

Issue Index

Four DLLs And An Executable
Gordon Smith explains step-by-step how to split a large application up
into a global DLL, program DLLs and an EXE.
Posted on June 7, 1999

Sliders!
Sliders are useful 32-bit Windows controls, but they're not part of the
Clarion toolset. Pierre Tremblay shows how you can create and use
sliders using the Windows API and a set of wrapper classes..
Posted on June 7, 1999

Call For Photos
Clarion Magazine wants your Clarion-related photos. If you have pictures
from a Clarion gathering (of any size) over the past several years and
they're not so terrifying that they'll cause other subscribers to panic,
send them in. Selected images will be published in a ClarionMag photo
album page.
Posted on June 7, 1999

Problems With PDFs?
If you've been having problems with Adobe Acrobat 4 and Internet
Explorer not displaying ClarionMag PDFs properly read the PDFs page for
a useful tip.
Posted on June 7, 1999

The Novice's Corner - Many-To-Many Relationships
One of the trickier problems in designing databases is handling
many-to-many relationships. This month's Novice's Corner looks at how
to define such a relationship in the data dictionary.
Posted on June 14, 1999

David Bayliss On The FileManager Part 2
David Bayliss continues his series on the FileManager with a look at the
administrative functions, error handling, and the snapshot mechanism.
Posted on June 14, 1999

Get On Our Mailing List
If you'd like to receive weekly emails of changes to Clarion Magazine,
visit the mailing lists page and add your name to the notification list.
Posted on June 14, 1999

Search Clarion Magazine
See that button on the bottom of the menu bar? It'll take you to the
Clarion Magazine search page. We use the htdig search engine which
provides sophisticated searching of all ClarionMag articles.
Posted on June 14, 1999

New Improved Clarion Challenge!
Well, you can't quite stick a fork in it yet. This was supposed to be the
results article for last month's Clarion Challenge, but because of some
disparities between implementations, the challenge has been
reformulated. The requirements are the same (create a string parser),

Clarion Magazine Volume1 Number 5 - June 1999

http://www.clarionmag.com/v1n5/pub/index.html (1 of 2) [7/6/1999 12:14:53 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/common/search.html

but all you need to do now is fill in the code for four or five methods!
This makes a great OOP learning experience - try it and see!
Posted on June 21, 1999

How ABC Handles Multiple Sort Orders (Part III)
A need for speed (sorts) takes Steve Parker down a winding path to
ABC's handing of multiple sort orders. Part 3 of 3.
Posted on June 21, 1999

Developers' Open Source Public License Version 1.0
It's been a long haul, but the CoveComm Developers' Open Source
Public License is back from legal and ready for prime time! If you missed
the earlier open source articles, it became clear after reviewing the
existing open source agreements that none were well suited to the
Clarion development community. We hope this license will become the
standard for Clarion open source contributors.
Posted on June 21, 1999

June 1999 News
News, notes, announcements, bulletins, dispatches, communiques and
(yes, and) proclamations for the Clarion world.
Posted on June 28, 1999

Clarion Advisor: Debugging Tricks
Clarion Magazine has featured several articles on debugging applications
(go to the Search page and search for "debug"). But you can never have
too many tricks up your sleeve, and Clarion developers get as wily as
anyone when it comes to using alternative debugging techniques.
Posted on June 28, 1999

The ABCs Of OOP - Part 3
In this third article in the ABCs Of OOP series Dave Harms explains
virtual methods, one of the most powerful features of object-oriented
programming.
Posted on June 28, 1999

Clarion Magazine Best Read With Verdana
Clarion Magazine is formatted using the Verdana font, which is designed
specifically for on-line use. Get Verdana and give your eyes a break!
Posted on June 28, 1999

Detecting Crashes With DDE
David Podger shows how to use a tiny DDE server to detect (and
potentially recover from) application crashes.
Posted on June 28, 1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine Volume1 Number 5 - June 1999

http://www.clarionmag.com/v1n5/pub/index.html (2 of 2) [7/6/1999 12:14:53 PM]

http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/policies/fontsandstuff.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 5
June 1999

Four DLLs And An Executable

by Gordon Smith

Eventually a time will come when you will want to split your APP (and
consequently EXE) into smaller more manageable parts. This can be
quite a daunting task, not because it is difficult (it is after all just a
matter of setting a few Global Properties on the General and File Control
tabs), but because it seems to be "black magic" and when it goes wrong
it seems to go horribly wrong! In this article I will outline an approach to
creating DLLs and take a look at what actually happens.

Before starting, make sure your APP and DCT are copied to an easily
accessed backup folder. You will be creating new APPs, and they will
need to import their procedures from this original copy.

The Objective

The objective is to convert the main APP into several smaller ones,
giving several benefits:

A quicker development cycle: After the initial design phase,
development normally takes place in one or several of the smaller
APPs. Since the APP only contains a subset of the overall program
(Procedures and Files), generation and compile times are reduced.

●

Multi-user development: Different APPs make it easier to distribute
the workload; programmers can be easily assigned specific APPs to
develop and manage.

●

Simplified distribution: Minor changes only necessitate minor
upgrades (several changes may only affect one DLL, for example).

●

Each APP will either create an executable program or a library of
procedures and data. There are two main types of library:

Static: All data and procedures are linked into a library file (.LIB),
which can then be included (in total) in other applications.

●

Dynamic: All data and procedures are linked into a dynamic link
library (.DLL), this is a separate unit that needs to be distributed
with the application EXE. NOTE: A library file is also created but it
doesn’t contain any procedures or data, it just contains information
about the DLL (such as procedure entry points etc.).

●

NOTE: This article only deals with the Dynamic Link Library
(DLL).

The proposed layout will contain the following elements (each element
corresponds to an individual APP):

The global DLL (one only).●

The program DLLs (several).●

The main EXE (one only).●

To distinguish between the different types of DLL and EXE, extra
information needs to be provided:

Clarion Magazine - Four DLLs And An EXE

http://www.clarionmag.com/v1n5/sub/v1n5fourdllsandanexe.html (1 of 4) [7/6/1999 12:15:15 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

Whether the application is a DLL or EXE (project settings).●

Specify which items (data/classes/procedures) are to be linked into
the application (the default behaviour).

●

Specify which items (data/classes/procedures), are to be published
(exported) for other applications to use. This information is
specified in the module definition or export file which has the
application’s name and an EXP extension and includes the entry
points in the associated library file.

●

Specify which items (data/classes/procedures) reside in other
applications. This is specified with the EXTERNAL and DLL
attributes. The associated library file will also need to be included
in the project.

●

The Global DLL

Scope of data is important in a multi DLL application. Simply creating
data on the global properties tab is not the same as creating global data
(data which is visible across several DLLs). It is still desirable to have
"application" global data which is visible throughout only one APP. Care
must be taken to differentiate between these different types.

To simplify matters global data can now (Clarion 5) be declared in data
dictionaries, allowing each APP to either declare and instantiate it (in the
global data APP), or simply define it and reference it as external.

The same goes for classes. Class methods should only exist once (think
of them as procedures) and class properties should only exist once per
instance (think of them as data). This means that the class "code"
should only be linked into one APP (the global one), while the class
instances will depend on usage (instances of the window manager will be
local to a procedure, while the single instance of the file manager will be
global).This DLL will contain the master copy of all file declarations,
global data, ABC class library and the generated database referential
integrity code. It will not access any other DLLs (except for the Clarion
and Windows runtimes).

To create the global DLL perform the following steps:

Step 1: To enable the templates to generate the global data correctly,
this data must be moved from the Data section (in the Global Properties)
to a global data file in the dictionary. Subsequently each APP that uses
this dictionary will be able to generate the global data with the
appropriate attributes.

Step 2: Create a new APP, using the existing dictionary.

Step 3: On the Project Editor|Global Options dialog set the Target Type
to DLL. This tells the compiler/linker to create a DLL, and it determines
which items to publish (export) by reading the application’s EXP file. A
further discussion on the export file would warrant an article in itself!

Step 4: On the Global Properties dialog General tab set the Generate
Template Globals and ABC’s As External option to unchecked. When
generated, all template global data and ABC class declarations will NOT
have any EXTERNAL or DLL attributes. This also links the ABC class library
into the DLL by setting _ABCLinkMode_ to TRUE.

Step 5: On the Global Properties dialog File Control tab make sure that
Generate All File Declarations is checked. This will ensure that all file
declarations in the dictionary are generated. Since the global APP won’t
contain any browses or reports, without this switch it wouldn’t generate
any file definitions at all.

Set File Attributes/External to None External. This is similar to Step 2
and ensures generated file declarations will NOT have any EXTERNAL or
DLL attributes.

Set File Attributes/Export files/Export all file declarations to checked.
This tells the AppGen to add the list of files and global data to the export
(EXP) file, thus making them visible to the other APPs.

Step 6: Compile.

Clarion Magazine - Four DLLs And An EXE

http://www.clarionmag.com/v1n5/sub/v1n5fourdllsandanexe.html (2 of 4) [7/6/1999 12:15:15 PM]

The Program DLLs

The program DLLs contain the body of the program: browses, forms and
reports. The size of the program will dictate how many of these DLLs you
will require. From experience I usually put all reports into one APP and
divide the rest into functional groups (all employee related information in
one DLL, all sales/invoice information in another etc.). Another approach
would be to break them up by programmer. I also tended to limit the
number of procedures to about 20 per APP, as this number coincides
with my tolerance level for a complete generation/compile.

NOTE: The reason for separating the reports into their own
DLL is not one of efficiency, as it would be more efficient to
keep the report in its logical DLL, but rather one of
practicality. In my experience the report DLL is the one that
gets changed the most and keeping all the reports together
subsequently makes distribution a lot easier.

To create the program DLLs:

Step 1: For each DLL, create a new APP and import the required
procedures from the original APP and follow Step 3 in the Global DLL
section.

Step 2: On the Application menu select Insert Module and choose
ExternalDLL as the module type. This presents the Module Properties
dialog. The global DLL library file must be entered into the in the Name
field (filename.LIB NOT filename.dll).

Step 3: On the Global Properties dialog’s General tab set the following
options:

Set Generate Template Globals and ABC’s as External to checked
(True). When generated, all global data declarations and ABC class
declarations will have the EXTERNAL and DLL attributes. This also
sets _ABCLinkMode_ to FALSE so the ABC class library won’t be
linked into the DLL.

●

Set External Globals and ABC’s Source Module to Dynamic Link
Library. This tells the linker that all global data declarations and
ABC class library are present in another DLL by setting
ABCDllMode to TRUE. This is strictly only required for 32bit DLLs
as the compiler needs to add an extra de-reference to distinguish
between statically linked and dynamically linked libraries.

●

Step 4: On the "Global Properties dialog File Control tab" set the
following options:

Set Generate All File Declarations to OFF. There is no need to
generate superfluous file definitions.

●

Set File Attributes/External to All External. This is similar to Step 3
and ensures generated file declarations will have the appropriate
EXTERNAL and DLL attributes.

●

Set File Attributes/External files/All files are declared in another
app to checked. This was used in the Legacy Templates to
optionally generate an EXTERNAL attribute on the File:Open flag.

●

Step 5: Decide which procedures need to be exported. Typically this is
any procedure that is called from the main menu (normally browses and
reports, but not forms as they tend to be in the same DLL as their
browse counterparts). On the Procedure Properties dialog set Export
Procedure to checked. This tells the generator to create the appropriate
line in the export file.

During these steps there will be references to procedures that don’t exist
in the current DLL and appear as a ToDo. They exist in one or more
external DLLs and are covered in the next section. These should be left
as To Do’s until they have been created in their appropriate DLL; this can
take several iterations depending on how the procedures have been
arranged.

Step 6: Compile.

Clarion Magazine - Four DLLs And An EXE

http://www.clarionmag.com/v1n5/sub/v1n5fourdllsandanexe.html (3 of 4) [7/6/1999 12:15:15 PM]

The Main EXE

The main EXE will typically contain the Application Frame and the Splash
and About procedures. Being an EXE it can’t export any procedures and
will call procedures from the Procedure DLLs

Step 1: Create a new APP and import the required procedures from the
original APP (Frame, Splash etc.).

Step 2: Follow Steps 2, 3 and 4 from the Program DLL section.

Step 3: There should be several ToDo procedures relating to each menu
item that calls a procedure. Before these procedures can be called, their
related DLL/Library file must be first added to the module list (this will
resolve the external procedure calls for the linker). For each DLL perform
Step 2 from the Program DLL section.

Step 4: For each ToDo procedure select the External procedure template
and ensure the correct library is selected in the Module Name field. This
adds the procedure declaration to the global map, in the correct module.

Step 5: Compile the main exe.

Summary

If all has gone well that should be it. If it has gone wrong it can appear a
lot worse than it usually is. Don’t be afraid of the error messages; the
majority of them will be one of the following three:

Unresolved External XXX in YYY.obj: This means you have
declared some item as being external, but the linker was unable to
locate it in any of the included libraries.

●

XXX Is unresolved for export: Some item has been listed in the
EXP file, but the linker was unable to locate it in the APP.

●

XXX is duplicated (dll): This happens when XXX has been either
exported from more than one included library or has been declared
in the current APP and one (or more) included library.

●

Well that’s it, now your program can grow with style! In a future article I
will look at how you can include Clarion’s runtime libraries inside a
library of your own. This creates smaller programs with your own DLL
naming conventions and less distribution headaches.

Prior to joining TopSpeed Development Centre, Gordon Smith worked for
an Irish company developing software for multi-national pharmaceutical
companies. He was also a member of the 3rd party accessories program
(Compile Manager 2) and developed the Clarion Class Browser.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Four DLLs And An EXE

http://www.clarionmag.com/v1n5/sub/v1n5fourdllsandanexe.html (4 of 4) [7/6/1999 12:15:15 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 5
June 1999

A Slider, Did You Say?

by Pierre Tremblay

A while ago I was reading the newsgroup and I saw a message from a
Clarion programmer asking if a slider control was available somewhere. I
was wondering why Clarion doesn’t support this control natively and I
decided that I should see if there was any possibility of adding this to my
toolbox. After a quick look in my MSDN library I discovered that the
control is only 32bit. This wasn’t a big deal, so I added it to my toolbox.

A control is simply a child window which belongs to a parent window. For
the creation of a slider control (which Microsoft calls a trackbar), you
need to make some Windows API calls and subclass the parent window
procedure in order to track messages that the control sends to the
parent window.

A slider can be horizontal or vertical and depending on this it will notify
the parent window by sending a WM_HSCROLL or WM_VSCROLL message. An
application can also send messages to the control to set the range, the
slider position, and many more properties.

The slider control can also be restricted to a selected range of values
within the usual range of the control (see Figure 1 below).

I decided the ideal interface to manage the control functionality would be
a class, and in this article I will set the foundation of that class. I say
ideal because it seems to be very natural to ask the control to do things
that the application needs. For example, it looks friendlier in the source
code to see:

cTrack1.SetLimit(1, 50)

instead of using the SendMessage API call, where you have to look up
the right message to send and find out the way to set the low and high
word of the LPARAM parameter. Of course, there is a need to make that
call somewhere but once it is inside the class, it doesn’t need to be
looked at again!

What is needed?

There are three very important elements needed for managing what I
will called a "foreign" control on a Clarion window.

The first one is a subclassing procedure which will trap messages sent by
the control. Basically this procedure will trap the WM_HSCROLL and
WM_VSCROLL received by the window procedure.

Subclassing a window procedure is the process of defining a new
procedure within the application which will be called by Windows instead
of the Clarion internal message handler. The new procedure should do
whatever needs to be done for the WM_HSCROLL and WM_VSCROLL
messages and then call the original Clarion internal procedure for
messages that it doesn’t process.

Clarion Magazine - A Slider, Did You Say?

http://www.clarionmag.com/v1n5/sub/v1n5sliders.html (1 of 6) [7/6/1999 12:15:18 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

Another important element is a way to call a class method as if it were a
Windows callback procedure. This is not directly possible because a class
method has an implicit first parameter of SELF which is a reference to
the object itself, and Windows expects the callback procedure to have a
specific set of parameters, none of which is a Clarion object. The way the
code will address this is by using a queue as a dispatcher. The layout of
the queue is shown in Listing 1.

Listing 1. The dispatcher queue.

HandlerQueue QUEUE
ParentHWND HWND
ChildHWND HWND
QControl &cControl
 END

At the creation of the control, the code stores the parent window handle,
the control handle itself and a reference to the class object managing the
control. The queue is sorted using the parent and the child handles.
Once in the window procedure, the subclassed message handler code will
simply make a lookup in the queue and call the cControl.WndProc
method of the referenced object. All of this makes it possible to have
more than one trackbar on the same window, or different control classes
derived from the same base class.

Listing 2. The subclassed message handler.

TBTestWinProc PROCEDURE (unsigned MyHWnd, unsigned usMsg
 ,UNSIGNED WParam,LONG lParam) ! Declare Procedure

 CODE
 ! Look in the queue if there is a corresponding
 ! object to handle this message
 HandlerQueue.qHWnd = MyHwnd
 HandlerQueue.qControlHwnd = lParam
 GET(HandlerQueue, HandlerQueue.qhWnd, HandlerQueue.qControlHwnd)
 IF ~errorcode()
 ! An object is there? Call its WndProc
 RETURN(HandlerQueue.qControl.WndProc(MyHwnd, usMsg, |
 WParam, lParam))
 END
 ! Else return the default window procedure
 RETURN(CallWindowProc(mWndProc, MyHwnd, usMsg, WParam, lParam))

The last element is the class itself. This defines the interface that the
programmer will deal with. In this first draft of that class, there is a base
class and a derived class. The base class defines different properties and
a do-nothing WndProc method. All derived classes will need to define
that virtual method.

Subclassing the window procedure

As I said, it is necessary to subclass the Clarion internal window
procedure in order to trap the WM_HSCROLL and WM_VSCROLL send by the
trackbar to its parent window. Subclassing the window is achieved using
the Windows API function call SetWindowLong. This function accepts as
parameters the handle of the window to subclass, the index representing
the value to be changed and the new value itself.

The handle of the window is available using the {PROP:ClientHandle}
property. The others parameters for the call of SetWindowLong will be
GWL_WNDPROC and the address of the new window procedure.

Clarion Magazine - A Slider, Did You Say?

http://www.clarionmag.com/v1n5/sub/v1n5sliders.html (2 of 6) [7/6/1999 12:15:18 PM]

SetWindowLong(Window{prop:ClientHandle}, GWL_WNDPROC,
 ADDRESS(NewWndProc))

The call to this function will return the address of the original window
procedure. This returned value is extremely important to keep because it
will be needed in order to call the original procedure for those messages
not processed by the code. In that case, the CallWindowProc API call
will be used and the first parameter of that function is the address of the
original procedure. The others parameters are the same as what is
passed by Window to the callback function. See the generated code in
the example application for the details.

I must add that there is another way to set the window procedure if you
really want to avoid a Windows API call. The address of the internal
window procedure for a given window can be obtained by using the
{PROP:WndProc} property. This property is read/write. You will need
first to read the address of the actual window procedure and use another
line of code to set the new one. The advantage of using the
SetWindowLong is everything is done in only one line of code.

When the user interacts with the trackbar a WM_HSCROLL or WM_VSCROLL
message is sent to the parent window. At this point the window
procedure needs to know exactly what the user did with the control. This
is the job of a notification code, which will usually be paired with the
WM_HSCROLL/VSCROLL message. The notification code will be in the low
word of the Wparam parameter. For the TB_THUMPOSITION and
TB_THUMBTRACK, the high-order word of the Wparam specifies the position
of the slider. For all other notification codes, the high-order word is zero.

There are different messages that can be sent to the trackbar control. If
you want to set the slider position, you will send a TBM_SETPOS message.
To retrieve the slider position, you send a TBM_GETPOS message.

The class presented with this article is basically a wrapper around those
different messages. For example, to retrieve the position of the slider,
you will call the GetPos method.

Var = cTrack1.GetPos()

The class has also a virtual method (cTrack1.TakeNotification) to let
you place your own source for a particular notification code. In fact, the
template (see below) generates this method if you set the checkbox to
limit the slider thumb inside of the selected range. To track a particular
notification code, you can use the cTrack1.Notification() method
which returns the current notification code under process.

CASE SELF.Notification()
Of TB_BOTTOM
 Message(‘User pressed END key’)
END

Figure 1 shows the trackbar in action. Note that in this example the
slider thumb has been restricted to the area in the middle of the trackbar
shown by the solid bar and the extra tick marks. See Figures 2 and 3 for
the template settings.

Figure 1. The trackbar control.

Clarion Magazine - A Slider, Did You Say?

http://www.clarionmag.com/v1n5/sub/v1n5sliders.html (3 of 6) [7/6/1999 12:15:18 PM]

The template

The template supplied with this article (as well as the source code) will
take care of almost any aspect of trackbar use. The only errors that the
template will check for are that the application must be 32 bits and a
variable should be assigned to keep the value of the slider thumb
position.

The use of the template is pretty straightforward. You’ll need to copy
TRACKBAR.TPL to your \TEMPLATE directory and register it. You’ll also
need to copy the TRACKBAR.INC and TRACKBAR.CLW files to your
\LIBSRC directory. You may also need to refresh the ABC class list so
that the AppGen can see the trackbar classes. To do this go to any
classes tab (such as on global properties or the trackbar control
template) and click Refresh Application Builder Class Information.

If your main concern is simply to have a trackbar on the screen and have
your application be aware of the position value of the thumb, you don’t
need any embed code. Just populate the control template on the window
and set the Slider Variable property on the template’s General tab. The
variable will be updated each time the thumb is moved.

Figures 2 and 3 show the template settings used to create the trackbar
shown in Figure 1.

Figure 2. The trackbar template General settings.

Clarion Magazine - A Slider, Did You Say?

http://www.clarionmag.com/v1n5/sub/v1n5sliders.html (4 of 6) [7/6/1999 12:15:18 PM]

Figure 3. The trackbar template Style settings.

It is possible to have the control drawn with a border around it. In that
case, the tooltip, which shows the current value of the thumb position,
will be displayed at the edge of the control rather then moving with the
thumb as the user drags it. Setting the checkbox on the style tab in the
template extension dialog sets the tooltip. Without a border, the tooltip
will follow the slider when the user drags it.

This control template is using a region control to visually place the
control on the screen. Once the trackbar is created on the screen, the
region control is destroyed.

There are some special cases where you need to use embed points in
order to ensure the application behaves properly. One of those cases is
when the control is placed on a tab sheet. Fortunately, I was lucky
enough to have someone pointing out to me (thanks Robert!) that in this
situation, the control will stay displayed no matter which tab is selected.

This ended up with the creation of two new methods called Hide and
Unhide. You need to place the code in the EVENT:NewSelection of the
sheet control and hide/unhide the trackbar control.

Listing 3. Hiding/unhiding the trackbar control on a tab.

Clarion Magazine - A Slider, Did You Say?

http://www.clarionmag.com/v1n5/sub/v1n5sliders.html (5 of 6) [7/6/1999 12:15:18 PM]

Listing 3. Hiding/unhiding the trackbar control on a tab.

CASE EVENT()
OF EVENT:NewSelection
 CASE choice(?)
 OF 1
 CTrack1.Unhide()
 CTrack2.Hide()
 OF 2
 CTrack1.Hide()
 Ctrack2.Unhide()
 END
END

Hide and Unhide use the Window API function ShowWindow and set the
second parameter to true (Unhide) or false (Hide).

Vertical trackbars can also be a problem. It seems that Windows places
the smallest value of the range at the top of the trackbar. The simplest,
best, and quickest workaround is to set the range using a negative value
as the lower limit. So instead of calling SetLimit(1,50), you will call
SetLimit(-50, -1) and you will have the trackbar displayed in a more
natural way.

Of course, the template is also ABC compliant. Each trackbar object used
in the procedure will appear under the Local Objects tree in the
embeditor

In conclusion, this trackbar was a very enjoyable small project. I am also
happy to donate the source to the Clarion Open Source Project.

Download the source

Pierre Tremblay has worked in the programming and corporate world for
the last 16 years, and has been as an independent contractor for
TopSpeed Consulting Division since April 1998. He is also a member of
Team TopSpeed.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - A Slider, Did You Say?

http://www.clarionmag.com/v1n5/sub/v1n5sliders.html (6 of 6) [7/6/1999 12:15:18 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n5/trackbar.zip
mailto:pierret@ibm.net
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 5
June 1999

Call For Photos
Coming Soon: The ClarionMag Photo Album

One of the things I like best about Clarion conferences is the opportunity
to put faces to names of people I’ve come to know through email or the
newsgroups (or in a bygone era, Compuserve). Photographic evidence of
the worldwide Clarion community has already appeared in the pages of
Clarion magazine with conference reports from Australia and Argentina.

That said, there’s no particular reason to wait for the next conference to
see more ugly mugs. If you have a picture of yourself, your user group,
or if you’re a really lonely programmer, your favourite PC (just kidding –
we really don’t want any PC pictures), send them along. Photos from
past conferences are also welcome. JPEGs or GIFs are preferable, and
please include a caption or other descriptive material with each picture.

Send your favourite Clarion-related pictures to editor@clarionmag.com.
Please indicate if you wish a copyright notice attached to those selected
for publication.

Dave Harms, Publisher

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Call For Photos

http://www.clarionmag.com/v1n5/sub/v1n5callforphotos.html [7/6/1999 12:15:19 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
mailto:editor@clarionmag.com
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 5
June 1999

The Novice’s Corner
Handling Many-To-Many Relationships

by David Harms

NOTE: To avoid confusion with ABC terminology the file
called Classes in the previous article in this series has been
renamed to Courses. The prefix for this class has been
changed from CLS to CRS.

In the previous article in this series I began developing a data dictionary
and application to track information about students attending a
university or college. I began by defining a student file as well as an
address file, on the premise that students may have one or more
addresses. This dictionary design reflects a one-to-many relationship
between students and addresses, or, if you look at it from the other side,
a many-to-one relationship between addresses and students.

This example relationship is obvious and easy to understand. Real data,
however, is often a bit more complex. Sometimes any number of records
from one file can be related to any number of records from another file.
These many-to-many relationships are quite common in databases, and
most likely you’ll have to know how to handle them. In this article I’ll
examine such a relationship and outline how it can be defined in the data
dictionary.

Adding Courses

It’s now time to expand the demonstration application to handle not just
students and addresses, but the courses for which students can register.
You can probably guess at some of the fields required to describe
courses:

ID (keeping in mind last article’s discussion about unique IDs)●

course title●

start date●

end date●

number of registrants●

instructor (suggests a many-to-one link to an instructor file)●

As you create the data file keep in mind any fields which are defined in
pool data and consider whether any other fields should be added to the
pool. In the case of the Courses file the ID can come from the pool data
(where it has the Do No Populate flag set). There are two date fields in
the file and you will want them to have a standard date format, and you
may wish to make them spin boxes as well. In either case a pool Date
field is a good idea. Figure 1 shows the Courses fields in the data
dictionary, and Figure 2 shows the Courses keys.

Clarion Magazine - The Novice's Corner: Many-To-Many Relationships

http://www.clarionmag.com/v1n5/sub/v1n5novice_manytomany.html (1 of 10) [7/6/1999 12:15:23 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/v1n4/sub/v1n4novicescorner3.html
http://www.clarionmag.com/v1n4/sub/v1n4novicescorner3.html
http://www.clarionmag.com/v1n4/sub/v1n4novicescorner3.html#unique
http://www.clarionmag.com/v1n4/sub/v1n4novicescorner3.html#pool
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

Figure 1. Fields for the Courses file.

Figure 2. Keys for the Courses file.

Clarion Magazine - The Novice's Corner: Many-To-Many Relationships

http://www.clarionmag.com/v1n5/sub/v1n5novice_manytomany.html (2 of 10) [7/6/1999 12:15:23 PM]

Linking Courses To Students

Now you have a way to store courses and a way to store students. How
do you link students to courses? The problem is that one student can
take a number of courses, and any course can be taken by a number of
students. The relationship is many-to-many, diagramed in Figure 3. The
two triangles indicate the "many" aspect of the relationship.

Figure 3. A many-to-many relationship.

Figure 3. A many-to-many relationship.

If you examine the data dictionary’s relationship editor you won’t find
any options for creating a many-to-many relationship, because it’s
almost impossible to create using just two files.

The problem is that from a student perspective you need to store an
unknown number of course IDs, and from the course perspective you
need to store an unknown number of student IDs. Some developers
approach this the same way they do many-to-one relationships: they
use arrays.

As I indicated in the previous article, arrays are generally a bad idea for
linking files, and they’re even worse in a many-to-many situation. Arrays
by definition limited in size (at least in Clarion), which means you have
to make the array size as large as the highest possible value, thereby
wasting a lot of space. Furthermore you cannot use arrayed fields in
keys. That’s not a problem in a many-to-one where only one side needs
to be keyed, but in a many-to-many both sides need to be keyed. You
need to see which courses a given student takes, and which students are
in a given course.

The answer is to use a file as an intermediary between Students and
Courses, as shown in Figure 4.

Figure 4. An intermediary for managing the many-to-many relationship.

Figure 4. An intermediary file for managing the many-to-many relationship.

Clarion Magazine - The Novice's Corner: Many-To-Many Relationships

http://www.clarionmag.com/v1n5/sub/v1n5novice_manytomany.html (3 of 10) [7/6/1999 12:15:23 PM]

http://www.clarionmag.com/v1n4/sub/v1n4novicescorner3.html#arrays

In Figure 4 the single triangles indicate the "one" side of the relationship
and the double triangles indicate the "many" side. As this diagram
shows, the many-to-many has been broken down into two many-to-one
relationships. This is the standard approach to handling many-to-many
situations.

The linking Registrations file is simplicity itself – it needs to contain only
three fields: a unique autonumbered Registration ID, a student ID and a
course ID. (You might want to add several additional fields, however,
including the date the registration was taken.)

NOTE: In a TPS or other flat-file (i.e. non-SQL) database
you can get away without the unique autoinc key for this
record, but it's a good idea to have it anyway as you may
wish to link other records to the registration record.

Figure 5 shows the fields used in the linking file, and Figure 6 shows the
keys.

Figure 5. The Registrations file fields.

Figure 6. The Registrations file keys.

Clarion Magazine - The Novice's Corner: Many-To-Many Relationships

http://www.clarionmag.com/v1n5/sub/v1n5novice_manytomany.html (4 of 10) [7/6/1999 12:15:23 PM]

StudentCourseKey and CourseStudentKey both have the course and
student IDs as elements, and if you look at the data dictionary you’ll see
that they have the unique attribute as well. This prevents a student from
being registered for the same course twice.

Now define the relationships in the dictionary editor. Although both the
keys in Registrations have two elements, you only want to make the
links on the first elements in the key in each case. Figure 7 shows the
relationship between Students and Registrations.

Figure 7. The relationship between Students and Registrations.

Figure 7. The relationship between Students and Registrations.

Clarion Magazine - The Novice's Corner: Many-To-Many Relationships

http://www.clarionmag.com/v1n5/sub/v1n5novice_manytomany.html (5 of 10) [7/6/1999 12:15:23 PM]

A similar relationship exists between Courses and Registrations, as
shown in Figure 8.

Figure 8. The relationship between Courses and Registrations

Clarion Magazine - The Novice's Corner: Many-To-Many Relationships

http://www.clarionmag.com/v1n5/sub/v1n5novice_manytomany.html (6 of 10) [7/6/1999 12:15:23 PM]

If at this point you use the Browse wizard to create a browse and update
form for Courses, you’ll find a browse of Registrations records on the
Course update form. That may not be the final place you’d like to have
it, but it will show you how the link works. (Another option is to populate
a browse of Registrations records below the Courses browse, and restrict
its records based on the relationship with Courses.)

You’ll want to display the student name on the Registrations browse
rather than just the ID. Highlight Registrations in the file schematic and
click Insert. Select the Students file from the related files list. This will
ensure that the related Students record is retrieved for each
Registrations record (see the accompanying application for an example).

Since the only fields in the Registrations file are two LONG IDs, you’ll
need to set these values when you add a registration. Whether you’re
updating Registrations records from a browse on the Courses update, or
from a child browse you’ve placed on the Courses browse, you know that
the current Courses record is in memory. Use Field Priming on Insert on
the Registrations update form to preload REG:CourseID with CRS:ID.
Figure 9 shows the appropriate Field Priming on Insert setting.

Figure 9. Priming REG:CourseID on insert.

Figure 9. Priming REG:CourseID on insert.

Since you already have REG:CourseID there’s no need to display it on
the window: delete the entry field. Now all the user has to do is choose a
student. You probably don’t want the user entering in the student’s ID
directly, so you should provide a lookup on a list of students. One way to
do this is to set up the REG:StudentID field’s actions to do a lookup, as
shown in Figure 10.

Figure 10. Lookup settings for REG:StudentID.

Clarion Magazine - The Novice's Corner: Many-To-Many Relationships

http://www.clarionmag.com/v1n5/sub/v1n5novice_manytomany.html (7 of 10) [7/6/1999 12:15:23 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n5/novice4.zip

After entering the settings in Figure 10 and saving the changes, populate
the FieldLookupButton template on the window and on its Actions tab
select ?REG:StudentID. Now you have a button you can use to force a
lookup on the Students browse.

Next bring up the property window for REG:StudentID. Check the Hide
box so the ID won’t be visible. In the form’s file schematic, click on the
Registrations file and choose Students from the Related Files tab.
Populate two string fields on the form and on the string Properties
window, Use field, enter REG:FirstName for one field and REG:LastName
for the other (or use the field lookup button to the right of the Use
prompt). The relation manager will take care of looking up the student
record from the ID and will display the name of the student associated
with the registration.

NOTE: This is just one approach to selecting records.
Another would be to use the FileDrop template (though this
code is due for major revision and may not be a safe choice).
You may also want to consider a third party solution like
ProDomus’ highly-regarded PDLookup templates which add
Quicken-style incremental lookups.

Bending The Rules

If you look at the data dictionary in the accompanying example you’ll see
that the Registrations file has a Registrants field which is defined as a
SHORT variable. Assuming that a successful link is created between
courses and students it should be possible to calculate this value, so it
isn’t strictly necessary to keep it on the course record.

In fact, good relational design suggests that this is unnecessarily
duplicated data and should not be stored. In reality there are often
tradeoffs involved in designing a database. Your aim should be to avoid
situations where conflicting data can exist, but sometimes performance
requirements must also be addressed. If one of the requirements is to
display the number of registrants on a browse of courses, and you don’t
keep a total on the Courses record, then you’ll have to loop through the

Clarion Magazine - The Novice's Corner: Many-To-Many Relationships

http://www.clarionmag.com/v1n5/sub/v1n5novice_manytomany.html (8 of 10) [7/6/1999 12:15:23 PM]

http://www.tiac.net/users/prodomus/lookup.htm
ftp://www.clarionmag.com/pub/clarionmag/v1n5/novice4.zip

registrant information for each record.

One easy way to do this is to use a hidden browse with the child records
and a total (count) field. If you take this approach make sure that you
set the child browse’s ActiveInvisible property to True as the default
behaviour for browse objects is to become idle when hidden.

If there are a large number of child records or you frequently run reports
or other processes where the number of registrants is required then it
may be to your advantage to count the registrations whenever one is
added or deleted and update a Registrants field with this value.

You may think at first glance that a BYTE value would suffice for
Registrants, but for a particularly large lecture course there might be
more than 255 students. Should that happen with a BYTE variable the
numbers would wrap around and the displayed count would be incorrect.
If there’s any possibility that you’ll overrun the variable’s capacity then
use the next larger variable. A SHORT has a maximum value of 32767,
and while course overcrowding is often a problem, its not likely to get
that bad.

Many-To-Many Redux

In my initial design of the course file I made the assumption that there
would be only one instructor per course. This isn’t necessarily the case.
There may be multiple instructors, or an instructor and teaching/lab
assistants who should also be associated with the course. A simple
many-to-one relationship would be too restrictive. To handle this I’ll
need to create a linking file just as I did for the course registrations. As
with the Registration file, this linking at a minimum would need only two
IDs.

The only difference between this many-to-many and the registrations
many-to-many is that this one is a bit more difficult to recognize. In the
software requirements (if a formal document existed) you would
probably come across the term "Course registration," which might have
led you to think about storing this information in its own file.

What if a suitable term hasn’t been defined for the link between
instructors and courses? You can discover the need for such links by
examining each file relationship carefully and asking yourself if the
relationship will satisfy all the needs of the application.

By now you should be starting to see some other possible links between
data. If you’re storing information about instructors, then perhaps
there’s some possible duplication of the kind of information you keep
about students. Perhaps a generalized contacts file would be better, with
a Type field to differentiate between students and instructors (and
perhaps staff as well). This way you can use the same approach for
instructor addresses as for student addresses.

Telephone numbers (and email addresses and the like) are another
potential area for generalization. Rather than having two or three
telephone number fields in the names file you might want to go with a
Phones or other kind of contacts file. Remember that you can assign field
pictures at runtime, so you could even use a simple string field and use
various pictures to format the string for phone numbers, email
addresses, and so forth. You might want to keep this kind of
configuration information in an INI file (not a great idea) or a
single-record control file in your database (a better option as it allows for
encryption).

Paranoid Anticipation

When I analyze or create a database design I’m constantly asking myself
how the data will be used given the current requirements and what I
anticipate the future requirements will become. Few of us ever actually
finish a software project. We may leave it or hand it off to someone else,
but there’s always work to be done.

I find that the better I am at anticipating what the user will want to do
with the program, the more robust my database design is likely to be. In

Clarion Magazine - The Novice's Corner: Many-To-Many Relationships

http://www.clarionmag.com/v1n5/sub/v1n5novice_manytomany.html (9 of 10) [7/6/1999 12:15:23 PM]

the next article in this series I’ll look at "use case" analysis, a text-only
tool that I find helpful in fleshing out a design and discovering hidden
requirements.

Download the source code

David Harms is an independent software developer and the co-author
with Ross Santos of Developing Clarion for Windows Applications,
published by SAMS (1995). His company, CoveComm Inc, publishes
Clarion Magazine.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - The Novice's Corner: Many-To-Many Relationships

http://www.clarionmag.com/v1n5/sub/v1n5novice_manytomany.html (10 of 10) [7/6/1999 12:15:23 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n5/novice4.zip
mailto:dharms@clarionmag.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 5
June 1999

FileManager II – ABC Design
by David Bayliss

This article is part two of the ABC design document on the FileManager
class, and you really should read the first part first as this article simply
continues the FileManager code overview. I hope I have also provided
enough hyperlinks that people returning to the article for reference will
be able to dig out the information they require. In this article I’ll look at
some of the administration functions, the error handling and the
snapshot mechanism.

Whilst some of the aims of the class can be gleaned simply from reading
this article, most fruit is available to those that actually settle down and
read the ABC code along with the corresponding comments. This is
actually something I would always encourage you to do. The backbone of
ABC amounts to around 4,000 lines of code, so if you aim to master 100
lines a day you will understand the basic ABC paradigm completely
within eight weeks! The FileClass amounts to 25% of that work.

Administration

This section details those methods provided almost entirely as wrappers
upon internal information for the benefit of higher level methods and/or
methods outside of the FileManager.

ClearKey PROCEDURE(KEY K,BYTE LowComp,BYTE HighComp,BYTE High)

This method is there to provide a shortcut for a piece of template code
that occurred very frequently. Essentially it handles the problem of a
multi-component key where you wish to perform a SET(KEY,KEY) but
you only know the major components. In order to ensure the
SET(KEY,KEY) gets you to the start of all the records you require you
need to clear the low order key components. Clarion does not have a
CLEAR(KEY) so the FileManager provides one for you.

Rather than clear the whole key the routine allows you to specify the low
(majormost) and high (minormost) components you want cleared. This
is to allow minor component clearing to happen when the major
components have already been filled in.

The method works by first performing a SetKey so that the current
record of the FileKeyQueue holds information for the current key. Then
the key components are stepped through from low to high and the
KeyFieldQueue is fetched to retrieve the information for the current
component (see AddKey in the previous article). The GET is error trapped
with a simple return if the component doesn’t exist. This is to allow the
HighComponent to be specified as 255, meaning "to the end."

The XOR logic illustrates a useful trick (and hides a complexity!).
Remember that as you are trying to get all the records in a
SET(KEY,KEY), you might assume that means you just CLEAR all the key

Clarion Magazine - DAB on FileManager Part 2

http://www.clarionmag.com/v1n5/sub/v1n5filemanager2.html (1 of 8) [7/6/1999 12:15:25 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/v1n4/sub/v1n4filemanagerpart1.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html
http://www.clarionmag.com/v1n4/sub/v1n4filemanagerpart1.html#addkey
http://www.clarionmag.com/v1n4/sub/v1n4filemanagerpart1.html

values low. But wait a minute; suppose you are about to do a PREVIOUS
rather than a NEXT. Then you need to clear all the values high. This
works in the common case of ascending key components, but remember
it is possible to have descending key components. Worse yet you can
mix ascending and descending in the same key. If you sit down with
pencil and paper (you may be able to do this in your head, but I needed
pencil and paper) you will find you need to clear a component low if it is
ascending and you are clearing low, or if it descending and you are
clearing high. This can be expressed using a disjunction (OR) of
conjunctions (AND) but the XOR operator wraps it up perfectly and goes
down to one machine instruction. I could have coded this more tightly
still as:

CLEAR(SELF.Keys.Fields.Field,CHOOSE(~(SELF.Keys.Fields.Ascend XOR High)))

But I thought that might be just a little too scarey.

GetComponents PROCEDURE(KEY K),BYTE

This simple little method simply returns the number of components in a
key. It uses SetKey and the fact that there is one KeyFieldQueue record
for each component of the key.

GetEOF PROCEDURE,BYTE

The FileManager has a very specific meaning for EndOfFile: it means
the last attempt to NEXT or PREVIOUS a record failed because the end of
file has been reached. Specifically, if you have a file with 10 records EOF
is true after the 11th NEXT, not the 10th. As such GetEOF is really just a
short hand to detect a specific error condition.

The functionality could almost certainly be achieved by looking at the
return code from NEXT/PREVIOUS and then delving to see what the error
identifier was. Again this is a situation where the FileManager does work
simply to reduce the amount of coding required by users of the object.

GetField PROCEDURE(KEY K,BYTE Component),*?

This method is used to return an ANY variable corresponding to a given
component of a key. I didn’t want to have to protect the rest of my code
against GetField returning a null so the procedure ASSERTs that the
incoming component will be found. In other words, GetField gracelessly
handles out of range components.

This does illustrate another agenda within ABC: offensive programming.
Defensively I would have coded so that an out of range value returned a
null, which would take two lines of code. Then on the receiving end nulls
would have been handled, presumably in some "see if we can still keep
going" fashion.

There are four calls to GetField in abfile (i.e., this method is relatively
underused). Each would have had to temporarily store the GetField
result, test for the null and do something smart with it. This might have
taken five lines of code each (one for the declaration, one for the extra
assign, two for the null test, one to handle the null case). In total I
would now need 22 lines of code to handle something that should never
happen as opposed to the one line of code used in ABC. Doing that
throughout a heavily integrated file like ABFILE could turn 2000 lines of
code into 40,000 lines of code 95% of which would be rarely executed
and thus minimally tested. QED.

GetFieldName PROCEDURE(KEY K,BYTE Component),STRING

Clarion Magazine - DAB on FileManager Part 2

http://www.clarionmag.com/v1n5/sub/v1n5filemanager2.html (2 of 8) [7/6/1999 12:15:25 PM]

http://www.users.globalnet.co.uk/~dabay/offensiv.htm

This is really there for the benefit of methods using the PROP:Filter
technology on a view. It provides the BIND name of a give key
component.

GetName PROCEDURE,STRING

The FileManager has to cope with two possibilities for the name of a file.
It may either be a constant or a variable (the latter corresponds to the
case where the NAME attribute on a file contains a string variable).
GetName is there to encapsulate this dilemma from the rest of the class.
If a variable file name has been assigned then it returns that, otherwise
it assigns the constant provided to it by the driver itself.

KeyToOrder PROCEDURE(KEY K,BYTE MajorComp),STRING

This method really takes GetFieldName one logical step further. Rather
than just return a field name corresponding to a key component, this
method returns an ORDER clause (in Clarion syntax) that is equivalent to
this key starting at component MajorComp. A value of one thus gives the
whole key as an order clause, two skips the leading component etc.

Note that the null key case is defended against. This is because it is
totally reasonable to have a null key specified as the sort key of an
object (corresponding to not specifying a key in the file schematic).

The only real complexity is in the RetVal assignment. The first CHOOSE is
there to prepend the field name with a comma only if the string being
built up is non-null. The second CHOOSE is there to place a leading ‘-‘
before a descending key component (the view driver treats –string as a
descending string, it does not convert it to a number as the language
would).

SetKey PROCEDURE(KEY K),PROTECTED

SetKey is used to fetch the correct record within the FileManager key
queue for the usage of a key passed in to it. You cannot sort a queue on
a reference field so the method has to loop through the queue finding a
match. Files don’t have that many keys so this should not be too
onerous. I could start the method with a check to see if the current
record value already matches as a kind of first level cache, but the
downside is that this would hide a raft of bugs where people had not
done a PUT after modifying the key information.

The loop illustrates an interesting and occasionally useful quirk of
Clarion. You can have loop head and loop tail conditions (WHILE and
UNTIL) in the same loop. The conditions are tested (and code body
executed) in the order they appear lexically.

Again note the assert. A failure to set the key throws an error; see the
discussion in GetField.

SetName PROCEDURE(STRING Text)

Clarion Magazine - DAB on FileManager Part 2

http://www.clarionmag.com/v1n5/sub/v1n5filemanager2.html (3 of 8) [7/6/1999 12:15:25 PM]

This method is a counterpart to GetName; it only allows the name to be
assigned if there is an underlying variable for the NAME attribute of the
file. By having the GET/SET in the FileManager the burden of tracking
the global variable name disappears (it simply becomes the province of
the dictionary). This makes it far easier to have an automated path
assignment system built in.

Error Handling

The action of the ErrorClass has already been covered, however each
FileManager re-vectors the error manager calls through its Errors
property. This serves one main purpose: it allows a global object to be
referenced from within base class code. The secondary purpose is to
make the error handler used by the FileManager re-assignable. This is
useful as the file system is one of the major generators of errors and the
file calls are usually out of the direct control of the programmer. The
ability to intercept errors on a file by file basis allows fine grain recovery
mechanisms to be written. In addition to having a single vector point,
the FileManager has a small suite of routines through which all
FileManager/ErrorClass interaction is managed. Again the purpose is
to make errors and recovery mechanisms overridable with a minimum of
effort.

GetError PROCEDURE,SIGNED

The FileManager stores the last file error thrown within it. The number
is the ErrorClass number, and it has nothing to do with ErrorCode or
Error. It should be noted that ErrorCode et al are not valid upon return
from FileManager methods. In particular it is quite probable that the
FileClass (coming in a future major release) will not utilise ErrorCode
and Error in normal operation and thus the FileManager will not even
have error codes available. The error suite is one of the instances of the
FileManager trying to smother an encapsulation leakage coming from
underneath.

SetError PROCEDURE(USHORT Number)

This method separates out the recording of an error condition from the
Throw (or exception) that the error could raise. Occasionally this is used
to simplify internal coding, but more usually it is used in the TryAction
methods so that they can return an error signal and leave the
ErrorClass able to Throw the error if the caller requires.

Throw PROCEDURE(USHORT ErrorNumber),BYTE,PROC,VIRTUAL

This function is purely a syntactic convenience. It is equivalent to a
SetError followed by a Throw.

Throw PROCEDURE,BYTE,PROC,VIRTUAL

This routine takes the last error number (as recorded by SetError) and
simply forwards it to the ErrorClass stored in SELF.Errors. The main
purpose of this routine is simply to provide a common focus point (and
thus override point) for the FileManager error handling. The return value
comes from the ErrorClass and denotes the severity level as attached
by the error class. This could be used to provide a sophisticated error
recovery mechanism, by default most Throws are considered fatal and
this facility is not used.

It is worth nothing that although Throw does not pass on the file label at
this point, the ErrorClass does have access to the file name as this has
been set up by the SetThread method as detailed in the previous article.

Clarion Magazine - DAB on FileManager Part 2

http://www.clarionmag.com/v1n5/sub/v1n5filemanager2.html (4 of 8) [7/6/1999 12:15:25 PM]

http://www.users.globalnet.co.uk/~dabay/errcla.htm
http://www.clarionmag.com/v1n4/sub/v1n4filemanagerpart1.html#setthread
http://www.clarionmag.com/v1n4/sub/v1n4filemanagerpart1.html

ThrowMessage PROCEDURE(USHORT ErrorNumber,STRING Text),BYTE,PROC,VIRTUAL

This is a simple extension to Throw to allow an extra message to be
passed on to the ErrorClass.

Snapshots

The snapshot interface’s purpose is to allow file state and buffer contents
to be saved and restored by anyone without them having to know the
structure of the file. The routines all use a handle to denote a particular
state. This handle is undefined (presently it is an ID number within a
queue.) Eventually these routines will become vectors for fresh instances
of the file class to be created and destroyed.

The words buffer and file have specific meanings. Buffer means the
contents of the current record; that is the record buffer but also the
memo contents. Blob contents are not stored as the overhead is
potentially too onerous. File means buffer plus additional file state
information such as Held, Watched, auto-increment done etc. For this
reason all of the Buffer methods are fairly cheap involving only memory
copies, while the File methods also involve disk access.

EqualBuffer PROCEDURE(*USHORT Handle),BYTE,VIRTUAL

This method is used to check if the current record contents differ from
those when the snap shot (denoted by the parameter) was taken. For
example, this might be used to see if a cancel on a form should be
allowed to happen without user intervention.

First the Handle is looked up in the buffer queue; this gives the previous
contents of the record buffer which can be compared byte for byte
against the present values (this function is boolean - it doesn’t say how
the two buffers differ). If the two record buffers are the same the routine
steps through the memos of the file seeing if they differ. The stored
memo buffers are (by convention) stored consecutively in the queue
following the record buffer. The present contents of the memos are
retrieved by using MyFile{PROP:Value,-memonumber} (the negative
number indicates this is a memo). This was necessary as it is not
possible to store ANY references to memos as memos are created on the
heap at file open time (on each thread) and are thus highly treacherous
when involved with references.

RestoreBuffer PROCEDURE(*USHORT Handle,BYTE DoRestore=1)

This routine is used to restore the contents of the file buffer to the point
they were when the SaveBuffer was called. If you pass in a zero as the
second parameter then no restoration is done but the memory is freed.
Commencing with C5EEA this routine actually becomes a shell that calls
into RestoreBuffer(handle,filemanager,byte).

RestoreBuffer PROCEDURE(*USHORT Handle,FileManager FM,BYTE DoRestore = 1),PRIVATE

Clarion Magazine - DAB on FileManager Part 2

http://www.clarionmag.com/v1n5/sub/v1n5filemanager2.html (5 of 8) [7/6/1999 12:15:25 PM]

This routine allows the contents of a buffer to be restored to the present
file buffer from contents snapshotted by the passed in FileManager.
Now in general restoring to a file other than your own is a dangerous,
unmaintainable and generally very stupid thing to do (this is why the
only public interface to RestoreBuffer passes in SELF). However in the
particular case where the "other" file is absolutely identical structurally
to your own, and is guaranteed to be so, it does give an extra degree of
flexibility. We use this facility when dealing with aliases. However when
reading this code you should generally assume that Frm and SELF are the
same thing (if you’re writing it, the distinction is vital of course!) Other
than that, this code is essentially analogous with EqualBuffer, the only
extra being KillBuffer which first frees them memory used for the
buffer contents and then kills the queue record.

RestoreFile PROCEDURE(*USHORT Handle)

This is used to restore a file to the state it was in when the snap shot
was taken. The current file position, sort sequence, held and watch state
are all recorded along (since C5EEA) with the auto-increment state. Note
that additionally the record contents are restored after the file position.
This is to allow for instances where the current record had begun to be
modified at the point the snap-shot was taken.

As with RestoreBuffer, RestoreFile has been split out to aid the use of
aliases, or more specifically, to allow FileManagers of aliased files to
re-vector their methods through the Filemanager of the actual file
without corrupting the current state of the actual file.

RestoreFile PROCEDURE(*USHORT Handle,FileManager FM),PRIVATE

The file state (as opposed to record contents) is retrieved from the
Saved queue. The Saved.Key element is the key number of the key
active when the snapshot was taken. If this is non-zero then the key
reference is found from the file driver and used in the RESET (otherwise
the File is used). Because Watched and Held are read-only properties in
the file driver they have to be restored by re-arming them and applying
a NEXT. Having performed the NEXT (and thus "corrupted" the buffers)
the buffers are restored. The auto-increment state is then put in place.
Note the PUT on the SELF.Info to store that information for the current
thread.

Actually this raises a slight cheat. Many of the file methods need to start
with a SetThread for reasons previously described in FileManager I.
Many then needed a UseFile to prime the lazy open. UseFile also
needed to do a SetThread, so SetThread was often called twice. This is
clearly inefficient so we cheated and allowed an information leakage that
stated that UseFile does, and will always, perform an implicit
SetThread. Again we find that ABC is not just about science, it is also
about engineering. We allowed for one assumption and removed 15 lines
of code and an efficiency drag on most of our core functions, and also
lost some conceptual purity.

SaveBuffer PROCEDURE,USHORT

Clarion Magazine - DAB on FileManager Part 2

http://www.clarionmag.com/v1n5/sub/v1n5filemanager2.html (6 of 8) [7/6/1999 12:15:25 PM]

http://www.clarionmag.com/v1n4/sub/v1n4filemanagerpart1.html

This code snapshots the current contents of the record buffer; most of
the code is analogous to EqualBuffer. The interesting piece is the
allocation of the Id to act as a handle to the outside world. At first sight
you can simply get the number of records in the queue, add on one and
you have your new Id. Better yet, you don’t need to store the Id in the
queue; you simply use the Id as a record number.

Further, in just about all the testing you ever do, it will work beautifully.
But sometimes, somehow, it will corrupt when the users use it. The
reason is that simply counting the records only works if Save/Restore
pairs are performed in a stack-wise manner. If a deletion from the queue
has happened in the middle then the next RECORDS will return a value
lower than the current highest Id. Actually it will even work if the
restores are not done stack-wise provided the result has been stack-wise
by the time you do the next Save. If you do the Save/Restores in an
unpaired way you will actually get the identifiers duplicated in the queue
and havoc ensues. The solution is that you get the final record in sorted
order and then add one on to whatever you receive back. DupString is a
private member function used to allocate heap for, and copy the value
into, a temporary string (like strdup in C++).

SaveFile PROCEDURE,USHORT

This method is the mirror of RestoreFile. Note that rather than
replicating the buffer storage code, SaveFile simply calls on to
SaveBuffer and stores the result. It is worth mentioning that the
handles returned from SaveFile have no relation to those returned by
SaveBuffer. You cannot SaveFile / RestoreBuffer or vice versa.

One slight tweak is the storage of the current key. You cannot simply
save a key reference as that will not work when you are restoring to a
different FileManager. Instead you have to store an ordinal number
corresponding to the declaration order of the key. That number is
computed using the loop. Note too the usage of a cast from CK (which is
a long) to a key reference:

K &= (CK)

The rule is that a numeric value can be assigned in place of a valid
reference of the right type. CK in itself is not a value (it is a variable) so
the parenthesis is used to form a value. This form of casting (which can
be used in conjunction with ADDRESS and references) allows all of the
(horrible) type conversion common to C++. It should be used extremely
sparingly, but when needed it is brilliant.

A Thought

If you have been following this article in the source code, reading and
understanding as you went, it is quite probable that by this point you are
thinking. Hey! This stuff is all obvious; what is all the fuss about? If so,
this article has worked. If not it may be worth your while backtracking to
see where the confusion enters. Object systems are hierarchical, one
layer builds upon another. Therefore, comprehension of object systems
tends to be hierarchical. If one layer doesn’t make sense it typically
means you didn’t quite catch hold of the layer underneath. Happy
hunting…

Read Part III

David Bayliss is a Software Development Manager for Topspeed
Corporation. He is also Topspeed's compiler writer and the chief architect
of the Application Builder Classes.

Clarion Magazine - DAB on FileManager Part 2

http://www.clarionmag.com/v1n5/sub/v1n5filemanager2.html (7 of 8) [7/6/1999 12:15:25 PM]

http://www.clarionmag.com/v1n6/sub/v1n6filemanager3.html
http://www.users.globalnet.co.uk/~dabay/

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - DAB on FileManager Part 2

http://www.clarionmag.com/v1n5/sub/v1n5filemanager2.html (8 of 8) [7/6/1999 12:15:25 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 5
June 1999

Clarion Challenge: A String Parser Revisited
by Dave Harms

Last month’s Clarion Challenge was a bit more complex than the
previous challenge, so there were correspondingly fewer entries. It was
also a much more difficult to evaluate since the specification was
somewhat open-ended.

In fact, it became clear that it would not be possible to fairly compare
the various entries given how differently they had been implemented.
Accordingly, I’ve written the challenge and have asked the entrants to
adapt their code to a very specific code framework. This will also make it
a lot easier for anyone who’s still interested to submit some code, since
it’s much more a case now of plugging and playing your code within a
defined test environment. This same approach will be used for all future
challenges, although I expect they’ll be considerably smaller in scope.

This revised challenge includes a test application adapted from that used
for the previous Clarion Challenge, and shown in Figure 1.

Figure 1. The test application.

Clarion Magazine - Not Quite The Challenge Results

http://www.clarionmag.com/v1n5/sub/v1n5notquitechallengeresults.html (1 of 4) [7/6/1999 12:15:27 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/v1n4/sub/v1n4clarionchallenge-parser.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

The test application isn’t an APP file – instead it’s made up of one source
file (parser.clw) and one project file (parser.prj). To run the application
use Project|Set and choose a File Type of Project File (*.prj). Select
parser.prj. You can then compile and run as you would an APP (but you
don’t have to wait for code to generate).

The parser application uses two classes to implement the code. There is
a base class called ParserBaseClass. This class is NOT to be modified. All
changes are to be made to a derived class called MyParser. I’ve split the
challenge into two classes for exactly the same reason that your ABC
applications consist of base classes and derived classes. The base class
contains code and data that must be the same for all implementations,
and the derived class contains entrant-specific code.

The Test method shown in Listing 1 is declared in the base class.

Listing 1. The Test method.

ParserBaseClass.Test procedure
!--!
! DO NOT MODIFY THIS METHOD!!! And do NOT derive it.
!--!
TempString string(200)
x long
 code
 self.Reset()
 self.AddDelimiter(' ')
 self.SetString('This is the test string, which should '|
 & 'have its words alternating between '|
 & 'upper case and lower case. The actual test will '|
 & 'parse Clarion code and capitalize keywords.')
 self.BeforeTest()
 loop x = 1 to self.GetTokenCount()
 TempString = self.GetToken(x)
 if x % 2
 TempString = upper(TempString)
 else
 TempString = lower(TempString)
 end
 self.PutToken(x,TempString)
 end
 return

The Test method is the only method you may not derive. All the rest are
fair game, although in the example I’ve only derived those methods I
think you’re likely to want to use. Whatever you do with the derived
class keep in mind that you cannot change how the test is executed.

All of the derived methods (in MyParser class) are virtual methods, which
essentially means they function like embeds and will be called
automatically by the Test method, even though that method is declared
in the base class. These methods are shown in Listing 2 (they’re in the
source file – you don’t need to copy from the listing).

Clarion Magazine - Not Quite The Challenge Results

http://www.clarionmag.com/v1n5/sub/v1n5notquitechallengeresults.html (2 of 4) [7/6/1999 12:15:27 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n5/parser.zip

Listing 2. The derived methods.

!--!
! You may not modify anything above this point except for
! the MyParser class declaration at the top of the file.
!--!

MyParser.AddDelimiter procedure(string Delim)
!--!
! You don't need to modify this method but you may wish to
! if you have a better idea for how to store delimiters.
! By default this method adds records to the DelimQ. To get
! the delimiters that have been added you can query the queue
! as you would any other queue.
!--!
 code
 self.DelimQ.Delim = Delim
 add(self.DelimQ)

MyParser.BeforeTest procedure
!--!
! Write code here to prepare for the test, if necessary.
! This method is called automatically by the test procedure
! before the test is run. You will most likely want to use
! this method if you parse your string before calling any of
! the string manipulation methods. If you do everything
! on the fly then you probably won't need this method
!--!
 code

MyParser.GetTokenCount procedure
!--!
! Write code here to count the number of tokens. By default
! you have a queue (self.DelimQ) of delimiters which you
! can use to examine the text string (self.Text).
!--!
 code
 return(0) ! Replace this code!

MyParser.GetToken procedure(long Index)
!--!
! Write code here to get a specific token. In the example
! text a token is an individual words, but if the string
! were some Clarion code and the period is a delimiter then
! if the string were "MyParser.GetToken" GetToken(1) would
! return "MyParser" and GetToken(2) would return "GetToken"
!--!
 code
 return('') ! Replace this code!

MyParser.PutToken procedure(long Index,string Text)
!--!
! Write code here to set a specified token in the string to
! a new value. For instance, if the string is
! "MyParser.GetToken" and the period is a delimiter then
! calling PutToken(1,'SomeOtherParser') would change the
! string to "SomeOtherParser.GetToken".
!--!

Clarion Magazine - Not Quite The Challenge Results

http://www.clarionmag.com/v1n5/sub/v1n5notquitechallengeresults.html (3 of 4) [7/6/1999 12:15:27 PM]

 code
 return(False) ! Replace this code!

All of these methods are implemented at the end of parser.clw. If you
want to derive another method just follow the example of how these
methods are declared in the class declaration at the top of parser.clw,
and implemented at the end of parser.clw. Most likely you’ll be able to
complete the challenge just by writing code for the methods in Listing 2.
You may also want to add some variables to MyParser so that you can
share them between methods. See the declaration for ParserBaseClass
for an example, and email advisor@clarionmag.com if you have
questions.

Also please note that although this way of declaring and implementing a
class in a single source file clearly works, it isn’t recommended for most
work. You’re generally better off keeping base class declarations in INC
files and code in CLW files as ABC does.

Click here to download the parser shell application and project file.

Send your entries to advisor@clarionmag.com.

In This Issue

June 1999 News
Posted on June 21,
1999

New Improved
Clarion
Challenge!
Posted on June 21,
1999

How ABC Handles
Multiple Sort
Orders (Part III)
Posted on June 21,
1999

Developers' Open
Source Public
License Version
1.0
Posted on June 21,
1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Not Quite The Challenge Results

http://www.clarionmag.com/v1n5/sub/v1n5notquitechallengeresults.html (4 of 4) [7/6/1999 12:15:27 PM]

mailto:advisor@clarionmag.com
ftp://www.clarionmag.com/pub/clarionmag/v1n5/parser.zip
mailto:advisor@clarionmag.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 5
June 1999

Associating RunTime Tabs
With Added "Keys"

Sorting On The Run (Part III)

by Steve Parker

Read Part I

Read Part II

When I first undertook the project to allow users to store additional sort
orders in a file and automatically provide those orders on browses and
reports, there were several things I knew.

I knew that additional orders could be created and I also knew that
additional tab controls could be created. I had only a vague idea of how
to do either of these tasks, never having had to before, but I did know
these things could be done.

Having looked at the code generated by the templates for different
orders on different tabs and the Solodex example for runtime tab
creation, I knew that implementing each feature reduced to only a few
lines of code each, very few as it turns out. I also "knew" that
understanding what was happening, especially in adding sort orders,
would mean tracing method calls and that would surely not be a matter
of just "a few lines of code."

While I will certainly settle for code that works, I’ve always
preferred understanding how and why it works.
Understanding allows me to not only extend solutions into
strategies but helps avoid problems in the first place.

I was right on both counts.

From the beginning, it seemed to me that the really hard part was going
to be associating the additional sort orders with the additional (runtime)
tabs. That is, it would be hard to make sure that the sort order records
in the file, the selected tab and the applied sort actual mapped
one-to-one. Not simply one-to-one but predictably and without variation.
Everything has to come together at runtime in just the right way.

I do most of my programming with a pencil and paper. And as I write
this I am looking at my original notes. They are exclusively concerned
with setting up the tabs so that each links to a single, predictable sort
order. My notes indicate that I finally decided to loop through the file
containing the sort orders and read the needed fields to a queue. At the
same time, I determined how many additional tabs had been created,
the ordinal position of each new tab relative to the current record and
adding a number indicating that ordinal position to the queue (mine, not
the browse object’s). When the user changed tabs, I was planning on
using the tab position (Choice(?CurrentTab)) to retrieve the matching
queue record and … you get the idea.

Clarion Magazine - Sorting On The Run Part 3

http://www.clarionmag.com/v1n5/sub/v1n5sortingpart3.html (1 of 5) [7/6/1999 12:15:29 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/v1n3/sub/v1n3sortingpart1.html
http://www.clarionmag.com/v1n4/sub/v1n4sortingpart2.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

A typical programmer’s solution.

I could not have been more wrong. Ensuring that the selected, additional
tab and the additional sort order match could not have been easier. (Ok,
it could have been easier but no one has a template available that does
what I need.)

Basic Considerations

In the last installment I demonstrated that user defined sort orders need
to be added to the Sort property after the sort orders supplied by the
templates. Where n is the number of tabs created within the IDE, adding
custom orders after the template’s ensures that the first n queue entries
and the first n tabs match in the standard way, as shown in Listing 1.

Listing 1. Sorting by tabs.
IF CHOICE(?CurrentTab) = 2
 RETURN SELF.SetSort(1,Force)
ELSIF CHOICE(?CurrentTab) = 3
 RETURN SELF.SetSort(2,Force)
ELSIF CHOICE(?CurrentTab) = 4
 RETURN SELF.SetSort(3,Force)
ELSE
 RETURN SELF.SetSort(4,Force)
END

The key to this kingdom is that, as the developer of the application, I
know the value of n. I know how many tabs were created at design time
and, therefore, I know the initial number of entries in the sort queue.
More important, I know the ordinal position of each.

That also means that I know that any supplemental orders and any
runtime tabs start at n + 1. To ensure that queue entries and tabs are
mapped in the same order, to ensure the mandatory correspondence,
they only need to be created in the same order, using the same Key.

Too simple. (Proper prior planning ….)

That leaves only:

Activating Sorts on Tab Change

For all of this work to pay off, the additional tabs must actually activate
the corresponding additional order.

The code in Listing 1 above is the standard template generated
tab-changing code for a four-tabbed browse. It contains all the clues
needed to finish this project.

The logical core of this code is the use of CHOICE(?CurrentTab) to
calculate the first parameter of the SetSort() method. SetSort() then
does the actual work of re-setting the sort order.

For the sake of example, suppose you have a sheet with two tabs. This
means that the first custom order created at runtime will be queue entry
number three and the first runtime-created tab will be
CHOICE(?CurrentTab) = 3.

This means that for all dynamically created tabs:

Listing 2.

RETURN SELF.SetSort(Choice(?CurrentTab) , Force)

Clarion Magazine - Sorting On The Run Part 3

http://www.clarionmag.com/v1n5/sub/v1n5sortingpart3.html (2 of 5) [7/6/1999 12:15:29 PM]

http://www.clarionmag.com/v1n4/sub/v1n4sortingpart2.html

ought to retrieve the correct sort queue record. In turn, this means that
the desired order will be correctly set. I’m just "requisitioning" the
standard code, after all.

Of course, it cannot possibly be quite so simple. It isn’t.

The statement in Listing 2 will give incorrect sorts for the default tabs,
tabs created in the IDE. Remember that in the case of two tabs, the
queue entry for tab two is added first then the default order (tab one) is
added to the queue. So, what you really need to do is use this code for
runtime tabs only, leaving the generated code to handle "static" tabs,
something more like:

Listing 2.
IF CHOICE(?CurrentTab) > n
 RETURN SELF.SetSort(Choice(?CurrentTab) , Force)
End

The question now is:

Where is this code placed?

And the answer is: "It depends."

It does depend. If the underlying browse has only one key and,
therefore, only one tab, no tab switching code will be generated by the
templates. There will be no check on Choice(?CurrentTab) because
?CurrentTab only has one position.

If there is more than one tab, code like that above will be generated. In
this case, a structure like that in Listing 1 will be generated by the
templates.

One Tab: In this case, since the templates supply nothing, you need to
supply everything. The code in Listing 2 does everything necessary and
it seems pretty clear that it should go in the ?CurrentTab …
NewSelection embed.

Unfortunately, the code in Listing 2 will not work. It will fail to compile.

It will not compile because the browse object is not in scope here (the
NewSelection embed is not a derived virtual method of the browse
object, it is an event embed). But SetSort is a property of the browse
object and the procedure knows about that, so:

RETURN BRW1.SetSort(Choice(?CurrentTab), 1)

will do the job.

In the sample app that accompanies this article, check the
WithNewTabs_Corrected procedure ("corrected" for supplementary
orders being incorrectly activated when the browse is first opened; this
was discussed in the previous installment). This placement of the revised
code does just what we want.

Multiple Tabs: When there is more than one tab in the sheet before the
ad hoc tabs, you want to use the code in Listing 3 as is.

Where?-Check the template code (Listing 1) and you will see that there
is an ELSE clause.

Runtime tabs will always return a value greater than n and will,
therefore, trigger the ELSE clause.

This means that code handling the created tabs must come before the
template generated code. As this code tests only for values greater than
the number of tabs created in the window formatter, the standard
generated code will still do its job correctly.

Clarion Magazine - Sorting On The Run Part 3

http://www.clarionmag.com/v1n5/sub/v1n5sortingpart3.html (3 of 5) [7/6/1999 12:15:29 PM]

Opening the Embeditor and finding the standard tab change code shows
that the embed immediately preceding is Before Refresh Window for
Browse Box (see Figure 1).

Figure 1. Embedding the tab change code.

If you check the Embed tree, this is a Legacy embed. I can’t say that I
much care but if you’re an OOP purist, Local Objects … BRW1 …
ResetSort is the corresponding ABC virtual method.

So, there you have it, easy as 1-2-3:

Figure 2. The embed tree showing the embed point.

Clarion Magazine - Sorting On The Run Part 3

http://www.clarionmag.com/v1n5/sub/v1n5sortingpart3.html (4 of 5) [7/6/1999 12:15:29 PM]

create your tabs After the window is opened1.
add your new sort orders after any existing key are added2.
add the code to act on a tab change.3.

One caveat: unless you limit the number of records in the sort file, you
have neither any idea of how many tabs will be created nor any control.
Created tabs could well end up stacked on top of each other in a most
unattractive fashion. Play it safe and select a scrolling option for the tabs
(on the second tab on the Sheet’s Property Worksheet) whether you
think you need it or not.

An interesting consequence of this solution is that it will continue to work
even if Topspeed changes how it adds sort orders to the queue. If the
templates are changed so that tab one is added to the queue first or so
that there is no ELSE clause, this solution will still do what is expected of
it. The only thing that Topspeed must do is maintain the AddSortOrder
and AppendOrder methods.

Reports

I mentioned reports as requiring runtime sorts.

This particular requirement would not seem to be solved by the
technique developed here. Indeed, it is not. However, the People
example provides a variation applicable to reports. See the
PrintPEO:KeyID report, ThisWindow (ReportManager) … OpenReport
(before Parent Call) embed.

Summary

Once you understand how the ABC templates implement multiple sort
orders, duplicating and adapting that behavior to whole new program
functionalities is not at all hard. The total code required is 22 lines or
less.

What is difficult is tracing and understanding the ABC method calls.
However, it is not necessary to master all the complexities of the browse
object, just enough to comprehend the logic.

Download the source code

Steve Parker started his professional life as a Philosopher but now tries to imitate a Clarion
developer. A former SCCA competitor, he has been known to adjust other competitor's right side
mirrors -- while on the track (but only while accelerating). Steve has been writing on Clarion
since 1993.

In This Issue

June 1999 News
Posted on June 21,
1999

New Improved
Clarion
Challenge!
Posted on June 21,
1999

How ABC Handles
Multiple Sort
Orders (Part III)
Posted on June 21,
1999

Developers' Open
Source Public
License Version
1.0
Posted on June 21,
1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Sorting On The Run Part 3

http://www.clarionmag.com/v1n5/sub/v1n5sortingpart3.html (5 of 5) [7/6/1999 12:15:29 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n5/sort_3.zip
http://www.par2.com/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

DEVELOPERS’ OPEN SOURCE PUBLIC LICENSE

Version 1.0, June, 1999

Copyright @ 1999 Cove Comm Inc.

PREAMBLE

This license is designed to protect the rights of software developers who
wish to release software libraries and software development tools under
an open source arrangement.

Most open source licenses are either written with complete software
packages in mind or are intended to cover code which is created using
open source software tools. This license is specifically designed to
accommodate developers who use open source software in the context
of proprietary software development, or who work with proprietary
software development tools.

In brief, this agreement means the following:
The code you place under this license remains freely available to
others.

●

Any modifications to the code "inherit" this license agreement,
allowing you to obtain the modifications others make to your code.

●

Although anyone can profit from code covered under this license,
the code remains freely available. This places the emphasis on
implementation and support, since there is no monetary value
associated with the code itself.

●

TERMS AND CONDITIONS

1. Definitions.

1.1. "Contributor" means each entity that creates or
contributes to the creation of Modifications.

1.2. "Contributor Version" means the combination of the
Original Code, prior Modifications made by a Contributor, and
the Modifications made by that particular Contributor.

1.3. "Covered Code" means the Original Code or
Modifications or combination of the Original Code and
Modifications, in each case including portions thereof.

1.4. "Electronic Distribution Mechanism" means a
mechanism accepted in the software development
community for the electronic distribution of data.

1.5. "Executable" means Covered Code in any form other
than Source Code.

1.6. "Initial Developer" means the individual or entity
identified as the Initial Developer in the Source Code notice
required by Exhibit A.

1.7. "Larger Work" means a work which combines Covered
Code or portions thereof with code not governed by the

The CoveComm Developers' Open Source License

http://www.clarionmag.com/common/dosl.html (1 of 6) [7/6/1999 12:15:31 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html

terms of this License.

1.8. "License" means this document.

1.9. "Modifications" means any addition to or deletion
from the substance or structure of either the Original Code or
any previous Modifications. When Covered Code is released
as a series of files, a Modification is:

A. Any addition to or deletion from the contents of a file
containing Original Code or previous Modifications.

B. Any new file that contains any part of the Original Code or
previous Modifications. In the case of new files, the
differentiating factor is whether the file simply makes use of,
or extends, the Original Code or previous Modifications. For
example, if Covered Code is object-oriented software, a class
derived from a Covered Code class is a Modification, while an
instance of a Covered Code class is not a Modification.

1.10. "Original Code" means Source Code of computer
software code which is described in the Source Code notice
required by Exhibit A as Original Code, and which, at the
time of its release under this License is not already Covered
Code governed by this License.

1.11. "Source Code" means the preferred form of the
Covered Code for making modifications to it, including all
modules it contains, plus any associated interface definition
files, scripts used to control compilation and installation of an
Executable, or a list of source code differential comparisons
against either the Original Code or another well known,
available Covered Code of the Contributor's choice. The
Source Code can be in a compressed or archival form,
provided the appropriate decompression or de-archiving
software is widely available for no charge.

1.12. "You" means an individual or a legal entity exercising
rights under, and complying with all of the terms of, this
License or a future version of this License issued under
Section 6.1. For legal entities, "You'' includes any entity
which controls, is controlled by, or is under common control
with You. For purposes of this definition, "control'' means (a)
the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or
otherwise, or (b) ownership of fifty percent (50%) or more of
the outstanding shares or beneficial ownership of such
entity.

2. Source Code License.

2.1. The Initial Developer Grant.

The Initial Developer hereby grants You a world-wide,
royalty-free, non-exclusive license, subject to third party
intellectual property claims:

(a) to use, reproduce, modify, display, perform, sublicense
and distribute the Original Code (or portions thereof) with or
without Modifications, or as part of a Larger Work; and

(b) under patents now or hereafter owned or controlled by
Initial Developer, to make, have made, use and sell
("Utilize'') the Original Code (or portions thereof), but solely
to the extent that any such patent is reasonably necessary to
enable You to Utilize the Original Code (or portions thereof)
and not to any greater extent that may be necessary to
Utilize further Modifications or combinations.

2.2. Contributor Grant.

Each Contributor hereby grants You a world-wide,
royalty-free, non-exclusive license, subject to third party

The CoveComm Developers' Open Source License

http://www.clarionmag.com/common/dosl.html (2 of 6) [7/6/1999 12:15:31 PM]

intellectual property claims:

(a) to use, reproduce, modify, display, perform, sub license
and distribute the Modifications created by such Contributor
(or portions thereof) either on an unmodified basis, with
other Modifications, as Covered Code or as part of a Larger
Work; and

(b) under patents now or hereafter owned or controlled by
Contributor, to Utilize the Contributor Version (or portions
thereof), but solely to the extent that any such patent is
reasonably necessary to enable You to Utilize the Contributor
Version (or portions thereof), and not to any greater extent
that may be necessary to Utilize further Modifications or
combinations.

3. Distribution Obligations.

3.1. Application of License.

The Modifications which You create or to which You
contribute are governed by the terms of this License,
including without limitation Section 2.2. The Source Code
version of Covered Code may be distributed only under the
terms of this License or a future version of this License
released under Section 6.1, and You must include a copy of
this License with every copy of the Source Code You
distribute. You may not offer or impose any terms on any
Source Code version that alters or restricts the applicable
version of this License or the recipients' rights hereunder.
However, You may include an additional document offering
the additional rights described in Section 3.5.

3.2. Availability of Source Code.

Any Modification which You create or to which You contribute
must be made available in Source Code form under the
terms of this License either on the same media as an
Executable version or via an accepted Electronic Distribution
Mechanism to anyone to whom you made an Executable
version available; and if made available via Electronic
Distribution Mechanism, must remain available for at least
twelve (12) months after the date it initially became
available, or at least six (6) months after a subsequent
version of that particular Modification has been made
available to such recipients. You are responsible for ensuring
that the Source Code version remains available even if the
Electronic Distribution Mechanism is maintained by a third
party.

3.3. Description of Modifications.

You must cause all Covered Code to which you contribute to
contain information documenting the changes You made to
create that Covered Code and the date of any change. You
must include a prominent statement that the Modification is
derived, directly or indirectly, from Original Code provided by
the Initial Developer and including the name of the Initial
Developer in (a) the Source Code, and (b) in any notice in an
Executable version or related documentation in which You
describe the origin or ownership of the Covered Code.

3.4. Intellectual Property Matters

(a) Third Party Claims.

If You have knowledge that a party claims an intellectual
property right in particular functionality or code (or its
utilization under this License), you must include a text file
with the source code distribution titled "LEGAL" which
describes the claim and the party making the claim in
sufficient detail that a recipient will know whom to contact. If
you obtain such knowledge after You make Your Modification

The CoveComm Developers' Open Source License

http://www.clarionmag.com/common/dosl.html (3 of 6) [7/6/1999 12:15:31 PM]

available as described in Section 3.2, You shall promptly
modify the LEGAL file in all copies You make available
thereafter and shall take other steps (such as notifying
appropriate mailing lists or newsgroups) reasonably
calculated to inform those who received the Covered Code
that new knowledge has been obtained.

(b) Contributor APIs.

If Your Modification is an application programming interface
and You own or control patents which are reasonably
necessary to implement that API, you must also include this
information in the LEGAL file.

3.5. Required Notices.

You must duplicate the notice in Exhibit A (with
appropriately modified names and dates) in each file of the
Source Code, and this License in any documentation for the
Source Code, where You describe recipients' rights relating
to Covered Code. If You created one or more Modification(s),
You may add your name as a Contributor to the notice
described in Exhibit A. If it is not possible to put such notice
in a particular Source Code file due to its structure, then you
must include such notice in a location (such as a relevant
directory file) where a user would be likely to look for such a
notice. You may choose to offer, and to charge a fee for,
warranty, support, indemnity or liability obligations to one or
more recipients of Covered Code. However, You may do so
only on Your own behalf, and not on behalf of the Initial
Developer or any Contributor. You must make it absolutely
clear that any such warranty, support, indemnity or liability
obligation is offered by You alone, and You hereby agree to
indemnify and save harmless the Initial Developer and every
Contributor for any liability incurred by the Initial Developer
or such Contributor as a result of warranty, support,
indemnity or liability terms You offer.

3.6. Distribution of Executable Versions.

You may distribute Covered Code in Executable form only if
the requirements of Section 3.1-3.5 have been met for that
Covered Code, and if You include a notice stating that the
Source Code version of the Covered Code is available under
the terms of this License, including a description of how and
where You have fulfilled the obligations of Section 3.2. The
notice must be conspicuously included in any notice in an
Executable version, related documentation or collateral in
which You describe recipients' rights relating to the Covered
Code. You may distribute the Executable version of Covered
Code under a license of Your choice, which may contain
terms different from this License, provided that You are in
compliance with the terms of this License and that the
license for the Executable version does not attempt to limit
or alter the recipient's rights in the Source Code version from
the rights set forth in this License. If You distribute the
Executable version under a different license, You must make
it absolutely clear that any terms which differ from this
License are offered by You alone, not by the Initial Developer
or any Contributor. You hereby agree to indemnify and save
harmless the Initial Developer and every Contributor for any
liability incurred by the Initial Developer or such Contributor
as a result of any such terms You offer.

3.7. Larger Works.

You may create a Larger Work by combining Covered Code
with other code not governed by the terms of this License
and distribute the Larger Work as a single product. In such a
case, You must make sure the requirements of this License
are fulfilled for the Covered Code.

The CoveComm Developers' Open Source License

http://www.clarionmag.com/common/dosl.html (4 of 6) [7/6/1999 12:15:31 PM]

4. Inability to Comply Due to Statute or Regulation.

If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Code due to statute or
regulation, then You must: (a) comply with the terms of this License to
the maximum extent possible; and (b) describe the limitations and the
code they affect. Such description must be included in the LEGAL file
described in Section 3.4 and must be included with all distributions of
the Source Code. Except to the extent prohibited by statute or
regulation, such description must be sufficiently detailed for a recipient
of ordinary skill to be able to understand it.

5. Application of this License. This License applies to code to which
the Initial Developer has attached the notice in Exhibit A, and to related
Covered Code.

6. Versions of the License.

6.1. New Versions. CoveComm Inc. may publish revised
and/or new versions of the License from time to time. Each
version will be given a distinguishing version number.

6.2. Effect of New Versions. Once Covered Code has been
published under a particular version of the License, You may
always continue to use it under the terms of that version.
You may also choose to use such Covered Code under the
terms of any subsequent version of the License published by
CoveComm Inc.. No one other than CoveComm Inc. has the
right to modify the terms applicable to Covered Code created
under this License.

6.3. Derivative Works. If you create or use a modified
version of this License (which you may only do in order to
apply it to code which is not already Covered Code governed
by this License), you must (a) rename Your license so that
the phrase "Cove Comm" or any confusingly similar phrase
does not appear anywhere in your license and (b) otherwise
make it clear that your version of the license contains terms
which differ from the CoveComm Inc. Public License. (Filling
in the name of the Initial Developer, Original Code or
Contributor(s) in the notice described in Exhibit A shall not of
themselves be deemed to be modifications of this License.)

7. DISCLAIMER OF WARRANTY.

COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS''
BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE
COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A
PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE COVERED CODE IS WITH
YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT,
YOU (NOT THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR)
ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR OR
CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN
ESSENTIAL PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS
AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

8. TERMINATION. This License and the rights granted hereunder will
terminate automatically if You fail to comply with terms herein and fail to
cure such breach within 30 days of becoming aware of the breach. All
sublicenses to the Covered Code which are properly granted shall survive
any termination of this License. Provisions which, by their nature, must
remain in effect beyond the termination of this License shall survive.

9. LIMITATION OF LIABILITY.

UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER
TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL

The CoveComm Developers' Open Source License

http://www.clarionmag.com/common/dosl.html (5 of 6) [7/6/1999 12:15:31 PM]

THE INITIAL DEVELOPER, ANY OTHER CONTRIBUTOR, OR ANY
DISTRIBUTOR OF COVERED CODE, OR ANY SUPPLIER OF ANY OF SUCH
PARTIES, BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF
ANY CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES FOR
LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR
MALFUNCTION, OR ANY AND ALL OTHER COMMERCIAL DAMAGES OR
LOSSES, EVEN IF SUCH PARTY SHALL HAVE BEEN INFORMED OF THE
POSSIBILITY OF SUCH DAMAGES.

10. MISCELLANEOUS. (a) Severability This License represents the
complete agreement concerning the subject matter hereof. The
provisions of this License are severable one from the other and if any of
its provisions is declared void, the decisions so holding shall not be
construed as impairing any other provisions of this License. If any
provision of this License is held to be unenforceable, such provision shall
be reformed only to the extent necessary to make it enforceable. (b)
Governing Law This License shall be governed by such laws of
Manitoba and Canada as may be applicable. (c) Arbitration In any
dispute concerning any matter arising out of or in connection with this
License, every such dispute shall be referred to arbitration within five (5)
days of written notice of a dispute being personally delivered or mailed
by registered mail, postage prepaid, by the disputing party to the other
party. The disputing parties, unless otherwise agreed, are each to
respectively appoint one arbitrator within twelve (12) days of the mailing
of such notice of dispute and the two arbitrators shall appoint a third
arbitrator within eighteen (18) days of the mailing of the notice of
dispute. If the arbitrators fail to agree upon the appointment of a third
arbitrator within the time limit set out above, either party may, upon two
(2) days notice to the other party, apply to a Judge at the Court of
Queen’s Bench for the Province of Manitoba to appoint a third arbitrator.
If any party fails to appoint an arbitrator within the time stipulated, then
the arbitrator so appointed shall act as a sole arbitrator to settle the
dispute. The decision of any two of the three arbitrators or of the sole
arbitrator shall be final and binding. Each of the parties hereto shall pay
one-half (1/2) of the expenses of such reference.

11. RESPONSIBILITY FOR CLAIMS. Except in cases where another
Contributor has failed to comply with Section 3.4, You are responsible for
damages arising, directly or indirectly, out of Your utilization of rights
under this License, based on the number of copies of Covered Code you
made available, the revenues you received from utilizing such rights, and
other relevant factors. You agree to work with affected parties to
distribute responsibility on an equitable basis.

EXHIBIT A. PLACING CODE UNDER THIS LICENSE.

To place eligible code under this license place the following notice,
appropriately modified, in the covered code. If you are distributing an
executable program containing covered code (see Sections 3.6 and 3.7)
you must include a notice with the program in compliance with Section
3.6.

Form Of License Notice.

The contents of this file are subject to the CoveComm Inc. Developers
Open Source Public License Version 1.0 (the "License"); you may not use
this product except in compliance with the License. You may obtain a
copy of the License at http://www.clarionmag. com/common/dosl.html.
Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
License for the specific language governing rights and limitations under
the License. The Original Code is copyright by _________________
(name of copyright owner)., released __________ (date of release). The
Initial Developer of the Original Code is ________________ (name of
initial developer) . Portions created __________________________
(name of contributor(s), if any) are Copyright ©
______________________ (year and name of copyright holder(s)). All
Rights Reserved.

The CoveComm Developers' Open Source License

http://www.clarionmag.com/common/dosl.html (6 of 6) [7/6/1999 12:15:31 PM]

Vol 1, No 5
June, 1999

June 28, 1999

CWICWEB’s New Look
Steve Parker has given his CWICWEB site a new look. Among the links
on this page are the three Clarion knowledge bases and Steve’s index to
every article published in CTJ, CWJ, COL, and Clarion Magazine.

New Handy Tools Build Available
A new Handy Tools build (L) is now available. New features include ruler,
slider, and drive selector controls. There’s also a filter control that
translates plain language statements into Clarion filter strings, and a
template/class which adds a number of features such as tagging and
sorting to non-ABC browses and list boxes.

Special Agent Special Price Ends June 30
The Special Agent Introductory price of $149 ($50 off the regular price)
expires June 30, 1999. A demo is available from the web site.

Asher To Keynote DevCon ’99
Hank Asher, Founder and Chief Executive Officer of eData.com (formerly
Indar), will present the Keynote Address at DevCon ’99. Asher is also the
founder of Database Technologies, a $500 million company built on
Clarion technology.

Pervasive Discontinues Btrieve 6.15
Pervasive Software Inc. will discontinue general availability of Btrieve on
June 30, 1999. Technical support for 6.15 will continue through
September 1, 1999.

June 21, 1999

Report & Presentation Manager v5b (Interim Release)
RPM5b is now available for download by all registered users of RPM5.
This release is for C5PE and C5EE with at least the SR1 patch. This
update fixes a problem with empty reports and CW timers, large reports
and "print & remain" and a fairly rare ASCII export problem. If you
encounter any problems during installation please contact Lodestar
Software at support@LodestarSoftware.com. A full install of RPM5B will
be available shortly.

Zip Code Library for Clarion 5 Now Available
The Zip Code Library for Clarion 5 is now available from Topspeed
Corporation. Contact TopSpeed Sales at (800) 354-5444 or your local
distributor to acquire updates.

Data Modeler Updated
There is a new version of Data Modeller available for both Clarion 5
Enterprise (DM 5.2000 b) and Clarion 5 Professional (DM 5.0001 b).
This version requires Clarion 5a (SP1) to run, and will run with Clarion 5
b (SP2). Clarion 5 Professional users can use the same password as the
previous update.

ABC Free Templates and Tools Updated

In This Issue

June 1999 News
Posted on June 28,
1999

Clarion Advisor:
Debugging Tricks
Posted on June 28,
1999

The ABCs Of OOP
- Part 3
Posted on June 28,
1999

Clarion Magazine
Best Read With
Verdana
Posted on June 28,
1999

Detecting
Crashes With
DDE
Posted on June 28,
1999

Clarion Magazine - News June 1999

http://www.clarionmag.com/v1n5/pub/v1n5news.html (1 of 3) [7/6/1999 12:15:32 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.cwicweb.com/html/clarion.html
http://www.cwhandy.com/download/downloads.htm
http://www.capesoft.com/
http://www.topspeed.com/dc99/dc.htm
http://www.pervasive.com/news/pr/pr99jun2.html
ftp://ftp.lodestarsoftware.com/pub/rpm5bup.exe
mailto:support@LodestarSoftware.com
http://www.topspeed.com/
http://home.global.co.za/~peabrain/
http://www.dlcwest.com/~sorev/topspeed/ABCFree.EXE
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html
http://www.clarionmag.com/policies/fontsandstuff.html
http://www.clarionmag.com/policies/fontsandstuff.html
http://www.clarionmag.com/policies/fontsandstuff.html

The ABC Free Templates and Tools have been updated with bug fixes
and new features including the ability to exclude ABC classes and include
files.

June 14, 1999

etc Activity Schedule Layout Poll
Lee White has posted a new online survey for the East Tennessee Clarion
Developer’s Conference. This one is for your preferred schedule of
activities. The conference will be bookended by classes, most likely
ABC/OOP and SQL/ODBC.

CPCS Report Emailer Addon Now Available
CPCS now has an addon product which allows for fast and easy emailing
of CPCS reports and the optional report viewer/printer. Purchase includes
versions for Clarion5 (Legacy & ABC), Clarion4 (Legacy & ABC), and
CW2003 (Legacy).

June 7, 1999

etc 2000 Scheduled For May 22
It’s official – there will be another East Tennessee Clarion Developer’s
Conference. etc 2000 will be held in at the Edgewater Hotel in
Gatlinburg, TN during the week of May 22.

Imaging Templates Support ABC And Legacy
The latest version of the Imaging Templates is now available for
download. This release contains support for both ABC and legacy apps
for $149.

Clarion Profile Exchange
The Clarion Profile Exchange has been updated. This release includes a
number of freeware templates and download links for many demos and
templates. You must have the newly released Version 3.5 of Product
Scope 32 Bookmarks to view these data files.

Wholesale Distribution Accounting Package Available To
Developers
KV Enterprises, Inc. has a complete royalty-free Wholesale Distributor
Accounting Package coded in C5. Modules include Accounts Payable,
Accounts Receivable, General Ledger, Inventory Control, Purchasing,
Order Entry, and Payroll. Source is included. Online help and security is
built in.

Help On Creating Help
Following his DevCon and EuroDevCon talks on writing help, James
Fortune has created a web page containing links to help creation
resources.

HTTP Server Edition Version 1.5 Released
Mike Pasley has released version 1.5 of his "Nothing But Clarion, Nothing
But 'Net" HTTP Server/Internet Framework Template which allows for
fast creation and testing of all-Clarion web servers. Some knowledge of
HTML is required. Price is $99. Free beta of PowerMerge Mail Merge
Templates included.

ABC Free Templates and Tools Updated
The ABC Free Templates and Tools have been updated with bug fixes
and new features. The uninstall no longer uninstalls Clarion 5, and new
templates features include class exporting and thread limiting.

DevCon ’99 Presentation Survey
Going to DevCon in September? Topspeed has an on-line survey page
where you can indicate which sessions you will/may attend. The survey
will expire on Wednesday, June 23, 1999.

Read the May 1999 News

Do you have a news story or press release we should know about? Send

Clarion Magazine - News June 1999

http://www.clarionmag.com/v1n5/pub/v1n5news.html (2 of 3) [7/6/1999 12:15:32 PM]

http://www.kcug.org/etc2000poll.html
http://www.cpcs-inc.com/
http://216.82.30.86/etc2000.html
http://www.thenextage.com/imagingtemplates.asp
http://www.encouragersoftware.com/
http://www.kve.com/
http://www.kve.com/
http://www.accountforce.demon.co.uk/what_we_use.html
http://www.logicentral.com/
http://www.dlcwest.com/~sorev/topspeed/ABCFree.EXE
http://www.topspeed.com/dc99/feedback.htm
http://www.clarionmag.com/v1n4/pub/v1n4news.html

it to editor@clarionmag.com

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - News June 1999

http://www.clarionmag.com/v1n5/pub/v1n5news.html (3 of 3) [7/6/1999 12:15:32 PM]

mailto:editor@clarionmag.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 5
June 1999

More Debugging Tricks

Clarion Magazine has featured several articles on debugging applications
(go to the Search page and search for "debug"). But you can never have
too many tricks up your sleeve, and Clarion developers get as wily as
anyone when it comes to using alternative debugging techniques.

Many developers use STOP() and MESSAGE() for quickie debugging, but
as Russ Eggen recently pointed out in his excellent article on the
debugger, these statements interfere with the normal operation of your
program, and the behaviour with the use of these statements may be
quite different from the behaviour without these statements.

One non-intrusive technique is to put messages in the window’s title bar.
Just use the following line of code any time after the window has
opened:

 0{PROP:Text} = 'Some debugging text'

The zero stands for the current window and is more convenient than
having to know the actual window label (which may be Window,
QuickWindow, or something else). Another bonus is that you can use this
statement anywhere a window is open – the label of the window doesn’t
have to be in scope. So if the procedure with the window calls a source
code function, you can still use 0{prop:text} inside the function.

If you’re testing for a particular condition in your code which happens
more than once, but you’re always using the same message, you’ll
probably want to know that you’re looking at a redisplay of the message
and not just the original message. Add a timestamp to the message:

 0{PROP:Text} = CLOCK() & ' Some debugging text'

Now you’ll be able to see when the message changes.

Do you have a favourite debugging technique? Send it to
advisor@clarionmag.com.

June 1999 News
Posted on June 28,
1999

Clarion Advisor:
Debugging Tricks
Posted on June 28,
1999

The ABCs Of OOP
- Part 3
Posted on June 28,
1999

Clarion Magazine
Best Read With
Verdana
Posted on June 28,
1999

Detecting
Crashes With
DDE
Posted on June 28,
1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - The Clarion Advisor: Debugging Tricks

http://www.clarionmag.com/v1n5/sub/v1n5debuggingtricks.html [7/6/1999 12:15:33 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/v1n4/sub/v1n4usingthedebugger.html
http://www.clarionmag.com/v1n4/sub/v1n4usingthedebugger.html
mailto:advisor@clarionmag.com
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html
http://www.clarionmag.com/policies/fontsandstuff.html
http://www.clarionmag.com/policies/fontsandstuff.html
http://www.clarionmag.com/policies/fontsandstuff.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 5
June 1999

The ABCs of OOP

Understanding Virtual Methods

by Dave Harms

Virtual methods are one of the most useful and powerful features of
object-oriented programming. I don’t think it’s understating the case to
say that understanding virtual methods opens up whole new vistas of
software development. In fact, without virtual methods, the ABC
templates and class library simply couldn’t exist, at least not in their
present form.

I’ve had several opportunities to present object-oriented programming
basics in articles and in seminars, and I remain convinced that while OOP
concepts often look intimidating, they’re really not that difficult to grasp.
If anything, it’s the appearance of difficulty that is the real difficulty. But
if there is an aspect of OOP that can be a bit tricky to get, it’s virtual
methods.

In this installment I’ll build on the information I presented in the
previous articles in this series. As you’ll recall, the first article described
some basic OOP concepts, and the second article elaborated on
inheritance and encapsulation.

The DebugClass Example

Both of those articles discuss a small example class which can be used to
store debugging messages in a log. Listing 1 shows the declaration for
the class, and Listing 2 shows the implementation.

Listing 1. The DebugClass declaration.

TraceQueue QUEUE,TYPE
Text STRING(200)
 END

DebugClass CLASS,TYPE,MODULE('DEBUG.CLW')
NextLineToWrite long(1)
TraceQ &TraceQueue
Construct PROCEDURE
Destruct PROCEDURE
ShowTrace PROCEDURE
Trace PROCEDURE(STRING Text)
WriteTrace PROCEDURE
 END

Clarion Magazine - The ABCs of OOP Part 3

http://www.clarionmag.com/v1n5/sub/v1n5abcsofoop_part3.html (1 of 9) [7/6/1999 12:15:36 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/v1n2/sub/v1n2abcsofoop_part1.html
http://www.clarionmag.com/v1n4/sub/v1n4abcsofoop_part2.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

Listing 2. The DebugClass implementation.

 MEMBER

 MAP
 END

 INCLUDE('DEBUG.INC')

TraceLog FILE,DRIVER('ASCII'),NAME('TRACE.LOG')
 ,CREATE,PRE(TRACE)
Record RECORD,PRE()
Text STRING(1000)
 END
 END

DebugClass.Construct PROCEDURE
 CODE
 SELF.TraceQ &= NEW(TraceQueue)

DebugClass.Destruct PROCEDURE
 CODE
 FREE(SELF.TraceQ)
 DISPOSE(SELF.TraceQ)

DebugClass.ShowTrace PROCEDURE

window WINDOW('Debug Messages'),AT(,,331,206),|
 FONT('MS Sans Serif',8,,,CHARSET:ANSI),|
 SYSTEM,GRAY,DOUBLE
 LIST,AT(5,5,320,180),USE(?List1),HVSCROLL,|
 FONT('Courier New',8,,FONT:regular,CHARSET:ANSI)|
 ,FROM(self.TraceQ)
 BUTTON('Close'),AT(150,190,,14),USE(?Close)
 END

 CODE
 OPEN(WINDOW)
 ACCEPT
 IF FIELD() = ?Close AND EVENT() = EVENT:Accepted
 BREAK
 END
 END

DebugClass.Trace PROCEDURE(STRING Text)
 CODE
 SELF.TraceQ.Text = Text
 ADD(SELF.TraceQ)
 IF RECORDS(SELF.TraceQ) % 10 = 0 THEN SELF.WriteTrace().

DebugClass.WriteTrace PROCEDURE
X LONG
 CODE
 OPEN(TraceLog)
 IF ERRORCODE()
 CREATE(TraceLog)
 OPEN(TraceLog)

Clarion Magazine - The ABCs of OOP Part 3

http://www.clarionmag.com/v1n5/sub/v1n5abcsofoop_part3.html (2 of 9) [7/6/1999 12:15:36 PM]

 IF ERRORCODE()
 MESSAGE('Unable to open error log: ' & ERROR())
 RETURN
 END
 END
 LOOP X = SELF.NextLineToWrite TO RECORDS(SELF.TraceQ)
 GET(SELF.TraceQ,X)
 TraceLog.Text = self.TraceQ.Text
 ADD(TraceLog)
 END
 SELF.NextLineToWrite = RECORDS(self.TraceQ) + 1
 CLOSE(TraceLog)

You will notice at least one difference between the class discussed in the
previous article and the one shown in Listings 1 and 2. This version of
the class has a WriteTrace method which figures heavily in this
discussion of virtual methods.

The WriteTrace Method

The WriteTrace method isn’t a virtual method – it’s just a normal method
like the others. The purpose of WriteTrace is to write the debug
messages out to a text file. You could call this method periodically
yourself (as when exiting a procedure) but it’s much easier to have the
debug class handle the call automatically.

The Trace method (see Listing 3) accomplishes this by calling the
WriteTrace method on every tenth trace call. The modulus (%) operator
simply tests for the remainder of division, in this case by 10. This
effectively creates a cache of up to ten records, which is a much more
efficient approach than opening the file, writing out one record, and
closing the file again. (You could use a property in place of "10" and
have an adjustable cache size, if you wished.)

Listing 3. The Trace method calls WriteTrace.

DebugClass.Trace PROCEDURE(STRING Text)
 CODE
 SELF.TraceQ.Text = Text
 ADD(SELF.TraceQ)
 IF RECORDS(SELF.TraceQ) % 10 = 0 THEN SELF.WriteTrace().

Accept for the moment that you’ve decided you’d like DebugClass to
store its log of information in one of your application’s data files rather
than in a text file. Remembering the principle that it’s usually better to
derive a new class than modify an existing class, you decide to create a
derived class that will work with your application. Can you simply rewrite
the WriteTrace method so it uses your application’s data file?

You can try, but the compiler won’t be impressed. As you can tell by the
empty MEMBER statement in Listing 2, this class is generic, which means
it can be compiled with any application. Now in Clarion 2.1, modules with
empty MEMBER statements automatically gained access to the global data
of the application in which they were compiled. That’s not the case any
more. Modules can now only "see" declarations to which they’re given
explicit access, either by a member statement that points to an
application source file, or by use of INCLUDE statements.

DebugClass doesn’t have any knowledge of your application’s data, and
that’s the way you want it, because this class needs to work with any
application. If you use an application-specific INCLUDE or MEMBER
statement that points to an application, you’ve effectively prevented
yourself from using that class in any other application.

Clarion Magazine - The ABCs of OOP Part 3

http://www.clarionmag.com/v1n5/sub/v1n5abcsofoop_part3.html (3 of 9) [7/6/1999 12:15:36 PM]

http://www.clarionmag.com/v1n4/sub/v1n4abcsofoop_part2.html

Two-Tiered Development

The answer to the problem is to use a two-tiered development strategy,
which is what ABC does. In the top tier are generic classes with empty
MEMBER statements. In the bottom tier are the application-specific
classes. All the common code (or as much of it as possible) goes in the
top tier, thereby maximizing code reuse. Figure 1 shows the two tiers.

Figure 1. A two-tiered class design.

This two-tiered approach is an ideal way to solve the problem of making
DebugClass work with a specific application’s data (and code).

To test this, create a TPS file in the application’s data dictionary (or
follow along with the example application). This file, called Trace, only
needs one field (Text STRING(1000)) and doesn’t need any keys,
although if you wanted to jazz it up you could add the date and time the
trace record was added.

In the application, create a main menu item to call a browse procedure
which will display the trace log records. Again, you don’t have to specify
a key, since if no key exists the browse will display the records in the
order they were added. You don’t need to bother with an update
procedure for this browse since all the records will be created by the
derived debug class. Use the Browse wizard to create a procedure to
browse the Trace TPS file.

The Derived Debug Class

When I create generic classes I usually put them in my LIBSRC directory
along with all of the ABC classes. When I create an application-specific
class I normally put it in the application directory, as I won’t be wanting
to use it with any other apps.

The derived AppDebugClass declaration is shown in Listing 4. There are
several differences between the way this class is declared and the way
its parent class (DebugClass) is declared.

Clarion Magazine - The ABCs of OOP Part 3

http://www.clarionmag.com/v1n5/sub/v1n5abcsofoop_part3.html (4 of 9) [7/6/1999 12:15:36 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n5/abcoop3.zip

Listing 4. The derived AppDebugClass declaration (AppDebug.INC).

OMIT('_EndOfInclude_',_APPDEBUGPRESENT_)
APPDEBUGPRESENT EQUATE(1)

 INCLUDE('DEBUG.INC')

AppDebugClass CLASS(DebugClass),TYPE,
 MODULE('appdebug.clw'),LINK('appdebug.clw')
WriteTrace PROCEDURE
 END
 EndOfInclude

As with last article’s DebugTimedClass AppDebugClass has a
CLASS(DebugClass) attribute which tells the compiler which class to use
it comes across methods and properties which aren’t declared within
AppDebugClass. The INCLUDE statement points to the source file which
contains the parent class’s declaration.

The LINK attribute tells the compiler which source file contains the class
implementation. If you have a LINK attribute on the class you don’t need
to explicitly add the source file to the project.

NOTE: Although it’s usually best to use the LINK attribute,
you may on occasion wish to add the source to the project
manually, as this lets you set compiler pragmas on just that
file. You will also need the DLL attribute if using classes
exported from a DLL. See the ABC class declarations for
examples.

Another curious aspect of this include file is the use of an OMIT
statement. The OMIT prevents the declaration from being referenced by
the compiler more than once. This is a way of preventing duplicate
symbol warnings which can happen if you have a number of nested
includes. The first time the compiler references this code the
AppDebugPresent flag is false, by default, and immediately after the
OMIT it’s set to true, so on all subsequent passes the compiler ignores
the OMITted code.

There is only one method declared in AppDebugClass, and that is
WriteTrace. The implementation, shown in Listing 5, replaces the original
WriteTrace method with code that puts the trace statements in the
application’s Trace file.

Listing 5. The AppDebugClass implementation (APPDEBUG.CLW).

MEMBER(‘TEST.CLW')

 MAP
 END

AppDebugClass.WriteTrace PROCEDURE
X LONG
 CODE
 ACCESS:Trace.OPEN()
 ACCESS:Trace.UseFile()
 LOOP X = SELF.NextLineToWrite TO RECORDS(self.TraceQ)
 GET(SELF.TraceQ,x)
 TRA:Text = SELF.TraceQ.Text
 ACCESS:Trace.Insert()
 END

Clarion Magazine - The ABCs of OOP Part 3

http://www.clarionmag.com/v1n5/sub/v1n5abcsofoop_part3.html (5 of 9) [7/6/1999 12:15:36 PM]

http://www.clarionmag.com/v1n4/sub/v1n4abcsofoop_part2.html#debugtimedclass

 SELF.NextLineToWrite = RECORDS(self.TraceQ) + 1
 ACCESS:Trace.CLOSE()

At the top of the source listing is the MEMBER(‘TEST.CLW’) statement
which, following the two-tier model, ties this class to the application’s
data and allows the use of all global data, classes, and procedures. If
you compare this code with the base class code, you’ll see that one of
the benefits of using ABC is a lot of tedious code is taken care of in the
libraries. Instead of the original’s somewhat hacked attempt to make
sure that the trace file can be opened, you have a single call to
ACCESS:Trace.Open which takes care of all of the error checking.
Similarly ACCESS:Trace.Insert checks for any problems with the add.
Other than this, the replacement method simply takes the same
approach as the original but adds the records to the application’s TPS
Trace file rather than to the ASCII trace file.

To implement the class put the following in a global embed point, such
as After Global Includes:

 INCLUDE('APPDEBUG.INC')
db AppDebugClass

If you’ve been following along with the previous articles you’ll be working
with an application that already has a db object, but which is declared as
an instance of DebugClass not AppDebugClass. You will also have an
INCLUDE statement that points to ‘DEBUG.INC’ rather than
‘APPDEBUG.INC’. Because AppDebugClass is derived from DebugClass,
you can leave all of the calls to the db object’s methods as they were,
and simply make db an instance of the derived class. Derived classes
don’t lose any data or methods, although they may change the
implementation of some of those methods.

Testing AppDebugClass

The apps from the previous articles, and the example application for this
article demonstrate a simple use of the debug classes. The each have
the code:

db.Trace('Event ' & EVENT())

in the TakeEvent method of the Names browse object in the
BrowseNames procedure. If you call BrowseNames, the Trace method
records all of the events that the browse receives.

This application uses AppDebugClass which has a replacement
WriteTrace method which writes messages to the TPS Trace file. So what
happens if you run the application using AppDebugClass?

Well, not what you might expect. If you call the BrowseNames
procedure, it turns out that AppDebugClass functions exactly the same
way as DebugClass. The trace messages are still logged to the ASCII file,
and the TPS Trace file remains empty.

What went wrong?

As Figure 2 shows, only the WriteTrace method is declared in both
classes. The actual object or instance of the class which is used in your
application contains both methods, and there are rules which govern
which of the two methods will be called.

Figure 2. The DebugClass/AppDebugClass class diagram.

Clarion Magazine - The ABCs of OOP Part 3

http://www.clarionmag.com/v1n5/sub/v1n5abcsofoop_part3.html (6 of 9) [7/6/1999 12:15:36 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n5/abcoop3.zip

Figure 2. The DebugClass/AppDebugClass class diagram.

The problem is that although the object is an instance of
AppDebugClass, in the example application code the WriteTrace method
is never directly called by the application, as is the Trace method.
WriteTrace is always called by the Trace method itself, which is
declared only in DebugClass.

To understand what’s happening you need to be clear on several
concepts. One is that the db object is a combination of AppDebugClass
and DebugClass. The other is that within that object are (in this case)
two levels at which code exists: the upper (parent) and lower (child)
levels.

When your code calls the Trace method it’s making a call to the upper
parent part of the object. The rule is that by default, an upper level
cannot call down to a lower level. This makes sense, since the upper part
(DebugClass) doesn’t have an INCLUDE statement that points to the
lower level (AppDebugClass), although the reverse is true. Another way
to say this is that the child class always knows about the parent class,
but the parent doesn’t normally know about the child.

If you call a lower level method, that method can call a higher level
method, implicitly (if the method doesn’t exist at the lower level) or
explicitly (by using the PARENT keyword). But under normal
circumstances a higher level method can never call a lower level method.
So once control passes to the higher level, that’s where it’s going to
stay.

It would be possible to get around this problem by copying the Trace
method to AppDebugClass since that would bring it down to the same
level as the replacement WriteTrace method, but that would defeat the
whole purpose of reusing code. What you really want is a way to tell the
upper part of the object that you’ve created a replacement for one of its
methods, and you want it to call your replacement instead of its own
method.

Clarion Magazine - The ABCs of OOP Part 3

http://www.clarionmag.com/v1n5/sub/v1n5abcsofoop_part3.html (7 of 9) [7/6/1999 12:15:36 PM]

Thankfully there is a way to do this, and it’s called the Virtual Method.

Virtual Methods

Virtual methods are ridiculously easy to implement. Simply add the
VIRTUAL attribute to the WriteTrace method in both classes, as shown in
Listings 6 and 7.

Listing 6. DebugClass with the VIRTUAL attribute on WriteTrace.

DebugClass CLASS,TYPE,MODULE('DEBUG.CLW')
NextLineToWrite long(1)
TraceQ &TraceQueue
Construct PROCEDURE
Destruct PROCEDURE
ShowTrace PROCEDURE
Trace PROCEDURE(STRING Text)
WriteTrace PROCEDURE,VIRTUAL
 END

Listing 7. AppDebugClass with the VIRTUAL attribute on WriteTrace.

AppDebugClass CLASS(DebugClass),TYPE,
 MODULE('APPDEBUG.CLW'),LINK('APPDEBUG.CLW')
WriteTrace PROCEDURE,VIRTUAL
 END

The VIRTUAL attribute reverses the natural direction in which the
program, at runtime, looks for methods. By default, methods are always
checked for on the current level. If they can’t be found, the program
looks in the parent, and then that class’s parent if present, and so on up
until it finds a method.

Virtual methods work the other way around. If a virtual method exists at
a particular level in an object, the program looks in the object to see if a
replacement virtual method has been declared at a lower level.

Now if you compile the test application, and you create more than ten
trace messages (or whatever the cache size has been set to) and bring
up the Trace browse, you’ll see that trace records have in fact been
added to the TPS file.

NOTE: You need to put the VIRTUAL attribute on both the
parent and child WriteTrace methods.

This is an incredibly powerful feature of object-oriented programming.
With virtual methods you can plug and play with the methods of a class
without having to know how or when those particular methods are
called. In fact, once you understand how virtual methods work, you
understand how ABC works!

Virtual Methods and ABC

It’s no understatement to say that without virtual methods there would
be no ABC templates and class library. It’s not that difficult to create a
block of code, class or procedure, that can display and browse records.
But how do you allow someone to plug their own code into that code?
The legacy templates handle this problem by generating all of the code
and allowing you to insert your code in as needed, but this results in
excessive code generation and mixes templates and source code.

In ABC, almost all of the logic is in top-tier generic classes, which makes
testing and debugging (by Topspeed) much easier. In most cases when
you put code in an embed point, the templates create a derived method
which is automatically called by the parent class (such as BrowseClass)
at the appropriate time.

Clarion Magazine - The ABCs of OOP Part 3

http://www.clarionmag.com/v1n5/sub/v1n5abcsofoop_part3.html (8 of 9) [7/6/1999 12:15:36 PM]

The derived classes are located in your modules, so they have access to
all of your application’s information. By means of virtual methods, the
base classes "call down" into your created code whenever appropriate.

If you wish to format a browse box field for display, for instance, your
code is generated into the virtual SetQueueRecord method which is
called whenever the browse object needs to copy the data from the file
to the queue used for display. (And this derived, generated
SetQueueRecord also contains a call to PARENT.SetQueueRecord to
ensure that the default behaviour still happens as well.)

I’m sometimes asked if, since virtual methods are so powerful, all
methods should be made virtual. There is a small performance penalty
associated with using virtual methods, since the system must maintain a
virtual method table (VMT), or list of methods, so it knows at runtime
which methods to call under which situation (this is an example of "late"
binding). VMT lookups do take some time, though it’s debatable whether
in most situations you’d notice.

Under The Hood

At the start of this series of articles I commented that most ABC
procedures begin with one line of code:

GlobalResponse = ThisWindow.Run()

and that this code appeared to not call any other code generated as part
of the procedure. As you can now see, the answer to this puzzle is (drum
roll) virtual methods. The call to ThisWindow.Run passes control up to
the top tier base class, and the code rambles about at that level for a
while until it comes across a virtual method (such as ThisWindow.Init),
at which time control passes down to the lower derived level.

Virtual methods really do make working with the ABC class library "plug
and play." You can also use this mechanism in your own classes. It’s a
good exercise to look at your class designs and ensure they’re structured
in such a way that someone else could selectively replace methods to
change the behaviour without breaking the code. And by going to a
two-tiered approach you help to maximize code reuse and
maintainability, two key benefits of object-oriented programming.

Download the source code

David Harms is an independent software developer and the co-author
with Ross Santos of Developing Clarion for Windows Applications,
published by SAMS (1995). His company, CoveComm Inc, publishes
Clarion Magazine.

June 1999 News
Posted on June 28,
1999

Clarion Advisor:
Debugging Tricks
Posted on June 28,
1999

The ABCs Of OOP
- Part 3
Posted on June 28,
1999

Clarion Magazine
Best Read With
Verdana
Posted on June 28,
1999

Detecting
Crashes With
DDE
Posted on June 28,
1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - The ABCs of OOP Part 3

http://www.clarionmag.com/v1n5/sub/v1n5abcsofoop_part3.html (9 of 9) [7/6/1999 12:15:36 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n5/abcoop3.zip
mailto:dharms@clarionmag.com
http://www.clarionmag.com/policies/fontsandstuff.html
http://www.clarionmag.com/policies/fontsandstuff.html
http://www.clarionmag.com/policies/fontsandstuff.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 5
June 1999

Detecting Application Crashes
by David Podger

How do you know when your system is recovering from a crash or power
failure? If you knew, you could check for any damage and run any
necessary recovery procedures. This is not, however, an article about
what to do when you crash; it is just concerned with figuring out that a
crash happened.

If your application cannot work out that it is being restarted after a
crash, then it has to rely on a user telling it that this is the case. But
there are crashes and there are crashes, and your user may not always
realise that a recovery is required. And even if they know, they may not
always tell.

So, how to know? Here is a method that uses the Clarion DDE
commands. I use it in an accounting app. It is intended to be used in
combination with a log file (called EVENTS) which records each logon
plus other significant events occurring within the app.

In a multi-user setting, when a user logs on the log file of current events
will often show that other users logged on earlier and that they are
presently doing various things using their respective instances of the
app. That is, there will be unacquitted events (begun, but not ended) for
each of these users. This contrasts with a single-user situation, where
the simple presence of unacquitted events in the EVENTS file when a
solitary user logs on is sufficient to tell the application that crash
recovery is needed. In a multi-user situation, you need a detection
method which is independent of the log file. Here’s how you do it.

First you create a DDE server as a very small, separate program. It is
not going to be much of a server, since its only purpose in life is to say:
"I’m here, I’m here." Listing 1 shows the entire source code for such a
server (called NoDelete.CLW to dissuade accidental deletion). (You can
also download the source.)

Listing 1. The DDE server (NoDelete.CLW)

 PROGRAM
 MAP
 INCLUDE('DDE.CLW')
 END
DDERetVal STRING(20)

Window WINDOW,AT(,,95,13),COLOR(0FFFF80H)
 ENTRY(@s20),AT(0,0,5,12),USE(DDERetVal),HIDE
 PROMPT('PowerBooks Sentinel'),AT(12,2),USE(?Prompt1)
 END

MyServer LONG

Clarion Magazine - Detecting Application Crashes

http://www.clarionmag.com/v1n5/sub/v1n5detectingcrashes.html (1 of 5) [7/6/1999 12:15:39 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
ftp://www.clarionmag.com/pub/clarionmag/v1n5/nodelete.zip
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

 CODE
 OPEN(Window)
 ! Get the channel number
 MyServer = DDESERVER('RunControl','CheckAlive')
 ACCEPT
 CASE EVENT()
 OF EVENT:DDEexecute
 RETURN ! blows away on any event
 END
 END

To create this program, click on Project in the main menu. Choose New
and you will see the window in Figure 1.

Figure 1. Creating a new project.

Choose Hand Coded Project and enter your Working Directory. Click the
OK button and fill in the following form as shown in Figure 2.

Figure 2. The project properties window.

Click the OK button and the window in Figure 3 appears:

Clarion Magazine - Detecting Application Crashes

http://www.clarionmag.com/v1n5/sub/v1n5detectingcrashes.html (2 of 5) [7/6/1999 12:15:39 PM]

Figure 3. The project tree.

Now, double-click on "Nodelete.clw" and enter the code shown in Listing
1.

The business part of the code is the DDESERVER function. This registers
NoDelete.exe as a DDE server with Windows, giving it an application
name of "RunControl" and a topic of "CheckAlive." This is a server that
doesn’t have to respond to clients. In fact, the first time it detects any
command(via OF EVENT:DDEexecute) it will terminate.

You could probably make the server even smaller, with a bit of
experimenting.

When the main app is run it checks to see if NoDelete.exe is running. If
it is not, and there are log file records that are unacquitted then very
likely the application is recovering from a crash. The only other thing
that can have happened is that NoDelete.exe has been accidentally
deleted. I will discuss that eventuality later.

Listing 2 shows the code to run as you come into the app and process a
request to log on from a user.

Listing 2. Checking for the existence of the DDE server.

 ServerString = DDEQUERY('RunControl','CheckAlive')! Attempt link
 IF UPPER(ServerString) <> 'RUNCONTROL:CHECKALIVE' ! Not up
 RUN('NoDelete.exe') ! Run it and return immediately
 ServerBegun = '' ! Blank passed to returned parameter
 ELSE ! Says server just started, non-blank
 ServerBegun = ServerString ! Says server already running
 END

When NoDelete.exe runs, it displays the window shown in Figure 4.

Figure 4. The DDE server window.

Clarion Magazine - Detecting Application Crashes

http://www.clarionmag.com/v1n5/sub/v1n5detectingcrashes.html (3 of 5) [7/6/1999 12:15:39 PM]

DDE communications depend on there being a window and an ACCEPT
loop in the code that makes up the server. Without these, DDE won’t
work.

The DDEQUERY function does not communicate with the server. Rather,
it addresses Windows and it asks only if a server with the specified
application and topic name is registered. If it is, Windows returns the
same information slightly differently formatted. That is all you want to
know: that is, is your little sentinel program alive and well?

Well, there is one more thing you have to do at start up, but you cannot
do it now because you need to give NoDelete.exe time to get up and
running, if it isn’t already. So, quite a ways into the Main Frame
procedure put one line of code:

GLO:Server = DDECLIENT('RunControl','CheckAlive')

This code defines your app as a client of the NoDelete server and gets a
channel number for the connection between this instance of the app and
the server. Every time the app is run, each instance of it gets a distinct
channel number. You need a channel number for one reason only: when
you are shutting down the last instance of your app, you want to
terminate the server. You need a channel number to be able to do this.

Just before your app shuts down, embed the code shown in Listing 3.

A convenient Legacy embed point is "End of Procedure before Closing
files".

Listing 3. Shutting down the DDE server.

 IF RECORDS(EVE:Key_Begun) = 0 ! nothing left in LOG file
 SETCURSOR(CURSOR:Wait)
 OPEN(ClosingWindow)
 ClosingString = ' Please wait a few seconds'
 DISPLAY(?ClosingString)
 DDEEXECUTE(GLO:Server,'[ShutDown]') ! so shut down server
 SETCURSOR()
 END

The DDE action here is to send a command to the server. The command
DDEEXECUTE requires a channel number as a parameter. It doesn’t
matter which instance of your app is the last to close. It doesn’t matter
that each instance will have a different channel number. The effect on
the server is the same. It terminates. Trouble is, it takes a while to do
so, so that’s why you see a "Please wait" message in the above code.

What if a user accidentally deletes the little server? It’s not that easy to
do. NoDelete.exe does not appear in the toolbar (in a 16 bit version
running under windows 95) and it has no [X] box to tick. A user would
have to press Ctrl Alt Del and deliberately do a deletion from the list of
running programs. But, in the spirit of free and independent enquiry,
some do, don’t they.

One method of protecting against this is simple redundancy. Have two
servers with different names and don’t recognise a crash unless both are
not there. If one is there, restart the other. Give the second one a name
similar to those always in the list of running programs. Make sure its
window displays right on top of the first one, with exactly the same text
so the user has no clue there are two. The amount of overhead goes up
slightly, particularly on shut down. It takes around 5 seconds to
terminate one server on a 300Mhz Pentium. You decide.

Download the source

David Podger has been an independent Clarion developer in Australia for
a decade. He presently lives in Katherine in the Northern Territory,
where he sells a specialised accounting application for remote

June 1999 News
Posted on June 28,
1999

Clarion Advisor:
Debugging Tricks
Posted on June 28,
1999

The ABCs Of OOP
- Part 3
Posted on June 28,
1999

Clarion Magazine
Best Read With
Verdana
Posted on June 28,
1999

Detecting
Crashes With
DDE
Posted on June 28,

Clarion Magazine - Detecting Application Crashes

http://www.clarionmag.com/v1n5/sub/v1n5detectingcrashes.html (4 of 5) [7/6/1999 12:15:39 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n5/nodelete.zip
http://www.clarionmag.com/policies/fontsandstuff.html
http://www.clarionmag.com/policies/fontsandstuff.html
http://www.clarionmag.com/policies/fontsandstuff.html

communities. 1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Detecting Application Crashes

http://www.clarionmag.com/v1n5/sub/v1n5detectingcrashes.html (5 of 5) [7/6/1999 12:15:39 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

	clarionmag.com
	Clarion Magazine Volume1 Number 5 - June 1999
	Four DLLs And An EXE
	A Slider, Did You Say?
	Call For Photos
	The Novice's Corner: Many-To-Many Relationships
	DAB on FileManager Part 2
	Not Quite The Challenge Results
	Sorting On The Run Part 3
	The CoveComm Developers' Open Source License
	News June 1999
	The Clarion Advisor: Debugging Tricks
	The ABCs of OOP Part 3
	Detecting Application Crashes

