
Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

Volume 1 Number 10 - November 1999

Issue Index

The Other Way To Use OLE - Part 3
Now that all the hard work is done, Jim Kane wraps up his three part
series on the other way to use OLE in Clarion with some classes and
templates
(Nov 2,1999)

Clarion 5.5 Preview
You've heard about Clarion 5.5, and maybe you've read TopSpeed's
product announcement. But what's it really like? Carl Barnes offers a
developer's perspective on the cool new features.
(Nov 2,1999)

Freebie: Stephen Mull's Guide To Converting To MS-SQL
Stephen Mull has written a detailed account of his transition from TPS
files to MS-SQL. This is essential reading for anyone considering SQL.
Free access: no subscription required.
(Nov 2,1999)

Presenting Many-To-Many Relationships
Many-to-many relationships are a common part of database designs, but
they can be tricky to present to your users. Tom Ruby explains three
approaches to making M2M work for the end user. Part 1 of 2.
(Nov 9,1999)

Product Review: NiceTouch Dictionary/App Assistant
Aptly named the Dictionary Assistant (DA) and the Application Assistant
(AA), these two products work together as a team to help you document,
understand and keep control of your applications and their dictionaries.
(Nov 9,1999)

Clarion 5.5 Web Development Features
Just how different is Web Builder from its predecessor? A lot! Steve
Parker takes a look at what's new in the web development portion of
Clarion 5.5.
(Nov 9,1999)

Relation Trees:
A Few Of The Finer Points
A serious case of wrist pain brought on by too much listbox scrolling
sends Steve Parker to the manuals in search of a mouse-friendly relation
tree interface for his batch compiler.
(Nov 16,1999)

Presenting Many-To-Many Relationships:
Part 2
Tom Ruby concludes his approach to presenting many-to-many
relationships to the end user.
(Nov 16,1999)

The Clarion Advisor:
Breaking Out Of Nested Loops
Over time some of Clarion's standard control structures have grown new
features. One of these is LOOP, which is more flexible than you may
realize.
(Nov 16,1999)

Clarion Magazine Volume1 Number 10 - November 1999

http://www.clarionmag.com/v1n10/pub/index.html (1 of 2) [12/8/1999 11:24:18 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.developerplus.com/

ABC Design Series: The ViewManager Part 1
The ViewManager is the base class for all ABC browses. In this first of
two articles David Bayliss explains ViewManager fundamentals and
initialization code.
(Nov 23,1999)

November 1999 News
Clarion world news: product announcements, upcoming events, and
more.
(Nov 23,1999)

The Art Of Software Development: Analysis By Design
Software development invariably means encountering and fixing bugs.
But correction just leads to more correction. Forward progress comes
from creating something new, which brings up the twin topics of design
and analysis.
(Nov 23,1999)

Clarion Magazine Version 2!
Some of you may have noticed a few minor changes recently in the
visual appearance of Clarion Magazine, particularly on the main page.
Well, one thing led to another, and as a result in December you’ll be
seeing a brand new look on the web site.
(Nov 23,1999)

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without
the express written consent of CoveComm Inc., except as described in the subscription
agreement, is prohibited. If you find this page on a site other than www.clarionmag.com,
email covecomm@mbnet.mb.ca.

Clarion Magazine Volume1 Number 10 - November 1999

http://www.clarionmag.com/v1n10/pub/index.html (2 of 2) [12/8/1999 11:24:18 AM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 10
Nov 1999

Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

OLE The Easy Way: Part 3

by Jim Kane

Click here to read Part 1

Click here to read Part 2

When I was growing up my father often said to me he couldn’t wait until
I had a son of my own and he did to me some of the things that I did to
my father. Well, my father got his wish and I have a son. Sometimes it
seems my son’s main goal in life is to help my father get even.

Not long ago I had the privilege of helping my son with a math
assignment involving multiplication. While he was doing his work he kept
longing to use a calculator and be done with it. As often as I explained
the importance and virtue of doing it long hand so he learned the
technique, the use of the calculator beckoned. As annoyed as I got at his
insistence at using the calculator, I could not help but remember another
little boy some 35 years earlier who thought memorizing multiplication
tables was insane, and begged his father to let him use a calculator for
math assignments.

Well, for much the same reason, in part one of this series I presented
the assembler calling convention for calling OLE interfaces, and the
Icall.A assembler procedure to call interfaces. Then in part two I outlined
the needed API calls for calling interfaces. Now its time to "get out the
calculator" and use the Icall.A assembler and some of the code and
constants presented in part two to make a reusable OLE class for calling
interfaces. While it isn’t necessary to understand the material in parts
one and two, it certainly would make your life much fuller and richer if
you did!

To review from part two, the basic steps in calling an interface to create
a Windows shortcut are:

Initialize COM (CoInitialize or CoInitializeEX)1.

Get interface pointers (CoCreateInstance and QuerryInterface)2.

Use interface pointers to create the shortcut (IShellLink
methods)

3.

Save the shortcut to disk (IPersistFile methods)4.

Release any interface pointers obtained (Release method of
respective interfaces)

5.

Uninitialize COM (UnCoInitialize)6.

Time to make a plan of attack for creating the class. As I read through
the list, the data item that keeps popping up in the list is interface
pointers. Managing these pointers and making sure they are released
when I’m done is a constant headache with this kind of work. In
addition, there are a few constants associated with each interface that
are not much fun to track. Although not mentioned in the list specifically,
in the code from part two there was a lot of work expended in detecting
and reporting errors. Effectively managing the interface pointers would
help with this.

Above and beyond the sexy interface pointers part of the operation are
step 1 and 6. Gee, they certainly look like simple steps. Anyone thinking
they are simple clearly forgot Microsoft is involved! In part two, I used

Clarion Magazine - OLE The Easy Way: Part 3

http://www.clarionmag.com/v1n10/sub/v1n10olepart3.html (1 of 9) [12/8/1999 11:24:40 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/v1n6/sub/v1n6callingole_part1.html
http://www.clarionmag.com/v1n8/sub/v1n8olepart2.html
http://www.clarionmag.com/v1n6/sub/v1n6callingole_part1.html
http://www.clarionmag.com/v1n8/sub/v1n8olepart2.html
http://www.developerplus.com/

CoInitialize to initialize the windows OLE subsystem. Actually the
preferred API according to Microsoft is
CoIntializeEX(0,ThreadingModel).

The two most common threading models are Apartment and
Multithreaded. In this case, IShellLink uses the apartment model. How
do I know? By the apartment number in the phone book address? Not
quite. Either threading model is known via documentation or the
information is available in the registry.

To make matters worse, depending on the threading model the
initialization goes in different places. For the Multithreaded model,
initialization code can be done one time per application, so it’s easiest to
call it in the frame procedure. For the apartment model, the code needs
to go in the same apartment or thread where the OLE code lives. For
that model it’s best to call the initialization code just before calling the
OLE interface(s), and uninitialize just after.

Well, surely those two "simple" steps are done now. Guess again!
There’s one more wrinkle. CoInitializeEX() is not included in the
TopSpeed lib files so you need to make your own library from Ole32.dll
before CoInitializeEX() will link. One is included with the
downloadable zip. With all this in mind, the class OLECl.CLW was written
to carry out steps 1 and 6.

Figure 1. Code to carry out steps 1 and 6.

CoInit_ApartmentThreaded equate(2)
CoInit_MultiThreaded equate(0)

OLEClType Class,type,module('OLECl.CLW'),
 LINK('OLECl.CLW',_ABCLinkMode_),DLL(_ABCDllMode_)
!Member Data
fInitComm long(0)
ThreadType long(-1)
 ! 0=Apartment model; 2=Multithreaded; -1=illegalvalue
!Methods
InitOLE Procedure(long threadingModel),byte,proc
 !0 is good, else if fatal error
KILLOLE Procedure()
GetOleInitializedCount Procedure(),byte
GetThreadingType Procedure(),long
 End

The InitOLE method calls CoInitializeEX and increases fInitComm.
The KillOLE method does the opposite: it calls UnCoInitialize and
decreases fInitComm. On a good day, when your program is done, the
count of calls to CoInitializeEX should exactly equal count of calls to
UnCoIntialize and GetOleInitializedCount should return 0. That’s on
a good day. InitOLE should be called with a threadingModel parameter
of 0 or 2 for apartment model or multithreaded respectively. Neither of
the last two methods are needed in production code but may be valuable
for debugging. Since it seems I spend most of my life debugging, that
should make them very valuable indeed.

Well wait just a minute. Didn’t I imply in the introduction that this was
going to be easy? Lets take inventory. There’s the Icall.A assembler
module, the OLE32.Lib, OleCl.inc and Ole.Clw for initialization, plus if we
ever get rolling here there will be one or so more classes to deal with
those sexy interface pointers. Time to reach for Clarion’s ace in the hole:
templates. Also in the downloadable zip is OLETPL.TPL which adds all
these bits and pieces to any application that will call an interface.

The template only has two prompts. First it asks for the threading
model: Apartment or Multithreaded. In this case pick Apartment. There
you have it, drop the OleTpl global extension template on an app and it’s
ready to call OLE interfaces. Oh, I did forget to mention one other detail:
the second prompt asks for the name of the class that does the work of
managing interface pointers. Looks like I’d better get busy building that

Clarion Magazine - OLE The Easy Way: Part 3

http://www.clarionmag.com/v1n10/sub/v1n10olepart3.html (2 of 9) [12/8/1999 11:24:40 AM]

piece.

The main goal of the following class is to manage all the interface
pointers, being sure to release all it acquires and manage any errors and
the constants associated with the interfaces. All the code for managing
the interface pointers and errors can be put into a general purpose
helper OLE class. I decided to name it holeClType , short for helper OLE
class. Nothing in that class is specific to this project; it’s just general
purpose interface pointer management.

The basis of the system is a series of equates, three queues and some
beer:

Figure 2. Equates and queues.

!Interface equates
IShellLink Equate(20)
IPersistFile Equate(19)

!method equates with Method offset in the Vtable.
IShellLink_SetDescrip Equate(IShellLink*100H + 1CH)
IShellLink_SetWorkDir Equate(IShellLInk*100H + 24H)

VtableQType Queue,type
VtableID Long
pVtable Long
 end

IIDQType Queue,Type ! pairs an interface with its IID
eInterface long
IID_Address long
InterfaceName string(eDebugLabelLen)
 end

MethodNameQType queue,type
eMethod long
MethodName string(eDebugLabelLen)
 end

IBeerDrink equate(‘JimKane’)

One equate is created for each interface and for each method. In the
code when I want to do any thing with an interface I use the symbolic
name: IShellLink or IPersistFile. If I need to store or retrieve a
pointer to pointer to the interface (see part one for an explanation)
VtableQ.VtableID holds the equate and VtableQ.pVtable holds the
pointer. The importance of this is seen in the release method code.
When the job is complete and it is time to release all remaining pointers,
all that needs to be done is loop through VtableQ and call the release
method for each pointer that was acquired, like this:

Figure 3. The ReleaseAll method.

hOleClType.ReleaseAll Procedure()
I long
Recs long
 Code
 Recs = Records(SELF.VTableQ)
 Loop I = Recs to 1 by -1
 Get(SELF.VTableQ, I)
 If Errorcode() then break.
 SELF.Release(SELF.VTableQ.VtableID)
 end

Clarion Magazine - OLE The Easy Way: Part 3

http://www.clarionmag.com/v1n10/sub/v1n10olepart3.html (3 of 9) [12/8/1999 11:24:40 AM]

Once all the interface pointers are stored in a queue, managing them is
pretty easy.

Likewise in part two I had code that typically went like this:

Figure 4. Previous code to call QueryInterface.

!Get IPersistFile Interface by calling
! QueryInterface in IShellLink
hr = ICall2p(ppVtable_IShellLink, IShellLink_QueryInterface,|
 Address(IID_IPersistFile), Address(ppVtable_IPersistFile))
If hr<0 then
 Clear(ppVtable_IPersistFile)
 Res = Return:Fatal
 Do ProcedureReturn
end

One of the problems is if an error happens (and it always does if
someone is with you watching), and do ProcedureReturn is called, you
don’t know which call failed. Ideally, if you could pair a string containing
the interface name with the pointer to the interface you could make a
more meaningful error message. The remaining two queues pair one of
the equates for an interface or method with its name stored in a string.
The IIDQ also stores the IID for the interface along with the string
name. IIDs are needed in several of the API calls. The information is
loaded by calling these methods:

Figure 5. Typical method calls for loading IIDs.

SELF.AddIID(IShellLink,Address(IID_IShellLink),'IShellLink')
! pair equate IShellLink with its IID
! and name stored as a string
SELF.AddMethodName(IShellLink_SetPath,'IShellLink_SetPath')
! pair IShellLink_SetPath equate
! for the IShellLink SetPath
! method with its name stored in a string

Now use the information stored in the management queues to redo the
above call to QueryInterface:

Figure 6. The QueryInterface code.

hOLEClType.QueryInterface Procedure(long eInterfaceToQuery,
 Long pIIDNeeded, long eInterfaceNeeded)
pVtableNeeded Long(0)
pVtableToQuery long(0)
hr long(0)
 code
 !using the interface equate, get the pointer
 pVtableToQuery = SELF.GetVtable(eInterfaceToQuery)
 If ~pVtableToQuery then Return Return:Fatal. !abort on error
 HR = ICall2p(pVtableToQuery, eQueryInterface, pIIDNeeded,|
 Address(pVTableNeeded))
 If SELF.Failed(HR,'QueryInterface', eInterfaceToQuery, |
 eQueryInterface) !make the call and handle errors
 Return(Return:Fatal) !on failure return an error code
 else
 ! On success add the new interface pointer to the vTableQ
 Return(SELF.AddVtable(eInterfaceNeeded, pVtableNeeded))
 end

Clarion Magazine - OLE The Easy Way: Part 3

http://www.clarionmag.com/v1n10/sub/v1n10olepart3.html (4 of 9) [12/8/1999 11:24:40 AM]

Notice the Failed method is called with the equates for the interface and
method so it can use the information in the queues to manufacture a
decent error message or progress message. Depending on a simple
setting, Failed will display a message on both success and failure so
you can follow the progress of the code, on error only for debugging, or
display no messages for released code. For details examine the code for
the Failed method in the downloadable code.

Notice in the above discussion of the three principle queues nothing was
specific to the current project of creating a shortcut. For any specific
project just take holeClType and derive the class to add the code
specific to your problem. HoleClType also contains another helper class
called strcl, short for string class, that helps with wide string to C or
Clarion string conversions which you will also need. It also can handle
bstrings but that code will not be needed for this project.

While I will not specifically discuss the string class one method needs
special mention. When presented with a cstring that needs to be
converted to a wide string, there is always a problem knowing how much
larger a buffer or string to allocate at compile time for the wide string.
To solve that problem the CtoWStrAlloc method dynamically allocates
memory for the wide string output, and the caller is required to dispose
of it. While not revolutionary, it is a valuable technique that may be of
interest to some.

Very often when I write a class that I know will be derived each time it’s
used, I write a starter class that reminds me how to derive the class and
of some things I may want to do. If the reader (that would be you)
would like to follow along on how to build the final class, open the
downloadable zip file and load OLEStart.Inc and OleStart.Clw. That is my
"cheat sheet" for starting an OLE interface project. Just unzip the
downloadable zip file to an new directory, register the template if it is
not already registered then rename OleStart.clw and OleStart.inc to
something related to your project.

In this case I used scut.clw and scut.inc. So the first task is to rename
OleStart then do a search and replace for OLEStart and replace with
ScutCl through both files. Notice Scut.Inc includes holeCl.inc and
strcl.inc. As a result, I don’t need to add those files to the project, just
Scut.inc which in turn will add holecl.inc and strcl.inc. Notice also the
Class(HoleClType) which tells the compiler this class is derived from
HoleClType. With that done, Scut.Inc looks like this:

Figure 7. The ScutClType class.

!ABCIncludeFile

OMIT('_EndOfInclude_'_SCutPresent_)
SCutPresent EQUATE(1)

!Other Classes
 Include('HoleCl.Inc')
 Include('StrCl.inc')

!Equates - will be seen by using program
ScutClType Class(hOleClType),type,module('Scut.CLW'),
 LINK('SCut.CLW',_ABCLinkMode_),DLL(_ABCDllMode_)
Init Procedure(byte pDebugMode=0),byte,proc
Kill Procedure()
 end
 !_EndOfInclude_

As can be seen, there is nothing in this class other than the Init and
Kill methods! The method I need is:

CreateShortCut Procedure(ShortCutStructType ShortCutStruct),byte

Clarion Magazine - OLE The Easy Way: Part 3

http://www.clarionmag.com/v1n10/sub/v1n10olepart3.html (5 of 9) [12/8/1999 11:24:40 AM]

In support of that prototype I also need to add the ShortCutStructType
that collects the information needed to create a shortcut:

Figure 8. Data structure for creating shortcuts.

ShortCutStructType Group,type
lpTarget long !can't be 0
lpDesc long !can be 0
hotkey ushort !can be 0 or a keycode
lpIconPath long !May not be null, but can use
 ! same value as lptarget
IconIndex ushort !0 is the 1st icon
lpWorkingDir long !Can be 0 or NULL
lpLinkFileName long !file name with optional path for
 ! the .lnk file to create
SpecialLocation long !special location to
 ! create shortcut, 0=desktop
 end

With that added before the class definition, Scut.inc is ready!

Now, open Scut.clw and change OLEStart to ScutCl as before. Notice
OleStart had places reserved to add the interface and method equates:

!Equates for Interfaces
!1-19 is reserved for hOleCl interfaces
 Itemize(20)
 !List all interfaces called here
 end
!Vtable Offset - List all methods called
!Method equate(Interface*100H + 0CH)

The method equate is manufactured from its interface name plus the
offset down the vtable required to get to the method. This serves to
make a unique equate for the method and stores the offset. To complete
this task, fill in the list of interfaces in the itemize list and the list of
methods in the method list. Once again, the method offsets come from
.h files (Ask Bill syndrome again!).

The Init and Kill methods are fairly self explanatory. Since Scutcl is
derived from hOleClType to be sure the hOleClType class’s Init and Kill
methods are called. The format is as follows:

Figure 9. The Init and Kill methods.

ScutClType.Init Procedure(byte pDebugMode=0)
Res byte,auto
 code
 Clear(SELF)
 res = Parent.Init(pDebugMode)
 If ~Res then
 SELF.AddIID(IShellLink,Address(IID_IShellLink),|
 'IShellLink')
 SELF.AddMethodName(IShellLink_SetPath,|
 'IShellLink_SetPath')
 !Other interfaces and methods deleted for clarity
 end
 Return(Res)

ScutClType.Kill Procedure()
 code
 Parent.Kill()

Clarion Magazine - OLE The Easy Way: Part 3

http://www.clarionmag.com/v1n10/sub/v1n10olepart3.html (6 of 9) [12/8/1999 11:24:40 AM]

 Return

Notice the general pattern of:

code
 !code before parent call
 !Parent call - calls corresponding hOleCl method
 !Code after call to parent
 return

This ensures the parent holecl methods are called. As you may guess, on
Init hOleClType needs to create the queues I described and destroy
them on Kill. One of the side benefits of deriving a class is all these
mundane details can be hidden in the base class or down in the ‘hole’ in
this case! I just love to put the busy work out of site so I can
concentrate on the rest.

After CreateShortCut validates the data, the next task is to get the two
interfaces needed by calling CoCreateInstance and then
QueryInterface method to get the second interface. Since calling
CoCreateInstance and QueryInterface is something that is very
common and happens many times in any OLE program, there are special
methods for each in hOleClType. The code is as follows:

!Get the IShellLink Interface with CoCreate
 If SELF.CoCreate(Address(Clsid_IShellLink), IShellLink) |
 then return(Return:Fatal).

 !Get Ipersist_File from QueryInterface
 If SELF.QueryInterface(IShellLink, Address(IID_IPersistFile)|
 , IPersistFile) then Return(Return:Fatal).

Take a minute and compare these two calls with the originals in part
two. They’re much less complicated. Progress! I may get out of this alive
after all. The really nice thing is all the busy work not specific to this
project is hidden down in holeClType and can be reused in any OLE
project. In fact, I’ve used it in several projects already. Upon inspection
holeClType has several "hidden" features not needed for this project but
which are so commonly needed on larger similar projects that they are
included.

The next section of code tells the IShellLink interface different
properties needed for the short cut. This involves using the Icall.A
assembler piece. However, you need not panic; it’s well wrapped in
holeClType so it should not be too scary.

!Set Short Cut Attributes
If SELF.ICall(1, IShellLink, IShellLink_SetPath, |
 SCS.lpTarget) Then Return(Return:Fatal).
If SELF.ICall(2, IShellLink, IShellLink_SetIconLoc,|
 SCS.lpIconPath, SCS.IconIndex) Then Return(Return:Fatal).

Clarion Magazine - OLE The Easy Way: Part 3

http://www.clarionmag.com/v1n10/sub/v1n10olepart3.html (7 of 9) [12/8/1999 11:24:40 AM]

The first parameter (1 or 2) above tells Icall how many parameters will
be passed to the interface. This is followed by the equate for the
interface and method to call. In other words, the first line above calls
IShellLink.SetPath(SCS.lpTarget) where SCS.lpTarget is the
address of the file name to which the shortcut should point. This
information is passed to the CreateShortcut method. All the details of
getting the vtable pointers and method offset are taken care of in the
holeClType never to be written again! On error, just return with a result
code of return:fatal which signals the error condition.

The next section of code gets the path to the location where the
shortcutshould go. This is often the desktop or some other special place.
After calling two APIs to get the path, the code stores the path in the
local variable szpath, a cstring. Unfortunately the last interface call
requires a wide string. Since the length of the path string is unknown at
compile time, the code will allocate heap memory for the wide string.
The alternative would be to allocate a very large buffer certain to take
care of any path. This is the ctowstralloc call in the string class
mentioned earlier:

Figure 10. Convert to a wide string and save the shortcut.

!Now convert to a wide string
wszLinkFile &= SELF.StrCl.CtoWideStrAlloc(szPath)

!Last but not least, save the shortcut to disk
! then cleanup and exit:
Res = SELF.ICall(2,IPersistFile, IPersistFile_Save, |
 Address(wszLinkFile), True)
Dispose(wszLinkFile)
If res then Return Return:Fatal.

Notice after the final interface call that rather than testing immediately
for an error, the dynamically allocated wide string is disposed of and
after that a test for error on the last Icall is done.

As soon as the last call completes the shortcut is created. All that
remains is to release all the interface pointers and clean up. Because all
the interfaces are neatly stored in queues, to release them just loop
through the queue and call the release method. This is already coded in
the Kill method so all you have to do is call scut.Kill(). The code
that actually goes in the application to create the shortcutis as follows:

Figure 11. Application code to create the shortcut.

OLECl.InitOLE(CoInit_ApartmentThreaded)
ScutCl.init(2) !0=no errormessages, 1=msg on error only,
 !2=verbose=msg on sucess and fail
Clear(ShortCutStruct)
!pgm to run when shortcut clicked
ShortCutStruct.lpTarget = Address(Target)
!Optional descriptions
ShortCutStruct.lpDesc = Address(Desc)
!Shortcut .lnk file name
ShortCutStruct.lpLinkFileName = Address(LinkFileName)
!Optional working directory
ShortCutStruct.lpWorkingDir = Address(WorkingDir)
!Take icon from target file
ShortCutStruct.lpIconPath = ShortCutStruct.lpTarget
!0=Desktop
ShortCutStruct.SpecialLocation = SpecialLocation
If ScutCl.CreateShortCut(ShortCutStruct)
 Message('Create Shortcut Failed')
else
 Message('Create Shortcut Worked')

Clarion Magazine - OLE The Easy Way: Part 3

http://www.clarionmag.com/v1n10/sub/v1n10olepart3.html (8 of 9) [12/8/1999 11:24:40 AM]

end
SCutCl.Kill()
OLECl.killOLE()

When the demo SCUTABC.EXE is run the success (or failure) of each and
every call is reported in a message since the ScutCl.init method was set
for verbose. There are quite a few messages. To bad we don’t get to bill
customers by the step or message box! When ever you get tired of the
messages just recompile with a debug setting in scut.init of 0 or 1. There
are a few other goodies in holeClType for common OLE tasks such as
memory allocation and expanded error handling which are available
should you need them.

The nice thing is the next time out there is much less work now that the
helper OLE Class is done. Just add the template, create the top level
project specific class from OLEStart.CLW and call OLECL.INIT to initialize
OLE. Then initialize the top level class and off you go.

Download the source code

Jim Kane was not born any where near a log cabin. In fact he was born
in New York City. After attending college at New York University, he went
on to dental school at Harvard University. Troubled by vast numbers of
unpaid bills, he accepted a U.S. Air Force Scholarship for dental school,
and since graduating has served in the US Air Force. He is currently the
Officer in Charge of Dental Facility Design at USAF Dental Investigation
Service in San Antonio, Texas. In his spare time, he runs a computer
consulting service, Productive Software Solutions, which he hopes to run
full time after retiring from the US Air Force Dental Corps in June 2000.
He is married to the former Jane Callahan of Cando, North Dakota.Jim
and Jane have two children, Thomas and Amy.

In This Issue

The Other Way To Use
OLE - Part 3
(Nov 2,1999)

Clarion 5.5 Preview
(Nov 2,1999)

Freebie: Stephen Mull's
Guide To Converting To
MS-SQL
(Nov 2,1999)

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without
the express written consent of CoveComm Inc., except as described in the subscription
agreement, is prohibited. If you find this page on a site other than www.clarionmag.com,
email covecomm@mbnet.mb.ca.

Clarion Magazine - OLE The Easy Way: Part 3

http://www.clarionmag.com/v1n10/sub/v1n10olepart3.html (9 of 9) [12/8/1999 11:24:40 AM]

ftp://www.clarionmag.com/pub/clarionmag/v1n10/v1n10ole.zip
mailto:Jkane@compuserve.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 10
Nov 1999

Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

Clarion 5.5 Beta Sneak Peek

by Carl Barnes

As you’ve probably heard by now TopSpeed has released the first beta of
Clarion 5.5. The main emphasis of this release is an all new
implementation of a Java-free Clarion Internet Connect and numerous
other internet features. But 5.5 also will contain many enhancements
that will benefit every Clarion developer.

Application Tree

The first big change you'll notice in the AppGen is the Application Tree
now has a pane on the right side. This is called the Split Pane View. It
provides almost all of the procedure information without your having to
open the procedure and dig around. The best part is when you double
click on a row in the Split Pane View, the property dialog (or source
editor) for that object opens. For example, if you double-click on an
embed point, the editor opens with the embed source code. If you
double-click on a window control, the control property window opens.
Clicking on the Window folder opens the Window Formatter.

Figure 1: Application Tree (click here for a full-sized image)

Clarion Magazine: Clarion 5.5 Sneak Preview

http://www.clarionmag.com/v1n10/sub/v1n10c55preview.html (1 of 8) [12/8/1999 11:24:44 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.developerplus.com/
http://www.prodomus.com/
http://www.clarionmag.com/v1n10/sub/55peek-fig-1.gif
http://www.clarionmag.com/v1n10/sub/55peek-fig-1.gif

This looks to be a big productivity enhancement, especially for the many
small changes made when testing and tweaking. You no longer have to
drill down through multiple dialogs to get to the details. There are many
possible enhancements that can be made to this new method of working.
Only the mouse double click has been assigned so far leaving
combinations with Control, Alt and Shift as well as the right mouse key
for other shortcuts.

Also new is the Modified tab which lists the procedures in last modified
date order. Often you will work on several procedures that do not sort
together on any of the existing procedure tree tabs. This normally results
in a lot of tab changing, scrolling and hunting around as you switch from
one to the other. Recently modified procedures now appear near each
other on this tab. And if something is broken it probably happened in one
of the more recently modified procedures. This should be another
timesaver. (If you are using VCS this tab also splits out Modifiable
procedures from Readonly ones.)

Property Editors

New to the Window and Report Formatters are Property Editor windows
that allow viewing and changing control properties in a list format rather
than a dialog. These windows come in two flavors, the tree view shown
in Figure 2 and the column view in Figure 3. The tree view is similar to
the Split Pane View showing the controls on the left: when a control is
selected, all of its properties are listed in the right pane. The properties
are in a tree structured like the tabs and entries of the existing control
property dialogs. This makes the transition to using the tree very easy.
(The existing control property dialogs still exist.)

Figure 2: Window Property Editor Tree View

Clarion Magazine: Clarion 5.5 Sneak Preview

http://www.clarionmag.com/v1n10/sub/v1n10c55preview.html (2 of 8) [12/8/1999 11:24:44 AM]

The Property Editor allows you to update multiple control settings at
once using edit-in-place. In Figure 2 three buttons are selected in the
left pane, and the properties they have in common are shown in the
right pane. Properties that do not have the same value for all selected
controls are shown in italics.

One other nice feature of the tree view of the window is that it shows
you the exact structure of the window and order of the controls. On the
toolbar are up and down icons that can be used to change the control
order. This replaces the old Set Control Order… function on the edit
menu.

The Property Editor’s column view, shown in Figure 3, is like a
spreadsheet with one control per row and its properties listed across in
columns. You can define the columns to be displayed and their order.
Also, the list of controls can be sorted by any column. This is handy for
viewing or changing the same property across many controls when the
value for each control could be different.

Figure 3: Property Editor Column View

In the alpha copy I tested the Column View did not yet allow editing the
property values. Also the column picker needs work; in the alpha it has a
simple list of field prompts in alphabetical order. For example, the
prompt for the font name is "Name" which is not too descriptive and is
shared by another field. I would prefer a tree structure.

The new Property Editor also shows up in the dictionary. It works in a
similar fashion letting you view and edit file, field, key and relationship
properties in one place. In the current alpha it is rather limited, only
allowing the editing of the basic information shown in Figure 4.

Figure 4: Dictionary Property Editor Tree View

Clarion Magazine: Clarion 5.5 Sneak Preview

http://www.clarionmag.com/v1n10/sub/v1n10c55preview.html (3 of 8) [12/8/1999 11:24:44 AM]

The tree on the left can be changed to a list sorted by label or type.
There are useful options for putting all of your fields labeled "Name"
together or sorting all of the keys together. The tree on the right also
can be viewed as list sorted by property name or value. As in the
Window Property Editor you can choose a column view and select
multiple fields for making mass changes. Once this has more dictionary
properties added it should be a very handy tool, letting you view and
edit much of your dictionary in one single dialog.

Embeditor

New in the embeds list is a button below the Source button labeled
Filled. This calls the embeditor the same way as the Source button does
except only embeds that contain source are generated. This reduces the
time to generate the source and cuts the clutter of having every possible
embed point and virtual class generated. This is somewhat like the
current module editor except you can edit the embed code. This will be
another nice timesaver. It also will be a useful alternative to Module view
when you want to read just the actual source of your procedure.

Figure 5: Embeds List

Class Viewer

The Class Viewer has been given a facelift and has a few enhancements.
The colored text has been replaced by colored icons to indicate Private,
Public, Virtual etc. (however there is no legend for the icons). There is a
new option to omit inherited methods and properties. The files tab
formerly showed just the classes contained in the file; now it shows
properties and prototypes for each class. Interfaces are also shown on all
views. More on that later.

Clarion Magazine: Clarion 5.5 Sneak Preview

http://www.clarionmag.com/v1n10/sub/v1n10c55preview.html (4 of 8) [12/8/1999 11:24:44 AM]

Figure 6: Application Builder Class Viewer

The interaction between the templates, the ABC classes and the AppGen
have been formalized and improved. Every place in the IDE that requests
a class name now has a drop list containing every ABC compliant class.
In prior versions you had to type the name.

Other Dictionary Changes

The dictionary editor, which now has the aforementioned property editor,
has also been given a face lift. The current text buttons have all been
replaced by a tool bar at the top using icon buttons. User options, which
are used extensively by the Wizatrons, are now displayed and edited in a
table rather than a single text control.

Figure 7: Dictionary User Options

Clarion Magazine: Clarion 5.5 Sneak Preview

http://www.clarionmag.com/v1n10/sub/v1n10c55preview.html (5 of 8) [12/8/1999 11:24:44 AM]

One other change to the complete IDE which is very apparent in the
dictionary is the use of SQL terminology. "File" has become "table" and
"field" has become "column." In the Split Pane View screen shot (figure
1) you'll see on the top right the Tables folder that lists the…well…it lists
the files.

Interfaces

Clarion 5.5 implements the OOP concept of interfaces, which are also in
Java (though Clarion’s implementation is a bit different). An interface is
just a special form of class declaration that has some special rules. An
interface contains no properties (data) or code in the methods, just the
prototypes for the methods. A class then IMPLEMENTS() the interface and
provides the code behind the methods. All interface methods must be
defined by the implementing class.

Listing 1 shows the interface between a window and a component of the
window, for example a browse list. This interface allows the
WindowManager class to control the component in a standard and specific
way. In C5 the WindowManager has specific code for handling the browse
class and every other class it controls. This has changed quite a bit in
5.5. Look at the AddItem methods and class reference queues it uses for
each class it controls. For example, the window controls browses and file
drops with very similar and redundant code and queues. Just the names
change.

Code Listing 1: Interface Definition of Window Component

WindowComponent INTERFACE
Kill PROCEDURE
Reset PROCEDURE(BYTE Force)
ResetRequired PROCEDURE,BYTE ! 1 if reset of window required
SetAlerts PROCEDURE
TakeEvent PROCEDURE,BYTE
Update PROCEDURE ! Everything but the window!
UpdateWindow PROCEDURE
 END

BrowseClass CLASS(ViewManager),IMPLEMENTS(WindowComponent)…

BrowseClass.WindowComponent.Reset PROCEDURE(BYTE Force)
 CODE
 SELF.ResetSort(Force)

BrowseClass.WindowComponent.ResetRequired PROCEDURE
 CODE
 RETURN SELF.ApplyRange()

BrowseClass.WindowComponent.Update PROCEDURE
 CODE
 SELF.UpdateViewRecord

ComponentList QUEUE,TYPE
WC &WindowComponent
 END

WindowManager.ResetBuffers PROCEDURE(BYTE Force)
I UNSIGNED,AUTO
 CODE
 LOOP I = 1 TO RECORDS(SELF.ComponentList)
 GET(SELF.ComponentList,I)
 SELF. ComponentList.WC.Reset(Force)
 END
!Above code is altered, replaced CL with ComponentList

Clarion Magazine: Clarion 5.5 Sneak Preview

http://www.clarionmag.com/v1n10/sub/v1n10c55preview.html (6 of 8) [12/8/1999 11:24:44 AM]

Through the use of standard interfaces this code can be reduced to one
AddItem method, one queue of WindowComponent interface references
and one set of code for all classes that implement the interface. This
eliminates a bunch of duplicate code and makes it possible to add new
components to a WindowManager object without adding any new code.

In Listing 1 the 5.5 BrowseClass IMPLEMENTS(WindowComponent). It now
contains code for each of the seven methods of the interface (only three
are shown). These methods simply call the appropriate Browse class
method. FileDrops and any other components implement the same
interface methods. When the Window Manager wants to reset
component buffers it now uses the interface methods to do it. Previously
the Window Manager called the Browse Class and File Drop Class reset
methods directly.

Interfaces allow the Window Manager to be more abstract, contain less
code and provide a standard framework for creating new classes that the
Window Manager can control. This new additional to the Clarion
language will allow a lot of expansion in ABC without the base classes
growing into a tangled mess of redundant code. After reading and
comparing the new ABC code many times it suddenly hit me how cool
interfaces are. It’s like DAB said, "understanding OOP takes about one
second, after a few months of reading." If you don’t get interfaces yet,
keep reading.

Other Bells and Whistles

Here are some of the other new features in 5.5:
Reports and process templates may now implement the QBE class.●

File loaded drop boxes inherit the BrowseClass to allow page
loading

●

The FILEDIALOG() directory picker in 32-bit is now the Windows
standard control

●

New ASTRING data type - see your Windows API under the topic of
Atoms

●

A procedure prototype can now specify that a string passed by
address is a constant and cannot be changed by the procedure,
e.g. MyProc(CONST *CSTRING MyCString)

●

The DATE() function leap year bug has been fixed●

New enhanced version of VCS features a source compare tool●

New version 5.5 of Data Modeller●

Wizatrons have been refined extensively with many tweaks and
improvements

●

5.5 will contain all the latest bug fixes and many minor
enhancements

●

Product Registration: Late Breaking News!

The 5.5 Beta 1 has a copy protection scheme that requires registering
each machine you install on and getting an unlock code specific to that
machine. BUT WAIT! I have it from Roy Rafalco that this will be changed
before final release. The new plan will require you to register your copy
only once and you will get an unlock that will work on any machine.
Should you have any trouble registering Beta 1 an unlimited unlock code
is available from Team TopSpeed members or from TopSpeed.

This change to the registration process does not change TopSpeed's
license agreement which requires you to buy one copy of Clarion per
developer. This is an industry standard and very reasonable. You know it
so don't play dumb. The price of Clarion is cheap compared to what it
can produce. I spend much more on hardware and it does nothing for
me without software.

If you are some company buying a single copy of Clarion (or my
software!) for use by multiple developers I think you deserve a swift kick
to the side of the knee joint. This should give you a life long limp to
remind you how your short-sighted cheapness is ripping off software
developers!

That wraps up the sneak preview of Clarion 5.5. The new Split Pane

Clarion Magazine: Clarion 5.5 Sneak Preview

http://www.clarionmag.com/v1n10/sub/v1n10c55preview.html (7 of 8) [12/8/1999 11:24:44 AM]

View, Property Editors and Filled Embeditor features will shave time off
your development efforts and provide you with better ways to view and
mass-change application and dictionary data. ABC’s better
implementation in the IDE will help make the IDE a bit easier to use. The
addition of standard interfaces to the Clarion language and their use in
ABC will add more abstraction and reduce the code needed for new
functionality.

You can see that London has been very busy adding features that make
Clarion easier and faster to use. They have been spending much more
time adding some incredible web features to 5.5. Read about it in next
week's article by Steven Parker.

Carl Barnes is an independent consultant working in the Chicago area.
He has been using Clarion since 1990, is a member of Team TopSpeed
and a TopSpeed Certified Support Professional. He is the author of the
Clarion utilities CW Assistant and Clarion Source Search.

In This Issue

The Other Way To Use
OLE - Part 3
(Nov 2,1999)

Clarion 5.5 Preview
(Nov 2,1999)

Freebie: Stephen Mull's
Guide To Converting To
MS-SQL
(Nov 2,1999)

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without
the express written consent of CoveComm Inc., except as described in the subscription
agreement, is prohibited. If you find this page on a site other than www.clarionmag.com,
email covecomm@mbnet.mb.ca.

Clarion Magazine: Clarion 5.5 Sneak Preview

http://www.clarionmag.com/v1n10/sub/v1n10c55preview.html (8 of 8) [12/8/1999 11:24:44 AM]

http://www.carlbarnes.com/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 10
Nov 1999

Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

Converting C5b Legacy Apps
From TPS To MS-SQL 7.0

by: Stephen Mull, MCSE

This document relates my experiences and findings while performing a
conversion of a large C5b Legacy app from TPS to Microsoft SQL Server.
This document is based on Clarion 5b Enterprise Edition and MS-SQL
Version 7.0. Using different versions of Clarion or MS-SQL Server may
require different approaches, but information relating to file structures
should still apply. I do not cover the details associated with MS-SQL 7.0
setup in this document, except where it relates to my Clarion application.

I have been using Clarion for Windows since the first release, and feel it
is the finest RAD tool available anywhere! This was my first application
involving the usage of a SQL based backend. While the initial learning
curve has taken some time, I would certainly recommend the usage of
SQL whenever possible.

My initial learning experiences began with reading the Clarion
documentation, searching the newsgroups, and reading two really good
articles relating to using Clarion with SQL. One is Rick Hoffmann’s
"MS-SQL Tips and Tricks and C5", and the other is a summary of the
presentation by Scott Ferrett at Euro Devcon ’99 in Amsterdam. While all
of the available information was indeed helpful, there was no single
source covering the details of my specific needs. I felt my experiences
might be of some assistance to other developers, thus this article.

It is important to understand that you, the developer, must use your
best judgment regarding the usage of this information. While I feel I am
relating accurate information based on my experiences, your situation
may be different, thus requiring different approaches. On we go!

MS-SQL Server 7.0, MS-SQL Server – Desktop Edition
7.0, MSDE, ODBC, MS-SQL Accelerator
What Works And What To Use

What works and what to use? There are a variety of choices. After
investigating the options available, I chose to use the Clarion MS-SQL
Accelerator instead of ODBC. I also decided that MS-SQL Server 7.0 was
the best choice. I would not recommend you use prior versions as
Version 7.0 is far superior and free from headaches for the most part.
The finished application will also work fine with MS-SQL Server 7.0
Desktop Edition.

Other approaches including using the MSDE or ODBC probably work fine,
but my choices seemed to be the most reliable and straightforward
approach for my project. Whatever choices you make, if you use
Windows 95 as your platform you will need to install the DCOM updates
first, and then the new MS-SQL ODBC driver (3.7x). The new ODBC
driver is recommended with MS-SQL 7.0. These are all included with the
MS-SQL 7.0 CD.

Changes To The Dictionary

The first thing to do is create a backup of everything! I suggest you start

Clarion Magazine - Converting From TPS To SQL

http://www.clarionmag.com/v1n10/pub/v1n10convertingtosql.html (1 of 9) [12/8/1999 11:24:47 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.mullusa.com/
http://home.tampabay.rr.com/rhoffman/
http://www.clarionmag.com/v1n4/pub/v1n4convertingtosql.html
http://www.developerplus.com/

with a new directory for the SQL app, and copy your existing app, dct,
etc. to the new directory. You do not need to move the existing TPS
tables into the new directory. You may use them later to copy the data
to the SQL server, should you wish to do so. This will be discussed later
in this article.

The first thing I had to do was make changes to the existing field
definitions. Refer to the following table, which worked perfectly for me,
excluding dates (to be discussed shortly).

The following table of field type equates is excerpted from Rick Hoffman’s paper.
Some changes and additions have been made to the original content.

SQL Field Type Clarion Field Type

CHAR(20) STRING(20)

VARCHAR(20) CSTRING(21)

INT LONG

BIT BYTE

DATETIME STRING(8) OR Date OR Time

GROUP(Over String(8))

DATE ! you modify these fields

TIME ! you modify these fields

END

SMALLDATETIME STRING(8)

GROUP(Over String(8))

DATE ! you modify these fields

TIME ! you modify these fields

END

DECIMAL(18,4) DECIMAL(18,4)

FLOAT REAL

IMAGE STRING(2048)

MONEY DECIMAL(19,4)

NUMERIC DECIMAL(18,4)

REAL SREAL

SMALLINT SHORT

SMALLMONEY DECIMAL(10,4)

SYSNAME CSTRING(31)

TEXT STRING(2048)

TIMESTAMP STRING(8)

TINYINT BYTE

Clarion Magazine - Converting From TPS To SQL

http://www.clarionmag.com/v1n10/pub/v1n10convertingtosql.html (2 of 9) [12/8/1999 11:24:47 AM]

VARBINARY STRING(255)

STRING MEMO *see below

Global And Local Data Definitions

Don’t forget to update all of your global and local definitions as well –
they are easily overlooked! You will also need to add something along
the lines of GLO:Owner for the owner name of each table (discussed
below).

STRING To CSTRING

Look at the following string comparison: 'Dog' ~= 'Dog '. With
MS-SQL 7 tables, the trailing spaces become an issue when comparing
field values. In most cases, this is only an issue of importance with key
components as they are used with relational links and filters. I still
recommend you change all of them accordingly. If you use CSTRINGs
instead of STRINGs (highly recommended), then Clarion treats the
trailing spaces in the same manner as the SQL 7 system. I encountered
no problems doing this. Just remember that STRING(20) = CSTRING(21)
in Clarion, so add the extra length in your field definitions or you may
end up with truncated data!

MEMO To STRING

The MS-SQL driver does not support MEMO. Instead, you may create
your memo fields as a very large string. As your SQL app is 32bit, you
do not have a 64K record limit to be concerned with. After you make this
change, you will find that you will no longer be able to display and
update the "memo" contents in the form you used with MEMO. What you
need to do to correct this is go to the DCT, go to that fields display
properties tab and change the control type from Entry to Text. Then go
to the form, repopulate the field onto the form, and it will work properly
once again.

DATE - TIME To DATETIME

My DCT contains fields which store both date and time as Date and Time.
I left these "as is", and upon sync with SQL 7.0 server, they were
automatically converted to DATETIME and continued to function
perfectly. Do not confuse DATETIME with DATETIMESTAMP on the SQL 7
server; they are different. I store my date values from within the app.
This was appropriate for my application, but leaves the possibility of the
data being incorrect if the workstation’s date and time are not correct.
Having SQL 7 insert date values is also possible, and will insure the
correct date and time are used. If you do this, the SQL 7 Server will try
to populate a DATETIME field with the date and time. It is possible to get
around this, but I avoided it completely.

As I mentioned above, I store my dates and times separately. Clarion
supports the DATETIME via a Group, as illustrated in the chart above,
but reporting and filtering with it is a hassle I chose to avoid. Avoid
storing various date and time data as a LONG. If you store as a
DATETIME, your data will be usable with 3rd party products such as
Crystal Reports, Access, Excel, etc.

Field Names And Definitions

I left my field names and key names the same, and all worked perfectly.
There is a maximum field name length on MS-SQL tables, so be aware if
you have excessively long field or key names. Regarding the use of
external names, try to maintain identical field names. If for any reason
the Clarion dictionary and the MS-SQL field names differ, you should set
the External Name in the Clarion dictionary to the MS-SQL field name.
Since you will sync from the DCT to the SQL 7 server, you should not
encounter any issues in this area. Remember to update all field
definitions to match the above list. One note about initial values and
case: initial values will be set correctly using legacy code, even using
recursive entries, but will not be set correctly using ABC, except on an
initial insertAs far as case goes, it works fine, but keep in mind how this
will relate to keys and NOCASE support, as mentioned below.

Clarion Magazine - Converting From TPS To SQL

http://www.clarionmag.com/v1n10/pub/v1n10convertingtosql.html (3 of 9) [12/8/1999 11:24:47 AM]

Of Keys And Indexes

Make sure all tables have a unique key. This is very important! Also
realize that unlike Topspeed files, there is not a hidden record number in
SQL 7 tables. You must inform the driver how to uniquely identify a
record. To accomplish this, at least one unique key must be defined for
each and every MS-SQL table. Do not use indexes with the MS-SQL
driver, as they will not work properly.

Be sure to set all keys to either case sensitive or case insensitive. You
must not attempt to use a mixture of both with your keys. The MS-SQL
server’s performance will suffer greatly if you do so. I learned this first
hand! You must also not use GROUP fields as part of your keys. To
restate this, fields within a group may be used as part of a key, but do
not use any GROUP field in your key. I did not have any keys of this
type, so I encountered no problems.

For files that required a unique record number or ID, I created a field
called RecordID (@s18) for the file, and supplied its value from the app
rather than the server. You may use the server to auto-populate this
with an incremented number. To do this with MS-SQL, use an
appropriate data type, most likely integer, and make it part of a unique
key. Then mark the key as auto incrementing, exactly like you would in
a Topspeed file. NOTE: Topspeed and others claim this works, but I was
never successful in getting this to work properly. My method was to use
Date() & Clock() on INSERT. Please don’t call me crazy; it works fine
with over 100 users adding records every moment of the day, there has
never been a duplication error, and it requires no interaction from the
server!

Referential Integrity

MS-SQL 7 does not have a cascade delete declarative referential
integrity feature. I understand this is planned for the next version of
MS-SQL Server. Thus, SQL 7 will not enforce RI except when you ADD a
record. To use the server to update and delete child records, you will
have to create triggers and/or stored procedures to handle the process. I
found this to be quite a pain with SQL 7. With all of this given, I would
recommend you do not change RI to Server based! I left the dictionary
"as-is" here, and all works perfectly! Additionally, this allows easier data
manipulation via 3rd party tools on the SQL 7 Server, but remember you
can just as easily mess up your data using 3rd party tools to manipulate
data, so be careful!

File Relationships

None of the documentation has properly addressed file relationships, in
my opinion. I initially used the sync tool in Clarion, created a SQL script,
executed on my new database on the SQL 7 server, and voila,
everything was created properly including relationships. I encountered
all types of erratic problems with my app with the relationships defined
both in my DCT and on the SQL 7 Server. Even with newsgroup and
Topspeed tech support, all of these issues could not be resolved. Others
may argue my final solution, but it is working perfectly. What I did was
to leave the relationships intact in my Clarion DCT, and did not create
the relationships on the MS-SQL server. Everything works perfectly,
combined with leaving the referential integrity as stated above.
Additionally, this allows easier data manipulation via 3rd party tools on
the SQL 7 Server, with the same caveat mentioned above.

Here is a helpful hint: before you sync you DCT with the SQL Server,
save your DCT, then Save As a new DCT name, then Remove file
relationships from the new DCT, save, then use the Synchronizer to
create the SQL script (covered below). Be sure to use your original DCT
with your app, and not this new one without the relationships!

MS-SQL Driver Properties and Settings

Here are a few tips I learned from Rick Hoffmann’s paper and the
newsgroups. See the Clarion docs for more information.

/SAVESTOREDPROC = FALSE

NOTE: sometimes the driver setting works backwards, so try

Clarion Magazine - Converting From TPS To SQL

http://www.clarionmag.com/v1n10/pub/v1n10convertingtosql.html (4 of 9) [12/8/1999 11:24:47 AM]

both. You will notice the performance difference! What you
want to do is not have the server save the temporary stored
procedures that your app will create on the SQL 7 server.
/TRUSTEDCONNECTION = your choice, based on your situation. I
did not use NT security, instead opting for SQL Server security.

1.

/LOGONSCREEN = your choice, based on your situation. See
OWNER Attribute.

2.

/GATHERATOPEN – Not used with MS-SQL Accelerator. This is for
ODBC use only.

3.

Driver Options

Change "Topspeed" to "MS-SQL Accelerator". Do this after all other
changes are complete.

RECLAIM attribute

The MS-SQL Accelerator driver does not support this attribute.

Enable Field Binding Option

I enabled field binding in my DCT, and would recommend this to be
enabled in most cases.

Enable File Creation Option

This does work properly with MS-SQL 7. I would still recommend the use
of a SQL script instead.

OWNER Attribute

SQL 7 tables require an OWNER attribute. This indicates how to connect
to the database where the tables are located. Use a variable whenever
possible. If you have tables which already have an OWNER attribute,
change them to something resembling !GLO:Owner. What do you do
with this you might ask? See the Changes to the Application section
below for information on how I handled this one!

Create a SQL Script Using The Synchronizer

To create a SQL Script you will need to first save your dictionary. Make
sure you have completed all of the above actions before creating the
SQL script, or you will have to do it again. You will probably not get it
100% right the first time, so don’t worry! You will need your DCT file and
an MS-SQL database. You get an MS-SQL database by either creating a
new MS-SQL database or using an existing one. Make sure you have
your MS-SQL server setup and running, and make sure you have
installed the appropriate client software on your workstation. You may
also use MS-SQL Server Desktop Edition if you do not have a separate
server; it works fine.

I recommend you create a new database, using all defaults in Enterprise
Manager. Also, save yourself some trouble and change the default sa
database on the MS-SQL server login to your new database for the time
being, or create a new login and give full rights to the new database to
the new login.

Should you decide to follow my advice on not creating the file
relationships on the SQL Server be sure to use a temporary DCT without
the relationships before creating the tables, as mentioned above.

You run the Dictionary Synchronizer to create a SQL script, so first open
your DCT, save, then run the Synchronizer. Select your other dictionary
to be MS-SQL, and then select the database you want to create the SQL
tables in. You will have to log in. Once you get to the Synchronizer
screen you need to copy all the files to your SQL database. The easiest
way to do this is to highlight the top line. Press the right mouse button
and select add. Click OK, then click Finish when offered. You will be
prompted for a script name and location, so answer accordingly. That’s
it! Run the script from Enterprise Manager’s Query Analyzer, found on
the tools menu of Enterprise Managers menu bar. Either load the script,
or copy and paste from your script, select the database to run the script
against in Query Manager and run it. You should be notified that the
command(s) completed successfully in short time, and you’re done! Now

Clarion Magazine - Converting From TPS To SQL

http://www.clarionmag.com/v1n10/pub/v1n10convertingtosql.html (5 of 9) [12/8/1999 11:24:47 AM]

migrate your data if you wish.

How To Migrate Existing Data

I decided not to create a conversion program for my data dictionary. I
used MS-Access and the Topspeed ODBC driver, along with the MS-SQL
ODBC driver from Microsoft to migrate all data, using append queries. It
is quick and easy! Your existing data might require some massaging
before appending to your new SQL 7 tables, so you could import the
data into new Access tables, perform your data manipulation, then
append the data to the SQL 7 tables.

Views

Please note my initial app did not utilize views, but they are easy to use
in your app. Assuming you know how to create a view, do so on the SQL
server, give it a name like v.myfile. In your dictionary go to the
Synchronizer and import the view(s). Make sure you create a primary
key, because when you import views a key is not created. Make the key
look identical to the primary key of the view’s main table. Make sure the
following attributes of the key are set:

Require Unique Key = On

PrimaryKey = On

Case Sensitive = On

Exclude Empty Keys = Off

You may now use your view in your app!

PROP:SQL And Stored Procedures

Please note my conversion did not involve using any stored procedures.
It is my understanding that working with stored procedures and other
cool advanced functionality available from the MS-SQL server is best
utilized via the CCS Client Server SQL Template Sets, available from
Andy Stapleton at Cowboy Computing Solutions. I intend to purchase
and add to my app very soon!

Team Topspeed recommends that when possible you should write your
own PROP:SQL statements to process data. Please note I did not do this
for my initial conversion, and all works perfectly, so I may decide to
leave everything as-is. The Process templates do work! The MS-SQL
driver creates stored procedures in the TEMP DB for all SELECTs and for
all inserts, deletes and changes. PROP:SQL eliminates the stored procs
for INSERTS, DELETES and UPDATES.

The following are some performance and usage hints for
working with PROP:SQLs, excerpted from Rick Hoffman’s
paper). Some changes and additions have been made to the
original content.

Use performance hints such as NOLOCK, FASTFIRSTROW and INDEX =
when using PROP:SQLs.

NOLOCK - Please read MS-SQL online documentation for
description.

1.

FASTFIRSTROW - Please read MSSQL online documentation for
description.

2.

INDEX - Sometimes MSSQL will not pick the correct Unique
Constraint or primary key. Hinting will force MSSQL to use the
specified PK or UC.

3.

Don't use the RECORDS(TableName) on large tables to find the
record count. Use a PROP:SQL with a SELECT Count(1) FROM
TableName (NOLOCK). Since the select statement returns only one
value you need to create a new file in the dictionary with a single
field typed as a LONG.

4.

For batch processes you may use BEGIN TRAN and COMMIT.
Works like a charm, but monitor the transaction log for sizing (this
is not a big issue with SQL 7).

5.

NORESULTCALL - If the stored procedure is not going to return a
result set then use the prefix NORESULTCALL. For example:

6.

Clarion Magazine - Converting From TPS To SQL

http://www.clarionmag.com/v1n10/pub/v1n10convertingtosql.html (6 of 9) [12/8/1999 11:24:47 AM]

http://www.ccscowboy.com/
http://home.tampabay.rr.com/rhoffman/
http://home.tampabay.rr.com/rhoffman/

MyTable{PROP:SQL} = ‘NOTRESULTCALL SP_UpdateWhatEver
(1234)’.
CALL – If the stored procedure is going to return a result set via a
SELECT statement then use CALL. Prefix is used. For example:
MyTable{PROP:SQL} = Call(‘SP_SecuritySelectMembers
(‘’FL0021002’’)’).

7.

The data returned via a SELECT within the stored procedure needs
to match the structure of MyTable. C5 only supports returning
information via a SELECT. There are two ways to return things
from a stored procedure. One is via an embedded SELECT and the
other is RETURN (or similar command). The MS-SQL driver does
not support returning information via RETURN, only SELECT.

8.

Special Notes on PROP:SQL

The following special notes are excerpted from
Rick Hoffman’s paper. Some changes and
additions have been made to the original
content.

When issuing a PROP:SQL, issue a BUFFER(TableName, 0) before the
PROP:SQL. This will tell the Cursor Fetch to retrieve one record at a
time. Example:

BUFFER(TableName, 0)

TableName{PROP:SQL} = 'SELECT Field1, Field2, FROM TableName'

NEXT(TableName)

You can also issue a BUFFER(TableName, 20) and then Push the PROP:SQL
twice. This will tell the Cursor Fetch to retrieve 20 records at a time. Example:

BUFFER(TableName, 20)

TableName{PROP:SQL} = 'SELECT Field1, Field2, FROM TableName'

TableName{PROP:SQL} = 'SELECT Field1, Field2, FROM TableName'

NEXT(TableName).

Issue a BUFFER(TableName, #) before the PROP:SQL.

When writing PROP:SQL statements its very easy to make syntactical
errors. Team Topspeed recommended creating a debug procedure that's
passed the SQL statement and displays it in a window. If you use a text
field as the displayed field then you can cut and paste the SQL statement
between your application and MS-SQL ISQLW or Query Analyzer.
Example: SQLDebugWindow(TableName{PROP:SQL}).

Changes To The Application

In most cases very little change is required to an application for it to
work with MS-SQL. Despite Topspeed claims that ABC is better than
Legacy for SQL apps, I have found that Legacy offers excellent
performance with MS-SQL 7.0. Additionally, due to MS-SQL’s ability to
self-tune, you will find performance will increase with each usage! I
actually converted my app to ABC from Legacy, and have yet to
eradicate all the minor bugs. I have decided to stay with Legacy for now.

As far as third party templates go, I use several third party template
sets without issue. These templates include the following: CPCS
Reporting Tools 5.1x, many templates from Sterling Data, some from
Boxsoft Development, LSPack from Linder Software, Princen-IT
Sendmail, and several other templates. I also use some custom
templates that some very talented 3rd party developers have written
specifically for me, and yes, they all work fine with MS-SQL! Be sure to
read all Clarion docs referring to using MS-SQL Accelerator and the SQL
accelerators in general. Also read any sections on Browses, Processes,
Reports, etc. where SQL is referred. Although the docs are geared
towards ABC, most information still applies in Legacy as well. You should
actually do this before taking any of the steps described in this
document.

Clarion Magazine - Converting From TPS To SQL

http://www.clarionmag.com/v1n10/pub/v1n10convertingtosql.html (7 of 9) [12/8/1999 11:24:47 AM]

Moving on to the app, one thing you will need to do is add a logon
procedure at the beginning of the application. You will need to collect the
SQL user id and password as a minimum. You could hard code this,
hiding it from the user. If you decide to do this, remember to add some
sort of message window telling the user to wait while the app connects
to the server, as this could take a short bit of time.

Sample logon source is available in the Clarion docs, or you may create a
Wizard app against any SQL database and the Wizards will automatically
create the appropriate source code . Just cut and paste into your existing
app. You may feel free to use the source in my sample app if you wish.
An initial connection to the server is completed when any data file is
opened, so open a file with your initial start. After opening any file, feel
free to close it if you wish, as your connection to the server would
remain until your app closes.

As mentioned earlier, MS-SQL 7 tables require an OWNER attribute. This
indicates how to connect to the database where the tables are located. I
created GLO:Owner as Global, CSTRING(255), and use an INI file to
save and or retrieve and supply this string at runtime. I created a Clarion
procedure that offers default SQL login definition, and store in the app’s
.ini file (this information could be stored in the registry for security or a
TPS file with encryption if you wish). You must prompt your user to
define the default login info using proper syntax. Refer to the Clarion
docs for the Owner string format.

Embed source to retrieve the .ini entry and initialize GLO:Owner with
this info in your main procedure before opening your SQL 7 tables. This
way, if the string is empty, you will get the MS-SQL login. If it is
populated correctly, the MS-SQL login will be skipped and login will occur
automatically!

Another thing you will need to do is make sure that on any browse or
process you set the Quick-Scan Records (Buffer Reads) option on. This
will result in great performance increases! Any place you are prompted
for an approximate record count, enter a number much greater than you
actually ever expect to see with regards to records retrieved. If you
leave this blank or zero, the process will first attempt to get a record
count from the MS-SQL Server, which usually means a big performance
hit!

Changing all browses to fixed thumb appears to enhance performance a
bit, but records displayed in a browse sometimes disappear or appear
twice. Your call on this one, as the book also said to do this. I did, but
finally changed back. Also, make sure for any and all browses you have
selected a key for the main file in the file schematic. This also applies to
reports and processes.

If you find in a report or process that fields are coming up blank where
you know data exists, check that the field(s) have the Bind attribute.
This one tripped me up bad a few times! Be sure to check your
embedded source or hand coded procedures if they involve data access,
as these may require modification.

The browse and process templates access data through a Clarion view.
This is why any field needed within a browse or process must have the
"Bind" attribute. The easiest way to check things after making your
changes is to run the app and see how it performs. Don’t forget to
address any auto-increment issues (mentioned above); these may throw
you off as well! Also don’t forget to bind any field used as part of a filter
in your procedures.

Third Party Books And Reference For MS-SQL 7.0

Clarion Magazine published by Dave Harms. Fantastic Clarion resource!

SQL Server Magazine published by Duke Press. This too is a great new
resource.

Using Microsoft SQL Server 7.0 by Que. This book is very complete.

Summation

These are the main things I had to address with my conversion. I did not
have any other significant issues. I did have a bit of trial and error, and

Clarion Magazine - Converting From TPS To SQL

http://www.clarionmag.com/v1n10/pub/v1n10convertingtosql.html (8 of 9) [12/8/1999 11:24:47 AM]

http://www.clarionmag.com/
http://www.sqlmag.com/
http://www.quecorp.com/

you probably will too! Hopefully this article will help you avoid most of
my trial and error process! Remember that I am not an SQL expert by
any means! My methods were the result of reading everything I could
find, asking lots of questions, and the trial and error process. If you are
unsure about anything, post your questions to the newsgroups.
Everyone is very helpful, and you will probably get the answers you
need. I will make available for download a sample app, dct, and SQL
script, along with a copy of this article in RTF format on my Website at:
http://www.mullusa.com/demo/sqldemo.zip

Stephen Mull
http://ww.mullusa.com/products.html.

In This Issue

The Other Way To Use
OLE - Part 3
(Nov 2,1999)

Clarion 5.5 Preview
(Nov 2,1999)

Freebie: Stephen Mull's
Guide To Converting To
MS-SQL
(Nov 2,1999)

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without
the express written consent of CoveComm Inc., except as described in the subscription
agreement, is prohibited. If you find this page on a site other than www.clarionmag.com,
email covecomm@mbnet.mb.ca.

Clarion Magazine - Converting From TPS To SQL

http://www.clarionmag.com/v1n10/pub/v1n10convertingtosql.html (9 of 9) [12/8/1999 11:24:47 AM]

http://www.mullusa.com/demo/sqldemo.zip
http://www.mullusa.com/products.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 10
November 1999

Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

Three Ways to Present
Many-To-Many Relationships
To The User

Part 1 of 2

by Tom Ruby

If your users don’t understand your program, or don’t like how
you’ve presented their data, they’re not going to be as productive as
they could be (and they may not be your users much longer!) The
more complex the data, the more careful you have to be about how
you present it to the user.

One area that causes developers problems is many-to-many
relationships. The concept of many-to-many has been previously
covered in Clarion Magazine; in this article I’ll cover three of the
ways you can present this kind of data to your users. I call these
ways "Form and Lookup," "Check List," and "Selection Pool."

Many-To-Many Basics

A many-to-many relationship describes a link between two entities,
one on the left, the other on the right, where each item on the right
may be matched to zero or more items on the left, while each item
on the left may be associated with zero or more items on the right.
Many-to-many relationships occur all the time. Some examples
include:

Which students are registered for which classes●

Which employees have which benefits options●

Which contractors have which skills●

Which facilities are reserved for which meeting●

These are very easy to deal with using an intermediate cross
reference table containing one record for each link with the record
containing the primary keys values of both the other tables. This is
easily demonstrated with a hokey example, and a very hokey
example follows.

Penelope Puppylove has a dog act in the circus (didn’t I warn you?).
As part of her Dog Act Management System and Electronic Listing
(DAMSEL), she wants to keep track of which puppies she has trained
to do which tricks. Any puppy might be able to do several tricks, and
she naturally trains more than one puppy to do each trick just in case
one puppy is out of sorts for a show.

Immediately you can think of two tables, or files (I’ll use the term
table in this discussion, but for many flat-file database systems table
and file mean the same thing). One table lists puppies, and one lists
tricks. To deal with the many to many relationship between puppies
and tricks you introduce a third table, often called a cross reference.
I’ll call it DoesTrick because it indicates which puppies do which
tricks. Table 1 shows the three tables as I’ve set them up. You can
look at them in the DAMSEL dictionary.

Presenting Many-To-Many
Relationships
(Nov 9,1999)

Product Review: NiceTouch
Dictionary/App Assistant
(Nov 9,1999)

Clarion 5.5 Web
Development Features
(Nov 9,1999)

Clarion Magazine - Many-To-Many Relationships Part 1

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part1.html (1 of 7) [12/8/1999 11:24:51 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/v1n5/sub/v1n5novice_manytomany.html
http://www.developerplus.com/

Table 1. Fields in the Puppy, DoesTrick and Trick tables.

Puppy DoesTrick Trick
PuppySysID LONG

PuppyName STRING(20)

DoesSysID LONG

PuppySysID LONG

TrickSysID LONG

TrickSysID LONG

TrickName STRING(20)

Notice that I’ve given each table a SysID field. This extra field is
sometimes called a surrogate key, and its main purpose is to keep
from having to put the PuppyName and TrickName in the DoesTrick
table. Most experienced developers structure the data this way and
make the SysID independent of any outside characteristic. If this was
a database of people in the USA, you might be tempted to use the
Social Security number as the primary key, but that isn’t a good idea
since social security numbers sometimes have to change and may be
duplicated, often due to data entry errors.

I’ll use the SysID as a primary key, and I’ll set it as an
autoincrementing key as well. The PRIMARY attribute is important for
SQL databases, and the autoincrement setting causes Clarion code to
be generated to do the autoincrementing.

The DoesTrick table could get away without a SysID since the two
fields, PuppySysID and TrickSysID could make up a primary key.
However I always put a separate field for each table’s primary key
because it is less trouble to have one you don’t need, than to need
one you don’t have. SQL systems depend very heavily on the primary
key to recognize which record is being updated.

Each table gets a primary key on its own SysID, and the DoesTrick
table gets a key on the PuppySysID and TrickSysID fields. I also put
a key on PuppyName and TrickName for convenience. The DoesTrick
table gets two more keys, one on PuppySysID and TrickSysID, and
the other on just TrickSysId. I marked the key on PuppySysID and
TrickSysID to require a unique value so a trick can only be listed
once for a puppy and vice versa. In some applications you might
want to allow duplicates.

Two relations connect each Puppy record to many DoesTrick records
by the PuppySysID keys, and each Trick to many DoesTrick records
by the TrickSysID keys. The Clarion dictionary editor lets you define
referential integrity to tell what you want done to the child records
(DoesTrick) when the parent records (Puppy and Trick) are deleted
or changed. Since I’ve used surrogate keys, there isn’t any reason to
change a SysID, so I have On Update set to No Action. I set On
Delete to Cascade, so the DoesTrick records will disappear if the
trick or puppy record is deleted. You could set the relationship
between DoesTrick and Trick to Restrict on delete if you wanted to
be sure a trick is never deleted if there is a puppy connect to it,
which would be appropriate in many applications.

Notice that there are two ways of looking at the data. Penelope might
want to look at all the tricks a puppy can do, or she might want to
look at all the puppies that can do a trick.

The User Interface

Now that the data for this hokey application is defined, it’s time to
look at ways of presenting the data relationship to the user. The
three options I use are "Form and Lookup," "Check List," and
"Selection Pool."

Form And Lookup

In most Clarion programs the user edits a many-to-many relationship
on the form where one of the tables is edited. A form and lookup
interface is useful if there is extra information that needs to be
stored in the cross reference record like how well the puppy does the
trick.

Clarion Magazine - Many-To-Many Relationships Part 1

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part1.html (2 of 7) [12/8/1999 11:24:51 AM]

NOTE: The example application contains completed
procedures. If you want to follow along with the example
application, you can either create new procedures with
different names, or create a new example application and
import demo app procedures as required.

If you create the DAMSEL data dictionary as I’ve described it so far,
and let the wizards go at it, they will build you a Form and Lookup
type interface. To show how such an interface works, I built it using
the application generator. I started with a MDI frame as the main
procedure with a menu option to call a browse of Puppies and
another to call a browse of tricks, look closely at my DAMSEL.App.
Each of these browses calls a form to update the puppy or the trick.
In the sample DAMSEL application, I named these:

LookupPuppyBrowse
 PuppyLookupForm
LookupTrickBrowse
 TrickLookupForm

These probably aren’t names you would use in a real application, but
I used them here to mean "The example that uses a lookup to edit
puppy," and "The example that uses a lookup to edit trick."

The main feature of PuppyLookupForm, in addition to the puppy name
field, is a browse listing tricks the puppy can do. To build this
browse, populate a browse box template onto the form. When the file
schematic pops up, select the DoesTrick table, press the Edit button,
and select the PuppySysIDKey. Since you want to show the puppy
name and not anything out of the senseless DoesTrick table, hit
Insert again, and select the Trick table from the list. Now, select
the TrickName field from the Trick table. Now our browse box will
show the names of the tricks rather than the SysIDs which Penelope
doesn’t know or care anything about.

Now go to the actions tab for the browse. Select the PuppySysID for
the range limit field, set the Range Limit Type to File Relationship,
and select Puppy for the related table. Just for grins, fill in
TRI:TrickName under additional sort fields so the tricks will be listed
alphabetically. (See Figures 1 and 2)

Figure 1. Actions tab for the trick browse on the puppy form.

Clarion Magazine - Many-To-Many Relationships Part 1

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part1.html (3 of 7) [12/8/1999 11:24:51 AM]

Figure 2. File schematic for the puppy lookup form.

Now the form will show the list of tricks the puppy can do. More
precisely, it shows the trick names from trick table that match the
DoesTrick records which contain the puppy’s SysID. All that’s
missing is a way to edit the list. Populate a set of browse update

Clarion Magazine - Many-To-Many Relationships Part 1

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part1.html (4 of 7) [12/8/1999 11:24:51 AM]

buttons, and set the update procedure to SelectTrickLookup (Select
Trick for the Lookup Example). The working parts of this form are
finished, so beautify it however you like and back yourself out to the
procedure tree. I usually press the save button any time I get back
out to the procedure tree, just for good luck.

There is now a SelectTrickLookup procedure labeled ToDo. Select
this (or delete the existing procedure first to get a ToDo), and make it
a form. This will be a very strange form since there won’t be any
entry fields. Instead, put a button, and label it Look up Trick. You’ll
have this button call up a list of tricks to select from, so on its action
tab set When Pressed to Call a procedure. Fill in SelectTrickBrowse,
for the procedure, and set the Requested File Action to Select. (See
Figure 3) The SelectTrickBrowse will be a browse to select a trick.
Now you need an embed to set the DOS:TrickSysID when the user
has selected a record, so press the Embed button to get the tree.
Open Control Events, Button3, and Accepted. Select Generated Code
and press Insert to put the embed after the generated code, that is,
after the call to the browse procedure. Fill in the embed to look like
this:

DOS:TrickSysID = TRI:TrickSysID

You’re done inside this form, so back out to the procedure tree, and
make the new SelectTrickBrowse procedure a browse on tricks. Use
the TrickName key so the tricks will be listed alphabetically. If you
didn’t use the browse procedure template, add the select button
template.

Figure 3. Actions tab for the Look Up Trip button.

So how does Penelope use this thing? If she’s looking at the sample
DAMSEL application, she’ll select Examples – Form & Lookup –
Lookup Puppy. This gives her a list of her dogs with the usual Insert,
Change and Delete buttons. Add a dog called, say, Phyadoux. Just hit
the Insert button. The form pops up, and she puts the dog’s name in.
There are no tricks listed, so hit Insert to add one. The form with the
Look Up Trick button pops up, and pressing the button shows an
empty list of tricks. Only the Insert, Change and Delete buttons don’t
work. There’s no trick editing form specified here and the program is
assuming the tricks are entered somewhere else.

To make the program more useful, go back to SelectTrickBrowse
and look at the Actions tab for the update buttons. Check "Edit In
Place." This will let you add a new trick to the select list.

Clarion Magazine - Many-To-Many Relationships Part 1

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part1.html (5 of 7) [12/8/1999 11:24:51 AM]

Now this application works, but to misquote Crocodile Dundee, "You
can use it, but it works like…" Let’s try making the Trick browse, form
and lookup a little more graceful.

Select LookupTrick out of the procedure tree, and make it a browse
procedure. In the File Schematic, select Trick for the file browsing list
box, and use the Edit button to select the TrickName key. Then go to
the actions tab of the update buttons and set the update procedure
to TrickLookup.

Make TrickLookup a form, and select Trick in the file schematic
under Update Record on Disk. Populate the trick name control. Then
put a browse template to show the puppies that do this trick. In the
file schematic for the File Browsing List Box, select DoesTrick, and
use the Edit button to set the key to the TrickSysIDKey. Hit Insert
and add the puppy file under DoesTrick. In the list box formatter,
put the puppy name.

On the actions tab of the browse box, select the TrickSysID as the
Range Limit Field, and set the Range Limit Type to File Relationship,
and set the related file to Trick. (See Figure 4) In the actions tab of
the browse update buttons, put SelectPuppyLookup for the update
procedure.

Figure 4. Actions tab for the puppy browse on TrickLookup.

When you make the SelectPuppyLookup form, use a file loaded drop
box instead of a lookup button and browse procedure. Ok, it stinks
from a consistency aspect, but the idea here is to demonstrate
different ways of dealing with these many-to-many relations. Make
the SelectPuppyLookup a form, and select DoesTrick as the table
being updated. Put a File Loaded Drop Box template on the form. The
File Schematic will pop up, but select Local Data instead of selecting
a file, Press the New button on the right side, and add a
LocalPuppyName variable that looks just like the PuppyName out of
the puppy table. I made it STRING(20) just for simplicity’s sake.
Select this new variable.

The file dialog will pop up again. Now it wants to know what to show

Clarion Magazine - Many-To-Many Relationships Part 1

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part1.html (6 of 7) [12/8/1999 11:24:51 AM]

in the list, so select the Puppy table and use the Edit button to set
the key to PuppyName. Then the list box formatter will appear.
Choose PuppyName as display field and close the formatter.

The clever part of a file loaded drop box template is all on the Actions
tab. You will find two important blanks on the Actions Tab, Field to fill
from, and Target field. Set the Field to fill from to PUP:PuppySysID,
and the target field to DOS:PuppySysID. When the user selects an
entry from the drop list, the program will put the PuppySysID from
the selected puppy into the PuppySysID of the DoesTricks record.
When it displays, it will find the correct puppy by matching the
PuppySysID from the DoesTrick record and show the name. It
actually does this lookup from the list box queue.

When Penelope adds a puppy to a trick, this little form with a file
drop box will show up, and she can select a puppy from the drop list.
If I had used a drop combo instead of a drop list, using the same
technique, I could have checked the Allow Updates box, and
Penelope could insert a new puppy right there.

Keep three things in mind when implementing many-to-many
relationships using the Form and Lookup technique:

Browse the cross reference table, and show fields from the
other related table.

●

Range limit the browse to show only cross reference records
matching the record being edited.

●

Edit the cross reference table, selecting a record from the other
related table.

●

Next week I’ll show how to do this as a "Check List" and as a
"Selection Pool."

Downoad the example application

Tom Ruby, who is no relation to the man who shot Lee Harvey
Oswald, is an independent contractor living in the middle of a
hayfield in Central Illinois with his wife Susan and two red headed
sons, Caleb and Ethan. He has been using Clarion for Windows since
the summer of '95. Before that, he was a "TopSpeeder" using Modula
II, so he has never used the DOS versions of Clarion.

Presenting Many-To-Many Relationships
(Nov 9,1999)

Product Review: NiceTouch Dictionary/App Assistant
(Nov 9,1999)

Clarion 5.5 Web Development Features
(Nov 9,1999)

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in
any form without the express written consent of CoveComm Inc., except as
described in the subscription agreement, is prohibited. If you find this page
on a site other than www.clarionmag.com, email covecomm@mbnet.mb.ca.

Clarion Magazine - Many-To-Many Relationships Part 1

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part1.html (7 of 7) [12/8/1999 11:24:51 AM]

ftp://www.clarionmag.com/pub/clarionmag/v1n10/v1n10damsel.zip
http://www.netins.net/showcase/tomruby/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 10
November 1999

Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

Product Review:
Nice Touch Solutions Dictionary And Application Assistants, v1.01

by Tom Hebenstreit, Reviews Editor

I have decided that one of the truisms of programming is that every
program starts off small and then proceeds to grow like a field of
weeds as new features and requirements are added. For me, this
unrestrained growth at the beginning is not really an issue, in that I
can still keep all the necessary information about the application in
my head as I work.

A major problem occurs once the app has reached a certain size,
though; my brain does not share that same sort of infinite
expandability (if only, if only…). The program becomes too large to
comfortably wrap my head around – there are simply too many bits.

What do I do? Documentation, i.e., make lists. List of fields, list of
procedures, lists of files: the list of lists is endless and becomes
another problem in and of itself. <sigh>

So, if the key to maintaining control over my applications is keeping
control of my lists, then it becomes very handy to have tools that can
help to sort, report and categorize all of the major components of my
apps. If they can help keep control of the myriad of other little details
like tool tips, messages, descriptions, pictures and so forth, well, so
much the better.

Now, you know this all has to be leading somewhere, right? And you
are correct. The subject of this review is a pair of complementary
products from Nice Touch Solutions, makers of justly famous Wizard
line of tools (the Query, Report, View, CrossTab and Spreadsheet
Wizards). Aptly named the Dictionary Assistant (DA) and the
Application Assistant (AA), these two products work together as a
team to help you document, understand and keep control of your
applications and their dictionaries.

Note that although I will be referring to the pair as if they are
basically one product, they can be purchased and used separately
(there is a discount if you purchase them together). On we go…

Major Features

At their core, the Assistants simply expose all of the basic
information about your dictionaries and applications in an easy to
view and very flexible manner. You know the stuff I’m talking about
– it’s hiding behind a million property sheets, tabs and buttons all
through the Clarion IDE.

To quote Nice Touch, Dictionary Assistant is:

"…a query and reporting tool designed for documentation, analysis
and quality control of Clarion Dictionaries. Through the use of an
application Utility Wizard DA creates normalized databases
representing the components of the application dictionary (files,
fields, keys and relationships). This utility wizard is a non-invasive
Clarion Utility Template and therefore not part of your application."

Couldn’t have said it better myself (so I didn’t try).

Substitute "Application" for "Dictionary" and talk about procedures,

Presenting Many-To-Many
Relationships
(Nov 9,1999)

Product Review: NiceTouch
Dictionary/App Assistant
(Nov 9,1999)

Clarion 5.5 Web
Development Features
(Nov 9,1999)

Clarion Magazine - Review: Nice Touch Dictionary/Application Assistants

http://www.clarionmag.com/v1n10/sub/v1n10review-nicetouch.html (1 of 8) [12/8/1999 11:24:55 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
mailto:reviews@clarionmag.com
http://www.developerplus.com/

windows, reports, controls, templates and database file usage, and
you have described the Application Assistant as well.

Both Assistants make heavy use of the Nice Touch Wizard products.
Views can be modified and saved, reports can be created and saved,
you can create and save queries on just about anything, and it is all
done through a clean, consistent interface. (Nice looking, too.)

If you own TideStone Technologies (formerly Visual Components)
Formula 1 ActiveX spreadsheet package, you get even more
capabilities. Versions 4 and 5 of that product are fully integrated into
both Assistants via the built-in Spreadsheet Wizard. Be aware,
though, that if you don’t own Formula 1 (F1), none of the
spreadsheet related functions will work. (I’ll be talking more about
Formula 1 a bit further on.)

Implementation

My installs went smoothly, auto-detecting where Clarion 5 was
located. After I had installed the Dictionary Assistant, the Application
Assistant install automatically found that folder as well, offering to
install in the same folder so that the two products could share the
same runtime files. Very painless.

There’s really nothing else to do other than register the appropriate
templates. Once you have done that, you can open an application,
run the utility templates and then get right down to business.

I did discover one issue when using the Utility templates related to
long path names (short pathnames or names without spaces worked
fine out of the box). It seems that the Assistants are not accounting
for spaces in a long filename path when they are started using a
command line parameter (which is the way the templates start
them). Since they are using the Clarion Command() function to
retrieve the filename from the command line, I found in the LRM that
my long filenames/paths would need to have double quotes around
them to keep them from being regarded as multiple parameters
separated by spaces.

I edited two lines in each of the Utility templates to add double
quotes around the file parameters, and after that everything worked
fine no matter what the folder path was.

Performance

The process of running a utility template to export my dictionary or
application information was fast and smooth. The templates fire up
DA or AA at the end of the export wizard, so you are dropped right
into the appropriate Assistant with the latest information.

Figure 1. Selecting files to export to the Dictionary Assistant.

Clarion Magazine - Review: Nice Touch Dictionary/Application Assistants

http://www.clarionmag.com/v1n10/sub/v1n10review-nicetouch.html (2 of 8) [12/8/1999 11:24:55 AM]

It is not necessary to select files individually, either. There is a simple
checkbox to Analyze all files which I could have used, but I wanted to
show a bit more of what the export wizard looks like.

From here on out I’ll be referring quite a bit to the various Wizard
tools used by Nice Touch to build these Assistants. As much as I’d
love to show you lots of pictures, you’d probably hate me for the
amount of time it would take to download them. On top of that,
images of a wizard only show you one set of options (one tab) out of
many. As a compromise, I highly recommend that you visit the Nice
Touch Solutions web site, where you can download demos of most of
the Wizard products at your leisure. Sorry – there are no demos of
the Assistants, although you can download the help files (lots of
pictures there).

Dictionary Assistant

DA has two basic modes for viewing. The first, called Worksheet
mode, has four list boxes that are tied together by a Files list. As you
move around the list of files, the other three lists display all fields,
keys and relationships for the selected file. The second mode is more
free-form, and lets you browse lists of files, fields, keys and
relationships in individual list boxes that offer an expanded range of
Wizard options. You can run queries using Query Wizard, reformat
the view using View Wizard, create custom reports with the Report
Wizard and more. For quick and easy Dictionary printing, there is a
very simple two-step Print Assistant as shown in Figure 2.

Figure 2. Panel 1 of the Dictionary Print Assistant.

Clarion Magazine - Review: Nice Touch Dictionary/Application Assistants

http://www.clarionmag.com/v1n10/sub/v1n10review-nicetouch.html (3 of 8) [12/8/1999 11:24:55 AM]

Notice the option to reset the page numbers after each file. I really
like this feature as it lets you keep a binder full of file definitions
without having to worry about page numbering. Each file is sufficient
unto itself, so to speak.

Figure 3. Panel 2 options of the Dictionary Print Assistant.

This figure shows the options from the ‘Elements to Print’ tab shown
in Figure 2.

Pretty Printing…At Last

Printing deserves a bit of a special mention here. I’ve always had this
theory that the person who wrote the built-in Clarion Dictionary print
routines must own stock in a paper company, as they are not only
rather awkward, but they are incredibly wasteful as well. Both DA
and AA come with a large number of very nicely laid out and useful
reports right out of the box. And since you can create, modify, copy
and save your own custom reports, you can easily whip up just about
any kind of listing you can think of. Add to that the ability to filter
any report using the Query Wizard, and you will begin to see just
how flexible these tools can be.

Application Assistant

AA functions almost identically to DA. It lists different types of
information, of course, but the similarities make it very easy to pick
up after you’ve used DA for little while. To illustrate just how useful a
tool like this can be I’ll illustrate with the stock C5 Maillist example.
Figure 4 shows the Controls browse listing.

Clarion Magazine - Review: Nice Touch Dictionary/Application Assistants

http://www.clarionmag.com/v1n10/sub/v1n10review-nicetouch.html (4 of 8) [12/8/1999 11:24:55 AM]

Figure 4. Application Assistant Controls listing (click here for a full sized
image).

Note how easy it is to spot errors and omissions: there are two
misspellings in the Messages column, and the Add buttons don’t have
accelerator keys. Imagine how long it would take you to track down
those errors if you had to go procedure to procedure, window to
window, control properties to control properties, then tab to tab.
Yow! These are not errors that I created for the review either. You
can go ahead and track them down yourself if you want to spend the
time.

Also, be aware that you can sort on any column in every Assistant
browse like the one in Figure 4 just by clicking on the column header.
You can also drag and drop columns to rearrange the column order.

The Spreadsheet Wizard

Being the curious kind of person that I am, I just had to try out the
spreadsheet-based options in the Assistants. After a bit of scrounging
around, I found a demo of F1 version 5 and installed it. Sure enough,
I could now view and manipulate my information directly in a
spreadsheet. What was really neat about the Spreadsheet Wizard,
though, was the ability to save my information directly into a number
of popular formats (including HTML), as shown in Figure 5.

Figure 5. Spreadsheet Wizard output options.

Clarion Magazine - Review: Nice Touch Dictionary/Application Assistants

http://www.clarionmag.com/v1n10/sub/v1n10review-nicetouch.html (5 of 8) [12/8/1999 11:24:55 AM]

http://www.clarionmag.com/v1n10/sub/aa_fig4.gif
http://www.clarionmag.com/v1n10/sub/aa_fig4.gif

But Wait! There’s More…

Nice Touch also has a third Assistant, designed for viewing and
printing Embed code. The Embed Assistant, though, is freeware, and
can be downloaded at no charge from the Nice Touch web site. It
doesn’t have all the bells and whistles that the commercial products
have, but I still found it to be quite handy.

Documentation

Documentation is supplied as Windows Help files, and I must say the
files are very nicely done. Well organized, clearly written, and with an
abundance of screen shots, they make it easy to learn about the
programs.

I did find one rather glaring oversight, though: asking for help in the
Application Assistant brings up the Dictionary Assistant help. You
have to run the AA help directly from Explorer or via the Windows
Start menu option created by the installer.

For the most part, though, the programs are very easy to use. If you
are already familiar with how the Wizard line of products work, you’ll
feel right at home in no time at all.

Technical Support

Support is provided via the Web, Email and fax. In emailing Nice
Touch regarding the few issues I came across, I invariably found the
company to be both responsive and polite.

I’d have to say they live up to their name.

Room For Improvement

There are a number of little items that I found myself wanting while
using the Assistants. Some are related to program use, such as
wishing that the programs would remember what I was last working
on, and open those files by default at startup. Another was to have
the first column of some of the wider browses fixed on the left side,
so that when I scroll horizontally there is no chance of losing my
place (for example, the name of the field currently selected scrolls off
the screen).

I also think that the programs should be a bit more informative as to
what you can and cannot do. As they stand, they allow you to go
through all the motions related to spreadsheets, right up to the point
where you say "do it." At that time, though, nothing happens – no
error (that’s good) but also no message saying that you can’t do this
without Formula 1 (that’s not so good). It would be nicer if they told
you right off the bat that the function wasn’t going to work.

About The Assistants And Formula 1 (F1)

Both of the Assistants incorporate the Nice Touch Spreadsheet
Wizard, a tool that interfaces with the Formula 1 ActiveX
Spreadsheet control from Tidestone Technologies. All is not roses in
spreadsheet land, though. According to Nice Touch, Tidestone
changed from a royalty-free pricing model for their older versions (4
and 5) to requiring user licenses for the newer version 6.x of F1.
They (Nice Touch) have not yet fully integrated 6.x into their current
products due to questions about licensing. Please note that no matter
what the version is, F1 is not included with the Assistants–it must be
purchased separately.

If you don’t have one of the older versions, or can’t find a trial
version, you can download a 30-day trial of Formula 1 6.1 and use it
with DA and AA (or your own Clarion programs, for that matter).
Before you try, though, I’d recommend contacting Nice Touch and
seeing what the current state of F1 support is. It may require some
tweaking on your part to get 6.x to work.

How much does F1 cost? I found it for about US$86.00 on the web,
and that also includes the bundled First Impressions charting control.
That is for a version 6.x license, though, so you would need to buy

Clarion Magazine - Review: Nice Touch Dictionary/Application Assistants

http://www.clarionmag.com/v1n10/sub/v1n10review-nicetouch.html (6 of 8) [12/8/1999 11:24:55 AM]

http://www.tidestone.com/trials/default.htm

additional licenses if you want to use F1 inside your own programs
(as opposed to just using it with DA and AA). The older, royalty-free
versions (4 and 5) listed for between $250 and $300, if you can find
them.

Summary

Each of the four components mentioned in this review is a standalone
product, but as you begin to combine them, their usefulness
increases exponentially.

The combination of the Dictionary and Application Assistants is really
useful, and a worthy addition to any serious Clarion user’s toolbox.
Adding the Formula One spreadsheet raises both of them to another
level, although it’s a shame that there is the current uncertainty
regarding supported versions. Toss the free Embed Assistant into the
mix, and you’ve got a very powerful and flexible combination of
Dictionary and Application reporting tools.

Nice job, Nice Touch!

PRODUCT RATING

Overall

Ability to do the task Very Good

Ease of use Very Good

Ease of installation Good

Documentation Good

Technical support Very Good

Black box DLLs/LIBs N/A

LEGEND

First class all the way

More than adequate

Barely adequate

Don't even think about it

The Dictionary and Application Assistants can be purchased directly
from Nice Touch via Telephone, Electronic Mail, Fax or Mail. Each
Assistant lists for US$79, but you can also purchase them together
as a bundle for US$129.

Sales Information, demos and more can be found at the Nice Touch
Solutions web site: http://www.clariontools.com/Default.htm

For more information on the Formula 1 ActiveX control, visit:
http://www.tidestone.com

Vendor Comments

Dictionary Assistant was originally developed to produce elegant dictionary
documentation, suitable for delivery to large corporate and government
contract clients. Over time we have decided to more fully expose the entire
dictionary hierarchy. This "exposure" has aided our development efforts by
providing a better foundation for beginning our application development (a
strong dictionary).

We soon discovered an Application Assistant would provide a means for
automating a significant portion of our quality control process. For example,
the Exception Report within AA confirms the application represents the
dictionary design. If we specified an @S30 in the dictionary and an entry form
is using @S20, AA will tell us this before the client does! In a nutshell, AA's
Exception Report produces a list of discrepancies between the Dictionary and
Application.

Clarion Magazine - Review: Nice Touch Dictionary/Application Assistants

http://www.clarionmag.com/v1n10/sub/v1n10review-nicetouch.html (7 of 8) [12/8/1999 11:24:55 AM]

http://www.clariontools.com/Default.htm
http://www.tidestone.com/

Presenting Many-To-Many Relationships
(Nov 9,1999)

Product Review: NiceTouch Dictionary/App Assistant
(Nov 9,1999)

Clarion 5.5 Web Development Features
(Nov 9,1999)

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in any form without
the express written consent of CoveComm Inc., except as described in the subscription
agreement, is prohibited. If you find this page on a site other than www.clarionmag.com,
email covecomm@mbnet.mb.ca.

Clarion Magazine - Review: Nice Touch Dictionary/Application Assistants

http://www.clarionmag.com/v1n10/sub/v1n10review-nicetouch.html (8 of 8) [12/8/1999 11:24:55 AM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 10
November 1999

Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

Clarion 5.5 Web Builder:
A First Look Under The Covers

by Steve Parker

"CWIC2," as it is called by some, is not the name of the Web Edition
upgrade (aka Clarion5.5). It is not even the name of its IC
component. Because it supplements and extends the existing
Internet Connect technology, I think it appropriate to refer to the
new extension as "Internet Connect, the Next Generation." But, I
know better. If you check the template registry, you will see that it is
listed as "Web Builder Templates." So that is how it shall be referred
to here.

In every relevant respect the Web Builder templates are
revolutionary for Clarion developers. Or, to be precise, the
technology underlying them is.

Just how different is Web Builder from its predecessor?

For openers:
Java is not even an option in a Web Builder app (bye bye .CABs
and .ZIPs);

●

Creating dual-mode apps is now an option (and not even the
default option);

●

The new INIManager is also a cookie monster; that is, on a PC
or network, INIManager methods normally affect .INI files, but
on the Web set and read cookies (cool).

●

Figure 1. Enabling a web application.

Different enough?

No? There’s more:
Web Builder is ABC only, having been fully absorbed into the
ABC collective;

●

To say that there are a myriad of new Internet methods would
be the understatement of the week (see Figure 2);

●

Presenting Many-To-Many
Relationships
(Nov 9,1999)

Product Review: NiceTouch
Dictionary/App Assistant
(Nov 9,1999)

Clarion 5.5 Web
Development Features
(Nov 9,1999)

Clarion Magazine - Clarion 5.5 Web Builder Features

http://www.clarionmag.com/v1n10/sub/v1n10webbuilder.html (1 of 5) [12/8/1999 11:24:58 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.prodomus.com/
http://www.developerplus.com/

If I decide to change the look and feel of an app, I no longer
have to search through all the template prompts and embeds
to find the code affecting the app’s visual properties; changing
one or two ASCII files will usually do the job (and they’re not
even part of the app).

●

Figure 2. New internet-related methods.

There has been a major philosophical change: Web Builder is
designed so that a webmaster may change aesthetic aspects of an
app, allowing full visual integration with an existing web site, without
touching the actual executable or its functionalities. "Web-heads" can
muck with an app but can’t muck it up (at least, no more so than any
other user). A web-head can make it look ugly but can’t make it work
ugly (only a developer can do that).

Different enough yet? Well, there’s still more.

There is a built-in scripting language (TSSCRIPT) to help bridge
Clarion to HTML. Scripts can be included without affecting the .APP or
.EXE but only the generated HTML. That means that they can be
added or modified independently of the .APP file.

Different enough?

Most visual tricks used with the previous version are no longer
necessary.

However, if you need to be able to support every browser ever made,
on every platform ever conceived (i.e., you are not allowed either
Java or Javascript), you may not be able to use Web Builder. Web
Builder, as delivered, relies heavily on Javascript (TSSCRIPT operates
on the server side). So, if the "J" words are verboten, you may have
to continue using the current Java-free techniques or, possibly,
create a support structure that does not use Javascript. (The current
Internet Connect templates will continue to ship with the product to
cover this circumstance.)

In sum, Web Builder is an entirely new template chain with new
method names and embeds. It is, simply, a whole new way of "going
web."

Clarion Magazine - Clarion 5.5 Web Builder Features

http://www.clarionmag.com/v1n10/sub/v1n10webbuilder.html (2 of 5) [12/8/1999 11:24:58 AM]

Dual Mode

Before Web Builder, when you web-enabled an app, you
automatically got a dual-mode application. With Web Builder, you
must explicitly elect to create a dual-mode app. But if apps are not
dual-mode, how do you test to make sure they work?

With the pre-5.5 IC product, you tested basic functionality in
Windows. To test Web-enablement, you needed to have a web site,
usually local to the development machine, available for testing
purposes. You copied your app to the appropriate directory, started
your browser and called your app. Then you tested again.

New in Web Builder is a "linked in broker." The linked in broker
(LIB?) permits running an app locally on a PC without the full broker
(apparently this is now called the Application Server, but you’ll know
what I mean if I continue with the older term, won’t you?). The LIB
does not eliminate the broker for Web deployment; it eliminates the
need to create a local web site to test apps.

However, because LIB operates only locally (assuming, of course,
that a browser and IP stack have been installed and that the
appropriate DLLs and support files are available), an interesting
consequence is that you can run an app in a browser locally. That is,
you could deploy this way.

What happens is that, if your app is not dual-mode (i.e., is web only)
and you press the make and run button, the broker will start, your
browser will start and your app will be started in the browser.

Not only can you test functionality, you do so in a browser. This
allows checking basic aesthetics and behavior in a production
environment all at once.

Yes, if you double click on the .EXE from File Manager or Windows
Explorer or from a shortcut on the desktop, the LIB will be called and
the app started in a browser.

Convenient. Very convenient.

LIB can count: If you are already running a web server, the LIB will
automatically bind itself to the next available port, port 81, before
starting. If you are running a web server and have previously started
the EXE broker, bound to an alternate port, the linked in broker will
still bind itself to the next available port, port 82.

Very intelligent.

The New Paradigm

In Figure 1 you may have noticed a new template prompt: "Sub
directory for skeletons." What is a skeleton and why does it need a
subdirectory?

The new WB paradigm is actually a variation on something Clarion
has been doing since Designer was first introduced in Clarion 2.0 (for
DOS), something that has become so quintessentially Clarion that it
often goes unremarked.

What is a Clarion .APP file? The standard answer is "a repository."
And this is true. The .APP file is a repository of developer choices. It
is also a database of those choices, options and entries and, in this
guise, is used in a sort of mail merge. The Application Generator
merges the templates with the data in the .APP to create Clarion
source in the process we call "generation."

The new Web Builder paradigm is similar: it combines the .EXE with a
set of HTML files located in this "Sub directory for skeletons."

Skeletons are simply HTML files accessible to (and deployed along
with) your app. Each controls the appearance of a single web page
element (corresponding to a window control).

There are skeletons for buttons, check boxes, entry fields,
groups/group boxes, menu items, drop lists, menus, panels,
prompts, radio buttons, regions, sheets, strings, tabs, text fields and

Clarion Magazine - Clarion 5.5 Web Builder Features

http://www.clarionmag.com/v1n10/sub/v1n10webbuilder.html (3 of 5) [12/8/1999 11:24:58 AM]

browses. There is also one providing the general structure for a
window, another containing common functionalities for all windows
and one for colors of different page areas.

At runtime, these HTML files are read and their properties stored.
When pages are actually created, window elements are merged with
the appropriate HTML skeleton based on the properties best
matching the control’s requirements. This "merging" produces the
final page element.

So, a skeleton is, in fact, a sort of control template for producing
HTML.

To take advantage of the linked in broker, your skeletons
must be visible to your app. Typically, this means they
are deployed in a directory below the development
directory (you simply name a directory in the template
prompt – you may hard code a reference to another
directory, should you wish). The necessary files are
installed to a subdirectory called \DISTRIB. A PUBLIC
directory will also be created and, as before, images are
deployed there.

In short, the app (still) controls behavior and basic control location;
skeletons control and fine tune appearance.

The flexibility is that the appearance of an element can be modified
by changing, not the app, but the relevant skeleton.

For example, DisplayText.htm

<!-- DisplayText.htm -- Start --> <TSSCRIPT
value=DisplayText> This is the text </TSSCRIPT> <!--
DisplayText.htm -- End -->

controls the production of prompts and strings. If you would rather
have those controls display using Verdana bold, just change
DisplayText.htm:

<!-- DisplayText.htm -- Start --> <font size="2"
face="verdana"> <TSSCRIPT value=DisplayText> This is
the text </TSSCRIPT> <!-- DisplayText.htm --
End -->

and, voila, prompts and strings now use that font.

In light of the prompt in Figure 1, it is should be possible to have
multiple skeletons affecting the same page element. Multiple
skeletons would be used to make different procedures look different
from one another. It should also be possible to use different
skeletons for different controls of the same type within a single
procedure or within a single app. That is, it should be possible to
nominate alternate skeletons in two different ways.

And, indeed, this is the case.

Obviously, you may simply modify the shipping skeleton. In this
case, all controls constructed from that skeleton will exhibit the
properties specified in the modified file. Using the modified
DisplayText.htm, above, all prompts and strings in all apps executed
against the same skeleton directory would be Verdana bold.

If, for example, you prefer prompts and strings in Arial, modify
DisplayText.htm accordingly and it will be made so the next time you
access the app in a browser.

Additionally, you may create a new skeleton, based on an existing
one and save it to a different name (or, same name, different
directory). Then, on a control-by-control basis, name the skeleton to
use:

Clarion Magazine - Clarion 5.5 Web Builder Features

http://www.clarionmag.com/v1n10/sub/v1n10webbuilder.html (4 of 5) [12/8/1999 11:24:58 AM]

Figure 3. Specifying a skeleton to use.

In this case, only the one control will be different.

Now, that’s power. And skeleton mods can be done on the fly too (at
least as long as no app is actually accessing the skeleton at the
moment you save it). No matter how you cut it, this is vastly easier
than a re-make. (Besides, the broker lets you stop an app and
web-heads keep even weirder hours than we do. So, teach them
how….)

Oh! Did I mention that skeletons can be customized in a visual HTML
editor?

Summary

It sounds simple: the Clarion app controls functionality and
placement of page elements, the skeletons (official name,
"WebStyles") control appearance. This appears to delegate the
substance to the Clarion developer and the superficialities to the
web-head.

As a long-time subscriber to the Theory of Competitive Advantage,
this strikes me as entirely appropriate and just.

Unfortunately, it doesn’t always seem quite that simple. The very
simplicity of the interaction easily confuses many.

In coming articles, I’ll peek a bit deeper under the covers and expose
more of this interaction.

Steve Parker started his professional life as a Philosopher but now tries to imitate a Clarion
developer. A former SCCA competitor, he has been known to adjust other competitor's right
side mirrors - while on the track (but only while accelerating). Steve has been writing on
Clarion since 1993.

Presenting Many-To-Many Relationships
(Nov 9,1999)

Product Review: NiceTouch Dictionary/App Assistant
(Nov 9,1999)

Clarion 5.5 Web Development Features
(Nov 9,1999)

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in
any form without the express written consent of CoveComm Inc., except as
described in the subscription agreement, is prohibited. If you find this page
on a site other than www.clarionmag.com, email covecomm@mbnet.mb.ca.

Clarion Magazine - Clarion 5.5 Web Builder Features

http://www.clarionmag.com/v1n10/sub/v1n10webbuilder.html (5 of 5) [12/8/1999 11:24:58 AM]

http://www.par2.com/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 10
November 1999

Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

Relation Trees:
A Few Of The Finer Points

by Steve Parker

"Write about what you know." That’s the advice Randy Goodhew
gave me…more than once. Often, however, I didn't listen. Instead, I
wrote about my learning curve as I worked through something new.

So it is with relation trees.

Relation trees are "not appropriate for databases with a very large
primary file" (Application Handbook, p. 136). I once tested a relation
tree on a 2000 record file. Performance was unacceptable. I have not
looked at them since. Until recently, that is.

Why Now?

What suddenly got me interested in relation trees? The short answer
is "wrist pain".

My batch compiler, with which I automate making multi-DLL
applications, has a tab for "Projects." On this tab, I have a standard
parent-child browse pair. In the top browse are the projects and in
the bottom one, the applications comprising the project (Figure 1).

Figure 1. The pre-relation tree batch compiler

Relation Trees:
A Few Of The Finer Points
(Nov 16,1999)

Presenting Many-To-Many
Relationships:
Part 2
(Nov 16,1999)

The Clarion Advisor:
Breaking Out Of Nested
Loops
(Nov 16,1999)

Clarion Magazine - Steve Parker on Relation Trees

http://www.clarionmag.com/v1n10/sub/v1n10reltrees.html (1 of 8) [12/8/1999 11:25:03 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.prodomus.com/
http://www.developerplus.com/

As you will notice, the project browse can only show five rows before
scrolling becomes necessary. Of course, I recently found myself
changing, repeatedly, the dictionary for a project towards the bottom
of the list. Of course this requires a complete re-compile of all of that
project’s component apps.

Since even the most prolific and in-demand Clarion programmer will
not have more than 15 or 20 projects (sets of applications, primarily
involving multiple DLLs, as opposed to having only 15-20
applications), the maximum number of records in the Projects file will
almost always be reasonable. A relation tree could (probably) handle
this many records. And, if my Project components list were in a tree,
I could use the entire tab for a single Projects browse and minimize
my scrolling requirements, making life easier on my mouse wrist.
And because a relation tree can be configured to allow updates at
both parent and child levels, I could continue to maintain my Projects
file from the tree using the existing update form (which can do both
Project and components in one go – see Figure 2).

Figure 2. The existing update form.

What I had in mind would look something like:

Figure 3. The compile manager with a relation tree (list box only -
click here for the full image)

Clarion Magazine - Steve Parker on Relation Trees

http://www.clarionmag.com/v1n10/sub/v1n10reltrees.html (2 of 8) [12/8/1999 11:25:03 AM]

http://www.clarionmag.com/v1n10/sub/reltree5.gif

(And, in fact, if you download this program, this is exactly what you
will find. Consider this the official announcement of the
enhancement.)

So, come along as I learn some of the subtleties of using the relation
tree template.

Tree Basics

Everyone has seen tree controls. They have plus and minus signs;
they can have icons. They can show multiple levels of a single file
chain. They can be expanded and contracted (usually at user request
but sometimes magically, unbidden). But the single most important
fact about trees, as implemented in Clarion, is that "The Relation
Tree template employs a fully-loaded QUEUE for the root level"
(Application Handbook, p. 136).

Relation trees are QUEUE based.

This means that everything I know about Clarion QUEUE structures
can be brought to bear in understanding what the template is doing.
More importantly, everything I know about QUEUEs can be brought to
bear on making the tree behave as I wish it to.

The next most important fact is that "child levels are demand-loaded
when a branch is expanded" (Application Handbook, p. 136). While
wandering through the generated code, I discovered that child levels
are also demand-unloaded when a branch is collapsed.

On first reading, however, I missed the fact that no secondary
structure is referenced. This means that all levels or, more
accurately, all visible levels are in a single QUEUE. Therefore, when
any given node is expanded or contracted, the children at that level
will be added to/deleted from the (single) QUEUE.

Lastly (and I am jumping ahead a bit), the QUEUE contains only a
single field for the tree display and that field is a string. That is,
regardless of what other fields are declared in the QUEUE structure, it
is only a single string that will be displayed. This is easily inferred
from the manual's instructions on how to format this string:

Display String

The field name or text to display for the primary file

Clarion Magazine - Steve Parker on Relation Trees

http://www.clarionmag.com/v1n10/sub/v1n10reltrees.html (3 of 8) [12/8/1999 11:25:03 AM]

level. This may be any valid Clarion expression, for
example:

CLIP(CUST:LastName)&' '&CUST:FirstName

(Appilcation Handbook, p. 138). This direction only makes sense if
the tree display is based on a single string.

This bit of intelligence is even more easily inferred from the fact that
the documents state it rather explicitly: "The tree control is a single
column list." Well, that makes it in pretty clear, doesn't it?

Gi’ Me

In addition to relation tree standard behavior, there are some
behaviors I would like to have. And there is at least one behavior I
require.

I like trees where the parent level icon changes when the branch is
expanded or contracted. I am aware that this is purely cosmetic but I
like it and I want it. Therefore I am going to get it.

I need to have the Project record under the cursor "hot." That is, I
need the last highlighted Project record to be current in memory.
Why? Because this is what I need to know so that the appropriate
project can be called and compiled.

Hot fields are a standard behavior in Browses. But relation trees are
not browse-based. And, as there is no "Hot Fields" tab, this does not
seem to be built into the template.

Taking a moment to consider my requirements, there are some
things I clearly need to be looking for as I implement my relation
tree control.

Cosmetics: Without even looking at the template prompts, I assume
that there are prompts for conditional icon usage. I assume this
because it is so typically Topspeed that I just cannot envision this
feature being absent. It turns out that this is a safe assumption.

So I won’t worry about icons. What I will need to watch out for is
when a branch is expanded or contracted. I need to know how the
template signals the expanded/contracted state or the change of
state. Once I have that, the template will handle the icon change for
me.

Business: Because neither the QUEUE entries nor the underlying file
records are inherently hot when displayed, the parent record (in this
case, a Projects record) is never loaded into memory for me. This is
not really a problem because I can easily retrieve a QUEUE entry at
will.

See? I told you that the fact that relation trees are QUEUE
based was important! But I must also remind you that
"Pride goeth before the fall" (if I didn't, you wouldn't
continue reading, would you?).

Having the QUEUE entry, if I include a unique key value in the display,
I can parse out the key information and FETCH the entire record.
Once I have the record, I can use the information in any way
necessary.

Relation Tree Building Blocks

I won’t walk you through the process of creating a relation tree. You
are just as capable as I of following directions in the Application
Handbook. You are also fully capable of replicating most of the silly
mistakes I made when implementing a relation tree.

Instead, I’ll concentrate on those aspects of the code needed to
make my batch compiler work correctly. The most important item is
that I need to know the project selected. Instead of popping up a
"Select Project" browse, which would be inconsistent with the rest of
the interface, I want to use the Project tree to select the Project by
the position of the cursor in the list.

Clarion Magazine - Steve Parker on Relation Trees

http://www.clarionmag.com/v1n10/sub/v1n10reltrees.html (4 of 8) [12/8/1999 11:25:03 AM]

It is time to look at the QUEUE structure created by the templates.
This is going to be one of those cases where I need to know what the
template does, how it behaves and what it makes available. There is
no knowledge of principles or methods to apply, deducing the
required techniques. This time it is brute force; study the template,
know what you’re looking for, apply what is learned.

The QUEUE created by the relation tree template is:

Queue:RelTree QUEUE,PRE() ! Browsing Queue
REL1::Display STRING(200)
REL1::Icon SHORT
REL1::Level LONG
REL1::Loaded SHORT
REL1::Position STRING(512)
 END

Buried in the procedure’s data section, the "! Browsing Queue"
comment gives the queue away. (In this case, the template has
created variables using the template instance number "1." This
means that it is the first template populated. In another procedure,
where there are already Code Templates populated, this number will
be different.)

There are three very interesting looking variables here:
REL1::Display, REL1::Level and REL1::Loaded. I already know
what REL1::Position must mean and REL1::Icon, being a SHORT is
either a flag or a pointer to an icon. In any case, these two don’t
seem to have much potential for the purposes at hand.

To trace the uses of the more interesting variables, I simply search
for instances of each in the generated source and analyze the usage
in the context of the code where I found it.

REL1::Display appears in routines where the display string is
formatted. As one might have expected, REL1::Display is what the
relation tree displays.

I know, therefore, that this is the variable that will end up containing
the information I need to retrieve from the QUEUE. (You can also use
REGET with the POSITION data stored in the queue.)

REL1::Level is very heavily used throughout the template. And it is
tempting to give up the trace and simply assume that because the
Projects file is the top level file, it is level 1.

Bad move.

During the expansion of the tree, the files in the schematic are read,
from the top of the schema, down. A series of "Load" routines are
called and in these routines, the display string is written to the QUEUE
and levels are sequentially assigned.

If the top level of the tree is opened (expanded) and has children
(subsidiary levels), it is assigned a value of 1. If it is at the top level
but has no children, it is also assigned 1. However, if a level has
subsidiary levels but is not opened, it is assigned -1 (actually, the
documentation states that a negative value is assigned to any
unexpanded level; see, pride does go before the fall). As the internal
documentation within the template states, this flags that the node is
expandable. So,

ABS(REL1::Level)

is safer for getting the tree level.

REL1::Loaded is assigned either True or False. If there are child
records and they are loaded, it is assigned True. Otherwise, it is
false. Obviously, this is an expanded/contracted flag. "True" means
expanded, "False," contracted.

Fast and dirty, but there are the basics of how a relation tree
operates. Now, to work.

Clarion Magazine - Steve Parker on Relation Trees

http://www.clarionmag.com/v1n10/sub/v1n10reltrees.html (5 of 8) [12/8/1999 11:25:03 AM]

Keeping The Project Current

The Projects file has two unique identifiers for each project. There is
a project ID (though no one ever sees it) and there is a project
name. Both are keys (solo or as the top node) and both require
unique values.

The project ID would not be a meaningful piece of information for
display but the project name would be. So, the project name will be
placed in the tree. In fact at this level, the project name is really all
that is required.

This means that if I have the QUEUE entry, I can do something like:

PRO:ProjectName = Clip(REL1::Display)
Access:Projects.Fetch(PRO:ProjectNameKey)

to get the entire project record, just as originally suspected.

And, because the tree uses a QUEUE, I can retrieve the underlying
QUEUE record at any time easily enough:

Get(Queue:RelTree,Choice(?QueueFieldEquateLabel))

in the tree’s NewSelection embed. And the entire code would look
something like:

Get(Queue:RelTree , Choice(?QueueFieldEquateLabel))
PRO:ProjectName = Clip(REL1::Display)
Access:Projects.Fetch(PRO:ProjectNameKey)

However, what if the tree is expanded and the cursor is on an app
name, not a project? If the highlighted line is a component
application, its name is what GET() will return. This is hardly what is
needed.

I do not want app names. So, instead of making every QUEUE entry
"hot," I only want to GET() the QUEUE entry if the item is a Project
name.

"All" I need to know whether the selector is on a Project. What I need
to know, really, is which level of the tree the user is on. Then, I
GET() the QUEUE entry only if the cursor is at the appropriate level (in
this case, with only two levels, I am interested in level 1).

As my trip though the template demonstrated, REL1::Level contains
the information I want in this case. I can confirm this by placing:

Message(ABS(REL1::Level))

in the NewSelection embed (after Parent call). So, my final code is:

If ABS(REL1::Level) = 1
 Get(Queue:RelTree,Choice(?RelTree))
 PRO:ProjectName = Clip(REL1::Display)
 Access:Projects.Fetch(PRO:ProjectNameKey)
End

If you are not comfortable with this, with the reliability of
RELx::Level (and, during testing, I did manage to get a "2" where I
expected a "1"), there is another way.

Consider the standard behavior of Access:file.Fetch(key).

Either Access:Projects.Fetch(PRO:ProjectNameKey)returns a
value or it doesn’t. If it doesn’t, the FETCH was successful (FETCH()
returned Level:Benign). If it returns any value, it failed. Failure
means that whatever was assigned to PRO:ProjectName was not a
project name (since there are only two levels, it must be an
application name).

Therefore, if I define a datum,

Clarion Magazine - Steve Parker on Relation Trees

http://www.clarionmag.com/v1n10/sub/v1n10reltrees.html (6 of 8) [12/8/1999 11:25:03 AM]

SaveProject Like(PRO:ProjectName)

this code will serve exactly the same purpose:

Get(Queue:RelTree,Choice(?RelTree))
PRO:ProjectName = Clip(REL1::Display)
If NOT Access:Projects.Fetch(PRO:ProjectNameKey)
 SaveProject = PRO:ProjectName
End
PRO:ProjectName = SaveProject

If you are not 100% comfortable with the superficial backwardness of
0 (zero) meaning "Ok,"

Get(Queue:RelTree,Choice(?RelTree))
PRO:ProjectName = Clip(REL1::Display)
If Access:Projects.Fetch(PRO:ProjectNameKey) = Level:Benign
 SaveProject = PRO:ProjectName
End
PRO:ProjectName = SaveProject

has a more linear look and feel.

(I am not ignoring the possibility that an app and a project might
have a common name. App file names are stored with an extension
so duplication is not actually possible.)

Expanded Or Collapsed?

Now I know two different ways to tell whether the highlighted record
is from a particular level of the tree. For the conditional icon display,
I need to know how to determine whether a given level is expanded
or collapsed.

Searching through the generated code, I found the
REL1::Load:Projects routine.

It contains a LOOP testing that records exist in the child file and, if
there are any, loading them into the QUEUE. When the ROUTINE
actually adds an entry to the QUEUE, it also assigns

REL1::Loaded = True

There is also an UnloadLevel routine. In it, not only are the child
entries deleted from the QUEUE,

REL1::Loaded = False

is assigned.

So, the "flag" I am looking for is REL1::Loaded.

Sure enough, when REL1::Loaded is used to trigger the icons,
different icons will be displayed when the branch is expanded or
contracted (see Figure 4).

Figure 4. Setting up conditional icon usage.

Clarion Magazine - Steve Parker on Relation Trees

http://www.clarionmag.com/v1n10/sub/v1n10reltrees.html (7 of 8) [12/8/1999 11:25:03 AM]

(If you need to make the relation tree turn handflips, you
owe it to yourself to check out Phillip Carroll’s UltraTree
template.)

Summary

"They’re pretty, Colonel, but can they fight?" asked Donald
Sutherland of Robert Ryan in "The Dirty Dozen." Now I have to
adjust to the fact that I can only add a new project when the column
header is highlighted (when a project is highlighted, I get the add
app form). Perhaps I should declare the same update form for both
levels? Maybe I shouldn’t have an update at the application level?

A relation tree is attractive but can be confusing when it comes to
maintenance. In this case, however, it works quite nicely. Yes,
relation trees can fight and I don’t have to mouse around as much as
I once did.

Steve Parker started his professional life as a Philosopher but now tries to imitate a Clarion
developer. A former SCCA competitor, he has been known to adjust other competitor's right
side mirrors - while on the track (but only while accelerating). Steve has been writing on
Clarion since 1993.

Relation Trees:
A Few Of The Finer Points
(Nov 16,1999)

Presenting Many-To-Many Relationships:
Part 2
(Nov 16,1999)

The Clarion Advisor:
Breaking Out Of Nested Loops
(Nov 16,1999)

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in
any form without the express written consent of CoveComm Inc., except as
described in the subscription agreement, is prohibited. If you find this page
on a site other than www.clarionmag.com, email covecomm@mbnet.mb.ca.

Clarion Magazine - Steve Parker on Relation Trees

http://www.clarionmag.com/v1n10/sub/v1n10reltrees.html (8 of 8) [12/8/1999 11:25:03 AM]

http://www.paragondandd.com/
http://www.par2.com/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 10
November 1999

Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

Three Ways to Present
Many-To-Many Relationships
To The User

Part 2 of 2

by Tom Ruby

In the first article in this two-part series I explained some of the
background behind many-to-many relationships, and discussed the
"Form And Lookup" approach to presenting many-to-many data to
the user. In this second part I cover the "Check List" and "Selection
Pool" approaches.

NOTE: The example application contains completed
procedures. If you want to follow along with the example
application, you can either create new procedures with
different names, or create a new example application and
import demo app procedures as required.

Check List

A check box list presents a list of all the options available and
indicates which are selected (See figure 5). I use it when the user
thinks of tagging which options apply or don’t apply. This is useful
when the list of options is fairly restricted, but would get
unmanageable if the list contained hundreds or thousands of items.
To try this out, make a new menu option on your frame to call a
browse of puppies, and make a new form procedure for the browse
update buttons. On the new form, populate the puppy name field and
a browse box.

Figure 5. A check box list.

Relation Trees:
A Few Of The Finer Points
(Nov 16,1999)

Presenting Many-To-Many
Relationships:
Part 2
(Nov 16,1999)

The Clarion Advisor:
Breaking Out Of Nested
Loops
(Nov 16,1999)

Clarion Magazine - Many-To-Many Relationships Part 2

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part2.html (1 of 9) [12/8/1999 11:25:07 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.developerplus.com/

In the file schematic for the browse box, select the Trick table and
use the edit button to select the TrickName key so the tricks are
listed alphabetically. In the list box formatter, add the Trick Name
field, and select Normal under icons on the appearance tab. You
won’t need a range limit here since you want to show all the tricks.

The browse box will need to pick which icon to show in its
SetQueueRecord method, and this information is in the DoesTrick
table, so go to the procedure’s file schematic and add the DoesTrick
table under Other Files (See figure 6). You can have the
SetQueueRecord method look in the table to see if there is a
DoesTrick record for each trick, but in many database environments
this would be inefficient. Granted, it probably wouldn’t matter in this
application, but go ahead and do it the hard way just for fun.

Figure 6. File schematic for a check box list.

Clarion Magazine - Many-To-Many Relationships Part 2

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part2.html (2 of 9) [12/8/1999 11:25:07 AM]

Next make a queue to hold the TrickSysID of all the tricks this
puppy knows how to do, and refresh the queue when the browse is
reset. I built the queue in the data area for the procedure using the
data button and gave it a prefix of DQ. (See figure 7)

Figure 7. A queue in the procedure's data.

You will need some code to fill this queue. I put it in a routine:

Clarion Magazine - Many-To-Many Relationships Part 2

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part2.html (3 of 9) [12/8/1999 11:25:07 AM]

LoadDoesQueue ROUTINE
 FREE(DoesQueue)
 Access:DoesTrick.ClearKey(DOS:PuppySysIDKey)
 DOS:PuppySysID = PUP:PuppySysID
 SET(DOS:PuppySysIDKey,DOS:PuppySysIDKey)
 LOOP
 IF Access:DoesTrick.Next() <> LEVEL:Benign OR !
 DOS:PuppySysID <> PUP:PuppySysID THEN BREAK .
 DQ:TrickSysID = DOS:TrickSysID
 ADD(DoesQueue)
 END
 SORT(DoesQueue, +DQ:TrickSysID)

Put a call to this routine in the Reset method of the window (See
figure 8), and in the ResetFromAsk method of the browse.

Figure 8. The ThisWindow.Reset embed point.

You will need to add a variable to the procedure. I called it
BrowseIcon and made it a byte. Go to the browse actions tab, and
slide the tabs along till you find the Icons tab. Look at the properties
for the TRI:TrickName icon. Press Insert to add a condition. The
condition will be BrowseIcon = 1, and the icon will be whatever icon
you want displayed for selected tricks. If you want to show an icon
for unselected tricks, put that icon in for Default icon. Back out to the
window formatter.

Next, put some code in the SetQueueRecord embed. Double click the
browse box in the window formatter and find the Local
Objects|BRW5|SetQueueRecord code embed, and press Insert. Then
select Source. The embed code will look like this:

DQ:TrickSysID = TRI:TrickSysID
GET(DoesQueue, +DQ:TrickSysID)
IF ERRORCODE() OR DQ:TrickSysID <> TRI:TrickSysID
 BrowseIcon = 0
ELSE
 BrowseIcon = 1
END

You want this code before the generated code so the BrowseIcon
variable will be set when the generated code looks at it to pick the

Clarion Magazine - Many-To-Many Relationships Part 2

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part2.html (4 of 9) [12/8/1999 11:25:07 AM]

icon. Otherwise, the icon will indicate whether the trick above it is
selected.

Penelope (remember Penelope?) will want to be able to turn the
icons on and off, so put a set of browse update buttons on the form,
and fill in a new procedure name. I called it CheckPuppyTrick. You
don’t want to insert or delete tricks here, just insert or delete
DoesTrick records, so hide the insert and delete buttons. You will
need to tell the browse template that there aren’t any insert and
delete buttons, so go to the embed editor and find where the
BRW5.InsertControl variable is set (about priority 8505). In the
next available embed, put:

BRW5.InsertControl = 0
BRW5.DeleteControl = 0

Now, make the form procedure. I used the form template and
selected Trick as the file being updated. List Puppy and DoesTrick
under Other Files. You’ll need to press the Window button to make a
window so the template will be happy, but don’t worry about what it
looks like because the user will never see it.

Go to the embed tree for this "form;" look at the Local
Objects|ThisWindow|Init embed and find where the files are opened.
Put an embed after the files are opened which looks like this:

IF SELF.Request <> ChangeRecord
 SELF.Response = RequestCancelled
 RETURN LEVEL:Fatal
END
DOS:PuppySysID = PUP:PuppySysID
DOS:TrickSysID = TRI:TrickSysID
IF Access:DoesTrick.Fetch(DOS:PuppySysIDKey) |
 = LEVEL:Benign
 Relate:DoesTrick.Delete(0)
ELSE
 DOS:PuppySysID = PUP:PuppySysID
 DOS:TrickSysID = TRI:TrickSysID
 Access:DoesTrick.Insert()
END
SELF.Response = RequestCompleted
RETURN LEVEL:Fatal

This embed code does four things. First, it checks that it isn’t being
asked to insert or delete a record and sets SELF.Response to
RequestCancelled so any calling browse will think the user opted to
cancel. Second, it checks to see if there is a DoesTrick record for the
Puppy and Trick. Third, if there is a DoesTrick record it deletes it,
and if not, it adds one. Fourth, it sets SELF.Response to
RequestCompleted and returns LEVEL:Fatal.

The RETURN:LevelFatal statement will cause the form to close
without ever displaying the window, and since SELF.Respose has
been set to RequestCompleted, the Browse box which called it will
think the user changed the record and do its ResetFromAsk method
to refresh the display.

Notice that this form procedure doesn’t care if it is called from a
puppy form or from a trick form, so you can use the same procedure
from a trick form.

To make check lists, remember to:
Browse the other table and put an icon.●

Make the icon conditional on some local variable.●

Use the SetQueueRecord method to look in the cross reference
table and set the local variable.

●

Make a form to add or delete the cross reference records but
don’t let it open its window.

●

Selection Pool

A selection pool is useful where a user thinks of picking an option to

Clarion Magazine - Many-To-Many Relationships Part 2

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part2.html (5 of 9) [12/8/1999 11:25:07 AM]

add. It shows two browses. One browse shows the selected options
and the other shows the available options. This is useful when the
user thinks about the relationship as "adding" one thing to the other.

Figure 9. A selection pool browse.

Make another option in your app frame menu to call up yet another
browse, and make the browse show tricks. Make yet another trick
update form, and place a control to edit the trick name. Make the
form wide enough for two browses side by side with some space
between them for buttons.

On the left side of the form, put a browse to show the DoesTrick
table using the TrickSysIDKey key. Have it show the PuppyName out
of the Puppy table. Range limit the browse on TrickSysID file related
to the Trick table. Set an additional sort field to the puppy name so
the puppies will be listed alphabetically.

Put another browse on the right side of the display to browse the
puppy table. Yes, I know this table is used in the other browse, but
don’t worry, it will work fine (See Figure 10). Have it use the name
key so the puppies will be listed alphabetically. You’ll want to know
the class names for these two browses, so look them up on their
actions tabs and write them down or make them something
meaningful. Mine are BRW5 and BRW6.

Figure 10. File schematic for a double browse form.

Clarion Magazine - Many-To-Many Relationships Part 2

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part2.html (6 of 9) [12/8/1999 11:25:07 AM]

Now, look at the procedure’s embed tree and go to Procedure
Routines. Build yourself two routines. I usually put them in two
different embeds so they both show in the embed tree. They should
look like this:

AddPuppy ROUTINE
 IF CHOICE(BRW6.ListControl)
 BRW6.UpdateBuffer()
 DOS:PuppySysID = PUP:PuppySysID
 DOS:TrickSysID = TRI:TrickSysID
 Access:DoesTrick.TryInsert()
 ThisWindow.Reset(1)
 END

RemovePuppy ROUTINE
 BRW5.UpdateBuffer()
 IF Access:DoesTrick.Fetch(DOS:DoesSysIDKey) |
 = LEVEL:Benign
 Relate:DoesTrick.Delete(0)
 ThisWindow.Reset(1)
 END

Take a close look at these two routines because they do the work.

AddPuppy first checks to see if a puppy is selected in BRW6. Second,
it calls BRW6.UpdateBuffer so the puppy record will contain the
selected puppy. Third, it builds a DoesTrick record and inserts it.
The routine uses TryInsert instead of Insert so if the user
mistakenly adds a puppy twice the program will appear to do nothing
rather than showing a strange looking error message. Fourth, it
resets the window.

RemovePuppy does an UpdateBuffer on BRW5 so it knows which
puppy it is removing. The browse is listing DoesTrick records, so
BRW5.UpdateBuffer() will get the DoesTrickSysID into the
DoesTrick record. It then fetches the DoesTrick record by the
SysIDKey. Then it deletes the record and resets the window.

Now that you have these two routines, put DO AddPuppy in the
embeds for the Add button (Control Events|?Button3|Accepted). Put
DO RemovePuppy in the embeds for the Remove button.

Clarion Magazine - Many-To-Many Relationships Part 2

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part2.html (7 of 9) [12/8/1999 11:25:07 AM]

Penelope can now add and remove puppies to her heart’s content
using these buttons. Since she’s "moving" records from one list to
another, this would be a natural place to use Drag and Drop, so go
ahead and add drag and drop IDs to the list boxes. On the left side,
the Drag Id will be RemovePuppy and the drop Id will be AddPuppy.
On the right side, do just the opposite and make the Drag ID
AddPuppy and the drop ID RemovePuppy. Double Click the browse on
the left to get the embed tree and go to Control Events|?List|Drop,
and add DO AddPuppy there. Double Click the browse on the right
and go to Control Events|?List2|Drop, and add DO RemovePuppy
there.

You may want to restrict the right side browse to show only the
puppies that are absent from the left side browse. I haven’t figured
out how to filter a view based on records that aren’t there, so I built
a queue in the procedure data to store the SysID’s of puppies that do
the trick and used the browse’s verify record embed to check it.
Performance shouldn’t be too terrible unless there are 200,000
puppies and only two are included in the list. I gave the queue a
prefix of PQ. An embed in ThisWindow.Reset() method fills this
queue:

FREE(PuppyQueue)
Access:DoesTrick.ClearKey(DOS:TrickSysIDKey)
DOS:TrickSysID = TRI:TrickSysID
SET(DOS:TrickSysIDKey,DOS:TrickSysIDKey)
LOOP
 IF Access:DoesTrick.Next() <> LEVEL:Benign THEN BREAK .
 IF DOS:TrickSysID <> TRI:TrickSysID THEN BREAK .
 PQ:SysID = DOS:PuppySysID
 ADD(PuppyQueue)
END
SORT(PuppyQueue,+PQ:SysID)

The embed to filter the browse looks like this:

PQ:SysID = PUP:PuppySysID
GET(PuppyQueue,+PQ:SysID)
IF ERRORCODE() OR PQ:SysID <> PUP:PuppySysID |
 THEN RETURN 0 .
RETURN 2

The code returns 0 if the puppy sys ID is not in the queue, and a 2 if
it is. Be careful! If you return a 1, the browse class will decide this
record is out of range and will not look any farther.

To show a selection pool, remember to:
Browse the cross reference table displaying identifying fields
from the other table.

●

Browse the other table.●

Make Add and Remove routines to build and remove the cross
reference records. These should reset the window when they’re
done.

●

Make controls and/or drag & drop to call the Add and Remove
routines.

●

Summary

There are many ways to present many-to-many relationships to the
user, and if you’re clever you can hide the cross reference from the
user. The trick is to figure out how the user envisions the task, and
make an interface accordingly. I hope you find these three
approaches useful.

Downoad the example application

Tom Ruby, who is no relation to the man who shot Lee Harvey
Oswald, is an independent contractor living in the middle of a
hayfield in Central Illinois with his wife Susan and two red headed
sons, Caleb and Ethan. He has been using Clarion for Windows since

Clarion Magazine - Many-To-Many Relationships Part 2

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part2.html (8 of 9) [12/8/1999 11:25:07 AM]

ftp://www.clarionmag.com/pub/clarionmag/v1n10/v1n10damsel.zip
http://www.netins.net/showcase/tomruby/

the summer of '95. Before that, he was a "TopSpeeder" using Modula
II, so he has never used the DOS versions of Clarion.

Relation Trees:
A Few Of The Finer Points
(Nov 16,1999)

Presenting Many-To-Many Relationships:
Part 2
(Nov 16,1999)

The Clarion Advisor:
Breaking Out Of Nested Loops
(Nov 16,1999)

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in
any form without the express written consent of CoveComm Inc., except as
described in the subscription agreement, is prohibited. If you find this page
on a site other than www.clarionmag.com, email covecomm@mbnet.mb.ca.

Clarion Magazine - Many-To-Many Relationships Part 2

http://www.clarionmag.com/v1n10/sub/v1n10manytomany_part2.html (9 of 9) [12/8/1999 11:25:07 AM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 10
November 1999

Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

The Clarion Advisor:
Breaking Out Of Nested Loops

by Dave Harms

If you write much Clarion code, you probably use loop structures a
lot. Most likely you know about the various forms of loop, including
loop while, and loop until. And you may have read that you can
have your while and until statements at the bottom of the loop if
you like.

A lesser-known feature is the ability to break out of nested loops.
Consider the code in Figure 1.

Figure 1. A fairly pointless code fragment with a problem.
 loop
 x = random(1,999)
 loop 100 times
 y = random(1,999)
 display()
 if y = x then break.
 end
 end

All the code in Figure 1 does is set up two loops, an inner and outer
loop. One variable is randomly set in the outer loop, and another in
the inner loop. The inner loop has 100 tries to match its value with
the outer loop value before the outer loop value is reset.

But there’s a problem. The code in Figure 1 is going to run forever,
because the break statement only terminates the inner loop, while
the outer loop continues (once again invoking the inner loop).

Traditionally there have been two ways to deal with this problem.
One is to set up a local variable which you test for at each loop level,
and exit if the flag has been set. This is workable but awkward,
particularly when there are a number of nested loops.

The other solution is to employ a goto which forces execution to
jump to the specified label. The use of goto is generally frowned
upon as it tends to make code harder to read.

A better alternative to these approaches is to use loop labels and a
parameterized break statement, as shown in Figure 2.

Figure 2. The code fragment with a loop label.
 open(window)
l1 loop
 x = random(1,999)
 loop 100 times
 y = random(1,999)
 display()
 if y = x then break l1.
 end
 end

Note that the code now has a label in the first column of the first loop

Relation Trees:
A Few Of The Finer Points
(Nov 16,1999)

Presenting Many-To-Many
Relationships:
Part 2
(Nov 16,1999)

The Clarion Advisor:
Breaking Out Of Nested
Loops
(Nov 16,1999)

Clarion Magazine - The Clarion Advisor: Breaking Out Of Nested Loops

http://www.clarionmag.com/v1n10/sub/v1n10avisorloops.html (1 of 2) [12/8/1999 11:25:08 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.developerplus.com/

statement. Inside the loop is the code

 break l1

which forces a break in the outer loop whenever matching numbers
are found, enabling a clean exit with a minimum of coding.

This is a simple example, but you might also have a more complex
set of nested loops to deal with. In that case you can put labels on
each of your loops, and break out of specified levels as your program
logic dictates. You can even use this form of the break statement in
an accept loop.

Download the source code

Relation Trees:
A Few Of The Finer Points
(Nov 16,1999)

Presenting Many-To-Many Relationships:
Part 2
(Nov 16,1999)

The Clarion Advisor:
Breaking Out Of Nested Loops
(Nov 16,1999)

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in
any form without the express written consent of CoveComm Inc., except as
described in the subscription agreement, is prohibited. If you find this page
on a site other than www.clarionmag.com, email covecomm@mbnet.mb.ca.

Clarion Magazine - The Clarion Advisor: Breaking Out Of Nested Loops

http://www.clarionmag.com/v1n10/sub/v1n10avisorloops.html (2 of 2) [12/8/1999 11:25:08 AM]

ftp://www.clarionmag.com/pub/clarionmag/v1n10/v1n10loops.zip
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 10
November 1999

Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

ABC Design: The ViewManager

by David Bayliss

Part 1 of 2

Having dealt with the FileManager and RelationManager classes the
final part of the file system I need to deal with is the ViewManager. It
could be argued that having three different objects dealing with files
is a little excessive. In a sense this is true; logically the ViewManager
brings fairly little to the table over a RelationManager (it "just" deals
with a bunch of files). However, the ViewManager does handle the
very important special case where a bunch of files are being used to
retrieve a series of records (including child lookups) in a nominated
sequence. This was so vital I felt it deserved a special object. It turns
out that the ViewManager is almost never used as a ViewManager,
but it is the base class used for many of the higher level data access
objects.

Room With A View

The ViewManager is to a View structure what a FileManager is to a
File structure. Specifically, the ViewManager is there to act as an
OOP front end to the view. It is also there to provide some logical
sophistication not present in the native view. The main logical
elements brought to the table are:

Range Limits: The ABC and legacy template chains have the
notion of a range limit, which is the ability to restrict the
records retrieved to those matching one or more of the
major-most elements of the key order. Tied in with the notion
of range limits is the notion of a free element (the major-most
element of a sort order that is not range limited).

.

Multiple Sort Orders: A Clarion view structure only supports a
single sort order (although the current sort order can be
changed at will). The ViewManager is to support multiple sort
orders (simply).

b.

Flexible filters: The Clarion view structure has one assignable
filter. The ViewManager provides for multiple filters active at
once.

c.

Attitude: A key requirement of ABC was that we wanted
optimal (or near optimal) browse performance. It was felt that
an essential element of that was ensuring that views were
handled cleverly. Rather than us having to build the cleverness
into every object that used the view (browse, drop down list,
drop down combo, report, process etc) the ViewManager
watches the commands being sent to the view structure and
translates these commands (where required) into a more
intelligent sequence.

d.

Initialisation

The initialisation section of the ViewManager is quite large, and it also
offends the OOP purists as it contains state; the order in which the
methods are called is significant. These two are tied together. A
significant procedure (say five browses and 15 drop combos) will
contain 20 view initialisation sequences and possibly 100 sort order
creation sequences. We felt that having these sequences concise,

ABC Design Series: The
ViewManager Part 1
(Nov 23,1999)

November 1999 News
(Nov 23,1999)

The Art Of Software
Development: Analysis By
Design
(Nov 23,1999)

Clarion Magazine Version
2!
(Nov 23,1999)

Clarion Magazine - ViewManager Part 1

http://www.clarionmag.com/v1n10/sub/v1n10viewmanager1.html (1 of 4) [12/8/1999 11:25:09 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.kcug.org/etc2000poll.html
http://www.prodomus.com/

readable and efficient was more important than sheer hygiene.

The call sequence is:
Init
[Repeat 1 or more times
 AddSortOrder
 AppendOrder ! Optional
 AddRange ! Optional
]
UseView

AddRange PROCEDURE(*? Field)
AddRange PROCEDURE(*? Field,*? Limit)
AddRange PROCEDURE(*? Field,*? Low,*? High)

The three AddRange methods set a range limit upon the current sort
order (defined by the preceding AddSortOrder or SetOrder). They
correspond to Current Value, Single Value and High/Low Value range
limits respectively. The code for each is similar. The aim of the code
is to produce a RangeLimit queue with a queue record defined for
each element of the key that is range limited.

The first line of code sets the type of the range limit. The second calls
LimitMajorComponents. It is defined in ABC that if the range-limited
field of a sort order is not the most major component then all the
more major components are implicitly current-value limited
irrespective of the limit-type of the more minor component. The call
to LimitMajorComponents implements this detail.

The field(s) passed in is then added to the range-limit queue. Finally
SetFreeElement is called to compute the free element of the sort
order.

AddRange PROCEDURE(*? Field,RelationManager
 MyFile,RelationManager RelatedFile)

The purpose of this AddRange is the same as the other three, but the
code is somewhat different because the information required to
construct the range limit is not publicly available (it is hidden in the
RelationManager). Essentially if two files are related by keys with,
say, three components, then a FileLimit range limit corresponds to
a single-value limit upon three different elements! The queue is thus
filled in using the ListLinkingFields capability of the
RelationManager.

AddSortOrder PROCEDURE(<KEY K>),BYTE,PROC

The AddSortOrder method actually performs the action of creating a
new logical sort order. Each logical sort order can have a different
range limit (and thus free element), and a different filter. This is
stored in a queue (or Order queue) with a record pertaining to each
sort order.

This method clears the queue record (it has to as it contains an ANY),
stores the key, creates a new range-limit list and uses the first
component of the key as the free element.

The sort order itself is computed by passing the key (if present) as a
comma delimited list of components to the SetOrder method.

As it is impossible to remove sort orders it is okay to return the
record number of the queue record added as the "unique identifier"
of the sort order within the queue (for later use by SetOrder).

AppendOrder PROCEDURE(STRING Order)

Each time I look at the AddSortOrder/AppendOrder relationship I
oscillate between deciding it is a beautifully elegant engineering
solution and fretting that it is a complete hack. The issue is this:
Proper database theory will tell you that sort orders should be
defined in terms of fields and ascending/descending flags so that the
logic of the program is nice and clean, and the ugliness of physical
database design and actually getting performance out of the system
can be left to some other poor schmuck.

Clarion Magazine - ViewManager Part 1

http://www.clarionmag.com/v1n10/sub/v1n10viewmanager1.html (2 of 4) [12/8/1999 11:25:09 AM]

The problem is that with many programmers coding furiously and
requiring many different sort orders, the "poor schmuck" (typically
the DBA) actually may not be able to get the system to perform at
all! Worse yet he may be sufficiently senior that you can’t boss him
around to make sure your program runs ok.

Thus the programmers have to get pragmatic and they start building
keys into their program logic. Performance improves greatly;
unfortunately applications have to use a restricted set of sort
sequences or the number of keys explodes.

So along comes ABC. What do we do, "restrictive" or "slow"? Legacy
took the restrictive approach, which I didn’t want, but the alternative
wasn’t that nice either. What we settled on in ABC was an interface
that can be used in a fully, logically pure way but that encourages
the writing of efficient queries. It does this by defining a sort order in
two parts. The first (optional) part is a key which defines the main
part of the sort sequence. The second (also optional) part is the
fields used to sort duplicates within the first key. Combining this with
some special technology within the view driver we have the panacea
of full flexibility that is usually fast.

To put some meat on the bones; assume you have an invoice file
containing a customer id, and an invoice date (amongst other
things). There is a key on customerid. You want to list invoices in
customer order with invoices for a customer listed in date order. You
do an AddSortOrder(CustomerKey) and then an
AppendOrder(‘INV:Dateordered’). The view driver will then read in
the records for the first customer, sort them, then the second
customer etc. Given that sorting is at least an NlogN process this
"bucket sorting" can produce a massive time savings.

An additional tweak that should be available by C6 is that
AppendOrder may start with a "*" character, meaning the specified
order replaces the order specified by the key after and including the
free element. This is useful for specifying range-limit information
using a key but then ignoring any trailing key components.

Init PROCEDURE(VIEW V,RelationManager
 RM,<SortOrder SO>)

Much of the init code is straightforward; note though that the order
property may be set up in one of two ways. If passed in then that
version is used, otherwise one is created. This allows a derived class
to construct a larger queue (more fields) than the ViewManager
requires while still having the ViewManager perform the
administration required.

The order queue is central to the whole ViewManager operation and
stores all the information pertaining to a given sort order. When the
ViewManager is derived by a browse it stores all the information for
one tab of the browse.

Note also the default values provided to the view driver to enable the
SQL buffering technology.

The Init method also ensures the UseView method is called, for
reasons I’ll discuss under that method name.

Kill PROCEDURE,VIRTUAL

This is one of those messy little procedures that only really exists to
ensure that there aren’t any memory leaks.

Essentially Kill just loops through the records of the order queue,
and for each element of that queue it cycles through each element of
the filter queue freeing up each filter element. Then it disposes of the
filter and order-clause queue and nulls out the free element (which is
an any).

Finally if the order queue needs freeing (meaning it wasn’t passed in
from outside) then it’s disposed of. Finally the order queue is freed.

UseView PROCEDURE,PROTECTED

Clarion Magazine - ViewManager Part 1

http://www.clarionmag.com/v1n10/sub/v1n10viewmanager1.html (3 of 4) [12/8/1999 11:25:09 AM]

UseView has a simple task, to call UseFile on all the files a view
references. (UseFile technology is explained fully in my article on
the FileManager class.) The requirement of calling UseFile is a little
subtle.

Logically when the template uses a view (or a browse) it only knows
about the primary file: the lookups are an implicit part of view
functionality. But the implementation of the VIEW (within the Clarion
language) has one or two legacy throwbacks. One of these is that the
files have to be opened independently before the view will work. So
the ViewManager "dresses" the view structure to tidy this up, making
sure all of the underlying files have been used at an ABC level and
are therefore likely to be open, thus satisfying the view.

A list of file references is available from the view driver itself. The
FileManager reference is obtained from the internal lists so that
UseFile can be called.

Summary

That takes care of the initialization and cleanup code. In Part II I’ll
look at the ViewManager methods used in typical browse operations.

David Bayliss is a Software Development Manager for Topspeed
Corporation. He is also Topspeed's compiler writer and the chief
architect of the Application Builder Classes.

ABC Design Series: The ViewManager Part 1
(Nov 23,1999)

November 1999 News
(Nov 23,1999)

The Art Of Software Development: Analysis By Design
(Nov 23,1999)

Clarion Magazine Version 2!
(Nov 23,1999)

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in
any form without the express written consent of CoveComm Inc., except as
described in the subscription agreement, is prohibited. If you find this page
on a site other than www.clarionmag.com, email covecomm@mbnet.mb.ca.

Clarion Magazine - ViewManager Part 1

http://www.clarionmag.com/v1n10/sub/v1n10viewmanager1.html (4 of 4) [12/8/1999 11:25:09 AM]

http://www.clarionmag.com/v1n6/sub/v1n6filemanager3.html
http://www.clarionmag.com/v1n11/sub/v1n11viewmanager2.html
http://www.users.globalnet.co.uk/~dabay/
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 10
November 1999

Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

Clarion News

November 23, 1999

Orbtech On Clarion
Patrick O’Brien has set up a Clarion section on the Orbtech web site.
Feature pages so far include an introduction to Clarion and a list of
Clarion resources.

Data Modeller 5.5 Now Available
Data Modeller 5.5 is now available for Clarion 5 EE and Clarion 5 PE
users. The upgrade price is US$49. New features include an entity
design mode, logical and wizatron views, an MS-SQL7 script writer,
enhanced test data generator, and a query builder.

Send "Why Clarion" To A Friend
TopSpeed has a web page that lets you send the "Why Clarion"
article to someone’s email address with a click of a mouse.

Clarion At Harley-Davidson
Harley-Davidson has been a long-time user of Clarion development
tools. This Clarion success story is available at TopSpeed’s web site.

Enhanced Version Of Super Security
Version 4.50 of Boxsoft Development's Super Security Template is
now available for download. New features include Clarion 5.5 beta
support, sharing of global security settings across applications,
multi-session user name storage, user name hiding and password
change on the logon window, caching of CheckAccess calls, and
more. This is the final version with Clarion 4 support. This new
version of Super Security is available through the end of November
for the current price of $149. On December 1, 1999 the price
increases to $179. Upgrade pricing is available for current users.

List & Label Templates Demonstration
Simon Burrows has set up a web site with a demonstration of the
new List & Label templates. List & Label is a third party reporting
product from Combit Software.

Free Enter/Tab Solution
solid.software has released EnTabber, a system utility to allow the
enter key to be used like a tab key. EnTabber installs a system wide
keyboard hook which can be turned off and on from the system tray
with a single mouse click.

Free Clarion Contacts Manager With $100 Purchase
Sterling Data is offering its Contacts Manager free with any purchase
of Sterling templates worth $100 or more. The Sterling Data
Contacts Manager includes built-in Word-like word processing (High
Edit VBX) and a variety of ideas and tips for your own applications.

CWCM Free Compile-Manager Update
A new version of CWCM Compile-Manager is now available for
download. New features include getting procedures from apps,
loading app and jumping to a procedure (C5EE), and finding
procedures by template, name, or prototype.

November 16, 1999

ABC Design Series: The
ViewManager Part 1
(Nov 23,1999)

November 1999 News
(Nov 23,1999)

The Art Of Software
Development: Analysis By
Design
(Nov 23,1999)

Clarion Magazine Version
2!
(Nov 23,1999)

Clarion Magazine - News November 1999

http://www.clarionmag.com/v1n10/pub/v1n10news.html (1 of 4) [12/8/1999 11:25:11 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.orbtech.com/clarion/
http://www.peabrain.co.za/
http://www.topspeed.com/info/why.htm
http://www.topspeed.com/news_busness/harley_ss.htm
http://www.mittensoftware.com/
http://www.solace-software.demon.co.uk/listlabel.htm
http://www.solidsoftware.de/
http://www.sterlingdata.com/
http://www.ralfs.de/cw.html
http://www.sterlingdata.com/
http://www.developerplus.com/

TX Text Control Class Wrapper Demo
A demo of the TX Text Control (www.textcontrol.com) OCX class
wrapper is now available. This control with wrapper allows Clarion
programs to view, edit and print .RTF, .DOC, .HTML and native .TX files.

TopSpeed Introduces New Third Party Program
TopSpeed has replaced its Third Party Program. Third Party Partners
now receive a full page ad per enrolled product in the annual catalog,
which ships with Clarion; one exhibitor’s table at the Florida DevCon;
access to alpha builds; private newsgroup; and access to TopSpeed
authorized international distributors to negotiate their own
agreements. Cost is $2000 per year per product.

Multi-Language PDFs
TopSpeed’s now has the At-A-Glance PDF datasheets available in
French, Italian, Spanish, and Portuguese as well as English. Choose
the language from the drop down list before downloading.

TopSpeed Banners And Animated GIFs
TopSpeed banners and animated GIFs are now available for
download. These images are intended for use as links to
TopSpeed.com.

New Utility Eases Development
ProDomus has a new version log and command line utility that can
be added to the project to execute at the end of compiles, or to the
Accessories menu. It can be used to increment version or build
numbers, store notes, or alter the Clarion environment (i.e. change
your include directory). For C5 and C5.5.

Linder SetupBuilder 3.0 Beta 6 Patch 1
A new Linder SetupBuilder 3.0 (Beta 6 PATCH 1) is available now.
This patch requires the Beta 6 release 6007 of SetupBuilder. New
features include True Type Font installation (32 bit only) and custom
serial number authentication. SetupBuilder 3.0 lists for $119.00 USD.

New Calendar And Animation Controls
New from Solid Software are a drop down calendar written in Clarion
and a wrapper class for the Win32 animation control.

Clarion Web Browser
Richard Rogers has released a free, experimental version of his
Prophecy web browser/desktop control. More to come, including
modules and themes. Requires ABC.

Tintools Update For Clarion 5.5
A version of Tintools for Clarion 5.5 is now available for download.
Tintools is a collection of freeware functions, procedures, viewers and
templates.

CapeSoft Product Updates
All CapeSoft products, including the bundles, are now available from
www.clarionshop.com. Most products now have C5.5 B1 compatible
releases, with the rest to follow shortly. Minor upgrades include File
Manager 2.9, EzHelp 2.1, and Multi-Proj 2.1. NetTalk, a product that
enables inter-computer communication, is now in late alpha testing.
Interested beta testers should contact beta@capesoft.com.

November 9, 1999

TopSpeed Drops Unpopular Registration Scheme
TopSpeed’s Bob Zaunere has announced the company is dropping
the registration scheme implemented in Clarion 5.5 Beta 1. The
controversial registration process required developers to obtain a
machine-specific unlock key either online or by telephone from
TopSpeed.

East Tennessee Clarion Conference Slated For May 2000
The etc 2000 conference will be held May 24-26, 2000 in Gatlinburg,
with pre- and post-conference classes on the 23rd and 27th. The
location is again the Edgewater Hotel which has just completed an
extensive remodeling of all rooms including the conference rooms.
General session attendance (including most meals) is US$395.

Clarion Magazine - News November 1999

http://www.clarionmag.com/v1n10/pub/v1n10news.html (2 of 4) [12/8/1999 11:25:11 AM]

http://cwstuff.homepage.com/clarion_products.htm
http://www.textcontrol.com/
mailto:sbuchler@topspeed.com
http://www.topspeed.com/info/litrack.htm
http://www.topspeed.com/news_busness/logogallery.htm
http://www.prodomus.com/PD%2520Commandline/pdcl.htm
http://www.lindersoftware.com/download.htm
http://www.solidsoftware.de/
http://home.powertech.no/sylkie/prophecy.html
http://www.thetingroup.com/
http://www.capesoft.com/
mailto:beta@capesoft.com

Details to follow.

Clarion 5.5 Beta Newsgroups
Topspeed has added three newsgroups to tsnews.clarion.com:
topspeed.beta.c55, for the 5.5 IDE and general functionality;
topspeed.beta.c55.web, for issues related to Web functions; and
topspeed.beta.c55.suggestions.

Clarion 5.5 Compatibility List On TopSpeed Turnpike
Tom Ruby has added a section to his justly famous TopSpeed
Turnpike to track which third party products have 5.5 compatible
versions of their products available. Updated products include CPCS,
Arco Word Reporter, GNotes, GRegPlus, Linder Software products,
ProDomus products, Sterling Data components and templates, and
XLIB.

UK Developers - BT Big Number Source Code Available
BigNum from Sterling Data is an app to convert your customers
phone/fax number area codes to the new ones being introduced by
BT. Full source code is supplied. You just slot in your own phone &
fax fields and compile it as a standalone EXE. The converter allows
for area code changes which can be done now and local number
changes which must not be done before 22/4/2000

New Calendar Control
Leonid Chudakov, Uncertified Clarion Developer, has posted another
common control for Clarion developers. This month calendar control
is a pure Clarion solution.

UltraTree Platinum Replaces Professional Edition
Paragon Design & Development has replaced its UltraTree
Professional Edition product with the new UltraTree Platinum.
Support for the Professional Edition will be discontinued after
December, 1999. UltraTree Platinum has all of the features of
UltraTree Professional, plus many new features, plus enhancements
to many existing features. See the Paragon web site for full details
and pricing, as well as information on new support packages.

November 2, 1999

Clarion 5.5 Beta Released!
Clarion 5.5 has gone into beta, with some developers already
receiving their disks. This release offers major enhancements in the
IDE, and integrates new Web technology into both the Enterprise and
Professional editions. This week’s issue of Clarion Magazine also
contains a product preview.

Play AVI Files On Clarion Window
Leonid Chudakov has a new multimedia demo which shows how to
play AVI files on a Clarion window.

Steven Gallafent’s DevCon Examples Available
Steven Gallafent has posted the examples from his DevCon
presentation, including an example program that sends an email
message using the Catalyst SMTP DLL.

Stealth Software Modulizer Template Update
For registered owners of the Modulizer Templates there is an updated
C5B version available. To get it email stealthsoft@mweb.co.za. The
free working shareware demo is still available for download.

Free CopyFlash Offer
Sterling Data is offering a buy one, get one free deal. Buy any
Sterling Data template (IMPEX,SearchFlash, BackFlash or LogFlash)
before November 10, 1999 and receive CopyFlash FREE.

Drag/Drop Editing Template
Sterling Data has received a template from John Morter of Flat Chat
Solutions (Australia) which is a variation on the freeware TrashFlash
template. It allows drag and drop changes and deletes by using the
standard browse buttons as drop zones.

Clarion Magazine - News November 1999

http://www.clarionmag.com/v1n10/pub/v1n10news.html (3 of 4) [12/8/1999 11:25:11 AM]

news://tsnews.clarion.com/
http://www.netins.net/showcase/tomruby/clarion/
http://www.sterlingdata.com/bignum.htm
http://cwstuff.homepage.com/clarion_products.htm
http://www.paragondandd.com/
http://www.topspeed.com/c55/c55.htm
http://cwstuff.homepage.com/clarion_products.htm
http://www.compguy.com/devcon99.htm
http://home.mweb.co.za/jo/joe-vn/index.htm
mailto:stealthsoft@mweb.co.za
http://www.sterlingdata.com/
http://www.sterlingdata.com/sfiles/jmDDEdit.tpl

Read the October 1999 News

Do you have a news story or press release we should know about?
Send it to editor@clarionmag.com

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in
any form without the express written consent of CoveComm Inc., except as
described in the subscription agreement, is prohibited. If you find this page
on a site other than www.clarionmag.com, email covecomm@mbnet.mb.ca.

Clarion Magazine - News November 1999

http://www.clarionmag.com/v1n10/pub/v1n10news.html (4 of 4) [12/8/1999 11:25:11 AM]

http://www.clarionmag.com/v1n9/pub/v1n9news.html
mailto:editor@clarionmag.com
http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 10
November 1999

Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

The Art Of Software Development:
Analysis And Design

by Bruce Gilham

Editor’s Note: This is a somewhat delayed second part to
an series Bruce Gilham began this summer on the art of
software development. I’m saddened to report that Bruce
had been in ill health, and passed away this fall.

Newer Clarion developers may not have heard of Bruce;
others will remember him for the Los Angeles DevCons
he sponsored earlier this decade. Perhaps there were
other regional Clarion conferences before those in L.A.,
but I don’t know of any. I do know that I made many
new friends there, including Bruce. I’m grateful for the
opportunity he afforded me to give my first conference
presentation, and for his contributions to the Clarion
community.

Dave Harms

This article picks up where Part One left off. Last seen, our hero was
madly eliminating bugs. But correction just leads to more correction.
Forward progress comes from creating something new. This brings us
to the twin topics of design and analysis.

Rule #4: Analysis is cheaper than design; design is cheaper
than programming. The very worst decision a company can make
is to speed up a project by skipping the analysis phase or design
phase. Prototypes not withstanding, the answer to any complaints
about late delivery is more design, not more programming. The
solution to slow or endless design is more analysis.

Analysis and design consist mostly of meetings with users and
compilation of notes. Programming probably contributes less to the
process of design than does playing video games. At least the time
spent playing video games won't send the project off in the wrong
direction. Analysis meetings are mostly with managers and some key
users. Design meetings are usually with working managers and the
more knowledgeable users. Seat-of-the-pants programming is not
only non-productive, it can actually be counter-productive.

Analysis means breaking the project up into parts and looking at the
relationships of those parts. The key activity in analysis is naming the
parts of the system! Any part of a system that is not named, or that
is given a confusing or inappropriate name, is bound to slow things
down later on.

I recall a day-long meeting to sort out the meaning of "due date." At
the end of the meeting we realized that due date was not the same
thing for sales, shipping and production control. So every time we
"fixed" due dates we got new complaints! This could have been
completely avoided if we had investigated the various meanings of
due dates in the beginning.

Almost all human communication is with words. Anyone without a
vocabulary is isolated. It can be demonstrated conclusively that a
student, in passing over a single misunderstood or not-understood

ABC Design Series: The
ViewManager Part 1
(Nov 23,1999)

November 1999 News
(Nov 23,1999)

The Art Of Software
Development: Analysis By
Design
(Nov 23,1999)

Clarion Magazine Version
2!
(Nov 23,1999)

Clarion Magazine - The Art Of Software Development: Analysis And Design

http://www.clarionmag.com/v1n10/sub/v1n10analysisdesign.html (1 of 5) [12/8/1999 11:25:13 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.clarionmag.com/v1n6/sub/v1n6eliminatingbugs.html
http://www.prodomus.com/
http://www.kcug.org/etc2000poll.html

word, suffers immediate physiological changes. For example, the
Learning Accelerator from Applied Scholastics monitors a student’s
non-comprehension by metering changes in the body’s electrical
resistance. Variances are instant and significant when a student
passes over a word he or she does not understand.

There are mysterious words of all flavors. For example, I ask you to
put a dollop of salsa on my taco, and not understanding dollop you
put a wallop, and so I figure that you have it in for me. Or I tell you
to "run up the temperature" of an oven and so you back across the
room and run up to the machine to change the temperature.

Laugh if you will, but mysterious and misunderstood words are the
bane of any programming project.

Rule #5: The analysis is done when all the parts of the
system, extant and proposed, are named and have a defined
purpose and responsible party or parties. The analysis document
should include what kind of thing it is (program, report, screen,
procedure, feature, business rule, database, field, etc.) and who
(plural) has authority over it. This will usually be the most senior
user. It also shows the purpose of the item in the context of the
business.

The list must be complete and contain everything that could possibly
be included in the system, immediately or in the future. While this
sounds as if it would take a long time, remember that all you are
interested in at this time is the name, purpose and authority. The
decision to include it, delay it or abandon it comes later.

Finally, the analysis includes any imperative design issues. These are
often expressed in fairly general terms, such as the requirement that
an accounting system must be accurate. While a finicky or ugly
accounting system would not be popular, and there are
circumstances when it would be acceptable, an inaccurate one is
never acceptable.

Also a glossary of terms is a good idea. If this is missing, any
ambiguous names or terms must be defined in the text.

You might think of the analysis document as a shopping list.

Note: Some developers expand the analysis stage to
include all the questions that need to be asked of the
user. In contrast, I assume that the users will have input
at all stages.

The analysis phase naturally leads into the design phase. From a
user, or system specifier's viewpoint, there is little difference
between analysis and design; in both cases they still answer a lot of
questions.

From the developer's viewpoint design is a new ball game. The
analysis is general and all the parts of the system must be
considered. In the design stage, if the analysis was adequate, the
system is broken up into pieces and the focus can be on one or
another of these pieces, not the whole system. When the developer
finds excessive interaction between the parts of the system then
more analysis is needed.

But what if the users refuse to invest the time for a full analysis? In
this case the programmer is advised to covertly execute the analysis
anyway. It’s now a matter of doing so a bit at a time, or do what
analysis that you can, then work out some sort of design (even if
terrible) then finally write a "draft of the program." Tell the users
that it is the draft version.

When you release the draft version of the software, and the quality is
there, the users will answer the original analysis question. Never
mind that they act like innocent victims of the big-bad-programmer.
Simply point out that you’re not a mind reader, and insist (politely)
that they share with you the names of the parts of the system. This
is a piecemeal approach, but it works!

With well-grooved clients the analysis phase is fast and exciting.
Remember that everything worthwhile starts with a decision.

Clarion Magazine - The Art Of Software Development: Analysis And Design

http://www.clarionmag.com/v1n10/sub/v1n10analysisdesign.html (2 of 5) [12/8/1999 11:25:13 AM]

Rule #6: The end of the design phase occurs when all the
users have no significant questions or objections. By significant
I mean an issue that affects the data structure or business rules. In
this day of web sites, it also means anything that would affect a
majority of the pages.

What usually happens at the end of the design phase is that the
users start changing things back to a recent version or all the
changes they request are cosmetic. Only at this point is it really safe
to invest in programming time. Prior to this any programming is
prototyping or proof-of-concept and may not only be worthless, but
might well be misleading.

All of us have come up with a great idea that proved impossible to
implement. If the feature was promised but never seen, the
disappointment is a lot less sharp then when a feature is "tested" but
dropped. The answer is to use some intelligence when making a
demo or proof-of-concept program and stick to tried and true
features!

The largest danger comes from believing features lists for
programming tools, or perhaps more seriously, the implied features.
"Fast" sometimes means "hard to use" or "starved for features."
"Advanced features" probably means "buggy." And so forth. It’s one
thing to kid the end user, but something completely different to
mislead a programmer who makes his living form the tools he
purchases. I’m not saying that you shouldn’t use fast or feature-rich
programming tools, only that you must know how the tools work in
production before betting the project on them.

In general the design is done on paper and includes pictures of the
screens and reports that will be supported. Where a screen is
required to perform a complex operation a prototype is appropriate
to test user reaction. Usually, but not always, a prototype is a
substitute for adequate analysis. Only the most sophisticated of users
can exhaust the utility of the simplest of screens.

Of course, users naturally have their brightest ideas when they see
the actual product. This differs from an almost compulsive need to
change things, change things, change things. A lot of learning takes
place in the design phase. It might as well be called the education
phase, as that is as important as having a final document.

When the client realizes that the program is "just what we asked for
but not what we really wanted" the analysis and design need to be
redone. At this point the compulsion to change is even stronger. If
you don’t redo the design phase, then when they see the program
their immediate reaction, even if not voiced, is to want to change it,
even though you already have. This can actually spin the project out
of control with endless changes and bright ideas. Nothing reassures a
client more than seeing his, or her, ideas on paper. The closer to his,
or her, original concept the product is, the more reassured the client
will be.

One of the most complex designs that I ever encountered was for a
retail store. We wrote the system three times, and it was rejected
three times. After working on site to get the total picture, I
discovered that the client was in serious trouble for evading sales
tax. Everything then became clear. They wanted to system designed
in such a way that they could cheat on their taxes, but they were
careful not to reveal the fact. It doesn’t matter what I would have
done had I known that they were cooking the books, but they were
afraid of my finding out.

This brings up the next rule:

Rule #7: It is almost impossible to write a system for an
organization engaged in criminal activities. The reader might
think that this is obvious, but when you are deep in the design and
nothing aligns, you automatically wonder what kind of criminal or
unethical actions the client is trying to hide. A great number of
companies have their dirty little secrets, but when the effort to hide
the misdeeds outweighs the desire to have a clean and effective
computer system, then the programmer is in trouble. Most likely he

Clarion Magazine - The Art Of Software Development: Analysis And Design

http://www.clarionmag.com/v1n10/sub/v1n10analysisdesign.html (3 of 5) [12/8/1999 11:25:13 AM]

will be blamed for everything and anything. He will be responsible for
the current business conditions, the pot holes in the parking lot and
the flicker on the monitor screen. Worst of all, the client will delay or
refuse to pay for your hard work!

At this point it is vital to realize that it is not your bad performance,
but the client’s efforts to keep anyone from "finding out." If you have
done your level best and find yourself a target, your first action
would be to find out what it is they think you know.

Once I discovered the retail store’s dirty little secret, they calmed
down and we finished the system in a few week. And this was a
system that had been through three major rewrites in nine months.
Luckily I was not confronted by a moral dilemma—the sales tax
people were on to them with a quarter million dollar fine. Good
design would have revealed the true situation.

A less extreme cause of delays is that:

Rule #8: Every uncertainty about a system doubles the
complexity of the affected feature. The programmer depends on
the certainty of the specifications. Changes to the specifications, no
matter how "insignificant" or "justified," will exponentially increase
the development time. It can be a matter of pride among
programmers as to how many changes they can tolerate before they
lose it.

One could define a computer system as the collection of uncertainties
of an organization, the maybes of the operation. You have an
invoicing program because you don't know the details of the next
invoice. If all invoices went to the same address for the same
amount, then an invoicing program would be pointless. The "size" of
the program expands rapidly with the so-called flexibility. A few
well-chosen executive decisions can cut down the complexity of a
bogged system and put it back on the time line. Unfortunately,
decisions that are later reversed are worse then no decision in the
first place, therefore such decisions are best made in the analysis
phase.

Note that maintainability is not the same as changeability.
Maintainability means "the ease of making changes to the system
that parallel the changes in the operation of the business." These are
usually minor in scope and hopefully the impact on the system is
evaluated before the change is made. It is the difference between
redecorating your apartment and changing the floor plan after the
foundation is poured.

A changeable program would easily respond to every client whim,
which is pretty much an impossibility. Writing a really changeable
program has been described as "nailing Jell-O to a tree."

This is perhaps a good place to comment on "positive" thinking. I
often encounter programmers who go on hoping that "something"
will solve design and analyses oversights. This sort of sloppy thinking
just leads to more and more delays.

Positive thinking works better when positive is interpreted to mean
definite, not vague or sloppy. A user who is definite, that is, positive
about system requirements is a godsend. Frankly, I run like heck if a
user gets the attitude of: "Just make it work."

A program that I wrote some seven odd years ago is still in use. It is
a simple little program that totals the money spent on film
production at the end of a shoot. Mine was one of three versions, and
the only one still in use. The client is a great guy, but when we
reached what should have been the end of the project, it seemed to
stretch out endlessly. Then I noticed that my client had picked up an
encouraging attitude, but had quit giving specific instructions. When I
pointed this out, he gave me a stream of very definite requirements
and we wrapped up the project in short order.

Rule #9: The most important thing about a system is the most
important thing about a system. I took over a project to write a
billing system for an accounting type organization. The programmer
had developed a wonderful system to track client folders, but

Clarion Magazine - The Art Of Software Development: Analysis And Design

http://www.clarionmag.com/v1n10/sub/v1n10analysisdesign.html (4 of 5) [12/8/1999 11:25:13 AM]

overlooked the fact that the number one priority for the customer
was to straighten out confusions in billing.

It is important to prioritize features as this helps when planning
delivery schedules and in estimating how much attention each
function deserves. It is even more important to discover, announce
and verify the one thing that will make or break the system. This
single item will usually get attention far in excess of all the remaining
parts of the system.

For a docket system in a law office it would be to have all the
calendar events announced at the right time. If the calendar report is
accurate and reliable then the system will be judged as "essentially"
reliable, even if the mailing list feature is a disaster.

Summary:

The common denominator to successful systems, one that is
uniformly absent from failured projects, is a clear understanding of
the system and its contents. A badly written system that limps along
losing data will be more useful, if well understood, than one that is
smooth and flawless but mysterious to the user.

When I started writing business applications 15 years ago, my
intention was to use computers to make organizations more sane.
Ironically, the way to accomplish that is to make the computers more
comprehensible and take out the mystery or, in other words, to make
computers more sane. Computers are tremendously powerful
administratively. Misused they can drive a work force into apathy and
confusion. Well understood, and with a minimum of care in the
design and implementation of the software, they can dramatically
grow the very same organization.

Bruce Gilham Senior was the founder and president of DataForce Inc.
His involvement with Clarion began in 1989. Bruce was also the
founder of the Los Angeles Clarion User Group and sponsor of the
successful DevCon West conferences for Clarion developers.

ABC Design Series: The ViewManager Part 1
(Nov 23,1999)

November 1999 News
(Nov 23,1999)

The Art Of Software Development: Analysis By Design
(Nov 23,1999)

Clarion Magazine Version 2!
(Nov 23,1999)

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in
any form without the express written consent of CoveComm Inc., except as
described in the subscription agreement, is prohibited. If you find this page
on a site other than www.clarionmag.com, email covecomm@mbnet.mb.ca.

Clarion Magazine - The Art Of Software Development: Analysis And Design

http://www.clarionmag.com/v1n10/sub/v1n10analysisdesign.html (5 of 5) [12/8/1999 11:25:13 AM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

Vol 1, No 10
November 1999

Main Page

Log In
Subscribe

Frequently Asked
Questions

Site Index
Links To Other Sites

Downloads
 Open Source

Project
Issues in PDF

Format
Free Software

Advertising

Contact Us

From The Publisher

New Magazine Design
To Be Unveiled Dec 7/99
Some of you may have noticed a few minor changes recently in the
visual appearance of Clarion Magazine, particularly on the main page.
Well, one thing led to another, and as a result in December you’ll be
seeing a brand new look on the web site.

Why a redesign? When I started Clarion Magazine I decided that no
matter how much I liked the initial design, I’d do a review in six to
12 months. The Clarion product constantly evolves, as do the skills of
Clarion developers. Clarion Magazine needs to adapt and grow as
well.

Of course, it takes time to implement a big change like this, more
than is usually available between issues. Clarion Magazine publishes
four times per month, on Tuesdays. Four times per year there’s a
fifth Tuesday, as there is this month, which usually means a week off
for the elves that put the magazine together. But not this time. For
the next two weeks, if you lean in close to your computer, you may
be able to hear the electronic saws whining and the digital paint
splashing. Or you might just get a lot of worried looks from your
co-workers.

There will also be some changes to the publication schedule as a
result of the holiday season. To allow the aforementioned elves a
vacation during Christmas (and to celebrate the new look) the
December 7 issue will be double in size, followed by regular issues on
the 14th and 21st. There will be no issue published on December
28th. You’ll still get your usual monthly content in December, and the
normal publication schedule will resume on January 4, 2000.

Be sure to come back on December 7th for Clarion Magazine v2.0!

Dave Harms
Publisher

ABC Design Series: The ViewManager Part 1
(Nov 23,1999)

November 1999 News
(Nov 23,1999)

The Art Of Software Development: Analysis By Design
(Nov 23,1999)

Clarion Magazine Version 2!
(Nov 23,1999)

ABC Design Series: The
ViewManager Part 1
(Nov 23,1999)

November 1999 News
(Nov 23,1999)

The Art Of Software
Development: Analysis By
Design
(Nov 23,1999)

Clarion Magazine Version
2!
(Nov 23,1999)

Clarion Magazine

http://www.clarionmag.com/v1n10/pub/v1n10pressrelease.html (1 of 2) [12/8/1999 11:25:13 AM]

http://www.clarionmag.com/index.shtml
http://www.clarionmag.com/common/login.html
http://www.clarionmag.com/policies/subscribe.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/clarionmagfaq.html
http://www.clarionmag.com/common/siteindex.html
http://www.clarionmag.com/common/links.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/opensource/products.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/sub/pdfs.html
http://www.clarionmag.com/common/downloads.html
http://www.clarionmag.com/policies/ads.html
http://www.clarionmag.com/common/contactinfo.html
http://www.kcug.org/etc2000poll.html

Copyright © 1999 by CoveComm Inc. All Rights Reserved. Reproduction in
any form without the express written consent of CoveComm Inc., except as
described in the subscription agreement, is prohibited. If you find this page
on a site other than www.clarionmag.com, email covecomm@mbnet.mb.ca.

Clarion Magazine

http://www.clarionmag.com/v1n10/pub/v1n10pressrelease.html (2 of 2) [12/8/1999 11:25:13 AM]

http://www.clarionmag.com/policies/subscriptionagreement.html
http://www.clarionmag.com/
mailto:covecomm@mbnet.mb.ca

	clarionmag.com
	Clarion Magazine Volume1 Number 10 - November 1999
	OLE The Easy Way: Part 3
	Clarion 5.5 Sneak Preview
	Converting From TPS To SQL
	Many-To-Many Relationships Part 1
	Review: Nice Touch Dictionary/Application Assistants
	Clarion 5.5 Web€ Builder Features
	Steve Parker on Relation Trees
	Many-To-Many Relationships Part 2
	The Clarion Advisor: Breaking Out Of Nested Loops
	ViewManager Part 1
	News November 1999
	The Art Of Software Development: Analysis And Design
	From The Publisher

