

Issue Index

Larry Teames on Reports
Larry Teames begins a regular column on reports in April, starting with
the basics and divulging some of the secrets he's learned on his way to
becoming the acknowledged authority on Clarion report writing.
Posted on April 5, 1999

How ABC Handles Multiple Sort Orders
A need for speed (sorts) takes Steve Parker down a winding path to
ABC's handing of multiple sort orders.
Posted on April 5, 1999

Ask The SQL Answer Cowboy
Andy "Cowboy" Stapleton is the acknowledged Clarion SQL guru and a
regular presenter at Clarion conferences around the world. His company,
Cowboy Computing Solutions, produces SQL templates and classes for
Clarion. If you have an SQL question for Andy, particularly if it reflects
issues that will be of concern to other Clarion programmers, you can
post it c/o Clarion Magazine.
Posted on April 5, 1999

The Clarion Challenge - Results
Results from the first Clarion Challenge in which Clarion coders looked
for the fastest, smallest solution to a programming problem. Things
didn't turn out quite the way you might expect...
Posted on April 5, 1999

David Bayliss on FieldClass
FieldClass is one of the smaller ABC classes, but it's responsible for
almost 30% of the reduction in generated code between the legacy and
ABC templates. David examines the rationale behind FieldClass and
explains the implementation. This extensive article includes a lot of
useful information on the care and treatment of ANYs.
Posted on April 12, 1999

Product Review: The Clarion Class Browser
This essential freeware product from Gordon Smith, now a Topspeed
employee, makes life easier for Clarion OOP programmers.
Posted on April 12, 1999

News Feature: Clarion Goes COM!
Ross Santos offers a tantalizing glimpse of Clarion's upcoming
Component Object Model layer. As usual, the TS development team is
making this inordinately complex MS technology easier to use. Includes
links to COM information sites.
Posted on April 12, 1999

Knowledge Bases On The Web - Feature Interview
Arnor Baldvinsson, Steve Parker, and Troy Sorzano are the minds behind
the three first Clarion knowledge bases on the web. In this feature
interview they tell how all three KBs came about and what technology
they're using to make these invaluable resources even better.
Posted on April 19, 1999

Clarion Magazine Volume1 Number 3 - April 1999

http://www.clarionmag.com/v1n3/pub/index.html (1 of 2) [5/3/1999 12:47:10 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html

DAB Dissects The Clarion Challenge Results
David Bayliss has analyzed the code the compiler created for each of the
Clarion Challenge submissions. This article provides a fascinating insight
into what the compiler really does with your code. Part 1 of 2.
Posted on April 19, 1999

Search Clarion Magazine!
With this week's focus on internet knowledge bases, this seemed like a
good time to announce that Clarion Magazine is now fully searchable,
which makes the entire Clarion Magazine site another indexed knowledge
base! The search engine is publicly accessible, although of course some
searches will return links to subscriber-only pages.
Posted on April 19, 1999

How To Waste Time In The Newsgroups
Troy Sorzano lets loose on the inefficiency of newsgroups as a way of
finding/transferring Clarion programming knowledge.
Posted on April 19, 1999

Clarion Magazine Now Available In PDF Format
After numerous requests from readers, Clarion Magazine is pleased to
announce that articles are now available in PDF format as well as HTML.
PDFs make for easier archiving and better printing.
Posted on April 19, 1999

Andrew's Kitchen - Sliding Into Cookery
The cooking Cajun gets his name in lights (again!) with this feature
article. Is it food? Is it code? It's a little of both.
Posted on April 26, 1999

April News
All the Clarion news that's fit to print, and then some.
Posted on April 26, 1999

DAB Dissects The Clarion Challenge Results
David Bayliss has analyzed the code the compiler created for each of the
Clarion Challenge submissions. This article provides a fascinating insight
into what the compiler really does with your code. Part 2 of 2.
Posted on April 26, 1999

The SQL Answer Cowboy Answers!
Andy Stapleton answers questions about PROP:SQL, stored procedures
and triggers, and SQL Anywhere 5.5 vs. 6.0.
Posted on April 26, 1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine Volume1 Number 3 - April 1999

http://www.clarionmag.com/v1n3/pub/index.html (2 of 2) [5/3/1999 12:47:10 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 3
April 1999

Sorting On The Run (Part I)
How ABC Does Multiple Sort Orders

by Steve Parker

It’s funny how things work out sometimes.

In Clarion 4, Topspeed introduced two features, Additional Sort Fields
and the ability to create controls on the fly, at runtime. Neither
amounted to much for me.

I just did not understand the utility of runtime creation of controls.
Hide/Unhide and Enable/Disable were perfectly adequate to my needs.
Particularly because I was working almost exclusively with Internet
Connect at the time and a Disabled control in IC generates no HTML
(and, therefore, takes no space on the screen), I was unmotivated to
discover the charms of this feature.

Similarly, I never figured out what the Additional Sort Fields prompt
offered that dynamic indices did not already offer. Maybe, I thought, this
was one of those "marketing" features: something that has no real
usefulness but can play prominently in an ad or presentation.

(Later, I learned a critical use for this feature. When
browsing a SQL table on a non-unique index, attempts to
update a row may be met with fatal errors. By naming
another column in Additional Sort Fields, making each row in
the browse effectively unique, these errors are avoided. So,
this is definitely not a fluff feature.)

As I said, it’s funny how things work out sometimes. I now need to do
"speed sorts." A speed sort is a user-defined and user-selected sort
order on a browse or report. The sort criteria are stored in a file field.
Users may, obviously, update the file, adding new sort orders, or
changing or removing existing sorts. In the DOS program I will be
converting, this is accomplished with dynamic indices.

While perfectly functional, there is a substantial downside to dynamic
indices. For starters, each and every call to a dynamic index requires a
full build. Also, even if fields in existing keys are used, the key will not
be used. Oh yes, the build takes place from disk. On a network, this is …
ah, slow.

Since early in the Clarion for Windows product cycle, we have had a
powerful View engine. A browse is no longer filled directly from files, but
from a view, which is made up of fields from one or more files. All this
happens transparently. Topspeed actually started using views late in the
DOS product cycle. Before views, browse queues were filled from disk,
which had a negative impact on page-to-page scrolling. Now, views are
created from disk and the browse is filled from the view.

The important characteristic of views, in the current context, is that
views can be sorted and filtered. Views will automatically use any
existing keys when possible. And, sorting/filtering can be done in

Clarion Magazine - ABC Sort Orders Part 1

http://www.clarionmag.com/v1n3/sub/v1n3sortingpart1.html (1 of 5) [5/3/1999 12:47:34 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML

memory, eliminating disk and network access. With large files, views
may not always be "fast" but they will certainly be much faster than
building an index from disk.

Moving from DOS to Windows should provide an opportunity to re-think
and speed sorts sound like an ideal candidate for both additional sort
fields, which affect the view, and creating controls on the fly.

The idea I have is to use the ability to change view orders by reading the
file containing the sorts. From the sort file, I would create a tab for each
sort. When the user selects one of these runtime tabs, simply pick up the
sort string/variable, call whatever methods are required to re-sort the
view and invoke the order.

Simple.

Unfortunately, the Additional Sort Fields do not support the use of
variables. And, to use file fields, as I can with dynamic indices, I must be
able to use a variable. But the templates clearly do support at least the
use of strings. So, I see three tasks to be accomplished:

How are multiple sort orders implemented?1.
How do I create the required (number of) Tabs?2.
How do I "associate" a Tab to a sort order?3.

Multiple Sort Orders

While the template prompt reads "Additional Sort Fields," not "Additional
Sort Orders," this feature does support full fledged sort orders (not
simply sorting an existing key on additional fields). For example, a tab
with no key (i.e., record order) and an expression in Additional Sort
Fields is a new order.

However, entering a variable in the Additional Sort Fields prompt will not
have the desired effect. It will have no effect at all and result in no error
or warning from the compiler. The file will display in record order.

The last statement is true at the time that I am writing this.
C5A, probably available as you read this, supports variables
in this prompt, so part of this discussion is moot. Moot,
because with full support of variables it may no longer be
entirely necessary to understand how sorting is affected.

In addition, Dennis Evans has posted a very neat class and
template wrapper allowing user-defined runtime sorts
(available from www.cwicweb.com). The user can choose
which fields, in which order to sort the browse. The
developer, however, retains control over which fields are
available for user selection (very nice touch, Dennis). This is
real "on the fly" runtime sorting.

If strings are supported, can variables be far off? A string, after all, is
just a variable that doesn’t change (at least, that’s one way to look at
it). If I can discover how multiple sort orders are handled by the
templates, perhaps I can adapt the standard behaviors to the need to
use variables.

To discern the standard behavior created by the templates, I opened an
existing app and pressed the Source button from a four tabbed browse
and went looking for known keys (i.e., sort orders). Big, big mistake,
and Excedrin headache 82 (I’m still waiting for that flash of insight when
OOP/ABC magically comes together). (Editor’s note: A set of classes are
available under COSP to create procedure call trees for ABC (and other)
applications.)

To regain some semblance of control and simplify the generated code, I
created a simple dictionary: one file, one AutoNumber key, three fields.
Wizarding up a browse, I adjusted the defaults so that no locator would
be used. Eliminating the locator also eliminates the method calls that
setup the locator. This makes tracing the generated code … less
challenging.

Clarion Magazine - ABC Sort Orders Part 1

http://www.clarionmag.com/v1n3/sub/v1n3sortingpart1.html (2 of 5) [5/3/1999 12:47:34 PM]

http://www.cwicweb.com/apps/cwlaunch.dll/download.exe.0
http://www.clarionmag.com/opensource/devtools/ccidebugprof.html
http://www.clarionmag.com/opensource/index.html

The resulting (relevant) code in .INIT looks something like:

BRW1.AddSortOrder(,CUS:CustomerNumberKey)

Not very informative is this? I already know that I have a key (sort
order) on the customer number field. Instead of enlightenment, I find
myself asking: Why is an existing key being added? What is it being
added to?

Back to the drawing board: add a Tab with no key and enter an easily
identified expression into Additional Sort Fields. Let’s see what the
templates do with this.

The resulting generated code is:

BRW1.AddSortOrder(,)
BRW1.AppendOrder(‘-CUS:LastName’)

If the code for an existing key is unhelpful to examine, this code is at
least an order of magnitude (or seven or eight) worse. This code seems
to add a null sort order (an empty sort order, what is that?) and then
adds something to it, somewhere (somehow).

Time to read the manual (you know, what you do when all else has
failed and you’re too confused to even frame much less ask an intelligent
question on the newsgroups, or are too embarrassed).

The AddSortOrder method is a bit difficult to track down. If you search
for "addsortorder" in the on-line help, you will see three entries:
"AddSortOrder (add a sort order)," "AddSortOrder (specify a browse
sort order)" and "AddSortOrder:BrowseClass … ViewManagerClass." It
is the last that documents the method the templates use in initializing a
browse. Reading up on the other two will not hurt but will not explain the
generated code (different number of parameters, different meanings).

Here is the core of the method specifications:

The AddSortOrder method specifies a sort order
for the ViewManager object and returns a
number identifying the sequence in which the
sort order was added.

The AppendOrder method refines or extends
the active sort order for the ViewManager object.

AppendOrder is fairly straightforward. It adds information to an existing
sort order, specifically, the current order. So, if I append
"CUS:CustomerNumber" (a unique value) to a key on CUS:LastName (not
unique), I end up with an effective key of:

CUS:LastName,+CUS:CustomerNumber

which is a unique sort. Ok, that makes sense and I can understand what
happened when I named Additional Sort Fields to a Tab in record order:

BRW1.AddSortOrder(,)
BRW1.AppendOrder(‘-CUS:LastName’)

Clarion Magazine - ABC Sort Orders Part 1

http://www.clarionmag.com/v1n3/sub/v1n3sortingpart1.html (3 of 5) [5/3/1999 12:47:34 PM]

to get a descending sort on LastName.

Since AddSortOrder adds and sets the current order, I am adding
"-CUS:LastName" to no key sorting information (record order). The
result is the desired descending sort on LastName.

Also note from the documentation: AppendOrder can take a variable as
its parameter. So, this approach is definitely headed in the right
direction. That is, a string variable, containing the desired sort, will work
in AppendOrder (in fact, what C5A does is enhance the template
handling of Additional Sort Fields to accept either a string or a variable –
using the standard " ’ " and " ! " notation -- because the underlying
AppendOrder method supports both).

But, I still have this one small question:

What are Sort Orders Added to?

This is the crux of the matter, the missing piece. This is what the
AddSortOrder method does.

AddSortOrder is prototyped in abbrowse.inc and its code is in
abbrowse.clw. You can trace the code there or I can summarize the
important parts for you (or, at least, my interpretation of them).

When a browse is created, the browse manager also creates a queue,
BRWx.SORT (don’t try to access it, it is Private). This queue contains the
information needed for the various sort orders, the developer’s
specifications for each Tab in the browse. The queue pointer is the
sequence number returned by the AddSortOrder method referred to in
the documentation quoted above.

As implemented, this data is added for Tabs 2 – n first. The data is taken
from the prompts on the Conditional Behavior tab.

The procedure’s default key, locator, filter, etc. are added to the queue
last. This means that the current SORT queue entry is

?CurrentTab – 1

for all values of CurrentTab except 1.

This bit of intelligence makes sense of:

What Happens When Changing Tabs

The relevant part of the code generated for a Tab change (in
BRWx.ResetSort) is:

 IF CHOICE(?CurrentTab) = 2
 RETURN SELF.SetSort(1,Force)
 ELSIF CHOICE(?CurrentTab) = 3
 RETURN SELF.SetSort(2,Force)
 ELSIF CHOICE(?CurrentTab) = 4
 RETURN SELF.SetSort(3,Force)
 ELSE
 RETURN SELF.SetSort(4,Force)
 END

Clarion Magazine - ABC Sort Orders Part 1

http://www.clarionmag.com/v1n3/sub/v1n3sortingpart1.html (4 of 5) [5/3/1999 12:47:34 PM]

Notice the relation between the value of CurrentTab and the parameter
passed to SetSort. It is n – 1, except for Tab 1, just as I stated.

What the SetSort method does is to use the first parameter as a pointer
into the SORT queue and retrieves the indicated queue entry. Reset fields
are reinitialized, the new order is applied and, if there is a filter, it is
applied.

So, the entire implementation of multiple sort orders on Tabs turns on
this queue. AddSortOrder and AppendOrder create/modify queue
entries. SetSort retrieves and acts on those entries, provided you know
the correct pointer. The queue pointer is calculated from CurrentTab.
And that is why knowing the order in which entries are added to the
queue is so important. (Perhaps this queue is Private precisely because it
is central to the implementation of multiple sort orders. The Private
attribute makes it much, much more difficult for the irresponsible to
muck about with it.)

Simple.

How the Templates Do Sort Orders

I think what has just been described is important enough to reiterate.

When Tabs are created, information is taken from the prompts on the
Conditional Behavior tab. These include locator, key, filter and Additional
Sort Fields information.

Information is collected starting with the second Tab (the first
"conditional" behavior). The default locator, key, filter and Additional
Sort Fields are added last. In this way, the default behavior is the target
of an ELSE clause (makes sense, doesn’t it?).

These data are added to a queue in the browse object. When the end
user changes Tabs, the Tab number is used to calculate the pointer to
retrieve this information from the queue.

Next Time

There is rather a way to go yet. But I have covered enough material to
keep your head busy for a while. Next time, I’ll draw out the implications
of this information and see if it provides a way to implement user defined
sort orders.

Download the example program

Steve Parker started his professional life as a Philosopher but now tries
to imitate a Clarion developer. A former SCCA competitor, he has been
known to adjust other competitor's right side mirrors -- while on the
track (but only while accelerating). Steve has been writing on Clarion
since 1993.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - ABC Sort Orders Part 1

http://www.clarionmag.com/v1n3/sub/v1n3sortingpart1.html (5 of 5) [5/3/1999 12:47:34 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n3/sort_1.zip
http://www.par2.com/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Andy "Cowboy" Stapleton is the acknowledged Clarion SQL guru and a
regular presenter at Clarion conferences around the world. His company,
Cowboy Computing Solutions, produces SQL templates and classes for
Clarion.

If you have an SQL question of a non-urgent nature for Andy,
particularly if it reflects issues that will be of concern to other Clarion
programmers, you can post it c/o Clarion Magazine as described below.
Selected questions will be answered in the SQL Answer Cowboy column.
(If you have an urgent SQL-related question, you're probably better
advised to post it to the Drivers newsgroup on the Topspeed news
server.)

To submit your SQL question either email advisor@clarionmag.com

or

fill out the following form and press the Submit button.

Your Name

Your Email Address

Your SQL Question:

Clarion Magazine - The SQL Answer Cowboy

http://www.clarionmag.com/sub/sqlcowboy.html (1 of 2) [5/3/1999 12:47:42 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.lodestarsoftware.com/ccs/index.htm
http://www.topspeed.com/techsupp.htm
http://www.topspeed.com/techsupp.htm
mailto:advisor@clarionmag.com
http://www.lodestarsoftware.com/ccs/
http://216.82.30.86/etc2000.html

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - The SQL Answer Cowboy

http://www.clarionmag.com/sub/sqlcowboy.html (2 of 2) [5/3/1999 12:47:42 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 3
April 1999

Clarion Challenge Results
Edited by David Harms

Last month Clarion Magazine issued a challenge to Clarion coders to
come up with the fastest, most compact code to determine how many
billable periods of a given length of time existed between any start time
and end time (which were not to be more than 24 hours apart). A
number of you rose to the challenge, and the results brought up some
interesting questions and observations.

I reduced all of the contributions to functions and placed them in a single
exe for side-by side testing. You can download the source with project
file or the source and a locally compiled 32 bit exe.

Figure 1 shows a screen shot of the test program. I subjected the
contributed functions to a fairly small number of tests to check basic
compliance (your results may vary – I used a Dell Inspiron 3000
notebook). Figure 1 shows the first (default) test which checks for the
correct calculation of fifteen minute non-rounded periods.

Figure 1. Fifteen minute blocks, non-rounded.

Clarion Magazine - Clarion Challenge Results

http://www.clarionmag.com/v1n3/sub/v1n3challengeresults.html (1 of 4) [5/3/1999 12:47:50 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/v1n2/sub/clarionchallenge-timecalc.html
ftp://www.clarionmag.com/pub/clarionmag/v1n3/advisor.zip
ftp://www.clarionmag.com/pub/clarionmag/v1n3/advisor.zip
ftp://www.clarionmag.com/pub/clarionmag/v1n3/advisor32local.zip
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://216.82.30.86/etc2000.html

All but two of the methods showed the correct value. With the rounding
box checked, all methods showed the correct value.

In order to get reasonably accurate time samples I used 100,000
iterations per function (keep in mind that the timer clock resolution is
only 1/18 second). A faster testing solution would be to use API
functions to get smaller timer ticks. Maybe next time. There are also
some questions about whether the test program introduces variances
into the results, so there may be some slight inaccuracy in the results
(second place finishers, take note!).

Not surprisingly, David Bayliss clocked the fastest time in the first test.
But then it’s his compiler. Among the correct answers, Brian Staff came
in second. Several of the functions has problems with the non-rounded
calculation.

When the rounding flag was set, Mr. Bayliss fell to fifth place, and Peter
Gysegem took top honors, as shown in Figure 2.

Figure 2. Fifteen minute blocks, non-rounded.

When testing code it’s always important to check boundary conditions.
With the start time set to 3:00 p.m. and the end time to 4:00 p.m., two
functions returned five rather than four units. Although the requirements
are open to interpretation, I think few users would expect one hour to
show as five billable fifteen minute periods.

Gordon Smith provided the following test conditions which almost no one
correctly handled in all cases (expected results are shown in
parentheses).

Start time=3.00pm, end time = 2.59pm, unit size=1,
round=off. (1439)

Start time=12.00am, eend time = 12.00pm, unit size=1,
round=off. (720)

Start time 11:59pm, end time = 12:00am, unit size=3,
round=off. (1)

Start time=3.00pm, end time = 3.00pm, unit size=1,
round=off. (1440)

Clarion Magazine - Clarion Challenge Results

http://www.clarionmag.com/v1n3/sub/v1n3challengeresults.html (2 of 4) [5/3/1999 12:47:50 PM]

Start time=3.00pm, end time = 3.00pm, unit size=60,
round=off. (24)

Starting at 3:00 p.m. and ending at 2:30 p.m. with rounding on yielded
varying results (23 or 24 hours). Which is correct, and which should be
correct? This is a less-clear situation than the number of units in an
hour, so no error was assigned, except to the specification writer. This
underlies the importance of anticipating such situations in design as well
as in testing.

A composite rating of function speeds is as follows:

* Failed one or more tests

Peter Gysegem (A) * 6.04

Brian Staff 7.14

David Bayliss * 8.69

Gordon Smith * 9.66

Nik Johnson (A) 10.05

Carl Barnes 11.2

Alan Telford * 13.57

Poul Jensen * 14.11

Kurt Pawlikoski * 15

John Cunningham * 15.43

Jeff Slarve * 19

Nik Johnson (B) * 23.24

As you can see, only Brian Staff and Carl Barnes survived all the tests
(at least so far) with Brian having the fastest time.

It’s a bit more difficult to rate the size of the functions since not all
contributors used the smallest possible labels and minimum spacing, and
not all code was received in the form of a function. Click here to view the
program source code and make your own assessment.

Contributor comments: Peter Gysegem

I was surprised to find that passing the variables as a named group
didn't change the speed within the margins of error in my tests. I also
tried a couple different methods for calculating the value of Elapsed with
no statistically significant difference in times:

Elapsed = (EndTime - StartTime) + 8640000 * (EndDate - StartDate)

IF BXOR(StartDate,EndDate)
 Elapsed = EndTime + 8640000 - StartTime
ELSE
 Elapsed = EndTime - StartTime
END

Clarion Magazine - Clarion Challenge Results

http://www.clarionmag.com/v1n3/sub/v1n3challengeresults.html (3 of 4) [5/3/1999 12:47:50 PM]

http://www.clarionmag.com/v1n3/sub/advisor.clw

My results show that the most readable (and maintainable) code is also
the fastest and that inline nested functions slow things down while often
making the code harder to maintain.

Contributor comments: Carl Barnes

I was amazed at how fast DAB's code was but yet it was very simple and
straightforward demonstrating his past statements that "straightforward"
is the way you should write your code and let the compiler writer
optimize it.

I would say the ROUND function in Clarion is very efficient, I tried to not
use any function thinking it would be faster. Possibly my code is too
nested to optimize where simple straight forward code optimizes the
best. I would guess I did not pay attention to type conversions I am
causing.

Summary

Although this seemed like a fairly straightforward challenge, the resulting
code (as is often the case) demonstrated that there are a number of
facets to the design that were not adequately considered in the original
specification. The fact that most of the functions failed one or more tests
is in part a reflection of the lack of detail in the specification.

Future editions of the Clarion Challenge will probably include specific
tests and will focus less on code size and more on speed and
maintainability.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Clarion Challenge Results

http://www.clarionmag.com/v1n3/sub/v1n3challengeresults.html (4 of 4) [5/3/1999 12:47:50 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 3
April 1999

Understanding FieldClass
or

How To Put Generated Code
On A Weight Loss Plan

by David Bayliss

When I sent around the initial design proposal for what later became the
ABC system one of the claimed benefits was a code reduction in user
procedures of around half to two thirds. At the time this was viewed with
some skepticism and so we set 30 percent as a reasonable goal. In the
end we actually achieved around 92-94 percent, and the field class was
chiefly responsible for the extra 30 percent.

To appreciate why, you need to consider how certain parts of the ABC
system would be coded if the FieldClass didn’t exist. For the sake of
concreteness I am going to use the example I used many moons ago
when I was trying to persuade Tom Moseley that OOP could work in the
templates.

Example 1 : Updating a link field

One constant bugbear in CW2 was overflow of the appname_ru
(referential integrity, or RI) module (to >64K) on any sizeable or
complex dictionary. One aim of OOP was to reduce this problem.
Although there were other procedures the heart of the referential
integrity can be shown by pseudo-code for the RI update function.

Listing 1 assumes F1 & F2 are the related files (on the keys F1:K & F2:K
with 2 & 3 components respectively, KC1, KC2, KC3 etc).

Listing 1. Code to cascade RI updates.

CLEAR(F2:KC3,-1) ! Clear minor-most components
F2:KC2 = F1:KC2
F2:KC1 = F1:KC1
SET(F2:K,F2:K)
LOOP
 NEXT(F2)
 IF F2:KC1 <> F1:KC1 OR F2:KC2 <> F1:KC2 THEN
 BREAK ! No longer meeting range
 END
 F2:KC2 = New:F1:KC2
 F2:KC1 = New:F1:KC1
 Cascade_Updates
END

Clarion Magazine - David Bayliss on FieldClass

http://www.clarionmag.com/v1n3/sub/v1n3dabonfieldclass.html (1 of 8) [5/3/1999 12:47:56 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://216.82.30.86/etc2000.html

I have left out several vital details but this is enough to show the nature
of the problem. This code fragment (and every bit of file IO/error
handling that goes with it) appears for every relation with RI restrictions
on it. If you have 100 files, 250 relations means 250 copies of the code.
It’s not too surprising RI code frequently blows the segment limits in the
legacy templates.

The challenge is to "proceduralize" the above code.

When trying to abstract out an algorithm I like to go through the code
colouring the lines. I use three colours: blue for base classes; green for
parameterized base classes; black for instance specific code. In my first
pass over the code I just pick out the blue stuff: those lines of code
which will always be the same no-matter which of the 250 copies of the
code I am looking at.

Listing 2. Code to cascade RI updates with common code in blue.

CLEAR(F2:KC3,-1) ! Clear minor-most components
F2:KC2 = F1:KC2
F2:KC1 = F1:KC1
SET(F2:K,F2:K)
LOOP
 NEXT(F2)
 IF F2:KC1 <> F1:KC1 OR F2:KC2 <> F1:KC2 THEN
 BREAK ! No longer meeting range
 END
 F2:KC2 = New:F1:KC2
 F2:KC1 = New:F1:KC1
 Cascade_Updates
END

This ranks as grim. The vast bulk of the code is actually different
between the 250 copies. You could put the loop in the base class and call
out for the header and loop body, but the total lines of code (once you've
allowed for two new procedures) actually goes up. Listing 3 shows five
lines of code that replace the three blue lines.

Listing 3. Method to call RI virtuals.

RelationClass.UpdateSecondary PROCEDURE
CODE
SELF.UpdateSecondaryInit ! Virtual call- override for every relation
LOOP
 IF SELF.UpdateSecondaryIterate THEN BREAK .
END

Perhaps the green pen will yield better results. This time I can colour
lines with variables provided I then add a parameter to the procedure
prototype to allow the value to be substituted.

Listing 4. Parameterized and base class code in green.

CLEAR(F2:KC3,-1) ! Clear minor-most components
F2:KC2 = F1:KC2
F2:KC1 = F1:KC1
SET(F2:K,F2:K)
LOOP
 NEXT(F2)
 IF F2:KC1 <> F1:KC1 OR F2:KC2 <> F1:KC2 THEN
 BREAK ! No longer meeting range
 END
 F2:KC2 = New:F1:KC2
 F2:KC1 = New:F1:KC1
 Cascade_Updates
END

Clarion Magazine - David Bayliss on FieldClass

http://www.clarionmag.com/v1n3/sub/v1n3dabonfieldclass.html (2 of 8) [5/3/1999 12:47:56 PM]

There is a subtlety here. Why didn't I colour the CLEAR? Because the
number of components to be cleared is not a function of the relation, it is
a function of the key used by the secondary file. Thus you cannot readily
parameterize it. So now you get the code shown in Listing 5.

Listing 5. Parameterized method to handle RI update.

RelationClass.UpdateSecondary PROCEDURE(File F, Key K, *? F1Field1,*? F1Field2, *?
F2Field1, *?F2Field2, ? New1, ?New2)
 CODE
 SELF.UpdateSecondaryClear ! Virtual call- override for every relation
 F2Field1 = F1Field1
 F2Field2 = F1Field2
 LOOP
 NEXT(F)
 IF F2Field1 <> F1Field1 OR F2Field2<>F1Field1 THEN
 BREAK
 END
 F2Field2 = New2
 F2Field1 = New1
 SELF.Cascade ! Virtual
 END

Now each of the 250 code lumps becomes two small virtual procedures
and one base class call (with 8 parameters). This cuts down the line
count although the actual amount of code generated is still quite high.
Each *? Parameters costs 30+ bytes, so 6 of them is 180 bytes. I have
also snuck a little bug past you. I have been assuming throughout that
there are two linking fields. There can (of course) be 1, or 3 or 4 etc. So
you need copies of the UpdateSecondary procedure (and the other four)
for each possible number of pairs of fields.

Now I have greatly shrunk the code (i.e. there will be no more 64K
problems) and just about everything has been abstracted. Every now
and then someone will call to complain that ABC doesn’t support 9
linking fields in a relation and we can simply write a new
UpdateSecondary9 (with 27 *? Parameters at 600+ bytes per call).

But code abstraction doesn’t have to end here. This design has
UpdateSecondary1, UpdateSecondary2 etc and these procedures are
really the same except in the number of parameters passed in. You can
write a generalized UpdateSecondary procedure (except it won’t
compile!) as shown in Listing 6.

Listing 6. A general UpdateSecondary procedure.

RelationClass.UpdateSecondaryN PROCEDURE(File F, Key K, (*? F1Field1, *? F2Field1, ?
New1) * N)
 CODE
 SELF.UpdateSecondaryClear ! Virtual call- override for every relation
 LOOP N Times
 F2FieldN = F1FieldN
 END
 LOOP
 NEXT(F)
 LOOP N Times
 IF F2FieldN <> F1FieldN THEN BREAK OuterLoop.
 END
 LOOP N Times
 F2FieldN = NewN
 END
 SELF.Cascade ! Virtual
 END

Clarion Magazine - David Bayliss on FieldClass

http://www.clarionmag.com/v1n3/sub/v1n3dabonfieldclass.html (3 of 8) [5/3/1999 12:47:56 PM]

Listing 6 won’t compile because that isn’t a legal procedure prototype.
But you can see the idea – I want to be able to pass in any number of
fields without having to define the fields ahead of time.

Example 2 : Formatting a browse line

Another place that presented problems was the browse code. Most of the
engine can disappear into a procedure (Bruce actually did this for
CDD3.0). However there are three very large routines you cannot take
down: filling a browse queue from data; filling the record buffer from the
browse; and seeing if any data in the browse queue has changed. These
three routines essentially look like this :

BrowseQ:Field1 = File:Field1
BrowseQ:Field2 = File:Field2
BrowseQ:Field3 = OtherFile:Field7

where "fill buffer" goes the opposite way to "reset buffer."

Easy you say, that’s the same as parameterizing. But think about it!
Restricting the number of linking fields to 9 is one thing, but the number
of browse columns? We would have to go up to 100 just to avoid getting
shot by the alpha testers! On the other hand if only I could get the LOOP
N Times code from Listing 6 to compile then this really would be so easy.

(Some of you may think we could use the :=: syntax to move across the
corresponding fields. In general that doesn’t work because it doesn’t
allow for browse columns defined by local variables. It also suffers if you
have two files in the browse with clashing field names).

In my opinion it was this problem that killed the CDD browse engine.
Because the engine had to call back to the main code so frequently to do
almost anything (and they didn't have the virtual mechanism to clean
things up) the code because almost impenetrable. So the engine died,
the inline browse appeared, and the browse procedure became our main
bugbear for over five years.

What’s The Real Requirement?

The job then becomes one of defining what it actually is about the LOOP
N Times code that will solve the problem. I think it comes down to the
following :

I need to be able to pass around a list of one or more field pairs which
can then be manipulated as a single entity.

Think about those last two words; they are the key. If I can embody the
LOOP N Times into a single line of code then I have the problem cracked.

My expression field pairs also betrays another consideration. In the
browse case there are only ever two fields that are really interesting; for
the RI code there are three interesting values (child fields, parent fields,
new parent fields). The prototype for the UpdateSecondary is also
interesting. Note that the fields pertaining to the files are prototyped as
*?, meaning they can be assigned to and from. The new fields are only
ever used by value. It turns out that (in this example, at least) there are
typically 4 different cases :-

Single field. This is a list of fields with no partner. In fact the
components of a key are stored this way which makes it possible
to bring the CLEAR(keycomponent) into the base class as well!

1.

Single field – buffered. These are fields which have to have a
snapshot of their values taken without changing and ‘real’ program
variables so the variables can be later compared to those values.

2.

Two fields. Two sets of fields, either of which can be assigned to
and from the other.

3.

Two fields – buffered. This is the most complex case of two sets of
fields where either one may need snap-shotting.

4.

Because the fourth case is much heavier than the others (although
related) we decided to assign it to its own class which is derived from the
field pairs class.

The Implementation - Any Ideas?

Clarion Magazine - David Bayliss on FieldClass

http://www.clarionmag.com/v1n3/sub/v1n3dabonfieldclass.html (4 of 8) [5/3/1999 12:47:56 PM]

In order to understand how this class works you certainly need to
understand queues but you also need to understand the ANY datatype.
This is given an excellent coverage in the manuals which I shan’t repeat.
However, the key here is this: an ANY can act like a *? parameter OR a ?
parameter dependant upon how you assign to it.

Specifically,if an ANY variable is NULL (has no value) then a straight value
assignment to it produces a value ANY, while a reference assignment to it
produces a variant any. Listing 7 shows an example.

Listing 7. Using ANYs to store values and references.

MyAny &= NULL
Field = 22
MyAny = Field ! MyAny = 22
Field = 42 ! MyAny = 22
MyAny = 50 ! Field = 42, MyAny = 50
MyAny &= Field ! MyAny = 42
Field = 62 ! MyAny = 62
MyAny = 72 ! Field = 72

Warning: CLEAR(MyAny) is equivalent to MyAny = 0. It is NOT the
same as MyAny &= NULL.

FieldPairsClass.Init PROCEDURE

The Init procedure is simple enough to use. It creates the queue that
forms the basis of the class. A slight oddity is the call to Kill first. This
is to allow a FieldPairsClass to be used and reused within a
procedure. (Effectively Init acts as a Reset.)

FieldPairsClass.AddItem PROCEDURE(*? Left)

There are two notional AddItem methods (the second called AddPair).
This one is used for cases 1 & 2. Note the ASSERT to insure Init has
been called. The CLEAR is dealing with some (rather nasty) memory
management issues when dealing with ANY in queues (see the manual).
The incoming variable is &= into the left hand queue element. It is then =
into the right hand element. This distinction is crucial (see above). It
means that simply AddIteming a field is enough to snap-shot it so that it
can be reset (or tested for difference) at a later stage. The parameter is
called Left because you can think of it as something you can assign into
(and which therefore appears on the left hand side of an assignment (=)
operator.

FieldPairsClass.AddPair PROCEDURE(*? Left,*? Right)

This method is used for variant 3. Other comments are the same as
AddItem. Note also that in this case left & right do not have any real
significance. it is just a non-suggestive way of labeling the two entities.

FieldPairsClass.AssignLeftToRight PROCEDURE

This procedure is really meaningless in variant one (actually it converts a
variant one into a variant two). In variant 2 this can be seen as a way of
snapshotting the current values of all the variables. In variant 3 all the
values from the variables passed in as ‘lefts’ will be copied into the
variables passed in as ‘rights’.

Warning: Note the PUT after the assignment. This is because an
assignment to an ANY variable can actually change the memory block
allocated to the ANY. Hence you have to store the queue after an
assignment even if you know the ANY is a variant ANY.

Clarion Magazine - David Bayliss on FieldClass

http://www.clarionmag.com/v1n3/sub/v1n3dabonfieldclass.html (5 of 8) [5/3/1999 12:47:56 PM]

FieldPairsClass.AssignRightToLeft PROCEDURE

Again the use of this suggests you are not really in the variant 1 case. In
variant 2 it has the effect of restoring all the variables passed in as Lefts
to the values they had when an AssignLeftToRight was last done.
(Which could be the implicit one at the Additem point). In variant three
this is an assignment from the variables passed as Rights to the
variables passed as Lefts.

FieldPairsClass.ClearLeft PROCEDURE

This has the same effect for all three variants, it CLEARs the variables
passed in as Lefts. This is not the same as assigning to zero, because the
left-hand side could be a string. It is also not quite the same as
assigning to a blank string (consider Cstrings & Pstrings). Now you could
argue that it is the same as assigning to a zero length string, which is
true, but only by coincidence. This illustrates one of the big pitfalls of
having a language "guru" doing low-level classes. You can use your
low-level knowledge to build assumptions into the system that are not
required. The fact that presently all Clarion data-types can be CLEARed
by assigning a zero length string is a very dangerous fact to build into a
set of base classes (consider what would happen if you could pass a
mixed-type group as a *?). The clearing mechanism is there to protect
you from such assumptions, so the base classes use the full language
facility where they can.

Note further that CLEAR(SELF.List.Left) is very different from
SELF.List.Left &= NULL (see above).

FieldPairsClass.ClearRight PROCEDURE

In variant 2 this clears the buffer values, in variant 3 it clears the
variables passed in as Rights. This method is subject to the same
considerations as ClearLeft.

FieldPairsClass.EqualLeftRight PROCEDURE

In variant 2 this compares the current values in each of the Lefts against
the last snap-shotted values. It returns a zero if any of the values differ.
In variant 3 it compares each Left–Right passed in and returns a zero if
there are any differences.

Note that this procedure effectively does a short-circuit evaluation which
means the function returns as soon as a deviation is found. It
demonstrates one of the reasons that I believe certain programming
mantras can and should be violated in a controlled environment.

First the controlled environment. EqualLeftRight is 10 lines long, it fits
on one screen and (I claim) should be understandable in one bite by a
half-way competent programmer.

Now for the mantra. Good structured programming will teach you that
any given procedure should have precisely one entry point and precisely
one exit point. This procedure has two exit points. Why? Certainly
efficiency, and also (I claim) clarity. Consider the obvious alternative in
Listing 8.

Clarion Magazine - David Bayliss on FieldClass

http://www.clarionmag.com/v1n3/sub/v1n3dabonfieldclass.html (6 of 8) [5/3/1999 12:47:56 PM]

Listing 8. A single exit point alternative to EqualLeftRight.

FieldPairsClass.EqualLeftRight PROCEDURE
I UNSIGNED,AUTO
B BYTE(1)
 CODE
 LOOP I = 1 TO RECORDS(SELF.List)
 GET(SELF.List,I)
 IF SELF.List.Left <> SELF.List.Right
 B = 0
 END
 END
 RETURN B

Now the method has the required one exit point. However there is an
extra line of code and there are two extra assignments (BYTE(1) is an
implicit assignment). But the real pain is more subtle. Imagine a big field
list (100 fields) in which you are checking for a difference (say after an
Edit-In-Place operation on a browse). This code will check all 100 fields
even if the first one sets B to zero!

So you end up having to put a BREAK into the IF condition or code an
UNTIL at the tail of the LOOP. The latter is less efficient still. The former
is efficient but if you now draw a flow diagram of your algorithm you will
find exactly the same logical structure as coding a RETURN but it took you
20% longer to say it!

This brings me to the Bayliss mantra: keep it short and to the point, but
then don't compromise!

FieldPairsClass.Equal PROCEDURE

This is simply a logical short-hand for people using the FieldPairsClass
as opposed to the BufferedPairsClass (where the explicit LeftRight is
helpful).

FieldPairsClass.Kill PROCEDURE

Check over this code. The destruction sequence of queues with ANYs
needs careful work. First you have to null out all of the any variables,
then you can dispose of the list.

Derived Classes

BufferedFieldClass

This class is really just an extension to the FieldClass to handle case 4.
Two fields are paired and there is a shadow third value. In some ways
this makes it easier to understand than the FieldClass. If ever Left or
Right are assigned to/from then it is the values in the underlying fields
that are being used. Buffer means the shadow which never effects any
values in the "real" program.

Queue Derivation

The BufferedFieldClass is derived from the FieldClass; that is to say
whenever a buffered field class is being used without reference to the
shadow value you can simply call the same functions as you would for a
case 3 of the field class. The buffered field class is an extension for the
case when buffering is needed. Now we could simply have implemented
the BufferedFieldClass and used it for cases 1 through 3. The main
reason we didn’t is one of efficiency. ANY variables work extremely slowly
compared to standard Clarion variables (about 30x slower, or similar to
Visual Basic) and therefore maintaining an extra 1 or 2 for the very
common cases (1 through 3) was deemed unwise. The separation also
enables the field class to have a relatively small, clean interface.

Clarion Magazine - David Bayliss on FieldClass

http://www.clarionmag.com/v1n3/sub/v1n3dabonfieldclass.html (7 of 8) [5/3/1999 12:47:56 PM]

BufferedPairsClass.Init PROCEDURE

This procedure demonstrates a simple problem, with a simple enough
fix, but to the unwary it can be very confusing. The FieldClass contains
a reference to a FieldPairs queue (with Left & Right ANYs). This is
NEW/DISPOSEd in the FieldClass Init and Kill methods. The
BufferedFieldPairs class has a reference to a buffered queue with
three fields. Now here is the problem: if the FieldClass and
BufferedFieldClass both have Init and Kill called then there will be
two separate queues pointed to by two separate references. So the
BufferedFieldClass Init method does not call its parent. As a result
there is only one copy of the queue.

But there is a subtler problem. Suppose the Equal method is called. This
drills down to FieldPairs.EqualLeftRight which expects the
SELF.List reference to be filled in, which it won’t be. Bang!

Here is the fix. The BufferedPairsQueue is (very deliberately) just the
FieldPairsQueue with extra fields added. The Init method &= the List
in the FieldPairsClass to the RealList in the derived class. Now the
methods in FieldClass can access the same queue as those of the
BufferedFieldClass but via a different reference.

Tech note: A particularly nice feature of queue and class references is
that they contain type information. Thus CLEAR(MyQueueReference) will
always clear the whole queue buffer. Similarly ADD(Queue) works on the
whole queue.

BufferedPairsClass.AddPair PROCEDURE(*? Left,*? Right)

This method overrides the equivalent method in the base class. Later
versions of it actually contain some rather intricate code to fix a subtle
bug that I missed on the first lap. All the code is really trying to do is
reference assign Left and Right (as per the parent function) and then
CLEAR the buffer value (because I don’t know whether to assign it to Left
or Right). But the question becomes, what does it mean to clear an any
variable? (See discussion on ClearLeft.) What I really want is to assign
it to a value which will compare equal to the Left or Right variables if
they have been cleared. The only general way I could think of doing this
was to clear the Right variable and then assign it to the buffer. Of course
people might object to me doing that so I temp-store it first.

I think the other methods are fairly self-explanatory given the FieldClass
explanations.

Finally

ANY variables (and type polymorphism) are key strengths of the Clarion
language that make it possible to code complex database algorithms in a
totally generic and safe way. The two field classes extend this paradigm
up to lists of field pairs. If you scan the ABC sources you will find the
field pairs classes are intrinsic to files, browses, drop combos and
edit-in-place. If you scan generated source you will find AddPairs
popping up very frequently. The combined effect of these facts is that
most procedures can be generated without any need to derive the
browse or file objects. This simplifies and reduces the amount of code
required to use these classes and gives Clarion an implementation edge
(from template or hand-code) over C++, VB and Object Pascal.

I hope this FieldClass design overview has given you an insight to one of
the fundamental building blocks of the ABC system.

David Bayliss is a Software Development Manager for Topspeed
Corporation. He is also Topspeed's compiler writer and the chief architect
of the Application Builder Classes.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - David Bayliss on FieldClass

http://www.clarionmag.com/v1n3/sub/v1n3dabonfieldclass.html (8 of 8) [5/3/1999 12:47:56 PM]

http://www.users.globalnet.co.uk/~dabay/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 3
April 1999

The Clarion Class Browser
Freeware For The OO Programmer

Reviewed by Dave Harms

Shortly after Topspeed released the first ABC templates Gordon Smith
(aka "Le Schmoo") produced the Clarion Class Browser. Class browsers
are a common feature in OO languages and are a much better way to
view class source than viewing the source files directly.

The Clarion Application Generator does come with a class browser of
sorts already, it’s true. But this built-in browser has limited capabilities
and cannot be run outside the AppGen. For most situations, and
definitely when you’re working with non-ABC classes, Le Schmoo’s
browser is the tool of choice. And the price is certainly right: it’s free.

The class browser comes as a single executable setup program and
installs into the directory you specify. This is a locally-compiled EXE –
you do not need a particular runtime DLL.

After you install and run the program you’ll need to create at least one
class library file, which is a database of class header files. Choose
File|New and provide a location and name for the database (the file will
have the extension .clb). Click OK, and you’ll see the library properties
window, shown in Figure 1.

Figure 1. The class libraries properties window.

Clarion Magazine - Review: Class Browser

http://www.clarionmag.com/v1n3/sub/v1n3review_classbrowser.html (1 of 8) [5/3/1999 12:48:15 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://216.82.30.86/etc2000.html

I always dutifully fill in the fields as requested, but I have noticed that no
matter what I specify for the default folder, the browser always looks in
its own directory first when I wish to add a header. This may be because
I have the class browser installed on a different drive than Clarion. (You
can always go back and change these settings by choosing
File|Properties.)

This directory amnesia isn’t a big problem as you can add multiple
classes at once, thereby avoiding repeated trips to the file dialog. Choose
Edit|Insert OOP Header (or press Ins) to bring up a file dialog that looks
for files ending in .INC. You select multiple files using the shift or control
keys along with the mouse (or cursor keys). Click OK to add the header
(.INC) files, which will provide the browser with the class declarations.
Figure 2 shows the browser with the ABC (and several other) class
headers loaded.

Figure 2. The Class Browser main window.

Clarion Magazine - Review: Class Browser

http://www.clarionmag.com/v1n3/sub/v1n3review_classbrowser.html (2 of 8) [5/3/1999 12:48:15 PM]

As Figure 2 shows, the top window shows the headers and their contents
in a list box, and the bottom window shows the source code. I’ll refer to
these windows as the header and source windows. You can also have the
source window on the right hand side if you prefer. This is how I work,
but because of limitations on image size in this document most of the
screen shots show the source on the bottom. Click here for a large image
of the side by side view.

If you select a class element in the header window that is declared in the
INC file (such as a group or queue, or the first line of a class declaration)
the corresponding line is located and highlighted in the source window. If
you select a method in the header window, the method source (from the
corresponding CLW file) is shown.

As Figure 2 shows, header elements are identified by symbols. Figure 3
shows the symbol key (available from the Help menu).

Figure 3. The symbol key.

You can decide which of the header elements to display by making
selections from the View menu, shown in Figure 4.

Figure 4. The view menu.

One of the key benefits of a class browser is it shows you the whole
structure of derived classes. Figure 5 shows the beginning of the ABC
BrowseClass, which is derived from ViewManager.

Clarion Magazine - Review: Class Browser

http://www.clarionmag.com/v1n3/sub/v1n3review_classbrowser.html (3 of 8) [5/3/1999 12:48:15 PM]

http://www.clarionmag.com/v1n3/sub/classbrowser_figfull.gif

Figure 5. The ABC BrowseClass.

The + sign before the class declaration indicates that the list can be
exploded at that point to show ViewManager’s declaration, as shown in
Figure 6.

Figure 6. The ABC BrowseClass exploded to show the parent ViewManager class.

Clarion Magazine - Review: Class Browser

http://www.clarionmag.com/v1n3/sub/v1n3review_classbrowser.html (4 of 8) [5/3/1999 12:48:15 PM]

Note that within ViewManager there are other declarations (Order and
Primary) which can also be expanded. Order can be further expanded to
show two of its complex elements: Filter (another queue) and RangeList.
RangeList of type BufferedFieldPairsClass which is derived from
FieldPairsClass, and FieldPairsClass contains a queue. Figure 7 shows
these declarations.

Figure 7. Deep in the bowels of BrowseClass.

Clarion Magazine - Review: Class Browser

http://www.clarionmag.com/v1n3/sub/v1n3review_classbrowser.html (5 of 8) [5/3/1999 12:48:15 PM]

Without a class browser, the only way you could get a picture of the
actual structure of BrowseClass would be to go digging through the
header files (which is exactly what the class browser does for you), and
then you’d have to go through the source files to see what the methods
do. With the class browser, the method source is also only a click away.

The class browser also has a Find feature which lets you search all or
selected parts of the class library. Once you’ve found the first instance
you may wish to close the modal Find window and use the Edit|Find Next
feature (or just press F3).

Figure 8. The Find window.

Clarion Magazine - Review: Class Browser

http://www.clarionmag.com/v1n3/sub/v1n3review_classbrowser.html (6 of 8) [5/3/1999 12:48:15 PM]

The class browser also has a Compile menu which has but one item:
Generate Project. This option will create a PRJ and corresponding EXP
(export) file (with the same name as the class library) and a set of
modified INC files for the classes you have loaded. This is NOT intended
for use with the ABC classes since there are also typically global
variables and files involved when setting up multi-dll applications, but it’s
a nifty solution for creating handcoded dlls as it handles the export file
creation. The EXP created is for 16 bit applications. You can use it for 32
bit apps but be aware that the SIGNED and UNSIGNED data types
mangle differently in 32 bits so if you’re using these as parameters you’ll
have to modify the EXP file.

One item on the toolbar which isn't on the menu anywhere is the Edit
Source button. Use this button to switch to edit mode in the source
menu, and to switch back (and save your changes). Although this is a
nice feature, I think I'd prefer to use the Clarion editor to work with my
source.

Documentation

One drawback to the class browser is the complete lack of
documentation. Fortunately, most features (except perhaps DLL
creation) are fairly intuitive. Another weakness is that the Class Browser
is time-limited, and several times per year you will need to download an
updated version from Gordon’s web site. As I use the class browser
heavily it seems I’m occasionally the first person to discover the browser
has expired, but I’ve always been able to obtain an updated version in
short order, most recently the same day.

I've given the the Class Browser a "three pyramid" rating rather than a
four only because there is no documentation explaining where to get
support. As this is a mature product you most likely won't need any, but
the author's email address is in Help|About. Earlier in the product's life I
did report some bugs to Gordon and always received prompt action.

If you’re interested in exploring the inner workings of ABC, I suggest you
use the Class Browser in conjunction with cciProfilerClass to generate a
method call tree. As you follow down the log of method calls use the
browser to locate the source and see what code is being executed.

The Class Browser is one of my most-used utilities and I recommend it
highly. You can download it from http://www.iol.ie/~schmoo. Also
available at this site: Compile Manager, a tool for automated compiles of
multi-app projects.

Clarion Magazine - Review: Class Browser

http://www.clarionmag.com/v1n3/sub/v1n3review_classbrowser.html (7 of 8) [5/3/1999 12:48:15 PM]

http://www.iol.ie/~schmoo

PRODUCT RATING

Documentation

Features

Support

Value

Overall

Legend

Excellent

Good

Fair

Poor

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Review: Class Browser

http://www.clarionmag.com/v1n3/sub/v1n3review_classbrowser.html (8 of 8) [5/3/1999 12:48:15 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 3
April 1999

Technology Preview: Clarion Does COM!
by Ross Santos

Many of us in the Clarion for Windows world have clamored for tighter
integration of OLE components (now known as COM, which stands for
Component Object Model) in Clarion for Windows. Well, TopSpeed Corp.
has listened, and busily, behind closed doors at their UK Development
Centre, they have been hard at work developing the best solution for us
all: Clarion COM. That’s right! Clarion for Windows will finally do COM.

We’ve got templates, we’ve got objects and soon we’ll have COM in all
its glory, and with dot syntax too! What more could we ask for!

The new Clarion COM layer will support both IDispatch (VB style) as well
as IUnknown (C++) style COM models. Clarion for Windows programs
will be COMable too. That means that you can create a program that will
support COM interfaces and functionality, breaking the barrier between
disparate languages.

Furthermore, a sophisticated COM Object class will handle many of the
dirty details, making programming COM much simpler and easier to
master than in other well known languages (nudge nudge wink). As well,
BSTRs and VARIANTs will be integrated into the Clarion language. So
keep your eyes peeled for the first of a series of articles written by me
(Ross A. Santos) on the new Clarion COM right here at ClarionMag.com.

About COM
Object-oriented programming is a great thing, but it’s even better when
you can use objects from another source without having to link them
into your application. In the Windows world this is mainly accomplished
through COM, Microsoft’s Component Object Model (for non-Windows or
multiplatform work CORBA, a competing standard to Microsoft’s
Distributed COM, is often used). COM is the backbone of OLE, and
essentially is an Object Request Broker (ORB) which manages messages
between objects which conform to the COM standard.

Links

Clarion Magazine - Clarion Goes COM!

http://www.clarionmag.com/v1n3/sub/v1n3comannounce.html (1 of 2) [5/3/1999 12:48:23 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.corba.org/
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://216.82.30.86/etc2000.html

Microsoft's COM Home Page
http://www.microsoft.com/com/default.asp

Overview of COM techologies
http://www.microsoft.com/com/comTech.asp

Microsoft COM Articles, Specs, and White Papers
http://www.microsoft.com/com/com.asp

ZDNet's Webopedia Page of COM Links
http://www.zdwebopedia.com/TERM/C/Component_Object_Model.html

COM vs. CORBA: A Decision Framework (white paper)
http://www.quoininc.com/quoininc/COM_CORBA.html

DCOM and CORBA Side by Side, Step by Step, and Layer by Layer
http://www.cs.wustl.edu/~schmidt/submit/Paper.html

Object News COM Pages
http://www.objectnews.com/com_page.htm

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Clarion Goes COM!

http://www.clarionmag.com/v1n3/sub/v1n3comannounce.html (2 of 2) [5/3/1999 12:48:23 PM]

http://www.microsoft.com/com/default.asp
http://www.microsoft.com/com/comTech.asp
http://www.microsoft.com/com/com.asp
http://www.zdwebopedia.com/TERM/C/Component_Object_Model.html
http://www.quoininc.com/quoininc/COM_CORBA.html
http://www.cs.wustl.edu/~schmidt/submit/Paper.html
http://www.objectnews.com/com_page.htm
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 3
April 1999

Knowledge Bases On The Web
An Interview with Arnor Baldvinsson,

Troy Sorzano, and Steve Parker

The growth of the Internet has meant massive increase in the amount of
information available to programmers, much of it through newsgroups
and web sites. Yet as Troy Sorzano points out in this week’s Rants and
Raves column, the problem of finding the information you need remains
acute. Three individuals, Troy Sorzano, Steve Parker and Arnor
Baldvinsson, have each created and operate on-line databases of Clarion
programming information. In this feature interview they explain how
their databases came to be, how they work, and where they’re headed
next.

To see the knowledge bases in action, go to these links:

Steve Parker: CoolFAQs/Cheat Sheet
Troy Sorzano: CWSuperKB
Arnor Baldvinnson: IceTips
Topspeed KB (partnered with IceTips)

Where did the idea for the knowledge base start?

Arnor: I guess it all started as a brainstorming session between the left
and right sides of my brain sometime before Easter last year (1998). At
that time I had collected a few articles from the newsgroups but had
nothing to really document them with. Kurt Pawlikowski emailed me in
early April, and asked why I didn't write up a small program to keep
online with articles etc. that could be searched. And stupid me, never
thinking things are impossible to do, said "hmm... why not?" Kurt spoke
to Steve Parker who graciously agreed to host the darn thing.

When going back and checking my emails from the time, it strikes me
that those first three knowledge bases all came around at the same
time. In late April, Troy contacted me. Then he was preparing for his
EuroDevcon session about knowledge bases and was starting his own.

Troy: On January 9, 1998 at 2:43pm. This was the precise moment I
posted a forum message to CompuServe outlining the reasons Topspeed
needed a knowledge base. This post came about because of my
frustrations with C4 Gold ODBC bugs and DAB’s Clarion Online article
titled "Zero Defects => Zero Productivity!" I felt that the entire Clarion
community was full of developers wasting too much time on known bugs
and workarounds because Topspeed did not have the proper resources
available for the developers to help themselves solve the problems.

So the idea was planted in my head that Topspeed needed a Knowledge
base. I did not really have the time to sit down and code one but the
idea kept running through my head. My motivation to code the
CWSuperKB was based on the reason most things get done—a deadline.
I needed a knowledge base for my presentation at EuroDevCon ‘98,
"Using CW to Create an On-line Knowledge Base for the Web."

Clarion Magazine - Knowledge Bases On The Web

http://www.clarionmag.com/v1n3/sub/v1n3kbsontheweb.html (1 of 9) [5/3/1999 12:48:31 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.par2.com/FAQS.HTM
http://www.cwsuperpage.com/kb/
http://www.icetips.com/
http://www.topspeed.com/
http://www.clariononline.com/
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://216.82.30.86/etc2000.html

Topspeed had released CWIC almost a year before EuroDevCon, but not
many people were actually running applications on the Internet. There
were lots of posts on the newsgroups asking where example CWIC
applications could be found, so I knew that a working knowledge base
would be a very useful example of what could be done with CWIC.

Like any good developer, I started coding the knowledge base about two
weeks before EuroDevCon ‘98; nothing like a rock solid deadline to get
me moving. Ironically, the weekend I started coding the KB I sent a
message to Arnor asking if I could link my KB to some of his articles on
IceTips. Arnor replied that he and Steve Parker had been working on a
knowledge base and he would be going to EuroDevCon ‘98. He was
interested in seeing my presentation, which was kind of funny since at
that point I did not have a working KB. So it turns out that several
knowledge bases were being built around the same time.

That weekend I created the CWSuperKB. The application logic and
search engine only took about four hours; the rest of the weekend was
spent working with the HTML and getting the look and feel just right.

Steve: The idea had actually been floating around for some time though
Troy acted on it first. "Floating," in this case, means that lots of folks had
been asking for one.

In my case, I got tired of all the, ah, grousing about "Topspeed should
do this" and "Topspeed should do that." Several months earlier, I had
offered to host a program written and maintained by someone else. This
was a test; folks didn’t realize just how tough this could be. There were
no takers (no surprise). In the meantime, I had been accumulating tips
and tricks from the newsgroups as I tried to learn my ABCs. The print
outs were beginning to get cumbersome. So I wrote a little program to
house them. Well, I found myself answering questions more than once,
often by referring to my "stash." So, I took a few days, gussied my app
up a bit (mostly hidding tabs), put the IC extensions on it and started
referring folks to CoolFAQs.

I continue to collect tips and tricks that I think I will find helpful. But I've
added another dimension: if I think something could become a repeated
question, I "FAQ" it.

My concentration is on tips, tricks, how to items. I don't catalog
workarounds or bugs. Since the bugs will probably go away, the
workarounds will no longer be relevant. This lessens my maintenance
while giving a longer life to articles.

At the same time, CoolFAQs (aka "Cheat Sheet') has provided me an
opportunity to test and showcase IC's capabilities. There is a full Java
version, almost completely "out of the box" IC, as well as several
(sequential) Java-free versions. Interestingly, though both are readily
available, two out of three hits are on the Java.

When did you go live?

Arnor: After a month of preparations and testing, IKB went online on
May 10th last year.

Steve: All three of the KB's came on line in about a two week period.
The order in which they were made public was: CoolFAQs, CWSuperPage
and Icetips, though I think that CWSuperPage had actually existed for a
few weeks before.

Clarion Magazine - Knowledge Bases On The Web

http://www.clarionmag.com/v1n3/sub/v1n3kbsontheweb.html (2 of 9) [5/3/1999 12:48:31 PM]

http://www.par2.com/FAQS.HTM

Troy: The first newsgroup posting I submitted
about the CWSuperKB was on May 6, 1998. It
was a stealth post as a reply to that dreaded
Dynamic Pool Limit error. I posted the output
of my knowledge base, listing two web
resources for DPL errors; one was on
http://www.icetips.com and the other was at
http://www.pointofsale.com. Two days later, I
made a formal announcement on the
newsgroups about the CWSuperKB.

What were your concerns about using
Java technology?

Arnor: From the first I decided that there
would never be a Java browse in the IKB!
There never has been. I have not once heard
a complaint about it being slow either. At
EuroDevcon I learned about the Java-free
stuff that Tony Goldstein and Troy had used
for their KB and Troy and I had some
discussions about this KB thing in general. We
had some initial problems with the program
running on the server.

After some investigation I found out that it
had started to misbehave when I got rid of
the appframe as I thought it was useless
because it was never called. But it turned out
that something in the appframe was needed,
so IKB has ever since used an appframe that
calls the search window before the appframe
opens and then goes directly out of the
program. IKB used Java until December when
I converted it to Java-free. I've done some
bits and pieces here and there, but the basic
file structures haven't changed until recently.

Troy: My major concern was not with Java
but with the way Topspeed used Java in their
CWIC product. Java is very cool and a very
powerful tool but, like any programming
language, there is a time and place for it. I
think that a vast majority of applications
written for the web using CW do not require
Java. Many people have said that CWIC is too
slow and the technology is unusable on the
Internet. Java was the main reason for
causing these concerns about the CWIC
product.

From: Troy Sorzano
Newsgroups: comp.lang.clarion
Subject: CWSuper Knowledge Base is in
Beta
Date: Fri, 08 May 1998 11:53:25 EDT
Organization: Information Packaging
Unlimited

Check it out
Http://www.cwsuperpage.com/kb

I created the CWSuperKB for the
EuroDevCon Topspeed conference next
week.

The Clarion for Windows Super Knowledge
Base.

The CWSuperKB is a Knowledge Base built
to utilize all the Clarion resources on the
web. By indexing articles, tip & tricks, FAQ's
and files the Clarion community now has a
way to SEARCH for knowledge. Every article
or file in the CWSuperKB is a hypertext link
to either a http document or ftp file. These
documents and files are stored on servers
all over the internet. If you have an article
to add to the CWSuperKB just send email to
webmaster@cwsuperpage.com with the
article title, keywords, short summary and
web link. If your article is not currently
published on the web send the article and it
will be hosted for free on the CWSuperPage.

The CWSuperKB utilizes Topspeed's CWIC
and Sybase SQL Anywhere. It has been
designed with the look and feel of a true
web Knowledge Base not the standard
"Windows" style applications that CWIC
normally creates.

http://www.cwsuperpage.com/kb

Later,
Troy

Even with the first version of the CWSuperKB that did not have any
standard CWIC Java browses, my application still required downloads of
the Java class files. I remembered that some of the early CWIC betas did
not have any Java code in them, so I thought it would be possible to
remove any references to the Java classes from CWIC. Looking at the
HTML that was generated by CWIC, I could see some Java class
references that were not being used by my code. Tony Goldstein—one of
Information Packaging’s developers—figured out how to remove all the
references to Java in our CWIC templates. We call this template
modification the Caffeine-Free CWIC technique. (To learn how to modify
your CWIC templates, take a look at Tony’s Caffeine-Free CWIC article.)

Caffeine-Free CWIC was a big boost for CWIC developers, as before this
every CWIC application required the Java class files. There appeared to
be a resurgence of developer interest in CWIC once people saw it was
possible to create Java-less apps with CWIC. The Caffeine-Free CWIC
technique worked so well that even Topspeed used it when they created
the on-line registration form for DevCon ‘98.

Steve: I had some concerns; there had been a lot of complaints about

Clarion Magazine - Knowledge Bases On The Web

http://www.clarionmag.com/v1n3/sub/v1n3kbsontheweb.html (3 of 9) [5/3/1999 12:48:31 PM]

http://www.icetips.com/
http://www.pointofsale.com/
http://www.cwsuperpage.com/kb
http://www.cwsuperpage.com/articles/cwicfaq/CaffeineFreeCWIC.htm

the slowness of Java applications. But Java got me up fast and provided
an environment that would be very familiar to a Clarion developer. I built
a Java-free version very soon thereafter. It’s interesting, however, that
whenever I check the broker’s status, over two-thirds of the hits are on
the full Java version. I’ve had only a few complaints about the speed.

When I built the CWICWEB download site, which I consider a part of
CoolFAQs in a way (CoolFAQs is for FAQs, CWICWEB for downloading
and longer articles), I went totally Java-free. Totally. Viewed in the
Clarion IDE, this app has only a button or two. Otherwise, it’s a blank
window. For its intended purpose, this is quite appropriate and effective
(again, it is documented in Clarion Online.

What searching technology do you use?

Steve: Instring and eyeballs. Keyword searches are handled with
INSTRING. But because Clarion developers are familiar with tabs and
scrolling lists, I thought they would be immediately comfortable with an
app using that technologies. This has proven to be true. In other words I
depend on user intelligence (and haven’t been disappointed yet).

Keyword searches can get a visitor to appropriate FAQs quite quickly. By
putting the memo containing the FAQ on the browse window, visitors are
also able to browse and glean information they might not have realized
would be helpful. It seems to work.

Arnor: It was clear to me from the start that searching a KB with the
built in functions wouldn't be very efficient. So I spent a lot of time doing
a word parser that splits the articles into words that are stored in a
keyword table. This parser was not good enough and has now been
replaced with classes I wrote for this purpose. With these classes and
some other tweaking the indexing process for 2400 articles has dropped
from 45 minutes to nine and half minutes.This keyword table contains
the word and a unique ID. Each article has also a unique ID and these
two tables come together in a many-to-many relationship through a file
that only stores these two IDs. In the Topspeed KB this is the second
largest file, 4.5Mb compared to 4.6 for the articles file. It contains over
200,000 records that relate the keywords to the articles. When you type
in a single word to search for, it does a GET() on the keyword table and
if the word is not foundit will list the keywords with the closest
alphabetical and sound match, but if it exists it runs a range limited
process against the relations table using the word ID as a range limit
and stores the found article ID's in a global queue, which is then used to
build the results page and the article page.

Troy: I used Sybase SQL Anywhere as the backend for the CWSuperKB.
The searching is done with a keyword index. I originally wrote it to only
support the OR operator but I woke up in my hotel room the morning of
my EuroDevCon ‘98 presentation with an idea of how to add the AND
operator. It turned out to be a simple two-line addition to my logic; isn’t
it amazing what can pop into your head when you’re sleeping? I have
not yet had the time to code any NOT logic into the search engine.

We are using the same basic search engine techniques in our current
Intranet project for a very large insurance company. This Intranet
application has a second-generation search engine that weighs the
results based on where the search words are found. For example,
keywords are weighted higher than words in the article title, which are
weighted higher then words found in the article text. This has been
working well for our clients.

How do you create the results page?

Steve: Straight HTML, no Java, no report using my favorite IC method,
Target.Writeln. Much of the underlying technology has been written up
and documented extensively in Clarion Online.

Arnor: The results page with the article links is created completely
dynamically. The window only contains the Close button and nothing
else. I may be wrong, but as far as I know, IKB and Taufiq's IC program
at www.caramerica.com are the only two programs that use such
completely dynamically created pages. Again, coincident strikes, as we

Clarion Magazine - Knowledge Bases On The Web

http://www.clarionmag.com/v1n3/sub/v1n3kbsontheweb.html (4 of 9) [5/3/1999 12:48:31 PM]

http://www.par2.com/
http://www.clariononline.com/
http://www.clariononline.com/

were both working on this over Christmas and shared some ideas and
code via email.

The procedure that builds the article page GETs the article ID from the
results page and then it's a single GET() on the article file. If you type in
multiple words to search for or enclose the search string in double
quotes, it uses a process and INSTRING() to search for the string in the
articles. If you enclose words in double quotes you will notice that the
search field is cleared when you return to it. This actually turned out to
be a bug somewhere (I'm not sure where) that Jake Smith reported to
us tonight that he had fixed. This is basically how the online program
works. The online program is just a part of the package. Another
program is used to do the file maintenance, importing articles, indexing,
exporting html and whatever it can do.

A complete re-indexing of those 2400 articles that are in the
Icetips/Topspeed knowledgebase takes around 9.5 minutes. It builds the
keyword list which contains close to 20,000 words and the relations file
which contains over 200,000 records. This program also connects articles
to categories, allows us to edit the articles, checks the articles for too
long lines etc. And I have just added a small module that attempts to
analyse the keyword table to make it easier to find possible duplicates,
misspelled words (you couldn't imagine how many different ways there
are to spell Topspeed), and word frequency.

Troy: The result page is just like the Microsoft Knowledge Base result
page; a plain HTML result page listing the articles with hypertext links
and descriptions. The page in CW is a Window that contains the Next,
Previous, and Return to Search Page buttons.

Figure 1. The CW Window with navigation buttons.

The result page HTML is created by building the HTML code on the fly
and outputting it with the Target.WriteLn() statement.

Clarion Magazine - Knowledge Bases On The Web

http://www.clarionmag.com/v1n3/sub/v1n3kbsontheweb.html (5 of 9) [5/3/1999 12:48:31 PM]

Figure 2. The HTML code to create the results page.

The following is what the users see in their browsers. Please note the
above source only shows the code for the table containing the article
results. The code for the image, query info, and the page footer is not
shown.

Figure 3. The HTML page delivered to the user.

Do you keep statistics on how many people use the KB?

Steve: I do not maintain formal stats on hits or utilization.

Troy: That is proprietary information. Do you want to buy my logs? Just
kidding. I keep track of every query that is executed, IP address, date
and time, and the number of returned articles. This allows me to scan
the log file and see what people are looking for in my KB. I can also
search my logs using SQL statements looking for queries that had
returned no results. I can then do a little research on those topics and, if
possible, add some articles to the database that would answer those
user questions. There have been 16,379 queries executed since the KB
was put online.

Arnor: Sometime in January I added a login database which logs all
visits to the KB. I have a plan to temporarily set up a log of what is

Clarion Magazine - Knowledge Bases On The Web

http://www.clarionmag.com/v1n3/sub/v1n3kbsontheweb.html (6 of 9) [5/3/1999 12:48:31 PM]

being searched for, how many matches and more importantly what is
being searched for that results in no matches at all. Analysing that data
will help me figure out how people are using it and what searches fail,
and I can then find out why and try to improve it accordingly.

Six weeks ago I got an email from Jim DeFabia saying that TS wanted to
do something like this and since I had this up and running they didn't
want to reinvent the wheel too much. They had basically two types of
stuff that needed to be included; text files and bug reports. This meant
some changes to the file structures to accommodate some checks and
adding the bugs database. Importing the text files was fairly simple as I
had that already in the stuff that imports the newsgroups messages and
importing the text files was simpler as then I didn't need to parse the
damn message headers.

Importing the bugs database was a question of a process and a few lines
of code. Changing the generated html for the TS layout was a simple
thing as right from the start I designed IKB so that the surrounding html
is stored in two ASCII (HTML) files that are read into two queues when
the program starts and these are simply looped through and added to
the generated html before and after the IC generated html. Last Friday
Jim and I were on ICQ while they got it up and running and that was
pretty much it. IKB does currently not use the dataset that TS uses,
because I was waiting for my ISDN to be installed (got it yesterday) as
the upload jumped from around 3Mb to 10Mb. We have still to work out
exactly how we synchronize the databases from now on, but I don't see
that as a problem. (Editor's note: The Topspeed version of IKB is
available from Topspeed's home page.)

What about having users add their own entries to the database?

Steve: Many developers claimed (loudly) that they want this. Arnor,
Troy and I corresponded privately about this and we all figured what the
result would be. I went and volunteered to "prove the pudding." No one
ever has written a FAQ (though Sean Wilson did send me three very
good links to articles he’d written – this happened before I put up the
entry form).

Arnor: Right from the start I decided that this was a one-way
communication. That is users can't add anything or change anything; it's
a read-only situation. From Steve's experience I'd say it was a right
decision too as he added a form to his and I think there are one or two
articles that have been added on-line. It was in high demand though for
both, but I resisted.

Troy: Well, I coded all the web entry routines using CW and the
SnapSoft OCX on the airplane to England. That was the biggest mistake
of my flying career; I was so excited about making these web-based
entry forms that I forgot to get any sleep, so I arrived in England at
seven a.m. without having slept for over 20 hours. That was one rough
day. (From now on when I fly to England I am going to catch some Zs!)
At the conference I demonstrated my on-line entry forms, which allow
web users to add articles that link to remote sites, for example, URLs on
IceTips or the user’s own web server. Or, they allow articles to be put
directly into the SQL database. The web entry form also accepts HTML
code so the user can nicely format the article with fonts, colors,
graphics, and any other HTML tags.

Why is it not available on the web? Well, the answer is simply that I just
have not had the time to install all the modifications I made before
EuroDevCon ‘98. The CWSuperKB that is currently running is the original
version that I posted on 5/6/98 before I flew to England; the only minor
modification was made on 5/23/98, implementing the Caffeine-Free
CWIC technique so the CWSuperKB would be running 100% Java free.

Has the response to the KB met your expectations?

Steve: Yes and no. It has helped me and others both learn and get our
projects out the door. It has also helped develop and showcase the IC
technology.

I’ve been able to answer questions on the newsgroups simply by

Clarion Magazine - Knowledge Bases On The Web

http://www.clarionmag.com/v1n3/sub/v1n3kbsontheweb.html (7 of 9) [5/3/1999 12:48:31 PM]

http://www.topspeed.com/
http://www.snapsoft.com/
http://www.cwsuperpage.com/articles/cwicfaq/CaffeineFreeCWIC.htm
http://www.cwsuperpage.com/articles/cwicfaq/CaffeineFreeCWIC.htm

remembering that a subject has been "FAQ’d" (I always verify this first
and supply a search string). I don’t have to know what I’m talking about,
only that the developer who posted the FAQ is reliable (which is easy to
know in this particular community).

On the other hand, the number of times all of us have to refer to the
Knowledge Bases indicates that they are not being as well utilized as
they could be. Similarly, the lack of submissions indicates that the
community is often willing to share other’s solutions but not motivated to
(or simply don’t take the time to) share their own. I admit to being a bit
disappointed here.

Arnor: IKB started as an IC experiment so I didn't have any particular
expectations for it. As I said earlier, the IKB started more and less as a
test project for Internet Connect. I'd been saving messages from the
newsgroups for some time and didn't have anything to archive the
messages with. The response to the knowledge bases has as far as I
know, only been positive. That is certainly true for IKB at least, and
that's enough for me.

None of this would have been possible if Steve P. and Bill H. hadn't taken
IKB under their wings and hosted it. Special thanks to them! Alexey has
also been very helpful (as always) providing ideas and code snippets to
optimize the parser and searching as well as info on how the internals in
some of the Clarion functions work and possibilities and algorithms to try
to squeeze a few milliseconds here and there - it all adds up! Tony and
Troy did something remarkable with IC! They ploughed the road for
further IC development with their java free templates and classes.
Thanks guys!

Troy: Its design has held up to the test of time. Many thanks to
Microsoft and its thousands of employees who designed the original one
on which the CWSuperKB was based. The CWSuperKB really pushed the
limits of what people thought CWIC could do when it was first released;
it did not use any Java browses and it was made to look and run just like
a well-designed HTML web application. I have received many
compliments from people inside and outside the Clarion community
about how fast it is. We use it as an example of the Internet/Intranet
applications that Information Packaging Unlimited can build for our
clients.

What plans do you have for the future?

Steve: I'm looking forward to adding a tab for C6.

Arnor: Icetips Knowledge Base is now a joint project with Topspeed and
their knowledge base so plans for future versions of the program and
how it evolves will have to be considered from more than just my
viewpoint. Currently I'm working on getting the Icetips ftp site logged up
to date into IKB, so that it can be updated much more frequently. I've
also been working on advanced searching methods and improving
indexing of the existing articles. Automating the indexing does have
some problems as in many of the articles there is a lot of "noise" that
shouldn't really be indexed and I'm experimenting with some methods to
eliminating that noise.

Troy: You had to ask didn’t you. I had no plans for upgrading before you
asked me these questions. But my subconscious started thinking and
after a few days these ideas popped out. First I will need to get the web
article submission running on our server and also upgrade the search
engine to our second generation version with weighted search results.
Once that is done I can start working on some of these new features,
including a HTTP Internet agent that will automatically index user
submitted articles that are hosted on remote servers. The user can then
verify the keywords chosen instead of my having to enter them by hand.

The second idea I had was another HTTP Internet agent that will verify
all the links in the CWSuperKB database once a week. At the same time
it will check the last modified date of the page, thus allowing the
CWSuperKB to list the most recently updated sites as part of its search
options.

Clarion Magazine - Knowledge Bases On The Web

http://www.clarionmag.com/v1n3/sub/v1n3kbsontheweb.html (8 of 9) [5/3/1999 12:48:31 PM]

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Knowledge Bases On The Web

http://www.clarionmag.com/v1n3/sub/v1n3kbsontheweb.html (9 of 9) [5/3/1999 12:48:31 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 3
April 1999

The Clarion Code Challenge:
A Compiler’s Eye View

Part One

By David Bayliss

(Editor's note: Some of the source code on this page exceeds
the page boundaries when printed from a browser. You may
wish to download the April 19 PDF which takes care of this
problem.)

Recently Clarion magazine ran a competition to see who could produce
the fastest and tightest code for a given problem. The results are given
elsewhere but David has asked me to write an article dealing not with
what the developer was doing, but what the compiler was doing
underneath.

The object is not to score points from one developer to another but
simply to use the code that has been produced to illustrate some of the
internals of the way the compiler works. These are not issues you would
want to think about when you code but, if they are in the back of your
mind, they may just help you keep an edge on your coding.

In order to make the analysis concrete I shall actually include snippets of
disassembled code from the functions. Don’t worry if you’re not an
assembler coder. The text has all the information required, and this may
even ease you in to using some of the debugger disassembly functions.
The 32 bit debugger is brilliant in mixed code/assembler mode. I have
also given a byte count for each function. The byte count is often an
indication of just how easy the compiler found the code to chew.
Generally I look for around 20 bytes per line as a fair indication that the
code is doing what you expect.

As well as analysing what the compiler has produced I shall make a few
comments about how I might have altered the code provided. These
comments may not actually help (they are not tested), but they are the
comments I would have made to one of my team had they submitted the
code as part of our code base.

Jeff Slarve – 284 bytes

JeffSlarve Procedure(Long StartTime,Long EndTime,
 Short Increment,Byte Round=False)
Result Real
 Code
 Result = ((EndTime - StartTime + |
 CHOOSE(StartTime > EndTime, 8640000, 1)) |
 / Increment / 60) * .01
 Return CHOOSE(~Round,Result+CHOOSE|
 (~(Result-Int(Result)),0,1),Round(Result,1))

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part1.html (1 of 11) [5/3/1999 12:49:45 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.thenextage.com/imagingtemplates.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://216.82.30.86/etc2000.html

Jeff is one of the many that went for minimum line count. The Clarion
CHOOSE function is central to this philosophy and the fragment below
shows why.

!39 C6! cmp esi,eax
!7E 07! jle 7
!BB 00 D6 83 00! mov ebx,83D600H
!EB 05! jmp 5
!BB 01 00 00 00! mov ebx,1

This is the code for the inner CHOOSE of the first line. The compiler has
the two incoming LONGs in registers, compares them and stores 8640000
or 1 in ebx dependant on the equality.

Adding EndTime and then subtracting StartTime becomes a short and
sweet operation.

!29 F0! sub eax,esi ! eax = EndTime-StartTime
!01 D8! add eax,ebx ! eax += CHOOSE result (in ebx)

Having got the body of the expression into eax the compiler now has to
divide by Increment. Here is the first issue. In Clarion division actually
works. A division (even of an integer by an integer) is defined to produce
a decimal result. So now the compiler uses the decimal stack. The first
point to note is that the compiler didn’t compute the result in eax by
accident. It was to make it easy to push the value onto the decimal
stack.

!E8 00 00 00 00! call Cla$DpushLong ! Push result
!0F BF C1! movsx eax,cx ! Push increment onto stack
!E8 00 00 00 00! call Cla$DPushLong
!E8 00 00 00 00! call Cla$DecDivide ! Perform division, result on stack

To get increment onto the stack it has to work a little harder. First
increment (a SHORT in cx) is moved into eax with sign extension, then
the push happens, then the divide. Next the compiler has to divide by
60. Here is a nice feature of the decimal stack: the result of the division
was left on the stack so to divide by 60 it’s only necessary to push one of
the operands (not both).

!B8 3C 00 00 00! mov eax,3CH ! 60 onto stack
!E8 00 00 00 00! call Cla$DPushLong
!E8 00 00 00 00! call Cla$DecDivide

Next comes the multiplication by .01. Another little tweak: the compiler
itself does not have a decimal library built in so cannot perform decimal
arithmetic. Thus it stores decimals internally as strings and hands them
on to the decimal library as such. Again the result of the division is still
on the stack so the constant is pushed, then the multiply routine is
called.

!B8 00 00 00 00! mov eax,$7
!B3 02! mov bl,2
!66 B9 02 00! mov cx,2
!E8 00 00 00 00! call Cla$DpushConstant ! .01 on stack
!E8 00 00 00 00! call Cla$DecMul ! x top two items

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part1.html (2 of 11) [5/3/1999 12:49:45 PM]

Finally on the first line is the assignment itself. This is made more
complex (at least in the assembler) by the fact that the result variable is
a REAL. To store one of those the floating point chip is used. DpopReal
moves a result from the decimal stack to register 0 of the FPU. This is
then stored as required.

!E8 00 00 00 00! call Cla$DpopReal
!DD 5C 24 30! fstp qword [esp][30H],st0

In the second line a CHOOSE is again evaluated (the outer one). Simply
checking a byte for true is very simple. Note that the compiler doesn’t
actually evaluate ~Round; it simply reverses the jump condition. The
other key here is that CHOOSE is guaranteed to perform a short-circuit
evaluation. In other words only one of the last two parameters of CHOOSE
will be evaluated. This is vital! Without it all solutions using CHOOSE
would have been much slower.

!80 FA 00! cmp dl,0
!75 4C! jne 4CH

Going down the non-rounding arm the compiler first gets the evaluation
of ~(Result-INT(Result)). This can be done almost entirely on the FPU
although the Clarion INT semantics have been encoded in a run-time
library function. Note too that it’s necessary to use the Windows calling
convention which means floating point numbers are passed on the stack.
(But they are returned in FP0! Don’t ask.)

!83 EC 08! sub esp,8
!DD 44 24 40! fld st0,qword [esp][40H]
!DD 1C 24! fstp qword [esp][0],st0
!E8 00 00 00 00! call Cla$INT ! INT(Result)
!DD 5C 24 28! fstp qword [esp][28H],st0
!DD 44 24 38! fld st0,qword [esp][38H]
!DD 44 24 28! fld st0,qword [esp][28H]
!DE E9! fsubp st1,st0 !Result-INT(Result)
!DD 05 00 00 00 00! fld st0,qword [dword $8] ! Load up 0
!DE D9! fcompp st0,st1 ! Compare against zero

Having computed the result into the FPU the compiler now has to
transfer the results into the normal registers and then execute the
CHOOSE. The CHOOSE will return 0 or 1 (both of which are longs).

!DF E0! fstsw ax ! FPU status goes into eax
!F6 C4 40! test ah,40H
!74 07! je 7
!B8 00 00 00 00! mov eax,0
!EB 05! jmp 5
!B8 01 00 00 00! mov eax,1 ! EAX now holds 0 or 1 from CHOOSE

Having the result of the CHOOSE in eax it now has to be cast back into a
REAL to perform the addition:

!DD 44 24 38! fld st0,qword [esp][38H] ! Result into fpu
!89 44 24 24! mov [esp][24H],eax
!DB 44 24 24! fild st0,dword [esp][24H] ! EAX into fpu
!DE C1! faddp st1,st0 ! Addition performed
!DD 5C 24 1C! fstp qword [esp][1CH],st0 ! Answer now ready for
returning.

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part1.html (3 of 11) [5/3/1999 12:49:45 PM]

The computation of the other arm is simpler as the result of a ROUND is
deemed to be dependant upon the second (not first) parameter. Thus
the decimal stack is used.

!83 EC 08! sub esp,8
!DD 44 24 40! fld st0,qword [esp][40H]
!DD 1C 24! fstp qword [esp][0],st0
!E8 00 00 00 00! call Cla$DpushReal ! Result onto decimal stack
!B8 01 00 00 00! mov eax,1
!E8 00 00 00 00! call Cla$DpushLong ! 1 onto decimal stack
!E8 00 00 00 00! call Cla$Dround ! Rounding performed
!E8 00 00 00 00! call Cla$DpopReal ! Result back in st0

The last line may seem a bit odd. Why bring the result back as a REAL? A
CHOOSE function has to return the same result type whichever arm is
executed, so the compiler chooses the lowest common denominator as
the final result type. In the case of REAL and DECIMAL this is deemed to
be REAL.

Having computed the result as a REAL it actually has to be returned as a
SHORT. This can be a real performance hit as the FPU cannot be
guaranteed to have the correct truncation mode set. Don’t ask what the
lines below do. I knew it five years ago but have long since forgotten. I
do know we need them.

!DD 44 24 1C! fld st0,qword [esp][1CH]
!D9 7C 24 10! fstcw [esp][10H]
!D9 7C 24 0E! fstcw [esp][0EH]
!66 81 4C 24 0E 3F 0C! or word [esp][0EH],0C3FH
!D9 6C 24 0E! fldcw [esp][0EH]
!DF 5C 24 12! fistp word [esp][12H],st0
!DB E2! fclex
!D9 6C 24 10! fldcw [esp][10H]
!66 8B 44 24 12! mov ax,[esp][12H]

Summary

The compiler was quite happy with this code, and the CHOOSE made the
execution path short and quick. The only thing that made the assembler
ugly was the use of the real. Generally I would use a decimal rather than
a real when mixing with longs. A small savings could also be achieved by
using ,AUTO on the variable.

David Bayliss – 147 bytes

DavidBayliss PROCEDURE(s_time,e_time,incr,rnd)
dur long
 CODE
 dur = e_time-s_time
 IF dur < 0 THEN
 dur += 2 * 12 * 60 * 60 * 100
 .
 IF rnd
 RETURN ROUND(dur / incr / (60 * 100),1)
 ELSE
 dur /= incr * 60 * 100
 RETURN dur + 1
 END

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part1.html (4 of 11) [5/3/1999 12:49:45 PM]

My main aim here was to stay at long precision for as much of the time
as I could. Hence my only intermediate is a LONG. (Yuk, sloppy. This
should have had ,AUTO on it). I compute the duration in the first line;
this can be done easily as the incoming parameters are in registers.

!29 C3! sub ebx,eax ! ebx is now dur
!89 5C 24 04! mov [esp][4],ebx ! stored in memory

The comparison of a LONG with zero is very cheap as the compiler
doesn’t even bother to load the value from memory. The compiler is also
very good at folding integral expressions so I didn’t bother to fold the
multiplication by hand. I used += as this avoids using the value of dur
and hence avoids a load into a register. The whole of the first IF
construct is below.

!83 7C 24 04 00! cmp dword [esp][4],0
!7D 08! jge 8
!81 44 24 04 00 D6 83 00! add dword [esp][4],83D600H

Then comes the actual computation of the result. The rounding arm
comes first. Here I missed a trick which cost me the poor rounding
result.

!8B 44 24 04! mov eax,[esp][4]
!E8 00 00 00 00! call Cla$DpushLong ! dur onto decimal stack
!89 D8! mov eax,ebx
!E8 00 00 00 00! call Cla$DpushLong ! increment onto decimal stack
!E8 00 00 00 00! call Cla$DecDivide ! Divide and leave on stack
!B8 70 17 00 00! mov eax,1770H
!E8 00 00 00 00! call Cla$DpushLong ! 60 * 100 onto stack
!E8 00 00 00 00! call Cla$DecDivide ! Divide and leave on stack
!B8 01 00 00 00! mov eax,1
!E8 00 00 00 00! call Cla$DpushLong ! One onto stack
!E8 00 00 00 00! call Cla$Dround ! Round it
!E8 00 00 00 00! call Cla$DpopLong ! Return as short

The compiler has coped with the expression just fine, but the trick I
missed is that I could have avoided the second division by using a
multiplication instead.

RETURN ROUND(dur / (incr * (60 * 100)),1)

The reason this matters is the dur/incr can often leave a result with
many decimal places. The division by 6000 (which the decimal library
does to 31 decimal places) is thus very costly.

The non-rounding arm actually missing a trick too.

!8B 44 24 04! mov eax,[esp][4]
!E8 00 00 00 00! call Cla$DpushLong ! Dur onto decimal stack
!6B C3 3C! imul eax,ebx,3CH ! Incr (in ebx) times 60, into eax
!6B C0 64! imul eax,eax,64H ! Eax times 100 into eax
!E8 00 00 00 00! call Cla$DpushLong ! Result onto decimal stack
!E8 00 00 00 00! call Cla$DecDivide ! Division performed
!E8 00 00 00 00! call Cla$DpopLong ! Result into eax
!89 44 24 04! mov [esp][4],eax ! Result into dur

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part1.html (5 of 11) [5/3/1999 12:49:45 PM]

So how come the silly compiler didn’t fold my constants? Well, it was
actually being ultra-cautious. In a fixed-width number system (such as
long or decimal) multiplication is actually not quite associative. If you
rewrite the line as

dur /= incr * (60 * 100)

the compiler folds as expected. Moral: If you want to make sure
constants are folded in a mixed expression then use some parenthesis.

Adding on one and return is then easy:

!66 8B 44 24 04! mov ax,[esp][4] ! Long to short cast is free
!66 40! inc ax ! Adding one to a long is easy

Summary

A painfully sloppy piece of coding. I missed three tricks all of which cost
time, one of which cost compactness. However, I actually find this quite
encouraging. You see, when I sent this to David I said that I hadn’t
checked for speed or compactness; I was just trying to code the function
"cleanly." The result was a function that performed reasonably well and
can be cleaned up into a very nice performer.

Nik Johnson A – 160 bytes

NikJohnsonA Procedure(Long T1,Long T2,Short B,Byte R=False)
Result DECIMAL(4)
 CODE
 Result = .5-R/2+(T2-T1-1+CHOOSE(T2-T1<1,8640000,0))/(B*6000)
 return(Result)

Here again the decimal stack is in full swing. First R is converted to a
LONG and divided by two (which is a decimal operation).

!0F B6 C2! movzx eax,dl ! R (in dl) goes into EAX
!E8 00 00 00 00! call Cla$DpushLong ! And onto the decimal stack
!B8 02 00 00 00! mov eax,2
!E8 00 00 00 00! call Cla$DpushLong ! 2 onto decimal stack
!E8 00 00 00 00! call Cla$DecDivide ! Division performed,
 ! result on stack

Then the 0.5 is pushed onto the stack

!B8 00 00 00 00! mov eax,$5 ! 0.5 stored as string
!B3 01! mov bl,1
!66 B9 01 00! mov cx,1
!E8 00 00 00 00! call Cla$DpushConstant ! 0.5 on stack

Then the subtraction. This shows a useful tweak in the stack system.
Usually a stack subtraction would take the top of stack from the one
below, the opposite of what we want. We could issue some "stack
rolling" calls, however we have avoided this by producing some
"reversed" functions (that actually want their parameters inside out).

!E8 00 00 00 00! call Cla$DecSubR ! Take 2nd on stack from top,
 ! result on stack.

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part1.html (6 of 11) [5/3/1999 12:49:45 PM]

The compiler leaves this result on the stack, and it will come back to it
much later.

Now the compiler moves onto to the inner CHOOSE (very similar to Jeff
Slarve’s code).

!89 E8! mov eax,ebp
!29 F0! sub eax,esi ! EAX is T2-T1
!83 F8 01! cmp eax,1 ! Compare to 1
!7D 07! jge 7
!BB 00 D6 83 00! mov ebx,83D600H
!EB 05! jmp 5
!BB 00 00 00 00! mov ebx,0 ! EBX is result of CHOOSE

The T2-T1-1 is all long arithmetic which you would expect the compiler
to chew easily. In fact it is ultra-clever. Note that in computing the
CHOOSE T2-T1 is computed into eax, it so happens that T2-T1 is the
first part of the expression it needs to compute so it doesn’t have too! It
can get straight on with the subtracting of one and then adding the
CHOOSE result.

!48! dec eax ! EAX = T2-T1-1
!01 D8! add eax,ebx ! Add on CHOOSE result.

The compiler has again chosen to compute the result into eax. You’ll see
why in the next stage which is the division of B * 6000.

!E8 00 00 00 00! call Cla$DpushLong ! Result onto decimal stack
!0F BF C7! movsx eax,di ! B into eax
!69 C0 70 17 00 00! imul eax,eax,1770H ! Multiply by 6000
!E8 00 00 00 00! call Cla$DpushLong ! Onto decimal stack
!E8 00 00 00 00! call Cla$DecDivide ! Division

Finally this result has to be added to the result of the subtraction
performed previously. Remember that had been left on the stack so the
compiler simply does:

!E8 00 00 00 00! call Cla$DecAdd

This result is then placed into the local variable:

!8D 44 24 15! lea eax,[esp][15H]
!B3 03! mov bl,3
!B1 00! mov cl,0
!E8 00 00 00 00! call Cla$DpopDec

The local variable is then converted to a SHORT (via the stack) and
returned.

!B3 03! mov bl,3
!B1 00! mov cl,0
!E8 00 00 00 00! call Cla$DPushDec
!E8 00 00 00 00! call Cla$DpopLong

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part1.html (7 of 11) [5/3/1999 12:49:45 PM]

Summary

This function is very similar to Jeff’s except the computation stays with
DECIMALs rather than diving into REALs. The benefit is seen in terms of
code size and speed. I think there are two ways to improve it. Firstly
changing 0.5-R/2 to (1-R)/2 would save the "constant push" and would
allow the subtraction to happen at LONG width. Secondly I would try
ditching the DECIMAL variable and simply returning a ROUNDed result. The
DpopDec contains an implicit ROUND so I would guess this will not slow
things down and would save some code.

Nik Johnson B – 153 bytes!

NikJohnsonB Procedure(Long T1,Long T2,Short B,Byte R=False)
Result DECIMAL(4)
 CODE
 Result = ((((T2-T1)+CHOOSE((T2-T1)<0,8639999,-1))|
 /B/3000)+1-R)/2
 return(Result)

The innermost expression (up to the first /) is a joy to behold. Again the
CHOOSE is neat and the compiler repeats the trick of spotting the T2-T1 is
used twice and so computes it once.

!29 F0! sub eax,esi ! EAX = T2-T1
!83 F8 00! cmp eax,0
!7D 07! jge 7
!BB FF D5 83 00! mov ebx,83D5FFH
!EB 05! jmp 5
!BB FF FF FF FF! mov ebx,-1 ! EBX is result of CHOOSE
!01 D8! add eax,ebx ! Result of addition

Again the result is in eax which makes the following two divisions very
neat.

!E8 00 00 00 00! call Cla$DpushLong !Onto decimal stack
!0F BF C1! movsx eax,cx ! B onto decimal stack
!E8 00 00 00 00! call Cla$DPushLong
!E8 00 00 00 00! call Cla$DecDivide ! Division done
!B8 B8 0B 00 00! mov eax,0BB8H
!E8 00 00 00 00! call Cla$DpushLong ! 3000 onto stack
!E8 00 00 00 00! call Cla$DecDivide ! Division again

Now, here the compiler has a decimal result to which it wants to add 1
(again addition & subtraction are not quite associative so the compiler
works left to right). Because it cannot cast from DECIMAL to LONG without
losing precision it has to perform the addition (and then subtraction)
upon the decimal stack.

!B8 01 00 00 00! mov eax,1
!E8 00 00 00 00! call Cla$DpushLong ! 1 onto stack
!E8 00 00 00 00! call Cla$DecAdd ! Add
!0F B6 C2! movzx eax,dl ! R into EAX
!E8 00 00 00 00! call Cla$DpushLong ! and onto stack
!E8 00 00 00 00! call Cla$DecSub ! Subtract

On the plus side the decimal computation leaves the result on the stack,
ripe for the division by 2, again on the decimal stack.

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part1.html (8 of 11) [5/3/1999 12:49:45 PM]

!B8 02 00 00 00! mov eax,2
!E8 00 00 00 00! call Cla$DPushLong
!E8 00 00 00 00! call Cla$DecDivide

The result is then used as in Nik’s A version.

Summary

The assembler actually looks quite nice, certainly very compact. So why
was it so slow? I suspect the culprit is the three divisions. The problem
of doing repeated divisions within one expression is that the
intermediate result gets very long which slows the decimal library down.
This could be reduced by combining /B/3000 into /(B*3000).

The other little tweak would be to move the +1-R to the beginning of the
bracketed expression so that it is done at long width.

Brian Staff – 211 bytes

BrianStaff Procedure(Long T1,Long T2,Short Block,Byte Rounding=False)
X LONG
Answer long
 code
 X = CHOOSE(T2 > T1,(T2-1) - (T1-1),|
 (T2-1) + (24*60*60*100) - (T1-1))
 EXECUTE(ROUNDING+1)
 Answer = (X / (Block*60*100)) + |
 CHOOSE(X % (Block*60*100) = 0,0,1)
 Answer = ROUND(X / (Block*60*100), 1)
 END
 return(Answer)

The compiler has really bust a gut getting the code for Brian’s CHOOSE
good. The jumping code is clean (as usual) but it also spots that T1-1 is
used down both arms and thus pre-computed it. Here is the code for the
whole line:

!39 C3! cmp ebx,eax ! Test T2>T1
!9C! pushfd
!48! dec eax ! Pre-Compute T1-1
!9D! popfd
!7E 05! jle 5 ! Then pick an arm
!4B! dec ebx ! EBX = T2-1
!29 C3! sub ebx,eax ! EBX = (T2-1) - (T1-1)
!EB 08! jmp 8
!81 C3 FF D5 83 00! add ebx,83D5FFH ! EBX = T2-1+24*60*60*100
!29 C3! sub ebx,eax ! EBX is required result
!89 5C 24 0C! mov [esp][0CH],ebx ! Store into X

Brian has also persuaded the compiler to pre-compute the Block*60*100
outside of the execute statement.

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part1.html (9 of 11) [5/3/1999 12:49:45 PM]

!0F B6 D2! movzx edx,dl ! Move ROUNDING into edx
!42! inc edx ! Add 1
!83 FA 01! cmp edx,1 ! Compare against 1 (first line)
!9C! pushfd
!0F BF C1! movsx eax,cx ! Move Block into EAX
!6B C0 3C! imul eax,eax,3CH ! * 60
!6B D8 64! imul ebx,eax,64H ! EBX now holds Block*60*100
!9D! popfd
!75 4E! jne 4EH ! Now split into the two arms of the
execute.

The first part of the non-rounding case (the division) is handled in the
way you should now expect

!8B 44 24 0C! mov eax,[esp][0CH]! X into EAX
!E8 00 00 00 00! call Cla$DPushLong
!89 D8! mov eax,ebx ! Compiler has pre-computed
Block*60*100
!E8 00 00 00 00! call Cla$DPushLong
!E8 00 00 00 00! call Cla$DecDivide ! Result as required

A modulus operation between integers is handled by the compiler inline
(although the code is a little hard to understand unless you sit down with
pencil and paper!).

!8B 44 24 0C! mov eax,[esp][0CH] ! X into EAX
!99! cdq ! Make X an INT64
!F7 FB! idiv ebx ! Modules with Block*60*100
(Pre-computed)
!89 D0! mov eax,edx ! You now need to fiddle to deal with
negatives
!31 D8! xor eax,ebx
!7D 06! jge 6
!85 D2! test edx,edx
!74 02! je 2
!01 DA! add edx,ebx ! Get the result into edx by magic
(Memory failure …)

Having got the result magically into edx the CHOOSE is its usual snappy
self:

!83 FA 00! cmp edx,0
!75 07! jne 7
!B8 00 00 00 00! mov eax,0
!EB 05! jmp 5
!B8 01 00 00 00! mov eax,1

This leaves the addition. The result being added to is presently on the
decimal stack so decimal addition is used, and the result is then stored in
Answer.

!E8 00 00 00 00! call Cla$DpushLong ! CHOOSE result in EAX, now pushed.
!E8 00 00 00 00! call Cla$DecAdd ! Add to division result already on
stack
!E8 00 00 00 00! call Cla$DpopLong ! Pop result into eax
!89 44 24 08! mov [esp][8],eax ! And into answer

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part1.html (10 of 11) [5/3/1999 12:49:45 PM]

The other arm is fairly standard decimal stack stuff.

!8B 44 24 0C! mov eax,[esp][0CH] !X into eax
!E8 00 00 00 00! call Cla$DpushLong! X onto stack
!89 D8! mov eax,ebx ! Pre-computed Block*60*100
!E8 00 00 00 00! call Cla$DPushLong
!E8 00 00 00 00! call Cla$DecDivide ! Division result on stack
!B8 01 00 00 00! mov eax,1 ! 1 onto stack
!E8 00 00 00 00! call Cla$DPushLong
!E8 00 00 00 00! call Cla$Dround ! Perform the round
!E8 00 00 00 00! call Cla$DpopLong ! Result into eax
!89 44 24 08! mov [esp][8],eax ! And into answer

Summary

Brian has kept the computations at a suitable precision, avoided
excessive divisions and somehow persuaded the compiler to perform
some extremely useful pre-computations. A worthy winner.

I’m not sure I should comment given he has the best figures but I think
he could get a better result yet by putting the 60*100 into parenthesis
(same as David Bayliss’ code). He can also put ,AUTO on his variables.
The other thing I would try is returning the result directly rather than
going through Answer. (Editor’s note: Some entries were provided as
routines and the extra step in RETURNing values may be mine.)

David Bayliss is a Software Development Manager for Topspeed
Corporation. He is also Topspeed's compiler writer and the chief architect
of the Application Builder Classes.

Part Two of this analysis (coming soon) provides some
surprising information about how the compiler translates the
code we write. Stay tuned.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part1.html (11 of 11) [5/3/1999 12:49:45 PM]

http://www.users.globalnet.co.uk/~dabay/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Clarion Magazine is fully searchable and the search engine will return
links to public access and subscriber-only articles. The search database
is updated shortly after a new issue has been posted.

Match:

Format:

Sort By:

Matches Per Page:

Search For:

Search Clarion Magazine

http://www.clarionmag.com/common/search.html [5/3/1999 12:49:51 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html

Vol 1, No 3
April 1999

How To Waste Time In The Newsgroups
By Troy Sorzano

Newsgroups were and are Topspeed’s "preferred" product support
method. Yes, newsgroups do work and the Clarion community has been
limping along using them for the last several years. But newsgroups are
not efficient.

Think of a newsgroup as a one-to-many relationship: a person can post
a quick question that only took two minutes to type up, and many people
can and will read that post on the newsgroup. The problem is that no
one knows how many people actually read that question or how much
time they spent reading.

Just for an example assume that 100 people read that question, taking
20 seconds each. The question that only took two minutes to create has
now utilized 33 minutes of the Clarion community’s time. Taking it one
step farther, what if one or more people respond to that question? How
much time is then spent to resolve that two-minute question? The
answer is "I don’t know," but I do know I have sometimes spent
anywhere from five minutes to two hours on some replies.

A newsgroup’s inefficiency is that it allows a single resource to utilize
multiple resources. This becomes an even bigger issue when a similar
question is asked over and over again. How much time is wasted
regurgitating the same answers to common questions? If you want to
see an example, do a search on Dynamic Pool Limits using DejaNews’
power search for the comp.lang.clarion newsgroup. People have been
posting the same question over and over and over for years.

As far as I can tell, the first solution to Dynamic Pool Limit errors was
posted on April 28, 1996, so there has been a solution on the newsgroup
for the last three years. Why are people still asking the same Dynamic
Pool Limit question in 1999? A search will show that the most recent
question posted asking about pool limits was on January 4, 1999. There
have been about 500 messages on comp.lang.clarion about this one
error since the first solution was posted. The amount of time that has
been spent on the Dynamic Pool Limit problem is mind-boggling. And the
sad part is that there has been a posted solution for almost as long as
the question has been asked.

Now some may argue that newsgroups are efficient because they can be
searched. That may true for public newsgroups like comp.lang.clarion,
but these days most of the Clarion discussion takes place on TopSpeed's
own news server (tsnews.clarion.com), which is not picked up by usenet
search agents like DejaNews. To search the TopSpeed newsgroups you
would need to actually download all twenty thousand plus messages
first. Even then, your searches may still run into trouble because you are
searching through raw text. For example, try using DejaNews to search
the comp.lang.clarion newsgroup for articles on "SQL Anywhere." You'll
find a large number of messages that don't contain any information at all
on SQL Anywhere, but instead mention it only in the poster's signature
block.

Clarion Magazine - How To Waste Time In A Newsgroup

http://www.clarionmag.com/v1n3/sub/v1n3rantsraves_newsgroups.html (1 of 2) [5/3/1999 12:49:57 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.dejanews.com/home_ps.shtml
http://www.dejanews.com/home_ps.shtml
http://216.82.30.86/etc2000.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML

I hope you can understand that no matter how cool or neat we think
newsgroups are, they are not a very efficient way to share the
knowledge of the Clarion community. From a resource perspective,
knowledge on a newsgroup is very expensive. Just imagine all the cool
cutting-edge stuff someone like Arnor Baldvinsson could be coding if he
was not answering dozens of newsgroup questions every day.

Troy Sorzano is a member of Team Topspeed Internet and a partner at
Information Packaging Unlimited where he creates client/server and
Internet applications in Clarion. He can be reached via e-mail at
troyweb@infopackaging.com.

If you have a rant or a rave you’d like to get off your
chest, send it to editor@clarionmag.com.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - How To Waste Time In A Newsgroup

http://www.clarionmag.com/v1n3/sub/v1n3rantsraves_newsgroups.html (2 of 2) [5/3/1999 12:49:57 PM]

http://www.infopackaging.com/
mailto:troyweb@infopackaging.com
mailto:editor@clarionmag.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

As of April 12, 1999 current articles will be available in PDF format as
well as HTML format. Articles published prior to April 12, 1999 will be
converted at a later date.

To Download These Files

If your browser is configured to display PDF files and you want to
download them instead, right-click on the appropriate link (see below)
and choose the Download, Save Target As, Save Links As, or perhaps
just the Save As option from the context menu. Most browsers support
this feature.

Restrictions On Use

As noted in the subscription agreement, these PDFs are for your own use
only as a valid subscriber. You may not distribute them.

Which Acrobat Reader Do I Need?

These documents were created with Adobe Acrobat 4.0. There have been
some reports of problems with 3.x readers, in which case you may need
to upgrade to the 4.0 reader which you can download for free from
Adobe. At just over 5 megs this is a fairly hefty download. The 4.0
reader is also available at Clarion Magazine and at the CWICWeb
download page.

Because of some reported problems with 3.x readers PDFs are currently
created without the background image you normally see on the web
pages.

Where Is This Week's PDF?

The current week's PDF is created shortly after the HTML documents are
published on the web site, so if you've come here from the current issue
and don't see the PDF yet, check back in an hour or two and be sure to
reload/refresh the web page. If you still don't see the PDF after
refreshing the page please send an email to
webmaster@clarionmag.com.

This Month's PDFs

April 5, 1999
http://www.clarionmag.com/v1n3/sub/cmag-april5-99.pdf

April 12, 1999
http://www.clarionmag.com/v1n3/sub/cmag-april12-99.pdf

April 19, 1999
http://www.clarionmag.com/v1n3/sub/cmag-april19-99.pdf

April 26, 1999
http://www.clarionmag.com/v1n3/sub/cmag-april26-99.pdf

Clarion Magazine PDFs

http://www.clarionmag.com/sub/pdfs.html (1 of 2) [5/3/1999 12:50:02 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.adobe.com/prodindex/acrobat/readstep.html#reader
http://www.adobe.com/prodindex/acrobat/readstep.html#reader
ftp://www.clarionmag.com/pub/Acrd4enu.exe
http://www.cwicweb.com/APPS/CWLAUNCH.DLL/DOWNLOAD.EXE.0
http://www.cwicweb.com/APPS/CWLAUNCH.DLL/DOWNLOAD.EXE.0
mailto:webmaster@clarionmag.com
http://www.clarionmag.com/v1n3/sub/cmag-april5-99.pdf
http://www.clarionmag.com/v1n3/sub/cmag-april12-99.pdf
http://www.clarionmag.com/v1n3/sub/cmag-april19-99.pdf
http://www.clarionmag.com/v1n3/sub/cmag-april26-99.pdf

Archive PDFs

February 1999
http://www.clarionmag.com/v1n1/pub/cmag-february-99.pdf

March 1999
http://www.clarionmag.com/v1n2/sub/cmag-march-99.pdf

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine PDFs

http://www.clarionmag.com/sub/pdfs.html (2 of 2) [5/3/1999 12:50:02 PM]

http://www.clarionmag.com/v1n1/pub/cmag-february-99.pdf
http://www.clarionmag.com/v1n2/sub/cmag-march-99.pdf
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 3
April 1999

by Andrew Guidroz II

"Glad to hear you’re starting a new magazine, Dave. If there is anything
I can do to help, just say the word."

"Well, since you’re the official Clarion Cajun chef, how about writing up a
DevCon Gumbo recipe?"

And just like that, my mouth got me in trouble again.

Here we are, two months after the launch of Clarion Magazine, and still
no recipe. Is it writers’ block? Lack of a good subject? I have nothing to
say? Me??!! King of thread drift? Nope. Dave with one simple request
asked for the hardest thing a cook can do.

You see, it isn’t so simple, writing a recipe – especially one of mine. By
now, everyone around the Clarion internet community knows I’m a
Cajun and I cook. I’m no chef and I’m certainly more gourmand (a pig)
than gourmet. I cook in my own style that has been influenced by the
cooking of my parents and their parents. But how do I convey what I’m
doing in words? How do you teach a non-Cajun what color a roux should
be? When I say, "Put three onions in" does the person on the other end
know what an average sized onion looks like or whether it should be
yellow, white, or purple? Does the person reading my recipe know
he/she should peel and chop them?

Each cook out there has different levels of experience and expertise. And
certainly the regional influence of my cooking adds one more level of
complexity to all of this. I really can’t write a generic recipe that works
for everyone. I write one style for my Cajun friends that cook. I write
another for my Cajun friends who don’t. And I write in a variety of styles
for people who may or may not cook and may live all over the world. But
in every recipe I write there is a common goal: each should give clear
directions to produce a good meal. Each recipe might have a different
route but they all end up in the same place.

This problem isn’t so different from the problem we all have when we
write software. We tend to write our software with a certain end user or
two in mind. But many different people of various skill levels and
backgrounds will use our software. They are all trying to get to the same
end product. Software is just a tool, a recipe, to take our users from the
point of having nothing but inputs (ingredients) and moving toward a
finished product: the gumbo of their completed data. Software is really
just a dynamic, intelligent recipe and the data stored in your files is the
meal, steaming hot and ready to eat.

In theory, this is all great. But certainly no one is going to write separate
applications to distribute to different users. How can one application be

Clarion Magazine - Andrew's Kitchen

http://www.clarionmag.com/v1n3/sub/v1n3andrewskitchen.html (1 of 6) [5/3/1999 12:50:08 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://216.82.30.86/etc2000.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML

easily adapted to different users? An interface is needed that can hide
information but be easily adjusted for various skill levels. Sliders are
perfect for this.

Jeff Slarve wrote an interesting slider class and template back when
Clarion first began to support OOP. I took this software, enhanced it, and
wrote a different template interface with some additional features.

Figure 1 shows the example application in all three modes.

Figure 1. The example application with the slider at each of the three settings.

Clarion Magazine - Andrew's Kitchen

http://www.clarionmag.com/v1n3/sub/v1n3andrewskitchen.html (2 of 6) [5/3/1999 12:50:08 PM]

Clarion Magazine - Andrew's Kitchen

http://www.clarionmag.com/v1n3/sub/v1n3andrewskitchen.html (3 of 6) [5/3/1999 12:50:08 PM]

To make this slider interface work first register the slider template
(jsslid50.tpl). Then in your application create a form. On the form you
need a sheet with the wizard attribute set, with tabs for each skill level
of user. You may find it easiest to only set the wizard attribute when
you’re finished creating the information on each tab.

Then populate the slider control template on the window. In the case of
the example app I’m including you’ll see that I populated a horizontal
slider (see Figure 2). The slider needs a field to keep track of the
expertise level and I created a local data element called, imaginatively,
Loc:Expertise. You can test for the value stored in this variable when
you want to know what expertise level your end user is operating at. The
next step is to check "Use Slider for Tabbing" and select the wizard sheet
(?ExpertiseSheet) so the template knows which sheet contains the
various expertise level tabs. That’s all you need to do to add this
functionality to your program.

Figure 2. The horizontal slider template prompts.

Clarion Magazine - Andrew's Kitchen

http://www.clarionmag.com/v1n3/sub/v1n3andrewskitchen.html (4 of 6) [5/3/1999 12:50:08 PM]

At runtime, moving the slider will select the different tabs. The
experienced user can start at the most complex level or move the slider
down to see the form in its simplest level. Or the slider will allow the
average user to move up in the complexity of the form as s/he gains
more experience and confidence.

How does this apply to your software
development? One of the products that I have
written and support processes information for
consumer credit offices. In laymen’s terms
these are small loan companies. There are
various levels of expertise in these offices. In
some, you find a manager who has been
loaning money for many years and who
knows how every little detail of how a loan
can affect a customer. On the opposite end,
you may have a clerk who has zero
experience in the field. The question each of
them faces each day boils down to this:

If a customer borrows X amount of money for
Y months, how much is his/her monthly
payment?

The manager realizes that varying interest
rates, different insurance coverages, and a
variety of fees can all be manipulated to
change this figure. But the inexperienced
clerk has no idea how all of these things effect
loans. The clerk isn’t even allowed to give
certain allowances that a manager can. So
why clutter up the data entry screen for a
clerk with the wealth of information and
control that a manager needs?

This template handles that problem perfectly.
The manager has a very detailed tab. The
clerk has one with few details. As the clerk
becomes more experienced and takes on
more responsibility, he can move the slider in
the direction of more detail. The manager,
conversely, can decide he doesn’t need all
that complexity for every loan and start out at
a less detailed position.

Of course, this is a simple illustration. In the
real world, you would test for security levels
of the end user (is the clerk allowed to change
the interest rate?). But this template can even
handle a complex form requiring multiple
tabs. That can be easily implemented by
placing sheets on each "expertise level" tab.

Lagniappe

Lagniappe (lan – nyap’) is a wonderful Cajun
word. If you went shopping here years ago,
the storekeeper nearly always gave you a
little something once you made your
purchase. A gentleman might receive a cigar.
A lady might receive a spool of thread or a
piece of lace. Lagniappe is that little
something extra you get that you weren’t
expecting. So, in that tradition, here are three
bits of lagniappe.

And what would anything written by me be
without thread drift?

I wrote an app a few years ago that was
basically for point of sale. The industry
leaders in this business were well known
and dominated this DOS market for years. A
customer that used these DOS packages
approached me wanting a new custom
package primarily because of some unique
reporting requirements.

I wrote the app from a totally new and
foreign viewpoint as I had no experience in
this type of business. Because of this, the
screens were very different from the
packages the end users were familiar with.

There was a particular type of transaction
that occurred approximately 200 times a
day in each office. This transaction could
have many subtle variations. Conceptually,
the end user could go through 27 different
prompts in order to complete the
transaction. In standard DOS style, the
other packages only required a newline to
get through these prompts to accept the
default. Let me say that a bit more clearly:
the end user had to hit newline 27 times in
the best case.

After sampling an entire month’s business, I
discovered the best case scenario occurred
over 95% of the time.

I designed the entry screen for this type of
transaction to:

ask for an account number1.
ask if this is a special case (newline
meant no)

2.

And that was all. If this was a special case,
we went to the 27 prompt screen. If not, we
completed the transaction in two steps.

Now, imagine the end users’ reaction to this
- especially when there were customers
standing 10 deep at their counter. And
imagine their customers’ reaction when
service time was cut so drastically.

As programmers, we’re confronted with a
variety of problems that we tend to
standardize and normalize. Don’t fall into
that trap with your user interface.

Clarion Magazine - Andrew's Kitchen

http://www.clarionmag.com/v1n3/sub/v1n3andrewskitchen.html (5 of 6) [5/3/1999 12:50:08 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n3/slider.zip
ftp://www.clarionmag.com/pub/clarionmag/v1n3/slider.zip

First, you get a set of classes that illustrate using OOP in Clarion. This is
an ABC independent implementation so you can use it in both ABC apps
and Legacy apps. Next, you also get a template with some nice bells and
whistles including full control of the graduation marks (size, number,
lock to graduations) and range setting prompts so you can use the
sliders in nearly any type of app.

And the final bit of lagniappe is an interesting Clarion app that illustrates
using the slider for the "expertise level" interface. And it isn’t just a
boring data entry screen demonstrating an invoice or a loan agreement.
It is an application that teaches you to cook gumbo assuming three
different levels of experience in cooking. I hope you enjoy the application
and the gumbo. Welcome to my kitchen!

Download the source code.

Andrew Guidroz II is an active member of the Topspeed community on
the Internet and writes software for the insurance/finance industry as
well as a host of other industries. His famous Cajun cookouts have
become a central feature of Clarion conferences throughout the US.
Andrew's Cajun website is http://www.coonass.com.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Andrew's Kitchen

http://www.clarionmag.com/v1n3/sub/v1n3andrewskitchen.html (6 of 6) [5/3/1999 12:50:08 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n3/slider.zip
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 3
April, 1999

April 26, 1999

TS Resources SQL Contest
George Willbanks of TS Resources, Inc. is holding a contest for fast SQL
logic using the Pervasive SQL language and a specified database (as
announced at the Australian DevCon). The winner will receive a 10/100
hub, two PCI NICs and cables. See message #31878 in the Products.C4
newsgroup on tsnews.clarion.com for more details.

Clarion Jersey DevCovey '99 To Be Held May 22
This mini-DevCon is a joint meeting of The Long Island, NY User Group,
Clarion New Jersey Group and CW SuperGroup of Pennsylvania. Major
topics of presentation and discussion are COOP (Clarion OOP), CW
Project Management, Internet Connectivity, OLE/OCX implementation in
CW and C projects in CW. Speakers include Mike Hanson, Phil Will, Pete
Halsted, Troy Sorzano, Rob Cohan, and Waseem Naik.

Topspeed Closes Compuserve Forum
Effective April 30, 1999 Topspeed will close its forum on Compuserve.
Over half a million messages were posted in that forum throughout its
life, but in recent months most of the activity has been on the
newsgroups at tsnews.clarionmag.com.

April 19, 1999

NiceTouch Releases View Wizard
Nice Touch Solutions has released View Wizard which facilitates
on-demand custom list box formatting and browse sorting from within
any application. Nice Touch also has a special wizard package price of
$649 which includes Query Wizard, Report Wizard, View Wizard,
CrossTab Wizard and Spreadsheet Wizard.

CW Search Utility Beta
Carl Barnes' CW Search Utility is now in public beta. This handy tool is
specifically designed for searching Clarion code and sports a variety of
formatting/viewing options. Carl has also released a patch to update CW
Assistant to use the C5 DLLs. There are no new features in this release.

Clarion Profile Exchange Updated
The bottom line: you use a program called Product Scope 32 Bookmarks
to view product and company profiles that mostly highlight Clarion
(TopSpeed) third party add-on companies and products.

NT Tools/Clarion Tips
NT Tools software collects MS-SQL 6.5 Executive Log, NT Event Log and
Registry data from NT Servers and Workstations throughout an entire
network. Connections are not limited to a single network; all that’s
needed is an IP address and security access to the remote connection.
All data gathering is done locally and stored in a central repository; there
are no agents to run remotely.

Jersey DevCovey '99
The New York, Pennsylvania and New Jersey Groups are pleased to

Clarion Magazine - News April 1999

http://www.clarionmag.com/v1n3/pub/v1n3news.html (1 of 3) [5/3/1999 12:50:15 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
mailto:banks@tsres.com
http://24.2.81.219/cnjg/
http://www.nicetouch.com/clarion
http://www.carlbarnes.com/CWAS.htm
http://www.encouragersoftware.com/
http://r.hoffmann.home.mindspring.com/
http://24.2.81.219/cnjg/jersey_devcovey_99.htm
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://216.82.30.86/etc2000.html

announce a joint meeting on May 22, 1999. Speakers include Mike
Hanson, Eric Jakobowitz, Waseem Naik, Troy Sorzano, and Phil Will.

NextAge Consulting Releases Imaging Templates
NextAge Consulting has released the Imaging Templates for Clarion for
Windows version 5 (ABC). The Imaging Templates are a full set of
procedure and control templates, which enable you to include document
storage functions in your application within ten minutes. The template
works by integrating the imaging OCX’s that ship as a free part of the
Windows operating system and work with any TWAIN-compatible
scanner. Documents can be stored as TIFF files on the hard drive or
within your data files as BLOBS. The templates provide Imaging
functions such as: viewing documents, thumbnails, scanning, printing,
rotation, page control, and zooming as well as image path maintenance
functions.

L3 Technologies Updates dBASE & Paradox Drivers for C5
L3 Technologies has updated its dBASE and native Paradox file drivers
for C5. The Drivers are written using the TopSpeed File Driver Kit,
ensuring complete compatibility with Clarion. Database access is
achieved using the Borland Database Engine (BDE). This is the same
engine that is used in the dBASE and Paradox Database systems, so full
compatibility is ensured. The drivers can be purchased on-line and
downloaded. Evaluation versions are available.

April 12, 1999

Programmer's Power Tool Library
LOGICBit creates hardware level multimedia tools (MMLib32) and has
just announced the Clarion programmer's power tool library XLib32.
XLib32 includes support for Text-to-Speech, TTY, TTY-to-Speech, 4 low
level compression algorythms, 4 128 bit encryption algorythms and lot's
more. Since LOGICBit tools are not templates you can rest assured that
all LOGICBit tools work seamlessly in all version of windows.

DevCon Latin America '99
The second edition of the Clarion Developers Conference Latin America
will be held May 13-15 in Buenos Aires, Argentina. Last year's
conference had over 200 attendees, making this one of the largest
Clarion DevCons in the world. Roy Rafalco, Topspeed's President and
CEO will deliver the keynote address, and this year's focus is on training.
For more information see the web site, email devcon@unisoft.com.ar, or
phone +5411 4372-7243, fax +5411 4374-9469.

Handy Tools Updated
Handy Tools consist of a number of Clarion 5 templates and classes that
extend or complement the normal functionality of the Clarion 5
application development environment. A free fully-working set of these
template/classes and examples is available at the web site.

Internet Framework Templates-HTTP Server Edition Released
These general purpose templates allow intermediate-level developers to
develop almost any kind of 32 bit HTTP server application desired.
Includes examples of reading/writing/searching databases. Handles
multiple connections and manages Windows socket calls.

April 6, 1999

IceTips KB Updated
The IceTips knowledgebase has been updated with new features,
including a "limited results" page, category icons, Next/Previous links,
soundex matches, statistics, help, and highlighting of search text. There
are over 2400 bug reports, FAQs, and articles in the IceTips KB.

Create Clarion CGI Programs With X-Works
X-Works is a tool for web server application development - either new
development or porting existing applications to WWW. It works with web
server software on the server computer (not on client PC). It allows you

Clarion Magazine - News April 1999

http://www.clarionmag.com/v1n3/pub/v1n3news.html (2 of 3) [5/3/1999 12:50:15 PM]

http://www.thenextage.com/imagingtemplates.html
http://www.l3.u-net.com/drv/drivers.htm
http://www.logicbit.com/MMLib/
http://www.unisoft.com.ar/devcon99.html
http://home.istar.ca/~gcreces
http://www.logicentral.com/netengines.html
http://www.icetips.com/
http://www.x-works.com/clwdemo.htm

to write CGI scripts in VB, VFP, or any other languages on NT/95/98.
X-Works is over 20 times faster than WinCGI. If you buy X-Works by
May 31, 1999, you get a 20% discount (USD $199 or $559 instead of
$249 or $699).

Internet Framework Templates: HTTP Server Edition In Beta
These templates will make it very easy for developers to quickly have
HTTP server capability using Clarion. Developers will be free to develop
almost any kind of HTTP server application they need. Pricing to be
determined. Check out the What's New department at
http://www.logicentral.com for Mar 29, 1999 and Feb 24, 1999.

Clarion-Related Product Links Updated
Actually this page is updated on a regular basis. If you haven't looked at
our categorized list of Clarion links recently you might be surprised at
what you can find!

Read the March 1999 News

Do you have a news story or press release we should know about? Send
it to editor@clarionmag.com

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - News April 1999

http://www.clarionmag.com/v1n3/pub/v1n3news.html (3 of 3) [5/3/1999 12:50:15 PM]

http://www.logicentral.com/netengines.html
http://www.logicentral.com/
http://www.clarionmag.com/common/links_bycategory.html
http://www.clarionmag.com/v1n2/pub/v1n2news.html
mailto:editor@clarionmag.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 3
April 1999

The Clarion Code Challenge:
A Compiler’s Eye View

Part Two

By David Bayliss

(Editor's note: Some of the source code on this page exceeds
the page boundaries when printed from a browser. You may
wish to download the April 26 PDF which takes care of this
problem.)

Recently Clarion magazine ran a competition to see who could produce
the fastest and tightest code for a given problem. This is part two of
David Bayliss's analysis of what the compiler is doing with that code.
Click here to read part one.

Poul Jensen - 160 bytes

PoulJensen Procedure(Long LongStart,Long LongEnd,Short TimeBlock,
 Byte RoundIndicator=False)
TimeToBill LONG
Blocks LONG
 code
 If Longstart > LongEnd
 TimeToBill = 8640001 - LongStart + LongEnd
 else
 TimeToBill = LongEnd - LongStart + 1
 End!if
 Blocks = Round((TimeToBill / TimeBlock/6000) ,1.0)
 If Not RoundIndicator and Blocks * TimeBlock |
 * 6000 + 1 < TimeToBill
 Blocks +=1
 End!if
 return(Blocks)

The first IF clause is a classic illustration of just how simple and efficient
arithmetic is (in 32 bit) if it can be kept at long width.

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (1 of 15) [5/3/1999 12:50:23 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.thenextage.com/imagingtemplates.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML

!39 D8! cmp eax,ebx ! LongStart>LongEnd
!7E 0F! jle 0FH
!BE 01 D6 83 00! mov esi,83D601H ! ESI = 8640001
!29 C6! sub esi,eax ! ESI = 8640001-LongStart
!01 DE! add esi,ebx ! ESI = 8640001-LongStart+LongEnd
!89 74 24 10! mov [esp][10H],esi ! Store in TimeToBill
!EB 07! jmp 7
!29 C3! sub ebx,eax ! EBX = LongEnd-LongStart
!43! inc ebx ! EBX = LongEnd-LongStart+1
!89 5C 24 10! mov [esp][10H],ebx ! Store in TimeToBill

Only 26 bytes of code in total, and two of those could have been saved
by using a CHOOSE!

The Blocks computation is (by now) standard fare.

!8B 44 24 10! mov eax,[esp][10H] ! TimeToBill into EAX
!E8 00 00 00 00! call Cla$DpushLong ! Onto stack
!0F BF F1! movsx esi,cx ! TimeBlock into ESI
!89 F0! mov eax,esi ! Then into eax
!E8 00 00 00 00! call Cla$DpushLong ! Then onto the stack
!E8 00 00 00 00! call Cla$DecDivide ! Divided
!B8 70 17 00 00! mov eax,1770H
!E8 00 00 00 00! call Cla$DPushLong
!E8 00 00 00 00! call Cla$DecDivide ! Divided by 6000
!B8 00 00 00 00! mov eax,$4
!B3 02! mov bl,2
!66 B9 01 00! mov cx,1
!E8 00 00 00 00! call Cla$DpushConstant ! Pushing 1.0 onto stack
!E8 00 00 00 00! call Cla$Dround ! Rounding done
!E8 00 00 00 00! call Cla$DpopLong ! Into EAX
!89 44 24 0C! mov [esp][0CH],eax ! into Blocks.

The only strangeness is the move via ESI of TimeBlock. Did the
compiler miss a trick? No it spotted one. It needed TimeBlock at 32 bit
width later (for a multiplication) so it temp-stored the result in esi.

The IF clause is worth looking at for one reason. It shows the
short-circuit computation of the AND. Look at the first two lines. If
RoundIndicator (in dl) is non-zero then the rest of the if condition
(including the multiplies) is not executed.

!80 FA 00! cmp dl,0 ! IF RoundIndicator
!75 1A! jne 1AH ! Get out of here
!8B 44 24 0C! mov eax,[esp][0CH] ! Load upBlocks
!0F AF C6! imul eax,esi ! TimeBlock at 32 bit width, stashed
earlier
!69 D8 70 17 00 00! imul ebx,eax,1770H ! * 6000 into EBX
!43! inc ebx ! Plus 1
!8B 44 24 10! mov eax,[esp][10H]
!39 C3! cmp ebx,eax ! Compare with TimeToBill
!7D 04! jge 4

Adding 1 to Blocks is so easy the compiler doesn’t bother with a
register.

!FF 44 24 0C! inc dword [esp][0CH]

Finally move the result into ax to return.

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (2 of 15) [5/3/1999 12:50:23 PM]

!66 8B 44 24 0C! mov ax,[esp][0CH]

Summary

The code generated is actually quite reasonable and compact. The main
time-hit is on the non-rounding case where Poul has still used the full
rounding mechanism. He also has the double division problem that
plagued a number of us. He could also get a slightly better result by
rounding with ,1 rather than ,1.0. Again the variables could use the AUTO
attribute.

Kurt Pawlikowski – 199 Bytes

KurtPawlikowski Procedure(Long loc:StartTime,Long loc:EndTime,
 Short loc:Units,Byte loc:Round=False)
loc:UnitsBilled long ! Result number of units billed
 code
 if loc:StartTime > loc:EndTime then loc:EndTime += 8640000.
 loc:UnitsBilled = int(((loc:EndTime - loc:StartTime)/|
 (loc:Units * 6000))) + ((((loc:EndTime - loc:StartTime)|
 /(loc:Units * 3000))% 2) * loc:Round)
 return(loc:UnitsBilled)

The first IF condition is handled cleanly; the use of += allows the
compiler to go on using ebx for loc:EndTime which is nice.

!39 D8! cmp eax,ebx
!7E 06! jle 6
!81 C3 00 D6 83 00! add ebx,83D600H

Now comes the monster expression. First the compiler performs the
subtraction leaving the result in ebx.

!29 C3! sub ebx,eax

The result is now moved into eax prior to moving onto the decimal stack
to perform the division. The INT function is also performed on the
decimal stack where the result is left whilst the right hand side of the
addition is tackled.

!89 D8! mov eax,ebx
!E8 00 00 00 00! call Cla$DpushLong ! End-Start onto stack
!0F BF C9! movsx ecx,cx ! 32 bit loc:Units into ECX for later
!69 C1 70 17 00 00! imul eax,ecx,1770H ! loc:Units * 6000 into EAX
!E8 00 00 00 00! call Cla$DpushLong ! Onto stack
!E8 00 00 00 00! call Cla$DecDivide ! Divided
!E8 00 00 00 00! call Cla$Dint ! INT(Value) left on decimal stack

Starting inside the brackets:

!89 D8! mov eax,ebx ! End-Start already in EBX
!E8 00 00 00 00! call Cla$DpushLong ! Now onto decimal stack
!69 C1 B8 0B 00 00! imul eax,ecx,0BB8H ! Multiply loc:Units by 3000
!E8 00 00 00 00! call Cla$DpushLong ! Onto decimal stack
!E8 00 00 00 00! call Cla$DecDivide ! Perform division

Now the trouble starts. A DECIMAL modulus of a LONG is computed at
REAL width, so the % is much more expensive than Brian’s case.

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (3 of 15) [5/3/1999 12:50:23 PM]

!E8 00 00 00 00! call Cla$DpopReal ! Decimal result into st0
!DD 5C 24 24! fstp qword [esp][24H],st0 ! Temp store
!83 EC 08! sub esp,8 ! Prepare to pass real
parameter
!DD 44 24 2C! fld st0,qword [esp][2CH] ! Load from temp (esp has
changed!)
!DD 1C 24! fstp qword [esp][0],st0 ! Pass real parameter
!83 EC 08! sub esp,8 ! Prepare for second real
parameter
!DD 05 00 00 00 00! fld st0,qword [dword $3] ! Load constant 2
!DD 1C 24! fstp qword [esp][0],st0 ! Pass real parameter
!E8 00 00 00 00! call Cla$modulus ! Real modulus operation
!DD 5C 24 1C! fstp qword [esp][1CH],st0 ! Store result

Now the compiler has the left hand side of the addition on the decimal
stack and the left hand side stored as a REAL in memory. The addition
now has to be performed at REAL width. Panic time.

Get the original Dint result into memory as a REAL; then it’s a controlled
situation.

!E8 00 00 00 00! call Cla$DPopReal
!DD 5C 24 14! fstp qword [esp][14H],st0

The compiler now has everything as REALs so can start doing the floating
point math, which it does quite well.

!DD 44 24 14! fld st0,qword [esp][14H] ! Load the Dint result onto
the FPU for later
!DD 44 24 1C! fld st0,qword [esp][1CH] ! Load the modulus result
onto the chip
!0F B6 C2! movzx eax,dl ! Get loc:Round into eax
!89 44 24 10! mov [esp][10H],eax ! Into memory
!DB 44 24 10! fild st0,dword [esp][10H] ! Then onto the FPU
!DE C9! fmulp st1,st0 ! Perform the multiplication
!DE C1! faddp st1,st0 ! Then the addition

Finally the result has to come off of the FPU and into eax so that it can
be returned as a SHORT. (See Jeff Slarve’s code.)

!D9 7C 24 0A! fstcw [esp][0AH]
!D9 7C 24 08! fstcw [esp][8]
!66 81 4C 24 08 3F 0C! or word [esp][8],0C3FH
!D9 6C 24 08! fldcw [esp][8]
!DB 5C 24 0C! fistp dword [esp][0CH],st0
!DB E2! fclex
!D9 6C 24 0A! fldcw [esp][0AH]
!8B 44 24 0C! mov eax,[esp][0CH]
!89 44 24 2C! mov [esp][2CH],eax
!66 8B 44 24 2C! mov ax,[esp][2CH]

Summary

This is one of those cases where the Clarion compiler getting the answer
"right" can lead to code you weren’t expecting. The % operation is best
defined between longs (see Brian Staff’s code). Once you are into
DECIMALS/REALS it becomes quite a complex operation.

Gordon Smith – 262 Bytes

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (4 of 15) [5/3/1999 12:50:23 PM]

GordonSmith Procedure(Long b,Long e,Short u,Byte r=False)
a real, auto
 code
 a = ((e - b + 8640000) % 8640000) / (u * 6000)
 return CHOOSE(r, round(a, 1), a + CHOOSE(a - int(a) > 0, 1, 0))

Like Brian, Gordon has managed to keep his modulus calculation at
integer width, which the compiler inlines. This produces quite a lot of
code but most of the instructions are fast.

!29 F0! sub eax,esi ! EAX = e - b
!05 00 D6 83 00! add eax,83D600H ! EAX = inner parenthesis
!BE 00 D6 83 00! mov esi,83D600H ! Right hand operand of modulus
!99! cdq
!F7 FE! idiv esi ! Perform modulus operation
!89 D0! mov eax,edx
!89 C2! mov edx,eax
!81 F2 00 D6 83 00! xor edx,83D600H
!7D 09! jge 9 ! ‘Wiggle’ to obey Clarion semantics.
!85 C0! test eax,eax
!74 05! je 5
!05 00 D6 83 00! add eax,83D600H

Having computed the modulus the compiler then places the result on the
decimal stack ready for the division. The u*6000 is again inline
assembler.

!E8 00 00 00 00! call Cla$DpushLong ! Left hand onto decimal stack
!0F BF C1! movsx eax,cx ! EAX = u (at 32 bit width)
!69 C0 70 17 00 00! imul eax,eax,1770H ! u * 6000
!E8 00 00 00 00! call Cla$DpushLong ! Onto decimal stack
!E8 00 00 00 00! call Cla$DecDivide ! Perform division

Now Gordon stores the result in a REAL (similar to Jeff’s code).

!E8 00 00 00 00! call Cla$DpopReal ! Decimal into st0
!DD 5C 24 38! fstp qword [esp][38H],st0 ! Intermediate result stored
(for use in INT(A))
!DD 44 24 38! fld st0,qword [esp][38H] ! Re-loaded
!DD 5C 24 30! fstp qword [esp][30H],st0 ! Moved into a

The compiler then chooses which arm of the outer CHOOSE to evaluate.
Interestingly Gordon is using an enumerated CHOOSE (the variable is
used as a number) rather than a logical one (r <> 0). So if r was
two this would go down the second arm.

!80 FB 01! cmp bl,1 ! Compare r against 1
!74 4C! je 4CH ! If not one go down the ‘else’ (second) arm.

The "else" (second) arm starts with the compiler evaluating the inner
CHOOSE. first the subtraction:

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (5 of 15) [5/3/1999 12:50:23 PM]

!83 EC 08! sub esp,8
!DD 44 24 38! fld st0,qword [esp][38H] !Load up copy of a
!DD 1C 24! fstp qword [esp][0],st0 !Store as parameter
!E8 00 00 00 00! call Cla$INT ! Call INT function
!DD 5C 24 28! fstp qword [esp][28H],st0 ! Store result
!DD 44 24 30! fld st0,qword [esp][30H] ! Load up a
!DD 44 24 28! fld st0,qword [esp][28H] ! Load up INT(A)
!DE E9! fsubp st1,st0 ! Perform a-INT(A)

Then the result of the subtraction is compared against zero and the
value of the inner CHOOSE is computed. Note that the result of the inner
CHOOSE is LONG even though the logical expression involves REALs. That
is because the three parameters are of type LOGICAL, LONG, LONG.

!DD 05 00 00 00 00! fld st0,qword [dword $2] ! Load up zero
!DE D9! fcompp st0,st1 ! Compare with a-INT(a)
!DF E0! fstsw ax ! Status into ax
!F6 C4 01! test ah,1 ! Compute (integral) CHOOSE
result
!74 07! je 7
!B8 01 00 00 00! mov eax,1
!EB 05! jmp 5
!B8 00 00 00 00! mov eax,0

Now the value of the CHOOSE (in eax) has to be cast up to a real so that
it can be added to a.

!DD 44 24 30! fld st0,qword [esp][30H] ! Re-load a
!89 44 24 24! mov [esp][24H],eax ! Move EAX into memory
!DB 44 24 24! fild st0,dword [esp][24H] ! Load onto fpu
!DE C1! faddp st1,st0 ! Perform addition

The rounding arm is exactly the same as Jeff’s as is the casting code to
get the REAL result back into ax to return it.

Summary

This code is extremely similar to Jeff’s. I suspect that the main reason
for the speed difference is that Gordon has avoided the second division
in the first line.

Alan Telford – 204 Bytes

AlanTelford Function(Long p:StartTime, Long p:EndTime,
 Short p:BlockLength, Byte p:UseRounding)
! Return the number of blocks of time (of p:BlockLength minutes)
! which occur between p:StartTime and p:EndTime
! IF not rounding, then charge for each full or any part segment
! If rounding, then only charge for each full and any part segments
! which are as long as the block length
l:BlockCount Short ! return value from function
l:Minutes Short ! intermediate value which holds minutes
 !between starttime and endtime
eMidnight Equate(8640000)
 CODE
 ! If endtime is after midnight then add 24 hours so
 ! calculation comes out correct
 IF p:EndTime < p:StartTime
 p:EndTime += eMidnight
 END
 l:Minutes = (p:EndTime - p:StartTime) / 6000
 l:BlockCount = l:Minutes / p:BlockLength

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (6 of 15) [5/3/1999 12:50:23 PM]

 IF ~p:UseRounding and l:Minutes % p:BlockLength |
 OR l:Minutes % p:BlockLength >= p:BlockLength / 2
 l:BlockCount += 1
 END
 return l:BlockCount

I must admit that when I saw Alan’s entry I grinned. He and John are
the only two to have produced what I would call "proper" code: the kind
of thing you would expect to get inside an insurance company. I looks as
if it ought to be very safe, very methodical, and very inefficient.

One of the great things about the Clarion compiler is that all of this
"properness" gets optimized out and a result is produced that can easily
hold its head up against the hot-n-heavy hackers.

The opening IF statement is crunched into 9 bytes.

!39 F0! cmp eax,esi ! Compare p:EndTime v’s p:StartTime
!7D 05! jge 5
!05 00 D6 83 00! add eax,83D600H ! Add eMidNight to p:EndTime if
required

The l:Minutes computation is a standard usage of the decimal stack for
a division.

!29 F0! sub eax,esi ! EAX is EndTime-StartTime
!E8 00 00 00 00! call Cla$DpushLong ! Onto Stack
!B8 70 17 00 00! mov eax,1770H
!E8 00 00 00 00! call Cla$DpushLong ! 6000 onto stack
!E8 00 00 00 00! call Cla$DecDivide ! Divide
!E8 00 00 00 00! call Cla$DpopLong ! Result into eax
!66 89 44 24 10! mov [esp][10H],ax ! Store in l:Minutes

The BlockCount computation follows a similar pattern :

!0F BF 5C 24 10! movsx ebx,word [esp][10H] ! l:Minutes into ebx at 32
bit width
!89 D8! mov eax,ebx ! EBX has copy for later %
computation
!E8 00 00 00 00! call Cla$DpushLong ! Then onto stack
!0F BF C9! movsx ecx,cx ! Sign extend p:BlockLength (for
later)
!89 C8! mov eax,ecx
!E8 00 00 00 00! call Cla$DpushLong ! Onto Stack
!E8 00 00 00 00! call Cla$DecDivide ! Division
!E8 00 00 00 00! call Cla$DPopLong
!66 89 44 24 12! mov [esp][12H],ax ! Result into BlockCount

The IF statement gets very tangled in the assembler mainly because of
the need to guarantee short-circuit evaluation. (The expression finishes
evaluating as soon as the result in known). Evaluation is always left to
right although ANDs bind tighter than ORs. So first a check is made on
UseRounding.

!80 FA 00! cmp dl,0
!75 16! jne 16H

If rounding is on then the first modulus has to be computed. This is
integral and so is inlined.

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (7 of 15) [5/3/1999 12:50:23 PM]

http://216.82.30.86/etc2000.html

!89 D8! mov eax,ebx ! EAX set to L:Minutes (remembered
previously)
!99! cdq
!F7 F9! idiv ecx ! ECX holds p:BlockLength (again computed
previously)
!89 D0! mov eax,edx
!31 C8! xor eax,ecx
!7D 06! jge 6 ! Usual modulus wiggling.
!85 D2! test edx,edx
!74 02! je 2
!01 CA! add edx,ecx

The modulus result (in edx) then has to be checked against zero.

!83 FA 00! cmp edx,0
!75 38! jne 38H

If in has a value then the body of the IF is executed. Otherwise the OR
condition has to be checked as follows :

First the right hand side of the >= is computed. This may seem a little
odd, but both sides of the expression have to be evaluated and the
language does not specify which one is computed first (this is true for all
operators except AND and OR).

!89 C8! mov eax,ecx !P:Blocklength into EAX
!E8 00 00 00 00! call Cla$DpushLong !Onto stack
!B8 02 00 00 00! mov eax,2
!E8 00 00 00 00! call Cla$DpushLong !Two onto stack
!E8 00 00 00 00! call Cla$DecDivide !Division performed

This result is left on the decimal stack whilst the modulus is computed.
Again this is integral and can be inlined.

!89 D8! mov eax,ebx ! L:Minutes into eax
!99! cdq
!F7 F9! idiv ecx ! p:Blocklength already around
!89 D0! mov eax,edx
!89 C3! mov ebx,eax
!31 CB! xor ebx,ecx ! Standard modulus wiggle.
!7D 06! jge 6
!85 C0! test eax,eax
!74 02! je 2
!01 C8! add eax,ecx ! Result into EAX

Now this is an interesting part. The right hand side of this expression is a
DECIMAL, and the left is a LONG. The >= therefore has to be computed at
decimal width, and this is done via the decimal stack.

!E8 00 00 00 00! call Cla$DpushLong ! EAX onto decimal stack
!E8 00 00 00 00! call Cla$DecDistinctR ! Compare top two items on
stack, result in EAX
!83 F8 00! cmp eax,0
!7C 05! jl 5

After all that hard work computing the IF condition the actual body of
the IF clause is so trivial the compiler doesn’t even use a register.

!66 FF 44 24 12! inc word [esp][12H] ! p:BlockCount += 1

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (8 of 15) [5/3/1999 12:50:23 PM]

The result is then returned in ax.

!66 8B 44 24 12! mov ax,[esp][12H]

Summary

Alan’s code is a beautiful example of how straightforward
do-it-as-you-see-it code can actually result in a very compact and
acceptable result.

In terms of improvement there are a few things that can be done. First is
the use of the AUTO attribute on the variables. The compiler has also had
to use MOVSX a couple of times to extend a 16 bit value up to 32 bit.
Generally in 32 bit systems it is better to use LONG than SHORT (although
Alan would do better in 16 bit).

I suspect the main sloth culprit (shared with a number of people,
including myself) is the "second division" problem.

Alan has also tripped slightly with the l:Minutes % p:BlockLength
computation which appears down both arms of the OR clause in the IF.
You might reasonably expect this expression to be spotted by the
compiler as a common sub-expression (as it did for Brian a few times)
and only computed once. Unfortunately it cannot do this because of the
guarantee that logical expressions are short-circuit evaluated.

Peter Gysegem A– 168 Bytes

PeterGysegemA PROCEDURE (LONG StartDate, LONG StartTime,
 LONG EndDate, LONG EndTime, SHORT Increment, BYTE RoundFlag)

Elapsed LONG !Elapsed time in 100ths of a second
Ticks LONG !Billing increment in 100ths of a second
Units SHORT !Number of billing units

 CODE
 IF StartDate = EndDate
 Elapsed = EndTime - StartTime
 ELSE
 Elapsed = EndTime + 8640000 - StartTime
 END
 Ticks = Increment * 6000

 IF RoundFlag
 Units = ROUND(Elapsed/Ticks, 1)
 ELSE
 Units = Elapsed/Ticks
 END

 RETURN(Units)

This is the fastest code on the block and when you look at the
disassembly you can see why.

!39 C8! cmp eax,ecx ! Compare StartDate with EndDate
!75 08! jne 8
!29 DA! sub edx,ebx ! EndTime-StartTime
!89 54 24 0C! mov [esp][0CH],edx ! Result into Elapsed
!EB 0C! jmp 0CH
!81 C2 00 D6 83 00! add edx,83D600H ! EndTime + 8640000
!29 DA! sub edx,ebx ! EndTime + 8640000 - StartTime
!89 54 24 0C! mov [esp][0CH],edx ! Into Elapsed

The computation of Ticks is also straightforward. The Increment
variable comes in on the stack because after four parameters the
compiler has run out of registers to pass parameters around.

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (9 of 15) [5/3/1999 12:50:23 PM]

!0F BF 44 24 18! movsx eax,word [esp][18H] ! EAX = Increment
!69 C0 70 17 00 00! imul eax,eax,1770H ! EAX = Increment * 6000
!89 44 24 08! mov [esp][8],eax ! Into Ticks

RoundFlag is also on the stack although as it is only tested it doesn’t
matter as the compiler can use it from memory.

!80 7C 24 14 00! cmp byte [esp][14H],0 ! IF RoundFlag
!74 32! je 32H

The reason Peter has such a fast routine is that up until this point he has
stayed entirely with integer arithmetic. The Units computation involves
a division and thus goes via the decimal stack although even here the
code is straightforward. This is the ROUNDing case; the unrounded is the
same but without the call to Dround.

!8B 44 24 0C! mov eax,[esp][0CH] ! EAX = Elapsed
!E8 00 00 00 00! call Cla$DpushLong ! Onto Stack
!8B 44 24 08! mov eax,[esp][8] ! EAX = Ticks
!E8 00 00 00 00! call Cla$DpushLong ! Onto stack
!E8 00 00 00 00! call Cla$DecDivide ! Divide
!B8 01 00 00 00! mov eax,1
!E8 00 00 00 00! call Cla$DpushLong ! 1 Onto Stack
!E8 00 00 00 00! call Cla$Dround ! Perform rounding
!E8 00 00 00 00! call Cla$DpopLong ! Result into EAX
!66 89 44 24 06! mov [esp][6],ax ! Into Units

Summary

Peters code is very similar to mine except he (correctly) avoided the
double division. There are still a few tweaks available. AUTO is one. I
would also be tempted to try RETURNing the result rather than going via
Units. I think he could have got a little more speed by avoiding the two
date parameters as well.

John Cunningham – 304 Bytes

JohnCunningham Procedure(Long TIM:timeStarted,Long TIM:TimeEnded,
 Short TIM:TimePeriod,Byte TIM:RoundedPeriod=False)
TIM:MinutesWorked long
TIM:PeriodsWorked short
 code
 Do CalcMinutes
 IF TIM:MinutesWorked % TIM:TimePeriod <> 0
 ! Left over minutes
 TIM:PeriodsWorked += 1
 IF TIM:RoundedPeriod
 ! Rounded
 IF (TIM:MinutesWorked % TIM:TimePeriod) < (TIM:TimePeriod / 2)
 ! Minimum of 1 period billed
 IF TIM:PeriodsWorked > 1
 TIM:PeriodsWorked -= 1
 END
 END
 END
 END
 return(TIM:PeriodsWorked)

CalcMinutes Routine
 IF TIM:TimeEnded >= TIM:TimeStarted
 ! Before Midnight

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (10 of 15) [5/3/1999 12:50:23 PM]

 TIM:MinutesWorked = ((TIM:TimeEnded-1)-(TIM:TimeStarted-1)+1)/6000
 ELSE
 ! After Midnight
 TIM:MinutesWorked = (((8640001-TIM:TimeStarted-1)+|
 (TIM:TimeEnded-1))+1)/6000
 END
 TIM:PeriodsWorked = INT(TIM:MinutesWorked/TIM:TimePeriod)

Without doubt the most interesting feature of Johns code (from the
perspective of this analysis) is the use of a routine. One a procedure has
a routine it is a parent, and as we all know parent-hood is the time when
we have to stop being fast and flash and start being responsible. So at
the head of Johns procedure is this code:

!89 45 F4! mov [ebp*1][-0CH],eax
!89 5D F8! mov [ebp*1][-8],ebx
!66 89 4D EC! mov [ebp*1][-14H],cx

What is happening is that all of the variables the child (routine) wants
have to be put in memory where the child can get at them. Also
whenever the parent wants the value it has to go to memory too (in case
the child changed it). These variables are described as threatened, which
essentially means they must always be used from memory.

The code for the routine is then fairly standard except that many of the
variables used have to be fetched via an implicit pointer to the parent.
So the coding for the IF becomes :

!8B 5D FC! mov ebx,[ebp*1][-4] ! Make EBX ‘pointer to
procedure variables’
!8B 43 F4! mov eax,[ebx*1][-0CH] ! Load up TimeStarted
!39 43 F8! cmp [ebx*1][-8],eax ! Compare to TimeEnded

The compiler does spot the TimeEnded-1 appearing in both arms of the
IF an precomputes it :

!9C! pushfd
!8B 4B F8! mov ecx,[ebx*1][-8] ! Load TimeEnded from parent
!49! dec ecx ! TimeEnded-1
!9D! popfd

The two MinutesWorked computations are similar to things I’ve
explained earlier so I’ll just annotate the assembler for the simpler one.

!89 C8! mov eax,ecx ! EAX = TimeEnded-1
(precomputed above)
!8B 4B F4! mov ecx,[ebx*1][-0CH] ! ECX = TimeStarted
!49! dec ecx ! ECX = TimeStarted-1
!29 C8! sub eax,ecx ! EAX =
(TimeEnded-1)-(TimeStarted-1)
!40! inc eax ! EAX =
(TimeEnded-1)-(TimeStarted-1)+1
!E8 00 00 00 00! call Cla$DpushLong ! Onto decimal stack
!B8 70 17 00 00! mov eax,1770H
!E8 00 00 00 00! call Cla$DpushLong ! 6000 => Decimal stack
!E8 00 00 00 00! call Cla$DecDivide ! Division
!E8 00 00 00 00! call Cla$DpopLong ! Result Into EAX
!89 43 F0! mov [ebx*1][-10H],eax ! Into MinutesWorked.

Finally within the routine the compiler performs the division and then the
INT. INT on a DECIMAL is done on the decimal stack and is extremely
cheap.

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (11 of 15) [5/3/1999 12:50:23 PM]

!8B 43 F0! mov eax,[ebx*1][-10H] ! MinutesWorked
!E8 00 00 00 00! call Cla$DpushLong ! Onto decimal stack
!0F BF 43 EC! movsx eax,word [ebx*1][-14H]! TimePeriod
!E8 00 00 00 00! call Cla$DpushLong ! Onto decimal stack
!E8 00 00 00 00! call Cla$DecDivide ! Divided
!E8 00 00 00 00! call Cla$Dint ! Int Function
!E8 00 00 00 00! call Cla$DpopLong ! Result Into EAX
!66 89 43 EE! mov [ebx*1][-12H],ax ! And into PeriodsWorked (in
parent)

The main body of the code is then dominated by the two modulus
operations, both of which are inlined. Note the compiler has to keep
going back to memory for the threatened variables.

This is the first IF condition:

!8B 45 F0! mov eax,[ebp*1][-10H] ! EAX = Minutes worked
!0F BF 4D EC! movsx ecx,word [ebp*1][-14H]! ECX = TimePeriod
!99! cdq
!F7 F9! idiv ecx ! Modulus operation
!89 D0! mov eax,edx
!31 C8! xor eax,ecx
!7D 06! jge 6 ! Modulus wiggle
!85 D2! test edx,edx
!74 02! je 2
!01 CA! add edx,ecx
!83 FA 00! cmp edx,0 ! Test result against zero
!74 4D! je 4DH ! Jump out if 0.

Incrementing PeriodsWorked can be done in memory:

!66 FF 45 EE! inc word [ebp*1][-12H]

Next RoundedPeriod is checked. This variable is not threatened so the
compiler has kept it in registers (bl).

!80 FB 00! cmp bl,0
!74 44! je 44H

The second modulus computation and corresponding IF condition is
exactly the same as Alan Telford’s and similar code is generated.

!89 C8! mov eax,ecx ! EAX = TimePeriod
!E8 00 00 00 00! call Cla$DpushLong ! Onto decimal stack
!B8 02 00 00 00! mov eax,2
!E8 00 00 00 00! call Cla$DpushLong ! 2 onto decimal stack
!E8 00 00 00 00! call Cla$DecDivide ! Division, leaving result on
stack
!8B 45 F0! mov eax,[ebp*1][-10H] ! EAX = Minutes worked
!99! cdq
!F7 F9! idiv ecx ! Divide by TimePeriod
!89 D0! mov eax,edx
!89 C3! mov ebx,eax
!31 CB! xor ebx,ecx ! Wiggle
!7D 06! jge 6
!85 C0! test eax,eax
!74 02! je 2
!01 C8! add eax,ecx
!E8 00 00 00 00! call Cla$DpushLong ! Result onto stack
!E8 00 00 00 00! call Cla$DecDistinctR ! Compare top two items on

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (12 of 15) [5/3/1999 12:50:23 PM]

decimal stack
!83 F8 00! cmp eax,0 ! A zero return implies
equality
!7D 0B! jge 0BH
!66 83 7D EE 01! cmp word [ebp*1][-12H],1 ! Finally PeriodsWorked is
checked against 1
!7E 04! jle 4
!66 FF 4D EE! dec word [ebp*1][-12H] ! And decremented if greater
!66 8B 45 EE! mov ax,[ebp*1][-12H] ! Result into AX to return.

Summary

Johns code was very similar to a number of other entries. It eventually
ran slower because of the extra work the compiler did sharing the
variables between parent procedure and child routine. The comments in
the other summaries apply (AUTO, double division etc), but the main one
here is that in general you should try to avoid sharing variables between
procedures and routines. You can do it (and it works) but here an
efficiency penalty of about 20% has been paid.

Carl Barnes – 198 Bytes

CarlBarnes Procedure(Long StartTime,Long StopTime,Short Period,
 Byte Roundit=False)

 CODE
 !ASSERT(Period = 0)
 !ASSERT(RoundIt > 1)
 RETURN INT((((StopTime - StartTime) / 6000 + 1440) % 1440)|
 / Period + RoundIt / 2)

Given the two ASSERTs are commented out (check out the use of ? with
ASSERT) this routine shows just how much code you can get from one
relatively innocent looking line of code.

The compiler starts by working inside-out. First the subtraction :

!29 F0! sub eax,esi ! EAX = StopTime-StartTime

Then the division by 6000 :

!E8 00 00 00 00! call Cla$DpushLong ! EAX onto decimal stack
!B8 70 17 00 00! mov eax,1770H ! EAX = 6000
!E8 00 00 00 00! call Cla$DpushLong ! onto decimal stack
!E8 00 00 00 00! call Cla$DecDivide ! Division performed

Now the addition of 1440, the result of the division is a decimal so the
addition has to be performed at decimal width:

!B8 A0 05 00 00! mov eax,5A0H ! EAX = 1440
!E8 00 00 00 00! call Cla$DpushLong ! onto Decimal stack
!E8 00 00 00 00! call Cla$DecAdd ! Addition result on decimal stack

The compiler now has to perform a modulus operation upon the decimal
result. As with Kurt’s code this becomes a floating point operation:

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (13 of 15) [5/3/1999 12:50:23 PM]

!E8 00 00 00 00! call Cla$DpopReal ! Result on decimal stack
needs to become real
!DD 5C 24 28! fstp qword [esp][28H],st0 ! Result Temp-stored
!83 EC 08! sub esp,8 ! Prepare to pass real
parameter
!DD 44 24 30! fld st0,qword [esp][30H] ! Load up temp-stored result
!DD 1C 24! fstp qword [esp][0],st0 ! Pass parameter
!83 EC 08! sub esp,8 !
!DD 05 00 00 00 00! fld st0,qword [dword $0]
!DD 1C 24! fstp qword [esp][0],st0 ! Pass Period as real
parameter
!E8 00 00 00 00! call Cla$modulus ! Modulus operation
!DD 5C 24 20! fstp qword [esp][20H],st0 ! Result stored away **1

The compiler down computes the right hand side of the outer addition.
Because the left hand side is a REAL value the right hand side has to be
computed at REAL width too:

!0F B6 C2! movzx eax,dl ! RoundIt into EAX
!E8 00 00 00 00! call Cla$DpushLong ! Onto decimal stack
!B8 02 00 00 00! mov eax,2
!E8 00 00 00 00! call Cla$DpushLong ! 2 onto stack
!E8 00 00 00 00! call Cla$DecDivide ! Divided
!E8 00 00 00 00! call Cla$DpopReal ! Result as real
!DD 5C 24 18! fstp qword [esp][18H],st0 ! Stored away **2

The compiler now returns to the left hand side of the addition where it
still has to perform the division by Period. The left hand side is up at
REAL width at this point so the division is done using floating point math:

!83 EC 08! sub esp,8
!DD 44 24 28! fld st0,qword [esp][28H] ! Load result stored away at
**1
!0F BF C1! movsx eax,cx ! EAX = Period
!89 44 24 1C! mov [esp][1CH],eax ! Stored into memory
!DB 44 24 1C! fild st0,dword [esp][1CH] ! To load into FPU
!DE F9! fdivp st1,st0 ! Division performed

Having finally got both sides of the addition the addition can happen:

!DD 44 24 20! fld st0,qword [esp][20H] ! Load result temp-stored at
**2
!DE C1! faddp st1,st0 ! Add to left hand side
(already on chip)
!DD 1C 24! fstp qword [esp][0],st0 ! Store the result as a
parameter
!E8 00 00 00 00! call Cla$INT ! And pass to INT routine

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (14 of 15) [5/3/1999 12:50:23 PM]

Having the result in St0 the compiler then goes through the usual
rigmarole of getting it into eax (see Jeff Slarve’s code).

Summary

This routine really demonstrates one of the gotchas (in terms of
efficiency) of Clarions automated type conversion. Essentially, within an
expression, the width of a computation nearly always gets wider. In
many ways this is good (Clarion guarantees to get the result correct,
many languages don’t) but it does mean that the compiler/library may
be working far harder to achieve a given result than the code you typed
may lead you to expect.

David Bayliss is a Software Development Manager for Topspeed
Corporation. He is also Topspeed's compiler writer and the chief architect
of the Application Builder Classes.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Clarion Challenge Analysis

http://www.clarionmag.com/v1n3/sub/v1n3challengeanalysis_part2.html (15 of 15) [5/3/1999 12:50:23 PM]

http://www.users.globalnet.co.uk/~dabay/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 3
April 1999

Andy "Cowboy" Stapleton is the acknowledged Clarion SQL guru and a
regular presenter at Clarion conferences around the world. His company,
Cowboy Computing Solutions, produces SQL templates and classes for
Clarion.

Click here to submit your SQL question to Andy.

Tom Foley: I understand that TS no longer recommend the use of
{Prop:SQL}. What is the replacement and can you explain the rationale?

Cowboy: To my knowledge {Prop:SQL} is not going away but you have
to be careful using it, which is why they don’t recommend it. If you use
{Prop:SQL} and NEXT() with a PUT() you must insure that you have
the primary key fields in the SELECT statement.

The reason is that PUT and NEXT use the primary fields to insure the
update of the record is accurate. If you don't provide this in the SELECT
Statement both the PUT and NEXT will not be aware of the record position
and subsequently give errant results or none at all. You can get around
not using the primary in the Select but you will have to create your own
Update Statements.

TS is redeveloping the file drivers for additional functionality, but I
cannot discuss this yet.

Yeoh Eng Loke: I have read your seminar materials for Devcon 98
where a sample file was downloadable. In that particular file called
'Devcon.doc', all the examples of stored procedures and triggers are
shown using SQL Anywhere. Do you have an equivalent in MS-SQL?

Cowboy: We are currently working on an MS-SQL project and from this
we will strip out examples of these items with documentation. I have
also entered into an agreement with George Willbanks [TS Resources
Inc] to produce a set of CD-ROM training items. Between the example
programs in the final release of the CCS Templates and the CD-Roms
there should be quite a bit of information about these these database
flavors.

The syntax of MS-SQL is different from the syntax of Sybase but there
are similarities. Here is an example of MS-SQL trigger:

[Trigger Definition]
Trigger checks the format type in the setup table to see
if the user wants First then Last or Last then First,
Updates the FULLNAME field to match.

CREATE TRIGGER Names_FullName ON Names
FOR INSERT, UPDATE
AS
DECLARE @NameFormat varchar(10);
SELECT @NameFormat = NameFormat
 FROM SETUP WHERE setupsysid = 1;
IF UPDATE(Fname) OR UPDATE(Lname)

Clarion Magazine - The SQL Answer Cowboy

http://www.clarionmag.com/v1n3/sub/v1n3sqlcowboy.html (1 of 3) [5/3/1999 12:50:29 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.lodestarsoftware.com/ccs/index.htm
http://www.lodestarsoftware.com/ccs/
http://216.82.30.86/etc2000.html
http://www.thenextage.com/imagingtemplates.html

 IF @NameFormat = 'FirstLast'
 UPDATE NAMES SET FullName = Fname + ' ' + Lname
 WHERE Names.NameSysID =
 ANY(SELECT NameSysID FROM INSERTED)
 AND Fname IS NOT NULL AND Lname IS NOT NULL
 AND Fname <> ' ' AND Lname <> ' '
 ELSE
 UPDATE Names SET FullName = Lname + ', ' + Fname
 WHERE Names.NameSysID =
 ANY(SELECT NameSysID FROM INSERTED)
 AND Fname IS NOT NULL AND Lname IS NOT NULL
 AND Fname <> ' ' AND Lname <> ' '

The same trigger in Sybase is:

CREATE TRIGGER Names_FullName BEFORE INSERT UPDATE
 Order 1 ON Names
 REFERENCING OLD AS OLDSTUFF
 NEW AS NEWSTUFF;
BEGIN
DECLARE pNameFormat VARCHAR(10);
SELECT NameFormat INTO pNameFormat FROM SETUP WHERE SetupSysID = 1;
IF OldStuff.Fname <> NewStuff.Fname OR OldStuff.Lname <> NewStuff.Lname
 IF pNameFormat = 'FirstLast' THEN
 SET NewStuff.FullName = NewStuff.Fname||' '||NewStuff.Lname;
 ELSE
 SET NewStuff.FullName = NewStuff.Lname||' '||NewStuff.Fname;
 END IF;
 END IF;
END

Personally I think the Sybase code is cleaner and more readable than the
MS-SQL version. Also with Sybase you have the option in the trigger to
allow a WHEN condition which will eliminate two lines of code within the
trigger and will also stop the execution if the WHEN condition is not met.

CREATE TRIGGER Names_FullName BEFORE INSERT, UPDATE
 ORDER 1 ON NAMES
 REFERENCING OLD AS oldStuff NEW AS newStuff
 FOR EACH ROW
 WHEN(OldStuff.Fname <> NewStuff.Fname
 OR OldStuff.Lname <> NewStuff.Lname)
 BEGIN
 DECLARE pNameFormat VARCHAR(10);
 SELECT NameFormat INTO pNameFormat
 FROM SETUP WHERE setupsysid = 1;
 IF pNameFormat = 'FirstLast' THEN
 SET NewStuff.FullName = NewStuff.Fname||' '||NewStuff.Lname;
 ELSE
 SET NewStuff.FullName = NewStuff.Lname||' '||NewStuff.Fname;
 END IF;
 END

Clarion Magazine - The SQL Answer Cowboy

http://www.clarionmag.com/v1n3/sub/v1n3sqlcowboy.html (2 of 3) [5/3/1999 12:50:29 PM]

All I did was move one line of code from the IF CLAUSE to the WHEN
condition of the Trigger.

All I can promise you at this time is the more I work with MS-SQL 7.0
the better it feels even with the changes, so there will be more to come…

Austin Drum: I have been using SQL Anywhere 5.5. I now see that
version 6 has been released. Also, I hear a lot of talk about MS SQL.
What are your thoughts and experiences and would you recommend one
above the other?

Cowboy: The newer versions of Sybase (6.0 and better) use
symmetrical multiprocessing now. This means that each query or stored
procedure will use all of the processors in your server. For the most part
the individual would not necessarily know the difference, but in a larger
environment you can see a significant increase in speed.

MS-SQL has definitely came a long way since 6.5, but I still think the
language needs to mature a bit more. The documentation of methods
and examples is not very instructive. I recommend you read The SQL
Server 7 Developers Guide (ISBN 0-07-882548-2).

Both databases are quite capable of doing an excellent job , both for the
Enterprise and personal use. MS-SQL is more expensive per seat and
from a Clarion standpoint it’s a bit harder to grasp the nuances. On the
other hand the Sybase language is more like Clarion and easier to
understand.

Click here to submit your SQL question to Andy.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - The SQL Answer Cowboy

http://www.clarionmag.com/v1n3/sub/v1n3sqlcowboy.html (3 of 3) [5/3/1999 12:50:29 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 3
April 1999

Reporting With Clarion For Windows
by Larry Teames

Back in the old days when men were men and computers were massive
mainframes requiring entire floors of buildings to house all the different
pieces of hardware that were connected to them, there were also huge,
fast printers.

In many cases, these printers cranked out a thousand lines (about 20
pages) per minute or more, for hours on end. Back then, you couldn’t
just pop up a window with a page image on it, and navigate to the
specific page you wanted to see, so we printed and printed and printed
because that was the only way we had of getting the information we
needed out of the computer. And almost without exception, what goes
into a computer eventually needs to come out in hardcopy form.

These days, a PC with perhaps 10 to 20 times the power of those old
computers takes up about 2 square feet of desktop or floor space, and
probably has a printer attached that prints cleaner and crisper than any
printer the "old guys" even dreamed of. Most printers for PCs are not as
fast as those old line printers, but they seldom need to be, since we can
usually see information of interest displayed on the PC monitor if we
choose.

But one thing about printing reports hasn’t changed:

If it’s worth putting into a computer, someone, at
some time, will need to get it out of the
computer, and in a format that conveys the data
in the most pleasing and informative way.

In other words, although we’ve probably diminished the need to actually
produce a hardcopy of our reports in many cases (today we can view
them on our monitors instead), we still need to see that information in a
well designed format.

And that brings me to the reason for this column: How to get the most
out of reporting in Clarion for Windows.

First Things First

Reporting in most Windows based programming languages is generally
handled by a report writer add-on that is used to both design and run
reports. Clarion for Windows has the Clarion Report Writer add-on. And
it’s a fine product capable of creating some nice reports.

But, CW also has a very powerful built-in Report Formatter for designing
your report structures, and an internal Report Engine which generates
reports from within your CW applications at runtime. Because the report
is being generated from within your application, you have considerably
more control over how it operates, even to the extent of making changes
at runtime.

The CW Report Engine interprets the report structure, at runtime, and
automatically prints much of the report for you.

Clarion Magazine - Reporting by Teames

http://www.clarionmag.com/v1n3/sub/v1n3larryteames.html (1 of 6) [5/3/1999 6:32:39 PM]

http://www.clarionmag.com/index.html
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.cpcs-inc.com/
http://216.82.30.86/etc2000.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML

The good news is that it handles things like page overflow, page
numbering, and control breaks automatically.

The bad news is that it handles things like page overflow, page
numbering, and control breaks automatically. (More on this dichotomy
later in this series)

Strike Up The Band

The Clarion for Windows Report Engine prints reports using "bands". A
band is a collection of controls that print together at the same time,
either automatically, or when asked to do so from code you have
written.

There are 7 band types available for use in creating Clarion Reports:

Page Header Band

Break Group Band

Group Header Band

Detail Band

Group Footer Band

Page Footer Band

Page Form Band

All bands except Detail Bands are typically printed automatically by the
Report Engine.

Page Header Band

Prints automatically once per page before any other bands print on the
page (although the Page Form is placed on the page prior to the page
header printing). There can be only one Page Header Band defined for
each Report. Prints in the Page Header Area.

Break Group Band

Does not contain controls that actually print, but rather defines the
variable or file field that is used to determine when a control break
occurs. There can be multiple Break Group Bands defined on a Report.
To specify multiple levels of control breaks, you populate multiple Break
Group bands, with the highest level of break first, followed by the next
lower level of break, and so on, through the last break level you need.

Group Header Band

Prints automatically before any Detail bands for the same Break Group
print. Only one Group Header Band may be defined for each Break Group
defined. Prints in the Detail Area.

Detail Band

There may be as many Detail Bands defined in a Report as needed to
print the various records and/or sets of information you require for your
report. Prints in the Detail Area.

Group Footer Band

Prints automatically after the last Detail band for the same Break Group
prints. Only one Group Footer Band may be defined for each Break
Group defined. Prints in the Detail Area.

Page Footer Band

Prints automatically on each page. Generally, this band is generated
immediately after printing the last Detail or Group related band that will
fit in the current page’s Detail area (more on exceptions to this later).
Prints in the Page Footer Area.

Page Form Band

Clarion Magazine - Reporting by Teames

http://www.clarionmag.com/v1n3/sub/v1n3larryteames.html (2 of 6) [5/3/1999 6:32:39 PM]

This band is generated only once each time the report is run. This occurs
automatically and immediately before the first band of any other type is
printed. Although this band is generally not needed or used in most
reports, it can be used to produce "form" layouts where lots of lines and
boxes are used to represent a preprinted form, and/or for printing
watermark images on each page of the report. The Page Form Band
Prints in the Page Form Area of each page of the report.

Figure 1. Report Formatter band view (click on image for a full-size version).

The AREAs Of A Report

As noted above, each of the 7 band types print in only one Area of a
report.

The 4 Areas of a Report structure are:
Page Header Area1.
Detail Area2.
Page Footer Area3.
Page Form Area4.

Areas are a way of defining where on the report each band is limited to
printing.

Page Header Area

This is where the Page Header Band prints. This area can be located
anywhere on the printed page, and can extend from top of page through
bottom of page, although it is typically (by default) placed above the

Clarion Magazine - Reporting by Teames

http://www.clarionmag.com/v1n3/sub/v1n3larryteames.html (3 of 6) [5/3/1999 6:32:39 PM]

Detail Area. This area actually defines the width, height, and location of
the Page Header band on the report.

Detail Area

This is where all bands except the Page Header, Page Footer, and Page
Form print. In other words, all Detail bands, Group Headers, and Group
Footers print in this area. As each of these band types print, they fill the
Detail Area from top to bottom. When there is no longer enough space
remaining in the Detail Area to accommodate the next Detail or Break
band to be printed, page overflow occurs, causing the Page Footer to
print, followed by an eject to the next page, and the printing of the Page
Form and Page Header bands.

Page Footer Area

This is where the Page Footer Band prints. This area can be located
anywhere on the printed page, and can extend from top of page through
bottom of page, although it is typically (by default) placed below the
Detail Area. This area actually defines the width, height, and location of
the Page Footer band on the report.

Page Form Area

This area is generated only once per report (before any other band prints
on the report), but prints on every page of the report. It typically
extends from the top of page through the bottom of page. This
area/band prints behind all other bands of the report and defines the
width, height, and location of the Page Form band on the report.

You can use the Report Formatter’s Page Layout View menu option to
alter any of these Areas. When you alter the size and/or location of the
Page Header Area, Page Footer Area, or Page Form Area, you are also
modifying the actual size and location of the associated band for that
area.

Figure 2. Report Formatter layout view (click on image for a full-size version).

Clarion Magazine - Reporting by Teames

http://www.clarionmag.com/v1n3/sub/v1n3larryteames.html (4 of 6) [5/3/1999 6:32:39 PM]

However, when you modify the size and/or location of the Detail Area,
you are actually changing the location and size of the main body of the
report where all bands print except the Page Header, Page Footer, and
Page Form bands print. This area corresponds to the Formatter’s menu
option Edit|Report Properties|Position Tab.

In the examples above, I have set the background colors of the various
areas to make them more identifiable. The CYAN area is the Page Header
area, the GREEN area is the Page Footer area. I have left the Detail Area
with no background color so that you can see the Page Form area, which
I have colored GREY.

Now take a quick look at the source for the Report structure for the
example report layout so far. You can do this by pressing the "…" button
to the right of the REPORT button on the Procedure Properties dialog.

Going directly to the source code for the report structure allows you to
see exactly what the formatter has generated, and also allows you to
make manual modifications, if desired.

Clarion Magazine - Reporting by Teames

http://www.clarionmag.com/v1n3/sub/v1n3larryteames.html (5 of 6) [5/3/1999 6:32:39 PM]

Listing 1. The report structure.

Report REPORT,AT(500,1500,7500,6563),PAPER(PAPER:USER,8500,8500), |
 PRE(RPT),FONT('Arial',10,,FONT:regular,CHARSET:ANSI), |
 THOUS
 HEADER,AT(500,500,7500,1000),COLOR(0FFFF80H)
 STRING('This is the Page Header Band '),AT(1427,167), |
 USE(?String1),TRN,CENTER,FONT(,20,,FONT:bold,CHARSET:ANSI), |
 #ORIG(?String1)
 END
EndOfReportBreak BREAK(EndOfReport)
 HEADER,AT(0,0)
 END
Detail DETAIL
 END
 FOOTER,AT(0,0)
 END
 END
 FOOTER,AT(500,8073,7500,250),COLOR(0FF80H)
 STRING('This is the Page Footer Band'),AT(1990,-10), |
 USE(?String2),TRN,CENTER,FONT(,16,,,CHARSET:ANSI), |
 #ORIG(?String2)
 END
 FORM,AT(500,1490,7500,6583),COLOR(0EAEAEAH)
 STRING('This is the Page Form Band'),AT(313,21,6573,6563), |
 USE(?String3),TRN,FONT(,28,COLOR:Silver,FONT:bold,CHARSET:ANSI), |
 ANGLE(600),#ORIG(?String3)
 END
 END

I use this approach quite often to create things like duplicate bands or
groups of controls, to duplicate the X/Y positions and/or size of some
controls (using copy and paste) to other controls, and other
modifications that are simply not possible or too cumbersome from the
Report Formatter window.

For example, have you ever placed a BOX control on a report only to
have it appear as an incredibly small spec that defies selection with the
mouse cursor? Simply go to the source for the structure and change the
width and height of the control to a value that makes the control large
enough to get a mouse cursor on. What could be easier?

Hopefully, as this series of articles progresses, you’ll begin to feel more
"in control" while creating reports, and also learn some neat tricks that
will make your report designing efforts less frustrating.

Next month: Exploring the Report Formatter

Larry Teames is an independent software developer, and one of the four
founding members of Team TopSpeed. He is also president of Creative
PC Solutions, Inc. which markets the popular Clarion 3rd party product
Creative Reporting Tools.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Reporting by Teames

http://www.clarionmag.com/v1n3/sub/v1n3larryteames.html (6 of 6) [5/3/1999 6:32:39 PM]

http://www.cpcs-inc.com/
http://www.cpcs-inc.com/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

	clarionmag.com
	Clarion Magazine Volume1 Number 3 - April 1999
	ABC Sort Orders Part 1
	The SQL Answer Cowboy
	Clarion Challenge Results
	 David Bayliss on FieldClass
	Review: Class Browser
	Clarion Goes COM!
	Knowledge Bases On The Web
	Clarion Challenge Analysis
	Search Clarion Magazine
	How To Waste Time In A Newsgroup
	PDFs
	Andrew's Kitchen
	News April 1999
	Clarion Challenge Analysis
	The SQL Answer Cowboy
	Reporting by Teames

	BPAFFDMJLKGFOGBKHPBLJNPGCAPFKDLO:
	form1:
	x:
	f1: advisor@clarionmag.com
	f2: SQL Answer Cowboy
	f3:
	f4:
	f5:
	f6: Submit

	f7:
	f8:

	KIPLLDHKDKAEFGAEIGHJLGFIOCFGHHMD:
	form1:
	x:
	f1: htdig
	f2:
	f3:
	f4: [and]
	f5: [builtin-long]
	f6: [score]
	f7: [10]
	f8:

	f9:

