

Issue Index

Snortaziw - Wizatrons from back to front
David Bayliss breaks, as he says, all rules of logic, decency, and
education and structures his explanation of Wizatrons backwards. This
read to want definitely will you. (subscribers only)
Posted on March 1, 1999

Interview: Roy Rafalco (Part 2)
Roy on Linux, marketing, and the future of Clarion. Part two of Clarion
Magazine's exclusive interview with Topspeed's new CEO. (subscribers
only)
Posted on March 1, 1999

The Clarion Advisor - Calculating Times
If you’ve ever needed to perform math on Clarion time values, you know
that you can sometimes get unexpected results. The Clarion Advisor
looks at how times are stored and what needs to be done to them to
make the math come out right. (subscribers only)
Posted on March 1, 1999

NAME() Comes Of Age
Steve Parker discusses two solid, reliable and easy to use techniques for
managing variable filenames. (subscribers only)
Posted on March 8, 1999

The Open Source Index For Subscribers
This page is the gateway to subscriber information about the Clarion
Open Source Project, including products, documentation, and
participation opportunities. (subscribers only)
Posted on March 8, 1999

The CCI Debug and Profiler Classes
These classes make debugging a whole lot easier. You can even use
them to generate a call tree showing all of the procedure and method
calls your application makes. A great ABC learning tool. (subscribers
only)
Posted on March 8, 1999

The Clarion Challenge
So you think you can write some tight Clarion code? Take the Clarion
challenge. (subscribers only)
Posted on March 8, 1999

Open Source Public Information
General information about the Clarion Open Source Project is available to
non-subscribers as well as subscribers.
Posted on March 8, 1999

The ABCs of OOP
The first in a series of articles explaining Clarion OOP fundamentals in
the context of ABC. Adapted from Dave Harms' Australian seminars.
Posted on March 19, 1999

Clarion Magazine Volume1 Number 2 - March 1999

http://www.clarionmag.com/v1n2/pub/index.html (1 of 2) [4/19/1999 4:26:29 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html

David Bayliss On The ConstantClass
The management of constants in an application presents a number of
ticklish problems. As DAB writes, "Should I explain the design insights I
should have had (as I can now see with perfect 20-20 hindsight) or
should I detail the evolution of the Constant Class from the germ of an
idea into one of the cornerstones of the system?"
Posted on March 19, 1999

Proposed Open Source License
Now in its third draft, the proposed Developers' Open Source License is
designed to address the concerns of Clarion developers who wish to use
open source licenses. The license is also being discussed in the Clarion
Magazine newsgroups.
Posted on March 19, 1999

The Novice's Corner - Understanding Templates And Embeds
In this second installment of the Novice's Corner Dave Harms reviews
the standard categories of templates and explains how the templates
make it possible to embed code in your generated application.
Posted on March 19, 1999

Australian DevCon Reports
John Thorley and Warren Marshall report on last weekend's Aussie
DevCon with conference highlights, photos, and product links.
Posted on March 19, 1999

March News
The latest Clarion-related news and product information.
Posted on March 29, 1999

The How And Why of WHO, WHAT, and WHERE
No, it isn't a rehashed Abbott and Costello sketch. In this extensive
feature article Gus Creces reveals the power of the Clarion WHO, WHAT,
and WHERE statements.
Posted on March 29, 1999

Debugging Without The Debugger
The debugger isn't the only way to find out what's gone wrong with your
code. This article shows you tips and tricks for debugging your
application using the open source cciDebugClass and cciProfilerClass.
Posted on March 29, 1999

Updated Debugging/Profiling Classes
The Open Source cciProfilerClass and cciDebuggerClass products are now
in release 1 and have updated installation instructions as well as a global
extension template that makes it much easier to add these classes to
your application.
Posted on March 29, 1999

Free Newsgroups For Clarion User Groups
Clarion Magazine is making free private newsgroups available to Clarion
user groups for non-profit purposes. Only one person in the CUG has to
be a subscriber.
Posted on March 29, 1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine Volume1 Number 2 - March 1999

http://www.clarionmag.com/v1n2/pub/index.html (2 of 2) [4/19/1999 4:26:29 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 2
March 1999

Snortaziw
Wizards from back to front

by David Bayliss

Better is the end of a thing than the beginning thereof: and
the patient in spirit is better than the proud in spirit.
Ecclesiastes 7:8

We live in an age where speed is often valued over precision. First
impressions count, opportunities only come once. We are also victims of
whim and fashion. Selling is about working within a market window. The
trend is your friend. You have to jump on the bandwagon or you might
get stuck in a rut.

The preacher, a great investigator and observer of his day looked upon
all that is done under the sun and said, the end is actually better than
the beginning. Short-termism is not really the way forward: you need to
take the long view. A particular trick or method may work for now but
what are the implications?

Then the preacher goes on to identify one of the driving forces behind
the reason we want things quickly: it suits our ego. I did this and that
and I’m only 25. I got this working in only 3 days. Well, says the
preacher, you can do it all that way, but far better to pace yourself, work
hard and wait for the reward to come which will be better and longer
lasting.

Of course the bible is concerned with matters spiritual and long-term can
easily mean eternity. I don’t want to stretch quite that far in this article
but I do want to take a long-range look at the issue of productivity.
Specifically I want to look at the day-by-day role of the Wizatrons in
increasing your work-rate.

Backwards it do to want also I.

The hardest thing I have found about explaining Wizatrons to people is
that there is so much depth and detail that MEGO (my eyes glaze over)
has set in before I hit the best bit. So for this article I’m going to break
all rules of logic, decency and education and structure my argument
backwards. Most of the terms you see and techniques I detail will appear
from thin air without any preparation or warning. Don’t worry. There are
many people writing excellent ‘how to’ articles (including our
documentation department); I’m trying to provide the framework for it
all to slot into place.

Huh! Another article with loads of hype and no action! Possibly. I’m
trying to give you a glimpse of the ‘end’ to encourage you through the
‘beginning.’ And there will be a beginning. The Wizatrons are the
ultimate in the Bayliss notion of the ‘up front hit,’ work harder today so

Clarion Magazine - Wizatrons From Back To Front

http://www.clarionmag.com/v1n2/sub/v1n2snortaziw.html (1 of 6) [4/19/1999 4:26:57 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html

that next week is easier. The Wizatrons will work straight out of the box,
but the real benefits will come to those who work their work patterns
around keeping their Wizatrons up to speed.

What do I do and how do I stop?

The key to understanding the Wizatrons’ astonishing claims is that they
are designed to work with (not instead of) the ABC templates. So first
consider how you can use the ABC Templates to optimise your work
pattern. Assume you’re generating an arbitrary update form.

Wizard up the form to get the fields kind of right.1.
Jiggle the screen a little to make it look right (including lookups
etc).

2.

Consider the special functionality required on this form, select from
your toolbox of 3rd party (and self written) templates to add
control templates/procedure extensions as appropriate

3.

Fill in any template prompts with special values as required4.
Add hand-code to embeds. Test/debug ad nauseum5.

I have hopefully covered all the bases for an app-gen style app. Ignoring
Wizatrons momentarily, how much time do you spend on 5? If the
answer is ‘a lot’ then this suggests you need to enhance your box of 3rd

party tools or that you need to get into the habit of writing templates
and/or extending the base classes. If you spend your time in 5 then the
Wizatrons aren’t going to help you much, but equally you are already
missing most of the power the IDE offers. The ABC and templates offer
you amazing code re-use and are the corner-stone of RAD. But hang on!
Case5 is where I add my value to the client! But is it? I would suggest
any code you write falls into one of these categories :

You’re tackling the same task as a 3rd party but not quite so
completely. In other words if you used the 3rd party tool your
customer would get more value. QED.

.

You’re tackling the same task as a 3rd party tool but doing it
better. In which case you have a better quality general purpose
tool so your code should be embodied in a wrapper around (or
instead of the 3rd party tool). In other words this can be viewed as
a long term case 3.

b.

You’re tackling a problem that uses your specialist knowledge to
write code or an algorithm that a general 3rd party couldn’t tackle.
So use your knowledge to come up with a general solution to that
problem, wrap it in a class/template and again you have case 3.
You then have three potential gains to this work: I) You could sell
your solution to other developers; II) You can demonstrate to
future clients your ability to solve this problem very fast; III) if
ever you expand your operation (or sell it) you have demonstrable
value in your code base.

c.

You are doing something completely unique that you’ll never do
again... Why? If something is worth doing once it is worth doing
twice (assuming you stay in a similar area of work for reasonable
periods). If it isn’t worth doing once then why are you doing it?

d.

Viewed this way the powerhouse of the development process becomes
step 3, shoving all the control templates and extensions into the
procedure.

So how do you get the Wizatrons to do case 3 for you? Well, suppose
you want to populate the UUUU extension onto all your forms (for
evermore). You go to the form Wizatron (in the configuration utility),
select new property, give it a name, and say it is an acorn that populates
the UUUU Wizatron. There you go, the UUUU extension will be on your
forms for evermore. (Forward references remember – Cheat: An acorn is
a tree waiting to happen).

Prejudice

But hang on, the problem is you don’t want the UUUU extension on
every form, only some of them. Using 3rd party (or your own) templates

Clarion Magazine - Wizatrons From Back To Front

http://www.clarionmag.com/v1n2/sub/v1n2snortaziw.html (2 of 6) [4/19/1999 4:26:57 PM]

isn’t just about owning them, it is about knowing when to use them. So,
the next step is to teach your Wizatron when to apply the given
extension template. Now, if you ask someone why they populated a
given extension you will typically get one of four answers :-

a) I always do it for this kind of procedure. There is something
about the procedure itself, or perhaps the other templates in the
procedure, that causes you to decide to populate a given extension. For
example, you populate the resize extension if the window has the resize
attribute. Enter wizatron macros. When you define an acorn you can also
define an expression and the Wizatron will only actually be created if
that macro evaluates to true. Every property that every Wizatron has is
available from the macro language. For instance

@EVAL(CHOOSE(UPPER('%FrameStyle%')='RESIZE'))

is the expression that decides whether or not to populate the resize
extension.

@EVAL(CHOOSE('%LookupFile%' AND '%LookupStyle%'='Combo'))

is used to decide whether to populate a file drop combo template to act
as a lookup on a field that is related by a many-to-one relation.

b) I always do it for this kind of file/field. There is something about
the file, or field (or key etc) that means you want to populate this
particular control template or extension. This brings us to a tremendous
Clarion strength, the data dictionary. The Clarion dictionary has about
three times the number of properties per field over a standard SQL data
dictionary, and the interpretation of those properties is the main trick to
making the templates look so smart. Now the Wizatrons take this a step
further with a function @USER(myfile.myfield,smells,1). This little
function tells us the value of the smells attribute of a given field. The
‘smells’ can, of course, be replaced with anything you want. Suddenly
the Clarion repository has an infinite number of attributes per field that
can be set for any purpose you wish. As an example the field
%LookupStyle% used above indicates what method should be used to do
a lookup. It (in turn) is actually a macro dependant on the LookupFile.

@EVAL(CHOOSE(@USER(%LookupFile%,Small)=1,’Combo’,’Lookup Button’))

In other words, go look in the dictionary, if the user has flagged the file
as small (having few records) then populate a drop combo, otherwise
use an entry with a lookup button. You can use a similar technique to
populate a * next to required fields etc.

c) I always do it for this customer. You could do this by giving
yourself a customer property in the application Wizatron (just use new
property, display type drop-list, choices Fred,Bill) and then defining all of
your properties (including the acorns) in terms of the customer
property…

@EVAL(CHOOSE(‘%Customer%’=’Fred’,’DnArrow.ICO’,’MONICA.ICO’))

Clarion Magazine - Wizatrons From Back To Front

http://www.clarionmag.com/v1n2/sub/v1n2snortaziw.html (3 of 6) [4/19/1999 4:26:57 PM]

However, you are probably better off using the multiple style-sheet
facility and simply produce a style sheet to suit given (long term)
customers.

d) It seemed like a good idea at the time. Yep, well, we all hit this
eventually. So the Wizatron allows you to save a arbitrary decisions you
made last time, just in case you want to re-run the whole thing again
with a few tweaks.

Play

It might be good to digress a little and come at this from a different
angle. If you read any computer magazine it won’t be long before you
read about components, or plug and play. The idea is actually very
simple. Rather than working at the lowest level the language can why
not build up lumps (components) of functionality? Then you can achieve
work by plugging the components together, and then tweaking them.
This is the central notion behind JavaBeans and COM.

Now Clarion templates have always supported this notionally. Legacy
control templates were really components and the procedure window
was a way of plugging them together. The problem was that once the
source code came out the components had all been shoved into a pot
and whisked up so you were left with soup. ABC was really a bottom-up
attack on component ware. It let us actually build components (and give
the customer the capability to build components) that can be plugged
together and played with at the language level. So when you populate
templates in an ABC procedure you are really plugging them in, when
you fill in dialogues you are playing. Then, if you look at the source code,
you will see a plugged and played procedure.

So, the logic goes, if you have launched a bottom-up attack on
componentware how can you achieve the next big thing? Launch a
top-down attack. Rather than just building bigger components why not
see if we can help with the plugging and playing. Plugging is of course
precisely the task I described in 3) and which I showed the Wizatrons
could do leaving you to do the playing (item 4).

Except the Wizatrons can do this too. To see how they do this you need
to think about what kind of things you actually put in the prompts of the
template dialogs. I think the list below is fairly comprehensive.

References to other components. A number of prompts
developers enter are simply there to plug this component to
another one. For example, on a Fieldlookupbutton you need to
name the entry control you are looking up. Now remember it was
the Wizatrons that decided to create this button (they had
probably spotted you had an entry field on a foreign key linked to
a big file) so they have the information about which entry the
button is for, so they fill it in for you. Similarly they know the
procedure you want to call (they generated it). They know the
linking key (it’s in the dct) and they know the field being looked up
(they populated it). Similarly the file schematic can simply be
slotted into place from information the Wizatron has. So all the
structural prompts can be filled in for you.

.

Prompts you wish we had defaulted some other way. There
are a whole set of prompts that you almost certainly fill in the
same way on every procedure (or at least every procedure of the
same type). Resize strategy maybe? Buffered Reads?. Well, each
Wizatron has a set of default values that are used when an
instance of that Wizatron is created. These are editable in the style
file. So any prompts you always fill in the same way, you fill in
once in the style and from then on the Wizatron can do it for you.

b.

Prompts you fill in based upon values in other prompts
and/or the dct. How about Use edit-in-place or the locator
type/field. Here the prompt values can be computed from the dct
and/or other properties on the procedure. This is similar to case b)
of the problem 3 solution. In short, using macros you can often
compute satisfactory prompt values. (Remember, you can define
arbitrary data attributes in the dct to help your macros work).

c.

Prompts you fill in as a set. In other words, prompts wherebyd.

Clarion Magazine - Wizatrons From Back To Front

http://www.clarionmag.com/v1n2/sub/v1n2snortaziw.html (4 of 6) [4/19/1999 4:26:57 PM]

once you’ve typed in the first the next 8 can be predicted. For
example, if you say the button text is 'OK' it is reasonable to guess
the icon will be a tick, the size will be such and such, default will
be set etc. The Wizatrons have a derivation capability so you can
define 'common' sets of prompts that are filled in for a given
Wizatron. If you like a Wizatron can have many different default
sets and you get to choose one.
Prompts you felt like filling in to see what they would do.
This is case 3 and is again handled by the detail tree.

e.

So you see not only can the Wizatrons plug all the components together,
they can actually fill in all the prompts in the components to give you the
kind of component you want, working the way you want.

And finally (the bit you’ve all heard about)

So, we have always had a solution to issue #1. Eliminating #5 comes
down to disciplining yourself and is the art of productive CW working
anyway. #3 is tackled by the acorns and #4 is tackled primarily by the
ability to set families of wizatron defaults and use macros involving data
from the dictionary.

This leaves #2 which is the bit we have talked about most because it is
the easiest to demonstrate. The solution to 4 allows for useful little tricks
such as being able to define an insert button complete with icon, colour,
message, tip etc. However to really get hold of how the Wizatrons can
compose screens as nicely as you can you need to complete a simple
test :

You are in screener and have selected all of the buttons near the bottom
of the screen. You right click and select ‘Align Bottom.’ Were you
thinking :

I want all these buttons to have a ypos of 32; this button on the
right is already there so I can quickly move them all to that
position by saying align bottom.

i.

I want all of these buttons to be the same size…. Damn why did I
click on that? Now I’ve got to re-hack the entire screen.

ii.

I want all of these buttons to share the same ypos and I want it to
be along the bottom of the screen with a pleasant margin to the
bottom of the window.

iii.

If you answered I) then the Wizatron screen composition is not for you.
If you answered ii) then the Wizatrons are definitely for you but you
need to be a little soberer next time you try to use them. If you
answered iii) then you are well on your way to writing your first style
sheet.

Seriously, the essence of the Wizatron attack on problem two is the
notion of a composition rule. A style sheet says to a Wizatron "I don’t
care where you shove the controls as long as you obey these rules".
What kind of rules? Well there are many but here are some :

These controls must be aligned on x or y co-ordinates. This
is done using at.xpos/ypos properties. You don’t use numbers; you
just use labels. If two controls share a label then the Wizatron will
make sure those values end up the same. You can force widths or
heights to be the same using a similar technique.

.

These controls must be in this part of the screen. Each
window is divided into the points of the compass and centre. You
can specify which zone a control goes in.

b.

These controls go on this tab. Tabs are specified by name and
created if required. Overflows are automatic.

c.

This control should be this size, or failing that … Obviously
controls have size, but you can also specify how they
squash/expand if required to help fit in with other rules.

d.

The space between controls must be so much … You can
specify margins, although you can also specify that some controls
have more (or less) margin on a control by control basis.

e.

Clarion Magazine - Wizatrons From Back To Front

http://www.clarionmag.com/v1n2/sub/v1n2snortaziw.html (5 of 6) [4/19/1999 4:26:57 PM]

Some people have an almost theological objection to automated screen
composition. Aesthetics is subjective and therefore cannot be
automated.

I actually half-agree with this. If the task in hand was ‘make this window
as visually appealing as possible’ then I suspect a skilled designer would
win most of the time. However, that isn’t the assignment. The
assignment is ‘make this window as visually appealing as possible given
it has to fit in with all my other ones.’ To a human the second clause is
another burden that makes the task even harder. To a Wizatron it is the
solution, it means that consistency and precedent can be used to define
most of the screen design using composition rules to fill in the rest.

Wizatrons

So there we go, this is the end of the article. If the opening verse is
correct the conclusion should be better than intro, and those of you that
have patiently ploughed to the end of the article should have done better
than those who proudly ignored it. I hope that it is so.

David Bayliss is a Software Development Manager for Topspeed
Corporation. He is also Topspeed's compiler writer and the chief architect
of the Application Builder Classes.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com or
www.users.globalnet.co.uk/~dabay/, email covecomm@mbnet.mb.ca.

Clarion Magazine - Wizatrons From Back To Front

http://www.clarionmag.com/v1n2/sub/v1n2snortaziw.html (6 of 6) [4/19/1999 4:26:57 PM]

http://www.users.globalnet.co.uk/~dabay/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
http://www.users.globalnet.co.uk/~dabay/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 2
Mar 1, 1999

Interview: Roy Rafalco

A Conversation With
Topspeed Corporation's New CEO

Part 2

On December 28, 1998, Topspeed announced the appointment of Roy
Rafalco, Topspeed's President and Chief Operating Officer since 1993, to
the position of Chief Executive Officer. Rafalco succeeds Bruce
Barrington, Topspeed's founder, who will remain Chairman of the Board.
Click here for the full press release.

This is part 2 of a two-part interview. Click here to read Part 1.

Clarion Magazine: How are you positioning Clarion in the
marketplace?.

Roy Rafalco: It’s critical, because you and I both know, once people
start using tools, they attach themselves to those tools. It’s not easy to
change. It’s a learning curve, and it’s even worse if you’re not MS or
IBM, and you’re some Clarion Software or Topspeed Corporation that
you never heard of before. That’s why the word of mouth is essential.
Right now our marketing department is gathering all sorts of case
studies and success stories, so that when we do promote and call on
people, we have a success story. People need to hear about other
companies that have successfully used Clarion.

We used to hear about the push to sell Clarion in the corporate
shops. Is that less of a focus now?

We were attracted to corporations for a couple of reasons. One was the
lack of price sensitivity. Secondly, corporates were willing to talk about
the tool once they had purchased it. If we could sell into a corporation,
chances are they were going to pass the word about Clarion on to
others. There’s no competition between corporate developers about
which tool they used. But the corporate market, which is really client
server, is a mature marketplace. And when corporations make such an
investment in the tool, the decision-maker’s not going to say oh, you
remember all those millions of dollars I spent on PowerBuilder? I’m going
to spend a couple of thousand dollars on Clarion and do the same thing.
It doesn’t work very well.

All along our goal has been the same.We want to sell to programmers
who can benefit from our technology, whether it’s a small shop or a large
shop. Now, we will be targeting and continuing to want to target
programmers where the cost of selling the tool is reasonable given our
produce price. Since, we don’t charge royalties or runtimes, we receive
only one price, and that’s it. We may not ever hear from the customer
again, unless they want to upgrade. Due the cost of selling the tool, it
makes no sense to knock on the door with one or two programmers in
that organization.

Clarion Magazine - Interview With Roy Rafalco Part 2

http://www.clarionmag.com/v1n2/sub/v1n2interview_rafalco.html (1 of 4) [4/19/1999 4:27:05 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.topspeed.com/pr-rrceo.htm
http://www.clarionmag.com/v1n1/pub/v1n1interview_rafalco.html

So if not corporate shops, what’s the market?

One area that we’re thinking about carefully is the trend in the
marketplace is to outsource IT. We believe IT consulting firms are less
married to their tools. IT consulting firms have more programmers who
may not be committed to a particular tool. And that’s why there’s some
significance in the press release you might have seen on UTA, where
they’ve decided to train their programmers on Clarion. They’re a
government consulting firm. UTA’s interest in Claron is significant when
you consider that their client is very conservative.

We still want to sell to programmers, and we don’t care whether they’re
small independents or they’re large corporates. Eventually, we will better
identify specific markets where our tool will provide an unique solution,
and our cost of sale will be reasonable.

What about creating a version of Clarion for Linux? Is that
something you’re keeping an eye on?

Oh absolutely. We’ve certainly learned our lesson when it came to
getting to Windows late and getting to Client/server late. Being there
first means a lot. So we’re constantly thinking about that, and meetings
go on every week, where we’re talking two, three, four, five, ten years
out. What is the latest technolgoy wave, and do we grab that wave or
don’t we grab that wave? We had a painful lesson back in ’93 when PDAs
were the big thing. You remember the Pen Developer add-on to Clarion
3. I think we may have sold two of those. Because we have limited
resources, we have to be careful where we devote our development
resources

We all at TopSpeed have worked too hard to throw things away because
we went in the wrong product direction. We have retained the Gartner
Group as analysts for us. They provide consulting and services in terms
of where they see the direction of technology going, and the
marketplace. We consult with them regularly. Yesterday Bruce brought
to me the fact that Infoworld estimated there was 12 million Linux boxes
out there.

As we come to the right business decision, we also have to decide who
we can link up with strategically to make it happen. Because you can’t
do everything by yourself, we have to constantly think about matching
ourselves with a partner.

Will there be an IPO any time soon?

We don’t want to go public until we think we can really maximize the
initial stock offering. And we believe that that will take several years of
consistent growth and we have to be at a certain revenue target. It could
be as early as two years from now.

Are you thinking at all about the Open Source movement? Would
you consider opening up the Clarion language?

Not really. We’ve been reading about open source, and it depends on
your viewpoint. We’ve seen some things take place that look more like
gestures than anything else, but on the Clarion side, we really don’t see
a need. Our plans are to continue advancing what we call the art of
automated programming to whatever platform, using whatever
language. At the same time, I would never say never to anything, but
we are not ready to open up the Clarion language at this time.

How about generating Java or C++ code?

Given our technology and the fact that you don’t have to hand code as
much, the language used ends up being irrelevant. I can’t necessarily tell
you which direction we’re going to go in terms of supporting other
languages, However, we’re in the long term business of providing
automated programming tools.We’ll look at all of the opportunities for
how we can leverage our automation technology in order to grow the
company and the technology so that programmers can be more
productive.

If we were to do another language, Clarion wouldn’t go anywhere. We
still believe in the Clarion language and we still think it’s a good

Clarion Magazine - Interview With Roy Rafalco Part 2

http://www.clarionmag.com/v1n2/sub/v1n2interview_rafalco.html (2 of 4) [4/19/1999 4:27:05 PM]

http://www.gartner.com/
http://www.gartner.com/

language. When I was in London in August, I was amazed to hear so
many London developers taking the side of the Clarion language. Way
back when we merged it was Clarion what?

It’s also their Clarion language now.

And it’s showing. It’s a good environment and it’s one of the things I
really like about Topspeed and the people, and the London guys are just
fantastic to work with. They could be so much different, based on other
engineers I’ve worked with.

It seems like there’s a lot of loyalty and stability there.

In 1997 I was in London and some of the original JPI people came in to
see me. It was the fifth anniversary of the merger. And I thought Oh
God, it’s five years, how do they really feel about the company. However
The London developers said it was the best decision we’ve ever made.
They love what they do, and hope that the company will continues on
like it has been.

What do you see as Topspeed’s biggest opportunity?

From a technical viewpoint, there is no limitation as to what the London
developers can do. I sleep well every night knowing that the London
Development Centre exists with its tremendous talent. So that itself is
an opportunity. Very few companies have that kind of talent.

I think the biggest opportunity is that we haven't told
anyone about Clarion. If we start telling people about
Clarion and being focused with our sales and marketing
programs, I just think there’s an incredible opportunity
for the company as a whole. I’m just amazed at what
we’re able to do and no one’s ever heard of us. I was
just blown away when I saw this posting that we were
second at DBMS. I just think if we come up with the
right sales and marketing approach and start this ball
rolling down the hill, then we will have an expanding
the number of customers. When we increase our install
base, our financial resources increase. With increased
financial resources, we can enhance the technology
even more, and it just goes on and on and on.

As I was coming up on my fifth anniversary at the end
of 1996,I made a new year’s resolution. I’ve been here
five years. This company’s going to go, if I gotta kick it,
I gotta shove it, I gotta whatever, but I’m going to be
less patient now. I’m a very patient person, very
methodical., Over the years some of my staff have
criticized me because I’m too patient. I should’ve made
some moves quicker, whether it’s regarding personnel
or whatever. And so, I’ve got my staff working based
on this resolution. I’ve told them they’ve got eight
quarters. In eight quarters, we’re going public, and we
deserve it! I mean I’m not going to sit here and drive
the car off the cliff, but this is our time to shine.

Remember Internet Connect? A
couple of years ago I was over in
London and I was sitting down
with the guys. At the time, we
were pushing internet connect to
be mastered. Gavin Halliday was
giving a demonstration of a very
rough alpha and showing what it
could do.

I was sitting there with my
mouth wide open in amazement.
I turned to Gavin and asked him
how he created such amazing
technology.

And Gavin looked at me quite
matter of factly and said, "Well
Roy, it’s magic."

And all I said was "OK, Gavin, I
guess you’ve decided I’m not
technical enough to understand.
Just pretend it’s magic, right?"
And he said "Yeah, it’s just
magic."

Your press release says that your appointment confirms what
you were already doing. Did Bruce just sort of look around and
say, well, he’s acting like a CEO, I guess we better promote him?
How has your role changed?

Bruce doesn’t necessarily turns over his favourite thing to anybody, and
Bruce is very cautious. Over a period of time he’s gradually given me
more responsibility. He came to the conclusion that now basically I was
running the business, and it was time for me to come from behind the
curtain. And quite frankly it wasn’t my idea and I didn’t ask for this,
because it’s been really comfortable to stay behind the scenes. I can
hide out back there and make things happen, and not necessarily deal
with all of the political things that result from being in the limelight.

As things are getting better at TopSpeed and we’re breaking all records,
I turn to the old folks here (they’re not that old, but have been with the

Clarion Magazine - Interview With Roy Rafalco Part 2

http://www.clarionmag.com/v1n2/sub/v1n2interview_rafalco.html (3 of 4) [4/19/1999 4:27:05 PM]

company), and I say you know, we’re going to miss those old days,
because a crisis brings people closer together towards a common goal
better than anything else.

It’s also probably true to some extent of the programmers. If it
really got big, one of the things that we could lose would be that
close familiarity.

Customers tell me that they don’t want us to grow big, because they
know they can get me on the phone. Also, they know they can send an
email, and Bruce may respond to it. They don’t want those days to come
to an end. The tool doesn’t cost them too much. They like that kind of
premiere access to TopSpeed. In addition, their competitors do not
knows about Clarion. so they can go in and undercut their competitors’
bids.

Perhaps some of the lack of growth of the product is because of
that resistance to change within the Clarion programming
community.

My plan is to continue to make it that personal touch, even though it’s
going to be hard, and it’s going to get harder and harder. But that’s a
value that our customers like. And we’ll strive to keep it as close as we
can.

Clarion wouldn’t be where it is today without its customers. And those
customers are a different kind of customers. They’re the customers who
pay for their upgrades every year and kept us in business. They're the
customers like Team TopSpeed who are just giving of their time to the
nth degree to help everybody, and to help the company. Really the
success here is all based on the customer. That’s our greatest asset.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Interview With Roy Rafalco Part 2

http://www.clarionmag.com/v1n2/sub/v1n2interview_rafalco.html (4 of 4) [4/19/1999 4:27:05 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 2
March 1999

The Mathematics of Time

If you’ve ever needed to perform math on Clarion time values, you know
that you can sometimes get unexpected results. Clarion stores times as
hundredths of seconds since midnight, which means that one second is
equal to 100. Given this you’d expect that five seconds after midnight
would be stored as 500, but in fact it’s stored as 501, because a time of
1 is equal to midnight. This extra 1 causes all sorts of interesting
problems.

Consider what happens if you try to subtract one time from another
time. Figure 1 shows a test application (available for download) which
lets you enter two times using the time picture @t4, which lets you enter
hh:mm:ss.

Figure 1: The Time Calculation Application

If you enter a time of 0:00:05 for the Time A, and 0:00:01 for the Time
B, and click on the Unadjusted Subtract A From B button, you get a
result of not 4 seconds, as you’d expect, but 3 seconds!

This is not a bug, but a failure on the part of the developer (that's me) to
account for the one one-hundredth of a second. The time 0:00:05 is
stored as 501, and 0:00:01 is stored as 101. 501-101 = 400, and the
display picture in effect is rounding down the time value, since it only
displays whole seconds. All times from 301-400 will display as three
seconds, from 401-500 as four seconds, and so forth.

If you’re adding times you may not notice anything wrong, since
501+101=602, and anything from 601 to 700 is going to display as 6
seconds, but if you’re doing repeated ads the error will accumulate and
eventually could wrap around, adding a second.

One way to solve this problem is to subtract the extra 1 from the times
before doing any math, and add the 1 back to the result of the

Clarion Magazine - Calculating Times

http://www.clarionmag.com/v1n2/sub/v1n2calculatingtimes.html (1 of 2) [4/19/1999 4:27:17 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
ftp://www.clarionmag.com/pub/clarionmag/v1n2/calctime.zip

calculation. This way you can do addition, subtraction, multiplication and
division and get accurate results. You should also, however be wary of
running over the end of day boundary. There are 8,640,000 hundredths
of a second in a day, and a time of 8,640,000 is equivalent to
23:59:59:99 (keeping in mind that there is no Clarion time picture that
will display those hundredths of a second for you).

TimeResult = (TimeA – 1) + (TimeB – 1) + 1

This code could also be written as

TimeResult = TimeA + TimeB - 1

However, if you're dealing with a long list of numbers, or mixing addition
and substraction and possibly multiplication and division, you'll be far
better off subtracting the 1 from each time right away, then doing the
math, then adding the 1 back.

If you’re going to be adding times that may go over day boundaries, you
can't simply add the times, because Clarion won't display time values
greater than 8640000. You can either subtract 8640000 from such a
time, or do it the easy way with with the modulus operator which returns
the remainder after division.

CurrTime = CurrTime % 8640000

The above code will be correct if you’re adding times, although you may
want to keep track of how many days are involved. You can get the
number of days with this code:

Days = INT(CurrTime/8640000)

If you’re subtracting times you may end up with a value that’s less than
1. Here you have to keep in mind that there are only 8640000 hundreths
of a second in a day. If you subtract ten seconds from today at 12:00:05
a.m., the result you want is 11:59:55 p.m. yesterday. If the resulting
time is less than 1, you need to add 8640000.

TimeResult = (TimeA – 1) - (TimeB – 1) + 1
IF TimeResult < 1 THEN TimeResult += 8640000.

Clarion times aren't overly difficult to calculate. The most important
factor to keep in mind is that all whole seconds are offset from 1, not
from 0.

Download the source:
ftp://www.clarionmag.com/pub/clarionmag/v1n2/calctime.zip

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Calculating Times

http://www.clarionmag.com/v1n2/sub/v1n2calculatingtimes.html (2 of 2) [4/19/1999 4:27:17 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n2/calctime.zip
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 2
March 1999

Name() Comes of Age

by Steve Parker

Various kinds of files, such as calendars, schedules, ASCII files,
accounts, or files on other drives or other machines share the
characteristic that multiple physical disk files can have the same
structure. It is often desirable to have a single dictionary specification to
declare that structure so that a single procedure set (application) can
operate on them.

Clarion builds in this capability with the Name attribute but provides no
management capabilities. It is up to the developer to manage which file
is in process at any given time.

Of Syntax and Semantics

In Clarion, there are two keywords you must not confuse, Label and
Name.

Variables and data structures (which include windows, queues, views and
files) are referred to by their Label. Clarion code always uses the Label.

Name is an attribute. Variables and structures may or may not have a
Name; in fact, they usually do not. The contents of the Name attribute, if
any, are for use of an external object. This could be another program,
like a database engine or the operating system, or a Clarion DLL, like a
file driver.

In the case of data files, the Name attribute contains the fully qualified
directory entry for the file. For example, a file declared as:

Customer File,Driver(‘Topspeed’),Name(‘foobar’)

Will look for or create a disk file called foobar.tps in the current
directory. Your code will never contain this, only "Customer."

Multiple Files, One Declaration

To handle multiple physical files from a single logical declaration use a
variable in the Name attribute:

Customer File,Driver(‘Topspeed’),Name(GLO:FileName)

You create this in the Dictionary Editor by completing the Full Pathname
field on the File Properties worksheet (Figure 1) and pre-pending an
exclamation point.

Clarion Magazine - Name() Comes Of Age

http://www.clarionmag.com/v1n2/sub/v1n2usingname.html (1 of 6) [4/19/1999 4:27:29 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html

Figure 1: Global Data Properties

This is where the fun starts.

If you declare a file like that in Figure 1, your app will not compile. The
compiler error makes the reason clear: the variable was not declared.
Not only must you declare the variable, you must do so before the file
declaration. That means that you have to use the Before File
Declarations source embed because the Global Data button places
variable declarations after the file declarations.

Thus, global files (files in the dictionary) require a global variable. Files
declared at the module or procedure level, in hand code, require only
that the variable have the STATIC attribute (though it can be at a higher
scoping level).

Next, having added the STATIC attribute, if you try to run the app, it will
crash and burn. The variable is empty and the app does not know the
DOS name of the file it is supposed to open

File() could not be opened. Error: Invalid Filename(45).

You may initialize the variable any time you wish but obviously not later
than the first attempt to open the file.

SetName

The ABC FileManager class also provides the SetName method to set the
value of the Name attribute. This method allows you to set the variable
directly, without an assignment. Moreover, you can call this method in a
procedure which does not actually use the file(s) in question (it’s a
property of the FileManager, hence available any time after the
FileManager has been instantiated). The app frame comes to mind, as
does the global Procedure Setup embed.

Citing advantages of SetName, Pierre Tremblay observes (in the OOP
newsgoup):

Clarion Magazine - Name() Comes Of Age

http://www.clarionmag.com/v1n2/sub/v1n2usingname.html (2 of 6) [4/19/1999 4:27:29 PM]

The variable in the name attribute for the file structure
doesn’t need to be exported [from the data app]. The
FileManager class is holding a reference for that var.

So, to "initilialise" this variable without having it exported
from the DLL, the SetName method is the only way to go.

Note what Pierre says: the variable "doesn’t need to be exported."
Yes, this means that you do not need to declare the variable in the
non-data app(s).

Rules for Name-ing

Always use the file Label as declared on the File Properties
worksheet in Clarion language statements;

1.

When using a variable in the Name attribute, initialize it before any
attempt to open the file;

2.

A variable used as a file Name may contain any O/S-valid string;3.

To use a variable, pre-pend the Full Pathname entry on the File
Properties worksheet with an exclamation point;

4.

The variable name must be unique (of course);5.
Declare the variable in your data application, before the file
declaration.

6.

Super Files

Topspeed files support a special syntax to allow multiple tables to be
stored in a single file.

By using the special escape sequence '\!' in the NAME() attribute of a
TopSpeed file declaration, you can specify that a single .TPS file will
store more than one table. (C4 LRM)

When using the TopSpeed driver, if you wish to store
multiple tables in a single physical file, separate the file and
table names with "\!," as in TUTORIAL\!ORDERS. This refers
to the ORDERS table in the TUTORIAL.TPS file. (C5 On-line
Help)

The format of the Name entry is file_name\!table_name which appears to
preclude using a variable in the Name attribute of a TopSpeed file.

Appearances can be deceiving, for this is not the case. Designate your
variable on the File Properties worksheet and initialize it in exactly the
same way as any other Name, but use the special syntax:

Authors_ = 'cwjfil\!Authors'

to initialize the variable. In this case, Authors_ refers to the Authors
table in CWJFIL.TPS.

Multiple Locations

The executable resides in one place but you need the ability to address
files anywhere. The file might be in the current directory or in another
directory. The files might be on a network drive. You can even map an IP
address to a drive letter and use the Internet.

Clarion Magazine - Name() Comes Of Age

http://www.clarionmag.com/v1n2/sub/v1n2usingname.html (3 of 6) [4/19/1999 4:27:29 PM]

Figure 2: Setting an initial value for a file name variable.

Here, there is one file (set) but multiple possible paths. In these cases,
the path tends to be variable while the actual name of the file tends to
be a constant. If so, it makes sense to give the Name variable an initial
value when it is declared (Figure 2). If you can get the path information
separately, from an INI or configuration file or from FileDialog, just
concatenate the two.

FilePath = GetIni('JtMatch','FilePath',,'.\JOBTRAK.INI')
Contacts_ = Clip(FilePath) & Clip(Contacts_)

Multiple Files

You want to work on one company’s accounts then another’s. Or you
need to update Alice’s calendar then Bill’s.

You do not have to leave the browse, if you do not wish to (though,
obviously, you can and this would be easier to program). All you need to
remember is that you must close the current file before selecting the
new file. Select the new file, prime the Name variable and refresh the
browse.

If you have multiple Tabs and it is your intention that each Tab show a
different file in the same browse, you must close, prime and reopen in
ThisWindow.TakeNewSelection (ABC) or the ?CurrentTab .. New
Selection (Clarion) embed.

Multiple DLLs

Now multiple DLLs are really fun if you use variables.

Each variable must be declared in each of the project’s apps.

If you’re new to multiple DLLs, you should check the
documentation. The important thing is that each app in the
project needs to reference the files. But only one should

Clarion Magazine - Name() Comes Of Age

http://www.clarionmag.com/v1n2/sub/v1n2usingname.html (4 of 6) [4/19/1999 4:27:29 PM]

allocate memory for them. This means that in all apps but
one the files are declared and the EXTERNAL attribute added.
The one app without the EXTERNAL attribute is usually
referred to as the "global data DLL" and usually contains only
the file declarations.

In the global data DLL, you simply declare the variable and, if desired,
give it an initial value.

In every other app, you must also declare each of the variables. Each
variable must also have the External and DLL attributes, similar to:

Contacts_ String(64),External,DLL(dll_mode)

to avoid compiler warnings (lots). (You do not need to do this if you use
SetName).

Until C5, the method of choice was to create a text file with the
necessary declarations and Include it in each application. The required
file is usually created by requisitioning and modifying the data
declarations from the main source file of the data DLL.

A major enhancement in the C5 Dictionary Editor makes this a thing of
the past, totally automating the process.

Figure 3: Dictionary Editor Global Data settings.

Clarion Magazine - Name() Comes Of Age

http://www.clarionmag.com/v1n2/sub/v1n2usingname.html (5 of 6) [4/19/1999 4:27:29 PM]

Using the new Global option in the Dictionary Editor (see Figure 3)
creates a file-like structure accessible in your applications as Global
Data. That is, after you declare, say, GlobalData, you insert each
variable in the same way you would add file fields. So, from the point of
view of the Dictionary Editor this is a file but when accessed within an
application, it is handled like global data, as intended.

The only restriction is that if you add several variables to this "file,"
grouping your Name variables, they will share a common prefix.

However, all of your declarations will be included and included correctly
in each and every application. That is, your global application settings for
dictionary handling (viz., the external flag) will be picked up and applied
correctly without further intervention. (You still have to initialize
variables, so you still have to do something.)

Note: as of C5EE SR1, Arnor Baldvinsson has discovered,
this works correctly only with the ABC templates. The
requisite template code was not retro-fit in the Clarion
template chain. These lines are found in ABProgram.tpw,
218-37 and should be compared to Program.tpw, 90-99. He
states that the new lines can be successfully substituted for
the old. A copy of the modified template is available at
http://www.cwicweb.com/apps
/cwlaunch.dll/download.exe.0

Summary

The Clarion language has supported variable file names since its very
beginning. In CDD, support was added to the Dictionary Editor and,
partially, to the AppGen. But, until Clarion5, we had to hand code many,
if not most, of the required declarations.

"When it rains, it pours." Now you have two methods that are about as
automated as you can get. How do you choose?-This is the most difficult
possible choice: two solid, reliable and easy to use techniques.

Download the demo application.

Steve Parker started his professional life as a Philosopher but now tries
to imitate a Clarion developer. A former SCCA competitor, he has been
known to adjust other competitor's right side mirrors -- while on the
track (but only while accelerating). Steve has been writing on Clarion
since 1993.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Name() Comes Of Age

http://www.clarionmag.com/v1n2/sub/v1n2usingname.html (6 of 6) [4/19/1999 4:27:29 PM]

http://www.cwicweb.com/apps/cwlaunch.dll/download.exe.0
http://www.cwicweb.com/apps/cwlaunch.dll/download.exe.0
ftp://www.clarionmag.com/pub/clarionmag/v1n2/name_app.zip
http://www.par2.com/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

The COSP License (draft)
Some concerns have been raised over the use
of existing open source agreements to cover
Clarion-related products. Here's the current
draft of the proposed Development Open
Source License.

COSP Articles/Information
General help on open source concepts and
(soon) specific articles about open source
products.

Product Information
Information about the products that make up
the COSP distribution, including product
features, bug reports, desired features, and
ways to contribute.

Interested In Contributing?
See our open source contribution guidelines.

Questions?
Bring them up in the opensource newsgroups
on the Clarion Magazine news server, or email
cosp@clarionmag.com.

Programming
Tools

The CCI Debugging
and Profiling Classes

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Open Source Project

http://www.clarionmag.com/opensource/index.html [4/19/1999 4:27:39 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/opensource/cosp_articles_index.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/contrib.html
mailto:cosp@clarionmag.com
ftp://www.clarionmag.com/pub/opensource/devtools/ccidebug-1.0.zip
ftp://www.clarionmag.com/pub/opensource/devtools/ccidebug-1.0.zip
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Debugging/Profiling Classes

by CoveComm Inc.

Usage Documentation

cciDebugClass●

cciProfilerClass●

Bug list/work to be done

cciDebugClass (not yet available)●

cciProfilerClass (not yet available)●

Download version 1.0

NOTE: This document covers version 1.0 of cciDebugClass and
cciProfilerClass. If you're using version .9 click here.

cciDebugClass Usage

I wrote cciDebugClass as a supplement to the much-maligned Clarion
debugger. Even if I had a good debugger it wouldn't always serve my
purposes because a debugger gives you a snapshot of the current state
of the program. What I often need is a log of what's happened during
program execution.

The cciDebugClass lets me log messages (by calls to the trace method,
unless I'm using the cciProfilerClass which will create some log messages
automatically) and view the log on screen in a window, in a toolbox, or
write the log to a file.

To use cciDebugClass with an application first unzip files ending in .INC
and .CLW into the libsrc directory, and files ending in .TP? into the
template directory.

Close any open application, choose Setup|Template Registry, and
register CCIPROF.TPL. Close the registry.

Open your application. Click on Global, then Extensions, and add the
cciProfilerDebuggerClassGlobals extension. On the extension properties
select cciDebugClass as the base class. You may also want to check
Automatically Add Source Files To Project, although this is NOT
recommended when using cciProfilerClass (see below).

You can leave the rest of the settings as they are. This will create a
global object called dbg, and will initialize the object at program startup
and clean it up at program shutdown. I don't generally advocate short
variable names but as this is a global and often-used object I think it's
okay.

That's all you need to do! When your application runs a trace file called
trace.log will be created. To put messages in this file, call the trace

Open Source Project - cciProfilerClass and cciDebugClass

http://www.clarionmag.com/opensource/devtools/ccidebugprof.html (1 of 2) [4/19/1999 4:27:49 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
ftp://www.clarionmag.com/pub/opensource/devtools/ccidebug-1.0.zip
http://www.clarionmag.com/opensource/devtools/ccidebugprof_v.0.9.html

method with your message:

dbg.trace('whatever you want to appear in the log file')

To view the trace log you can call the ViewTrace() method. If you want
to bring up a toolbox on its own thread so you can see messages as they
appear, call ShowTraceToolbox().

If you want the trace log to record all of the events that occur in your
program, go to the Options tab and check Record All Events. This will
generate code into all procedures which have windows to log the events
received by the accept loops.

Trace messages are cached so that you're not constantly writing to the
disk. If you're getting a GPF somewhere in your program cached
messages will be lost. You can set the CacheSize property to 1 so that
messages are written out immediately.

cciProfilerClass Usage

Having a debug class was great, but what I really needed was a way to
automatically generate a procedure call tree. Happily Clarion provides a
mechanism in its profiler hooks (and yes, one of the future applications
of this class is execution profiling).

To use the profiler class follow the same instructions as for
cciDebugClass but choose cciProfilerClass as the base class.

Next, make sure that Automatically Add Source Files To Project is NOT
checked. You have to add the source to the project manually when using
profiling because you have to set some compiler pragmas, and if you add
them automatically the pragrams will be overwritten the next time you
do a global generation. The LINK attribute isn't an option because it
doesn't allow you to set pragmas on automatically linked files.

Add cciDebug.clw and cciProf.clw to your application's external file list.

cciProf.clw contains prototypes for two internal Clarion functions:
 EnterProc and LeaveProc. You need to enable these functions so that
the profiler class can use them to automatically log the procedure calls
via its parent class, cciDebugClass.

While you're in the project editor, highlight the top line of the project
tree (the line that starts "Project:") and click on Properties. Click on the
Defines tab and type

profile

in the text box. Close the properties window. Now in turn highlight
cciProf.clw and cciDebug.clw and for each of these files type the text

profile=>off

in the Defines text box. You have now turned profiling on for the entire
application, and off for the two source files, which is essential if you're to
avoid an endless recursion when the profiling class or debugging class
methods are themselves profiled.

Run the application! It will create a trace log of all of the procedure and
method calls. You can call the Trace method to add your own messages,
and you can also call the ViewTrace or ShowTraceToolbox methods to
see the results of the trace while the program is running.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Open Source Project - cciProfilerClass and cciDebugClass

http://www.clarionmag.com/opensource/devtools/ccidebugprof.html (2 of 2) [4/19/1999 4:27:49 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

So you think you can write some tight Clarion code?

Try your hand at this problem. The challenge is to come up with either
the smallest or the fastest Clarion code to meet the following
requirement:

The Requirement

A recent Clarion Advisor column discussed how to calculate time values.
One place this is necessary is in tracking billable time. Write some
Clarion code to determine the number of blocks of time in a specified
period.

Assume you have two LONG fields, one containing a start time, the other
containing an end time. You also have a SHORT field containing a value
of from 1 to 60 minutes, and a byte flag indicating if times are to be
rounded.

For example, assume that time is billed in 15 minute increments. The
time period started at 3:00 p.m. and ended at 3:50 p.m. If the rounding
flag is set, the result would be three billable units, since 5 minutes
rounds down to zero minutes. If the time period ended at 3:55 p.m., the
result would be four billable units since 10 minutes rounds up to 15
minutes. If the rounding flag is off, then both times result in four billable
periods, since any partial period is billed as a whole period.

Remember that the second time may be past midnight. You do not need
to consider the possibility of it being more than one day past midnight.

Send your answers to advisor@clarionmag.com

The most compact and the fastest examples will be posted here, along
with any others deemed of special interest.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine

http://www.clarionmag.com/v1n2/sub/clarionchallenge-timecalc.html [4/19/1999 4:28:05 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
mailto:advisor@clarionmag.com
http://www.clarionmag.com/v1n3/sub/v1n3challengeresults.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 2
March 1999

Updated April 05, 1999

The Clarion Open Source Project (COSP) is an open source distribution of
Clarion third party products which is distributed by Clarion Magazine. If
you're not familiar with the concept of open source software, please read
the Feb 8/99 news feature on COSP.

For a list of COSP products click here (subscribers only)

For an overview of COSP-related information click here (subscribers
only)

Key Features Of COSP

All code is covered under an open source license which prevents
anyone from making such code proprietary once it has been placed
under that agreement..

●

COSP information and developer coordination is available to
Clarion Magazine subscribers via the COSP main page and the
magazine's private newsgroups.

●

COSP code is available to the general public by anonymous ftp at
ftp://www.clarionmag.com in the /pub/opensource directory.

●

Who Contributes To COSP?

Anyone who is interested can contribute to the open source project.
Subscribers please refer to the contribution guidelines. Non-subscribers
can email cosp@clarionmag.com. Clarion Magazine reserves the final
decision as to what open source code it makes available in its
distribution.

The key word is distribution. Anyone can release any code they wish as
open source under any license they choose, and anyone is free to
distribute whatever open source they find. Clarion Magazine is providing
a particular distribution, or collection, of that source code.

Licensing Issues

The initial plan for COSP was to use the GNU Library General Public
License, or LGPL. The LGPL has the benefit of being specific to libraries,
whereas most open source agreements cover entire applications. Since
COSP is mainly about code and templates, the usual open source
agreements aren't going to be of much help. However, certain clauses in
the LGPL make it almost impossible to license things like templates. It's
also not clear how adept the LGPL is at handling some of the issues
raised by code reuse in object-oriented programming.

Accordingly, Clarion Magazine has drafted the Developers' Open Source
License, which is designed to address the concerns of Clarion developers.

Additional information about licensing is available on the contribution
guidelines page (subscribers only).

Clarion Magazine - COSP Public Information

http://www.clarionmag.com/common/cosp_info.html (1 of 2) [4/19/1999 4:28:32 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/v1n1/pub/v1n1opensourcenews.html
http://www.clarionmag.com/opensource/products.html
ftp://www.clarionmag.com/
http://www.clarionmag.com/opensource/contrib.html
mailto:cosp@clarionmag.com
http://www.clarionmag.com/opensource/contrib.html
http://www.clarionmag.com/opensource/contrib.html

Who owns the code?

The code is copyrighted and owned by the original author, who has
placed the code under an open source license.

Can I modify open source code for my own use?

Yes. Typically this means that the modifications automatically fall under
the license agreement as well.

Does using open source code in my application automatically
make my whole application open source?

The Developers' Open Source License specifically states that using open
source code in your application does not make your entire application
open source.

Do I have to distribute source code?

It's normal to have to either distribute the source or make it available on
request. Ultimately open source agreements are about preserving access
to code for those that want it, and to prevent unscrupulous individuals
from making an expensive proprietary product out of something that is
substantially free. Although it may seem like a difficult task to prevent
this from happening, if the open source code and its derivatives are
freely available, there's no point in someone trying to sell an expensive
version of a product when all the important stuff is available for nothing.
At the same time if someone has a $5000 product that uses a moderate
amount of open source code, that code probably isn't going to help
someone else clone that developer's product, since much of the value is
in non-open source code.

What products are currently available?

The COSP main page contains links to listings of available products.
These pages are available to subscribers only.

When will the proposed Developers' Open Source License be
available?

You can use it now, if you like. However you may wish to wait until it's
been through a legal review.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - COSP Public Information

http://www.clarionmag.com/common/cosp_info.html (2 of 2) [4/19/1999 4:28:32 PM]

http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 2
March 1999

The ABCs of OOP
Part 1 - OOP Basics

by Dave Harms

The introduction of the Application Builder Classes (ABC) and the
corresponding ABC templates are the most significant change to Clarion
since the arrival of Clarion for Windows 1.0. It would be inaccurate to
say that this change was universally welcomed by developers. A lot of
loyal customers wanted to know exactly why they were being asked to
undergo a major learning curve from procedural code to object-oriented
code.

These concerns are valid. ABC presents two challenges to the Clarion
developer. The first is the requirement to know something about object
oriented programming (OOP). The second is to learn the uses of the ABC
library.

The extent to which you have to meet these challenges depends a lot on
your current and anticipated style of development. If you mainly use the
templates and don’t write a lot of embedded code, then chances are you
won’t actually notice a lot of disruption to your work, since the AppGen
interface builds on what is already familiar. You will see a number of new
features and options.

If you write a lot of embedded code or other source code then you will
need to learn proportionally more about OOP and ABC. Fortunately the
payoffs are considerable. For more on the costs and benefits of moving
from legacy to ABC see the article ABC or Legacy – Which Templates
Should I Use? (Feb 1999).

In this first article of a series, I’ll cover some object-oriented
programming basics as applied to the Clarion language through some
simple examples. Subsequent articles will expand on these examples and
illustrate in microcosm how ABC and the ABC templates work.

Understanding Object-Oriented Programming

There’s an apparent paradox to learning object-oriented programming.
On the one hand, OOP can be very difficult to grasp. On the other hand
many people, when they get the basics in hand, look back and wonder
what all the fuss was about.

OOP really isn’t that difficult. Once you learn the basics of
object-oriented programming you probably won’t look back on the
experience and think you’ve come a very long way. It’s actually a short
trip. But it is a challenging one because it requires a change in how you
think about programming. And that change will open up vast new
programming possibilities which certainly can be daunting. But even
procedural programming is like that. No doubt you’ve seen procedural
code that you wouldn’t wish on your fiercest competitor.

Put another way, OOP is a bit like those 3D computer-generated images
you find in poster shops. The first time you look at one all you can see is

Clarion Magazine - The ABCs of OOP, Part 1

http://www.clarionmag.com/v1n2/sub/v1n2abcsofoop_part1.html (1 of 12) [4/19/1999 4:28:41 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/v1n1/pub/v1n1abcorlegacy.html
http://www.clarionmag.com/v1n1/pub/v1n1abcorlegacy.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML

a meaningless fine-grained pattern. You know there’s something there
but no matter how hard you stare you can’t see anything but the
pattern. Once you grasp the concept of relaxing your eyes and staring
off behind the surface of the poster, the 3D image leaps into view. Ah,
you say, that was easy.

Similarly, there are some basic concepts you need to get the hang of
before you can see the meaning in OOP.

There are three concepts commonly referred to as the pillars of
object-oriented programming. These are encapsulation, inheritance and
polymorphism. They can be summarized as follows (keeping in mind that
anything that can be put into a nutshell probably belongs there).

Encapsulation

Briefly, encapsulation means that a class contains code and data. You
may think hey, this is no big deal, everything I do is code and data. And
you’re not far off the mark. But there’s more to this, as you’ll see.

Inheritance

You’ve probably heard enough about OOP to have a bit of an idea of
what inheritance is about already. Using inheritance you can create some
code (a derived class) which automatically contains some existing code
(a parent class). It’s a tricky way of freeing you from retyping code when
you want something that’s almost like something you just did, but not
quite. When you think of inheritance, think of code reuse.

Polymorphism

Polymorphism is something Clarion has had in one form or another since
its inception. When you use OPEN on a file, or on a window, you’re
seeing a primitive form of polymorphism. Effectively you have what looks
like one procedure (or in the case of classes, method) that operates
differently depending on what parameter type it receives. Polymorphism
in all its polymorphic glory is beyond the scope of this article and isn’t
critical to a basic understanding of Clarion OOP and ABC.

Composition

The fourth volume of this trilogy (apologies to Douglas Adams) is
composition. Although not included in the classic threesome, composition
is actually one of the most important features of OO programming as
done by Clarion and many other languages. Composition lets you lump
several (or many) classes together into a functional unit.

In my own work I find that composition is responsible for up to 80% of
the code reuse in my applications. Object-based languages like VB which
don’t support inheritance have to rely entirely on composition for code
reuse. Fortunately Clarion isn’t hamstrung in this way, as AppGen-based
development would be impossible or impractical without inheritance.

This handful of concepts and terms comes up repeatedly in any
discussion of OOP. As I hope to demonstrate, a basic understanding of
each is fairly easy to come by.

In order to understand how OO code works, however, you first need to
see how it’s structured.

Looking At ABC

ABC generated code is considerably more compact than procedural
Clarion code. Here’s the code that’s used to run a typical ABC browse
procedure:

CODE
GlobalResponse = ThisWindow.Run()

Clarion Magazine - The ABCs of OOP, Part 1

http://www.clarionmag.com/v1n2/sub/v1n2abcsofoop_part1.html (2 of 12) [4/19/1999 4:28:41 PM]

Actually there’s a little more to it than that. But if you look at your code
statement, that’s what you get. And on a simple form, you won’t even
find any source code for a Run() method! Clearly there’s quite a lot going
on under the hood. Although it isn’t apparent from the generated code,
the procedure is making heavy use of the ABC library.

As you probably know ABC stands for the Application Builder Classes,
and so to understand ABC you need to understand classes.

The Class

The fundamental structure of all object oriented code is the class. A class
is a sort of group structure which contains procedures as well as data.
(In fact, you can use the Clarion deep assignment operator with classes
just as you do with groups, though this is not generally recommended.)

In its simplest form, a class is also a bit like a Dynamic Linked Library
(DLL). In a DLL, you have procedures, and you also often have some
data that is shared by procedures inside the DLL. Similarly, a class
typically contains procedures (usually called methods), and data. A class
is much more flexible than a DLL, however, largely because of the
mechanism of inheritance.

You will sometimes hear the terms object and class used
interchangeably. To be accurate, the class is the declaration, and the
object is an instance of the declaration. The distinction is important since
you declare or define any class only once, but you can have multiple
instances of the class in use. For example there is a popup class in ABC
that handles browse context menus. There is only one definition of this
class, but every browse you create will have its own instance of the
popup class. It’s not absolutely critical to differentiate between the two,
however. Many developers use the term class when they really mean
object, and occasionally the other way around. A lot depends on how
high the level of "OO purity" is at your location. Then again an OO purist
wouldn’t be using a mixed language like Clarion.

Declaration and Code

Classes have two parts: the declaration, and the code. I always begin
creating a class by writing the declaration.

I frequently need a means of adding some simple message logging to
my application, for debugging purposes, particularly when writing code
for complex processes. I find it easier to read a log of what happened
when than to step through the debugger and try to remember afterward
what order various pieces of code executed.

Listing 1 shows some source code which uses such a debugging object.
In this example the debugging object is called db.

Listing 1. Code to create a trace log.

db.Trace('Before handling event ')
db.Trace('----- contents of listq -----------')
LOOP y = 1 to RECORDS(SELF.ListQ)
 GET(SELF.ListQ,y)
 GET(SELF.FieldColorRefQ,1)
 db.Trace(y & ' - markfield ' & SELF.MarkField & ', nfg ' |
 & SELF.FieldColorRefQ.Nfg & ', nbg ' |
 & SELF.FieldColorRefQ.Nbg & ', sfg ' |
 & SELF.FieldColorRefQ.Sfg & ', sbg ' & SELF.FieldColorRefQ.Nbg)
END
db.Trace('--------------------------------')
db.Trace('Keystate is ' & KeyState())
CurrSelection = SELF.ListBoxFEQ{PROPLIST:MouseDownRow}
IF BAND(Keystate(),0100h) then db.Trace('shift key held').

Clarion Magazine - The ABCs of OOP, Part 1

http://www.clarionmag.com/v1n2/sub/v1n2abcsofoop_part1.html (3 of 12) [4/19/1999 4:28:41 PM]

The log created by running the code might look like Listing 2.

Listing 2. An example trace log.

001 - Before handling event
001 ------------------- contents of listq -----------------------
001 - 1 - markfield 1, nfg 54234, nbg -1, sfg -1, sbg -1
001 - 2 - markfield 0, nfg -1, nbg -1, sfg -1, sbg -1
001 - 3 - markfield 0, nfg -1, nbg -1, sfg -1, sbg -1
001 ---
001 - Keystate is 33024
001 - shift key held

In order to accommodate this functionality I need a class that is able to
do at least two things: store trace messages, and display those
messages on screen on demand (actually there are a lot of other useful
features that could be added, but these two will do for a start).

I begin my debug class by creating the following class declaration:

DebugClass CLASS,TYPE,MODULE('DEBUG.CLW')
TraceQ QUEUE
Text STRING(200)
 END
Trace PROCEDURE(STRING)
ShowTrace PROCEDURE
 END

Actually, this isn’t going to work as written. Why not?

Anticipating Encapsulation

I’ve created a class structure that contains both the methods, and a
queue to hold the data. One method adds the data to the queue, the
other method displays the queue. This combination of code and data into
a single structure is an example of encapsulation.

But the queue isn’t going to work the way it’s declared, because Clarion
doesn’t allow you to have a queue structure inside the class. That in
itself isn’t important – it’s just a "feature" of the language – but what is
important is the process you go through to get around this problem,
because it’s something that comes up time and again in Clarion OO
programming, and in the ABC classes.

References

The way to get a queue into a class without declaring it in the class is to
use a reference.

A reference is a sophisticated kind of pointer. A simple pointer points to
a location in memory where something is located. The problem with
pointers is they’re just addresses – you can make a pointer point to
anything at all, which can be quite dangerous. If you have what is
supposed to be a pointer to a queue, only it points to a window
structure, you’re certainly not going to get the queue data you’re
expecting. Worse, what happens to your window when you write to what
you think is a queue?

A reference can only point to a location that contains something of its
own type. For instance, a reference to a string variable is declared like
this:

StringRef &string

The & (ampersand) character indicates that this is a reference, and that

Clarion Magazine - The ABCs of OOP, Part 1

http://www.clarionmag.com/v1n2/sub/v1n2abcsofoop_part1.html (4 of 12) [4/19/1999 4:28:41 PM]

StringRef can be made to point at any string variable. StringRef cannot
be made to point at a byte variable, for instance. If you try, you’ll get a
compiler error.

To assign a reference you do the following

StringRef &= MyString

where MyString is a string variable. After you’ve done that assignment,
you can treat StringRef exactly the same as MyString. StringRef is like
an alias to MyString. Be sure to type

&=

and not just

=

or the reference assignment will not happen!

As I mentioned, you can’t have a queue inside a class. You have to
declare the queue outside the class, and then create a reference to the
queue inside the class. Declare the queue outside the class, as in Listing
3. Then create a reference inside the class of the same type as the class.

Listing 3. The class (and queue) declaration.

TraceQueue QUEUE
Text STRING(200)
 END

DebugClass CLASS,TYPE,MODULE('DEBUG.CLW')
TraceQ &TraceQueue
ShowTrace PROCEDURE
Trace PROCEDURE(STRING Text)
 END

Note the queue declaration. The reference type is the same as the label
of the queue (TraceQueue), but with a & prepended.

If you’ve worked with OOP you might think Listing 3 is only a partial
solution, and you’d be right. There’s yet another wrinkle to this whole
business of queues in classes, and you’ll see shortly why it’s important,
and why it’s a good example of one of the key aspects of OOP.

First, however, you’ll need to write the Trace and ShowTrace methods.

Where Do I Put This Stuff?

One of the differences between procedural code and object-oriented
code is that a block of procedural code that does one thing is normally
contained almost entirely within a single source file. Classes, on the
other hand, are typically contained in two source files.

Listing 3 shows the class declaration. By convention class declarations
are kept in files ending in .inc, and you can create this one in a file called
debug.inc. If you want this class to be available to all your applications,
place it in the libsrc directory; otherwise put it in your current working
directory. I usually put all generic classes (those which are not tied to a
particular class) in the libsrc directory.

Create the class source in a separate file, called debug.clw. This file will
contain the source code for the methods (procedures) which belong to
the class.

This approach isn’t actually all that different from procedural Clarion. In
procedural code almost everything is contained in the procedure’s
module, but somewhere in your application a prototype for the
procedure also has to be declared. The main difference is that in legacy

Clarion Magazine - The ABCs of OOP, Part 1

http://www.clarionmag.com/v1n2/sub/v1n2abcsofoop_part1.html (5 of 12) [4/19/1999 4:28:41 PM]

applications procedure declarations are generated right into the main
source file instead of into a separate INC file which is then INCLUDEd
into the source (the ABC templates do take the INC approach with
application procedures as well as class declarations).

Strictly speaking you don’t have to have your class declaration and
implementation in separate files, but it’s generally a good idea. One
reason is that by keeping your declaration separate from your
implementation you can, if you wish, put the actual code in a DLL.
Anyone who has the declaration can then use your classes, but they
won’t be able to see your source.

Listing 4 shows the debug class source.

Listing 4. The class source.

 MEMBER

 MAP
 END

 INCLUDE('DEBUG.INC')

DebugClass.ShowTrace PROCEDURE

window WINDOW('Debug Messages'),AT(,,493,274),FONT('MS Sans
Serif',8,,),SYSTEM,GRAY,DOUBLE
 LIST,AT(5,5,483,246),USE(?List1),HVSCROLL,FONT('Courier
New',8,,FONT:regular),FROM(self.TraceQ)
 BUTTON('Close'),AT(230,255,,14),USE(?Close)
 END

 CODE
 OPEN(WINDOW)
 ACCEPT
 IF FIELD() = ?Close AND EVENT() = EVENT:Accepted
 BREAK
 END
 END

DebugClass.Trace PROCEDURE(STRING Text)
 CODE
 SELF.TraceQ.Text = Text
 ADD(SELF.TraceQ)

All class methods are declared in the form classname.methodname,
which is so that compiler knows to which class the method belongs. The
two methods shown in Listing 4 are straightforward. The Trace method
ads a record to the queue, and the ViewTrace method displays a window
with a listbox. That listbox has as its FROM attribute the queue:

FROM(self.TraceQ)

Notice the use of the keyword SELF to refer to the current class. Any
variable that belongs to the class (also known as a property) and any
method that belongs to the class, must be written as

SELF.variable

or

SELF.methodname

Aside from making it easy to refer to the current object, SELF allows the

Clarion Magazine - The ABCs of OOP, Part 1

http://www.clarionmag.com/v1n2/sub/v1n2abcsofoop_part1.html (6 of 12) [4/19/1999 4:28:41 PM]

compiler to differentiate between class data and global and method local
data.

Testing the Trace Class

Create a small test application, or use one you have lying around. You
can very quickly create an application by using Quick Start. This process
is described in the Quick Start tutorial in the Getting Started booklet that
comes with Clarion.

To test the trace class you need to let the application know about the
declaration, and you have to provide the method code, either in source
or compiled form. There are several possible approaches, and this is one
of them:

1. Include the source file in the project. It’s possible to have
class source automatically compiled using the LINK directive,
but in this case you’ll need to choose Project|Edit, and in the
External files list add debug.clw. If debug.clw is in the libsrc
directory or the current working directory you won’t need to
supply the full pathname – just the file name will do.

2. Go to the application’s global embed list and put the
following code in a source embed in the After Global Includes
embed point:

include(‘debug.inc’)

Don’t close that embed point yet! There’s one other thing that you need
to do here. Look back at the declaration and you’ll see that the trace
class has a TYPE attribute. That means that you can’t use it directly. The
compiler won’t allocate any memory for any class (or queue, or any
other data type, or even a method) which has a TYPE attribute. So why
am I using this attribute?

I don’t have to. But I always generally declare my classes with the TYPE
attribute because it forces me to create a specific instance of a class. if I
attempt to do this somewhere in my code:

DebugClass.Write(‘test’)

I’ll get the "Cannot use TYPEd structure in this way" error.

The easiest way to declare an instance of a class is as follows (you can
type this just below the include(‘debug.inc’) statement):

db DebugClass

Now you’re ready to test the class. Assuming your test application has a
browse procedure, go to that procedure embed list. You may find the
following instructions easiest to follow if you first choose View|Contract
All from the menu.

Under local objects choose ThisWindow and expand its embed list. Under
WindowManager locate the TakeEvent method. Expand the embed list
and double-click on the CODE entry. The Select Embed Type window
appears, as shown in Figure 1.

Clarion Magazine - The ABCs of OOP, Part 1

http://www.clarionmag.com/v1n2/sub/v1n2abcsofoop_part1.html (7 of 12) [4/19/1999 4:28:41 PM]

Figure 1. The Select Embed Type window.

Choose Source, and in the resulting source embed type

db.Trace('Event ' & EVENT())

Save your changes. Go to the main menu and add a new menu item.
Call it Show Trace and on the Actions tab do NOT enter a procedure
name. Instead click on Embeds, and on the Accepted event generated
code embed point add a source embed with the following code:

db.ShowTrace()

Save your changes and run the application. If you’ve followed
instructions very carefully, as soon as you either run the browse or click
on Show Trace your application will...blow up.

What’s This GPF Doing Here?

I’m not in the habit of publishing code that GPFs, and the only reason
I’m doing it now is because this is going to happen to you sooner or
later, so you might as well get it out of the way.

The problem is that the queue reference (TraceQ) hasn’t been initialized
to anything. It has a value of NULL, and if you attempt to use a NULL
reference, Windows will report a GPF. So you have to initialize the
reference.

Constructors and Destructors

Many, if not most, classes have to do some kind of data initialization or
object creation. The proper way to handle this is to set aside a class
method to take care of this, and often another method to take care of
cleaning up the class after you’re done with it.

These methods are called constructors and destructors, respectively. And
there are two schools of thought on how these methods should be
handled. One school of thought (let’s call this the DAB school) says these
methods should be like any other methods, and you the intelligent and
methodical programmer will call them as needed. Typically constructors
have a name like Init() and destructors have a name like Kill().

The other school of thought (call this the great unwashed who are not of

Clarion Magazine - The ABCs of OOP, Part 1

http://www.clarionmag.com/v1n2/sub/v1n2abcsofoop_part1.html (8 of 12) [4/19/1999 4:28:41 PM]

the DAB school, school) says constructors and destructors should be
called automatically when the object is created or destroyed.

You can do either in Clarion, because DAB buckled under the pressure
and added automatic constructors. For now, go automatic.

The Construct and Destruct Methods

The constructor’s job is to initialize the queue reference so the trace()
method will have a real queue to work with. Remember that when you
assign a reference to an object, you treat the reference the same way
you would the actual object.

DebugClass.Construct PROCEDURE
 CODE
 SELF.TraceQ &= TraceQueue

When you use a constructor you almost always want to use a destructor
as well. In this case all the destructor needs to do is free the queue.

DebugClass.Destruct PROCEDURE
 CODE
 FREE(SELF.TraceQ)

Add these two methods to the debug.clw source file. You’ll also need to
add the method prototypes inside the class definition in debug.inc:

Construct PROCEDURE
Destruct PROCEDURE

Save your changes and compile and run the application. Open the
browse and then from the main menu choose the Show Trace option you
added. A window similar to the one shown in Figure 2 appears.

Figure 2. The trace window displayed by ShowTrace().

Clarion Magazine - The ABCs of OOP, Part 1

http://www.clarionmag.com/v1n2/sub/v1n2abcsofoop_part1.html (9 of 12) [4/19/1999 4:28:41 PM]

That’s how easy it is to use a custom class in your application!

Achieving Encapsulation

There’s still one significant problem with this class as declared.

The queue isn’t actually part of the class, but is declared outside the
class. Whenever possible, you want your classes to be completely
self-contained. That’s encapsulation – code and data together in a single
object.

Since there’s only one debug object the current situation isn’t necessarily
a problem. But what happens if you have two debug objects?

dbg1 DebugClass
dbg2 DebugClass

Both instances of DebugClass will use the same queue, and that’s not
normally a good idea. You want any object in your system to be as
self-contained as possible. The way to do this is to put the type attribute
on the queue, and declare an instance of it inside the class, using the
NEW operator.

DebugClass.Construct PROCEDURE
 CODE
 SELF.TraceQ &= NEW(TraceQueue)

Since the destructor’s job is to clean up anything which the constructor
(or any other method) may have created (read allocated memory for),
you should now use it to dispose of the queue when the class is finished.
If you don’t DISPOSE() what you NEW() you’ll end up with a memory
leak.

Clarion Magazine - The ABCs of OOP, Part 1

http://www.clarionmag.com/v1n2/sub/v1n2abcsofoop_part1.html (10 of 12) [4/19/1999 4:28:41 PM]

DebugClass.Destruct PROCEDURE
 CODE
 FREE(SELF.TraceQ)
 DISPOSE(SELF.TraceQ)

NEW is, well, new to most Clarion programmers. In procedural Clarion,
the runtime system takes care of memory allocation automagically. The
only time you actually allocate or deallocate memory is when you add
records to, or delete records from, a queue. In the world of OOP,
however, objects are being created and destroyed all of the time. It’s
possible you may never do this explicitly in your ABC-related code, but
ABC does it lots, and it’s part of the power of OOP.

As TraceQ demonstrates, references have a dual purpose. They can point
to an existing object which is declared elsewhere, in which case they
function like an alias, or they can be used to hold an object just created,
in which case they may be the only reference to the object.

Just as the debug class created the queue on the fly, you can also create
the debug object on the fly, if you wish. Instead of declaring your debug
object like this

db DebugClass

declare it like this

db &DebugClass

By using the ampersand you’re specifying that this is a reference rather
than an instantiated object. Before you can use the object in your code,
you’ll need to create an instance like this:

db &= NEW(DebugClass)

and when you’re done with the object you need to free up the memory
using DISPOSE:

DISPOSE(db)

You should always DISPOSE anything you NEW or you’ll end up with a
memory leak.

So what’s the difference? In this case, there is no practical difference.
But there may be times in your programming when you want to create
objects on the fly (you can have a queue of objects, for instance). And
sometimes you just want explicit control over when an object is created
and when it is destroyed.

The ABC Angle

The ability to create and dispose of objects, and assign references to
those objects, is one of the keys to the ABC class library. ABC is
continually creating and disposing objects, and working with object
references.

Now as useful as all of this is, if you didn’t have anything more, well,
you’d really just have something like Visual Basic. And there’s a lot more
to Clarion and ABC. In the next article in this series I’ll look at
inheritance, another of the keys to understanding the ABCs of Clarion
OOP.

Note: The debugging class used in this article is a
rudimentary form of the cciDebugClass which is part of the
Clarion Open Source Project and available by download.

An example application with a working DebugClass is also
available for download.

David Harms is an independent software developer and the co-author with Ross Santos of

Clarion Magazine - The ABCs of OOP, Part 1

http://www.clarionmag.com/v1n2/sub/v1n2abcsofoop_part1.html (11 of 12) [4/19/1999 4:28:41 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n2/abcoop1-demo.zip
mailto:dharms@clarionmag.com

Developing Clarion for Windows Applications, published by SAMS (1995). His company,
CoveComm Inc, publishes Clarion Magazine.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - The ABCs of OOP, Part 1

http://www.clarionmag.com/v1n2/sub/v1n2abcsofoop_part1.html (12 of 12) [4/19/1999 4:28:41 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 2
March 1999

Constant Class Design Insights
by David Bayliss

Behold, for peace I had great bitterness: but thou hast in
love to my soul delivered it from the pit of corruption: for

thou hast cast all my sins behind thy back.

One of the interesting differences between different people is their
perception of events past. Two individuals can experience exactly the
same thing, one remember all that is good, the other all that is bad. This
difference is most marked when reviewing our own performance. The
most interesting point is that we all tend to assume we have the right to
our own unique slant on history. Yet we all have a phrase that
sometimes troubles our sleep, the "skeleton in the closet".

I don’t know where the expression came from but I actually did attend
one of the first "schools for poor boys" in the UK (est. 1640) where they
did have a skeleton in the closet. A boy who had been punished for
cheating by having a lead pencil shoved up his nose. When he died of
internal bleeding the headmaster tried to hide his deed by incarcerating
the boy in a closet. He was discovered some years later. One of the
more sobering messages of the bible is that one day those closets will be
opened.

The issue facing me is rather less drastic but still problematic. I must
confess that in writing this article I am not quite sure of the correct tack
to take. Should I explain the design insights I should have had (as I can
now see with perfect 20-20 hindsight) or should I detail the evolution of
the Constant Class from the germ of an idea into one of the cornerstones
of the system?

Given the Constant Class didn’t appear in its current form until C5 (and
the gaffe is therefore blown) it is probably instructive to take the latter
approach. Therefore you will see how a particular need developed into a
set of (widely dispersed) code. How this code was then extracted (and
abstracted) to form a class that is now generally applicable.

I would also like to acknowledge that although the design of the class
was mine the implementation was done by Roy Hawkes of the TopSpeed
Development Center.

The Germ

The real germ of the constant class is actually the data set used by the
ErrorClass. However to understand the full usage of the Constant Class it
is necessary to look at the problem in a wider context.

Just about any program can be broken down into two distinct parts, the
algorithm and the data it works upon. Now as database programmers
you will automatically think of data-files when I use the term data. But in
fact, commonly, the data in the data-files will not be provided by you the
programmer, it will be provided by the end-user. (Of course the
end-user may also be you!) The data in your actual program will usually
be far more diffuse, possibly even hidden, but still vital.

Clarion Magazine - Constant Class

http://www.clarionmag.com/v1n2/sub/v1n2constantclass.html (1 of 6) [4/19/1999 4:30:31 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/v1n1/pub/v1n1errorclass.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML

One piece of data you may not think of is the Windows and Reports in
your program. They are just data-slabs (resources actually). But there
are also many constants "hard wired" into your programs, usually in the
form of parameters. Take the following:

?MyString{PROP:Text} = ‘The meaning of life the universe and everything is...’

That code obviously contains a string constant, right? Actually, no. It
contains two string constants and two numeric constants. (Prop:Text is
a string, ?MyString is a number as is the implicit Window $ that
precedes it.)

Now at the top of a procedure with a moderately flexible display there
will often be ten or more of these lines. In some common totally dynamic
cases it is easy to end up with a hundred of these statements (consider
setting the color, position, tooltip and icon of a set of buttons on a
user-configurable toolbar). This is perfectly reasonable and easy to code
but it does have some significant drawbacks:

Code bloat. Each of the above statements compiles to about 50
bytes. 100 lines is 5K ...

●

Inflexibility. Suppose there are two types of text string, for
different languages perhaps. That means two sets of code (or
CHOOSE statements).

●

Alterations have to be done in code. To appreciate this one you
need to subscribe to the Bayliss Mantra that says "new code is bad
code." If you allow that >75% of coding effort happens during the
maintenance phase then new code is <25% of the way there.
Therefore you should always aim to let your source files get at old
as possible. The older the date on the file the more likely it is to
work. But if constants are in code then it is impossible to change
the occasional misspelling without soiling the source code.

●

Detail and complexity are interwoven. Complexity in programming
is the sums and the clever bits (such as control positioning). It has
to be done very slowly (or very often!). Detail is all the grungy
stuff that has to be done well and thoroughly but can still be done
quickly. Typically there will be 10x as much detail as complexity,
but the complexity takes 10x longer per line to write. If you mix
detail and complexity you can end up with 10x as much code that
has to be written slowly. So you want detailed constants (such as
prompts / messages) out of the main body of your code.

●

The "prompt" writer has to program. This is really just another
facet of the above two but still important. In the ABC system I
want the prompts to be alterable by people who may not be happy
trying to penetrate my coding. Therefore I need to be able to
identify the safe zone (the .trns) from the DAB zone.

●

Lines full of constants can weigh heavily on the 16 bit compiler’s
internal data pools leading to the dreaded dynamic pool errors.

●

The First Solution

With the above somewhat forbidding list weighing on my mind I retired
to slumber and awoke in the early hours with a partial solution. Why not
use a statically initialised group to act as a data stream that can be
parsed apart and then used. The group can reside anywhere and you
have a separate piece of complexity to parse the data structure. One key
extra thought is that you can use pstrings or cstrings in the data
structure. This means there is no wasted space. Fairly rapidly I wrote the
code for the error class (see ErrorClass.AddErrors, in aberror.clw).
After about 20 lines I was home.

Have you ever noticed that when you get a new tool for your toolbox
there are a whole host of jobs that arise to which the tool is perfectly
suited? Within a few weeks we had five other similar pieces of code
scattered around the ABC system. Then the synchroniser team spotted
the trick and did the same. Come the spring of ’98 the Wizatron team
had also rolled out five or six copies of similar code.

Clarion Magazine - Constant Class

http://www.clarionmag.com/v1n2/sub/v1n2constantclass.html (2 of 6) [4/19/1999 4:30:31 PM]

Now you might think, hey, why not use procedures, then you only get
one copy of the code! But the task is not that simple. The thing is that
although each of these pieces of code used the same idea, they each did
different things with the data, and their data was a different structure.
For example, in abtoolba.trn the structure is simply ushorts followed by
strings. The print-preview has two strings and a short. Sometimes the
data was being used to pre-fill a queue, sometimes in property
statements of a window. Although the germ was the same between each
block of code, very little of the code was actually the same. Also each
lump of code was quite easy to write so the easiest way for people to
reuse the code was simply to copy it from somewhere else and hack it a
little bit.

OK is not OK

This is the easiest approach, but not the cleanest. The problem is that
the low-level of the constant class code (as it then wasn’t) is actually
extremely dirty. It makes assumptions about the layout of Clarion
groups & the data structure of clarion data types. The thought of having
>20 copies of that code floating around the system was not pleasant.
Also the Wizatron team needed the code to go as fast as possible, that
means spending time tweaking; we didn’t want to do that many times. It
came down to an engineering decision. Do you put up with a sub-optimal
solution in order to make life easy or do you hammer at the problem
until you get it right? There is a phrase I always bring up when
interviewing people to see how they react: "Ok is not OK."

So at this point we sat down and thought, what actually can we abstract
from this problem to enable us to write a class. We came up with the
following: "The class should have the ability to parse apart an unknown
but externally specified data structure into some suitable location or
locations(s)".

That wasn’t much to go on, but it was enough. We could now see how
the class would be used. First there would be an init sequence specifying
where the group was, what fields should be expected and in what order,
and where the result for that field should go. Then there would be a next
loop somehow reading the group record by record. Then some kind of
closedown. One could still argue the spec is a little vague, and Roy did
look extremely dis-chuffed when I told him my idea, but the result
actually works very cleanly.

I will now go through the methods themselves in the rough sequence
they would be used. I shall assume you have the actual code to look at
(you can find it in abutil.clw).

The Implementation

For the following I will describe the group as the data structure and
those fields pertaining to one "set" of data as a record. So supposing I
had a group which consisted of 20 pairs of strings. Each string pair I will
refer to as a record.

ConstantClass.Init

Internally the list of fields (that is to say the data types expected and
where they should go) is to be stored in a queue, so the Init method
constructs this. The parameter it takes gives the first level of flexibility
built into the system. How do you decide when you have read all the
records? You have four alternatives :

Term:EndGroup - Stop when you come to the end of the group.
This is the cleanest and least accident prone (you can’t run off the
end of the list or loose items on the end). The main down-side is it
doesn’t allow you to arrange for only the first n items of a group to
be used.

.

Term:Ushort - The first field of the group is unique (a ushort)
which denotes the number of records (groups of fields) to follow.
This is efficient and clean but suffers from two types of accident. If
the number is too high you get a gpf as the parser trips off the end

b.

Clarion Magazine - Constant Class

http://www.clarionmag.com/v1n2/sub/v1n2constantclass.html (3 of 6) [4/19/1999 4:30:31 PM]

of the group. If the number is too low the last elements are silently
ignored. On the plus side you can select to use only the first n
elements.
Term:Byte – The same as (b) but limited to 255 recordsc.
Term:FieldValue - This is the old magic number trick. If you
specify this then the parser keeps going until it finds a first field of
a record that matches the termination sequence (which you have
to put into the TerminatorValue field). This is a good lazy/safe
solution if you are reading a sequence of strings. Just make the
last value ‘**STOP**’ and make that the terminator value. The
only real down-side is a slight danger of picking a terminator that
someone uses as a data value. The biggest perceived downside is
a guilty twinge that proper programmers don’t use magic values.

d.

Note that part of the Init function is ‘split out’ into Reset to allow a
group to be re-parsed without going through the whole set-up rigmarole
again.

ConstantClass.AddItem PROCEDURE(BYTE ItemType,*? Dest)

This tiny little procedure is the hub of the class. It is called once for each
field in the record. The sequence these are called does matter. It is
assumed the first call to AddItem is the first field in the record. The *?
Dest is a field pointer to the place you want the result of the field to go.
The type of the variable passed in does not have to be the same as
specified by ItemType. ItemType pertains to the type of the field in the
group structure. (That said, using pstrings to store byte values would be
a bit daft)

Note the CLEAR is important as the queue contains ANY variables. (If
that sentence didn’t make sense consult the LRM, the usage of ANY
variables in queues is very delicate, but powerful).

ConstantClass.Set PROCEDURE(*STRING Src)

This is the procedure that hands the group over to the constant class
and primes the constant class to read it. Note that you may do multiple
sets, so one constant class can process many different groups provided
each group has the same structure. Note too that the constant class
copies the group so groups passed into the constant class do not need to
be static. (This illustrates an interesting trade-off. The constant class is
general purpose and therefore is coded to be much safer than the
ErrorClass equivalent. The down side is that it is slightly more expensive
in use).

ConstantClass.Next PROCEDURE

You may think of Next very much like the file driver equivalent: read in
the next set of data. The only difference is that the data goes into those
places defined by the AddItem, not into some separate record buffer.
(Re-read those two sentences again 10-15 times. There may well come a
time when the concept is important).

The coding is rendered more complex by the need to check for four
different methods of termination. Note that upon termination
Level:Notify is returned so a simple LOOP WHILE ~MyConst.Next()
can be coded.

Leaving aside the CASE SELF.Termination (which is detail, not
complexity) the real code starts with the GET of SELF.Descriptor. That
is moving the queue so that the results of the first AddItem are
available. Now dependant upon the type of the data field the suitable
byte-shuffling is done to read out a value which is then placed into the
required location. Then the next item in the queue is read to process the
next field within the record. It is possible to get confused here. The LOOP

Clarion Magazine - Constant Class

http://www.clarionmag.com/v1n2/sub/v1n2constantclass.html (4 of 6) [4/19/1999 4:30:31 PM]

inside next is looping through the fields of the record, not the records of
the data structure.

Note too that the detail of the exact low-level format is removed from
this complex procedure. This procedure is the controller procedure for
making sure the right fields are read in the right sequence and sent to
the right place. That is enough for one procedure to worry about.

ConstantClass.Reset PROCEDURE

This procedure is simply to allow the same group to be re-read without
an intervening SET. It also handles the reading of the leading
byte/ushort (if appropriate) allowing the Next procedure to stay clean
(because there is no special case of first record).

ConstantClass.Kill PROCEDURE

This is the traditional way of closing off a class. Mainly there to dispose
of the queue and the copy of the group that was taken. Note though the
special handling required of the queue because it contains an ANY
variable.

ConstantClass.Next PROCEDURE(QUEUE Q)
ConstantClass.Next PROCEDURE(FILE F)

The preceding procedures are the real interface. There are then a couple
of procedures just to make life easier. One thing we noted was that very
commonly all the fields of the AddItem were actually fields of a queue,
and straight after the Next we would do an Add. So we made that case
easier. You still pass in the fields of the queue but rather than code the
loop yourself you pass in the queue and the work is done for you. This is
done similarly in the file case.

ConstantClass.GetByte PROCEDURE()

Now, in all the above one vital little detail has been deliberately left out.
How do you parse the group structure to give all this high level
information? There are essentially two different problems, the first is
keeping your place in the byte stream; the second is plucking the
various data types out of this byte stream.

In typical fashion these two problems have been teased apart. GetByte
tackles the first. After a Reset the first GetByte will return the first byte
of data from the record stream after any leading byte or ushort (to give
the record count) has been read. The next call to GetByte will get the
second byte, etc. GetByte has dual usage. It is used by all the other Get
functions as a primitive but can also be used in its own right to read in
fields of type byte.

ConstantClass.GetUShort PROCEDURE()

Ushorts are stored with the least significant byte first so this is read
(using GetByte), then the second byte is read, shifted left 8 and added
to the first. You may wonder why we’ve used Rval. This is because the
evaluation order of the operands of the addition operator is not specified
so, as the GetByte calls are sequence specific, you need to split the
expression to define which one comes first. In other words if you have
the code GetByte()+BSHIFT(GetByte(),8) it is not defined whether the
first or second GetByte call will happen first so the data could end up
reversed.

Clarion Magazine - Constant Class

http://www.clarionmag.com/v1n2/sub/v1n2constantclass.html (5 of 6) [4/19/1999 4:30:31 PM]

ConstantClass.GetShort PROCEDURE()

This is precisely the kind of low level dirt that persuaded me this code
had to be in a class. Constructing two bytes into a ushort then claiming it
happens to work if you just assign that to a short is extremely ugly. But
it works beautifully (for now). By encapsulating this code I can ensure it
works in the future too.

ConstantClass.GetLong PROCEDURE()

That natural way to do this is with four GetBytes where you shift 8 bits
for each iteration of the loop. It took me a while and quite a lot of
squared paper to persuade Roy that this trick would work, but it does!

ConstantClass.GetPString PROCEDURE()

Twigging that constant pstrings could be parsed without wasting space
was one of the key concepts behind this technology. It is actually very
simple. You just read the leading byte (the length byte) and then you
know how many more characters there are to read. Now here again we
have traded some speed for some clean. It so happens that because of
the way we store the group (in a copied string) we could code the
pstring reader to be quicker by using a string slice and updating the
pointer in one go. Instead we have chosen to persist with the GetByte
interface reading the pstring one character at a time so that we could
change the data storage mechanism with a minimal re-write.

ConstantClass.GetCString PROCEDURE()

Reading the cstring is less complex than the pstring and yields itself
naturally to the GetByte approach, you simply sit in a loop reading
characters until you hit the null terminator.

Conclusion

There you have the evolution of the constant class. I hope the insights
into our development process have been of some help, so too the
insights into the class itself. For people who like something concrete on
which to hang their ideas the simplest example of using the constant
class is probably the SetTips procedure in abtoolba.clw.
InitializeColors in abeip.clw is fairly simple too. Using the class to fill
a queue in one shot is shown in TranslatorClass.Init.

David Bayliss is a Software Development Manager for Topspeed
Corporation. He is also Topspeed's compiler writer and the chief architect
of the Application Builder Classes.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com or
www.users.globalnet.co.uk/~dabay/, email covecomm@mbnet.mb.ca.

Clarion Magazine - Constant Class

http://www.clarionmag.com/v1n2/sub/v1n2constantclass.html (6 of 6) [4/19/1999 4:30:31 PM]

http://www.users.globalnet.co.uk/~dabay/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
http://www.users.globalnet.co.uk/~dabay/
mailto:covecomm@mbnet.mb.ca

The Developers' Open Source License
THIRD DRAFT

Version 0.3, March, 1999

Copyright 1999 CoveComm Inc.

PREAMBLE

This license is designed to protect the rights of software developers who
wish to release software libraries and software development tools under
an open source arrangement.

Most open source licenses are either written with complete software
packages in mind or are intended to cover code which is created using
open source software tools. This license is specifically designed to
accommodate developers who use open source software in the context
of proprietary software development, or who work with proprietary
software development tools.

TERMS AND CONDITIONS

1. Definitions

The term "source code" is used in this license to mean any program
source code, template, project file, or other human readable source file
which is used in the creation of software programs.

The term "original author" is used in this license to mean the person who
creates the first version of any work placed under this agreement.

2. Placing software under this license

Source code may be placed under this license only by the original
author, and only when the original author has the full legal right to the
source code. All source code placed under this license must bear a
copyright notice by the original author as well as a notice of this license
agreement, as specified below. Such source code is referred to in this
agreement as "covered source code."

3. Derived works

With the exception of certain kinds of object-oriented source code, as
noted below, source code that has been derived from other source code
cannot be placed under this license. In other words, you cannot obtain
freeware or other source code and place it under this agreement. You
can only place your own creation under this license.

Object-oriented code is a special case, since you can create a class that
is derived from another class which may be available in binary form. You
may place a class that is derived from another class under this license
EXCEPT when the terms of this license are in any way in conflict with the
terms of the license of the parent class. The class from which your class
is derived does not automatically become part of this license.

4. Modifications to the software

Anyone who makes modifications to covered source code creates, by

The CoveComm Developers' Open Source License

http://www.clarionmag.com/common/dosl.html (1 of 3) [4/19/1999 4:30:38 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html

definition, a derived version of the covered source code. Derived
versions are automatically covered by the same version of this
agreement as the version from which they are derived.

All modifications to the covered source code must be commented with a
description of the modifications and the modifier's name (and preferably
an email address).

Source code which uses covered source code does not, of itself,
constitute a modification or derived version of the covered source code.
The differentiating feature is the functionality of the source code and the
covered source code. Where the source code simply makes use of, rather
than modifies, the functionality of the covered source code, it does not
constitute a modification or derived version.

5. Upgrading the license agreement

The original author of the covered source code may upgrade this license
or replace it at any time, but only by releasing a newer version of the
covered source code under the modified or different license.

6. Distribution of source code and binaries.

You may distribute covered source code as you wish, provided it is
always accompanied by this license, and the covered source code
continues to comply with the terms of this license. You may charge a
nominal fee for the distribution of the covered source code if you wish,
and any fee you like for support of the covered source code. Binary
compilations of the covered source code, except when distributed as part
of a compiled program as noted below, must be accompanied by the
covered source code and a copy of this license.

If you distribute a compiled program which incorporates covered source
code, you must provide an easily accessible notice that the program
contains covered source code. If you are distributing a Windows
program, such notice must appear on the Help|About window. This
notice, at a minimum, must contain the following paragraph, modified to
include sufficient contact information so that users of the program can
reach you without undue difficulty:

A portion of the source code used to create this program is
licensed under the Developers’ Open Source License. For
more information contact:(insert your contact information
here)

If the compiled program is created entirely from covered source code,
you must use the following form, which is identical to the preceding
paragraph but omits the phrase "A portion of."

The source code used to create this program is licensed
under the Developers’ Open Source License. For more
information contact:(insert your contact information here)

Additionally you must do one of the following:
distribute the covered source code along with your program, or.
provide the covered source code on requrest to legitimate users of
the program, the original author, and to any authors who have
contributed to the covered source code.

b.

7. No Warranty

This source code is not provided with any warranty. You have the source
code, and it’s up to you to ensure that it does what you want. You
assume the same risk and responsibility for using this source code as
you do for source code you create.

END OF TERMS AND CONDITIONS

To apply this license

To place source code under this license simply add the following
information in each source code file where possible, or in an

The CoveComm Developers' Open Source License

http://www.clarionmag.com/common/dosl.html (2 of 3) [4/19/1999 4:30:38 PM]

accompanying text file if it is technically impossible to place the notice in
the source code file. The copyright date and copyright holder are shown
as examples and must be changed to reflect the actual license
information.

Copyright (c) 1999 Kewl Software Corporation

This software is licensed under the terms of the Developers’
Open Source License. A copy of this license has been
included with this source code. The license is also available
(as of March 7, 1999) at
http://www.clarionmag.com/common/dosl.html

The CoveComm Developers' Open Source License

http://www.clarionmag.com/common/dosl.html (3 of 3) [4/19/1999 4:30:38 PM]

http://www.clarionmag.com/common/dosl.txt

Vol 1, No 2
March 1999

The Novice’s Corner:
Understanding Templates and Embeds

By David Harms

In the first article in this series I examined the some of the basic
concepts behind Clarion’s application generation technology and
reviewed the initial steps most Clarion developers take when creating an
application. If you follow the approached discussed in that article you
can get an application up and running in short order. Chances are,
however, that it won’t be quite the application you want, and you’ll need
to make some significant changes.

If you’re working within the Application Generator (AppGen)
environment, as almost all Clarion developers do, then much of what you
do is predicated on the use of templates, as explained in the previous
article. Unlike earlier versions of Clarion, which had a fairly monolithic
template structure, Clarion for Windows builds applications out of several
different kinds (or classes, though in this case the term has nothing to
do with object orientation) of templates.

The Template Registry

You can see which templates are available by closing any open
application and choosing Setup|Template Registry from the main menu.
Figure 1 shows the Template Registry main window.

Figure 1: The Template Registry, showing the ABC template chain.

Clarion Magazine - The Novice's Corner: Understanding Templates

http://www.clarionmag.com/v1n2/sub/v1n2novicescorner2.html (1 of 7) [4/19/1999 4:30:46 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/v1n1/pub/v1n1novicescorner1.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML

Templates are listed in the registry by type. Keep in mind that the
templates are simply text files containing template language (and
sometimes also Clarion language) statements. You can register and
unregister template sets (also called chains) as you wish, although you
should keep in mind that not all templates are created equal, and some
are less dispensable than others. Most Clarion applications are built on
either the ABC or Legacy template chains and many of these apps also
use a number of third party templates which provide additional features
but generally do not replace the standard Topspeed-provided templates.

Template Files

You’ll see two extensions for template files. The Template Registry can
load in TPL files, and TPL files may contain INCLUDE statements that
point to TPW files, which contain additional template code. For instance,
the ABC template chain’s TPL file is called ABCHAIN.TPL, and that file
INCLUDEs a number of TPW files, all of which begin with AB (and which
can be found in the \template directory). If you purchase a third party
product which comes with a template (and most do) you’ll receive at
least one TPL file and perhaps TPW files, depending on how the product
author has chosen to write the templates.

Application/Module Templates

The first two templates shown in Figure 1 are the Application and
ABC-Default Program templates. These templates control global options
for application generation. Similar templates exist in the legacy template
chain (CW.TPL). These templates control core AppGen functionality and
do it well enough that there are, to my knowledge, no third party
replacements available, or really needed (at least not for generating
Clarion code). Some developers do make changes to these templates but
such customization is less necessary with the ABC templates than with
the legacy templates. If you’re starting out with Clarion, you can quite
safely ignore the Application and Default Program templates.

Below these two templates is a category called Modules. Module
templates control the creation of source modules, and there are in ABC
five module types: ExternalDLL, ExternalLib, ExternalObj,
ExternalSource, and GENERATED. Again, if you’re just starting to work
with Clarion, you really don’t need to know about these. The one you’ll
use on a regular basis is GENERATED, but as this template will be called
as necessary when you create procedures, its operation is almost
completely hidden.

All of the other module types allow you to use non-generated procedures
which may be in source, lib, obj, or dll form. If you’re using external
procedures (most likely because your app has grown large enough that it
becomes practical to split it up into dlls) then you may well find that
you’re better off using source includes rather than these templates. But
that’s a subject for another article.

Procedure Templates

The place you will begin encountering templates is at the procedure
level. Any time you create a procedure (except when you do so using an
application wizard or a wizatron) you’ll be asked what type of procedure
you want. The available choices in the ABC template chain are as
follows:

Browse Displays records from a table (file) in a list box and
optionally allows the user to add/delete/update the
records

External A procedure that is defined outside the application
(this will result in the creation of one of the
external modules)

Clarion Magazine - The Novice's Corner: Understanding Templates

http://www.clarionmag.com/v1n2/sub/v1n2novicescorner2.html (2 of 7) [4/19/1999 4:30:46 PM]

Form A window that allows for changing a table (file)
record. Tabs are automatically used so that large
records can still be displayed. If child records exist
corresponding browses with update buttons will be
added (and update forms for the child browses will
be created as needed)

Frame A main window for an MDI (Multiple Document
Interface) application. You need to create your
main procedure using this template if you want to
use MDI child windows in your application. MDI
windows are clipped by the application frame and if
moved beyond the frame cause scroll bars to
appear on the frame. This is the default for Clarion
applications.

Menu A main window for an SDI (Single Document
Interface) application.

Process A procedure that loops through a specified set of
records and (typically) updates those records.

Report A report with a progress bar and optional
previewing.

Source A procedure for which you must supply all of the
code. This is just a framework for the procedure.

Splash A splash window that appears while the program is
loading.

ToDo A placeholder for a procedure named but not yet
defined.

Viewer View an ASCII file in a list box.

Window A generic window. You have to populate the
controls you want.

The procedure templates you’ll most commonly use are Browse, Form,
and Report. If you don’t use an application wizard or wizatron to create
your initial application then you’ll also need to create either a Frame
(most likely) or a Menu (quite unlikely) procedure as the main menu.
You may also want to create a splash procedure.

You may also want to use the Window procedure template. In fact, most
of the procedures in any given application (that is, the Browse and Form
procedures) are really nothing more than a combination of the Window
procedure and one or more control templates.

Control Templates

While Clarion for Windows 1.0 was in beta testing the then template set
(what is now referred to as the Legacy templates) went through a radical
transformation. In the early betas the templates that created a browse
or form were monolithic. There was one template for a browse, another
for a form, another for a report, and so on. This worked, and was in
keeping with the approach of the ancestor to the template, the model
file, but it wasn’t the most efficient use of code.

Enter control templates. In any procedure a certain amount of code is
devoted to managing standard window behaviour, and a certain amount
is used to manage windows controls.

A control is anything that appears on the screen, such as a button, or an
entry field, or a list box. A control template is a collection of template
code and Clarion language code which acts as a wrapper for a control.
And by abstracting the control code into a template, Topspeed made it

Clarion Magazine - The Novice's Corner: Understanding Templates

http://www.clarionmag.com/v1n2/sub/v1n2novicescorner2.html (3 of 7) [4/19/1999 4:30:46 PM]

possible to plug and play with a variety of controls on the same window,
without the window having to know about these controls ahead of time.
Do you want a list box on your update form? No problem? Entry fields on
your browse? Go right ahead.

If you want to stick with the standard approach, you can still can
recreate any browse or form by starting with a window procedure and
populating the appropriate control templates. Simply bring up the
procedure properties screen, click on Window, and then choose the
Control Template icon from the Control Toolbox (see Figure 2).

Figure 2: The Control Toolbox with the Control Template icon highlighted

When you populate a simple control onto a window all that happens is
the control is added to the window structure. When you populate a
control template you’re adding much more. Control templates can
specify default size and position attributes for the control. They can
specify a number of controls to be populated at once. They can require
you to enter certain information, such as which field or file the control
represents. They can provide prompts for various kinds of optional
information. In short, control templates allow you to add some fairly
complex functionality to a procedure without having to deal with the
code directly.

If the code template has prompts, you can see them by right-clicking on
the control and choosing Actions, or by selecting the control and
choosing Edit|Actions from the menu. Figure 3 shows the Actions
prompts for a standard Browse box.

Figure 3. Browse control template properties

Clarion Magazine - The Novice's Corner: Understanding Templates

http://www.clarionmag.com/v1n2/sub/v1n2novicescorner2.html (4 of 7) [4/19/1999 4:30:46 PM]

Some control templates are also conditional on other control templates
already being populated on the window. You can’t put browse update
buttons on a window unless there’s at least one browse on the window –
if there’s no browse, the update control template won’t even appear in
the list.

The ABC templates include control templates for browse boxes, update
buttons, query buttons, entry control lookups, file lookups, OLE controls,
date/time stamps, and much more. Control templates are also a
particularly good vehicle for third party vendors because they can
provide standard appearance and behaviour for their controls without
requiring the user to write supporting code.

Code Templates

Code templates are usually (though not always) smallish blocks of code
that you wouldn’t want to have to keep typing over and over again, but
which don’t necessarily belong to a control or other type of template.
Code templates are inserted at embed points, which are discussed
below. These templates often have prompts much as control templates
do, and the choices you make in the prompts determine how the code is
generated.

Extension Templates

Extension templates are a bit of a hybrid of control templates and code
templates. If you go to the Extensions list on the procedure properties
window, you’ll see it includes any control templates which have been
populated on the window. Actual extension templates do not have
associated controls, however. Often they’re used to extend the
functionality of an existing control template, or sometimes the procedure
template.

Group Templates

Group templates are a somewhat special case, as are the application
templates. You don’t use them directly as a developer. They’re there for

Clarion Magazine - The Novice's Corner: Understanding Templates

http://www.clarionmag.com/v1n2/sub/v1n2novicescorner2.html (5 of 7) [4/19/1999 4:30:46 PM]

the benefit of the template author, and can function either as included
template code, or as functions written in the template language.

Templates and Embed Points

Although there’s a tremendous amount you can do with templates, they
won’t always do everything you want them to do. Sometimes (perhaps
frequently) you’ll want to add your own code to the application.

Clarion is tightly focused on automating code creation. Many of the
things you can do with Clarion are possible only because of the work of
the templates, but the price is that you can’t simply go to the source
code and make your changes, because these changes will be lost when
you next generate the procedure.

One of the restrictions of the early DOS versions of Clarion was the
limited number of places where you could put source code. Most of the
logic that determined where source code could be placed was under the
control of the Designer application (the forerunner to the Application
Generator). In Clarion for Windows, the AppGen has been dumbed down
somewhat, if you like, and the templates have been given a far greater
level of control over where code can be embedded.

If you click on Embeds on the procedure properties window you’ll see a
rather lengthy list of embed points. In the ABC templates, most of these
will be inside class methods.

For each embed point there is, somewhere in the templates, a template
statement that begins with #EMBED. If you want an embed point where
none exists (this is not very likely) you can always find the appropriate
point in the templates and add one. (You should also inform Topspeed of
your requirement as they will most likely want to add the embed point
also.)

Each time you use a template, whether it’s a procedure template or a
control template or any other kind, if that template contains #EMBED
statements, those embed points will appear in the embed list.

You can also use the Source view to see embed points in the context of
generated code. From AppGen main window right click on the procedure
and choose Source, or from inside the embed list click on the Source
button. This view of the source code shows you all of the source that is
potentially generated, rather than just the code that will be generated.
As you can see, most embed points cause some standard code to be
generated along with your embedded source code.

What About Object-Orientation?

One of the benefits of Clarion’s application generation technology is that
you don’t need to know a whole lot about the underlying language to get
things done. The templates provide a simplified interface to the
underlying code which, if you’re using the ABC templates, is the ABC
class library. Of course the more you know about how the underlying
code works the more you’ll be able to leverage that functionality, but the
templates make it possible for someone with minimal or no OO
programming experience to effectively use OO code.

Clarion’s template technology works equally well with procedural and
object-oriented code, although OO code puts less stress on the template
language. In a procedural environment the templates have to do much
more work generating the core logic, whereas in an OO environment the
templates mainly set up calls to the class library, and the core logic is
contained in Clarion-only code which makes it a lot easier to maintain.

Templates And Embeds – Finding The Balance

For all Clarion programmers except those who write everything by hand,
and those who write nothing by hand, application development is an
exercise in balancing templates and embedded source. If you’re writing a
great deal of embedded source, then there’s a good chance that some or
much of this code could be better placed in templates.

Templates aren’t the answer to everything, of course. There are

Clarion Magazine - The Novice's Corner: Understanding Templates

http://www.clarionmag.com/v1n2/sub/v1n2novicescorner2.html (6 of 7) [4/19/1999 4:30:46 PM]

downsides. When you change a template you have to reload the
application, and some template changes force global regeneration of the
application source, which can take time, particularly if you’re doing a lot
of changes. As well, traditional means of code reuse such as class
libraries and plain old procedural source libraries may be useful.

Templates become particularly useful in two situations. First, where the
code that’s to be generated is variable, templates offer tremendous
flexibility. The template language is a superset of the Clarion language
and has a full range of constructs which you can use to generate code
based on prompts answered by the developer.

Templates are also invaluable where you need information that is specific
to the application, such as fields in a data file, controls on a window, and
so forth. The templates have full access to everything the data dictionary
and the application generator know.

If you’d like to learn more about how templates work, I strongly suggest
reading through the template language section in the help. There’s a
vast amount of information, and while it might not all make sense right
away it’ll give you a good idea of the power of the template system.

Information about specific Clarion templates is also available in the
general help. Search for Templates and then click on the Display button
to bring up a list of available template help topics.

Next in the Novice’s Corner – Building Applications

David Harms is an independent software developer and the co-author
with Ross Santos of Developing Clarion for Windows Applications,
published by SAMS (1995). His company, CoveComm Inc, publishes
Clarion Magazine.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - The Novice's Corner: Understanding Templates

http://www.clarionmag.com/v1n2/sub/v1n2novicescorner2.html (7 of 7) [4/19/1999 4:30:46 PM]

mailto:dharms@clarionmag.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 2
March 1999

Topspeed Australian
DevCon Reports

Clarion Magazine is pleased to present two special reports on the recent
Australian DevCon held in Sydney, NSW, Australia on March 13 and 14,
1999.

If you’re attending a Clarion conference and would like to be a reporter
for Clarion Magazine, send an email to editor@clarionmag.com.

On a personal note, I’d like to particularly encourage US developers to
make the trip down under for a conference. The exchange rate (of about
AU$1.50 to US$1.00) means you can probably take a two week trip to
Australia for not much more than a two week trip to Hawaii (and maybe
less! - it doesn’t take long to make back the difference in airfare). I had
a terrific time on my tour down under, and a Clarion conference is a
perfect excuse for the trip.

Dave Harms, Publisher

Aussie DevCon Report - John Thorley

Aussie DevCon Report - Warren Marshall

Aussie DevCon Report
By John Thorley

This year’s Australian Clarion DevCon was the seventh of the 1990’s, and was held in Sydney on the week end of 13 –14 March. Numbers were down a little on previous years but there was no shortage of international Topspeed and third party developer support.

Roy Rafalco, Antonio Rajan and Scott Ferrett from Topspeed and third party developers Andy Stapleton, Bruce Johnson, Pete Halsted, Cliff Court and George Willbanks all gave interesting presentations. As well as attending the conference, Andy and Bruce are presenting a number of well-supported training courses while in Australia.

The social highlight of the conference was a BBQ and Jazz Cruise on Sydney’s fabulous harbor on the Saturday night. Rhys Daniels, conference organizer, is still claiming credit for the spectacular fireworks display put on for us by the locals.

Highlights
This conference saw the official launch of Topspeed Consulting Australia. Rhys Daniell, CEO of the Aussie incarnation of Topspeed Consulting was quick to point out that his team of talented developers were keen to take on local and international projects. Rhys noted out that with the Australian dollar so low relative to the US dollar, it made good economic sense to consider outsourcing US development projects to the talented Aussie development team.●

Scott Ferrett advised that a candidate patch for Clarion for Windows release 5A was now available for download and if the patch performed to spec, an official, full CD release would be made available shortly.●

Roy Rafalco announce that the price of Clarion 5 Professional edition would increase on 1st April 1999. Roy also indicated that Topspeed was encountering some corporate resistance to the Enterprise Edition because some corporates perceived the price as too low for them to consider using it for strategic development. Does this mean that we can also expect to see an increase in the price of the Enterprise Edition or perhaps the introduction of a Corporate Bundle? Roy wasn’t saying!●

Roy also advised that Topspeed would be withdrawing its presence on CompuServe before the end of April.●

George Willbanks demonstrated a set of Training CD development tools based partly on Lotus ScreenCam and announced that Andy Stapleton had agreed to develop with George two CD-based training courses on generic SQL and SQL/Anywhere. Pricing and availability will be advised in due course.●

The award for the best throw away line has to go to Pete Halsted. For those of you who have not met Pete, he’s built like the proverbial brick outhouse. Pete had the last presentation before lunch and his presentation was late starting. He reassured us that he’d finish before lunch … "Hell, I ain’t ever been late for lunch!"

New Products

Capesoft (Bruce Johnson) released three new products
Special Agent
This product integrates a redistributable Microsoft Agent OCX together with templates to enable you to use a talking Teaching agent within your application. You can use the agent to run demos or provide training within your application. While perhaps not to everyone’s liking, it’s certainly worth a look if you want to impress your users. The DevCon price until the end of March is $AU219. Normal price will be about $AU329.

●

Makeover
This tool comes with 15 styles which you can apply to your application. This can give you features such as wallpaper textures, colored tabs on browses, additional cursors such as a hand instead of an arrow to select buttons. You can add to the style range using the tools provided. Until end of March Makeover is selling for $AU49. Usual price is about $AU79.

●

Ticker Tape Control
This control lets you place a moving sign control on your windows. Special introductory price is $AU9.

●

Our next Aussie DevCon will be in March 2000 in the Olympic city of Sydney. Why not start planning now to join us in 2000 for a Millenium DevCon to remember. The weather is great this time of year!

Aussie DevCon Report
By Warren Marshall

Aussie DevCon was held on March 13 and 14 at the remarkable Australian Technology Park at Eveleigh, a few minutes from the centre of Sydney. The venue deserves a line or two here. It houses dozens (hundreds?) of established and fledgling technology companies, as well as a conservatorium of music, in the revamped buildings of what used to be Sydney’s huge railway maintenance facility. It’s been implemented really well and, in my opinion, the conference success was due in part to this exceptional venue.

Compared with the last Australian conference, this one had a great deal more technical "meat", and also provided much more time for interaction between conference attendees. Lunches were buffet-style, which made it easier to move into and out of various conversations. On the point of attendees, the numbers were dramatically down on last year, possibly due to higher conference pricing. I guess it’s a warning to would-be conference holders: if you up the price, you’d better commit resources to retaining that part of your clientele which is price-sensitive. Numbers were, I think, about 60, which is about half what I would have expected, given the outstanding line-up of international and Australian presenters.

Client Day

On the Friday before the conference, Clarion developers were invited to drag clients and would-be clients to see what Clarion had to offer them. They were introduced to Roy Rafalco (TopSpeed’s CEO) and Antonio Rajan (TopSpeed’s VP Sales), Rhys Daniell of the just-launched TopSpeed Consulting Australia, and Andrew McPherson of Radware, Australia’s Topspeed distributor. Marketing demos showed them just how much more effective Clarion was than traditional tools.

Antonio built an Internet connect application from scratch in a couple of minutes and received the appropriate level of amazement from the guests. Juergen (Yogi) Loechner of Qikpay talked about how Clarion saved his marriage and allowed him to capture 60% of the Australian payroll market.

Rohan Dunstan of First Ecom, a large E-Commerce provider based in Adelaide, showed how Clarion Internet Connect applications can be housed at modest cost with First Ecom to reduce the initial financial burden on developers or users.

The numbers at the Client Day were disappointing but those who attended were pretty excited by what they saw. I’m sure we will see a lot of success from this type of format in the future.

The Conference

The first two conference presentations were by Roy Rafalco, CEO TopSpeed Corporation, and Antonio Rajan, VP Sales.

Apart from these two presentations which covered marketing, strategies for the future and the relationship between TopSpeed and its developer base, all the other sessions were technical.

As we have come to expect from previous visits by Antonio and Bruce Barrington (now TopSpeed’s Chairman of the Board), Roy and Antonio are very easy to talk to and make excellent ambassadors for TopSpeed. Among the highlights of Antonio’s presentation, which mainly centred around the power of Internet Connect and the future music of Wizatrons, was a casual comment that Clarion 6 would be entering beta in April. Antonio then looked at a completely astonished Roy Rafalco at the back of the hall, laughed and said "Gotcha!".

Antonio brought more laughs from the crowd when he tried to convince them that a 60-hour development would reduce to 2 hours with the use of Wizatrons.

Scott Ferrett (SuRF) of TopSpeed’s development team in London gave a warts-and-all demonstration of Wizatron technology (not his area of expertise). It was interesting to see the difference between Wizatrons in their current beta and the picture Roy and Antonio paint – there is obviously a very long way to go yet.

Bruce Johnson of Capesoft (a South African company which produces some of Clarion’s most useful accessories) explained the tricks and techniques that convert communication with hardware devices from a mysterious black art into a relatively simple process.

Cliff Court, Managing Director of TopSpeed South Africa, presented a remarkable tool which has just been released. Called Dev Monitor, it tracks and times every activity you undertake in the Clarion IDE and generates costing analysis for your development! As such it may well represent the most significant advance in project cost estimation since the development of computers. Of everything we saw at the conference, this product was one of the crowd-stunners.

On Saturday night, about 60 attendees and partners boarded a small ferry for a delightful harbour cruise around the Sydney foreshores. A band playing inside, plenty of room outside (especially while it rained briefly), an Aussie barbecue on deck, and drinks flowing freely made for a very special night.

I don’t know how Rhys and Caroline Daniell organised it, but at 9:15pm Sydney Harbour was lit up with 15 minutes of spectacular fireworks. I assume we will get the same deal at Florida Devcon.

Andy Stapleton of Cowboy Computing Solutions started Day Two’s proceedings. He went systematically through the benefits and pitfalls of SQL in Clarion and of specific SQLs. He made it plain that his favourite SQL under Clarion is Sybase SQL Anywhere due to its simplicity, elegance, scalability and the fact that Clarion Enterprise includes an unlimited distribution license. In stark contrast, Oracle was decried as about the most expensive, in hardware, software and administration costs.

As an aside, it was pointed out that Microsoft SQL and Oracle can not be backed up, except by means of a disk image, since they both use relative disk positioning to quickly locate records.

George Willbanks, president of the Philadelphia NE Clarion Users Group and a long-time Clarion user with a string of corporate presidencies to his name, explained why he regards Pervasive.SQL as the best thing since sliced bread. He went on to detail the steps necessary to implement Pervasive.SQL either on its own or in a hybrid database system with Btrieve.

George then previewed his newly patented CD-ROM based help system, based around Lotus ScreenCam and several other tools. The example he showed was a tutorial on creating a Basic to TopSpeed file conversion program. The technology looks very promising.

Then came Pete Halsted of NextAge Consulting. He showed us the code he used to tame the imaging OCXs which come with Windows. In addition to being enlightening about scanning and image storage, it also raised many issues regarding OCXs within Clarion, including issues of stability, memory leaks and complexity of the interface.

Michael Summons of Summons Technology provided an overview of object-based programming, arguing that this was the appropriate way to write code. This was followed by Jeff Ferguson of University of Western Sydney, who examined the object oriented Systems Analysis and Design paradigms.

Following on from these presentations, Rhys Daniell of Topspeed Consulting Australia presented a counter-view that object-oriented programming was in fact less productive that procedural programming.

Bruce Johnson countered that the issue was not "procedural or object-based" but "Legacy or ABC." About an hour of debate ensued, with no particular winner or loser. Surprisingly (it surprised TopSpeed’s people too), on a show of hands, about half the attendees had in fact deployed ABC-based systems and used ABC templates for all their new development.

In amongst the formal proceedings, there were two show-and-tell sessions, where some excellent templates and tools were displayed, all discounted for attendees.

First came the overseas offerings: Bruce Johnson showed some of Capesoft’s tools. Cowboy showed his SQL templates. Pete showed his imaging templates. Cliff Court showed his Mail and Fax templates.

Then a couple of Australian tools: Ray Creighton of Sable Software presented his App-Ref, a tool which automatically builds a huge amount of cross-reference information about one or several Clarion applications, allowing you to see unused fields, keys, files, common procedures across multiple apps, etc.

Geoff Bomford of Comformark showed his insanely cheap utility for automatically building complete Windows and HTML Help from your apps.

The conference ended with a short question/answer session with Roy. Not much new knowledge was divulged, but Roy did announce that within a few weeks, TopSpeed’s presence on Compuserve would disappear. This would happen as soon as the upload/download infrastructure of
GO TOPSPEED was duplicated on the Net.

The conference went extremely smoothly, largely due to the prodigious effort put in by Rhys Daniell.

Product and Service Suppliers at Aussie DevCon 1999:

Capesoft (File Manager, MakeOver, SecWin etc.) – www.capesoft.com
Comformark (Windows Help Builder Templates) - gbomford@acay.com.au
First Ecom (Internet Connect housing and E-Commerce) – www.first-ecom.hm
George Willbanks (Video Training) - www.tsres.com
NextAge Consulting (Imaging Templates) – www.thenextage.com
Radware (Australian TopSpeed distributor) – www.radware.com.au
Sable Software (App-Ref utility) – www.clarion.org.au/app-ref
Stealth Software (Mail and Fax Templates, Dev Monitor) - home.mweb.co.za/jo/joe-vn/index.htm
TopSpeed Consulting Australia (software development services) – www.topspeed.com.au

Other software is available through TopSpeed or its local distributors

Photos Copyright © 1999 Warren Marshall. All rights reserved. Duplication without permission is illegal.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Aussie DevCon Report

http://www.clarionmag.com/v1n2/sub/v1n2aussiedevcon.html [4/19/1999 4:30:56 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
mailto:editor@clarionmag.com
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.clarionmag.com/v1n2/sub/booking1.jpg
http://www.capesoft.com/
mailto:gbomford@acay.com.au
http://www.first-ecom.hm/
http://www.tsres.com/
http://www.first-ecom.hm/
http://www.clarion.org.au/app-ref
http://www.clarion.org.au/app-ref
http://home.mweb.co.za/jo/joe-vn/index.htm
http://www.topspeed.com.au/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 2
March, 1999

March 29, 1999

etc 2000 On-line Poll
The 1998 East Tennessee Clarion conference in Gatlinburg was one of
the best Clarion conferences anywhere, anywhen, drawing attendees
from around the world. Bob Dobbins and Lee White are considering a
sequel. Encourage them. Take the survey and tell them what you'd like
to see.

Go To Lunch (while your computer compiles)
Steve Parker has a new release of Go To Lunch (GTL), an unattended
project compile manager. GTL supports APP and EXE having different
names and located in different directories, as well as PRJ files.

Makeover/Tickertape Prices To Rise
Capesoft's introductory pricing on Makeover and Tickertape ends March
31. Makeover in particular has been getting good reviews in the
newsgroup.

New Send Internet Mail Release
Princen Information Technology has released a new version of its popular
internet mail tool. The company also now has a news server for product
support: News.Princen-IT.nl

Split Bar Template In Beta
Quantum Dynamics has a split bar template in beta testing which lets
you divide your window into three parts for dragging and resizing (as in
Explorer and Outlook).

Pea Brain Software Releases Localizer 1.2000
The newest version of localizer supports currency and date conversions
in each language you create.

March 19, 1999

Topspeed To Drop Compuserve Forum
At the Australian DevCon in Sydney Roy Rafalco, Topspeed's President
and CEO, announced that the Compuserve forum (GO TOPSPEED) will
close in the near future.

Linder Software Announces Install Program Beta
Linder Software will be releasing a beta of version 3 of its SFX
Setup-Builder install program on March 19th. The upgrade is free to
owners of version 2. Setup-Builder 3 is priced at US$99, or you can buy
version 2 for US$69 and get the free upgrade.

Web Server Printing Toolkit Supports Clarion
Automated Solutions Group has released version 2.0 of their Web Server
Printing Toolkit (WSPT). WSPT is now available in both OCX and DLL
format and includes Clarion header & library files as well as a
hand-coded example. Templates are expected soon. WSPT is a
server-based (as the name implies) product that redirects printed output
directly to PDF files or our own client/side printing format. There are no

Clarion Magazine - News March 1999

http://www.clarionmag.com/v1n2/pub/v1n2news.html (1 of 2) [4/19/1999 4:31:01 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://216.82.30.86/etc2000.html
http://www.cwicweb.com/apps/cwlaunch.dll/download.exe.0
http://www.capesoft.com/
http://www.princen-it.nl/clarion/
http://www.qd.co.nz/service/cw5addon.htm
http://home.global.co.za/~peabrain/
http://www.topspeed.com/
http://www.lindersoftware.com/lspsfx10.htm
http://www.active4.com/pr/wspt-pr2-cla.pdf
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://216.82.30.86/etc2000.html

3rd party packages to purchase although the company does offer a
competitive upgrade to Acrobat Exchange.

March 9, 1999

Technical Site Of the Week
Whether you're looking for a definition of a TLA (three letter acronym) or
just some basic technical information, this site has a lot to offer,
including alphabetical and topical organization, recommended books, and
all the file extensions in the world defined.

StealthSoft Contact/Support Email
Mail and Fax Template and Dev Monitor users please note that
StealthSoft has a new contact and support email address:
stealthsoft@mweb.co.za

Clarion on IRC
You can join other Clarion developers on IRC most Tuesdays and
Thursdays at 24:00 GMT, and Saturdays at 17:00 GMT. That's 7 p.m.
and noon EST, respectively.

Looking For Clarion Developers or Clarion Work?
TopSpeed Recruiting and Placement supports the staffing needs of Clarion
development groups as well as the career goals of Clarion developers. Visit the
placement page at http://www.topspeed.com/placement.htm,

March 1, 1999

Open Linux Project For Topspeed Newsgroup
Clarion Magazine is hosting a newsgroup for the Open Linux Project for
Topspeed started by Ron Schofield. This is a private newsgroup and you
need to email Ron for the access information. Clarion Magazine
subscribers automatically have access to this newsgroup.

EuroDevCon 1999 in Amsterdam
This year's EuroDevCon will be held on April 21 - 22, 1999 at the Golden
Tulip Barbizon Hotel in Amsterdam, The Netherlands. The theme of this
year’s conference is Run with the Magic. There will be information and
demonstrations on the many new features of Clarion 5 including the
breakthrough Wizatron technology. Guest speakers will demonstrate the
ABC templates and Data Modeller, end user reporting, and
intranet/extranet deployment. Speakers and presenters include Roy
Rafalco, Ron Tolido (keynote), Bob Foreman, Axel Fenger, Mike Hanson,
Mike Pasley, Jim Morgan, Phil Will, Leif Olsen, Richard Chapman, Greg
Gubrud, Scott Ferret, Jens-Achim Frei, Erik Pepping, James Fortune,
Roelph Du Preez, Randy Goodhew, and Bruce Johnson. For more
information visit http://www.itevent.com/eurodevcon.htm.

New Products From Capesoft
Capesoft has released two new products: Makeover and TickerTape.
Makeover is a template that dynamically applies styles to your
application, based on the number of colors the user's color depth and the
procedure type. A style file editor is included. Supports ABC and Legacy.
TickerTape is a screen control template for putting a scrolling string on a
window.

Read the February News

Do you have a news story or press release we should know about? Send
it to editor@clarionmag.com

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - News March 1999

http://www.clarionmag.com/v1n2/pub/v1n2news.html (2 of 2) [4/19/1999 4:31:01 PM]

http://whatis.com/
mailto:stealthsoft@mweb.co.za
mailto:stealthsoft@mweb.co.za
http://www.topspeed.com/placement.htm
http://www.topspeed.com/placement.htm
http://users.andara.com/~rschofie/olp.html
http://users.andara.com/~rschofie/olp.html
mailto:rschofie@hfx.andara.com
http://www.itevent.com/amsterdam/amsterdam.htm
http://www.itevent.com/eurodevcon.htm
http://www.capesoft.com/
http://www.clarionmag.com/v1n1/pub/v1n1news.html
mailto:editor@clarionmag.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 2
March 1999

The How and Why of
WHO(), WHAT(), and WHERE()

by Gus Creces

A good friend of mine made a fortune in the industrial automation
business building advanced "power and free" overhead-conveyors for
automobile manufacturers.

For fifty years overhead-conveyors were simple, linear loops, able only
to move fenders from stamping to welding, from welding to grinding,
from grinding to painting, from painting to assembly and so on at a fixed
pace. When faster processes got ahead of slower ones, semi-finished
goods were generally labor-intensively stockpiled on the floor and loaded
back onto the conveyor as slower processes caught up.

My friend’s power and free conveyors are anything but simple or linear.
When one process outpaces another, the conveyor shuttles some of the
parts its carrying into one of several random-access storage loops until
they’re needed. These conveyors are essentially modeless. They don’t
require separate stamping, welding, grinding and painting runs. Fenders,
bumpers, hoods, doors and trunk lids in various states of completion are
loaded onto the conveyor as required. Parts find their way to the next
process at a pace matching that process’ throughput. Since parts are
uniquely identified and randomly accessible their state of completion
determines which process they are shuttled to next, until they eventually
make their way to the final assembly line to be incorporated into a
vehicle.

The difference between traditional overhead-conveyors and the power
and free variety is the level of abstraction incorporated into the conveyor
design. By abstraction I mean that the conveyor’s design doesn’t commit
it to carrying a specific part to any predetermined place at a
predetermined pace or time.

Abstract Computer Code

There’s a strong parallel between these conveyance devices and
computer code. The parts handled by an overhead conveyor are
paralleled in the data manipulated by a procedure or application.
Generally speaking, traditional, procedural code is less abstract than
object oriented code. Well-designed OOP code, like its power and free
conveyor equivalent, should be able to handle a variety of data more
flexibly than its procedural ancestor.

Remember that my friend’s more abstract power and free conveyors do
not require that all parts to be carried are pre-identified when a conveyor
is constructed. The design only demands that the part be identified
(read: referenced) when passed to the conveyor. From that point on, the
nature and condition of the part (read: its properties) determines its
ultimate route through a wide variety of conveyor-accessible processes
on to its final destination, the assembly floor.

Listing 1 shows the computer-code equivalent of a traditional conveyor
loop. While the loop construct itself is universal, its design commits it to
forever counting fenders. To reuse this code in an averaging operation, it
would have to be cloned and modified.

Clarion Magazine - WHO, WHAT, and WHERE

http://www.clarionmag.com/v1n2/sub/v1n2whowhatwhere.html (1 of 9) [4/19/1999 4:31:09 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://216.82.30.86/etc2000.html

Listing 1. Code for Counting Fenders

SET(PRO:PartKey,PRO:PartKey)
LOOP
 NEXT(Product)
 IF ERRORCODE() THEN BREAK.
 IF PRO:Part <> ‘FENDER’ THEN BREAK.
 GLO:Count += 1
END

Now consider the more abstract loop construct in Listing 2.

Listing 2. Abstracted code to perform a variety of checks.

SELF.This = SELF.That
SET(SELF.Key,SELF.Key)
LOOP
 NEXT(SELF.File)
 IF ERRORCODE()THEN BREAK.
 IF NOT SELF.CheckThis() THEN BREAK.
 SELF.DoSomeThing()
END

While the traditional code is clear, concise and understandable, the
abstract code is basically nonsense until I define the data context in
which it operates.

Assuming that THIS and THAT are references to data entities and the
method calls contain some fairly abstract (and perhaps, ultimately
overridden) code, I can clarify the situation by providing an operating
context that mimics the functionality of the more traditional code
construct.

Listing 3. Providing an operating context by assigning references.

Obj.This &= PRODUCT.Part
Obj.That &= TYPES.PartType
Obj.That = ‘FENDER’
Obj.File &= PRODUCT
Obj.Key &= PRODUCT.PartKey

The original OBJ.CheckThis() function may quite conceivably have been
prototyped as a placeholder virtual method that does nothing but return
True or False. Placeholder methods are used frequently in OOP design.
They are meant to be overridden and provide hooks whereby
functionality can be readily added to the original design without
modification of the original code.

Listing 4. A placeholder method.

Obj.CheckThis PROCEDURE ()
 CODE
 RETURN False

In the context that I want to use this method I have chosen to override
it and introduce some of my own code.

Listing 5. A method derived from a placeholder.

Obj.CheckThis PROCEDURE ()
 CODE
 RETURN CHOOSE(SELF.This = SELF.That, True, False)

Clarion Magazine - WHO, WHAT, and WHERE

http://www.clarionmag.com/v1n2/sub/v1n2whowhatwhere.html (2 of 9) [4/19/1999 4:31:09 PM]

Assume that the OBJ.DoSomething() procedure was designed as a
counter; a virtual method that increments an internal "count" property
every time called. To have this method perform some other function
such as averaging it could be overridden without affecting the processing
loop code in any way.

Listing 6. A derived DoSomething method which counts items.

Obj.DoSomeThing PROCEDURE ()
 CODE
 SELF.Count += 1

Both the traditional and abstract code examples now do essentially the
same thing – count fenders. So besides the fact that I’ve made the
abstract code a lot harder to read and added a bunch of initialization
requirements, what have I gained?

The abstract loop code, without modification, can be used to operate on
almost any kind of data. By holding off on identifying the data until
run-time, I’ve increased the flexibility of the code by the same order of
magnitude that the more abstract power and free conveyor improves the
flexibility and power of a traditional overhead-conveyor.

Early and Late Binding

In the programming world this temporal aspect of when it is actually
decided what data are to be pushed into which procedure is referred to
as the binding point. You may be familiar with the terms early binding
and late binding.

Early binding implies that the specific data to be processed by a
procedure or method are identified early on, usually at compile time. It
can also imply that the procedures assigned to process or test particular
units of data are determined early on, or at compile time.

Late binding implies that the decision as to what data are to be slotted
into which procedures is made some time during the course of
application execution. It can also imply that there is no predetermined
set of procedural processes into which these data must inexorably be
directed.

Some of the screams of agony that came even from long-term Clarion
users on the introduction of the ABC templates and classes were, I’m
certain, precipitated by the data and operational flexibility exhibited by
most OOP methods. I remember writing something to this effect in a
support document for one of TopSpeed’s educational classes: "The
vexing thing about trying to read and logically follow OOP code is that
you must always first decide the context in which it is operating…"

It would be equally vexing to ask a plant manager where a particular
door or fender hanging from a power and free conveyor might be going
next. The answer would inevitably be prefixed by "that depends". Two
doors hanging side by side on the conveyor might be in fact, be going to
entirely different destinations depending on their state of completion or
whether they were destined for the sedan or the coupe model. In the
case of the conveyor, the properties of a part are inspected each time
the part passes some critical conveyor junction. A bar code or microchip
identifies the part as it passes a sensor. Then a computer looks up the
part's production properties and shunts it to the appropriate process or
into storage.

Traditional procedural code, generally speaking, tends to be hard-wired
or early binding. Just like the traditional conveyor loop, it goes from here
to there in a predetermined time, reliably and predictably, but not with
much flexibility. The more abstract nature of OOP code tends toward less
hard wiring and utilizes more late binding of data and procedures.
There's a whole lot of "that depends" incorporated into a good OOP
design because the nature and condition of the data (read: properties)
determine its path through the various processes (read: methods).

Inspecting Data at Run Time

Anyone who has been writing Clarion - or any computer code for that
matter - for any amount of time has run into this situation. You've
passed a generalized structure into a procedure and want to extract or
insert specific information.

Clarion Magazine - WHO, WHAT, and WHERE

http://www.clarionmag.com/v1n2/sub/v1n2whowhatwhere.html (3 of 9) [4/19/1999 4:31:09 PM]

Listing 7. A procedure which receives a generalized structure.

ProcessThis PROCEDURE (*GROUP xGroup)
 CODE

This is a dead-end. I can pass in any group, but since I don’t know what
fields there are in the group I can't do much with it. Here's another
angle.

Listing 8. A procedure which receives a specific structure.

ProcessThis PROCEDURE (*SPECIFICGROUPTYPE xSpecificGrp)
 CODE
 xSpecificGrp.Part = SELF.This

Now, since I've defined the group to be a specific type of group, the
compiler can resolve the field names for me when I refer to them. This is
a good example of early binding. It commits the procedure to forever
having to process a specific kind of group. And now my procedure is
hard wired. Like a traditional overhead-conveyor it can do a good job,
but the possibility of processing other data structures is not inherent in
the design.

I'm not saying this technique is something that you should not use. In
fact, you will likely use it as often as not, for those situations where the
data are fixed and predictable.

But what about those parts of my programs that have to be data
flexible? What if I want to write generalized procedures that can process
any data regardless of its look and feel? I want to hitch a variety of
structures onto my "data conveyor" and have it come out processed
correctly at the other end.

The ABC BrowseClass is an excellent example of abstract OOP. It can
manipulate a Parts file or a People file with equal ease. While the C2.X
templates crank out reams of hard wired code, a separate batch of
repetitive code for every browse, the BrowseClass does it all from one
code base. Closer scrutiny of C2.X browse code makes it clear that most
of the code is the same from browse to browse, with only the variable
names changing. ABC BrowseClass code is reused unaltered, while a
variety of data are referenced into it and are operated on. Where
deemed necessary, certain of the more abstract processes (methods) are
left incomplete and are swapped out through the auspices of overriding
and late binding.

To add basic abstractness to my procedures I can reference simple data
into them using the ANY data type, saving me from having to know
what's coming and hence, committing my design to use, say, a LONG or
STRING before it's even compiled. But what of GROUPS and QUEUES and
RECORD STRUCTURES? How can I pass them between processes without
committing to any specific data layout? You may have come across the
term "property inspection". It's what my friend’s oh-so-smart power and
free conveyor did to determine "who" it was carrying, "what" still needed
to be done to the part being carried and "where" the part was going.

Not surprisingly, Clarion provides a number of functions whose sole
purpose is to allow inspection of data structures at run time so that you
can avoid committing your code, at compile time, to any specific
structure. These are the WHO, WHAT, and WHERE functions. Like my
friend's overhead-conveyor, these facilities help to make your code more
abstract. Conversely, it also makes your code more difficult to read and
more dependent on the data context - but that's a small price for the
advantages gained.

Three Data Structure Interrogation Functions

When a procedure references an unknown group or record structure, as
it did in the preceding example Listing 7, it needs to be able to identify
the structure's components by name (WHO), by reference (WHAT), and
by ordinal position (WHERE) so that these individual elements can be
manipulated. Here is a record structure for illustration.

Clarion Magazine - WHO, WHAT, and WHERE

http://www.clarionmag.com/v1n2/sub/v1n2whowhatwhere.html (4 of 9) [4/19/1999 4:31:09 PM]

Listing 9. A file structure.

People FILE,DRIVER('ODBC'),RECLAIM,PRE(PEO),BINDABLE,CREATE,THREAD
KeyID KEY(PEO:ID),NOCASE,OPT,PRIMARY
KeyName KEY(PEO:Name),DUP,NOCASE,OPT
Record RECORD,PRE()
ID LONG
Name STRING(30)
Address STRING(30)
City STRING(20)
State STRING(2)
Zip STRING(10)
BirthDate DATE
 END
 END

Using WHO()

Given the record structure PEO:Record, and a position number, WHO()
returns a string containing the field name. With WHO(), you can ask,
"Name the second field in the record structure." For this record structure
the answer would be: 'PEO:Name'. In the example below, ThisField is
passed the string value 'PEO:Address'.

ThisField = WHO(PEO:Record, 3)

Listing 10 shows an abstract procedure that illustrates WHO() in action.
This method returns an SQL SELECT statement, given file and record
references and will work with any file because it is not hard-wired to any
specific file or record.

Listing 10. Using WHO to examine a group structure.

MyClass.MakeSelect PROCEDURE (*FILE xFile, *GROUP xRec)
Ndx USHORT,AUTO
Fn CSTRING(50)
Sel CSTRING(1000)

 CODE
 LOOP Ndx = 1 TO xFile{PROP:Fields}
 Fn = WHO(xRec, Ndx)
 Fn[INSTRING(':',Fn,1,1)] = '.'
 Sel = Sel & Fn & ','
 END
 Sel[LEN(Sel)] = ''
 RETURN 'SELECT ' & UPPER(Sel)

For the record structure illustrated in Listing 9, the MakeSelect function
returns a string, as follows:

'SELECT PEO.ID,PEO.NAME,PEO.ADDRESS,PEO.CITY,
 PEO.STATE,PEO.ZIP,PEO.BIRTHDATE'

Just so that you are aware, this select statement assumes the file's
PROP:Alias has been set to 'PEO'. For simplicity's sake, the code also
assumes all the field names contain a colon, which may not be the case
in the event there are external names in the dictionary.

When inspecting a record structure, the value returned by WHO(Record,
x), is equivalent to File{PROP:Label, x}. Example Listing 11 below
has identical functionality to Listing 10.

Clarion Magazine - WHO, WHAT, and WHERE

http://www.clarionmag.com/v1n2/sub/v1n2whowhatwhere.html (5 of 9) [4/19/1999 4:31:09 PM]

Listing 11. Using PROP:Label instead of WHO.

MyClass.MakeSelect PROCEDURE (*FILE xFile)
Ndx USHORT,AUTO
Fn CSTRING(50)
Sel CSTRING(1000)

 CODE
 LOOP Ndx = 1 TO xFile{PROP:Fields}
 Fn = xFile{PROP:Label,Ndx}
 Fn[INSTRING(':',Fn,1,1)] = '.'
 Sel = Sel & Fn & ','
 END
 Sel[LEN(Sel)] = ''
 RETURN 'SELECT ' & UPPER(Sel)

The data file described in Listing 9 contains no compound structures. On
the other hand, the record structure in Listing 12 presents a special
situation because it contains Clarion's representation of an SQL
AnyWhere TimeStamp field. In the database, a TimeStamp consists of 8
adjacent bytes. The first four contain a date value, the last four a time
value.

Listing 12. A record structure with an SQL TimeStampe field.

People FILE,DRIVER('ODBC'),RECLAIM,PRE(PEO),BINDABLE,CREATE,THREAD
KeyID KEY(PEO:ID),NOCASE,OPT,PRIMARY
KeyName KEY(PEO:Name),DUP,NOCASE,OPT
Record RECORD,PRE()
ID LONG
Name STRING(30)
Address STRING(30)
City STRING(20)
State STRING(2)
Zip STRING(10)
DateTime STRING(8) !Only this field is in the DB.
DateTime_GROUP GROUP,OVER(DateTime) !Dictionary import places a
DateTime_DATE DATE !group over the DB TimeStamp
DateTime_TIME TIME !field.
 END
 END
 END

Clarion's dictionary imports a TimeStamp as an 8 byte string, over which
it places a group structure consisting of two longs. Since only DateTime
actually exists in the file, placing any of the DateTime_GROUP fields in the
select statement would result in an SQL error. Groups such as this return
PROP:Over = True when tested, so it's easy enough to have my
MakeSelect procedure leave them out of its generated select statement.
But there's an added consideration. When I build a browse I don't
necessarily select all the fields in the database. If I choose to place
DateTime_Date in my browse, the code that generates the select
statement must be smart enough to select DateTime from the database.
The function OBJ.GetActualField() below, will return the correct select
field name when the third parameter contains the name of a field inside
one of these OVER() groups.

Clarion Magazine - WHO, WHAT, and WHERE

http://www.clarionmag.com/v1n2/sub/v1n2whowhatwhere.html (6 of 9) [4/19/1999 4:31:09 PM]

Listing 13. A procedure to get OVERed field.

MyClass.GetActualField PROCEDURE (*FILE xFile, *GROUP xRec, STRING xFName)
Ndx USHORT,AUTO
Idx USHORT,AUTO
FName CSTRING(50)

 CODE
 FName = CLIP(UPPER(xFName))
 LOOP Ndx = 1 TO xFile{PROP:Fields}
 IF xFile{PROP:Type,Ndx} = 'GROUP' AND xFile{PROP:Over,Ndx} THEN
 LOOP Idx = 1 TO xFile{PROP:Fields,Ndx}
 IF UPPER(xFile{PROP:Label,Idx+Ndx}) = FName THEN
 FName = WHO(xRec,xFile{PROP:Over,Ndx})
 END
 END
 END
 END
 RETURN FName

Using WHAT()

Given a group or record structure and a position number, WHAT() lets
you to determine the contents of specific field in that group or record
structure without knowing any field names. With WHAT() you can ask,
"What value is stored in the second field of the record structure?" In the
example below, the value stored in PEO:Name is copied into the string
variable MyString using the simple assignment operator, an equal sign.
Notice that nowhere in the code is the field label PEO:Name ever used.

Listing 14. Using WHAT to get a field name.

MyString STRING(50)

 CODE
 MyString = WHAT(PEO:RECORD, 2)

But WHAT() does more than that. It can supply a reference to the data
structure field. Used with the reference assignment operator &=, WHAT()
provides a way for you to assign values to and from any group field
without your having to know the field's name. In the example below, an
ANY variable called MyAny is referenced to PEO:Name using WHAT(). Once
the reference is made, MyAny also contains the contents of PEO:Name, but
not because the data were copied as in example Listing 14, but because
MyAny becomes PEO:Name. Notice again, that nowhere in the code is the
field label PEO:Name ever used.

Listing 15. Using WHAT to get a field reference.

MyAny ANY

 CODE
 MyAny &= WHAT(PEO:RECORD, 2)

Following the reference assignment above, a simple assignment made to
MyAny is functionally equivalent to a simple assignment made to
PEO:Name. Hence, the assignments below provide an identical outcome.

Listing 16. Using reference assignments.

MyAny = 'Bob Smith'
PEO:Name = 'Bob Smith'

Clarion Magazine - WHO, WHAT, and WHERE

http://www.clarionmag.com/v1n2/sub/v1n2whowhatwhere.html (7 of 9) [4/19/1999 4:31:09 PM]

Clarion's WHAT() function can be used to design an abstract method
that's able to pass field values from any file record into any queue
record, without ever mentioning the file or queue field names, or
knowing exactly which file or queue we are working with. For simplicity's
sake Listing 17 assumes that the queue structure contains a field of the
same data type, in the same ordinal position as the record structure.
Remember that this isn't really necessary, but doing so would
unnecessarily complicate the example code. For the purposes of this
example, we'll assume the file structure described in example Listing 9 is
being passed into the BufferToQueue() method.

Listing 17. Passing field values into a queue.

MyClass.BufferToQueue PROCEDURE (*GROUP xRec, *QUEUE xQ)
Ndx USHORT(0)
Qf ANY
 CODE
 CLEAR(xQ)
 LOOP
 Ndx += 1
 IF WHO(xRec, Ndx) = '' THEN BREAK.
 Qf &= WHAT(xQ, Ndx)
 Qf = WHAT(xRec, Ndx)
 END
 ADD(xQ)

Here a loop inspects the fields in xRec one at a time. Once WHO() returns
an empty string, all the fields have been processed and the loop is
broken. On the next line, the ANY variable Qf is referenced to the current
queue field. Now, any data simple-assigned to Qf results in the data
actually being copied into the current queue field. The simple assignment
made from WHAT() to Qf on the last line inside the loop does that. After
the loop runs its course, a copy of the data stored in group structure
xRec has been given to queue structure xQ. This loop will work with any
record/queue combination and replaces hard-wired code like that shown
below, in Listing 18.

Listing 18. Hard-wired code to assign fields to a queue.

FillQueue PROCEDURE (*PEO:RECORD xRec, *PeopleQ xQ)

 CODE
 CLEAR(xQ)
 xQ.Id = xRec.Id
 xQ.Name = xRec.Name
 xQ.Address = xRec.Address
 xQ.State = xRec.State
 xQ.Zip = xRec.Zip
 xQ.BirthDate = xRec.BirthDate
 ADD(xQ)

The end result of these two example procedures is identical. But only
Listing 17 is abstract enough to be reusable with other record/queue
combinations. The Clarion ABC classes use this kind of code while Clarion
2.x templates generated hard-wired code like that in Listing 18.

Using WHERE()

Given a group or record structure and a field label, Clarion's WHERE()
function lets you to determine the ordinal position of a field in the group
or record structure. With WHERE() you can ask, "Where in the record
structure is PEO:Name?" Remember that a reference to any group
structure field is just the same as having the field label. This makes it
functionally the reverse of WHAT(). Hence,
WHERE(PEO:Record,PEO:Name) will yield a return value of 2. In the
example below, a combination of WHO() and WHERE() returns the field
name in string form given a field reference, and a record structure.

Clarion Magazine - WHO, WHAT, and WHERE

http://www.clarionmag.com/v1n2/sub/v1n2whowhatwhere.html (8 of 9) [4/19/1999 4:31:09 PM]

Listing 19. Using WHO and WHERE to get field names.

MyClass.GetFieldName PROCEDURE (*GROUP xRec, *? xField)

 CODE
 RETURN WHO(xRec, WHERE(xRec, xField))

The function in example Listing 20 can be used to test whether a given
field belongs to a given record structure, group or queue.

Listing 20. Locating fields within a structure.

MyClass.IsFieldInRecord PROCEDURE (*GROUP xRec, *? xField)

 CODE
 RETURN CHOOSE(WHERE(xRec, xField) > 0, True, False)

Interestingly, WHERE() can be made to deliver two different ordinals for
the position of a field when the field is inside a compound group. Using
the record structure in Listing 12, the ordinal position of field
DateTime_Time relative to PEO:Record is 9. But relative to
DateTime_Group its ordinal position is 2. However, WHERE() returns no
ordinal value for fields inside an OVER() structure, relative to the inner
group.

In Summary

An increase in abstractness, whether in machines or in computer code,
tends to create a need for more and better property inspection
mechanisms.

I explained that my friend's power and free overhead-conveyor, unlike
its simple-loop ancestor, is filled with sensing devices, in order to identify
who is being carried, what still needs to be done to that part and where
the part is going.

In computer code, abstractness results from, among other things,
delaying the naming of data until run-time. This in turn leads to
procedures and functions that are less hard-wired and more flexible from
the standpoint of the variety of data that can be handled. The computer
equivalents of sensing devices are data structure inspection functions
like WHO(), WHAT() and WHERE(). These allow data structures to be
parsed for meaning at run-time, saving you from having to resort to
binding a specific data structure directly to a procedure, and thus
reducing its reusability.

There are many more such mechanisms in the new, "OOP-ified" Clarion.
Although most of these are not functions in the same sense as this
useful triumvirate, they are still very useful. Have a look at some of the
new file-related properties such as: PROP:Label, PROP:Type,
PROP:Components, and PROP:Field. There's a gold mine there for a
creative mind.

There may be fortunes to be made writing Clarion too!

Gus M. Creces is a bona fide Clarion junkie. Prior to joining TopSpeed, he
worked as an independent software developer, using Clarion, primarily in
the engineering, retail and manufacturing fields. With Topspeed he
taught and lectured about his favorite topic, Clarion, for two years. In
the past year, Gus has worked for the Consulting Division as a
Consultant/Developer.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - WHO, WHAT, and WHERE

http://www.clarionmag.com/v1n2/sub/v1n2whowhatwhere.html (9 of 9) [4/19/1999 4:31:09 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 2
March 1999

Debugging Without The Debugger
by Dave Harms

A Clarion Open Source Project Article

I have a guilty secret: I almost never use the Clarion debugger. It’s
certainly not that my code is so amazingly clean that I never have to
debug my programs. It’s just that I’ve always found the debugger
awkward to use, in part because the debugger doesn’t work together
with the source editor. For instance, I think I should be able to set a
breakpoint in a source embed and run to that point. I should be able to
add watch variables from within the Application Generator. These and
other features would make the debugger much more useful to me.

On the other hand, even if Clarion had a terrific debugger I probably
wouldn’t use it much. A tool that lets me single step through my code
has limited usefulness, mainly because of my lousy short-term memory.
I simply can’t remember more than a few steps back in my code, and I
quickly become confused as to what exactly happened to get me to
wherever I currently am.

What I really find useful is a log that shows me what procedures or
methods were called, and what the contents of particular variables were
at certain points in the code. Ideally this log will also indent the
procedure/method calls, can be displayed on-screen, or can be saved to
disk.

I’ve written a pair of classes called cciDebugClass and
cciProfilerClass to handle these kinds of basic debugging/tracing
tasks, and they are available as part of the Clarion Open Source Project.

In this article I’ll explain some of the underlying concepts and design
ideas behind these classes. You may wish to download the class (the zip
includes cciProfilerClass and a global extension template) so you can
see the full source as you read. Click here for installation and usage
instructions.

You may also want to refer to the article The ABCs of OOP - Part 1 which
uses as its example a stripped-down version of cciDebugClass.

NOTE: This article discusses version 1 of cciDebugClass and
cciProfilerClass. The most significant changes from
version .9 to version 1 are the use of manual constructors
instead of automatic constructors to avoid GPFs in
handcoded projects, and the addition of a global extension
template to handle the creation, initialization, and cleanup of
the debugging/profiling object. For version 0.9
documentation click here.

The Debugging Class

The core functionality of cciDebugClass is the ability to trace messages
in an internal queue and display these messages on screen upon
request, or write them to a file. The queue which stores these messages

Clarion Magazine - Debugging Without The Debugger

http://www.clarionmag.com/v1n2/sub/v1n2debuggingwithoutdebugger.html (1 of 9) [4/19/1999 4:31:16 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/opensource/devtools/ccidebugprof_v.0.9.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://216.82.30.86/etc2000.html

is TraceQ.

TraceQ &cciTraceQueue,PROTECTED

TraceQ is of type cciTraceQueue, which is declared as follows:

cciTraceQueue QUEUE,TYPE IndentLevel SHORT Text STRING(1000) END

The IndentLevel variable in the queue is there to help with formatting
text for display, particularly when showing procedure call trees as seen
in Figure 1. Although the text field in the queue is much larger than will
usually be necessary this doesn’t result in excessive memory usage since
queue field entries are run-length compressed.

Figure 1. Displaying a procedure call tree.

Initializing The Debug Class

TraceQ is a reference rather than an actual queue because queues
cannot be declared statically inside a class. Instead, cciDebugClass uses
a reference and creates the queue on the fly with the NEW operator.
Listing 1 shows the Init() method source.

Clarion Magazine - Debugging Without The Debugger

http://www.clarionmag.com/v1n2/sub/v1n2debuggingwithoutdebugger.html (2 of 9) [4/19/1999 4:31:16 PM]

Listing 1. The cciDebugClass initialization code

cciDebugClass.Init procedure
 code
 SELF.TraceQ &= NEW(cciTraceQueue)
 SELF.ThreadQ &= NEW(cciThreadIndentQueue)
 SELF.ThreadQ.Thread = 1
 SELF.ThreadQ.IndentLevel = 1
 ADD(SELF.ThreadQ)
 SELF.NextLineToWrite = 1
 SELF.CacheSize = 50
 SELF.Disable = False
 CREATE(TraceLog)
 SELF.CollapseQ &= NEW(cciSimpleQueue)
 SELF.EventNameQ &= NEW(cciEventNameQueue)
 SELF.AddEvent('EVENT:Accepted ',01H)
 ! Multiple calls to AddEvent omitted for brevity

As Listing 1 shows, TraceQ isn’t the only queue in this class. ThreadQ is
used to track the last indent level reached in any given thread when the
program switches to a different thread. This way the class can resume
logging messages at the appropriate level when the thread is resumed.
The Init() method creates one record in the ThreadQ for the main
program thread, and starts the indent level at 1.

Next the Init() method sets some caching properties. Although the
class does create a log file, it doesn’t write every trace message out
immediately on receipt. That would waste a lot of I/O and greatly slow
any program being debugged. Instead it caches as many messages as
specified by the CacheSize property. The NextLineToWrite variable
keeps track of the first unwritten line.

The call to CREATE(TraceLog) effectively empties any existing log by
creating a new file called trace.log. The file itself is declared outside the
class definition but inside the class source file. Files cannot be declared
inside a class structure, although they can be declared inside a method.
Another option here would be to have a reference to a file (and the
single field of the file) and initialize it accordingly, but as there is only
one method that writes records to the file it’s probably easier just to
derive a class and override that method if you want to change the way
the log is written.

After the trace log is created several additional queues are created.
CollapseQ has to do with the class’s ability to display a trace in tree
view, as shown in Figure 1. That trace was created by
cciProfilerClass which is derived from cciDebugClass, and shows all
of the ABC method calls. For many procedures, particularly browses,
there are some methods which are called numerous times and which
seldom have any embedded code. All messages which are added to
TraceQ are first checked against the strings stored in CollapseQ, and if
there’s a match the indent level is given a negative sign which causes
the tree to contract at that level.

CollapseQ was added to reduce the clutter of logs created by the
derived cciProfilerClass. Ordinarily something added solely for a
derived class would go in the derived class, not the parent class, but it
seemed plausible that someone might want to have this capability even
when not using cciProfilerClass.

The final queue created by the Init() method is EventNameQ. This
queue is used to store a list of event numbers and their corresponding
names. You can translate an event number using the GetEventName()
method. If you wanted to see what events are being generated in a
procedure, put the following code at the top of the accept loop
(assuming you have a debug object called dbg).

Clarion Magazine - Debugging Without The Debugger

http://www.clarionmag.com/v1n2/sub/v1n2debuggingwithoutdebugger.html (3 of 9) [4/19/1999 4:31:16 PM]

dbg.Trace(‘Event ‘ & GetEventName(EVENT())

The global extension template that accompanies the debugging/profiling
classes can add this code to all of your procedures automatically, if you
wish, thereby giving you a complete log of all program events.

You might wonder why GetEventName() does a lookup in a queue
instead of using a large case or execute statement. Although the
standard Clarion event numbers are fixed, you can create and post your
own events (using numbers from EVENT:User on up). The AddEvent()
method provides a standard means of informing the class of the events it
needs to track, and it also allows you to override the standard naming of
the Clarion event codes without having to recompile the class.

Other Properties

Some class properties are given default values in the declaration rather
than in the Init() method. AutoCollapse is a flag that indicates
whether a check should be made against entries in CollapseQ. A false
value will improve performance slightly. CurrThread simply tracks the
current thread number. This value is checked against the value returned
by the THREAD() function on each call to Trace() if the ThreadAware
property is true. IndentLevel keeps track of the current indenting, and
IndentSpacing specifies how many spaces to use per indent level.
IndentSpacing comes into play if you choose a non-tree display of the
trace log, and when the log is written to disk.

LevelsToShow specifies how many levels of indent should be shown
expanded. This does not override level collapsing via CollapseQ.
StayOnLastLine applies only to the toolbox view (see
ShowTraceToolbox(), below) and if true forces the list box cursor to the
bottom of the list whenever a new message is logged. Warning: this can
have the unwanted side effect of always forcing the focus to the
toolbox’s list control!

TreeView is a flag that indicates if the trace toolbox displays records in
tree view or in an non-tree view with space-indented lines.

Methods

I’ve alluded to some of the methods, but here’s a complete listing.

AddEvent PROCEDURE(STRING EventName,long EventNo)

Ordinarily only used during initialization to load the standard Clarion
event numbers and their corresponding names.

AddCollapseString PROCEDURE(STRING Collapse)

Not used in initialization of this class, but there for the use of
cciProfilerClass which is a derived class. Specifies strings which are
to be automatically collapsed when the trace is displayed in tree view.

FindEvent PROCEDURE(LONG EventNo),BYTE,PRIVATE

Used internally to retrieve the EventNameQ record for a given event
number.

FormatQueue PROCEDURE(BYTE TreeView=False)

Clarion Magazine - Debugging Without The Debugger

http://www.clarionmag.com/v1n2/sub/v1n2debuggingwithoutdebugger.html (4 of 9) [4/19/1999 4:31:16 PM]

Switches the display queue between tree view and space-indented view.
The trace log is always written in space-indented form, which includes a
three digit indent number on the left side of each line. Note the use of
the omittable TreeView parameter with a default value of False.

FormatText PROCEDURE(STRING Text,BYTE TreeView=False),string

Formats a single line of text for either tree view or space-indented view.

GetEventName PROCEDURE(LONG EventNo),STRING

Returns the name of the specified event.

GetThread PROCEDURE(LONG Thread)

If the ThreadAware property is true, this method detects thread changes
and records the change in the trace. It also creates new ThreadQ records
as needed and maintains indent levels on a thread-by-thread basis.

HideTraceToolbox PROCEDURE

Hides the trace toolbox window (see ShowTraceToolbox()).

Init PROCEDURE

Initializes the class. In earlier versions this was an automatic construct
method.

Kill PROCEDURE

Cleans up data created by the class. In earlier versions this was an
automatic destruct method.

SetIndentLevel PROCEDURE(SHORT IndentLevel)

Specifies the current indent level. This is provided only so that user can
override indent levels if desired.

ShowTraceToolbox PROCEDURE

One of two ways to display trace logs on-screen, the other being
ViewTrace(). ShowTraceToolbox() starts a display procedure on a
separate thread. This isn’t quite as easy as you might think. You can’t
simply START() a method because the first parameter of every method is
in fact the class itself. (A side effect of this is that with methods you
must always account for the hidden class parameter when using
OMITTED() to check for missing parameters.) The way around this is to
define a normal non-class procedure and call it. See TraceToolbox() for
more.

Trace PROCEDURE(STRING Text)

Clarion Magazine - Debugging Without The Debugger

http://www.clarionmag.com/v1n2/sub/v1n2debuggingwithoutdebugger.html (5 of 9) [4/19/1999 4:31:16 PM]

This is the workhorse method which adds a message to the trace queue.
It also calls the WriteTrace() method whenever the cache is full.

TraceIn PROCEDURE(STRING Text)

Increments the indent level and calls Trace(). Should be called when
entering a procedure. cciProfilerClass can do this automatically for
you.

TraceOut PROCEDURE(STRING Text)

Decrements the indent level and calls Trace(). Should be called when
leaving a procedure. cciProfilerClass can do this automatically for
you.

ViewTrace PROCEDURE

Displays an application modal window with the contents of the trace
queue.

WriteTrace PROCEDURE,VIRTUAL

Writes cached messages to the trace log. As this is a virtual method you
need only to override it to change how the log file is written.

TraceToolbox PROCEDURE(STRING Addr)

This procedure isn’t part of the class, but is prototyped in the local map
at the top of the class source file. The whole idea of a trace toolbox is to
be able to see messages on screen as they are added, and since you
can’t start a class method you have to use a regular procedure.

Of course it isn’t quite that simple. The procedure still needs to have
some knowledge of the class, or it won’t be able to display the queue
which is inside the class. Furthermore, the procedure is an actual code
entity that will be run. The class isn’t. It has a TYPE attribute which
means that no memory is allocated to it. You have to create an instance
of the class to use it, but you have no way of knowing what that instance
will be. The instance of cciDebugClass is going to have to provide that
information to TraceToolbox() at runtime.

The solution is to create a reference of type cciDebugClass inside the
TraceToolbox() procedure:

dbg &cciDebugClass

The ShowTraceToolbox() method passes its own address (which is
determined at runtime) as a parameter to START():

SELF.ToolboxThread = START(TraceToolbox,25000,ADDRESS(SELF))

Clarion Magazine - Debugging Without The Debugger

http://www.clarionmag.com/v1n2/sub/v1n2debuggingwithoutdebugger.html (6 of 9) [4/19/1999 4:31:16 PM]

START() only accepts string parameters (up to three), so the address,
which is a long, is going to be cast to a string. TraceToolbox() contains
a LONG which receives the address. Clarion’s automatic type conversion
handles the cast.

DebugObjAddress = Addr

One last step assigns the LONG address to the reference:

dbg &= (DebugObjAddress)

Note the use of parentheses to evaluate the LONG variable. Without these
you’ll get an illegal reference assignment, since &= expects either a
function return value or an appropriate data type.

From this point on TraceToolbox() simply references its own dbg
reference whenever it needs to work with something from the debug
object. The code

?list{PROP:From} = dbg.TraceQ

sets the list box’s FROM property to the object’s trace queue.

The Profiling Class

When I wrote my first non-OOP trace library I wanted the log to show
when I entered and left procedures. I did that by embedding code at the
start and end of each procedure, and it was a tedious business at best.
Happily Topspeed provided a means of automatically generating
procedure calls in Clarion version 4, though that probably wasn’t their
intention.

Since version 4 Clarion has shipped with a file called profile.clw, which
you can find in your libsrc directory. This file contains a very bare-bones
example of how you can intercept the start and end of each procedure
(and routine). From this source you can see that the intent is to allow
you to profile how much time is used by each of your methods. This
capability is in the works for cciProfilerClass, but at the moment it
simply provides a way of logging method calls which cciProfilerClass
exploits.

To generate automatic method call logs, choose Project|Edit from the
main menu, click on the Properties button for the entire application, and
enable full debugging. On the Defines tab enter

profile=>on

to turn on profiling for the entire application. You’ll also need to turn off
profiling for the debugging and profiling classes – this is explained in
more detail in the usage instructions.

When debugging and profiling are both turned on, your application at
runtime will look for the following two procedures:

EnterProc(UNSIGNED Line,*CSTRING Proc,*CSTRING File),NAME('Profile:EnterProc')
LeaveProc(),NAME('Profile:LeaveProc')

Clarion Magazine - Debugging Without The Debugger

http://www.clarionmag.com/v1n2/sub/v1n2debuggingwithoutdebugger.html (7 of 9) [4/19/1999 4:31:16 PM]

If these procedures have been linked in, they’ll be called each time your
application enters or leaves a procedure or routine. cciProfilerClass uses
these profiling hooks to log corresponding messages to the trace queue
via the ProcStart and ProcEnd methods.

ProcStart and ProcEnd

ProcStart does a bit of massaging of method names to change them
from the format

method(class,param1,param2)

to the more familiar

class.method(param1,param2)

ProcStart() also does a bit of fiddling with routine calls. It’s
unfortunately the case that when you return from a routine, you get a
ProcEnd() on the procedure but not on the routine. Since
cciDebugClass keeps a stack of indent levels, this can result in
mismatches in the log. It gets worse if there have been a succession of
routine calls (each with a ProcStart()) before the return. ProcStart()
gets around this by using a hard coded list of the problem ABC routines.

ProcEnd() simply decrements the indent level, and that’s about all there
is to say about the methods except that Init() also makes a few calls to
CollapseString() to avoid cluttering up the trace with repetitive calls
(although the disk log will contain all the trace messages).

Exploring ABC with cciProfilerClass

You can use cciProfilerClass to get a window on how your ABC (or
legacy) application functions. Following the usage instructions set up
your application for profiling, and call the ShowTraceToolbox() method
from a suitable menu option or embed point. With the trace toolbox
active you can see the method calls onscreen as they happen, along with
any trace statements you’ve inserted. If you’re using the global
extension template, go to the Options tab and check Record All Events.
This will add messages recording all windows events to the log so you
can see how ABC responds to user actions.

Tracking GPFs

You can use the profiling class to quickly track down GPFs. Set up your
application to do procedure as described above, and on startup set the
CacheSize property to 1. That will force each message to be written out
to trace.log immediately. Let the program run to GPF, and then
examine trace.log to find out the last procedure/method call which
succeeded. From this point you can use the debugger or additional trace
statements to uncover the problem.

Possibilities

There are a number of enhancements I’d like to see added to these
classes. As I’ve mentioned, the original intent of the EnterProc() and
LeaveProc() procedures is to enable procedure profiling which can
provide detailed information about how much time is spent on individual
methods on a per-call and total calls basis, and on how many times a
given method is called. This is invaluable when you have performance
issues to address. cciProf.clw already contains prototypes for 16 and 32
bit API functions used to get system clock times with a much finer
increment than the 1/16 of a second afforded by the CLOCK() function.

cciDebugClass could also be enhanced with watch variables by means
of a queue of ANY variables with the value displayed on the trace
toolbox, or reported along with each trace message, or on a specific
method call, or only when it changed.

You’re free to modify these classes and distribute the modified versions,
but keep in mind that these classes are (as of version 1) covered by the
Developers’ Open Source License, and all changes you make are
automatically covered by that license. If you’ve made changes you’d like
to see included in the Clarion Magazine COSP distribution of these

Clarion Magazine - Debugging Without The Debugger

http://www.clarionmag.com/v1n2/sub/v1n2debuggingwithoutdebugger.html (8 of 9) [4/19/1999 4:31:16 PM]

classes, please send them to cosp@clarionmag.com.

David Harms is an independent software developer and the co-author
with Ross Santos of Developing Clarion for Windows Applications,
published by SAMS (1995). His company, CoveComm Inc, publishes
Clarion Magazine.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Debugging Without The Debugger

http://www.clarionmag.com/v1n2/sub/v1n2debuggingwithoutdebugger.html (9 of 9) [4/19/1999 4:31:16 PM]

mailto:cosp@clarionmag.com
mailto:dharms@clarionmag.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Free User Group Newsgroups

Clarion Magazine provides free newsgroups to Clarion User Groups.
These newsgroups are for non-profit activity only. You can use them to
provide a chat area, for support, or to organize group projects.

These newsgroups are private to your user group. Clarion Magazine
reserves the right to monitor newsgroups and to terminate newsgroups
without notice.

Only the contact person needs to be a subscriber to Clarion Magazine.
The CUG may distribute the user id and password to all user group
members, or to members of other CUGs.

Please allow one week for your application to be processed.

Contact Person

Name

Email address

Contact person's Clarion
Magazine User ID

User Group Information

User Group Name

Location
(City/State/Country)

Newsgroup Information

You can have up to five sub-newsgroups in addition to the top level
newsgroup. For instance, if you're applying from the East Overshoe CUG,
and your top level newsgroup is called overshoe, you could set up a
structure something like this:

overshoe.news
overshoe.projects
overshoe.projects.special
overshoe.support
overshoe.chat

Clarion Magazine - Free CUG Newsgroups

http://www.clarionmag.com/sub/cugnewsgroups.html (1 of 2) [4/19/1999 4:31:36 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://216.82.30.86/etc2000.html

Top level newsgroup

(This should be an abbreviation of
your user group name).

Newsgroup User ID

(All cug members will use the same
user id. This should not be the same
as the contact person's user id and it
cannot be the same as the user id for
the clarion magazine newsgroups.)

Newsgroup Password

Sub-newsgroup #1
(optional)

Sub-newsgroup #2
(optional)

Sub-newsgroup #3
(optional)

Sub-newsgroup #4
(optional)

Sub-newsgroup #5
(optional)

Comments

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Free CUG Newsgroups

http://www.clarionmag.com/sub/cugnewsgroups.html (2 of 2) [4/19/1999 4:31:36 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

	clarionmag.com
	Clarion Magazine Volume1 Number 2 - March 1999
	Wizatrons From Back To Front
	Interview With Roy Rafalco Part 2
	Calculating Times
	Name() Comes Of Age
	Open Source Project General Information
	Open Source Project - cciProfilerClass and cciDebugClass
	The Clarion Challenge
	About The Clarion Open Source Project
	The ABCs of OOP, Part 1
	Clarion Magazine - Constant Class
	The CoveComm Developers' Open Source License
	The Novice's Corner: Understanding Templates
	Aussie DevCon Report
	News March 1999
	WHO, WHAT, and WHERE
	Debugging Without The Debugger
	Free CUG Newsgroups

	FNJHLNHLIALHGBENPICCMMMFNICKCJCK:
	form1:
	x:
	f1: webmaster@clarionmag.com
	f2: Request for user group newsgroup
	f3:
	f4:
	f5:
	f6:
	f7:
	f8:
	f9:
	f10:
	f11:
	f12:
	f13:
	f14:
	f15:
	f16:
	f17: Submit

	f18:
	f19:

