

Issue Index

A Plan For Eliminating Bugs
In his first Clarion Magazine article, Bruce Gilham weighs in with a
checklist of bug-avoidance techniques.
Posted on July 6, 1999

DAB - File Manager III
David Bayliss concludes his three part series on the ABC FileManager
with the meat of the class: the dictionary interaction and the file access
itself.
Posted on July 6, 1999

Clarion Advisor - Drive Free Space
If you’ve ever needed to determine how much free space there is on a
drive, and you’re doing 32 bit development, you’ll want to get this
freeware drive freespace dll from TS Resources Inc.
Posted on July 6, 1999

The SQL Answer Cowboy
The SQL Answer Cowboy answers questions about the AS-400 and
capitalization triggers in MS SQL, and compares some of the popular SQL
databases.
Posted on July 13, 1999

Larry Teames On Reports
In this installment Larry Teames looks at summary reporting and creates
a report that can be printed in two different formats.
Posted on July 13, 1999

Customizing Clarion5's Editor And Menus
John Morter shows how to customize your Clarion development
environment with editor keystrokes and a menu of your favourite
utilities.
Posted on July 13, 1999

Photo Gallery
First in with a collective mug shot - the Raleigh Clarion Users Group.
Way to go, guys!
Posted on July 13, 1999

Publishing Schedule
As you've probably noticed Clarion Magazine has usually, but not always,
been published on Mondays, four times per month. The publishing
frequency will remain the same, but the magazine will now come out on
Tuesdays.
Posted on July 13, 1999

Product Review: SearchFlash
SearchFlash is a set of templates, procedures, and data files that make it
relatively easy to add useful searching and tagging to any Clarion
browse.
Posted on July 20, 1999

Clarion Magazine Volume1 Number 6 - July 1999

http://www.clarionmag.com/v1n6/pub/index.html (1 of 2) [8/9/1999 5:00:30 PM]

http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/opensource/index.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.tsres.com/
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

The Other Way To Use OLE
Can't wait for the new Clarion OLE layer? Jim Kane shows how to work
directly with OLE using the Windows API.
Posted on July 20, 1999

The Clarion Advisor: Debug Redux
You may think you know all the tricky ways to coax debugging
information out of your apps. But there's more...
Posted on July 20, 1999

Working With Control Files I
Steve Parker explains how ABC control file handling differs from legacy
code, and lays the groundwork for Nik's upcoming article.
Posted on July 27, 1999

Clarion Challenge String Parser Final Results
At last, the results of the Clarion Parser Challenge! Five entries made it
through to the end, and the winner is...well, you'll just have to follow the
the link.
Posted on July 27, 1999

Clarion News, July 1999
News, notes, and product announcements from the Clarion world.
Posted on July 27, 1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine Volume1 Number 6 - July 1999

http://www.clarionmag.com/v1n6/pub/index.html (2 of 2) [8/9/1999 5:00:30 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 6
July 1999

The Art of Software Development:
Eliminating Bugs

by Bruce Gilham

This is part one of a series covering various rules that the reader may
find useful or profitable.

There is a great satisfaction in seeing one’s ideas put to use, and there is
equally great disappointment when a design never sees the light of day.
The art of software development goes way beyond writing good code. It
means writing the right code, at the right time, for the right user, with
the right documentation.

There are a million ways to mess up the development process. No set of
rules is perfect. I wrote my first "custom" application while a hardware
tech at Memorex. Since then I have written dozens of applications, many
of which are still in operation. My largest is a production control system
that tracks 200 million dollars per year in PC board production. My
smallest might be FastWrap, a program that summarizes commercial
production expenses for advertisers such as Toyota and Pepsi.

A few years ago I started a list of what amounts to all the mistakes I
made as a software developer. I say this to avoid any accusations that I
might consider myself to be an authority on "how to write computer
programs." If anything I am an authority on how not to develop
computer systems. Every one of the rules in this and the following
articles was discovered in the school of hard knocks. Each one is on the
list because violating it got me in trouble.

Rule #1. If the user says it's a bug, it's a bug! This is obvious when
selling an off-the-shelf product, but not so obvious for in-house or
custom projects. This rule becomes impossible only when there are
warring factions within the company.

This almost always comes in the form of the software doing something
unexpected. One could say that all undocumented features are bugs.
This is perhaps an exaggeration. Or perhaps not.

When the software does something unexpected, it upsets the user.
Always! It also makes enemies for the MIS department or consultant.
What users want from a computer is predictability. They want it to do
the "same thing" every time. By "same" they really mean "What I
expect."

Users are quite happy to work around known bugs, if they understand
the bug and decide that they would rather work around it than deal with
the cost and/or trouble of fixing it. For instance, if they know that parts
of a report are OK then they may be willing to overlook obvious flaws.

I discovered this rule when I replaced a consultant who had been fired
simply because he argued about what was and was not a bug. This was
a ridiculous situation since the consultant was paid by the hour; why
didn’t he just fix the bug?

Clarion Magazine - The Art Of Software Development: Eliminating Bugs

http://www.clarionmag.com/v1n6/sub/v1n6eliminatingbugs.html (1 of 3) [8/9/1999 5:01:45 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

In fact, he should have been delighted! Knowing what is a bug is half the
problem because…

Rule #2: The harder a bug is to detect, the more the users will
object to the system. You really only have to let the users down a few
times and they will distrust the system forever. This makes the
introduction period critical. Users should be clearly warned when the
system is unstable. There is actually a scale of system quality: a)
behaves exactly as expected b) usually behaves as expected, c) does
consistently weird things, d) does unexpected weird things.

Sometimes developers have to guess at what the user really wants or
how the compiler will really translate the source code. It is a good idea
to "surface" such issues and make sure that the suspect data is clearly
visible to the user.

One of the smartest systems I wrote was for a debt collection law firm.
The program calculated interest on default accounts. The rates and even
the rules changed depending on various actions in the case. The idea
was to calculate the account balance automatically. And correctly. It
wasn’t until I surfaced every calculation on a single screen that we were
able to get a perfect answer. As long as I hid the actual calculations,
there were endless revisions. This single screen saved the client
thousands of dollars in reprogramming fees. It was so impressive that
they used it to close their clients.

Therefore, you have the corollary…

Rule #2a: Anything that you are unsure about should be visible
to the users.

Of course, we developers want to look good. Of course, we want to
appear omniscient. The truth is that we can’t be expected to read user’s
minds; but we can do a pretty good imitation thereof. The trick is to
surface everything that is uncertain.

In my example above, no one had the total answer. It was only when we
saw wrong results that we knew to look for bugs. Once the calculations
were surfaced, it was short work to fine tune the program. We manually
redid the calculations in chronological sequence until the difference
appeared. Then we had the bugged calculation.

What was interesting was that the users appreciated having the
calculations to hand and actually preferred to have the extra data in
front of them. By surfacing what I, the programmer, didn’t understand,
the users gained comprehension about something that they didn’t fully
understand either.

Besides the areas of uncertainties that come from users, there are the
areas of platform unknowns. Who has grasped every nuance of the
Clarion compiler? Never mind a really complex and disorganized platform
like Windows. Modern programs are too large and complex for any single
dweeb-superprogrammer to grasp in its entirety, much less for us
overworked applications programmers.

Top Speed and other manufacturers do their best to document their
products, but the average programmer will inevitably have gaps, either
from poor documentation or simply from not reading the documentation
to hand.

So, surfacing uncertain data is beneficial because…

Rule #3: The key to successful implementation is maintainability
and testing. This has two immediate corollaries…

Rule #3a: No programmer can test his own code. This corollary
should be obvious, but is usually overlooked. The quality of a system
comes from the testing, not from the programming. Maintainability
comes from programming skill.

With adequate testing, any programmer's work can be made usable. The
test of the programmer comes when someone else has to alter his code.
Or even when he has to alter his own code. It is a brutal statement to

Clarion Magazine - The Art Of Software Development: Eliminating Bugs

http://www.clarionmag.com/v1n6/sub/v1n6eliminatingbugs.html (2 of 3) [8/9/1999 5:01:45 PM]

note that many times old programs are simply discarded as
unmaintainable.

Testing should be done by people who will use the system. The more
testing, the better the system, period. Nothing, absolutely nothing,
guarantees a usable system like testing. With this, of course, are reports
of what was found.

Rule #3b: Test for success. The most common failure by testers is to
a) test to the first error and quit and b) report only failures. The first is
simply a waste of time and is an indication that the user really doesn't
want the proposed system. Even if there are 20 things to test in a
program and the tester only gets access to three of them, the project
will advance much faster if he reports on the three that work.

If an area works according to spec, it should be so reported. Failure to
do so invites changes. There are two reasons for implementation bugs:
either the programmer misunderstood the specifications or the
programmer misunderstood how the platform interprets his instruction
(assuming that the system was not sabotaged, or the programmer
interrupted in the middle of a critical bit of code).

I have seen programmers waste precious time fiddling with perfectly
acceptable parts of a system because no one told them that it was
acceptable. And I’ve seen programmers simply decide to change
something, a disease from which none of us is totally immune.

It is especially important for a tester to note features that work better
than anticipated as these are probably fortuitous errors and might be
eliminated in the next version. In this case, the specifications need to be
changed to match the reality of the working program.

When I started writing business applications 15 years ago, my intention
was to use computers to make organizations more sane. The way to
accomplish that is to make the computers more comprehensible and
take out the mystery. Computers are tremendously powerful
administrative tools. Misused they can drive a work force into apathy and
confusion. Well understood, and with a minimum of care in the design
and implementation of the software, they can easily be credited with
contributing to phenomenal profits. Ironically, many computer users
want the computer to "think" for them. I am reminded of the joke that
recently came over the Internet.

IBM’s founder Tom Watson had to be dragged into the computer age,
but once committed to the electronic thinking machine he went all the
way. He dictated that the company motto be: THINK. Apparently, a
manager put up a sign over the sink in the bathroom: THINK. In short
order a second sign appeared: THOAP.

Thank goodness we have outgrown the idea that computers are going to
do our thinking for us. Just because they are such stupid machines, it
takes a lot of intelligence to program a computer.

The next article I will address analysis, design and programming. What is
analysis and when is it done? How much design is enough and how is it
different from noodling around? Future articles will cover truly effective
data validation, how to speed up development and what is the most
important thing about a computer system.

Stay tuned!

Bruce Gilham Senior is the founder and president of DataForce Inc. His
involvement with Clarion began in 1989. Bruce is also the founder of the
Los Angeles Clarion User Group and sponsor of the successful DevCon
West conferences for Clarion developers.

In This Issue

A Plan For
Eliminating Bugs
Posted on July 6,
1999

DAB - File
Manager III
Posted on July 6,
1999

Clarion Advisor -
Drive Free Space
Posted on July 6,
1999

Clarion News,
July 1999
Posted on July 6,
1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - The Art Of Software Development: Eliminating Bugs

http://www.clarionmag.com/v1n6/sub/v1n6eliminatingbugs.html (3 of 3) [8/9/1999 5:01:45 PM]

mailto:bruce@kscn.net
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 6
July 1999

FileManager III – ABC Design
by David Bayliss

Welcome to the third and final installment in the ABC FileManager Design
series. In this article I’ll get down to the meat of the class; the dictionary
interaction and the file access itself. You may want to begin by reading
the first and second installments if you haven't already done so.

Record Initialisation and Validation

Whilst initialisation and validation are logically distinct tasks they are
grouped together here because in the fullness of time they will form the
basis of what is really one concept: business rules. People can use
business rules to mean just about anything they like. I use it to mean
information about the data that is not contained explicitly within the
data.

Some of these rules are already handled by the file driver. For example
the DUP attribute in the Clarion language (upon a key) specifies
something about the data you cannot get directly from the data
(although you may be able to intuit it). The Clarion dictionary gains
some of its power by specifying initialisation values and validation values
within a single repository. In Clarion 2.003 this information was then
scattered (at code generation time) throughout the application. Any form
upon a file would contain code to initialise and then validate the record
buffer. In ABC this code is contained in the (derived) FileManager object.

One of the ABC aims is to keep the initialisation and validation
information in one place so that if the rule is dynamic (i.e. has to be
done with an embed point) then that embed only needs to be placed
once and all accesses to the data obey the new rule. This is particularly
important as ABC was to have edit-in-place browses and automatic
updates from drop-combos. In other words, we could no longer rely on
forms being around to act as guardians of the file.

A consequence of the heavy dictionary tie to these routines and the need
to pander to embed code is that a number of these methods are blank;
they are placeholders for template generated code. In these instances I
will describe the code that I envisage will go into the derived form of
these methods (and which, purely coincidentally, the templates
generate.)

CancelAutoInc PROCEDURE(<RelationManager RM>),VIRTUAL,BYTE,PROC

Clarion Magazine - DAB on FileManager Part 3

http://www.clarionmag.com/v1n6/sub/v1n6filemanager3.html (1 of 8) [8/9/1999 5:01:54 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/v1n4/sub/v1n4filemanagerpart1.html
http://www.clarionmag.com/v1n5/sub/v1n5filemanager2.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

Initialising a record with an autoincrement key results (in our
implementation) in a record being stored on disk to act as a placeholder
for the autoincrement value. If you cancel the operation then that record
needs to be deleted. The CancelAutoInc is the clue to the FileManager
that the record that was initialised is about to be thrown away. The
RelationManager parameter is a solution to the problem often referred
to as the "orphaned children problem." In a 2.003 application if you
insert a record with an autoincrement key, go to the child tab, insert
some child records and then cancel the form, the child records persist.
Of course you can’t see them until you insert a new record and find it
automatically gains some children! This is really scary on forms with
many children where the child tabs may not even be perused during the
insert. ABC gets around this problem in that the form procedure passes
the RelationManager in to the CancelAutoInc and the CancelAutoInc
undertakes to delete any children (or refuse to cancel the
autoincrement) as appropriate.

The implementation is much simpler than the description: if an
autoincrement has happened then either DELETE or the RI DELETE are
called. In the latter case the response is noted, as an RI relation of
restrict means that the autoincrement cannot be cancelled whilst the
children persist.

PrimeAutoIncServer PROCEDURE(BYTE HandleErrors),BYTE,PROC,PRIVATE

PrimeAutoInc and TryPrimeAutoInc are really just two virtual hooks on
the AutoIncServer. Non-zero for HandleErrors implies the server will
take all possible steps to ensure the autoincrement happens. The
TryPrimeAutoInc only is called when TryInsert has been called. This is
never done with the shipping templates but has been added at the
request of a third party.

The routine starts by checking the guard variables. PrimeAutoInc can be
called multiple times to allow for the cases where priming is done in the
browse or in the form. It also allows for inserts to be done without
pre-priming of the record. This is an instance of what I call "objects with
attitude." Basically the FileManager knows that priming should be done
once, and only once, and thus it does it at the first opportunity it is
asked, or at the last minute if no-one asks it!

The algorithm for autoincrementing is essentially the one used to return
a unique handle in SaveBuffer, find the last element and add on one.
However, as you shall see, some of the little details make things a vast
amount more complicated.

The first LOOP is a loop to allow for multiple reruns of the bulk of the
procedure in the case where an attempt to autoincrement failed. The
failure is most likely to be because between the reading (from disk) of
the current highest element, adding on one, and then ADDing the record,
another station got there first and ADDed the record with that number!
The simplest solution to this failure is therefore to try again from the
beginning, and the outer loop encodes that logic. Of course you can’t
keep doing that for ever because something may really be wrong. If you
go to the end of the outer loop, after the ADD(File) you will see logic to
trap the error.

If this is the third failure the error manager is invoked to see if the user
wants to try again. If he does you simply try again (three times), and if
he doesn’t you break out with a failure. If the add was successful the
method simply notes the autoincrement has been done and then returns
Level:Benign (which is zero and means OK).

The second (or inner) loop introduces a new complexity. Since it is
possible for there to be multiple autoincrement keys in one file, this code
has to find incremented values for each of them. So it loops on each key,
executing the body of the loop if it is autoincrement. The SaveBuffer is
important because PrimeAutoInc should only change those fields which
are tagged in the dictionary as autoincrement (or it won’t be possible to
support delaying the autoinc allocation until the insert point). The code

Clarion Magazine - DAB on FileManager Part 3

http://www.clarionmag.com/v1n6/sub/v1n6filemanager3.html (2 of 8) [8/9/1999 5:01:54 PM]

http://www.clarionmag.com/v1n5/sub/v1n5filemanager2.html#savebuffer

then splits into two branches, the relatively easy one where the key has
one component, and the multi-component case.

One component is handled by fetching the component any variable and
assigning to AutoIncField. The file is SET to key order and the final
record (or first for a descending key) is fetched. If no record is found
(i.e. the file is empty) the new autoinc value is one, else it is the highest
value plus one. It’s necessary to use AutoIncField/AutoValue rather
than just using the underlying fields as the object will later restore the
buffer (which will corrupt the field values) and then perform the
autoincrement assignment.

The multi-component case uses exactly the same algorithm. The
complexity is in finding the "final" record because you don’t want the
final record, you want the final record that matches the current record
buffer in all components except the last.

ConcatGetComponents is a simple (and ugly) way of snapshotting the
leading components of a key to later see if they have changed. The
method then clears the minor-most (and thus autoincrement) key high
and does a SET(K,K) followed by a Previous or Next as before. In the
NoError case it has to check that the record fetched did match in the
leading components; if it did then it can use the AI value fetched and
add on one, otherwise it knows that no records currently match the
major components and thus can use one.

Having computed the new field value (using either method) it restores
the buffer contents and then assigns the new autoincrement field value
into place. Once that is done that for all autoincrement keys it can try
ADDing the new record.

If this procedure looks long and horrible it is because it is. My general
rule of thumb is that any procedure more than a page long is a bug.
Again you can see engineering and efficiency overcoming science. I could
remove the "OneComponent" arm of the IF, and the only effect would be
a few more string compares (no big deal), but this also changes this
code:

CLEAR(OnlyKeyComponent)
SET(K,K)
PREVIOUS(K)

into this:

SET(K)
PREVIOUS(K)

When you consider that the one component case is the standard third
normal form case it was considered that the code verbosity was worth it.
That said, the file drivers now spot the above optimisation in most
instances so we may be able to simplify this code soon.

PrimeFields PROCEDURE,PROC,VIRTUAL

The default implementation of this method is blank; in the derived form
the templates insert an assignment for each field that has a non-blank
initialisation value in the dictionary. The PrimeFields routine may not
assume that autoincrement has been done. Any required blanking will
have been performed.

PrimeRecord PROCEDURE(BYTE SuppressClear = 0),BYTE,PROC,VIRTUAL

Clarion Magazine - DAB on FileManager Part 3

http://www.clarionmag.com/v1n6/sub/v1n6filemanager3.html (3 of 8) [8/9/1999 5:01:54 PM]

This method is called to prime the record whatever that means. In the
current implementation that involves calling PrimeFields to prime the
field values and then forcing the autoincrement to prime. Note that this
method overrides the attitude built into PrimeAutoInc; when
PrimeRecord is called a new autoincrement record will be made. The
method has the facility to clear out any fields it doesn’t explicitly prime
or to leave them alone. This functionality is required to allow the
ViewManager to place extra priming information into the record buffer
(such as range-limited components of keys) and is controlled by the
SuppressClear flag.

The primary case (where AliasedFile &= NULL) is quite
straightforward. The interest comes when the file is an alias. Here you
don’t want to call the priming functions of the alias (because they don’t
have the required embed code); you want to call them in the "real" file.
The code for this has changed in C5EEA; I am describing the new code.

First the "real" file has to be opened on this thread (it may not be), and
then the file contents/position have to be snapshotted so that eventually
the file can be restored. Now in the case where the clear is to be
suppressed the code has to assume that the record (of the alias)
contains interesting information that may be required by the field
priming or autoincrement. So it has to get the information from the alias
into the real file. This is done by the devious device of snap-shotting the
alias file buffer and the restoring from the alias FileManager into the
"real" file buffer. Having done this it can perform the PrimeRecord on
the "real" file; if this is successful it needs to copy the result back to the
alias file, done using the save/restore trick again. Finally the "real" file is
restored to normality and closed. This may look odd: why restore a file
then close it? Simply because Open/Close only increment/decrement
counters. The Open only opens if this is the first open, similarly the
Close only closes if this is the last close.

ValidateField PROCEDURE(UNSIGNED Id),BYTE,PROC,VIRTUAL

This function returns Level:Benign if the field is ok, otherwise it returns
an error level. The default implementation only handles the alias case;
the actual field validation is handled in a derived method. The Id is the
number that would come back from a WHERE statement. The template
code simply generates a CASE statement on the field number, it would be
possible to produce a more sophisticated version using WHAT. We went
for simplicity as this is a very common place to put embed code and also
ValidateField is hit quite frequently for control by control field
validation and therefore performance was an issue.

ValidateFields PROCEDURE(UNSIGNED Low,UNSIGNED High,
 <*UNSIGNED Failed>),BYTE,PROTECTED,PROC,VIRTUAL

This method is simply an encapsulated way of calling a range of
ValidateField calls. It simply spools over the field numbers contained
within the (inclusive) range. If one fails then the failure number is
assigned to Failed. Again the alias case is handled by re-vectoring
through the "real" file. It should perhaps be noted that for efficiency the
alias code does a SaveBuffer, not SaveFile. This implicitly assumes
that the field validation code will not mess with the current file state (i.e.
no file I/O will be done on the primary file).

ValidateRecord PROCEDURE(<*UNSIGNED Failed>),BYTE,VIRTUAL

Clarion Magazine - DAB on FileManager Part 3

http://www.clarionmag.com/v1n6/sub/v1n6filemanager3.html (4 of 8) [8/9/1999 5:01:54 PM]

http://www.clarionmag.com/v1n2/sub/v1n2whowhatwhere.html
http://www.clarionmag.com/v1n2/sub/v1n2whowhatwhere.html

Another syntactic short-hand, this simply calls ValidateFields to
ensure that every field in the record is validated.

File Driver Replacements

These methods are direct replacements for the equivalents in the file
driver. They are generally there to perform advanced error handling or
to ensure that other FileManager routines are called at the appropriate
moment.

BindFields PROCEDURE,VIRTUAL

This method is called at a suitable point to bind the fields. By default the
code simply performs a bind on the record buffer. The templates further
override this to perform binds on any memos that are available. The call
can also be overridden by the user (in C5) to bind logical names (as
opposed to labels) as required.

Close PROCEDURE,BYTE,PROC,VIRTUAL

The close mechanism (tied to the open mechanism) is designed to avoid
the needless opening and closing of files upon a thread. The
FileManager therefore maintains a count of the number of times a file
has been opened and closed. Upon a close it therefore decrements the
counter. If this close has closed the final remaining open then the close
is actually performed upon the file. The Used flag denotes if a file was
really forced open (by an implicit or explicit UseFile) as opposed to just
logically opened. Errors are not trapped by this routine as any real
problem with a close will be picked up again when the file comes to be
re-opened. For this reason ABC also eschews the TryClose.

Fetch PROCEDURE(KEY K),BYTE,PROC

The Fetch routine is really just a wrapper for a file GET. The error case
results in the buffer being cleared. Most of the work is done by
re-vectoring through TryFetch, and though this doesn’t save a great
deal of code and is marginally less efficient than inline coding it does
result in greater code integrity. Put another way, the code for fetching is
in only one place so only has to be fixed in one place.

InsertServer PROCEDURE(BYTE HandleError),BYTE,PRIVATE

Insert and TryInsert are just interface maps of this procedure.
InsertServer is a fairly good illustration of the difference between the
FileManager and the file driver equivalents. It is only really trying to do
an add; all of the other code is there either to handle errors or to ensure
other ABC methods get called as appropriate.

First UseFile is called. This registers that not only is this file logically
open, it needs to be actually open. Then comes a call to
ValidateRecord. If the record is not valid then the method returns. Note
throughout ABC the fact that Level:Benign is zero is assumed to aid
readability and brevity. There are then three cases:

No autoincrement keys. In this instance the record will not already
exist so a new one can be added

1.

There are autoincrement keys and the autoincrement has been
pre-primed. In this case the record does exist resulting in a PUT
rather than ADD.

2.

There are autoincrement keys but they have not been pre-primed.
Call the autoincrement logic to ADD the record (remember
PrimeAutoIncrement does not corrupt the record buffer other than
the autoinc components themselves).

3.

Clarion Magazine - DAB on FileManager Part 3

http://www.clarionmag.com/v1n6/sub/v1n6filemanager3.html (5 of 8) [8/9/1999 5:01:54 PM]

There are then three error conditions to worry about:
NoError. In this case simply note that any previously primed
autoincrementing has now been used and return. (Note this code
assumes that PrimeAutoIncrement will not have left a value in
ErrorCode if it was successful; I suspect that technically this is a
bug.)

1.

DupKey. This is the only error the method attempts to recover from
gracefully, stepping through the keys and alerting the end user of
any duplications that this record causes.

2.

Everything else. Post a general (cryptic) error message to the user and
return.

NextServer PROCEDURE(BYTE HandleError,BYTE Prev),BYTE,PRIVATE

Again Next and TryNext are just interfaces to this method. Since C5EEA
Previous and TryPrevious have also become interfaces to this routine
(the beauty of this method being private!). The NextServer and
PreviousServer methods of earlier versions differed only in one line
which has now been parameterised with the Prev byte.

There are only two real points of interest. Firstly the BadRecErr sets the
EOF flag (see GetEOF). Secondly ABC has a facility whereby a held record
error can be treated simply as a Skip rather than as an EOF (which it
was in 2.003). You can argue back and forwards for hours as to whether
it is better to display a browse with information missing or to abort the
display. ABC takes the approach that that decision is best left in the
hands of the developer (as the real answer is probably dataset specific)
and so provides a property for her to register her decision.

OpenServer PROCEDURE(BYTE HandleError,BYTE IncrementUsage=True,
 BYTE ForceOpen=False),BYTE,PROC,PRIVATE

Open and TryOpen are interfaces to this method. The second and third
parameters are really for UseFile. They allow an actual open to be
forced without a logical open happening. Specifically, setting increment
usage to false means that a corresponding close is not required.
ForceOpen is used to force the file open even when the LazyOpen status
would suggest the open can be deferred. Note that ForceOpen is quite
safe as the routine takes a failure to open because the file is already
open as a success. Again most of the work of the routine is in error
handling, and in this case some moderately sophisticated recovery is
allowed for.

NoError or FileOpen. Both treated as a success, internal state
variables cleared (on this thread).

1.

RecordLimitError. This code is just there for the evaluation
edition. An attempt has been made to open the file in read/write
mode with greater than the set number of records in the file. The
code therefore sets the OpenMode to read-only and cycles (the loop
will then cause another open attempt).

2.

NoAccessError. Read-write access could not be acquired so the
system tries to open the file in read-only mode (having first
warned the end user)

3.

NoFile. Provided the create mode has been set the routine will
attempt to create the file, if that fails a fatal error is thrown.

4.

BadKeyErr. For those file drivers with independent key files
(notably Clarion) a corrupt key is non-fatal and the system will try
to rebuild the keys so that processing can continue.

5.

The UNTIL 1 at the end of the loop means that any code falling through
to the end of the loop will cause the loop to terminate. The LOOP is not a
real loop; it is simply there to allow some of the recovery routines to
attempt to open the file again without a GOTO statement. It should be
noted that a CYCLE statement bypasses the loop tail termination

Clarion Magazine - DAB on FileManager Part 3

http://www.clarionmag.com/v1n6/sub/v1n6filemanager3.html (6 of 8) [8/9/1999 5:01:54 PM]

http://www.clarionmag.com/v1n5/sub/v1n5filemanager2.html#geteof

condition but not the loop top termination condition.

Position PROCEDURE(),STRING

This method differs from the file driver equivalent in that it will issue a
UseFile and if a primary key is available it will use that to form the
position, or if there is no primary key it will use the file itself. In general
(and increasingly) the ABC system assumes (and functions most
efficiently providing) that all files in the system have a primary key. Note
that this position string can only be used to perform a TryReget; it is not
as general as the Clarion language Position. Whilst this functionality
restriction does not give us much presently it will eventually allow extra
efficiencies within the forthcoming FileClass.

TryFetch PROCEDURE(KEY K),BYTE,PROC

TryFetch only really does a UseFile before passing control to the file
system, although since C5EEA it has also performed a SetKey in debug
mode purely to verify that the key passed in is valid for this file. (The ?
is one of my favourite C5 features; it allows you to write code very
cleanly which will not be executed when debug is turned off. This allows
you to put in quite a few safety checks with zero overhead in the final
shipping code.)

TryReget PROCEDURE(STRING Position),BYTE,PROC

Perform a Reget from a string provided by Position. The
Reget/Position pair give the FileManager user one extra piece of
encapsulation: independence from key structure. Without them you need
to know from outside the class how to uniquely identify a record. This
illustrates an important aim: localising information to reduce
maintenance.

UpdateServer PROCEDURE(BYTE HandleError),BYTE,PROC,PRIVATE

Update and TryUpdate are interfaces to this procedure. Clearly this is
similar to InsertServer. The main extra comes from concurrency
issues. ABC implements a technique called optimistic concurrency. Put
simply, this means the algorithm assumes that no one else will ever
change the record being edited locally, and then panics if they did. It
relies upon a WATCH having been issued before the record (now being
updated) was fetched. In standard ABC usage the WATCH is issued before
the view REGET in the browse UpdateViewRecord method.

To handle this the code first takes the position of the current record,
then it tries the PUT, if this returns a RecordChangedErr then the user is
notified. (To help the end-user the form template passes in 2 as the
HandleError value which prompts the use of a fairly verbose error
message which tells the user of such things as the history key). Then the
record saved by the other station is loaded (i.e. corrupting the local file
buffer) and control is handed back.

UseFile PROCEDURE(),BYTE,PROC

Clarion Magazine - DAB on FileManager Part 3

http://www.clarionmag.com/v1n6/sub/v1n6filemanager3.html (7 of 8) [8/9/1999 5:01:54 PM]

The UseFile method is there simply to perform a real open (using
OpenServer) if lazy open is currently on and the file is not open. This
routine has one of the few bits of defensive coding in the whole of ABC;
it actually preserves the file buffers across the Open call just in case the
file driver (which could be supplied by a third party) corrupts the file
buffer upon the open.

Conclusion

I hope these articles on the FileManager have helped you understand
some of what we were aiming for (and have achieved) when we coded
this class. It is one of our largest and most complex, and it also
presently forms the base of what I call the spine of ABC: FileManager

 RelationManager ViewManager BrowseClass. FileManager is
also the class the developer most frequently needs to interact with (at
least as much as BrowseClass and WindowManager). As such I believe
an understanding of the principles involved will send you well on your
way towards mastery of the ABC system.

David Bayliss is a Software Development Manager for Topspeed
Corporation. He is also Topspeed's compiler writer and the chief architect
of the Application Builder Classes.

In This Issue

A Plan For
Eliminating Bugs
Posted on July 6,
1999

DAB - File
Manager III
Posted on July 6,
1999

Clarion Advisor -
Drive Free Space
Posted on July 6,
1999

Clarion News,
July 1999
Posted on July 6,
1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - DAB on FileManager Part 3

http://www.clarionmag.com/v1n6/sub/v1n6filemanager3.html (8 of 8) [8/9/1999 5:01:54 PM]

http://www.users.globalnet.co.uk/~dabay/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 6
July 1999

32 Bit Drive Freespace Function
Courtesy Of TS Resources Inc.

If you’ve ever needed to determine how much free space there is on a
drive, and you’re doing 32 bit development, you’ll want to get the
freeware drive freespace dll from TS Resources Inc. (Rob Cohan).

This is a C language DLL which can be called by Clarion 32 bit
applications, and which returns accurate disk free space figures for all 32
bit Microsoft Windows operating systems. It uses internal dynamic
linkage to avoid the problems associated with statically linking the
accurate, advanced functions which are not available in the original
releases of Windows 95.

To use this DLL in your application choose Application|Insert Module
from the main menu, and select a module of type ExternalLib (External
Library Module). Fill in the Name and Map Include File fields as shown in
Figure 1. The spc.mif file contains the prototype for the spc function.

Figure 1. The CWSPC module properties.

Clarion Magazine - The Clarion Advisor: Free Disk Space

http://www.clarionmag.com/v1n6/sub/v1n6advisor_freespace.html (1 of 2) [8/9/1999 5:01:58 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.tsres.com/
ftp://ftp.tsres.com/incoming/tsrspc.zip
http://www.tsres.com/
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

The zip file contains an example application.

The spc function usage is straightforward:

result = spc(cstring *DriveLetter, long Mode)

Driveletter is a cstring of at least two bytes length (one character
plus the requisite terminating NULL character space.)

Mode can be one of the following:

1 for a free space call,

2 for the size of the drive if empty, or

3 for the presently utilized space.

Under Windows 2000, a mode of 1 is intended to get free space allocated
to the present user.

spc returns a numeric cstring to allow for future variability in the size
of number reported. Due to Clarion's automatic type conversions, you
can use this result directly as a number in most cases, even when
formatting the result, as shown in Listing 1.

In This Issue

A Plan For
Eliminating Bugs
Posted on July 6,
1999

DAB - File
Manager III
Posted on July 6,
1999

Clarion Advisor -
Drive Free Space
Posted on July 6,
1999

Clarion News,
July 1999
Posted on July 6,
1999

Listing 1. The example application code to determine drive space.

 csDriveLetter = clip(DriveLetter)&'<0>' !turn into cstring)
 FreeSpaceNow = format(spc(csDriveLetter, 1), @n15)
 TabulaRasa = format(spc(csDriveLetter, 2), @n15)
 Utilized = format(spc(csDriveLetter, 3), @n15)

Many thanks to TS Resources Inc. for making this utility available!

Download the dll and example application.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - The Clarion Advisor: Free Disk Space

http://www.clarionmag.com/v1n6/sub/v1n6advisor_freespace.html (2 of 2) [8/9/1999 5:01:58 PM]

ftp://ftp.tsres.com/incoming/tsrspc.zip
ftp://ftp.tsres.com/incoming/tsrspc.zip
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 6
July 1999

Andy "Cowboy" Stapleton is the acknowledged Clarion SQL guru and a
regular presenter at Clarion conferences around the world. His company,
Cowboy Computing Solutions, produces SQL templates and classes for
Clarion.

Click here to submit your SQL question to Andy.

Ken Castleberry: Can AS-400 files be accessed from a Clarion 5
Professional application, with the only addition being the AS-400 drivers?

Cowboy: From everything I gather this is true, as long as you have the
interface from the PC to AS400. This used to be PC-Talk and was quite
slow. Now a more native form of communication is available and speed
has increased dramatically.

Before jumping into any client/Server arena check the communication
layer associated with the systems. This includes any non-NT to
NT/Windows platform. Some will perform quite well (usually those on
TCPIP), others will run badly.

Scott Jordan: How do I force a field in the table to uppercase or
capitalize a word? Declaring an attribute in the data dictionary does not
seem to have any effect. I am using MS SQL 7

Cowboy: After searching everywhere, I finally asked a good friend Ben
Williams, since he has been saddled with MS SQL for quite a while. He
confirmed my suspicions. In MS SQL 6.5 or 7.0 field attributes are
unavailable, and the only method to force upper case or capitalization is
via a trigger or your program. This is a major shortcoming in MS SQL in
my opinion.

Here is a trigger that will force uppercase on a
Name/Address/City/State:

CREATE TRIGGER UppercaseAddress
ON Names
FOR INSERT, UPDATE
AS
If Update(Fname) or Update(Lname) or update(Address)
 or Update(State) or Update(City)
 update Names
 set LName = UPPER(Lname),
 Fname = UPPER(Fname),
 Address = Upper(Address),
 City = Upper(City),
 State = Upper(State)
Where Namsysid = any(select Namesysid from Inserted)
GO

Clarion Magazine - The SQL Answer Cowboy

http://www.clarionmag.com/v1n6/sub/v1n6sqlcowboy.html (1 of 2) [8/9/1999 5:02:01 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.lodestarsoftware.com/ccs/index.htm
http://www.clarionmag.com/sub/sqlcowboy.html
http://www.lodestarsoftware.com/ccs/
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

Now you should also use UPPER on all your Clarion screens...

James Fortune: I was interested to read your comparison of Sybase
and MS SQL, especially as I believe that the latter is derived from
Version 3 of the former. My question follows on from this. In your
informed view, how do Oracle and Informix fit into the picture? How
would you rank these in terms of effectiveness? Especially in terms of
ease of use with CW? I'm assuming that the backend platform is NT. But
what about scalability? Is it still true that MS SQL will only work on NT
whereas Oracle will work on anything including Linux? What about the
others?

Cowboy: Yes, MS SQL does require NT. Another reason to prefer Sybase
over each of these is that Sybase is scalable and also has versions for
Unix and Linux. I can speak more on Oracle rather than Informix so here
is my best answer.

Oracle and Informix are more of a mainframe type technology. Both are
platform independent and expensive in cost and maintenance. Oracle
can be difficult to say the least; a lot of the convenience we enjoy is lost
in Oracle. At the moment the reference manuals that I have had to
purchase to know the changes for Oracle 8.0 are somewhere around
30lbs in four books.

One of the pros of Oracle is it’s quite scalable. You can continue with
Oracle throughout terabytes of data with quite excellent performance. If
you are going into a Oracle shop and working with Oracle, here is a list
of books that I find essential:

Oracle 8 Tuning ISBN:1-57610-217-3

Oracle8 The Complete Reference (Oracle Press) ISBN: 0-07-8822406-0

Oracle8 DBA handbook ISBN: 0-07-882396-x

Click here to submit your SQL question to Andy.

In This Issue

The SQL Answer
Cowboy
Posted on July 13,
1999

Larry Teames On
Reports
Posted on July 13,
1999

Customizing
Clarion5's Editor
And Menus
Posted on July 13,
1999

Photo Gallery
Posted on July 13,
1999

Publishing
Schedule
Posted on July 13,
1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - The SQL Answer Cowboy

http://www.clarionmag.com/v1n6/sub/v1n6sqlcowboy.html (2 of 2) [8/9/1999 5:02:01 PM]

http://www.clarionmag.com/sub/sqlcowboy.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 6
July 1999

Reporting With Clarion
by Larry Teames

Over the next few months, I will be designing a number of reports to
illustrate approaches that can be used to handle various reporting issues,
both common and uncommon. To make it easier for you to follow and
later review what I cover, I have created a small dictionary
(BREAKS.DCT), and the TPS files to go with it (LETTERS.TPS,
BREAK1.TPS, and BREAK2.TPS). Also the resulting APP file(s) that I
create will be available.

This month’s APP file is CMEX01.APP.

I will be using Clarion5 (ABC) to build these applications, but in most
cases I will use the legacy (non-ABC) embeds when placing source code
in the report procedures. Personally, I find that the legacy embeds have
better descriptions and finer resolution related to what I want to do and
where I want to do it. Also, using this method you can look at the source
file for the procedure and locate the ABC embed that correlates to the
legacy embed that you just entered. This provides a very nice approach
to making the transition from using legacy embeds to using ABC
embeds.

Summary Reporting

This month I’ve built a report that allows the user to decide whether they
want to print invoices in detail form (all invoices with totals at the
customer and report level), or in summary form (totals only).

I like to make a window for selection of report criteria (instead of using
the report’s progress window) when there are report variations available
which might cause the user to run the report multiple times with
different options chosen (see the SummaryReportSelect procedure
below). I tend to have a menu option call the selection window, then the
selection window calls the appropriate report (or the same report with
different parameters, as in this case). This allows the user to run the
report, then be returned to the selection window where they can change
the selection criteria and run the report again, or exit the selection
window when no more reports are needed.

The report procedure, SummaryReport, takes a single BYTE parameter
(SummaryRequest) which is TRUE when the user selected Summary
Report, and FALSE when they did not request the summary form of the
report. Note that all the changes to the report are performed in the
source code entered into the After Opening Report embed. I’ll go over
this code in detail later in this column.

Having decided that I wanted a single report to provide both detail and
summary formats, I knew that I would need to HIDE all the information
in the Detail band when the summary form was requested (when using
the built-in breaking and totaling mechanism of the report engine,
tallying of values is directly related to the printing process, so you have
to continue to print the Detail band to get the totaling o occur). To

Clarion Magazine - Larry Teames: Reporting With Clarion

http://www.clarionmag.com/v1n6/sub/v1n6_teamsonreports.html (1 of 3) [8/9/1999 5:02:04 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
ftp://www.clarionmag.com/pub/clarionmag/v1n6/cmex01.zip
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

more easily accomplish this, I placed a GROUP around the controls in the
Detail band. This allows me to HIDE all controls in that band with a
single statement, by simply hiding that GROUP. Note that I removed the
display text of the GROUP, and unchecked the Boxed option so the box
around the group doesn’t print.

To set up the totaling, I used the Surrounding Break menu choice twice
(from the Bands menu item): once to create the break on Name, and
again to create the break on EndOfReport (I pressed "…" from the Break
dialog, then New, to create the EndOfReport variable).

After creating these break groups, I selected each of these breaks and
created a break footer for each. Then I added the controls I wanted to
print at total time. For the amount fields, I set both to sum total type, to
tally on printing the Detail band.

To facilitate the source code statements I would need, I added USE
names to the Detail band (?DetailBand), and the Name break footer
(?NameFooter).

The Tricks

This report will not only produce two different formats in terms of
content, but will also modify the vertical spacing of the Name footer when
the Summary format is requested (so that there is no extra whitespace
between summary total lines). Additionally, the name of the report will
be changed to identify the specific report format being printed.

All that’s left is to enter the source code that will do all the work into the
After Opening Report embed, as shown in Listing 1 (the numbers at the
end of each line correlate with the legend that follows describing the
purpose/effect of the code).

Listing 1.

IF SummaryRequest = True !(1)
 SETTARGET(Report) !(2)
 ?ReportHeading{PROP:TEXT} = 'Example Summary Report' !(3)
 ?NameFooter{PROP:YPOS} = 0 - ?BR1:Name:2{PROP:YPOS} !(4)
 ?NameFooter{PROP:HEIGHT} = '' !(5)
 ?NameFooter{PROP:MINHEIGHT} = '' !(6)
 ?DetailGroup{PROP:HIDE} = True !(7)
 ?DetailBand{PROP:HEIGHT} = 0 !(8)
 ?DetailBand{PROP:MINHEIGHT} = 0 !(9)
 SETTARGET !(10)
END

Only change the report characteristics if the user selected the
Summary format (which is passed to the Report via a procedure
parameter).

1.

Set the Report as the target of subsequent field equates so that
the compiler knows that I am referring to controls on the Report
instead of (by default) the active window.

2.

Change the text of the report name string.3.
Causes all controls in the Name break footer to be adjusted "up" so
that they are printed relative to YPOS zero (by converting the
band’s YPOS to a negative value equal to the YPOS of one of the
topmost controls on the band).

4.

Sets the HEIGHT of the band to the default setting (as opposed to
setting it to zero, which would not be what I want). This setting
causes the band to be only as tall as the sum (YPOS + HEIGHT) of
the bottommost control on the band. Here I’m assuring that there
is a minimum of vertical space between the lines printed. Note that
the detail format generates significant space at the bottom of this
band to better define where a break has occurred.

5.

In This Issue

Clarion Magazine - Larry Teames: Reporting With Clarion

http://www.clarionmag.com/v1n6/sub/v1n6_teamsonreports.html (2 of 3) [8/9/1999 5:02:04 PM]

I also need to do the same to the minimum height of the band,
since it was originally set to a fixed height when the report opened.

6.

Next I hide all controls on the Detail band so they don’t appear
on the report when this band is printed.

7.

I also want to set the PROP:HEIGHT of the Detail band to zero so
that it causes no vertical movement when printed.

8.

I also set the minimum height to assure no surprises at runtime.9.
Finally, I set the "target" back to the default (the currently active
progress window).

10.

Now I have a single report procedure that allows the end user to print
two different formats of reports.

Obviously, a report with more controls and totals would likely require
more source code to accomplish this, but the principals and approaches
would remain the same as what I’ve illustrated here.

Next month, I’ll tackle another example of a common reporting issue, so
don’t miss it!

Download the source code

Larry Teames is an independent software developer, and one of the four
founding members of Team TopSpeed. He is also president of Creative
PC Solutions, Inc. which markets the popular Clarion 3rd party product
Creative Reporting Tools.

The SQL Answer
Cowboy
Posted on July 13,
1999

Larry Teames On
Reports
Posted on July 13,
1999

Customizing
Clarion5's Editor
And Menus
Posted on July 13,
1999

Clarion News,
July 1999
Posted on July 13,
1999

Photo Gallery
Posted on July 13,
1999

Publishing
Schedule
Posted on July 13,
1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Larry Teames: Reporting With Clarion

http://www.clarionmag.com/v1n6/sub/v1n6_teamsonreports.html (3 of 3) [8/9/1999 5:02:04 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n6/cmex01.zip
http://www.cpcs-inc.com/
http://www.cpcs-inc.com/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 6
July 1999

Customizing Clarion5’s
Editor And Menus

by John Morter

In a recent Clarion Advisor article Bruce Wells explained how to go about
configuring the colour highlighting used by the Clarion 5 Editor. I’m
going to take this general concept a bit further and show you other ways
to personalise your working environment.

A Custom IDE Menu

A simple, but very useful feature provided by Topspeed lets you add user
defined choices to the Clarion IDE application frame menu. For example,
I’ve added a Utilities menu to the IDE that gives me handy access to
various commonly used applets. My own Utilities menu now fits in neatly
between the standard File and Project menus, as you can see in Figure
1.

Figure 1. A custom Utilities menu.

Clarion Magazine - John Morter Customizes C5

http://www.clarionmag.com/v1n6/sub/v1n6customizingc5.html (1 of 7) [8/9/1999 5:02:11 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/v1n4/sub/v1n4clarionadvisor_colors.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

Here’s how you can create a menu to suit your own requirements:

Step 1. You’re about to modify the CLARION5.INI file, so the strongly
recommended cautious approach is to make a copy of the original file
first - just in case. (I always do this by creating a duplicate of the file,
replacing the last character of the file extension with an underscore. In
this case, creating CLARION5.IN_)

Step 2. Open CLARION5.INI, which you’ll find in your BIN folder, with
the text editor of your choice and search for the section headers [User
Menus] and [User Applications] where the square brackets are part
of the section header construct.

The [User Menus] section provides the descriptive part of your new
menu. For example, the [User Menus] section of my CLARION5.INI file
is shown in Listing 1. You can readily see how this matches with the
result in Figure 1.

Listing 1. The [User Menus] section of my C:\CW5\BIN\CLARION5.INI file.

[User Menus]
_version=41
1=&Utils/&DCT Sorter|DctAS
2=&Utils/&App.Launcher|Lnchr
3=&Utils/&Msg Maker|MakeMsg
4=&Utils/&Icon Works|IconPro
5=&Utils/&Class Viewer|CallTree
6=&Utils/Class &Browser|ClsBrwsr
7=&Utils/&Report Writer|CWRW

Before you go any further, note the line immediately beneath the section
header. This is some sort of magic number used by TopSpeed for some
sort of under-the-bonnet reason. Don’t be tempted to fiddle with this
number - just leave it as it is. (You’ll find that the standard contents of
this section in CLARION5.INI consists only of the first two lines above,
and the magic number does change between Clarion versions.)

&Utils is the menu name which will be merged in with the IDE menu,
using the standard Clarion convention of identifying the accelerator key
character with an ampersand.The leading numbers simply differentiate
the menu items within Utils.

The next parameter is the name of the menu item within the Utils menu,
again using the ampersand prefix convention to identify the accelerator
key.

The last parameter provides the link between this section and the [User
Applications] section, which I’ll look at next.

But first, go ahead and edit in your own user defined menu. You might
like to have handy access to Le Schmoo’s Class Browser (highly
recommended) or to a Calculator or Calendar utility - or whatever!

Step 3. Now take a look at the [User Applications] section. The
standard content of this section in CLARION5.INI is shown in Listing 2.

Listing 2. The default [User Applications] section of CLARION5.INI.

User Applications]
_version=41
CWRW=c5rw %f %a

Clarion Magazine - John Morter Customizes C5

http://www.clarionmag.com/v1n6/sub/v1n6customizingc5.html (2 of 7) [8/9/1999 5:02:11 PM]

http://www.clarionmag.com/v1n3/sub/v1n3review_classbrowser.html

The same rule applies for the magic number line - don’t mess with it!

The line starting with CWRW is a hint from TopSpeed, and shows some
of the more advanced features available to you in customising your own
menus. The %f is an expansion macro; it will be replaced with the file
and path-name currently opened by the IDE. Similarly, the %a is
another expansion macro which will be replaced by the current
Application or Project name. (See the C5-PG.pdf for more details of
these and other expansion macros.)

As I mentioned earlier, the last parameter on lines within the [User
Menus] section provides a link with the contents of the [User
Applications] section. See my [User Application] section (Listing 3)
to understand this better.

Listing 3. The [User Applications] section of my C:\CW5\BIN\CLARION5.INI file.

[User Applications]
_version=41
DctAS=C:\CW5\Utils\DctAS.exe
Lnchr=C:\CW5\Utils\Lnchr.exe
MakeMsg=C:\CW5\Utils\Make_Msg.exe
IconPro=h:\WinUtils\IWPRO\IWPro.exe
CallTree=C:\CW5\Bin\CallTree.exe
ClsBrwsr=C:\CW5\Utils\ClsBrwsr.exe
CWRW=c5rw %f %a

I’ll use the second last line of this example to explain what’s going in.
(It’s pretty simple, and you’re probably all way ahead of me by now -
but I’m gunna be pedantic!)

ClsBrwsr provides the link between the two sections. It tells the [User
Menus] section where to find the executable identified in that section as
Class Browser.

Notice that I’ve picked up on TopSpeed’s hint to call the Clarion Report
Writer by creating a menu item in [User Menus] which links with the
CWRW line provided in the [User Applications] section.

Step 4. That’s all there is to it. Now save your changes to
CLARION5.INI, restart the C5 IDE and make use of your nifty new menu
items.

TIP: If changes you’ve made to your CLARION5.INI file are
not reflected in the IDE menu then you’ll need to give
CLARION5.exe a bit of encouragement to recognise your
work. The IDE is not actually reading your CLARION5.INI file
each time it starts. Instead, whenever it detects a change in
various configuration files it summarises all this stuff into a
file named CLARION5.DAT - and it reads that file instead.
You can safely delete the CLARION5.DAT file to force its
recreation, this time with your CLARION5.INI file changes
included.

If the idea of deleting this file makes you a little uneasy, then take the
just in case approach again and rename it to CLARION5.DA_ instead. (To
be honest, that’s what I always do!)

Customised Editor Commands

If, like me, you’ve been around for a while in the programming game
then it’s quite likely that, like me, you’ve got the commands of a
favourite text-editor built into your finger-tips, if not into your brain.

For me it’s an old Data General editor from my dim, dark, past COBOL
programming days. For others it may be WordStar or the XTGold editor,
or something else that you’ve used happily for years - whatever!

I’ll show you now how you can influence Clarion5 with flavours from your
old favourite text editor. (And, once again, it’s pretty simple, once you

Clarion Magazine - John Morter Customizes C5

http://www.clarionmag.com/v1n6/sub/v1n6customizingc5.html (3 of 7) [8/9/1999 5:02:11 PM]

know how.)

Step 1. This time you’ll be working with C5EDT.INI, which you’ll find in
your BIN folder. Again, I recommend you start out by taking a
just-in-case backup copy before making any changes.

When you open C5EDT.INI with your favourite text editor you’ll find
something like the following, (actually, probably exactly like the
following).

Listing 4. Contents of the standard C5EDT.INI file.

[Text Editor Configuration]
_version=43

[Key Mapping]
CharLeft=LeftKey

I’m sure you’ve got the message by now - don’t mess with the magic
number line!

The lines listed within the [Key Mapping] section have the general format
of …

 Edit-command-effect =
 Keyboard-combination [; Keyboard-combination ...]

For example;

 CharLeft=LeftKey

means;

"To move the cursor left one character" = "Press the Left (arrow) Key"

Step 2. Have a look at the entries in this section. Even if you don’t
intend to change the way the Clarion5 editor works, you’ll still likely
discover lots of useful keyboard commands you didn’t know about, (and
which aren’t documented elsewhere!).

Step 3. Assuming you do want to put your own stamp on the way the
Clarion5 editor works, then there are some important things you need to
keep in mind:

There are certain keyboard combinations that are built right into the
Clarion5 editor or are part of the standard Windows convention set. You
are strongly advised not to redefine these for your own use. At best they
may not work; at worst you may get some very confusing results.

Fortunately, there are not many of these. I’ve included a dummy section
header at the top of my C5EDT.INI file to remind myself of them.

Listing 5. Dummy reminder section in my C5EDT.INI file.

[Text Editor Configuration]
_version=43

[** Key Mapping ** < jcm]
The following keys are reserved by the Editor:
AltF, AltE, AltA
CtrlZ, CtrlX, CtrlC, CtrlV, CtrlA, Ctrl1, Ctrl2, Ctrl/, CtrlY, CtrlT, CtrlF
F3, AltF3, ShiftF3, CtrlF3

[Key Mapping]
CharLeft=LeftKey

Clarion Magazine - John Morter Customizes C5

http://www.clarionmag.com/v1n6/sub/v1n6customizingc5.html (4 of 7) [8/9/1999 5:02:11 PM]

So what can be safely changed? Well, I’ve made quite a few changes to
my C5EDT.INI file to make the editor work a bit more like the way I
want it to. For example:

The standard Clarion5 keyboard editor command to delete a word ahead
of the cursor is CtrlT (goodness know why!). My fingers refuse to accept
this; they keep using CtrlW no matter what! As you’ll soon see, this was
easy to change.

Step 3a. First have a look through C5EDT.INI to find the command most
likely to do what you want to do. (This is a bit like trying to find the right
embed point isn’t it?) In my example, it’s the DeleteWord command.

Step 3b. Now do a Find/Search through C5EDT.INI to make sure that
the key combination you’d like to use is not already being used for
something else. If it is, then you have two paths to take…

If you’d decided to reconfigure, say, CtrlF to some new purpose then
you’re out of luck. CtrlF is in that reserved list of key combinations I
mentioned earlier (see Listing 5). It’s reserved by the Clarion5 editor to
enter FormatStructure mode (as you old CPD 2.1 users out there will
remember well).

If, however, your new key combination is being used for some other
purpose - but not in a special reserved manner - then it’s a case of
making a choice. If you like your own new reconfiguration better than
the existing purpose defined for the key combination then it’s just a
matter of removing the existing definition.

NOTE: If you do this then you should also create a new key
combination for the action which you "stole" from.
(Sometimes, making a change can set off a whole
chain-reaction of changes.)

Step 3c. Going back to my example, since CtrlW is not used for any
other purpose it was a simple matter to change the original line from;

 DeleteWord=CtrlT

to

 DeleteWord=CtrlW

I have two options available for the use of CtrlT because it is now,
potentially, freed-up by my change. Either I can reuse it for some other
customised purpose (provided it’s not one of the reserved key
combinations - which it is!) or I can keep it as an alternative key
combination for the same command.

To create two or more key combinations for the same command you just
separate them with a semi-colon. For example;

 DeleteWord=CtrlT;CtrlW

Now both these key combinations will achieve the same purpose. (In
fact, even without including CtrlT, using this key combination will still
delete words as before, because it’s one of the special reserved key
combinations that can’t be redefined - see Listing 5).

Step 4. So, off you go - make the editor work more like the way you
want it to, not the other way around.

Listing 6 shows selected contents of standard [Key Mapping] settings.
Listing 7 show how I’ve chosen to redefine the same commands.

Clarion Magazine - John Morter Customizes C5

http://www.clarionmag.com/v1n6/sub/v1n6customizingc5.html (5 of 7) [8/9/1999 5:02:11 PM]

Listing 6. The [Key Mapping] section of the standard C5EDT.INI file.

[Key Mapping]
(Some lines skipped)
ScrollDown=CtrlUp
ScrollUp=CtrlDown
TopOfPage=CtrlPgUp
BottomOfPage=CtrlPgDn
TopOfFile=CtrlHome
EndOfFile=CtrlEnd
LeftOnNextLine=CtrlEnter
GotoLine=CtrlG
BackTab=ShiftTab
ToggleInsert=InsertKey
DeleteChar=DeleteKey
DeleteLeft=BSKey;ShiftBS
(Some more lines skipped)
StartMarking=
StartOfBlock=
WriteBlock=
CommentBlock=
CtrlChar=
DeleteBlock=
DeleteEOL=
FindReplace=
InsertLine=
NewChar=
ReadBlock=

Listing 7. The [Key Mapping] section of my C5EDT.INI file.

[Key Mapping]
(Some lines skipped)
ScrollDown=CtrlU
ScrollUp=CtrlD
TopOfPage=CtrlF1
BottomOfPage=CtrlF10
TopOfFile=AltHome
EndOfFile=AltEnd
LeftOnNextLine=
GotoLine=AltG
BackTab=ShiftTab
ToggleInsert=InsertKey
DeleteChar=DeleteKey
DeleteLeft=BSKey;CtrlBS
(Some more lines skipped)
StartMarking=CtrlEnter
StartOfBlock=
WriteBlock=F8Key
CommentBlock=
CtrlChar=
DeleteBlock=
DeleteEOL=CtrlEnd
FindReplace=AltC
InsertLine=CtrlI
NewChar=
ReadBlock=F9Key

Clarion Magazine - John Morter Customizes C5

http://www.clarionmag.com/v1n6/sub/v1n6customizingc5.html (6 of 7) [8/9/1999 5:02:11 PM]

It’s very unlikely that you’ll want to make exactly the same changes I’ve
made, but hopefully these examples will get you started. (They will at
least make you wonder about the logic in my fingers!)

John Morter is a member of the Victorian (Australia) Clarion Users
Group. These days he’s an IT Consultant in the corporate world who’d
rather be spending all day building Clarion applications. Instead, Clarion
occupies a lot of his spare time. John sails during the summer on his
racing catamaran named Flat Chat, which is Australian slang for "at top
speed!"

In This Issue

The SQL Answer
Cowboy
Posted on July 13,
1999

Larry Teames On
Reports
Posted on July 13,
1999

Customizing
Clarion5's Editor
And Menus
Posted on July 13,
1999

Clarion News,
July 1999
Posted on July 13,
1999

Photo Gallery
Posted on July 13,
1999

Publishing
Schedule
Posted on July 13,
1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - John Morter Customizes C5

http://www.clarionmag.com/v1n6/sub/v1n6customizingc5.html (7 of 7) [8/9/1999 5:02:11 PM]

mailto:jcm@ncssuite.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 6
July 1999

The Raleigh Clarion User Group (Posted July 12, 1999)●

Send Us Your Photos!

One of the things I like best about Clarion conferences is the opportunity
to put faces to names of people I’ve come to know through email or the
newsgroups (or in a bygone era, Compuserve).

That said, there’s no particular reason to wait for the next conference to
see more ugly mugs. If you have a picture of yourself, your user group,
or if you’re a really lonely programmer, your favourite PC (just kidding –
we really don’t want any PC pictures), send them along. Photos from
past conferences are also welcome. JPEGs or GIFs are preferable, and
please include a caption or other descriptive material with each picture.

Send your favourite Clarion-related pictures to editor@clarionmag.com.
Please indicate if you wish a copyright notice attached to those selected
for publication.

In This Issue

The SQL Answer
Cowboy
Posted on July 13,
1999

Larry Teames On
Reports
Posted on July 13,
1999

Customizing
Clarion5's Editor
And Menus
Posted on July 13,
1999

Clarion News,
July 1999
Posted on July 13,
1999

Photo Gallery
Posted on July 13,
1999

Publishing
Schedule
Posted on July 13,
1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine Photo Gallery

http://www.clarionmag.com/sub/photos/index.html [8/9/1999 5:02:13 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/sub/photos/raleighcug.html
mailto:editor@clarionmag.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Publishing Schedule

Clarion Magazine is now published four times per month, on Tuesdays.
This allows us to present you with up-to-date news items as well as a
steady diet of Clarion programming information from the best writers in
the Clarion community. As some months have five Tuesdays, publication
occasionally skips a week.

In other respects, Clarion Magazine resembles a monthly magazine.
Internally, the contents of the magazine are organized by month, and
this is reflected in the Site Index. When you purchase a year's
subscription, you have access to all of the articles for the month in which
you begin your subscription, and for the next 11 months.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine Publishing Schedule

http://www.clarionmag.com/common/pubsched.html [8/9/1999 5:02:15 PM]

http://www.covecomm.com/
http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/opensource/index.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 6
July 1999

SearchFlash 1.1
Reviewed by Dave Harms

SearchFlash is a set of templates, procedures, and data files that make it
relatively easy to add useful searching and tagging to any Clarion
browse. The combination of searching and tagging is particularly
appropriate since there are many situations where you want to restrict
the display of records to just those which meet the search criteria.

I tested SearchFlash on the application I use for tracking Clarion
Magazine subscriptions. The installation of SearchFlash went smoothly;
the install program correctly located my Clarion5 directory (a nice
touch), and asked me if I wanted to install the ABC or Legacy templates.
(If you wish to install both you’ll need to make sure you use a different
demo directory each time.)

The help file, which can be displayed after install, offers specific
instructions on installing SearchFlash. The steps are as follows:

Step 1. Register the template.

Step 2. Import SFLASH.TXD into your application’s dictionary. This TXD
contains definitions for files used to store tagging and query information.
(There is a separate TXD containing just the tag file, and you can import
this multiple times if needed, giving the file a unique name and prefix
each time.)

Step 3. Close the dictionary, open the application, and import the seven
core procedures from DEMO.APP. You’ll want to follow the help closely to
be sure you get just the procedures you need, as DEMO.APP contains a
number of other procedures. A separate application containing just the
core procedures might be a better way to go.

Step 4. Go to the Global extensions list and add the SearchFlash
extension. You will need to add the files whose browses use the
SearchFlash button.

Step 5. Populate the SearchFlash button onto the window containing the
browse you want to be able to search. The help file again contains
useful, specific information. A checkbox for filtering the browse to show
only tagged items is also populated.

Step 6. Add a tag icon to your list box.

Step 7. The help specifies that you need to add SFLFirst, SFLNext and
SFLSummary to the list of called procedures for that browse. I found it
easier to ensure that those procedures have the Declare Globally box
checked, thereby saving myself a few extra steps on subsequent
browses.

Step 8. Fill in the SearchFlash button options (see Figure 1). At a
minimum you’ll need to specify the file SearchFlash is searching, a
unique record ID field, the tag icon field, and some information for each
tab on your browse including the key and key fields and any range
limits.

Clarion Magazine - Review: SearchFlash

http://www.clarionmag.com/v1n6/sub/v1n6review_searchflash.html (1 of 5) [8/9/1999 5:02:25 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

Figure 1. SearchFlash button template prompts, Primary File tab.

Warning: SearchFlash needs to know the name of your
browse object, and it assumes that you’ve followed the ABC
convention of numbering browse objects. If you’ve renamed
your browse objects to something meaningful you’ll just have
to change them back again to BRWx, because all you’re
allowed to specify in the SearchFlash templates is the browse
object number (see the Parent's Browse Ref prompt), not the
name.

For browses with a lot of tabs it might be difficult to synchronize all of
the search template settings with your browse’s settings. It would be
ideal if the search template were attached to the browse and could
inherit the necessary information, but I don’t know if this is a practical
alternative.

Text Field Searching

Living dangerously, I tested SearchFlash on a browse which also uses
Brian Staff’s Xplore templates and the two products co-existed without
any difficulties. I began by testing the "all text fields" search, shown in
Figure 2.

Figure 2. Searching on all text fields.

Clarion Magazine - Review: SearchFlash

http://www.clarionmag.com/v1n6/sub/v1n6review_searchflash.html (2 of 5) [8/9/1999 5:02:25 PM]

http://www.clarionmag.com/v1n1/pub/v1n1review-xplore.html

Note that you can start searching from the beginning of the file or from
the current position. If you choose to display the data as it is found
SearchFlash will show you the record number, the name of the field in
which it found the data (remember that on this tab you’re searching all
the text fields), and the data itself.

If you choose to tag records as they’re found you can then use the
Tagged Records checkbox to restrict the browse to only the found
records. The number of tagged records is shown in the caption bar, and
tags can be appended to existing tags so you can build up a result set
from a series of searches.

SearchFlash also provides three ways of storing tagging information: in a
global queue (the default); in a tag field in the file; or in a separate
tagging file. For smaller data sets the queue is the fastest, though of
course tagging information is lost when the application is closed.

QBE Searching

You can use QBE and text searching in conjunction if you wish,
leveraging the power of both techniques. All of the tagging features
described for text field searching apply to QBE searching as well. One
difference is that in a QBE search the found data cannot not displayed
for each record since you may be searching for multiple conditions.

Figure 3 shows the QBE tab on the search window. This tab lets you
query up to six fields using AND or OR conditions. You can also save and
retrieve your queries from this window.

Clarion Magazine - Review: SearchFlash

http://www.clarionmag.com/v1n6/sub/v1n6review_searchflash.html (3 of 5) [8/9/1999 5:02:25 PM]

Figure 3. Searching using QBE.

Additional Templates

Search flash comes with control templates for Tag All, Untag All, and tag
toggle buttons. There are also templates to allow the use of tagged
records in reports and processes.

SearchFlash is compatible with all versions from CW2002 to C5
ABC/Legacy, and all source code is supplied.

Clearly a lot of thought has gone into this product. Instructions on using
the template in a multi-dll app are included (a most important feature)
and there are a number of settings available for fine-tuning behaviour,
such as setting fields to exclude from QBE searches and searching
related files.

The help is quite clear and concise, and includes a FAQ to help the
developer over common problems. I also received prompt response to
several questions about the use of the product. The author, Mike
McLoughlin, is active in the TS newsgroups.

Minor quibbles aside, this is an excellent tool which will enhance your
users’ ability to locate and display data.

Price $149
Web Site http://www.sterlingdata.com/search.htm

Contact Mike McLoughlin

In This Issue

Product Review:
SearchFlash
Posted on July 20,
1999

The Other Way
To Use OLE
Posted on July 20,
1999

The Clarion
Advisor: Debug
Redux
Posted on July 20,
1999

Clarion News,
July 1999
Posted on July 20,
1999

Clarion Magazine - Review: SearchFlash

http://www.clarionmag.com/v1n6/sub/v1n6review_searchflash.html (4 of 5) [8/9/1999 5:02:25 PM]

http://www.sterlingdata.com/search.htm
mailto:mike@sterlingdata.com
http://www.clarionmag.com/v1n6/sub/v1n6clarionadvisor_debugredux.html
http://www.clarionmag.com/v1n6/sub/v1n6clarionadvisor_debugredux.html
http://www.clarionmag.com/v1n6/sub/v1n6clarionadvisor_debugredux.html

PRODUCT RATING

Documentation

Features

Support

Ease of use

Value

Overall

Legend

Excellent

Good

Fair

Poor

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Review: SearchFlash

http://www.clarionmag.com/v1n6/sub/v1n6review_searchflash.html (5 of 5) [8/9/1999 5:02:25 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 6
July 1999

Calling OLE Methods - Part 1
by Jim Kane

One day a long time ago when CompuServe and not the newsgroups
reined supreme, someone asked how to create a shortcut using Clarion.
After a quick trip to my trusty MSDN (Microsoft Developer Network) CD,
it became apparent to me that to create a shortcut I had to call an OLE
interface called IShellLink. Unfortunately, while Clarion 5 supports the
Topspeed, Pascal, and C calling conventions, it does not natively support
calling OLE interfaces.

There are two general methods of calling OLE objects: late binding and
early binding. Most OCX and OLE code Clarion programmers are use to
seeing is late –binding, where the address of each method is looked up
via the Idispatch API call before each call. No compile-time knowledge of
the order the methods are in is needed for late binding; only the method
name is required.

The early binding discussed here a more efficient approach, although it
requires that you know the number of methods and the order in which
they appear in the OLE interface. The address of the area which contains
the method entry points is determined once and stored, and as all of the
methods are at a fixed offset from this point they can subsequently be
called based on that offset.

While calling a method based on its offset from a known address is
slightly less efficient than the normal way of calling an API function
directly, the extra step is quick and saves the trouble of storing the
address for each method separately.

The Keys To The Kingdom

I posted an answer to the original question about creating a shell link
that in effect that could have been summed up in two words: "No Way."
Never liking to accept limits, when I next had some free time (about a
year later), I read all about how to call OLE interfaces. I realize that with
a little straightforward assembler work I could write one procedure (or a
family of procedures) that would handle all the dirty work for me. Once
you understand this one little ugly piece and how to use it, you’ll be able
to do anything Windows can do. Sorry, but no more excuses then!

My reading showed that a call to the API CoCreateInstance procedure
returned the keys to the kingdom, so to speak, or at least a pointer to a
pointer to the entrance to the OLE world. If only I could take that pointer
to a pointer and call the address at the end of the chain, OLE would be
mine.

Actually what CoCreateInstance returns is a pointer to a pointer to a
table of addresses, called a vtable. A vtable is a simple list of addresses
of all the methods in an OLE interface. For those not using OOP think of
a method as a procedure. An OLE Interface can be thought of, for this
discussion, as a collection of methods or procedures that when called
does something. It’s actually a whole lot more but that will do for now.

Clarion Magazine - Calling OLE Methods Part 1

http://www.clarionmag.com/v1n6/sub/v1n6callingole_part1.html (1 of 7) [8/9/1999 5:02:31 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://msdn.microsoft.com/default.asp
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

Finding The vTable

Calling an OLE interface is a two step process. First you navigate the
pointer chain to get to the vtable, and then you determine where in the
vtable the procedure to be called is located.

I’ll take a common OLE interface called Iunknown (which also pretty well
sums what I’ve said about OLE at this point!) with three methods:
QueryInterface, Addref, Release. For now don’t worry about what the
methods do. Listing 1 shows what the mystical vtable would look like in
Clarion syntax:

Listing 1. A vtable declared in Clarion code.

Vtable_IUnknown Group
AddressofIUnknown_QueryInterface long
AddressofIUnknown_Addref long
AddressofIUnknown_release long
 end

Now I’ll diagram the chain of pointers to arrive at a vtable so it’s not so
abstract. I’ll store the pointer to a pointer in a Clarion long variable
called ppVtable (pp has nothing to do with the bathroom in this case,
it’s a shorthand for pointer to a pointer) and the offset into the vtable in
a long variable called OfsMethod. Figure 1 uses some arbitrary addresses
to demonstrate how to get to the code for the Iunknown.AddRef method.
Since Addref is one down the list from the top and each long is four
bytes, it’s address is stored at the start of the vtable plus an offset of 4H.

Figure 1. The vtable data.

Arbitrary Address Variable Name/Description Contents

120H OfsMethod 124H

124H ppVTable 58204H

58204H pVTable – pointer to the vtable 7F800H

7F800H Vtable - Address of 1st method
AddressofIUnknown_QueryInterface)

9AB00H

7F804H Vtable - Address of 2nd Method
(AddressofIunknown_AddRef)

9C000H

At address 9AB00H sits the executable code for
Iunknown.QueryInterface.

At address 9C000H sits the executable code for Iunknown_AddRef.

So given a pointer to a pointer for a vtable (in this case the value
58204H), if you look in memory at that location you get the pointer to
the vtable (or pVTable) at 7F800H . If you look in memory at 7F800H you
find (at long last!) the start of the vtable. Jump down to an offset of four
bytes and look in memory at 7F804H and you’re all set: 9C000H is the
correct target address. This means lots of peeks and jumping around but
it’s a relatively simple chain to follow. The chain navigation code only has
to be written once, and after that’s done hopefully you can get a lot of
good use out of it.

Five Steps To OLE

Thinking further, the problem of calling an OLE interface (after obtaining
a pointer to a vtable) really has five parts (one of which I’ve kept a
secret until now):

Clarion Magazine - Calling OLE Methods Part 1

http://www.clarionmag.com/v1n6/sub/v1n6callingole_part1.html (2 of 7) [8/9/1999 5:02:31 PM]

Put the parameters for the OLE method, if any, on the stack (I’ll
explain the stack in a moment).

1.

Put the pointer to a pointer to the vtable on the stack – a
requirement of calling an OLE Interface (this is the new thing I
held back on previously).

2.

Put the return address to your Clarion code on the stack.3.
Navigate the pointer to a pointer bit to arrive at the vtable.4.
Once at the vtable, apply the offset for the method you want and
jump/call to that address.

5.

I’m visually oriented so I’ll turn that into a picture. A stack is an area of
memory, just like a stack of books where each "book" is 32 bits. Every
time you push something onto the stack it goes on top. Every time you
pop something off the stack, a book goes away and exposes the book
underneath. A stack grows from high memory to low memory. Here’s
what the stack looks like in a simple procedure call (not an OLE interface
) and diagram:

Module(‘SomeDll.Dll’)
 AddTwoNumbers(long p1, short p2),long,pascal
End

Code to call:

Result = AddTwoNumbers(2,3)
 !After call to AddTwoNumbers
 Message(‘Result is:’ & Result,’Result’)

Procedure code:

AddTwoNumbers procedure(long p1, short p2)
Result Long
 Code
 !Start of procedure
 Result = p1 + p2
 Return Result

Here’s what the stack looks like at the comment !Start of procedure (the
absolute address values are arbitrary):

Address Stack Contents
1F4H ReturnAddress - address of Message statement
1F8H p1=2
1FCH p2=3

Notice that although P2 is a short, on the stack it takes up 32 bits from
1F8H to 1FBH. In fact, all parameters on the stack take up 32 bits no
matter if the value being passed is a byte, short or long! If a
parameter is longer than 32 bytes, such as a cstring, then rather than
trying to put the entire cstring on the stack, just its address is placed
on the stack.

After the execution of the Return Result statement, the three values
shown above are removed from the stack. This is how the Pascal calling
convention works. All OLE interfaces use the Pascal calling convention as
do almost all API calls.

To complete the picture look at the assembler code to call
AddTwoNumbers. It’s not very complex:

Clarion Magazine - Calling OLE Methods Part 1

http://www.clarionmag.com/v1n6/sub/v1n6callingole_part1.html (3 of 7) [8/9/1999 5:02:31 PM]

Mov eax, p2 ! move p2 into the eax register
Push eax ! Push a long onto the stack in this case
 ! p2 with a value of 3
Mov eax, p1 ! put p1 into eax, want to guess where its
 ! going next?
Push eax ! p1 on the stack
Call AddTwoNumbers ! puts the return address on the stack
 ! and jumps to the start of the procedure
 ! AddTwoNumbers.

After that entertaining jaunt into the world of assembler and the stack
lets get back to the problem at hand. Say you have a pointer to a pointer
to a vtable for an OLE interface call IshellLink. You’ll store that value
in a long called ppVtable_IshellLink. Further, say IshellLink has a
method call SetPath that can be called with one parameter, the address
of a cstring. The purpose of the method is to set the path and file name
for the target of a shortcut, i.e. the program that should be run when a
shortcut is clicked. If Clarion directly supported OLE, you might think of
this as calling a class method and would prototype it something like this:

IshellLink.SetPath(*cstring szPath),Pascal

and call it (if it worked!) to take a step to creating a shortcut to notepad
like this:

SzPath = ‘C:\Windows\NotePad.Exe’
IshellLink.SetPath(szPath)

Since *cstring is a pointer to a cstring, or in other words the memory
address of the cstring, you could also prototype and call the above like
this with the same result:

IshellLink.SetPath(long pszPath),Pascal

And use the address() function to get the address:

IshellLink.SetPath(address(szPath))

Keep in mind Clarion does not support this calling convention so the
above is hypothetical.

If you review the requirements for calling an OLE interface listed above,
the picture you need on the stack for this to work is:

Figure 2. Stack data for calling OLE interface

Arbitrary Address Value or Description

200H Return Address to Clarion code after the call to the OLE
Interface

1FCH ppVtable

1F8H address(szPath)

Clarion Magazine - Calling OLE Methods Part 1

http://www.clarionmag.com/v1n6/sub/v1n6callingole_part1.html (4 of 7) [8/9/1999 5:02:31 PM]

The other piece of information you need to be able to jump to the OLE
method of choice is the offset to the SetPath method. You’ll need to put
that on the stack as well.

It’s looking like to call an OLE interface with one parameter what you
need is a magic function called

ICall1P(long ppVtable, long OfsMethod, long p1),long, pascal,proc

that can create a stack like the one shown above and jump to the correct
vtable entry.

Now you can write the Clarion code part so you can picture it better,
diagram the stack this magic procedure will start with, and lastly present
the assembler code to accomplish what you need.

Module(ICall.a)
 ICall1P(long ppVtable, long OfsMethod, long p1),long,
 pascal,proc,Name(‘ICall’)
End

Data:
SzPath cstring(‘C:\Windows\Notepad.exe’)
PpVtable long(58204H) !pointer to a pointer for the
 ! vtable for IshellLink.
OfsMethod long(50H) !offset to SetPath
Hr Long,Auto !Ole Return code, < 0 = error

Code:
Hr = ICall1P(ppVtable, OfsMethod, Address(szPath))
If Hr<0 then
 Message(‘Call Failed, blame Bill’)
else
 Message(‘Call Worked, blame Jim Kane)
end

After the calling ICall1P this is what the stack will look like:

ReturnAddress = address of If Hr<0 after ICall
PpVtable
OfsMethod
P1

If you compare that to the desired stack frame above, you will see the
extra OfsMethod in there. Also there are some mundane details of
preserving registers. You can think of a register in the CPU as if it’s a 32
bit variable. The registers you will deal with are eax, ebx, ecx, edx.
The code to get the stack from the starting point just above to the
desired status prior to turning things over the OLE and Microsoft is as
follows:

Clarion Magazine - Calling OLE Methods Part 1

http://www.clarionmag.com/v1n6/sub/v1n6callingole_part1.html (5 of 7) [8/9/1999 5:02:31 PM]

Public ICall:
 (*The parameters, how ever many there were are on the stack*)
 (*code to save ebx,ecx,edx-omitted for clarity *)
 Pop ecx (* pop the return address off the stack *)
 (* into ecx *)
 Mov Save_ret,ecx (* save the return address for later *)
 Pop eax (* eax = ppVtable*)
 Pop ebx (* ebx = offset into vtable*)
 Push eax (* put the ppVtable back onto the stack *)
 (* now that the offset is out of the way*)
 Mov ecx,[eax] (* ecx = contents of memory at eax = *)
 (* pVtable and NOT ppvtable any more *)
 Add ecx,ebx (* add in the offset down the vtable*)
 (* ecx now points to the address you *)
 (* want to call*)
 call dword [ecx] (*put the return address on the stack*)
 (* and go to the address pointed to by ecx*)
 (* upon return eax = the return value so leave eax alone! *)
 (* the return from the OLE method also took the *)
 (* parameters p1…pn off the stack.*)
 mov ecx, Save_ret
 push ecx (* put the return address to the Clarion *)
 (* calling point back on the stack *)
 (* code to restore ebx,ecx,edx- omitted for clarity*)
 ret 0 (* I love it when a plan comes together!*)

You’re Doing OLE!

So there you have it. Add those few lines of assembler to your code and
OLE away just like the big boys. Actually just choose Project from the
main menu and add Icall.a to the external source module section, add
the prototypes for Icall1P to the global map. The project system will
take it from there - the assembler will be called to assemble Icall.a and
the Clarion compiler will compile the rest. The project system recognizes
the portion that needs to be assembled by the .a extension.

The nice thing is regardless of how many parameters the interface
method has, the code above should handle the details of calling the
interface. It requires just two inputs: the ppVtable available from
CoCreateInstance and the offset into the vtable available form OLE
header files or in some cases from a free Microsoft utility called OLEView.
Now you have reduced the barrier to COM in Clarion to finding the
needed constants and preparing the interface method parameters. Next
time I’ll take on those challenges and show how to create a shortcut the
OLE way.

So if you catch me on the newsgroups, feel free to ask a question. Just
remember it may take a year or more to get an answer!

Download the source code

Jim Kane was not born any where near a log cabin. In fact he was born
in New York City. After attending college at New York University, he went
on to dental school at Harvard University. Troubled by vast numbers of
unpaid bills, he accepted a U.S. Air Force Scholarship for dental school,
and since graduating has served in the US Air Force. He is currently the
Officer in Charge of Dental Facility Design at USAF Dental Investigation
Service in San Antonio, Texas. In his spare time, he runs a computer
consulting service, Productive Software Solutions, which he hopes to run
full time after retiring from the US Air Force Dental Corps in June 2000.
He is married to the former Jane Callahan of Cando, North Dakota.Jim
and Jane have two children, Thomas and Amy.

In This Issue

Product Review:
SearchFlash
Posted on July 20,
1999

The Other Way
To Use OLE
Posted on July 20,
1999

The Clarion
Advisor: Debug
Redux
Posted on July 20,
1999

Clarion News,
July 1999
Posted on July 20,
1999

Clarion Magazine - Calling OLE Methods Part 1

http://www.clarionmag.com/v1n6/sub/v1n6callingole_part1.html (6 of 7) [8/9/1999 5:02:32 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n6/callingole_1.zip
http://www.clarionmag.com/v1n6/sub/v1n6clarionadvisor_debugredux.html
http://www.clarionmag.com/v1n6/sub/v1n6clarionadvisor_debugredux.html
http://www.clarionmag.com/v1n6/sub/v1n6clarionadvisor_debugredux.html

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Calling OLE Methods Part 1

http://www.clarionmag.com/v1n6/sub/v1n6callingole_part1.html (7 of 7) [8/9/1999 5:02:32 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 6
July 1999

In an earlier Clarion Advisor article I looked at some alternative
debugging techniques and asked readers if they had any tricks to share.
They did, and I am again impressed by the inventiveness of Clarion
developers.

Both Russ Eggen and Carl Barnes like to use INI files and the clipboard,
though their approaches differ. Russ also offers a nifty technique for
fixing SQL problems, and Carl explains how to use file logging to good
advantage.

Russ Eggen

If you are processing (reports, process and browse populate
functions) and need to find out what is going on behind the
scenes, make your own dump log. You can use PUTINI (or
use the ABC INIMgr) to write out your own statements. This
make is far easier to look through the items that you are
interested. And if you use the Defines tab on the project
setting (to conditionally compile your code – ed.), you can
turn this on or off as needed and not worry about stripping
out the debug code when done.

If you are using SQL statements and the last statement
comes back from the database with some error, it typically
means that there is a syntax error on your part. Before
sending the command via PROP:SQL, copy it to the
clipboard. Since the clipboard has only the last thing sent to
it, you can open up you favorite SQL command editor, paste
and try to compile or execute (depending on tool used). This
will expose the syntax error (like unknown column name in
the case of misspellings, missing a closing quote, etc).

Carl Barnes

My favorite is to use PUTINI to write info I need to a text file.
It's easy to code and since the file is kept closed you can
display your information most any time. Plus PUTINI offers a
lot of options in the way you can structure your information
into sections, such as logging all the events.

ACCEPT
 evt += 1
 PUTINI('Events',evt,'Event=' & event() |
 & ' Field=' & field() ,'./0debug')
END

Clarion Magazine: Debug Redux

http://www.clarionmag.com/v1n6/sub/v1n4clarionadvisor_debugredux.html (1 of 3) [8/9/1999 5:02:36 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/v1n5/sub/v1n5debuggingtricks.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

Another option is to use SETCLIPBOARD() to put some
information you want to know in the clipboard. Then you can
use the Clipboard viewer to watch for changes. This does
have the limitation of only showing the last entry and not a
log. There are some clipboard savers that will retain previous
clipboard contents (PC Magazine has a number of clipboard
viewers available for download).

The Clarion file drivers support logging activity to a text file.
There is more on this in the C5 Programmer's guide (see
"Logging"). Logging can be turned on for all files by adding
entries to your Win.INI file. This is useful when a user has
some sort of crash happening during start up and you're not
sure what file is the problem.

;add to Win.Ini
[CWdriver] e.g. [CWTopSpeed]
Profile=[1|0] 1=on, 0=off
Details=[1|0]
Trace=[1|0]
TraceFile=[Pathname]

There is also "On Demand" logging that can be turned on
and off using the property syntax. You can even add your
own comments to the log file to help you know what your
code is trying to do. This is useful when some complex file
access code is not working and you would like to see what it
is really doing. For example I had to write code that
synchronizes one file with two others.

Myfile{PROP:Profile}='\MyFile.log'!Turns Clarion I/O logging on
MyFile{PROP:Details}=1 !Turns Record Buffer logging on
! Write the string to the log file
MyFile{PROP:Log}='Starting Big Post ' & clock()
DO BigProcessRtn
MyFile{PROP:Details}=0 !Turns Record Buffer logging off
MyFile{PROP:Profile}='' !Turns Clarion I/O logging off

Be sure to try logging and turn on all the options to see the
amount of data you can get about file access. I turn it on
now and then to see what is happening during the startup of
my programs. Don't forget to turn it off; the log files can
take a lot of space and slow things down.

In This Issue

Product Review:
SearchFlash
Posted on July 20,
1999

The Other Way
To Use OLE
Posted on July 20,
1999

The Clarion
Advisor: Debug
Redux
Posted on July 20,
1999

Clarion News,
July 1999
Posted on July 20,
1999

Clarion Magazine: Debug Redux

http://www.clarionmag.com/v1n6/sub/v1n4clarionadvisor_debugredux.html (2 of 3) [8/9/1999 5:02:36 PM]

http://hotfiles.zdnet.com/cgi-bin/texis/swlib/hotfiles/pcmag_search.html

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine: Debug Redux

http://www.clarionmag.com/v1n6/sub/v1n4clarionadvisor_debugredux.html (3 of 3) [8/9/1999 5:02:36 PM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 6
July 1999

The ABC's of Control Files
by Steve Parker

My very deep appreciation to Nik Johnson who bailed me out
of control file purgatory (but you know what I really meant)
when making the transition to ABC. The solution is his; the
text of our exchange is at the end of this article.

I've been using control files since… I can't remember when. When I
began moving to ABC, I was confident. My experiences with the app
converter had been by and large quite good. But the code that accessed
and maintained my control files didn’t work after conversion.

Consulting Richard Taylor's superb "Making the Transition to ABC" in the
online help, I was able to make some adjustments to what the converter
had done. Still, it didn't work.

Control files, clearly, had become a different breed of cat in ABC.

What Is A Control File? And Why Should I Use One?

A control file has two unique characteristics. First, a control file has only
one record. Second, a control file has no keys (with only one record, a
key is sort of pointless).

In many respects, control files duplicate the function of INI files. The
important difference is that a control file, unless you use the ASCII or
Basic driver (bad move), cannot be read with a text editor, is not so
easily corrupted or manipulated as a text file and, should you so wish,
can be encrypted. All or part of a standard file, which is what a control
file is, can be made read-only.

The purposes for which you use or, indeed, whether you use a control
file as opposed to an INI file is, of course, entirely up to you. But if you
decide use a control file, how you use it is not.

The Issues

Just as with any file, there two kinds of things you will want to do. First,
you'll want to write to the control file, adding and updating records…
oops, the record. When adding, of course, you'll want to add only to an
empty file. Adding a second record to a control file defeats its purpose.
So, adding is a "one time thing."

Second, you'll want access the record, i.e., read the file. Because a
control file has only one record, by definition, and no keys, none of the
standard template methods of file handling will work as expected.
Indeed, they will not work at all.

Sequential processing is not possible (no "sequence," you see). There is
no key to prime. Set(key) and Set(key,key) have nothing to operate
on. A loop, of course, is pointless. In plain English, the standard
templates can do nothing for you except open and close the file.

Clarion Magazine - The ABCs of Control Files

http://www.clarionmag.com/v1n6/sub/v1n6abcsofcontrolfiles1.html (1 of 6) [8/9/1999 5:02:43 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

Similarly, you can't simply add records to the file. A control file may
have one and no more than one record. The standard templates will try
to add multiple records.

The problem is determining (1) whether or not the file exists at runtime,
(2) whether or not there is in fact a record in the file and (3) how to tell
a file what you want to do (Add or Put).

(1) is usually only a problem the first time the app is run.

To make matters more interesting, the database driver that you use
makes a difference in accessing single record files. TPS files, in
particular, do not support the Pointer() function for direct record
retrieval while most other non-SQL databases do. Your choice of file
systems will make a difference in your handling of control files.

Accessing Control Files

For the moment, let's assume that there is already a record in the
control file.

If you want to display the user's company name and address in the
header of a report or plug the city, state and postal code on data entry
form, the data contained in a record must have been successfully read
first. If you haven’t first read the record:

 CUS:City = CFG:City

isn’t likely to give the desired result, is it?

In CW 2.0, or even in DOS, you would done something like the following:

 Open (file)
 Get (file, 1)

Take a moment to look at this code.

First, the file is opened. This does nothing but create a record buffer in
memory. Nothing here prepares the file to be read. Ok, it’s not
"nothing."

Second, normal file handling would follow with a Next() or
Set()/Next(). But a control file contains only one record. If the driver
fully supports Pointer(), the record can be accessed directly,

 Get(file,1)

The lesson? (1) Open, (2) read. Read = retain for later use.

TPS files don't fully support the Pointer() function (on a TPS file,
Pointer() returns a valid pointer which can be used for direct retrieval
but "1" is not a valid pointer with TPS files), so:

 Open(Config,42h) !or Share()
 Set(Config)
 Next(Config)

is required for TPS files.

Legacy command such as Open() and Get() can in fact be used in these
circumstances even in ABC. Bad form, to be sure. But they will work.
You must ensure that the file is closed at the appropriate point, if you
Open the file directly.

In ABC, "good form" would be:

 Access:Config.Open
 Set(Config)
 Access:Config.Next()

for TPS files.

Access:file.Open opens the file. Set() prepares the file for reading, as
always. And Access:file.Next() reads the first (and in this case only)

Clarion Magazine - The ABCs of Control Files

http://www.clarionmag.com/v1n6/sub/v1n6abcsofcontrolfiles1.html (2 of 6) [8/9/1999 5:02:43 PM]

record, if any.

You will notice there is no ABC analog for the Get() command.
Therefore, for file systems fully supporting Pointer(), you can continue
using Get():

 Access:Config.Open
 Get(Config,1)

With these file systems, xBase, Clarion, etc., I have had the
Set()/Next() strategy fail. Thus, I continue using Get().

Maintaining Control Files

Since there is only one record, a browse is sort of… ah, pointless. Go
directly to the form.

The problem is that a form needs to be told what to do. GlobalRequest
is typically used to tell the form whether it is being call to add, update or
delete a record. Without a legitimate value in GlobalRequest, the form
won’t do anything.

Specifically, if called to add a new record, the form needs an empty
buffer. If called to change or delete, the form needs a buffer with the
correct record.

So, GlobalRequest needs to be set; what’s the big deal? The big deal is
that you need to know whether or not the file has a record before you
set GlobalRequest. If there is no record, GlobalRequest must be
InsertRecord and if there is a record GlobalRequest must be
ChangeRecord (you don’t ever want to delete a control record, do you?).

As it turns out, this is easily determined. If Relate:file.Open returns a
non-zero value, there was an error opening the file (e.g., the file does
not exist and is not set up for create-if-not-found). If
Access:file.Next() returns a value, there is no record in the file. So
the following code can be used to set up the call to a form:

Listing 1. Setting up the call to the control file form.

IF NOT Relate:Config.Open()
 SET(Config)
 IF Access:Config.Next()
 GlobalRequest = InsertRecord
 ELSE
 GlobalRequest = ChangeRecord
 END
 SetupForm
 Relate:Config.Close
Else
 !action if file create not allowed
END

This ensures that GlobalRequest is always set properly.

Trying to determine the appropriate value for GlobalRequest from inside
the Form procedure is a bit more difficult. It is more difficult because
GlobalRequest is read before the file is opened (see Figure 1), early in
the INIT method.

Clarion Magazine - The ABCs of Control Files

http://www.clarionmag.com/v1n6/sub/v1n6abcsofcontrolfiles1.html (3 of 6) [8/9/1999 5:02:43 PM]

Figure 1. The Init method embed points.

Of course, the code in Listing 1 will work perfectly well before "Snap-shot
GlobalRequest" (without the procedure call, of course) and not wreck
havoc on the standard template code (so long as you close the file first).

To ensure that the configuration file is properly opened and read when
the program is started, I use something like:

Listing 2. Opening the configuration file.

Loop
 Access:Config.Open
 Set(Config)
 If Access:Config.Next()
 SetupForm
 Else
 Break
 End
End

in the main procedure’s INIT method. Notice that this code loops until
there is no problem opening and reading the file. Combined with the
code in Listing 1, the form always knows what is required of it.

Summary

Config files aren’t especially difficult. But they do prove just how spoiled
we are. Everywhere else, Clarion sets up the file buffer, accesses files
and sets up forms. When there’s only one record in the file, you’re on
your own as far as these go.

On the other hand, if you can manipulate a configuration file, you know
how to access a file.

In next week’s issue of Clarion Magazine, Nik Johnson takes control files

In This Issue

Working With
Control Files I
Posted on July 27,
1999

Clarion Challenge
String Parser
Final Results
Posted on July 27,
1999

Clarion News,

Clarion Magazine - The ABCs of Control Files

http://www.clarionmag.com/v1n6/sub/v1n6abcsofcontrolfiles1.html (4 of 6) [8/9/1999 5:02:43 PM]

a step further with a class and template. July 1999
Posted on July 27,
1999

Listing 3. Nik and Steve's correspondence.

> I have a single record (configuration) file and, based on what
> I did in CW2003, I used:
>
> Access:Config.Open
> Set(Config)
> Access:Config.Next()
>
> to get that record, but it doesn't seem to be returning the
> correct >field values.Could it be that the error is in my file
> access in the update form:
>
> Access:Config.Next()
> If ErrorCode()
> If ErrorCode() = 35 then ThisWindow.Request = InsertRecord.
> Else
> ThisWindow.Request = ChangeRecord
> End
> ThisWindow.OriginalRequest = ThisWindow.Request
>
> because I noticed (finally) that I had 15 or 16 records in the
> file. Ok, where'd I foul up? (Please...)
>
> TIA
>
> Steve Parker

(Nik Johnson’s reply:)

I think you have to be careful about timing here. What I would
do is have a source procedure which sits between the menu (or
whatever triggers the configuration file update process) and
the update form:

LinkUpdate PROCEDURE

 CODE
 IF NOT Relate:Config.Open
 SET(Config)
 IF Access:Config.Next()
 GlobalRequest = InsertRecord
 ELSE
 GlobalRequest = ChangeRecord
 END
 ConfigForm()
 Relate:Config.Close
 END
 RETURN

This makes sure that the file is open, the record is current
or the buffer cleared) and GlobalRequest is set -before- you
ever get to the update form. In that way you don't have to
worry about little things like the fact that the update
window will internalize GlobalRequest before -it- opens the file.

Clarion Magazine - The ABCs of Control Files

http://www.clarionmag.com/v1n6/sub/v1n6abcsofcontrolfiles1.html (5 of 6) [8/9/1999 5:02:43 PM]

The update form at this point should see no difference between
this call for a singular record and a request from a browse of
many records. Objects are like people. They function best when
given directions in a familiar context.

-Nik

Steve Parker started his professional life as a Philosopher but now tries
to imitate a Clarion developer. A former SCCA competitor, he has been
known to adjust other competitor's right side mirrors -- while on the
track (but only while accelerating). Steve has been writing on Clarion
since 1993.

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - The ABCs of Control Files

http://www.clarionmag.com/v1n6/sub/v1n6abcsofcontrolfiles1.html (6 of 6) [8/9/1999 5:02:43 PM]

http://www.par2.com/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 6
July 1999

String Parser Challenge Results
by Dave Harms

In a previous issue Clarion Magazine issued a challenge to Clarion
developers to write some object-oriented code to parse strings. The five
respondents listed in Table 1 made it through to the final evaluation, and
Carl Barnes submitted the winning entry. All timings were done through
10,000 iterations of the test strings on a P233 laptop running NT4 SP3,
in 32 bit, with debug off.

Name Test 1 Test 2

Carl Barnes 7.1 8.7

Phil Will 10.3 n/a

Gordon Smith 11.0 14.6

Jesper Lorentzen and Maarten
Bijl

12.9 13.6

Chris Hargett 14.7 n/a

Test 1 was included in the example application provided to all
participants, and simply consisted of an English phrase which would be
parsed by code written by the participants. The test then alternated the
words between upper and lower case and wrote them back to the string.
The code which performed the test is shown in Listing 1.

Clarion Magazine - Clarion Challenge Results

http://www.clarionmag.com/v1n6/sub/v1n6challengeresults.html (1 of 3) [8/9/1999 5:02:46 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.clarionmag.com/v1n4/sub/v1n4clarionchallenge-parser.html
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

Listing 1. The first test (English text).

ParserBaseClass.Test procedure
TempString string(200)
x long
 code
 self.Reset()
 self.AddDelimiter(' ')
 self.SetString('This is the test string, which should have '|
 & 'its words alternating between upper case and lower '|
 & 'case. The actual test will parse Clarion code and '|
 & 'capitalize keywords.')
 self.BeforeTest()
 loop x = 1 to self.GetTokenCount()
 TempString = self.GetToken(x)
 if x % 2
 TempString = upper(TempString)
 else
 TempString = lower(TempString)
 end
 self.PutToken(x,TempString)
 end
 return

The Test method in Listing 1 is straightforward. The Reset method clears
any current text in the parser and removes any existing list of delimiters
(which are strings used to separate words or "tokens"). The test then
adds a single space character delimiter and sets the string the parser will
parse.

The BeforeTest method is a placeholder virtual method which allows
participants to call their own code from within the test method, much the
way embed code is added to a Clarion application. Typically this is where
the string is actually parsed. The Test method then loops through the
string’s tokens and alternately sets the case to upper or lower.

As I indicated in the initial challenge, there was a second test which the
contestants did not receive, and which involved parsing Clarion code.
That test is shown in Listing 2.

Listing 2. The second test (Clarion code).

ParserBaseClass.Test2 procedure
TempString string(200)
x long
 code
 self.Reset()
 self.AddDelimiter(' ')
 self.AddDelimiter('.')
 self.AddDelimiter('&')
 self.AddDelimiter('(')
 self.AddDelimiter(')')
 self.AddDelimiter('=')
 self.AddDelimiter(',')
 self.AddDelimiter('-')
 self.AddDelimiter('+')
 self.SetString('self.Text=sub(self.Text,1,self.TokenQ.'|
 & 'Start-1)&clip(Text)&sub(self.Text,self.TokenQ.'|
 & 'Finish+1,Len(Self.Text))')
 self.BeforeTest()
 loop x = 1 to self.GetTokenCount()

Clarion Magazine - Clarion Challenge Results

http://www.clarionmag.com/v1n6/sub/v1n6challengeresults.html (2 of 3) [8/9/1999 5:02:46 PM]

 TempString = self.GetToken(x)
 case upper(TempString)
 of 'SELF'
 orof 'SUB'
 orof 'CLIP'
 orof 'LEN'
 TempString = upper(TempString)
 self.PutToken(x,TempString)
 end
 end
 return

Test2 follows the same approach as Test but adds additional delimiters
to enable the parser to pick out Clarion keywords. The test string
(obtained from Jesper Lorentzen and Maarten Bijl’s entry) contains four
different keywords, so a simple Case statement is sufficient is all that’s
needed. Interestingly there are also no spaces used as delimiters, which
means that no "lucky" parsing can happen (i.e. the parser detects the
string (sub and the test code changes this to (SUB, with the UPPER
having no effect on the parenthesis character.)

Although all the entries passed the first test, two had problems with the
second, and those times aren’t shown.

On the whole the difference between the fastest and slowest code can’t
be considered order-of-magnitude dramatic, but there were considerable
differences in the participants’ implementations. Chris Hargett and Phil
Will both parsed the string on the fly, while the other three entries used
the BeforeTest method to do a one-time parse of the string. There were
some novel approaches to storing the delimiter data, and a number of
variations possible on the implementation of PutToken. As Carl Barnes
noted the ability to change a token’s size complicates the matter
somewhat. I declined to make this part of the test.

My thanks to all of the participants. This one’s been somewhat grueling
because of the complexity of the requirement and the amount of code
that had to be written. As a result future challenges will revert to the
original goal of not requiring more than a few lines of code, if still a bit of
thought.

Download the source

In This Issue

Working With
Control Files I
Posted on July 27,
1999

Clarion Challenge
String Parser
Final Results
Posted on July 27,
1999

Clarion News,
July 1999
Posted on July 27,
1999

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - Clarion Challenge Results

http://www.clarionmag.com/v1n6/sub/v1n6challengeresults.html (3 of 3) [8/9/1999 5:02:46 PM]

ftp://www.clarionmag.com/pub/clarionmag/v1n6/parser.zip
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 6
July, 1999

July 27, 1999

Imaging Templates v1.05 Now Available
This version fixes a few bugs and adds some additional Print Functions.
Included changes are support for Group 4 TIFF files, fixes to the printer
dialog and function, new prompt for initial zoom method, printing images
without opening the image viewer, and printing via the OCX.

Icon Locator/Viewer Source Code
Sterling Data has just released as freeware the source code for Icon
Boss, an icon locator and viewer. Full source code (C4/5 legacy) is
available on the website.

Dev Monitor Available Through Topspeed Accessory Program
Stealth Software’s Dev Monitor product is now available on the TopSpeed
Accessory program. Dev Monitor is tool for tracking development time
and assisting in project estimating. Price is US$199.00, and a free
download of a Lotus Screencam is available.

ABC Free Templates and Tools Updated July 23, 1999
An updated version of the ABC Free Templates and Tools is now
available for download. New features include ABC compliant file opening
for CPCS reports, support for SendMessage API call, an enumeration
template enhancement, form wizard improvements, and more.

Activity Logging And Undo Template
Sterling Data has released LogFlash, an activity logging template which
also offers undo/undelete capability. Includes an extension template for
update forms which logs file changes on a field by field basis. Inserts and
deletes are also logged, and changes to individual fields can be rolled
back. Source code included, ABC compatible. $195

July 20, 1999

C5B Wizatron-Compatible Droplist Query Template
The DropQBE template is a query system compatible with Clarion5B
which can be used in conjunction with the Clarion5 QBE Browse. Queries
can be stored in a table and edited, recalled for later use, sent to a
report etc. Also supports Larry Teames CPCS Report Tools and C5B
Wizatron-generated procedures. A demo is available.

Product Scope 32 Bookmarks V3.8 Officially Released.
Product Scope 3.8 has been released. To download a full install or
upgrade-only version (you must have the full V3.1 or V3.2 or V3.5 install
to use the upgrade) visit the Encourager Software Web Site

Win A Free Tropical Weekend Getaway!
All attendees of the DevCon ‘99 Key West Fest are eligible to win a free
two-night getaway at Hawk’s Cay Resort and Marina. These exclusive
accommodations are just a short drive from Key West and offer
snorkeling, diving, deep-sea fishing, jet skiing and more. The winner will
be announced during the DevCon wrap-up session on Wednesday,
September 29.

In This Issue

Working With
Control Files I
Posted on July 27,
1999

Clarion Challenge
String Parser
Final Results
Posted on July 27,
1999

Clarion News,
July 1999
Posted on July 27,
1999

Clarion Magazine - News July 1999

http://www.clarionmag.com/v1n6/pub/v1n6news.html (1 of 2) [8/9/1999 5:02:48 PM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/cosp_info.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/common/mailinglists.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/authorinfo.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/search.html
http://www.thenextage.com/imagingtemplates.asp
http://www.sterlingdata.com/
http://www.topspeed.com/accessories/devmonitor.htm
ftp://ftp.topspeed.com/THRDPTY/devmon/devdemo.zip
ftp://ftp.topspeed.com/THRDPTY/devmon/devdemo.zip
http://www.dlcwest.com/~sorev/topspeed
http://www.sterlingdata.com/
http://parkcenter.com/products.htm
http://www.encouragersoftware.com/
http://www.clarionmag.com/v1n6/pub/www.topspeed.com/dc99/register.htm
http://www.hawkscay.com/
http://www.net-temps.com/bkoent/direct/HOTPERMNTCLAR.HTML
http://www.kcug.org/etc2000poll.html

SearchFlash 2 for 1 Special Offer
As a special promotion for the SearchFlash templates Sterling Data is
offering two templates for the price of one. Buy SearchFlash and receive
a free copy of the CopyFlash templates. Offer ends July 23, 1999.

July 13, 1999

QuickBooks/Quicken Developers Kit
Intuit Australia now has developers’ kits for QuickBooks and Quicken.
Kits are listed at $195 (Australian currency, presumably) and include
documentation and interface tools. Word is the kit works with all
international versions of Quicken and QuickBooks.

Topspeed Updates Web Site
Topspeed Corporation has given its web site a facelift. Drop by and see
what you think!

C5B Available For Download
C5B is now available from TopSpeed's ftp site. Should you experience
any difficulty with the download process, please contact TopSpeed sales
department at (800) 354-5444.

July 6, 1999

New GCal Build Available
A new build for GCal is now available for download. This build fixes a
couple of minor problems, check help file for details. A preview of the
upcoming GCalPro release is also available.

Mitten Software Offers OOP/API/SQL Training
Mitten Software is now offering a series of training sessions with
Intermediate to advanced level topics at regional locations around the
country. The first few lessions include Randy Goodhew covering OOP and
API and Andy (Cowboy) Stapleton teaching SQL and Clarion. The Clarion
Certification Exam is an option at the Minneapolis location.

Phone, Address, Postal Code Information
Sterling Data has a web page for country format information including
phone numbers, addressing, abbreviations, and postal codes.
Contributions for countries not yet listed are welcome.

Read the June 1999 News

Do you have a news story or press release we should know about? Send
it to editor@clarionmag.com

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without the
express written consent of CoveComm Inc., except as described in the subscription agreement, is
prohibited. If you find this page on a site other than www.clarionmag.com, email
covecomm@mbnet.mb.ca.

Clarion Magazine - News July 1999

http://www.clarionmag.com/v1n6/pub/v1n6news.html (2 of 2) [8/9/1999 5:02:48 PM]

http://www.sterlingdata.com/
http://www.intuit.com.au/developers/
http://www.topspeed.com/
http://www.topspeed.com/products/tsprodupd.htm
http://bizweb.lightspeed.net/~gitano
http://www.mittensoftware.com/
http://www.sterlingdata.com/datax.htm
http://www.clarionmag.com/v1n5/pub/v1n5news.html
mailto:editor@clarionmag.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

	clarionmag.com
	Clarion Magazine Volume1 Number 6 - July 1999
	The Art Of Software Development: Eliminating Bugs
	DAB on FileManager Part 3
	The Clarion Advisor: Free Disk Space
	The SQL Answer Cowboy
	Larry Teames: Reporting With Clarion
	John Morter Customizes C5
	Clarion Magazine Photo Gallery
	Publishing Schedule
	Review: SearchFlash
	Calling OLE Methods Part 1
	Debug Redux
	The ABCs of Control Files
	Clarion Challenge Results
	News July 1999

