS.CLW (_PROC, _PROC1, _PROC2, _PROC3) and therefore it is
possible to assign an address instead of the name of the procedure as you have to when
using the Start command.

Notice the Cla$START; if you instead used Cla$START1 it would have been possible
to pass a parameter with the function, in contrast to Cla$START where it isn’t possible
to pass any parameters. If you want to be able to pass one parameter the module should
look like this:

MODULE('cls')
 ProcedureStart(long,long,STRING),
 long,proc,name('Cla$START1')
END

How do you then use this new procedure? Previously you used it in this cryptic array
code, but you also have to assign a procedure to call. You would have to populate the
menu when it opens:

Window Events.OpenWindow (MainMenu)
!********* Group One *********
!Group is selected (Used for updating ToolBox menu)
GLO:GroupNumber = 1
!********** ?ButtonOne **********
GLO:ArrayStart[GLO:GroupNumber,1,|
 (GLO:ArrayWindow[GLO:GroupNumber,1]),1]| ='Customer'
GLO:ArrayStart[GLO:GroupNumber,1,|
 (GLO:ArrayWindow[GLO:GroupNumber,1]),2]|
='Customer.gif'
GLO:ArrayStart[GLO:GroupNumber,1,|
 (GLO:ArrayWindow[GLO:GroupNumber,1]),3]|
 =address(BrowseCustomer)
!********** ?ButtonTwo **********
Etc
!********** ?ButtonThree ********
Etc
!********** ?ButtonFour *********
Etc
!********** ?ButtonFive *********
!********* Group Two *********
!Group is selected (Used for updating ToolBox menu)
GLO:GroupNumber = 2
!********** ?ButtonOne **********
Etc

Clarion Magazine - Creating An MS Outlook Style Menu: Part 2

http://www.clarionmag.com/v2n9/sub/v2n9outlookmenu2.html (7 of 11) [9/15/2000 2:09:58 PM]

Again quite long and cryptic, but keep in mind that the array just contains ArrayStart
[Group,Button,Window,Procedure]. In pseudocode it looks something like:

!Where I# = the 4 possible groups
LOOP I#= 1 TO 4 BY 1
 !Where J# = the 5 possible buttons
 LOOP J#= 1 TO 5 BY 1
 ArrayStart[#I, #J, Window, Text] = Button text
 ArrayStart[#I, #J, Window, Icon] = Icon name
 ArrayStart[I#, J#, Window, Procedure] =|
 address(Procedure name)
 END
END

The next thing to do is to select the first button in each procedure and then activate the
first procedure call:

!*** Initial Selected Button ****
!Where I# = the 4 possible groups
LOOP I# = 1 TO 4 BY 1
 IF GLO:ArrayStart[I#,1,(GLO:ArrayWindow[I#,1]),1]|
 <>'' !Text of first Button
 !Button 1 selected
 GLO:ArrayButton[I#,(GLO:ArrayWindow[I#,1]),1] = 1
 ELSE
 !No selection
 GLO:ArrayButton[I#,(GLO:ArrayWindow[I#,1]),1] = 0
 END
END
!***** Open Group at Start****
GLO:GroupNumber = 1
DO RoutineProcedureStart

The last thing you would have to do in the MainMenu is to make the five selection
buttons work by implementing the following code in each button:

Control Events. ?ButtonOne. Accepted
GLO:ArrayButton[GLO:GroupNumber,|
 (GLO:ArrayWindow[GLO:GroupNumber,1]),1] = 1
DO RoutineProcedureStart !Call procedure

In the first line the GLO:ArrayButton is assigned the button number in this case it is
1 for ?ButtonOne.

That’s it – you’re finished… with the MainMenu. Now all you have to do when reusing
the code is to change the initial start parameters for the five Buttons and rename the four
groups, and you are in business.

Updating The Menu Buttons

After you have finished all the preparations for dynamically changing the menu buttons,
you just have to put it to work.

Clarion Magazine - Creating An MS Outlook Style Menu: Part 2

http://www.clarionmag.com/v2n9/sub/v2n9outlookmenu2.html (8 of 11) [9/15/2000 2:09:58 PM]

When the program starts the MainMenu buttons are populated and the first browse is
visible. When selecting one of the other menu buttons a new browse is selected. This is
also the case if you select the same button twice or more. It just keeps opening a new
instance of the browse window. To prevent this from happening I have included with
this example a Thread Limit template which was created by following the example
"Using the Template Wizatron" in the Clarion Wizatron handbook. In each procedure
add this template to the procedure extensions. The folder is called Class OutLookMenu.

Each Update procedure does four things:

Increment window number when opened.1.

Mark first button in menu as selected (button is depressed)2.

Populate the Main menu with new selections buttons.3.

Decrement window number when closed.4.

For each update procedure in the Window Events.OpenWindow, add this code:

!Increment window number
GLO:ArrayWindow[GLO:GroupNumber,1] +=1
GLO:ArrayButton[GLO:GroupNumber,|
 (GLO:ArrayWindow[GLO:GroupNumber,1]),1] = 1

!********** ?ButtonOne **********
GLO:ArrayStart[GLO:GroupNumber,1,|
(GLO:ArrayWindow[GLO:GroupNumber,1]),1]| ='Customer'
GLO:ArrayStart[GLO:GroupNumber,1,|
(GLO:ArrayWindow[GLO:GroupNumber,1]),2]| ='Customer.gif'
GLO:ArrayStart[GLO:GroupNumber,1,|
(GLO:ArrayWindow[GLO:GroupNumber,1]),3]|
=address(UpdateCustomer) !********** ?ButtonTwo

And so on for the five buttons, and finish the code off with:

!Update the ToolBox menu.
POST(EVENT:RefreshToolBox,,GLO:ToolBoxThread)

In the Window Events.CloseWindow:

!Decrement window number in Category
GLO:ArrayWindow[GLO:GroupNumber,1] -=1
!Update ToolBox menu.
POST(EVENT:RefreshToolBox,,GLO:ToolBoxThread)

So how does this work? Well, each update procedure defines a new menu structure,
where the first button is the update procedure and buttons two to five are browse
procedures. All the browse procedures, which have some kind of connection to the
update procedure, are managed in the MainMenu. Therefore there aren’t any tabs
containing browse boxes. To include them in the procedure tree structure you have to
select the Procedure button for each update procedure and mark the browse procedures,
which are included in the MainMenu.

No matter which button you select within the group the MainMenu won’t change until a
new Update procedure is opened or closed. A nice little twist is keeping track of which

Clarion Magazine - Creating An MS Outlook Style Menu: Part 2

http://www.clarionmag.com/v2n9/sub/v2n9outlookmenu2.html (9 of 11) [9/15/2000 2:09:58 PM]

button is selected. For example when you select a browse, say button three, and then
open the Update procedure, the first button which contains a procedure call to this
update procedure is automatically selected. Close the update procedure and now button
three is selected and the corresponding browse procedure has focus. All this works fine
until you close a browse procedure instead, because the browse procedure does not keep
track of the window number. To prevent the user from closing the browse procedure and
for that sake resizing, iconisizing and restoring it:

Local Objects. ThisWindow.TakeWindowEvent.CODE.Top of CYCLE/BREAK
support

OF EVENT:CloseWindow !The user is closing the window
 CYCLE !Prevent users from closing the window.
OF EVENT:Size !The user is resizing the window
 CYCLE !Prevent users from resizing the window.
OF EVENT:Iconize !The user is minimizing the window
 CYCLE !Prevent users from minimizing the window.
OF EVENT:Restore !The user is restoring the window.
 CYCLE !Prevent users from restoring the window.

Also if the Browse procedure has a Close button it should be deleted. Just remember that
if the close is included in the override control strategies, it should also be deleted there.

Where To Go From Here

As I mentioned in the start the To Do list can be extended quite a bit. Here are some
ideas, which I have not explored yet:

The OutLook menu has to be able to coexist with the existing menu bar. In other
words procedures selected in the menu bar also have an impact on the OutLook
menu, which has to change its menu structure depending on which procedure is
selected from the ordinary menu bar.

●

The idea with the menu is to have one instance of any given browse procedure. In
the example you have just been through the different browse procedures always
had the same record filter, range limit field and the range limit type. Under normal
circumstances these values changes in accordance to the calling procedure and
should therefore also be applied to the functionality of this OutLook Menu.

●

One could also change the code so the fourth group could be used for reports. So
when a given window has focus the user can select the reports group and see
which report possibilities there is. Personally I haven’t thought this idea through,
but you would have to keep track of the window in a specific group and which
reports it contains in each selection button.

●

Add more buttons and make the window, which contains the buttons scroll when
necessary. Although I won’t recommend adding too many buttons as the user has
to look for them. For example with five buttons the user can make the selection at
once, but if there are eight buttons or more the user has to do a little more looking.

●

Extend the menu programming to exclude groups which are not necessary. This
could mean excluding unnamed groups, just like the selection buttons. You would
also have to make sure that the repositioning of any following groups is done
accordingly.

●

Extend the menu programming to include extra groups in the tabs located below
the menu. If there aren’t any groups to include the tabs should be hidden and the

●

Clarion Magazine - Creating An MS Outlook Style Menu: Part 2

http://www.clarionmag.com/v2n9/sub/v2n9outlookmenu2.html (10 of 11) [9/15/2000 2:09:58 PM]

repositioning of the group is done accordingly. The extra groups just extends the
group numbering from 4 to 5, 6, 7…

Create an OutLook menu template.●

Create an OutLook menu Wizatron.●

And so on. You can continue the list and let me know of your progress.

When I started this article I thought that I pretty much had finished the menu
development. As it turned out I had just covered the tip of the iceberg, and new ideas
changed the development in another direction than I had originally anticipated. That first
idea of copying the OutLook menu has grown into a menu that controls the whole
application and at any given moment provides the user with exactly the menus needed.

Download the example app

Download an updated app with menu templates

Steffen S. Rasmussen has graduated in Computer Science from Copenhagen Business College. Since
then he has worked as a programmer, system technician and network administrator, and is currently IT
manager. Clarion is a quite a new language to Steffen since his only been working with it since January
2000. But what better way to learn it than by trying to teach others! Steffen has also set up a web site to
collect as many examples of different user interfaces as possible to inspire Clarion developers.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Creating An MS Outlook Style Menu: Part 2

http://www.clarionmag.com/v2n9/sub/v2n9outlookmenu2.html (11 of 11) [9/15/2000 2:09:58 PM]

http://www.clarionmag.com/v2n8/pub/v2n8outlookmenu.zip
http://www.clarionmag.com/v2n9/pub/v2n9outlookmenu-tpl.zip
mailto:Radmila@vip.cybercity.dk
http://radmila.homepage.dk/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Creating An MS
OutLook-Style Menu In
Clarion: Part 2
(Sep 5,2000)

The Clarion Advisor:
Better Debugging With
DebugView
(Sep 5,2000)

The Clarion Advisor:
Debugging With DebugView

by Jeff Slarve and Dave Harms

Debugging is a favorite topic among Clarion developers, and in the
past Clarion Magazine has published a number of articles on
debugging techniques. (To see these articles, use any Search button to look for the word
debug.) Probably the most-used method is displaying a message during execution using either
the MESSAGE() or STOP() function. These both have the disadvantage of disrupting the
program’s events, and if you’re trying to solve a user interface problem there’s a good chance
the debugging process will alter the problem, making things even more difficult.

One way around this is to write debug messages out to a log, and the DebugView utility from
Systems Internals makes this easy. Go to http://www.sysinternals.com/ and download a version
suitable for the version of Windows you’re using. DebugView will capture messages written to
the Windows OutputDebugString API call and display them in a topmost window.

Listing 1 shows an example of a 32 bit program which uses the OutputDebugString call
to write several messages to the DebugView window.

Listing 1. A DebugView test program

program

 map
 module('')
 OutputDebugString(*CString),raw,pascal,
 Name('OutputDebugStringA')
 end
 Debug(String DebugString)
 end

 Code

? Debug('This is test1')
? Debug('This is test2')
 message('Yada')

Debug Procedure(String DebugString)
DB CString(500)

Clarion Magazine - Debugging With DebugView

http://www.clarionmag.com/v2n9/sub/v2n9debugtip.html (1 of 3) [9/15/2000 2:09:59 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/
http://www.sysinternals.com/

 Code

 DB = Clip(DebugString) & '<13,10,0>'
 OutPutDebugString(DB)

Note the use of the ? character in column 1 to conditionally compile statements only when
debug is on.

Create a project for this source (or use the demo application), compile, run the DbgView.exe,
then run the example app. Figure 1 shows the resulting messages displayed in the DebugView
window.

Figure 1. The DebugView message window.

With DebugView you can view and record debug session output on your machine or across the
Internet, which raises interesting possibilities for beta testing. You can also search and filter
debug output, print or log to a file, and format the output. Best of all, DebugView is free! And
while you’re at the SysInternals web site be sure to have a look at their other system utilities.

If you’re using ABC, you may also want to try modifying your output string to look like this
(assuming "ABC" is the name of the application):

? OutPutString = Clip('ABC ' & GlobalErrors.GetProcedureName())|
 & ' - ' & Clip(DBString) & '<13,10,0>'

As long as the main EXE contains the lib for all of the DLLs, then all of the DLLs will use the
same globalerrors object.

On a related note, if you need to know if you are running under the debugger, you can try
putting this function in the map:

IsDebuggerPresent(),BOOL,pascal,Name('IsDebuggerPresent')

You’ll have to make a lib from kernel32 for this, but OutputDebugString() is already in
the Win32 API prototypes.

Download the example app

Clarion Magazine - Debugging With DebugView

http://www.clarionmag.com/v2n9/sub/v2n9debugtip.html (2 of 3) [9/15/2000 2:09:59 PM]

http://www.clarionmag.com/v2n9/pub/v2n9dbgview.zip

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the express
written consent of CoveComm Inc., except as described in the subscription agreement, is prohibited. If you find
this page on a site other than www.clarionmag.com, email covecomm@mbnet.mb.ca.

Clarion Magazine - Debugging With DebugView

http://www.clarionmag.com/v2n9/sub/v2n9debugtip.html (3 of 3) [9/15/2000 2:09:59 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

The Nuts And Bolts Of
Passing Parameters: Part
1
(Sep 12,2000)

Five Rules for Managing
Complexity: Part 3
(Sep 12,2000)

Outlook Menu Templates
(Sep 12,2000)

The Nuts And Bolts Of
Passing Parameters

by James Cooke

Part 1 of 2

Any time you divide a program up into procedures, you need
a way for those procedures to communicate. There are
several ways to accomplish this, including the use of global variables, data files, .ini
files, module data and parameter passing. The pros and cons of each are dependent on
the language, the user's experience and the environment. This article will discuss the
basics and benefits of "passing" data across to another procedure.

Why Bother?

The use of global variables is a common alternative for parameter passing, and you
might ask why this is not such a good idea. Simply put, global variables clutter up an
application. They use up memory and the variables might be unexpectedly modified by
other procedures, which makes the procedure using the variable, and by extension the
output of that procedure, suspect. Using global variables for this purpose is probably the
biggest culprit in producing spaghetti code, and is one of the hallmarks of newbie
programmers!

On the other hand, passing parameters lends itself to efficient code reuse and clean
encapsulation of data (that is, no contamination of data by external code). It also partially
documents the functionality of a procedure - you can look at the data labels being passed
to a procedure and the return value(s) and often guess its functionality. Parameter
passing is also the standard used by most other programming languages, and
understanding how Clarion uses parameter passing will ease later understanding of
things like the use of Windows API functions. In addition, these procedures can be
shared across multiple applications by creating a DLL or Library, thus extending their
functionality to other applications.

There are several techniques in parameter passing, and I will discuss them as follows:

Passing a value to a procedure1.

Omittable Parameters2.

Passing Parameters to Threaded Procedures3.

Clarion Magazine - Passing Parameters - Part 1

http://www.clarionmag.com/v2n9/sub/v2n9parameters1.html (1 of 6) [9/15/2000 2:10:00 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/

Using Return Values4.

Optional Return Values5.

Passing Values By Reference6.

Passing Objects7.

Local Procedures8.

Passing Complex Structures9.

Passing Reference Parameters To The Windows API10.

Function Libraries11.

Passing A Value To A Procedure

Passing a value to a procedure essentially means that a local variable is declared in the
receiving procedure and is primed to a particular value. Here’s an example:

A procedure called ProcA, when called, needs to be given three values by the procedure
that called it. These values will be of the data types STRING, LONG, and BYTE. To call
this procedure and send over this data, the call would be n this format:

ProcA('MyText',12345,10)

Alternatively, using variable labels instead:

ProcA(StringToSend,LongToSend,ByteToSend)

On the other side, the called procedure needs to expect the passed data when it is called.
To tell Clarion that the procedure ProcA will be receiving these variables, or
parameters, the procedure's prototype is declared as follows:

ProcA (STRING CusNam,BYTE CusAge,LONG CusNum)

The procedure declaration is, in this case, identical:

ProcA PROCEDURE (STRING CusNam,BYTE CusAge,LONG CusNum)

This means that the procedure will be expecting to receive three variables of type
STRING, BYTE and LONG, and the variables will be called CusNam, CusAge,
CusNum respectively. Since most programs are not hand coded but exist in an .APP file,
it is necessary to get Clarion to generate the above code correctly. To do this, modify the
procedure properties, as shown in Figure 1.

Figure 1. Prototyping a simple call in Clarion

Clarion Magazine - Passing Parameters - Part 1

http://www.clarionmag.com/v2n9/sub/v2n9parameters1.html (2 of 6) [9/15/2000 2:10:00 PM]

In order to access the data, simply use the variables CusNam, CusAge and CusNum as
if they were already declared in the Local Data section. So placing a button on the
window of ProcA with the following code in the Accepted embed will work fine:

MESSAGE('Customer number '& CLIP(CusNum) & ' is named ' & |
 CLIP(CusNam) & ' and is ' & CusAge & ' years old!')

It is important to note that the data that is received by the procedure ProcA is a copy of
the data that was sent, so modifying the received data will not modify the data in the
procedure that called it. Not that it can't be done - it just won't happen using this
particular prototype.

To view the implementation of this technique, open the example application and select
the toolbar Pass Parameters button, set the variables to pass, and click the button. The
procedure will start up and the values in the window will be correct - just as if the
variables you were using were global!

That’s the first step in uncluttering an application. Now try removing one of the
parameters of the function call in the example. For example, try calling this procedure
but leave out the CusNum parameter:

ProcA(StringToSend, ByteToSend)

Compiling this will produce the compiler errors "No matching prototype" and "Too few
parameters." But what if one of the parameters is not required? Is it possible to make a
function work correctly even if an unneeded parameter is missing? Yes it is!

Omittable Parameters

Omittable parameters allow a procedure to take on a different behavior dependent on
how it has been called. This kind of behavior, called polymorphism, provides great
flexibility in the language. An example of this is Clarion's MESSAGE() function: you
can specify a different message box appearance simply by omitting the second or third
parameters. Figure 2 shows how the same function can have different results, all by
simply adding an extra parameter to the message call. The respective instructions for
each popup are as follows:

Clarion Magazine - Passing Parameters - Part 1

http://www.clarionmag.com/v2n9/sub/v2n9parameters1.html (3 of 6) [9/15/2000 2:10:00 PM]

MESSAGE('Hello World!')
MESSAGE('Hello World!','Greetings!')
MESSAGE('Hello World!','Greetings!',Icon:Exclamation)

Figure 2. Using the message function passing one, two and three parameters
respectively

Comparing the simple implementation of the MESSAGE() function with the more
complex output indicates that there must be some internal logic in MESSAGE()that
determines how it should react when a parameter is omitted or included. This same
functionality can also be utilized in your own function calls by telling the Clarion
compiler that you want to be able to allow the programmer to omit parameters of a
procedure. To do that, place the omittable parameters and variable names in <angle
brackets>.

Internally, Clarion's MESSAGE() function is prototyped as follows:

MESSAGE(STRING,<STRING>,<STRING>,<STRING>,
 UNSIGNED=0,BOOL=FALSE), UNSIGNED,PROC

This means that Clarion's message procedure must receive between one and four
STRINGs, an UNSIGNED and a BOOL when it is called. (BUILTINS.CLW still uses
the older declaration style of only supplying the data types in the prototype, rather than
the more readable type/name pair.)

In the previous example, the parameters passed to ProcA were:

(STRING StringToSend,BYTE ByteToSend,LONG LongToSend)

Firstly, prototype the function as below:

ProcB PROCEDURE(STRING CusNam,Byte CusAge,<LONG CusNum>)

The procedure declaration is:

ProcB PROCEDURE (STRING CusNam,BYTE CusAge,<LONG CusNam>)

Now calling the procedure with an omitted parameter will compile successfully - but it
still won't do anything! The logic in the body of the function needs to be adjusted to be
able to react correctly according to the number of parameters it received. Clarion
determines which parameter is missing by means of the Omitted() function.

This code will implement the logic:

Clarion Magazine - Passing Parameters - Part 1

http://www.clarionmag.com/v2n9/sub/v2n9parameters1.html (4 of 6) [9/15/2000 2:10:00 PM]

If OMITTED(3)

MESSAGE('Customer Name ' & CLIP(CusNam) & | ' is ' &
CusAge & ' years old!',| 'The Age was not included') Else
MESSAGE('Customer number '& CLIP(CusNum) & | ' is named '
& CLIP(CusNam) & ' and is ' | & CusAge & ' years old!')
End

There is a little bit more to this though: Notice that the omittable parameter was the last
parameter in the parameter list. What if the omittable parameter were to be the first
parameter instead? The prototype would be as follows:

ProcB PROCEDURE(<STRING CusNam>,BYTE CusAge,LONG CusNum)

The procedure declaration would be:

ProcB PROCEDURE (<STRING CusNamCusNam>,CusAge,LONG CusNam)

To successfully call ProcB with two parameters, the call would have to look like Figure
3.

Figure 3. Using a placeholder to mark a missing parameter.

The placeholder comma circled in red indicates to the compiler that the single omitted
character was intentional and also to indicate which parameter was omitted. This is
essential in the case where there may be more than one omittable parameter in the
function call.

The two-parameter call to ProcA did not need the placeholder comma for two reasons:
Because the omittable parameter is the last parameter in the parameter list; and there was
only one omittable parameter. If there are multiple omittable parameters and the function
call omits one parameter only and does not show any placeholder commas, then the
compiler will assume that the last omittable parameter in the parameter list is the missing
one and could execute the wrong piece of code. Otherwise, the placeholder comma
clears up any confusion as to which parameter is missing and Clarion can execute the
right piece of code in the procedure.

One more thing; you probably noticed that the ProcB procedure is not a window
procedure but a source procedure. I did this because the Omitted() function will only
work with the current procedure scope. In an ABC application most code is executing as
part of a class method. For instance, placing the code in the Accepted embed point of a
button will make OMITTED() look for omitted parameters in the ABC
TakeAccepted method, and not the main ProcB procedure. To trap for omitted
parameters in an ABC window procedure the Omitted() test must be done after the
main procedure's CODE statement but before the statement GlobalResponse =
ThisWindow.Run(). (Tip: You will have to use the Omit directive to make that
happen as there isn’t an appropriate embed point.)

Passing Parameters To Threaded Procedures

In the context of this article, starting a procedure in a thread essentially means that the

Clarion Magazine - Passing Parameters - Part 1

http://www.clarionmag.com/v2n9/sub/v2n9parameters1.html (5 of 6) [9/15/2000 2:10:00 PM]

called procedure does not necessarily retain exclusive focus after it has been called. The
calling procedure can regain focus if the user clicks on its window with a mouse, for
example. Threading is a very powerful feature in Windows, but until recently it was not
possible to pass parameters to a threaded Clarion procedure via the START function.
This often resulted in the complex and excessive use of global variables to "pass" values.

The only data type that can be passed to a threaded procedure is a string, it must be
passed by value, and a maximum of three parameters can be passed to it. No value can
be returned to the calling procedure. (Editor’s note: Jeff Slarve has devised a workaround
for this limitation in START. His thread manager allows you to pass any variable or
object you like to a STARTed procedure.) To prototype a procedure to be called in a
thread, declare it the same as a standard procedure, except that it can only have up to
three string parameters and cannot return a value:

ProcD PROCEDURE(STRING CusNam)

The procedure declaration would as per normal:

ProcD PROCEDURE (STRING CusNam)

To call a procedure under a thread, the call is made in the same way a procedure is
usually STARTed, with the second parameter the size of the stack allocated to the
STARTed procedure (and any procedures it calls):

Start(ProcD,25000)

To pass a string parameter to this procedure, the call is made as follows:

Start(ProcD,25000,StringToSend)

The ProcD procedure will receive the parameter in the same fashion as in an unthreaded
call.

It's all very well to be able to pass parameters to functions to make them do specific
things elsewhere, but what about the results of what gets done? It might be acceptable
for the procedure to write something to disk or to set a global variable, but relying on
that exclusively is rather limiting. It would be very useful for a function to be able to go
and do something specific, or evaluate a condition, and optionally pass a specific value
back to the calling procedure. This is the purpose of return values, and I’ll go into that in
detail in Part 2.

Download the example application

James Cooke has been using Clarion since 2.1 days and has been a die hard for "the cause" ever since.
He and his family recently moved from South Africa to Texas and is currently working in the banking
industry. He spends most of his free time basking in the sun by the pool with a good book or
succumbing to that hard-to-kick addiction that persistently haunts the Western cosmopolitan
neighborhoods - the yard sale.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Passing Parameters - Part 1

http://www.clarionmag.com/v2n9/sub/v2n9parameters1.html (6 of 6) [9/15/2000 2:10:00 PM]

http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/v2n9/pub/v2n9parameters.zip
mailto:james.cooke@gte.net
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

The Nuts And Bolts Of
Passing Parameters: Part
1
(Sep 12,2000)

Five Rules for Managing
Complexity: Part 3
(Sep 12,2000)

Outlook Menu Templates
(Sep 12,2000)

Five Rules For Managing
Complexity

by Tom Ruby

Part 3

In this series, I’ve introduced the idea of using rules to
reduce the complexity of your work. Software complexity is
increasing because the users and clients expect your software to solve increasingly
complex problems for them, and if you don’t do it, your loyal customers will beat a path
to your competitor’s door. Face it, the days when the users were delighted with a 2,000
line program with two tables, a browse and a report are far behind.

How do you handle this complexity? The first thing to do is avoid making it worse.
Clarion is a powerful tool for solving problems, but let’s apply its power to solving the
user’s problems, not to solving problems we add to them.

So I’ll recap Rules 1 and 2, along with the guidelines, and get on with Rule 3.

Guideline 1:
Don’t take shortcuts. They might save you a few minutes now, but they’ll
cost you days later.

Guideline 2:
It is a lot less painful to fix a painful mistake now than it will be later on.

Rule Number 1:
Eliminate repeating fields.

Guideline 3:
A list is resizable, a form is not.

Guideline 4:
Link your tables by a hidden field that is completely meaningless outside
the system.

Guideline 5:
Use keys to help the application identify records it is interested in.

Rule Number 2:

Clarion Magazine - Managing Complexity - Part 3

http://www.clarionmag.com/v2n9/sub/v2n9complexity3.html (1 of 5) [9/15/2000 2:10:01 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/

Eliminate redundant data

If you stick to Rules 1 and 2 when you lay out your data, you will find a lot of the
complicated code you’re used to writing disappears. There’s something else that will
disappear; bugs. I mean the type of bug where the users complain, "I changed this here
and something went wrong over there…" You like the idea of less headache, fewer bugs
and less tangled code? Then I’ll go on with Rule Number 3:

Rule Number 3:
Eliminate Columns that don’t belong

To explain Rule Number 3, I’ll talk a little about Keys. In Clarion, we have the idea of a
key and an index rather mixed up because you usually want an index on a key. A key is a
column (or field) in a table (or file) which is used to identify rows (or records), while an
index is a data structure used to impose an order on the rows without having to actually
sort them to make finding records faster. You usually want an index on a key, but you
don’t have to have one. A key is a logical construct, an index a physical construct.

Now, when I talk about "The Key," or "The Primary Key," what I mean is a column or
columns that uniquely identify each row in the table. Even more than that, I mean a
column or a value that represents the thing the row of the table records. The other
columns of the table describe the thing the KEY represents. Take a look at an example:

Student Table

StudentID Name Gender Teacher Grade Section

102 Caleb M Wilson 2 1

103 Cameron M Wilson 2 1

104 Anthony M Wilson 2 1

105 Angel F Wilson 2 1

106 Sarah F Wilson 2 1

107 Ethan M Harn 1 1

108 Mandy F Harn 1 1

109 Waylon M Wilson 2 1

110 Emily F Harn 1 1

111 Seth M Harn 1 1

112 Ashley F Hard 1 1

112 Drew M Wilson 2 1

Obviously, the StudentID is the primary key in the Student table. Remember, the
primary key represents the student. The other columns describe the student. The table
also contains the student’s name, gender, teacher, grade, and section The section must be
which class of the grade they go to. But wait! Three of these columns describe the class,
not the student, so they don’t belong here. They belong in a class table. So I’ll make two
tables:

Clarion Magazine - Managing Complexity - Part 3

http://www.clarionmag.com/v2n9/sub/v2n9complexity3.html (2 of 5) [9/15/2000 2:10:01 PM]

StudentTable ClassTable

StudentID
Name
Gender
ClassID

ClassID
Teacher
Grade
Section

Why is this better? For one thing, moving a student from one class to another is a matter
of updating one field, not three. Also, you don’t have to worry about things getting out
of synch, or the users asking, "If Drew is in 2nd grade why does the dataabase show his
teacher as Mrs. Harn, the first grade teacher? Uh oh, Mrs. Bricker will be teaching
second grade. With a single table, some user would have had to find and update 7
records, or you would have to write a change teacher process. With a separate class
table, only one record needs to be updated.

To clarify this, here's Guideline 5:

Guideline 5:
The primary key represents the "thing." The rest of the columns describe the
thing the primary key represents.

You probably have more information you want to store about the teacher. Perhaps the
teacher’s phone number, address, or state certificate number. As long as one teacher only
teaches one class, you could probably put these in the Class table, which would change it
into a teacher table. If you’re talking about a bigger school or older kids where a teacher
might teach several classes, you would want to make separate teacher tables and class
tables. These tables might look like this:

StudentTable ClassTable TeacherTable

StudentID
StudentName
StudentAddress
GradeLevel

ClassID
TeacherID
RoomNumber
Period
CourseName

TeacherID
TeacherName
CertificateNumber
TeacherPhoneNumber

So how do you record which class the student is in? It is pretty likely that a student is in
more than one class. A class also has more than one student. This is the dreaded
Many-To-Many problem. You can’t put a list of classes in the Student table because that
would violate Rule Number 1, and you can’t put a list of students in the class table
because that would also violate Rule Number 1. Fortunately, the conundrum is easily
solved.

"You don’t mean another…" Yes. I mean another table.

AttendsTable

AttendsID
StudentID
ClassID
Grade

Now you can record that Sasha is taking Biology, Algebra 1, Wood Shop, Art, English

Clarion Magazine - Managing Complexity - Part 3

http://www.clarionmag.com/v2n9/sub/v2n9complexity3.html (3 of 5) [9/15/2000 2:10:01 PM]

and Civics. You also have a place to record what grade she got in each of these classes.
Notice that I gave the AttendsTable an AttendsID. This isn’t actually needed, because
the table’s primary key could be StudentID and ClassID. I gave it a single field primary
key for two reasons. First, force of habit. Second, if you discover later on you need a list
of something from the attends table, maybe an attendance or assignment history, you
have a single linking field to use, which is easier to use in a range limit than something
like HST:StudentID = ATT:StudentID AND HST:ClassID = ATT:ClassID. When you’re
building an application, you never know what is going to happen to the requirements for
the application, so while you’re at it, you might as well simplify the work you’ll have to
do later on. This is so important that I’ll make it a guideline:

Guideline 6:
You never know what will happen to the specification later on, so you
might as well simplify your future work while you’re at it.

You might wonder how you’re going to show a student’s schedule, or a teacher’s class
list, with all the fields scattered all over the place. Whenever you make a report or even a
browse, the templates make a view structure for you, and a view serves to temporarily
present you with an unnormalized picture of your data, much like the original student
table.

So, to recap. Here are the first three rules of data normalization:

Rule Number 1:
Eliminate repeating fields.

Rule Number 2:
Eliminate redundant data

Rule Number 3:
Eliminate Columns that don’t belong

And here are the guidelines:

Guideline 1:
Don’t take shortcuts. They might save you a few minutes now, but they’ll
cost you days later.

Guideline 2:
It is a lot less painful to fix a painful mistake now than it will be later on.

Guideline 3:
Link your tables by a hidden field that is completely meaningless outside
the system.

Guideline 4:
Use keys to help the application identify records it is interested in.

Guideline 5:
The primary key represents the "thing." The rest of the record describes the
thing the primary key represents.

Guideline 6:
You never know what will happen to the specification later on, so you
might as well simplify your future work while you’re at it.

For most situations, 3 rules, or "3rd Normal form" is considered "normal enough," but

Clarion Magazine - Managing Complexity - Part 3

http://www.clarionmag.com/v2n9/sub/v2n9complexity3.html (4 of 5) [9/15/2000 2:10:01 PM]

there are big advantages to understanding Rules 4 and 5. Next time, Rule 4.

Tom Ruby, who is no relation to the man who shot Lee Harvey Oswald, is an
independent contractor living in the middle of a hayfield in Central Illinois with his
wife Susan and two red-headed sons, Caleb and Ethan. He has been using Clarion
for Windows since the summer of '95. Before that, he was a "TopSpeeder" using
Modula II, so he has never used the DOS versions of Clarion.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Managing Complexity - Part 3

http://www.clarionmag.com/v2n9/sub/v2n9complexity3.html (5 of 5) [9/15/2000 2:10:01 PM]

http://www.tomruby.com/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Using CHOOSE() To
Concatenate Data
(Sep 15,2000)

The Nuts And Bolts Of
Passing Parameters: Part
2
(Sep 15,2000)

Five Rules for Managing
Complexity: Part 4
(Sep 15,2000)

Five Rules for Managing
Complexity: Part 5
(Sep 15,2000)

September 2000 News
(Sep 15,2000)

Using CHOOSE() To
Concatenate Data

by Carl Barnes

Steven Parker’s recent article Standard Address Handling
showed a lot of classic Clarion code for concatenating together
name and address strings to build a TEXT() control string
without blank lines. This is generally done with a lot of IF
statements as shown in the code below:

NandA = CLIP(MBR:FirstName) & |
 CLIP(' '&MBR:MiddleName) |
 &' '& CLIP(MBR:LastName)
IF MBR:Address1
 NandA = CLIP(NandA) & '<13,10>'|
 & MBR:Address1
END
IF MBR:Address2
 NandA = CLIP(NandA) |
 & '<13,10>' & MBR:Address2
END
IF MBR:City & MBR:State |
 & MBR:ZIPCode
 NandA = CLIP(NandA) & '<13,10>'|
 & CLIP(MBR:City) |
 & CLIP(‘ ‘&MBR:State) |
 &' '& MBR:ZIPCode
END

An alternative is to use the CHOOSE() statement. Most programmers think of
CHOOSE() as the inverse function to INLIST with the syntax
CHOOSE(IndexNumber, Value1, Value2, Value3, ...). For example, to
return the name of the day of the week:

CHOOSE(Date%7+1,’Sun','Mon','Tue','Wed','Thu','Fri','Sat')

CHOOSE() also has a syntax that allows it to evaluate logical conditions:
CHOOSE(condition ,true-value, false-value). The condition is

Clarion Magazine - Using Choose() to concatenate data

http://www.clarionmag.com/v2n9/sub/v2n9choose.html (1 of 4) [9/15/2000 2:10:02 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/
http://www.clarionmag.com/v2n6/sub/v2n6addresses.html

evaluated, and if it is true CHOOSE() returns the first value, otherwise it returns the
second value. Using this syntax the above concatenation code can be written as:

NandA = CLIP(MBR:FirstName) & CLIP(' '&MBR:MiddleName)|
 & ' '& CLIP(MBR:LastName) |
 & CHOOSE(MBR:Address1='','','<13,10>' |
 & CLIP(MBR:Address1)) |
 & CHOOSE(MBR:Address2='','','<13,10>' |
 & CLIP(MBR:Address2)) |
 & CHOOSE(MBR:City & MBR:State |
 & MBR:ZIPCode='','', '<13,10>' & CLIP(MBR:City) & |
 CLIP(' '&MBR:State) &' '& MBR:ZIPCode)

You can see from the code that all of the IF statements are replaced by CHOOSE()
statements. The first
CHOOSE(MBR:Address1='','','<13,10>'&CLIP(MBR:Address1)) will
evaluate the condition "MBR:Address1=''" and return blank if the address is blank. If
the address is not blank the condition will be false and CHOOSE() will return the second
value which is a CR,LF and address field clipped. Do this for all of the fields and you’ll
have the string that Steve required.

Choose Your CHOOSE()

A potential bug to watch out for in doing this is to make sure you have a "condition" when
using this form of CHOOSE() – it has to be a Clarion language statement that returns a
true or false value. You should typically write "IF MBR:Address1" as the shorthand
for "IF MBR:Address1<>’’" to test if a value is not blank. (This not only saves
keystokes, the compiler will optimize this and write smaller and faster object code. The
same is true for "IF ~Variable" instead of "IF Variable=’’".) However, if you wrote
"CHOOSE(MBR:Address1,'t','f’)" the compiler would evaluate that as an
expression using the syntax "CHOOSE(expression ,value1, value2
[,value3...])" and not give you the desired result. Since the condition would
normally be a string it would always evaluate to the number zero and CHOOSE() would
always return the false value since zero is not a valid value.

If you would like to avoid typing the equal sign in a condition you can type
"CHOOSE(~MBR:Address1,'blank','not blank’)". Or to simulate "IF
MBR:Address1" you can use a double negative "CHOOSE(~~MBR:Address1,'not
blank','blank’)". Below is the code written again using this syntax. Personally I
like the "tilde syntax" since when reading left to right I know immediately I am reading a
conditional CHOOSE().

NandA = CLIP(MBR:FirstName)&CLIP(' '&MBR:MiddleName)|
 & ' ' & CLIP(MBR:LastName) |
 & CHOOSE(~MBR:Address1,’’,'<13,10>'&CLIP(MBR:Address1)) |
 & CHOOSE(~~MBR:Address2,'<13,10>'&CLIP(MBR:Address2),'') |
 & CHOOSE(~MBR:City & MBR:State & MBR:ZIPCode, '', |
 '<13,10>' & CLIP(MBR:City) |
 & CLIP(' '&MBR:State) &' '& MBR:ZIPCode,)

Another potential bug to watch out for is forgetting the second value (or false value) and
typing "CHOOSE(Condition,'true-value')". The compiler will not spot the error

Clarion Magazine - Using Choose() to concatenate data

http://www.clarionmag.com/v2n9/sub/v2n9choose.html (2 of 4) [9/15/2000 2:10:02 PM]

and the CHOOSE() will always return zero. So if you see a persistent zero in your output
you’ll want to look for a badly coded CHOOSE().

Performance And Code Size

Many times everything is a compromise. In my opinion I like the CHOOSE() syntax over
the classic IF syntax. I think the code is faster to write, easier to read and easier to modify.
This should result in less bugs. But I do not want compromise performance and have my
program run significantly slower or be larger just so the code is easier for me to write. In
my analysis the CHOOSE() method is faster and a little smaller than the IF method. It’s
not that CHOOSE() is faster then IF, its eliminating all of the "NandA =
CLIP(NandA)".

For my performance analysis I took the IF and CHOOSE() code examples above and ran
them through 500,000 iterations. This was compiled 32-bit using C5. The field
MBR:Address2 was always blank and rest of the fields had reasonable values. I also
compared the two ways of writing the CHOOSE() conditional and found the
"CHOOSE(~Variable,,)" to be the fastest and smallest.

No. Code Method Time
(Sec)

%
Faster

Code
Bytes

%
Smaller

1 Multiple IF..THEN 9.75 0% 540 0

2 Choose(Address=’’,,) 7.63 27.8% 522 3.4%

3 Choose(~Address,,) 7.54 29.3% 501 7.8%

The fastest code, based on alternative number three above, is shown below. This code has
been modified since the performance test above and improves from 29.3% to 45.3% faster.
The final CHOOSE() has been changed from "CHOOSE(~MBR:City & MBR:State
& MBR:ZIPCode,,)" to what you see below. Changing from two concatenates and one
conditional to three conditionals saves significant time.

NandA = CLIP(MBR:FirstName)&CLIP(' '&MBR:MiddleName)&' '|
 & CLIP(MBR:LastName) |
 & CHOOSE(~MBR:Address1,’’,'<13,10>'|
 & CLIP(MBR:Address1)) |
 & CHOOSE(~MBR:Address2,’’,'<13,10>'|
 & CLIP(MBR:Address2)) |
 & CHOOSE(~MBR:City AND ~MBR:State AND ~MBR:ZIPCode, ’’, |
 '<13,10>' & CLIP(MBR:City) |
 & CLIP(' '&MBR:State) &' '& MBR:ZIPCode)

One way not to write the above code is to move the CLIP() outside the CHOOSE()
statement as shown below. I think this code looks nicer, but this code causes the expensive
CLIP() to occur even when the field is blank slowing down the above code from 45.3%
faster to just 35.4% faster.

A Bad Idea: "CHOOSE(~MBR:Address1,’’,'<13,10>') |
 & CLIP(MBR:Address1) & ".

Clipping Tricks

Clarion Magazine - Using Choose() to concatenate data

http://www.clarionmag.com/v2n9/sub/v2n9choose.html (3 of 4) [9/15/2000 2:10:02 PM]

I discovered a concatenating CLIP() trick, shown above in building the "First M Last"
name string. The code "CLIP(' '&MBR:MiddleName) " returns an empty string if
there is no middle name so the full name does not have a double space in it. If there is a
middle name then the space does get in front of it. If you would only like a middle initial
then you can choose to do that as shown below:

NandA = CLIP(MBR:FirstName) |
 & CHOOSE(~MBR:MiddleName[1],’ ’,MBR:MiddleName[1]|
 &’. ’) & CLIP(MBR:LastName) . . .

More CHOOSE() Syntax

CHOOSE() does have one other seldom used syntax and that is CHOOSE(condition).
If the condition is true this returns 1, otherwise it returns 0. So it is a shorthand form of
CHOOSE(condition,1,0). This has nothing to do with concatenating but I thought I
would mention it. Clarion does not have a SGN() function but you could use CHOOSE(
MyNumber>0) to get close as long as you do not care about differentiating between
zero and negative numbers. A correct SGN(x) function returns –1, 0 or 1 depending on if
a number is less than, equal to or greater than zero.

Summary

One final point is that CHOOSE() works with EVALUATE() while IF statements are not
permitted (although you can of course bind a function to use statements EVALUATE()
doesn’t support directly). I hope you’ll consider using CHOOSE() instead of nested IFs
for building your concatenated strings. I think it makes for more readable code which
compiles slightly smaller and performs faster. One other tip to remember is that CLIPs
are expensive, especially on long strings.

Carl Barnes is an independent consultant working in the Chicago area. He has been using Clarion since
1990, is a member of Team TopSpeed and a TopSpeed Certified Support Professional. He is the author of
the Clarion utilities CW Assistant and Clarion Source Search.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Using Choose() to concatenate data

http://www.clarionmag.com/v2n9/sub/v2n9choose.html (4 of 4) [9/15/2000 2:10:02 PM]

mailto:carl@carlbarnes.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Using CHOOSE() To
Concatenate Data
(Sep 15,2000)

The Nuts And Bolts Of
Passing Parameters: Part
2
(Sep 15,2000)

Five Rules for Managing
Complexity: Part 4
(Sep 15,2000)

Five Rules for Managing
Complexity: Part 5
(Sep 15,2000)

September 2000 News
(Sep 15,2000)

The Nuts And Bolts Of Passing
Parameters

by James Cooke

Part 2 of 2

In Part 1 of this article, I explained how to get data into a
procedure by passing parameters. In many cases, that’s only
half the battle. You also want to find out something that
happened after you send that data into the procedure.

Using Return Values

Return values allow output of a procedure to be treated as a
variable. A simple example of Clarion's use of a return function is the Clock() function.
Consider the following code:

TheTime LONG
FormattedTime STRING

 Code
 TheTime=Clock()
 FormattedTime=Format(TheTime,@T1)
 MESSAGE('The time is ' & FormattedTime)

NOTE: Historically, in Clarion the keyword PROCEDURE was used when
declaring a procedure that didn’t return a value, and FUNCTION when the
procedure did return a value. The function keyword has been deprecated and
is now always treated in Clarion code as a synonym for procedure.

In this example, a variable is directly assigned the result of Clarion's internal Clock()
function - as if the Clock() function itself were a variable. The variable is then formatted
using the returned value of the Format() function and then displayed using the
MESSAGE() function.

This code is powerful but cluttered - it can be simplified by nesting the functions as shown
below:

MESSAGE('The time is ' & Format(Clock(),@T1))

Clarion Magazine - Passing Parameters - Part 2

http://www.clarionmag.com/v2n9/sub/v2n9parameters2.html (1 of 9) [9/15/2000 2:10:03 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/

To declare a procedure to return a value prototype the procedure as per normal except a
comma and the datatype of the return value is appended at the end of the prototype
statement:

ProcC PROCEDURE(BYTE CusAge,LONG CusNum) ,STRING, PROC

As you can see, the only time prototypes and procedures differ in their format is when a
value is returned. The procedure does not declare the return type:

ProcC PROCEDURE (BYTE CusAge,LONG CusNam)

All the logic in the declared procedure could be the same logic as any other procedure - the
only thing that would change is that you need to use the return() statement to return the
value to the calling procedure. The following code will immediately terminate the function
and return the value of ValueToReturn to the calling procedure:

ValueToReturn = CLIP(CusNum) & '-' & CusAge
Return(ValueToReturn)

This function can be called as follows:

ReturnedValue=ProcC(LongToSend,ByteToSend)

Optional Return Values

Sometimes a programmer might want to call a function but without needing to know the
return value. In that case, calling the function on its own would be appropriate:

ProcC(LongToSend,ByteToSend)

This, however would cause a compiler warning, "Warning - Calling function as
procedure"

This is because the function will be returning a value, but there is no assignment statement
on the receiving side to receive the value the function passes back. The compiler complains
but lets it pass. To get rid of the warning message append the procedure prototype with the
PROC attribute. This will tell the compiler that it's okay to call a function as if it were a
procedure. The example application provides a simple use for this feature in the module
ProcC under the menu heading Return values".

Returning a value is great when there is only one item that’s of interest. But what happens
when you want to return multiple values? This can be done, but not as might be expected -
there is a twist!

Passing Values By Reference

In a normal procedure call, the called procedure receives a copy of whatever data you send
it. Any changes the called procedure makes to that data do not affect the data that was used
in the procedure call. This method of parameter passing is called called passing parameters
by value.

You can also pass parameters by address, which means that any changes to the passed data
affect the original data and not a copy.

In order to visualize this it might be useful to think of data in the computer's memory as
blocks of data residing on a matrix, as illustrated in Figure 1.

Clarion Magazine - Passing Parameters - Part 2

http://www.clarionmag.com/v2n9/sub/v2n9parameters2.html (2 of 9) [9/15/2000 2:10:03 PM]

A B C D E F G H I J K L M N O P Q
1
2
3
4 J O E S O A P
5
6
7
8 J O H N D O E
9
10

Figure 1. A figurative layout of a computer's memory

Consider a STRING variable of length 10 called Cus:Name which contains the value "JOE
SOAP". This data string resides at the coordinates, or address, C4. Clarion lets
programmers reference the 10 bytes of data between C4 and L4 by means of the label
Cus:Name. Look at this example:

Cus:Name = ‘JOE BLOGGS’

This statement causes the program to get the address and length of Cus:Name: C4, 10
and change the 10 bytes starting at C4 to JOE BLOGGS. This shows that the key to
Clarion's ability to make assignment statements work lies in its knowing the address of the
variable that needs to be changed. Therefore another way to change Cus:Name would be
to use its address directly. To do this, a straight assignment statement on the address of the
variable will effectively change the value of Cus:Name by using its reference address,
whether the scope of the data is in range or not. So how can programmers make use of
this?

By default, Clarion allows only one value to be returned by a function, which is a problem
when multiple values need to be returned. Using the above concept it is possible to pass a
procedure the addresses of several local variables, and get the procedure to change the
contents of the variables by means of these reference variables, or addresses. The
procedure (optionally) still returns only one parameter, but by means of those passed
addresses the called procedure is able to "reach back" into the calling procedure and
change the respective variables.

To prototype a procedure so that the local variables StringToSend, ByteToSend,
LongToSend get modified by the procedure ProcE, set up the following function
prototype:

ProcE PROCEDURE (*STRING ReceivedStringAddress,
 *BYTE ReceivedByteAddress,*LONG ReceivedLongAddress), BYTE

The procedure declaration is:

ProcE PROCEDURE (*STRING ReceivedStringAddress,
*BYTE ReceivedByteAddress,*LONG ReceivedLongAddress)

The return value will be

DataWasModified BYTE

The asterisks prepending the datatypes in the prototype declaration tell the compiler to

Clarion Magazine - Passing Parameters - Part 2

http://www.clarionmag.com/v2n9/sub/v2n9parameters2.html (3 of 9) [9/15/2000 2:10:03 PM]

send over the variables' addresses and not the actual values. In other words, looking back
at the grid above, the coordinates C4, 10 would be passed to the procedure instead of the
value "Joe Soap". To modify these variables, you can either assign the variables
directly or use them as a use variable on a screen.

That’s it! Run the example application, click on the "Pass By Reference" toolbox and enter
some values in the click the button. Change the three values on the window that pops up
and click OK - the popup window will close and all three values in the calling procedure
will change - all without using any global variables!

Passing Objects

One of the joys of OOP is the fact that data and procedures are treated as an object - in
other words as something that can be singularly referenced. By comparison, in procedural
code, everything is either a verb or a noun - the verbs are procedures and the nouns are
variables. OOP allows programmers to group procedures and variables and reference the
whole bundle as a single variable. This means that you can also pass the whole bundle as a
parameter to a procedure. An example would be to have a procedure that receives an ABC
FileManager object, and the function uses the object-specific functionality
encapsulated in the object by calling one or many of its methods and / or referencing its
properties.

To prototype a procedure to be passed an ABC FileManager object set the prototype as
follows:

ProcF PROCEDURE (FILEMANAGER TheFileManager)

The procedure declaration would be:

ProcF PROCEDURE (FILEMANAGER TheFileManager)

You might have noticed that it appears that the entire object is being passed to ProcF
because there is no asterisk prepending the FileManager object. Once again, the compiler
is smart enough to know that a class is automatically passed by address, so prepending the
datatype with an asterisk is not necessary. To make use of the passed object, use the
following syntax:

ReceivedObject.MethodName(MethodParameter1, MethodParameter1)

The following example does nothing spectacular - it serves merely as an example of being
able to have a single procedure manage any number of data-file inserts by receiving the
respective ABC object as a parameter. It shows, for example, that it is possible to create a
central administration point for all calls to the ABC Insert methods, thus enabling other
administrative tasks to take place simultaneously such as auditing and error handling.

To pass the FileManager object Access:Customer to ProcF, with the purpose of
the ProcF procedure being to call the passed object's Insert() method and then to
increment a global counter type the following in the ProcF Code section:

!Call the Insert method of the object
If ~TheFileManager.Insert()
 GLO:RecordsAdded += 1 !Do some centralized stuff
End

This procedure can be called as follows:

Clarion Magazine - Passing Parameters - Part 2

http://www.clarionmag.com/v2n9/sub/v2n9parameters2.html (4 of 9) [9/15/2000 2:10:03 PM]

ProcF(Access:Customer)
ProcF(Access:Employee)

Its all very well being able to be able to use all these forms of procedures and parameters,
but there is nothing worse than cluttering up the application tree with a bunch of
mini-functions and procedures that may only be used by one or two procedures! One way
to do this is to make use of local procedures.

Local Procedures

At the bottom of all ABC embed trees there is an embed point called Local Procedures
which really tickled my interest when I first saw it.

Figure 2. Tthe Local Procedure embed point in the ABC embed tree

To make use of this you can't just go in there and just slap in a procedure and expect to be
able to call it, because a procedure needs a definition and a prototype declaration. In fact,
this embed point is designed for the implementation of a CLASS’s procedures. To create a
local procedure that receives a LONG, multiplies it by 2 and returns the result to the
calling procedure, go to the Local Data|Generated Declarations embed point shown in
Figure 6 and type the following:

LocalClass CLASS
Func1 Procedure (LONG Received),LONG
END

Figure 3. The embed point where the class is declared

Clarion Magazine - Passing Parameters - Part 2

http://www.clarionmag.com/v2n9/sub/v2n9parameters2.html (5 of 9) [9/15/2000 2:10:03 PM]

LocalClass.Func1 is a function that will receive a variable, multiply it by two and
then pass it back to the calling procedure.

Now go to the embed point Local Procedures as shown in Figure 5 and type the following:

LocalClass.Func1 Procedure (LONG Received)

 code
 return(Received * 2)

Declaring a class this way ensures that an object will be automatically instantiated on
startup of the procedure and destroyed on termination, so memory leaks should not be a
problem here. To make use of this function, place the following code in the embed of a
button on the screen:

MESSAGE(LocalClass.Func1(10))

The result will be a message box displaying the value 20. Look at the example application
to see this simple but powerful technique in action.

Passing Complex Structures

It should be becoming clear now that Clarion is very versatile when it comes to parameter
passing. So, consider a Queue, which is a collection of any number of columns and rows
that can be referenced, as a single entity, by the queue name.

It should be possible to pass a queue to a procedure just as it is possible to pass other
complex objects. Of course, actually passing the physical data in the queue could be quite
slow with a large queue, so instead of passing the physical data, the queue will be passed
by reference. As with classes, queues are always passed by reference.

The only trick is that the queue could have any number of columns in it, making
addressing it by reference unpredictable. For all other cases it is necessary to create a new
datatype which can be used as a basis both for the procedure prototype and the actual
queue itself. To create this new datatype declare the queue structure in the global data
section and give it the TYPE attribute:

Clarion Magazine - Passing Parameters - Part 2

http://www.clarionmag.com/v2n9/sub/v2n9parameters2.html (6 of 9) [9/15/2000 2:10:03 PM]

TheQueue QUEUE,Type
Field1 STRING(20)
Field2 LONG
End

The TYPE attribute means that this structure can be used as a data type on its own, just as
STRING, BYTE or LONG are datatypes. Therefore the definition of the queue to be passed
will be based on this datatype and not on the QUEUE datatype. Type the following in the
data section of the procedure that the queue will be passed from:

MyQueue TheQueue

That declaration may look strange, but it works fine. The fields declared in the TYPE
definition, field1 and field2, are implicit in this new data structure. Thus it is possible to
address the inherent fields in MyQueue as MyQueue.Field1 and MyQueue.Field2.

To populate this queue, declare the LONG variable Loc:Counter and embed the
following in a button of the procedure where MyQueue is declared (which is the procedure
that will be passing the queue).

Loop Loc:Counter = 1 to 10
 MyQueue.Field1 = random(1,123456)
 MyQueue.Field2 = Loc:Counter
 Add(MyQueue)
End

To pass this queue to a procedure, pass MyQueue as if it were an ordinary variable:

ProcG(MyQueue)

Prototyping a procedure to be able to receive this typed variable is simple. It is prototyped
the same way as one would prototype a procedure to receive a STRING, except that
instead of declaring the datatype as a STRING the datatype would be the label of the typed
datatype. Figure 4 shows what this would look like using an ABC template procedure:

Figure 4. Setting up a procedure to receive a typed queue

Clarion Magazine - Passing Parameters - Part 2

http://www.clarionmag.com/v2n9/sub/v2n9parameters2.html (7 of 9) [9/15/2000 2:10:03 PM]

Once ProcG has received the queue or, more accurately, the reference to the queue, it may
be referenced as an ordinary local queue. It can also be used to populate a listbox, and the
procedure can even modify the data – bearing in mind that this is not another copy of the
data, but the original data from the calling procedure. This means that any modifications to
the "local" queue would also modify the data in the calling procedure too. Type the
following code in the procedure that received the reference to the queue, and you will see
that the data in the calling procedure will get changed too:

Loop Loc:Counter=1 to records(ReceivedQueue)
 Get(ReceivedQueue,Loc:Counter)
 ReceivedQueue.Field1 = 'Changed!'
 ReceivedQueue.Field2 = records(ReceivedQueue) - i#
 Put(ReceivedQueue)
End

This powerful technique can be used in many different areas, such as running reports
directly from a queue or modifying hand coded browse lists directly from update forms.

Passing Reference Parameters To The Windows API

This final example shows a powerful use of reference variables used by WINAPI, which is
the set of Windows OS function calls that provides underlying functionality to all Clarion
Windows applications.

One of the WinAPI functions is the FNSPLIT (FileNameSplit) function, which
parses a complete filename into its drive, subdirectory, filename and extension
components. All of these values are set by means of passed reference variables. To make
use of FNSPLIT do the following:

Go to the global embed point Inside the Global Map and type the following:

MODULE('WINAPI')
fn_split(*CSTRING,*CSTRING,*CSTRING,*CSTRING,*CSTRING),
 short,raw,name('_fnsplit')
END

In the local data embeds of a procedure declare the following variables:

ThePath CSTRING(255)
TheDrive CSTRING(255)
TheDir CSTRING(255)
TheName CSTRING(255)
TheExt CSTRING(255)

Place all the variables on a screen and embed the following code in a button on the screen:

ThePath = 'c:\windows\command\xcopy.exe'
If Fn_Split(ThePath,TheDrive,TheDir,TheName,TheExt).
Display

The variables on the screen will immediately be filled with the respective values. To do the
reverse, use the FNMERGE API call.

Clarion Magazine - Passing Parameters - Part 2

http://www.clarionmag.com/v2n9/sub/v2n9parameters2.html (8 of 9) [9/15/2000 2:10:03 PM]

Function Libraries

Parameter passing is part of every decent language and helps makes application
development rich and flexible. Over time, most projects result in the creation of a library of
functions and procedures that get used across multiple applications, and the disciplined use
of this library starts to leverage the output of each programmer in a similar way that
templates do. The most important thing when managing a repository of such functions and
procedures is documentation. Unless each programmer knows exactly what is available
and how to use them, the functions in the repository will not be used and the whole
objective of "normalising" the project's code base will fail.

You’ll probably want to put your function libraries in one or more DLLs, which you can
then make available to other applications. Take a look at Gordon Smith’s article on
breaking an application up into dlls to find out more.

A little extra time and effort building up a comprehensive library of business-specific
functions for your project will go a long way toward making things smooth running and
easier to maintain, and the key to creating a good library is knowing how to pass
parameters At the end of the day, that means a finer product!

Download the example application

James Cooke has been using Clarion since 2.1 days and has been a die hard for "the cause" ever since.
He and his family recently moved from South Africa to Texas and is currently working in the banking
industry. He spends most of his free time basking in the sun by the pool with a good book or succumbing
to that hard-to-kick addiction that persistently haunts the Western cosmopolitan neighborhoods - the yard
sale.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email covecomm@mbnet.mb.ca.

Clarion Magazine - Passing Parameters - Part 2

http://www.clarionmag.com/v2n9/sub/v2n9parameters2.html (9 of 9) [9/15/2000 2:10:03 PM]

http://www.clarionmag.com/v1n5/sub/v1n5fourdllsandanexe.html
http://www.clarionmag.com/v2n9/pub/v2n9parameters.zip
mailto:james.cooke@gte.net
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Using CHOOSE() To
Concatenate Data
(Sep 15,2000)

The Nuts And Bolts Of
Passing Parameters: Part
2
(Sep 15,2000)

Five Rules for Managing
Complexity: Part 4
(Sep 15,2000)

Five Rules for Managing
Complexity: Part 5
(Sep 15,2000)

September 2000 News
(Sep 15,2000)

Five Rules For Managing
Complexity

by Tom Ruby

Part 4

"Rules! Rules! Rules! What ever do we need all these rules
for? Creativity must not be restricted!"

Bugs! Delays! Rewrites! Upset Clients! What do those do for
your creativity?

By knowing your science, you’ll be released to pursue your
art. I’ve given you the three rules of normalization plus six
guidelines to help you manage the complexity of your application. This way you can
keep your mind on the user’s problem you’re trying to solve rather than keeping busy
with problems you’ve created.

Rule Number 1:
Eliminate repeating fields.

Rule Number 2:
Eliminate redundant data

Rule Number 3:
Eliminate Columns that don’t belong

Guideline 1:
Don’t take shortcuts. They might save you a few minutes now, but they’ll
cost you days later.

Guideline 2:
It is a lot less painful to fix a painful mistake now than it will be later on.

Guideline 3:
A list is resizable, a form is not.

Guideline 4:
Link your tables by a hidden field that is completely meaningless outside
the system.

Clarion Magazine - Managing Complexity - Part 4

http://www.clarionmag.com/v2n9/sub/v2n9complexity4.html (1 of 4) [9/15/2000 2:10:04 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/

Guideline 5:
Use keys to help the application identify records it is interested in.

Guideline 6:
The primary key represents the "thing." The rest of the record describes the
thing the primary key represents.

Guideline 7:
You never know what will happen to the specification later on, so you
might as well simplify your future work while you’re at it.

At this point, you’re probably thinking either, "Give me more!" or "Oh no, not again."
To tell you the truth, I’m procrastinating myself, and Dave is going to be wondering if
I’m ever going to finish the five articles I promised him. Take charge! Grab the bull by
the horns! Carpe Diem! So, without further ado:

Rule Number 4:
Isolate independent multiple relationships.

So what does this gobbledygook mean? It’s not as bad as it sounds; in fact, it’s almost a
no-brainer. It means if you have more than one multiple relationship, and they don’t
have anything to do with each other, put them in separate tables. The best way to
understand this, or perhaps the only way I can figure out to explain it, is with an
example. Think about the garage example of part two with these tables:

MechanicTable MechanicSkillTable SkillTable

SysIDMechanic
NameMechanic
SocialSecurity
DateBirth
RateHourly

SysIDMechanic
SysIDSkill
Level

SysIDSkill
NameSkill

If Herb wanted to keep track of tools owned by each mechanic, rule four tells him not to
do it in the MechanicSkillTable, but to make a new ToolTable, which might look like:

ToolTable

SysIDMechanic
ToolDescription

Now, this might seem like a no-brainer, but sometimes you can’t convince the client that
the two different "things" really have nothing to do with each other and they demand to
see them in one list. It is pretty obvious that tools and skills don’t look anything alike
and so should be in separate tables, but suppose the issue is "Tools" and "Uniforms,"
both of which the mechanic owns? Perhaps Herb has been lead astray by the garage’s
vocabulary where when they refer to "Tools and Uniforms," they really mean "Property,"
including tools and uniforms.

Rule 4, in this case, doesn’t tell me how to organize the data like Rules 1 through 3 do.

Clarion Magazine - Managing Complexity - Part 4

http://www.clarionmag.com/v2n9/sub/v2n9complexity4.html (2 of 4) [9/15/2000 2:10:04 PM]

Instead, Rule 4 tells me that Herb didn’t quite understand the requirements for the
program. Herb knocks himself in the noggin and goes off to make the changes, creating
a separate ToolTable. And I feel another guideline coming on:

Guideline 8:
If it’s not making sense and it looks like you really have to
break a rule, you might not understand the problem fully.

In case you haven’t figured it out yet, the 5 rules are the Five Normal Forms. The whole
idea of "Data Normalization" is to construct a model of the world out of tables. The
better you construct this model, the better your program will be able to deal with the
world and the better your program will be able to adapt to changes in its environment.

Next time, Rule Number 5 and the dreaded One-To-One relationship. For now, I’ll recap
the 5 laws and the 8 Guidelines:

Rule Number 1:
Eliminate repeating fields.

Rule Number 2:
Eliminate redundant data

Rule Number 3:
Eliminate Columns that don’t belong

Rule Number 4:
Isolate independent multiple relationships.

Guideline 1:
Don’t take shortcuts. They might save you a few minutes now, but they’ll
cost you days later.

Guideline 2:
It is a lot less painful to fix a painful mistake now than it will
be later on.

Guideline 3:
A list is resizable, a form is not.

Guideline 4:
Link your tables by a hidden field that is completely
meaningless outside the system.

Guideline 5:
Use keys to help the application identify records it is
interested in.

Guideline 6:
The primary key represents the "thing." The rest of the
record describes the thing the primary key represents.

Guideline 7:
You never know what will happen to the specification later
on, so you might as well simplify your future work while
you’re at it.

Guideline 8:

Clarion Magazine - Managing Complexity - Part 4

http://www.clarionmag.com/v2n9/sub/v2n9complexity4.html (3 of 4) [9/15/2000 2:10:04 PM]

If it’s not making sense and it looks like you really have to
break a rule, you might not understand the problem fully.

Tom Ruby, who is no relation to the man who shot Lee Harvey Oswald, is an
independent contractor living in the middle of a hayfield in Central Illinois with his
wife Susan and two red-headed sons, Caleb and Ethan. He has been using Clarion
for Windows since the summer of '95. Before that, he was a "TopSpeeder" using
Modula II, so he has never used the DOS versions of Clarion.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Managing Complexity - Part 4

http://www.clarionmag.com/v2n9/sub/v2n9complexity4.html (4 of 4) [9/15/2000 2:10:04 PM]

http://www.tomruby.com/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Using CHOOSE() To
Concatenate Data
(Sep 15,2000)

The Nuts And Bolts Of
Passing Parameters: Part
2
(Sep 15,2000)

Five Rules for Managing
Complexity: Part 4
(Sep 15,2000)

Five Rules for Managing
Complexity: Part 5
(Sep 15,2000)

September 2000 News
(Sep 15,2000)

Five Rules For Managing
Complexity

by Tom Ruby

Part 3

In parts one through four, I explained four of the five rules of
Data Normalization. I also gave a number of related
guidelines, and showed how to apply them in your Clarion
Programs. To summarize, here are the four rules and the
eight guidelines:

Rule Number 1:
Eliminate repeating fields.

Rule Number 2:
Eliminate redundant data

Rule Number 3:
Eliminate Columns that don’t belong

Rule Number 4:
Isolate independent multiple relationships.

Guideline 1:
Don’t take shortcuts. They might save you a few minutes now, but they’ll
cost you days later.

Guideline 2:
It is a lot less painful to fix a painful mistake now than it will be later on.

Guideline 3:
A list is resizable, a form is not.

Guideline 4:
Link your tables by a hidden field that is completely meaningless outside
the system.

Guideline 5:
Use keys to help the application identify records it is interested in.

Clarion Magazine - Managing Complexity - Part 5

http://www.clarionmag.com/v2n9/sub/v2n9complexity5.html (1 of 5) [9/15/2000 2:10:05 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/

Guideline 6:
The primary key represents the "thing." The rest of the record describes the
thing the primary key represents.

Guideline 7:
You never know what will happen to the specification later on, so you
might as well simplify your future work while you’re at it.

Guideline 8:
If it’s not making sense and it looks like you really have to break a rule, you
might not understand the problem fully.

Let me start out by shocking you with Guideline 9:

Guideline 9:
Consider One-To-One relationships harmful.

How does that go again? "Consider One-To-One relationships harmful." A One-To-One
relationship means that every row in one table is paired with exactly one row in another
table. If the relationship is truly One-To-One, then why do you have two tables? They
should be combined into one.

Having said that and having tried to convince you that there is no place for a
One-To-One relationship, I’ll tell you why you might want to use a One-To-One
relationship. Clarion, like many other data management languages, edits a record in
memory and saves it to the table when the user presses the Ok button. As a nod toward
multi-user activity, Clarion checks to see that nobody else has updated that record before
saving it and gives you the message, "This record was changed by another station. Those
changes will now be displayed. Use the Ditto Button or Ctrl+’ to recall your changes."

In a lot of multi-user systems this is a quite adequate solution to the "last one who saves,
wins" problem because it is unlikely two users will be updating the same record at the
same time. But suppose you have an online inventory system with dozens of cash
registers ringing up tickets and "taking" things out of inventory, and a receiving
department with several employees unloading trucks and putting items in inventory. The
QuantityOnHand value is a very useful figure for store management, so operators would
probably like to see it on the Item form. If you put it in the item record, the chance is
pretty good that one of the cash registers or receiving clerks will change the number
before the store manager, who is just wanting to correct the description, can hit the Ok
button. And the chances are again pretty good that the record will change again before
the manager can make his change again, even using the history feature, and hit the Ok
button. It could lead to frustrated users.

A frequent solution is not to update the QuantityOnHand during the day and update it
during an End-Of-Day operation. But this is an online system, and the user doesn’t want
to know how many the store had yesterday, but how many it has now.

Do you throw up your hands and announce that Clarion is totally useless for intensive
multi-user applications? Some do. I don’t. Remember Guideline 8: "If it’s not making
sense and it looks like you really have to break a rule, you might not understand the
problem fully." With this in mind, I realize that I just haven’t understood the problem
fully. You see, there is a field, QuantityOnHand, which is not updated on a form, but by
some other activity. The other activities happen to be cashiers selling items and receiving
clerks unloading trucks. In a sudden burst of insight, probably accompanied by a burned

Clarion Magazine - Managing Complexity - Part 5

http://www.clarionmag.com/v2n9/sub/v2n9complexity5.html (2 of 5) [9/15/2000 2:10:05 PM]

out light bulb, Guideline 10 pops into mind:

Guideline 10:
Separate automatically updated columns from manually
updated columns.

Considering the new Guideline 10, there are likely several columns that are
"automatically" updated, and I realize why Guideline 9 doesn’t say "NEVER use
One-To-One relationships." So I’ll make a separate table and update it with a sequence
like:

!Ainventory being the automagically updated part
LOGOUT(10,Ainventory)
Access:Ainventory.Fetch()
AINV:QuantityOnHand -= QuantitySold
Access:Ainventory.Update()
COMMIT

Or in an SQL environment:

Ainventory{PROP:SQL} = ‘UPDATE Ainventory WHERE
 ItemSysID = xxx SET QuantityOnHand =
 QuantityOnHand - QuantitySold’

I could be extremely clever and put a timer on the form to retrieve the automagically
updated figure and re display it now and then so the user can "watch" his inventory go up
and down. Now the user knows exactly how many packages of "Screaming Yellow
Zonkers" she has on hand, except for the one a customer is pushing around in a shopping
cart.

The whole point of Guidelines 9 and 10 is to reserve One-To-One relationships to
situations where there’s a column that is being updated by something other than the
form, and to prevent me from having to update two records on the same form.

Rule Number 5, or Fifth Normal Form, is also related to updating the database. In fact all
the rules so far are related to updating the database.

Rule Number 5:
Isolate Semantically Related Multiple Relationships.

It’s not my fault! Somebody at a university made this rule up. To illustrate Rule Number
5, imagine you’re interested in tracking distributors and manufacturers of different parts.
Since the manufacturer doesn’t want to deal in the quantities you buy, you have to buy
from distributors. Each distributor sells the parts from several manufacturers, and the
same part may be available from different manufacturers. In a word, it’s a mess.

You might think of four tables that look somewhat like this:

Distributor Part

DistributorSysID
DistributorName
DistributorAddress
And all that rot

PartSysID
PartName
PartDescription

Manufacturer DistributorPartManufacturer

Clarion Magazine - Managing Complexity - Part 5

http://www.clarionmag.com/v2n9/sub/v2n9complexity5.html (3 of 5) [9/15/2000 2:10:05 PM]

ManufacturerSysID
ManufacturerName
ManufacturerAddress
Bla bla bla

DistributorSysID
PartSysID
ManufacturerSysID

The fourth table, DistributorPartManufacturer tells you which distributors sell which
parts from which manufacturer. Rule Number 5 (or Fifth Normal Form) dictates against
this since there are two different relationships, even though they’re related. Instead, you
should separate this table into two like this:

DistributorManufacturer artManufacturer

DistributorSysID
ManufacturerSysID

PartSysID
ManufacturerSysID

So what does this gain you besides two more tables? Like the other rules, simplicity in
updating. Suppose Acme Widgits starts making three of those handy bolts with the
threads offset from the shafts for when the holes don’t line up(See Figure 1). Since
Acme is handled by four distributors, with the unnormalized table, you need to add 12
records to the big cross reference table to show that these parts now come from the four
distributors where you get Acme parts. You also have a fairly complex piece of logic to
figure out from the DistributorPartManufacturer table which distributors sell Acme so
you can add these records to the table. If nobody else makes these parts, you have to add
the three new part records.

With the normalized table, you need to add fewer records, and the code to add these
records is simpler. You only need to add three records to the PartManufacturer table to
show that Acme now makes the thread offset bolts. If you have lots of update activity,
Rule Number 5 can improve your efficiency quite a bit, not to mention reducing
complex logic.

To wrap this series up, I’ll enumerate the 5 Rules and 10 guidelines:

Rule Number 1:
Eliminate repeating fields.

Rule Number 2:
Eliminate redundant data

Rule Number 3:
Eliminate Columns that don’t belong

Rule Number 4:
Isolate independent multiple relationships.

Rule Number 5:
Isolate Semantically Related Multiple Relationships.

Guideline 1:
Don’t take shortcuts. They might save you a few minutes now, but they’ll
cost you days later.

Guideline 2:
It is a lot less painful to fix a painful mistake now than it will be later on.

Clarion Magazine - Managing Complexity - Part 5

http://www.clarionmag.com/v2n9/sub/v2n9complexity5.html (4 of 5) [9/15/2000 2:10:05 PM]

Guideline 3:
A list is resizable, a form is not.

Guideline 4:
Link your tables by a hidden field that is completely meaningless outside
the system.

Guideline 5:
Use keys to help the application identify records it is interested in.

Guideline 6:
The primary key represents the "thing." The rest of the record describes the
thing the primary key represents.

Guideline 7:
You never know what will happen to the specification later on, so you
might as well simplify your future work while you’re at it.

Guideline 8:
If it’s not making sense and it looks like you really have to break a rule, you
might not understand the problem fully.

Guideline 9:
Consider One-To-One relationships harmful.

Guideline 10:
Separate automatically updated columns from manually updated columns.

One more point. You may have heard it said that Third Normal Form is usually
considered "normal enough." Most say it’s because the situations in Fourth and Fifth
Normal Forms rarely crop up. Actually, these situations appear all over the place, but
usually by the time you’ve thought through the first three normal forms, you’ve already
satisfied the Fourth and Fifth forms.

Finally!

Do you have to follow these five rules of data normalization? No, you don’t. I have a
hard time understanding why you wouldn’t want to make your work easier. Indeed most
software is developed the hard way anyhow so just go along with the crowd and give
yourself ulcers.

Ok, I am being sarcastic. You don’t have to follow the rules of data normalization, but I
know that somehow, every time I’ve broken them, I’ve wound up wishing I hadn’t.

Tom Ruby, who is no relation to the man who shot Lee Harvey Oswald, is an
independent contractor living in the middle of a hayfield in Central Illinois with his
wife Susan and two red-headed sons, Caleb and Ethan. He has been using Clarion
for Windows since the summer of '95. Before that, he was a "TopSpeeder" using
Modula II, so he has never used the DOS versions of Clarion.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Managing Complexity - Part 5

http://www.clarionmag.com/v2n9/sub/v2n9complexity5.html (5 of 5) [9/15/2000 2:10:05 PM]

http://www.tomruby.com/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Main Menu | Log In | Subscribe | Links | FAQ | Advertising

Main Page

COL Archive

Log In
Subscribe
Renewals

Frequently Asked
 Questions

Site Index
Article Index
Author Index
Links To
 Other Sites

Downloads
Open Source
 Project
Issues in
 PDF Format
Free Software

Advertising

Contact Us

Using CHOOSE() To
Concatenate Data
(Sep 15,2000)

The Nuts And Bolts Of
Passing Parameters: Part
2
(Sep 15,2000)

Five Rules for Managing
Complexity: Part 4
(Sep 15,2000)

Five Rules for Managing
Complexity: Part 5
(Sep 15,2000)

September 2000 News
(Sep 15,2000)

Read The August 2000 News

Clarion News

September 15, 2000

Insight 1.0 Beta 3 Released
The Insight Graphing product is now in Beta 3, with lots of new
functionality. Insight will usually cost $299, but will be priced at $199
for the duration of the beta program. Beta users get free upgrades to the
gold release, and beyond.

NetTalk 1.0 Beta 8d Released
NetTalk has been tweaked and prodded since the last the last update
and is now more compatible with all those 'standard' email servers out
there. The normal price for NetTalk is $299, but it's currently on a
Special Price of $199 during the beta program. Beta users will
automatically get a free upgrade to the gold release, and beyond.

Special Agent Version 1.25 Released
Special Agent 1.25 is out, with 1.26 about to be released. Now supports
third party characters and the ability to open an agent in a specific position. Version 1.26 is currently in
testing. This is a major release for the international market and includes support for screen translations,
and support for alternative speech engines. Special Agent costs $199 and is available through
www.ClarionShop.com.

September 12, 2000

solid.software Pricing Changes To USD
All prices on the solid.software web site have changed from EURO to USD. The company’s products
will also soon be available at ClarionShop (www.clarionshop.com).

Bug Poster 1.00 Released
Bug Poster 1.00 is an extension for Clarion applications which let users report bugs and
enhancement-requests via email directly to the developer. Includes a small DLL and templates.

C5.5 Enterprise And Professional Editions CR2 Available
The second candidate release of C5.5 is now available, in Enterprise and Professional versions. This
patch requires Beta 1. New features include a Crystal Reports interface, enhanced RTF, HTML help,
and new example programs.

SQL200n Working Documents Posted
Michael Gorman has posted a new set of SQL200n working documents. Lots of other SQL-related stuff
on this page as well.

WinWord Previewer Version 1.1
WinWord Previewer 1.1 has been released. New per-report procedure options include preview only,

Clarion Magazine - September 2000 News

http://www.clarionmag.com/v2n9/pub/v2n9news.html (1 of 2) [9/15/2000 2:10:06 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/col/index.html
http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/col/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/sub/renewals.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/articleindex.html
http://www.clarionmag.com/common/authorindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.topspeed.com/
http://www.topspeed.com/
http://www.microsoft.com/windows/ie/download/default.asp
http://www.kcug.org/etc2000/
http://www.clarionmag.com/v2n8/pub/v2n8news.html
http://www.capesoft.com/accessories/isgsp.htm
http://www.capesoft.com/
http://www.capesoft.com/
http://www.solidsoftware.de/
http://www.clarionshop.com)/
http://www.clarionmag.com/www.novosys.de/Bug_Poster/Bug_Poster.html
http://www.softvelocity.com/
http://www.wiscorp.com/sql99.html
http://members.xoom.com/fominrb

save file and close, save file and preview, overwrite existing file, append to file, call always or
conditionally, and fixed or variable file names. Reports can now be automatically saved as Word
documents without any user intervention.

Free Compile Manager Updated
The free CWCM Compile Manager has been updated to version 1.8. Features include better keyboard
navigation on tree, fixed redraw problem on WinNT and Win2000, and the ability to make PRJ files.

September 5, 2000

MS FlexGrid Class Update
An updated MS FlexGrid class is now available from Taboga Software. This freeware class allows you
to use Microsoft's FlexGrid OCX control for displaying and editing data.

PD 1-Touch Date Tools CR1 Update
The C55 CR1 update of PD 1-Touch Date, Time, and Scheduling Tools is now available. Other
ProDomus products written for the C55 Beta versions do not appear to require updates. If you
experience any problems, please let Phil Will know.

WisWeb September Announcement
September’s newsletter describes the accomplishment of risk and cost reduction, and increase in quality
and productivity. In addition, a number of SQL-related papers have been posted to the website.

CopyFlash 2.0 Released
CopyFlash 2.0 has been released New features include: unlimited number of Copy buttons per window;
batch copy template for copying a range of records; fields can be excluded from copying; child fields in
new record can be primed. CopyFlash works with all versions of Clarion from CW2x to C5.5. Demo
available.

Copyright © 1999-2000 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - September 2000 News

http://www.clarionmag.com/v2n9/pub/v2n9news.html (2 of 2) [9/15/2000 2:10:06 PM]

http://www.sterlingdata.com/
http://www.developerplus.com/
http://www.ralfs.de/
http://taboga.tripod.com/freeware.htm
http://www.prodomus.com/
http://www.wiscorp.com/
http://www.sterlingdata.com/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

	clarionmag.com
	Clarion Magazine - September 2000
	Creating An MS Outlook Style Menu: Part 2
	Debugging With DebugView
	The Nuts And Bolts Of Passing Parameters: Part 1
	Five Rules For Managing Complexity - Part 3
	Using Choose() To Concatenate Data
	The Nuts And Bolts Of Passing Parameters: Part 2
	Five Rules For Managing Complexity - Part 4
	Five Rules For Managing Complexity - Part 5
	September 2000 News

	BGBKADPMAPAOHGJCMGONGGCCMLOKCGFI:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	JMCCMADKDCCJCCGCLCBMCLBFEACNGELI:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	BGFCDDFBNLEFPAJNGJMMMMCPEDKNDHEE:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	MHOBNIHPJNEFAIHJOKEBMHFCNEIEEAMA:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	LDDGHGIOFFKDEOFMAHKKMEKBPIJPEPBNLM:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	KPOBOIJKGECKONGIFJNPEEKIONFCCDKL:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	CHKOJJOHHIKKKHCDHHHOALGLJNMKALBB:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	FLNDJPPGPDKJNBIMBKCEAIKGODFHIDCI:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	MPNDOFDBGIILJKLDLBNMMAMDHALNOJIK:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

	CNGIMHKIENACDHJCELCNEIJAEBDBPKFE:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4:

	f5:

