

Clarion Tips & Techniques, Volume 4

David Harms, Editor

Copyright © 2005-2007 by CoveComm Inc.

Published by:
CoveComm Inc.
1036 McMillan Ave
Winnipeg, MB R3M 0V8
CANADA
204-943-5165

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
the publisher. For information on getting permission for reprints or excerpts, contact
books@clarionmag.com.

See http://www.clarionmag.com/books for source downloads and errata

The information in this book, and any source code and/or information in downloads referenced in this
book, is distributed on as “As Is” basis, without warranty. While every precaution has been taken in the
preparation of this book, the editor, the publisher assumes no responsibility for errors or omissions in
the book, or in the instructions and/or source code in downloads referenced in this book.

Clarion™ is a trademark of SoftVelocity, Inc. This and other trademarks which may appear in the book
are used in an editorial fashion only and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

Cover design by Frost Bytes Development Ltd - www.frostbytes.ca

Printing History

July 2007 First Print Edition
Sept 2007 First PDF Edition

Print Edition ISBN 978-0-9784034-0-9

Editor: David Harms

David Harms is a long time Clarion developer, and the editor and
publisher of Clarion Magazine (www.clarionmag.com), which he
founded in 1999. He is also co-author with Ross Santos of
Developing Clarion for Windows Applications, published by
SAMS (1995), and has written several books on Java.

Terms of use

All rights reserved. No part of this book may be reproduced or
transmitted in any form by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written
permission of the publisher.

As a licensed user of this e-book you may keep mutiple copies for your
personal use only.

Copyright © 1999-2007 by CoveComm Inc.

Published by:

CoveComm Inc.
1036 McMillan Ave
Winnipeg, MB R3M 0V8

T. 204.943.5165
F. 204.477-4518

books@clarionmag.com

TABLE OF CONTENTS

BROWSES & FORMS

Internationalization Tools Standards: Learning from an
ABC Calendar Workaround ...3

Completely Dynamic Listbox Formatting?..17

Edit-In-Place: Getting User Confirmation ..29

Updating Hot Fields ..39

Aesthetically Pleasing Recursive Updates ..47

Beautifying Clarion Applications ...55

Replicating IDLE: Throwing Users Out...67

Throwing Users Out: Methods of Computation75

Recursive Adds...83

A Survey Of Embed Usage ..93

TEMPLATES

Another Single Browse For Multiple Lookups129

An Economical Record Status Control ..141

A Template Debugger ...149

A Class Wrapper for the SimpleOCR API ... 155

Improving On The Non-Related Lookup Template 163

THREADING

Global Variables, Threads, Critical interSections and the
Dangers of Unprotected Sets .. 173

A Global Variables Protection Class .. 185

Classes For Background Processes ... 201

When START Starts .. 211

REPORTS

Printing A Tree From A Page Loaded Browse 219

Printing Unknown Queue Fields.. 233

Printing a “No Records” Report ... 237

Writing To A Printer Port: Sending Escape Codes 245

Print Directly to Printer Made Easier .. 255

The Easiest Way To Write To A Printer Port...................................... 259

Using DOS Files To Send Printer Codes.. 263

Direct-To-USB Printing.. 267

DATABASES

Whitemarsh’s Use Of Mimer With Clarion...275

Using the SQL Advanced Tab ...279

Creating SQL From XML With XSLT..289

Calling XSLT Code From Clarion ..301

External Business Rules with the In-Memory Driver..........................313

Using SQL Identity in Clarion 6 ...327

Multi-User Primary Keys: A Solution ..335

Embedding The SQLite Engine In Clarion Applications....................343

PROP:SQL And Embedded Single Quotes ..355

WINDOWS VISTA

Encryption and Application Signing..363

Signing Your Applications..375

Signing Your Applications: New Challenges391

Manifests for Hand Coded Apps ..407

Get Ahead Of Your Competition With Vista And Office 2007..........413

Vista-Compliant INI Files...419

Running Clarion 6 on Vista ..427

VERSION CONTROL

An Introduction to CVS and WinCVS .. 431

CVS, WinCVS and Clarion... 445

Version Control with CVS and Clarion 6.x ... 455

CVS Server And Client Installation ... 473

Understanding The Clarion 6 Version Control Interface 489

Using MS Visual Source Safe With Clarion... 499

DLLS

Eliminating Circular DLL Calls.. 511

Nifty Window Tricks And Smart DLL Loading 521

Reusable Code and Hand Coded DLLs .. 531

Generic DLLs The Template Way .. 541

Hand Coding Export Files .. 545

TIPS & TECHNIQUES

Encrypting Data With Number Base Conversion 553

App Shutdown Options in Clarion 6.2 .. 561

Accessing Private Class Data .. 567

The Five Minute Developer: Sorting QUEUEs.................................... 571

The Five Minute Developer: Displaying QUEUEs575

Inter-Date Computations..579

A Better DATE Function...585

Next Month Anniversary Date Function ...589

Adding Arrays To Generic Queues With HOWMANY......................593

A Customized Deep Assign Function ..599

Solving Problems With Finite State Machines607

Clarion Challenge Results – Remove Links ...615

Metadata Management: The Way to a Well-Ordered Enterprise.......641

Providing Good Customer Support ...647

APPENDIX & INDEXES

Appendix A: Getting Support ...655

Author Index..657

Subject Index..661

1

Browses & Forms

3

INTERNATIONALIZATION TOOLS
STANDARDS: LEARNING FROM AN ABC
CALENDAR WORKAROUND

by Phil Will

Anyone who has internationalized a large application knows that one of the more
time consuming tasks is dealing with third party products which attack
internationalization in ways that do not allow languages choices at run time. Even
in a pure ABC context, creating multi-language applications is challenging but
generally possible, as the translator class is included, by reference, in the window
manager and report manager class and in some of the other classes.

Two notable exceptions within the ABC library are the Calendar and List Format
Classes introduced with Clarion 6. Although I use PD 1-Touch Date Tools Calendar
Classes (www.prodomus.com) which are fully internationalized, I thought it might
be instructive to look at the class and how it could be modified, both as an aid to
someone who might be committed to its use, and as an illustration of an approach
to internationalization that could be used as a starting model by third party tool
developers.

I n t e r n a t i o n a l i z a t i o n T o o l s S t a n d a r d s : L e a r n i n g f r o m a n A B C C a l e n d a r W o r k a r o u n d

4

Before getting into the ABC Calendar Class, I would suggest the following general
standards for internationalization ready tool design.

1) User Interface Elements. All user interface elements and default
values should be located in a translation file (file with a .trn
extension). These files, introduced in Clarion 4, can be copied to
an application directory and customized by developers as needed.
Because these files all have a trn extension, they can be easily
identified. If you are using a parsing utility such as the Translator
Plus Source Manager, a common extension makes it easy to add
these files to the list of source files to be parsed.

2) Windows. If there are one or more windows used by a class, these
should be referenced by section in the translation file.

3) Default Strings. If the tool is being used by applications developed
in languages other than English, this is a place where developers
can change the defaults to their own language, i.e. a single
language translation. This is typically done with equates for each
source string. Other defaults such as icons or specific properties
can also be included.

4) Source/Replacement Map Structure. It can be helpful to include a
section containing source and replacement strings in a translation
map format. I would consider this highly desirable but not
absolutely necessary, since the translator class has the ability to
export strings if needed (unless the strings are not easily displayed
and therefore not easily exported).

5) Multi-Language Translation. The library should allow for multi-
language, run time translation (as opposed to a one-time, static
translation into another language). There are a couple of options
for handling this.

6) TranslatorClass Reference. In this case, the TranslatorClass can
be declared as a reference property within the class and used to do
translations. This is comparable to the technique used for the
WindowManager class. This would require an
AddItem(TranslatorClass pTranslator) method and
implementation of the method if runtime translation is turned on.

7) Translation Method. Add one or more virtual methods for
translation; this can easily be used with a wrapper template that
conditionally generates translation calls if run time translation is
enabled (%EnableRunTimeTranslator=%True). The methods called
would typically be the TranslatorClass’s TranslateWindow,
TranslateString, and TranslateControl methods.

A B C C a l e n d a r C l a s s

5

ABC Calendar Class

The ABC Calendar class as implemented in the shipping version of Clarion 6
consists of a class library and control template for creating a popup calendar button.
The popup calendar can be displayed as a small popup calendar (CalendarClass),
or as an expanded calendar with several date manipulation buttons
(CalendarSmallClass). The class declarations are in ABUTIL.INC; the
implementing code is in ABUTIL.CLW; and the interface elements in
ABUTILUI.CLW (a violation of the translation file naming convention above). The
interface file contains window declarations and default strings; there is no source/
replacement translation group structure and, if you examine the code, no way to
translate the window into multiple languages at run time.

The class has several undocumented properties that can be changed at run time,
among them colors, whether a date is selected on close, X and Y positions,
alignment, and the first week day in the calendar display. The last is important from
an internationalization perspective. The class also has an IsHoliday virtual method
that could be used to display a holiday in a different color.

Creating workarounds for tools that fail to provide for multi-language translation
can involve code modification, template modification, or both. In this case, where
all the code is source code and class based, it seemed to me that the creation one or
more derived classes might be the easiest approach. Further examination of the SV
calendar classes reveals the following:

1) CalendarBaseClass. Both calendars share a base class containing
most of the code. Most class libraries consist of small blocks of
code which allow you many opportunities to modify behavior. This
was not done here.

2) Ask method. The call to the calendar is handled by the Ask method,
which is a large block of code that contains the ACCEPT loop and
does all of the calendar handling except for opening the window.
The calendar windows are opened in the derived Ask methods, one
for each calendar type.

3) Setup method. The base class has a virtual setup method where
you can make changes to the customizable properties. The
TranslatorClass can translate the last opened window without a
direct reference to the window (the window parameter of
TranslateWindow can be omitted). Since the call to this method
occurs after the window is opened, at first glance it would appear
that the window could be translated within this method. However,

I n t e r n a t i o n a l i z a t i o n T o o l s S t a n d a r d s : L e a r n i n g f r o m a n A B C C a l e n d a r W o r k a r o u n d

6

this call occurs before day and month names and the calendar title
are assigned.

4) Overlay Groups and Arrays. Looking at the code also reveals that
abbreviated day names and month names are handled using STATIC
GROUPs with day names (declared in ABUTILUI.CLW and shown in
Listing 1), which are then included by SECTION reference in the
base class Ask method data with an associated array as shown in
Listing 2. These inaccessible names require translation at run time.

Listing 1. Groups declaring default day and month names

SECTION('CalendarDayGroup')
Day_group GROUP ,STATIC
d1 STRING('Mon')
d2 STRING('Tue')
d3 STRING('Wed')
d4 STRING('Thu')
d5 STRING('Fri')
d6 STRING('Sat')
d7 STRING('Sun')
 END
!!
!! Month Group declaration with Day labels
!!
 SECTION('CalendarMonthGroup')
Month_group GROUP ,STATIC
m1 STRING('January ')
m2 STRING('February ')
m3 STRING('March ')
m4 STRING('April ')
m5 STRING('May ')
m6 STRING('June ')
m7 STRING('July ')
m8 STRING('August ')
m9 STRING('September ')
m10 STRING('October ')
m11 STRING('November ')
m12 STRING('December ')
 END

Listing 2. Included Group with Overlaid Array

INCLUDE('ABUTILUI.INC', 'CalendarDayGroup')
Day_array STRING(3),DIM(7),OVER(day_group)
 INCLUDE('ABUTILUI.INC', 'CalendarMonthGroup')
month_array STRING(10),DIM(12),OVER(month_group)

M u l t i - l a n g u a g e c l a s s w o r k a r o u n d

7

Multi-language class workaround

To add multi-language translation, I decided to modify the base class to provide for
a translation hook. I also modified the derived classes for each of the calendar types
so that their parent calls would utilize the new base class. I added a
TranslatorClass reference property, and two methods: Translate(*STRING[]
pMonthArray,*STRING[] pDayArray) to do the actual translation of both the
window and the arrays, and AddItem(TranslatorClass pTranslator) to assign the
TranslatorClass reference property.

The definition file is shown in Listing 3 below (some line breaks added). Those
familiar with creating ABC Compliant Classes will recognized the !ABCincludeFile
which is a flag for including the class definition in class ABC Class Information used
by the templates. I did not use a family name parameter
(!ABCIncludeFile[FamilyName]) because I did not anticipate creating a template
for this class that would include the library by reference only. Generally when
creating a third party template I would include the family name to avoid forcing the
code to compile in a multi-DLL ABC application or Clarion chain application using
with ABC classes turned on.

Listing 3. The definition file

!ABCIncludeFile
 OMIT('_EndOfInclude_',_PDUtilitiesPresent_)

PDUtilitiesPresent EQUATE(1)

 INCLUDE('ABUTIL.INC'),ONCE

PDCalendarBaseClass CLASS(CalendarBaseClass),TYPE,|

 MODULE('PDABUTIL.CLW'),LINK('PDABUTIL.CLW'|

 ,_ABCLinkMode_),DLL(_ABCDllMode_)
Translator &TranslatorClass
Ask PROCEDURE(STRING pTitle,LONG pDate=0),|
 LONG,PROC,DERIVED
Translate PROCEDURE(*STRING[] pMonthArray, |
 *STRING[] pDayArray),VIRTUAL
AddItem PROCEDURE(TranslatorClass pTranslator),|
 VIRTUAL
 END
PDCalendarClass CLASS(PDCalendarBaseClass),TYPE,|
 MODULE('PDABUTIL.CLW'),|
 LINK('PDABUTIL.CLW',|
 ABCLinkMode),DLL(_ABCDllMode_)
Ask PROCEDURE(STRING pTitle,

I n t e r n a t i o n a l i z a t i o n T o o l s S t a n d a r d s : L e a r n i n g f r o m a n A B C C a l e n d a r W o r k a r o u n d

8

 LONG pDate=0),LONG,PROC,DERIVED
 END

PDCalendarSmallClass CLASS(PDCalendarBaseClass),|

 TYPE,MODULE('PDABUTIL.CLW'),|

 LINK('PDABUTIL.CLW',_ABCLinkMode_)|
 ,DLL(_ABCDllMode_)
Ask PROCEDURE(STRING pTitle,|
 LONG pDate=0),LONG,PROC,DERIVED
 END

!_EndOfInclude_

The PDCalendarBaseClass.Ask method is an exact copy of the SV code except for
the addition of the call to the translate method. I also moved the assignment of
the window title to an earlier position in the code to allow for the translation of the
window title as well.

Listing 4. Base class Ask method changes

 . . .
 IF CLIP(pTitle) THEN !-- Move to before translation
 0{PROP:TEXT}=pTitle

 ELSE

 0{PROP:TEXT}=''
 END
 SELF.Translate(Month_Array,Day_Array) !-- Added call to
translation.
 DO PrepareProcedure
 lHIni=0{PROP:HEIGHT}

! IF CLIP(pTitle) THEN

! 0{PROP:TEXT}=pTitle
! ELSE
! 0{PROP:TEXT}=''
! END
 DISPLAY()
 lHEnd=0{PROP:HEIGHT}
 IF lHIni<>lHEnd THEN
 0{PROP:HEIGHT}=0{PROP:HEIGHT}+(lHIni-lHEnd)
 END
 SELF.Response = RequestCancelled
 ACCEPT
 . . .

The new base class AddItem method simply assigns the TranslatorClass to the
translator property. The Translate method translates each of the arrays and then
calls the Translator.TranslateWindow method which will translate everything else

A p p l y i n g t h e m u l t i - l a n g u a g e A B C c a l e n d a r

9

in the window. The translator methods are not used if the TranslatorClass has not
been assigned.

Listing 5. AddItem and Translate methods

!-------------------------------------
PDCalendarBaseClass.AddItem PROCEDURE(TranslatorClass |
 pTranslator)
 CODE
 SELF.Translator &= pTranslator
!-------------------------------------
PDCalendarBaseClass.Translate PROCEDURE(*STRING[] pMonthArray,|
 *STRING[] pDayArray)
 CODE
 IF ~SELF.Translator &= NULL
 !-- Translate Month Names
 LOOP I#=1 TO 12
 pMonthArray[I#]=|
 SELF.Translator.TranslateString(CLIP(pMonthArray[I#]))
 !-- Note CLIP is needed here.
 END
 !-- Translate Day Names
 LOOP I#=1 TO 7
 pDayArray[I#]=|
 SELF.Translator.TranslateString(CLIP(pDayArray[I#]))
 END
 !-- Translate buttons etc.
 SELF.Translator.TranslateWindow()
 END

The class code for each of the derived calendars is exactly the same as the respective
SV calendar classes; the only difference is that they are derived from the new base
class, so they will call the new ask method.

Applying the multi-language ABC calendar

To develop and test the library, I created a simple application with a file and two
dates, one for each of the calendar types. I also created a translation file
(PDABCCal.trn) with British English, French, and German translations, a user
language preference procedure, and a procedure to load selected translations

I n t e r n a t i o n a l i z a t i o n T o o l s S t a n d a r d s : L e a r n i n g f r o m a n A B C C a l e n d a r W o r k a r o u n d

10

Translation file (PDABCCal.trn)

The translation file consists of group structures with source and replacement strings
for each translation. The structure is the same as that used by the TranslatorClass
library. While there are other ways to load translations which make customization
and maintenance easier, this serves well for illustrative purposes. The translation
file is located in the application directory

User interface file (ABUtilui.clw)

Since I am programming in United States English, on the surface there was no need
to change the window definitions or the day and month names in the user interface
file. Note that SV chose to use a CLW file rather than a translation file; because this
is referenced in the shipping ABC class libraries, I chose not to change the
extension. In testing, however, I found that there was a STATIC attribute on the
group declarations that made it impossible to change the language once a calendar
had been translated. This attribute is commented out. I would also suggest changing
date and time pictures from @d2 and @t6 to @d17 and @T7 which will pick up the
user’s Control Panel short date and time pictures by default. The changes were
made to a copy of the file located in the application directory.

Sample application

The sample application has the following elements that are an important part of an
application with translation capability:

1) Enable Run-Time Translation is checked.

2) On the Global Classes tab, Translator Configure button, Additional
Translation Groups Button, no groups are identified. For the multi-
language translation, this is hand coded to allow selection of the
group to be added. Note that if you do enter a group, you can
include a section reference by adding ',' after the file name before
the section; the template will add the single quotes to either end
and double the entered quotes.

P r e f e r e n c e s

11

3) Global fields have been added for a user selected language and the
first week day to display on the calendar.

4) A preferences procedure has been added to allow the user to select
the language. The selection is saved using the IniMgr.

5) An AddLanguage procedure adds translations used by the
TranslatorClass and sets the first week day value in accordance
with the selected language.

Preferences

The Calendar Preferences window in Figure 1 allows users to select a language. If
the OK button is pressed, the language selection is saved by the IniMgr and loaded
using the AddLanguage procedure.

Figure 1: Calendar preferences

I n t e r n a t i o n a l i z a t i o n T o o l s S t a n d a r d s : L e a r n i n g f r o m a n A B C C a l e n d a r W o r k a r o u n d

12

The language entry options are specified as local data with a Must be in List entry,
as in Figure 2. Values are standard three character language codes except for the
first default entry.

Listing 7. AddLanguage procedure init code

IniMgr.Fetch('Setup','Language',Language)
IF Language='' then Language='def'.
SELF.Okcontrol=?OK

Listing 8. AddLanguage TakeCompleted code

IniMgr.update('Setup','Language',Language)
gLanguage=Language
AddTranslation
! Parent Call
ReturnValue = PARENT.TakeCompleted()
! [Priority 7500]
POST(EVENT:CloseWindow)

The AddLanguage procedure

The AddLanguage procedure includes the .trn file in its data section and the uses
the TranslatorClass’s AddTranslation method to load the translations for the
selected language.

Figure 2: Setting the validity checks

D a t e F o r m

13

Listing 9. The AddLanguage procedure

 INCLUDE('PDABCAL.TRN','GROUPS'),ONCE
! End of "Data Section"
 CODE
! Start of "Add additional DebugHook statements"
! [Priority 5000]

The code section uses the TranslatorClass’s AddTranslation method to load
source and replacement strings. By default, this replaces any existing translation for
a given source string, in effect making the new translation override any prior
translation. The case structure uses the current global language value and also
assigns the related first week day to a global variable.

 CASE gLanguage
 OF 'Def' OROF ''
 gFirstWeekDay=7
 Translator.AddTranslation(PDCalDef)
 OF 'eng'
 gFirstWeekDay=1
 Translator.AddTranslation(PDCalEng)
 OF 'fr_'
 gFirstWeekDay=1
 Translator.AddTranslation(PDCalFr_)
 OF 'de_'
 gFirstWeekDay=1
 Translator.AddTranslation(PDCalDe_)
 END

DateForm

Figure 3 shows the date entry form.

Figure 3: The date entry form

I n t e r n a t i o n a l i z a t i o n T o o l s S t a n d a r d s : L e a r n i n g f r o m a n A B C C a l e n d a r W o r k a r o u n d

14

The Date entry form displays the two date fields, each using one of the two multi-
language calendar button options.

In addition to filling out the normal template prompts on the General tab, the
following steps are needed to use the new classes (see Figure 4):

1) On each of the calendar classes tab, the class needs to be change
from the default class to the newly defined PDCalendarClass or
PDCalendarSmallClass. Uncheck the UseDefault ABC
CalendarClass, check Use Application Builder Class, and select the
appropriate class.

2) Each calendar button requires two lines of embed code – one
adding the translator to the class and one to set the first week day
to display on the calendar.

You could code your own control template to do this for you or write a workaround
extension template that populated the code for all calendar buttons. Note also that
the calendar title is passed as parameter to the Ask method. If you want the title
translated, be sure to include its translation in the translation group structures. My
own preference is to have no title, and have the calendar pop up below or above the
date control so that it is clear what is being entered. I’ve found it best to position the
calendar using pixels, whose coding is beyond the scope of this chapter.

Listing 10. Hand coded additions

ThisWindow.Init
Calendar5.AddItem(Translator)

Figure 4: Setting the Calendar Lookup Prompts

C o n c l u s i o n

15

Calendar8.AddItem(Translator)

Here’s the code for the calendar setup method:

SELF.FirstWeekDay=|
 CHOOSE(~gFirstWeekDay,7,gFirstWeekDay) !-- BYTE(7) Sun=7

Figures 5 and 6 show the running calendars translated to German

Conclusion

The ABC Calendar as shipped does not meet the suggested standard for
international tool design in two respects: 1) the user interface elements are not in a
translation file (.trn file), and 2) there is no way to implement a multi-language
application without modification. Using derived/replacement classes, developing a
workaround is possible but is something that should not be necessary. One still also
has to do some hand coding for each popup which is an unnecessary time waster.

Figure 5: The large calendar in German

Figure 6: The small calendar in German

I n t e r n a t i o n a l i z a t i o n T o o l s S t a n d a r d s : L e a r n i n g f r o m a n A B C C a l e n d a r W o r k a r o u n d

16

That fact the ABC Calendar has an interface file was helpful in that it allowed the
removal of the group static attributes. It was, however, missing a translator group
structure with source strings that could be used for creating translations.

If I were developing an international application, I would look for a third party tool
that handles internationalization more easily. The specs would include accurate
positioning of the calendar (minimally handled by the ABC Calendar), use of multi-
language registry information for day and month names and first week day,
handling of range limits, handling of days with scheduled items as well as holidays,
quicken keys, advanced jump to options, and, if you really want RAD development,
run time creation of calendar buttons for all date entries by the simple addition of a
global extension.

If you download and use the code from this chapter, be sure to put the
PDABUTIL.INC, CLW, and TRN files in the libsrc directory and refresh the ABC
Application Builder Class Information.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v7n10toolstandards.zip

17

COMPLETELY DYNAMIC LISTBOX
FORMATTING?

by Steven Parker

The Point-of-Sale (POS) application I manage allows users to select subsets of
inventory for a variety of purposes. These include order recommendations, physical
inventory, creating store-wide sales and several other things. What started off as a
reporting feature eventually became a browse requirement. And that meant creating
not just dynamic filters, but dynamic list box formats.

I gather the user’s selections using the window in Figure 1.

C o m p l e t e l y D y n a m i c L i s t b o x F o r m a t t i n g ?

18

Selection criteria

In the middle of the window, you will notice a group titled Selection Criteria
(Figure 2, below). Users may select inventory records by vendor, department, user
sort, PLU (Price Lookup Unit, usually the UPC Code), part number or any
combination of these five. They may enter or choose (each entry field calls a data
validation lookup) a single value by making an entry in the left column. They may
ask for a range of values by making entries in paired left and right columns. They
may elect to include everything except the entered values by clicking the Exclude
button at the bottom of each sub-group. They may combine excluded items/ranges
with included ones.

Figure 1: User selection window

S o r t o p t i o n s

19

When the user is done and clicks Ok, embedded code creates a series of up to five
strings. One string is created for each sub-group in which the user has made an
entry. Each string contains a Clarion statement for use in a .SetFilter call.

Very flexible. Very well received by users (it replaces a DOS procedure that walks
the user through seven screens, screen by screen, the user having to complete every
screen in the sequence whether or not s/he wanted to make an entry).

Sort options

There is also a Sort Options group (Figure 3, below) at the top of this window.
Here, the user optionally creates a datum indicating how to sort items (this has less
to do with the order in which inventory is ordered during selection than with how it
is handled later). When this procedure opens, I load the Available Sort Fields queue
manually. The Add and Remove buttons allow the user to move entries to/from the
Sort By queue. The up and down arrow buttons let the user rearrange entries in the
Sort By queue.

Figure 2: Selection Criteria entry area

C o m p l e t e l y D y n a m i c L i s t b o x F o r m a t t i n g ?

20

When the user is done and clicks Ok, embedded code creates a string containing
sufficient information for me to reconstruct the desired sort order whenever needed
(a five character string with one letter for each selection). This datum is used in
reports to construct a variable used in SetOrder and AppendOrder calls.

I believe I have described this window, focusing on how it primes the SetFilter,
SetOrder and AppendOrder calls, in a number of previous articles. In fact, those
articles were about filtering and ordering reports.

So how does this general purpose, if less than aesthetically compelling, window
come back to haunt me? Well, it seems that the files created by these batch
processes are not used only in reports. Some are used in browses. “Who’d a’ thunk
it?”

Figure 3: Sorting selection area

T h e m u l t i - t a b b e d b r o w s e

21

The multi-tabbed browse

When sort orders are used in browses, my users expect the classic Clarion multi-
tabbed browse. They expect to be able to view their recommended orders or
physical inventory by PLU, part number, vendor, department, etc.

I provide this. See Figure 4.

I even display the sort field first (Figure 5).

Figure 4: Classic multi-tabbed browse

C o m p l e t e l y D y n a m i c L i s t b o x F o r m a t t i n g ?

22

Whenever the user changes tabs, the field named on the tab appears leftmost in the
browse box with appropriate locator. In fact, if you compare Figures 4 and 5, you
will note that there can even appear to be different columns in the different views.
Actually, the missing columns width is set to zero; all of these columns are still
there (but that’s another story).

Now, of all the unreasonable things, if the user made a selection in Sort by, they
want a tab showing the items in that order! Showing the file in the user defined
order is the easy part but it is not all the users want. They want all the columns
selected in Sort by to display!

If the user selects Part Number and Department, s/he wants to see those columns as
the first two columns. But the Part Number tab, by default, shows Part Number and
Description in the example procedure (refer to Figure 5, above).

If no sort order was selected, the new tab is inappropriate:

Figure 5: Sort Field first

T h e m u l t i - t a b b e d b r o w s e

23

Similarly, if only one sort node is chosen, it must be the same as an existing tab. In
this case, too, the new tab is inappropriate.

But, if a multivariate sort was selected, let the user see it in all its glory:

Figure 6: No “Sort by”

C o m p l e t e l y D y n a m i c L i s t b o x F o r m a t t i n g ?

24

Providing sort field first is labor intensive. But it is not rocket science. SoftVelocity
provides complete and detailed instructions on how to do this via the FORMAT string.
In the on-line help, click FAQs | BrowseBoxes and LISTs | How to Display the Sort
Field First on a Multi-Key Browse for the details.

Do not continue reading this chapter without reading the SoftVelocity FAQ.

The key to sort field first is:

• Parsing the Format string defining the list

• Adding the queue numbers to each field

• Moving the pieces of the Format string where they are desired

and

• Associating different Format strings with different tabs

As I said, labor intensive but not rocket science.

Figure 7: What the user specified

M u l t i p l e f o r m a t s t r i n g s

25

Now, however, I have a situation where the user can select between one and five
sort nodes. Therefore the user can chose any of 120 orders (five possibilities in the
first node, four in the second, three in the third, two in the fourth makes 120
possible combinations; this is not just a theoretical maximum, since I don’t have to
code for the user not having elements at the second – therefore all remain -- levels).

Multiple format strings

Thus, to cover all the possibilities, I have to create Format strings for each in
anticipation. I also have to create a Case statement to test for each combination. The
phrase “no [expletive deleted] way” comes immediately to mind. My official
response, when asked for this feature, was that it would be “an enormous
undertaking and I feel it is best made a low priority request.” (Two ways of saying
the same thing, aren’t they?)

What would be perfect would be to create five strings, one for each variable
associated with each possible node. Then, hijack the part of the Format string
appropriate to that node and prime the variables in INIT:

PLUString = '68L(2)|M~PLU~@s16@#1#'
VNDString = '39L(2)|M~Vendor~@s8@#7#'
PartString = '69L(2)|M~Part Number~@s16@#6#'
UserString = '37L(12)|M~User Sort~L(2)@s3@#9#'
DeptString = '43L(12)|M~Department~L(2)@n_3@#8#'

I would also require strings for the “fixed” fields (fields that always appear):

DescString = '120L(2)|M~Description~@s30@#2#'
OldOH = '49R(4)|M~Old On Hand~L(2)@n-_9.2@#3#'
NewOH = '52R(9)|M~New On Hand~L(2)@n-_9.2@#4#'
ScanS = '31C|M~Scan In~L(2)@s1@#5#'

The string used to store the sort order is PIH:Parameters and I would loop through
it, picking up the user’s selections and concatenating a big Format string.

I already do loop through PIH:Parameters to create a string to use in the
Additional Sort Order prompt (i.e., for AppendOrder), so I would piggyback on
this existing code:

ParmOrder = ''
Loop i# = 1 to Len(Clip(PIH:Parameters))

 Case PIH:Parameters[i#]

 Of 'P'

C o m p l e t e l y D y n a m i c L i s t b o x F o r m a t t i n g ?

26

 ParmOrder = Clip(ParmOrder) & '+PID:PLU,'

 FormatString = Clip(FormatString) & PLUString

 Of 'N'
 ParmOrder = Clip(ParmOrder) & '+PID:PartNumber,'
 FormatString = Clip(FormatString) & PartString
 Of 'U'
 ParmOrder = Clip(ParmOrder) & '+PID:UserSort,'
 FormatString = Clip(FormatString) & UserString
 Of 'V'
 ParmOrder = Clip(ParmOrder) & '+PID:Vendor,'
 FormatString = Clip(FormatString) & VNDString
 Of 'D'
 ParmOrder = Clip(ParmOrder) & '+PID:Department,'
 FormatString = Clip(FormatString) & DeptString
 End
End
ParmOrder = '+PID:Number,' & ParmOrder[1:Len(ParmOrder)-1]

(The last line removes the final, hanging, comma from the string passed to
AppendOrder.)

Then, in the sheet’s NewSelection embed, a simple

Of 6
 ?Browse:1{Prop:Format} = FormatString

would do it.

Unfortunately, the documentation on Prop:Format is quite explicit: Prop:Format
takes “A string constant specifying the display format.” Prop:Format takes a string
constant, not a variable. SoftVelocity is quite good about documenting when a
constant or equate or variable is acceptable. Only “constant” is referenced here. I
am inclined to believe them.

Even more unfortunately, I had already put all the code in place before I checked
the docs. So I decided to try compiling the code.

The worst that could happen is that the compiler would choke on it. It didn’t.

So now the worse that could happen is that it would GPF at runtime. It didn’t.

Having averted two worst case scenarios, the next worse thing is that the code
wouldn’t work. But, at least, it wouldn’t GPF.

It did (work, that is).

I think we have a certified “documentation bug.” I suppose Figure 7, above, gave it
away, didn’t it?

S u m m a r y

27

Summary

I’m not quite sure what I learned in this exercise and I write articles to document
my learning. I already knew I could parse the Format string created by the screen
painter. I already knew that I had to add the queue numbers if I wanted to rearrange
queue elements in a browse. I did not know that Prop:Format would take a variable
(though I did so assume).

I guess I discovered that the documentation is wrong. But I would certainly never
advise ignoring the documentation. So there is no lesson in this.

So, this is what I want to pass on to you: master the first two steps of “How to
Display the Sort Field First on a Multi-Key Browse.” Once you have done that, you
can prime all manner of variables and create new browse formats on a mouse click’s
notice to your heart’s content.

C o m p l e t e l y D y n a m i c L i s t b o x F o r m a t t i n g ?

28

29

EDIT-IN-PLACE: GETTING USER
CONFIRMATION

by Henry Plotkin

No good deed, it is said, goes unpunished. And I now come to realize that edit-in-
place is ready, willing and able to punish the good-deed-doing Clarion developer.
Perfectly willing.

My first serious exposure to edit-in-place is described in When Edit-In-Place Bites
Back (www.clarionmag.com/cmag/v7/v7n01eipbites.html). The problem therein
discussed involves physical inventory worksheets created by batch selecting data
directly from the inventory file.

A worksheet can be transmitted to one or more scanners so clerks can wander up
and down aisles, pointing their scanners and counting things. The data in the
scanners can then be read from the scanner to update the worksheet. Multiple
scanners present no issue. Problems begin only when users manually update the on
hand quantity.

One particular user would start to edit the on hand for an item and, without
completing the field, would click the change button again. The new quantity
displayed in the browse. But embedded code to update inventory did not execute. It
was later demonstrated to me that clicking anywhere in the list box would have the

E d i t - I n - P l a c e : G e t t i n g U s e r C o n f i r m a t i o n

30

same consequence. A resolution was presented in When Edit-In-Place Bites Back
Some More (www.clarionmag.com/cmag/v7/v7n02eipbitesmore.html).

Ultimately, updating inventory for manual changes was integrated with updates
received from the scanners. This updating is done by a batch process on the parent
browse. All my work is obviated because manual changes are no longer reflected in
real time.

Those clever users

Users, being sometimes too clever for my own good, however, found a new way to
ball the works up. Several users apparently keep their inventory both on the sales
floor and in a stock room. They scan their inventory on the sales floor but count it
by hand in the stock room.

To update the physical inventory worksheet, some of these users do their manual
adjustments first and their scanned adjustments second. In this case, the software
correctly adds the scanned quantity to any pre-existing quantity.

However, some users import the quantities from the scanner first and do their
manual adjustments afterwards. In this case, they become confused.

Suppose the new on hand from the scanner puts two (2) in the browse, as in Figure
1.

A s k i n g t h e u s e r

31

Suppose the manual count for item is seven (7). What is the user to enter? Nine (9)
seems the obvious answer. But, as stated, users are clever. Some of them do indeed
want to add the existing quantity to the quantity manually counted. Some, for
reasons beyond anyone’s comprehension, want to replace the existing amount with
the manual count (perhaps the manual count already includes the pre-existing
amount; who knows?). Of course, in the first case, the user must also do the
addition themselves. (This, of course, is an opportunity for error and, more
importantly, a tech support call.)

Asking the user

The software is good. But it cannot divine the user’s intention.

But, I can ask the user what he wants to do. If there is no pre-existing quantity,
whatever the user enters is the correct value. If there is an existing value, any value,
ask the user whether he wants to add or to replace. Something like Figure 2:

Figure 1: Manual adjustment with existing quantity

E d i t - I n - P l a c e : G e t t i n g U s e r C o n f i r m a t i o n

32

Sounds simple.

First, I need to know what the new on hand value is when the browse record (row)
is selected, i.e. before any edits. Then I need to know when the user has completed
data entry. Finally, I can check whether the initial value of new on hand was zero or
not; if non-zero, then I can check whether the current value of the control is the
same as the previous value.

Getting and saving the previous value of a column in a browse is easy. In the
browse’s TakeNewSelection event/embed:

SaveQty = PID:NewOnhand

I want to ask the user any time SaveQty is non-zero or any time SaveQty <>
PID:NewOnhand.

I also know that if SaveQty = 0, I do not need to ask. Therefore, my conditions will
look something like:

If PID:NewOnHand <> SaveQty or (SaveQty <> 0) ! changed?
 If SaveQty <> 0 !ask only if initial value exists
 CASE MESSAGE('Add entered amount, ' & PID:NewOnHand & |

Figure 2: Getting user confirmation of an EIP change

T h e e m b e d s

33

 ' to existing quantity ' & SaveQty & '||or' &|

 '||Replace existing quantity with entered ' & |
 'quantity?','Add or Replace?', ICON:Question, |
 '&Add|&Replace', 2, 0)
 OF 1 ! Name: &Add (Default)
 PID:NewOnHand = PID:NewOnHand + SaveQty
 BRW1.Q.PID:NewOnHand = PID:NewOnHand
 OF 2 ! Name: &Replace
 END !CASE
 End
 BRW1.Q.PID:Scanned = 'M' !update "action" display
 PID:Scanned = BRW1.Q.PID:Scanned
 PID:NEWDATE = Today()

 Put(PIDETAIL)

End

Unfortunately, EIP controls do not post events typically associated with either
browse or entry controls. These include Event:Selected, Event:Accepted and the
like. Without these events, there are none of the embeds normally associated with
them.

Therefore, little pertaining to edit-in-place is simple. The evidence for this is to be
found in the number of articles on the subject at Clarion Magazine as well as the
number of FAQs in the various knowledge bases. In particular, without an
Event:Accepted (and attendant embed), I have no ready place to make my tests. I
have no place to embed the code shown above.

I work for “Mr. Ignore the Templates” (a.k.a. Steven Parker). So, throwing up my
hands in despair is not an option.

The embeds

In fact, edit-in-place is not a template. It is a class. Therefore, there is no template to
ignore. Throwing up my hands in despair? Still not an option.

The embeds I need, especially the Accepted embed, are not present because entry
fields and edit-in-place controls are completed differently. A normal entry field can
be completed in a very limited number of ways, typically only by the enter or tab
keys. Normal entry fields do not normally complete if no changes are actually made
to the field contents. Edit-in-place controls can be completed in a number of ways:
arrow up, arrow down, left arrow, right arrow, tab, enter, even change of focus.
Edit-in-place controls complete based on keys, not on changes to contents.

E d i t - I n - P l a c e : G e t t i n g U s e r C o n f i r m a t i o n

34

Making edit-in-place even more complex, the developer can select how the EIP
Field Managers for a procedure (remember that edit-in-place controls, therefore
objects, are created on a control by control basis and, then, only when edit-in-place
is explicitly activated for that field but the behaviors are procedure-wide). Figure 3
shows this.

In other words, edit-in-place controls can be set up to save contents on one key
stroke, do nothing on another and ask on a third. That there are so many options
indicates that there must be a mechanism for determining how the object is to act
(or not act) on any given key stroke.

Indeed, because edit-in-place is implemented as a class, it logically follows that
there must be ways to override its methods. Luckily, edit-in-place is fairly well
documented, at a conceptual level. This documentation is found in the C5 Learning
Clarion tutorial, starting at page 146 and the meat of the information begins on
page 153 (Editor’s note: look on your Clarion CD for the Learning Clarion PDF; you
can also order a printed version from SoftVelocity at www.softvelocity.com/
products/purchase.htm).

Here I learn that each edit-in-place control has a TakeEvent method (typically
labeled EditInPlace::.TakeEvent). This method is like a standard entry control’s
All Events embed but it also returns a value from its parent call.

Figure 3: Edit-in-place, key by key options for a single field

T a k e E v e n t

35

TakeEvent

A bit of digging in abeip.inc reveals the values that can be returned:

EditAction ITEMIZE(0),PRE

None EQUATE

Forward EQUATE ! Next field
Backward EQUATE
Complete EQUATE ! OK
Cancel EQUATE
Next EQUATE ! Next record
Previous EQUATE
Ignore EQUATE
 END

So, ReturnValue = EditAction:None means the user did nothing,
EditAction:Cancel, the user cancelled. EditAction:Forward is arrow right and
EditAction:Next, arrow down. Etc. So, I need only wrap my code in

If ReturnValue and ReturnValue <> EditAction:Cancel

exactly as show in the tutorial (page 155) in the TakeEvent method for my code to
execute precisely when and how I want it to. The final implementation becomes:

Update(Self.FEQ) !update the EIP control

If ReturnValue and ReturnValue <> EditAction:Cancel

 If BRW1.Q.PID:NewOnHand <> SaveQty or (SaveQty <> 0)
 If SaveQty <> 0

 CASE MESSAGE('Add entered amount, ' & |

 BRW1.Q.PID:NewOnHand & ' to existing quantity '&|
 '' & SaveQty & '||or'&|
 '||Replace existing quantity with entered quantity?', |
 'Add or Replace?', ICON:Question, |

 '&Add|&Replace', 2, 0)

 OF 1 ! Name: &Add (Default)
 PID:NewOnHand = BRW1.Q.PID:NewOnHand + SaveQty
 BRW1.Q.PID:NewOnHand = PID:NewOnHand
 OF 2 ! Name: &Replace
 END !CASE
 End
 BRW1.Q.PID:Scanned = 'M'
 PID:Scanned = BRW1.Q.PID:Scanned
 PID:NEWDATE = Today()
 Put(PIDETAIL)

 End

 ?Change:2{Prop:Disable} = False

E d i t - I n - P l a c e : G e t t i n g U s e r C o n f i r m a t i o n

36

End

Note that I must use the EIP fields in this variant, fields like
BRW1.Q.PID:NewonHand. This is the other very important thing I picked up from the
tutorial: the edit-in-place object creates new controls, one for each column where
edit-in-place is enabled. It is this control, a control I did not create, that is managed
by the EIP object and which the edit-in-place classes synchronize with the
underlying view and browse fields. The tutorial clearly shows how and when I need
to do this myself. (See the UpdatePIDetail2 procedure in the sample application.)

I am not sure I have ever seen these additional fields (e.g., BRW1.Q.<fieldLabel>)
documented or described. It is by inference that I discover them (that and a quick
look at the source files). Of course, were I truly ambitious, I could work my way
through abeip.clw to get a thorough look at how edit-in-place is actually
implmented (e.g., the EditClass INIT method). Nah, too much like work...

An alternate approach

EditInPlace::PID:NEWONHAND.TakeEvent PROCEDURE(UNSIGNED Event) is not
exactly the first place I look when I want to act on a list box action. Usually, I use
the browse’s ResetFromAsk method. Indeed, in the previous articles, it is this embed
that is used to update inventory.

The virtue of this embed is that not only is it one I am used to using but I can also
use the file fields directly. Instead of queue fields like BRW1.Q.PID:NewOnHand, I can
use real file fields like PID:NewOnHand, as usual.

The only problem is that the value of the edit action is local to TakeEvent. It is out
of scope in ResetFromAsk. Of course, I can save the ReturnValue in TakeEvent and
use it in ResetFromAsk. The UpdatePIDetail procedure in the sample application
shows this way of implementing a user confirmation.

Conclusion

In the current case, there is no template to ignore. And that is a good thing. Because
edit-in-place is implemented as an object for each control where edit-in-place is
desired, there are just enough methods for me to override that I can accomplish
useful work.

S o u r c e c o d e

37

For example: note the INIT method for the entry control, where I ensure that the
control is in insert mode. This is very similar to creating controls on the fly and
having to set all the control’s properties before displaying it.

In fact, this is the big lesson that I took away from this exercise: edit-in-place
controls may have a template wrapper but one is best advised to consider them as if
they had been created at runtime using the Create (return new control created)
statement. A quick examination of the source show that this is precisely what is
happening.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n01eip.zip

E d i t - I n - P l a c e : G e t t i n g U s e r C o n f i r m a t i o n

38

39

UPDATING HOT FIELDS

by Steven Parker

On a browse window, Hot Fields significantly extend my ability to display
information. Fields for which there is no space in the list control, data from other
files (related or not), run time computed data are all nicely handled with Hot Fields.

In most cases, I use string controls to display Hot Fields. With the “b” switch added
to the display picture (to blank empty fields), a clean look is easy to achieve, as
show in Figure 1.

U p d a t i n g H o t F i e l d s

40

Entry controls

Then I made a fatal mistake. I populated a set of Hot fields using Entry controls. On
rare previous occasions, I have used entries but I also set those fields’ backgrounds
to COLOR:BTNFace. This time, I forgot.

Figure 1: Hot Field displayed in strings

E n t r y c o n t r o l s

41

I was trying to get a look appropriate to the context. The browse in Figure 1
displays computed data and users know it. While they might wish they could
change the numbers, they know that they can’t, at least within a computer program.
But the Hot Fields in Figure 2 are real file fields. They contain information that a
user might very well want to edit.

The fact that the user might want to edit one of them is the very reason they are
displayed. As a user scrolls through the list, they can decide which part number(s)
or cost(s) needs editing. They might want to add a vendor for one of the stores. Of
course, each entry box is set for Skip and Read Only. These fields, in other words,
can’t be edited.

That, as the reader might suspect, does not stop users from clicking in the control
and attempting to edit it. While the Edit Vendors button calls an update form on
which the user can change the record to their heart’s content, they continue
attempting to edit the Hot Fields directly on the browse. Being read only, they can’t
and resolve their dilemma by calling in a bug report.

Figure 2: Hot Fields in Entry controls

U p d a t i n g H o t F i e l d s

42

The horse having been let out of the barn, there is no use trying to close the barn
door. I can’t switch to strings. Neither can I change the fields’ backgrounds. Thus,
the current exercise: How can I edit Hot Fields on a browse?

Nothing I know about the Clarion language, nothing I know about browses
immediately suggest a way of accomplishing what is wanted. So I fell back on that
tried and true development tool, trial and error.

Trials and errors

I started by removing the Skip and Read Only attributes from each of the fields. In
the attached test application (created in 5.5), see the first menu item (Inventory
(Normal Hot Fields)) under Inventory. I can edit any of the Hot Fields and, as one
would expect, nothing is saved when I scroll to another inventory item or close the
browse.

Strike one. But no surprise.

Next, I populated a SaveButton control template. It is described as the template to
Write Records to a data file. It is the key control template on a Form. In the test app,
try the Inventory (Save Button) item. No errors are thrown. This is good.

Neither, however, is anything saved. This is not so good.

Strike two. Big surprise. I thought that saving is just what this control template is
supposed to do.

What now? I replaced the SaveButton button with a plain button and embedded:

PUT(Inventory)

If ErrorCode()

 Message(ErrorCode() & ': ' & Error(),'Error',ICON:Hand)

End

Not very “ABC” but I do know that PUT() will give me an ErrorCode() and an
Error() that should (famous last words) tell me something useful.

Try the Inventory (Force Save) menu item in the test app. It does give a useful, very
useful diagnosis of what is going on: the dreaded “Record Not Available” message.

R e c o r d N o t A v a i l a b l e a n d b r o w s e a r c h i t e c t u r e

43

Record Not Available and browse architecture

As soon as I saw that error, I realized precisely why records weren’t updating.
Worse, I realized that I had written a number of articles, some of them about
Clarion DOS, explaining the underlying issues.

First, and the immediate cause of this error, file I/O statements (Add, Put, Delete
and their ABC wrapper methods) make certain assumptions about the file buffer.
Add assumes that it started with an empty buffer; Put and Delete assume that the
buffer contains the record to be affected.

In fact, the file buffer for my Put does not contain the record highlighted in the
browse. In fact, the file buffer is empty. Hence the error 33. Critical assumption
violation.

The fact that the buffer is empty is due to the second vital fact: browses do not fill
the file buffer.

Typically the buffer is filled by a Get or its ABC wrapper. Highlighting a browse
record issues no Get or Fetch. Therefore the buffer is empty.

I remember writing about it: a browse reads a disk file and creates a view. It uses this
view to fill a queue (with just enough entries to fill the list control). The list box
displays the queue.

Nowhere is a specific record read. (To be precise, when a browse update button or
Select button is pressed, a record is read. But that fact is not germane here.)

Planting palm firmly on forehead

Major “doh!” moment here. I need to get the record corresponding to the
highlighted queue (browse) record. And, not only do I know how to do that, I know
two ways of doing it.

First, I can retrieve the underlying record as I scroll through the browse. This is
similar to the DOS option, Enable Hot Records. To do this, in the
TakeNewSelection, After Parent call embed, add:

Get(file , key)

or

U p d a t i n g H o t F i e l d s

44

Access:file.Fetch(key)

This works because I have ensured that each node of the key is in the view (either
populated in the list box or added to the Hot Fields list). So, for example, INV:PLU
has a value on each row of the browse and that same field is the only member of the
INV:PLUKey. Et viol·.

The other method is to populate a button, like my Edit Vendors button. When that
button is pressed, I do the record fetch.

The first method will slow browsing down. How much slower depends on network
speed, number of records, filters, etc.

The second method requires a user action. It’s your decision.

One solution

I opted for the make-the-user-press-a-button method. See the test app, Inventory –
One Solution.

But I took things a step further.

To prevent users from “accidentally” clicking on one of these fields and thinking
they could edit, I placed a Region control over the fields:

O n e s o l u t i o n

45

This makes the fields non-selectable. I also disable the Save Edits button.

The fun starts when the user clicks the Edit button:

?Region1{Prop:Hide} = True

?Button6{Prop:Disable} = False

Access:Inventory.Fetch(INV:PLUKey)

I hide the region. The fields thus become selectable. Then I enable the Save button
and, finally, I get the record.

When the user presses the Save button:

PUT(Inventory)

If ErrorCode()

 Message(ErrorCode() & ': ' & Error(),'Error',ICON:Hand)

End

Select(?Browse:1)

?Region1{Prop:Hide} = False

?Button6{Prop:Disable} = True

ThisWindow.Reset(1)

Figure 3: Window in design mode

U p d a t i n g H o t F i e l d s

46

I write the record and test for errors. I move focus back to the list and reset the
Region and Save button.

The window reset ensures that the new data display correctly when the user scrolls
up and down. ThisWindow.Reset may be a bit much; ResetFromFile or ResetQueue
might do just as well. (Try commenting this line out, make some edits, then scroll
about. Then, check the data using Topscan.)

You may note that the test app is incomplete. You can make a change, scroll to
another record without pressing Save and the buttons do not reset.

Summary

Who’d’a thunk it? Hot Fields on a browse are editable! One must remember, of
course, that one is responsible for the record buffer (so, if the primary key has more
than one node, make certain all are primed before retrieving the record). With that
in hand, the rest is easy.

But what I’d really like is a “wayback machine” so I can go back and populate those
Hot Fields as strings.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n04hotfields.zip

47

AESTHETICALLY PLEASING RECURSIVE
UPDATES

by Henry Plotkin

Clarion makes it easy to do recursive inserts, where you continue to insert records
without going back to the browse each time. It is a matter of but a few mouse clicks.

In either template set, from a Form’s Procedure Properties window, press “Messages
and Titles.” On the next window, click the drop down next to “After successful
insert” to select “Insert another record.” See Figure 1.

A e s t h e t i c a l l y P l e a s i n g R e c u r s i v e U p d a t e s

48

Recursive updates

But I need to do recursive updates. That is, I need to do a number of updates
without returning to a browse. In fact, I need to access the form without calling a
browse at all: the record to be updated is selected on the form itself via lookup
fields. See Figure 2.

Figure 1: Setting up template for recursive inserts

R e c u r s i v e u p d a t e s

49

This form is used to receive merchandise purchased without a purchase order. Each
of the first three fields, Part Number, PLU and Description, are lookup fields. From
any of these fields, the user may enter or look up the inventory item.

The inventory file is the primary file for this form. It is designed this way because
several inventory fields are updated when inventory is received. Data updated
include: quantity on hand, year to date quantity received and date last received. A
receiving history file is also updated but this is an add. The form procedure is
designed this way so that Inventory I/O is automatic; a window procedure, perhaps,
would have been better.

There is no direct provision for recursive changes in either the Clarion or ABC
templates.

Typically, I call a form without a browse via a Source procedure. To do so recursively,
I use a loop and set GlobalRequest immediately before the form is called:

Loop

 Clear(INV:Record)

 Clear(REC:Record)

Figure 2: Form used in recursive updates

A e s t h e t i c a l l y P l e a s i n g R e c u r s i v e U p d a t e s

50

 GlobalRequest = ChangeRecord

 If ReceiveNonPO() = 0

 Break
 End
End

Because ReceiveNonPO updates an existing Inventory record, the Inventory buffer
must be cleared. Because receiving history is also updated, to be safe, its buffer is
cleared. GlobalRequest is set to ChangeRecord. The update form is called. It returns
a value and so long as it does, the loop iterates.

Because this form is specifically intended to update records without a browse, there
are a few other unusual housekeeping items to attend to.

First, I intend to update Inventory but I also need to look up an Inventory record.
Therefore, as you will see in the dictionary for the demo app, I create an Alias of
Inventory. The Alias is used for the lookup (see the BrowseInventory procedure
in the demo app). This is probably overkill, since I really don’t care about the
Inventory buffer at the time the user calls the look up. But, generally speaking, it is
safer practice.

Second, when the look up is completed, the aliased file’s buffer is current but the
primary file buffer is not. Therefore, I get the record:

INV:PLU = INV1:PLU
Access:Inventory.Fetch(INV:PLUKey)

This technique works quite well. The inventory fields are updated and receiving
history is too (see TakeCompleted, Before Parent call).

The problem is that whenever the form is completed using the “Ok and Repeat”
button, any window previously opened shows for a moment. Since this procedure is
called from a “window menu” (see Figure 3, below), at least one window will
“flash” each time the loop cycles.

R e c u r s i v e I n s e r t s

51

To see this in action, open the demo app (it is written in 6.2). Select Receiving from
the top menu. Select Traditional Loop from the window used as a menu.

This is a problem because it isn’t pretty. Some users comment on it. I suppose it
looks unpolished, unprofessional. And, recursive inserts don’t “flash,” so why
should recursive updates?

So, what does recursively inserting know that my loop does not?

Recursive Inserts

When I select “Insert another record” for “After successful insert,” as shown in
Figure 1, the Form template changes

SELF.InsertAction = Insert:None

to

SELF.InsertAction = Insert:Batch

This assignment is in ThisWindow.Init just before the window is opened. There are
no further references to either InsertAction or Insert:Batch in the generated
code.

Figure 3: The window that “flashes”

A e s t h e t i c a l l y P l e a s i n g R e c u r s i v e U p d a t e s

52

Insert:Batch, however, is a property of the WindowManager class, found in
abwindow.clw. It is used in the InsertAction procedure. If InsertAction is
Insert:Batch, the buffers are cleared, field priming is performed and the first field
is selected.

Nothing surprising there. Neither is there anything particularly helpful.

However, searching further in abwindow.clw, there is another reference to
Insert:Batch Oddly enough, it is in the WindowManager.ChangeAction method.
Change action? Well, if there is an autoincrement key, Self.OriginalRequest
might indeed be insert record.

But this contributes nothing pertinent to the task at hand so far as I can see.

Looking further down this segment, I see a property, SELF.BatchProcessing that I
do not find in C5.5. Searching abwindow.clw for this reveals some interesting code
in the PostCompleted method:

IF SELF.OriginalRequest = ChangeRecord OR +

 SELF.OriginalRequest = InsertRecord OR +
 SELF.OriginalRequest = ViewRecord THEN
 IF SELF.OriginalRequest = ViewRecord AND
 NOT SELF.BatchProcessing THEN
 POST(EVENT:Completed)

 END

 SELECT()

ELSE

 IF NOT SELF.BatchProcessing THEN
 POST(EVENT:Completed)
 ELSE
 SELECT()
 END
END

which appears to cycle back (SELECT()) if SELF.BatchProcessing. Searching for
further occurrences of SELF.BatchProcessing reveals:

IF SELF.OriginalRequest = ChangeRecord THEN

 IF NOT SELF.BatchProcessing THEN

 CASE SELF.ChangeAction
 OF Change:Caller
 POST(Event:CloseWindow)

 OF Change:Batch

 END

S E L F . B a t c h P r o c e s s i n g

53

While this code does not appear to do anything at this time, it clearly implies that
SELF.BatchProcessing has an effect (probably in the first of these two snippets).

SELF.BatchProcessing

In the demo app, I added

SELF.BatchProcess = True

to the Accepted embed of the “Ok and Repeat” button.

In the demo, select “Test 1” from the menu. After selecting an inventory item,
entering a received quantity and clicking “Ok and Repeat,” nothing appears to
happen. If I then select another inventory record and enter a quantity, again
nothing.

However, when I click “Cancel” and examine the Inventory file in Topscan, each
record has been updated correctly. Receiving History has also been updated
correctly.

Okay, I understand this. The buffers and display have not been cleared.

I know that file I/O happens in PARENT.TakeCompleted(). So, after that, it is safe to:

Clear(INV:Record)
Clear(REC:Record)
ThisWindow.Reset
Clear(LOC:Vendor)
Select(SELF.FirstField)

This clears the buffers and the local vendor field. The reset ensures that the form’s
fields are blanked. Finally, the first entry field is selected.

In the demo app, select “Test 2” from the menu to see this in action. It is just what
is wanted: a flicker free batch update.

Summary

The BatchProcessing property is not available in 5.5. It was introduced in 6.x,
somewhere. Therefore, this technique is not applicable to pre-6.x apps.
Unfortunate.

A e s t h e t i c a l l y P l e a s i n g R e c u r s i v e U p d a t e s

54

Still, it is uncanny what a few hours of wandering about the WindowManager will
do....

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n04recursive.zip

55

BEAUTIFYING CLARION APPLICATIONS

by Roel Abspoel

In this chapter I will show you a simple way to make your application more
appealing to the eye. Now, I can just hear you all saying “Beauty is only skin deep”
or in this case GUI deep. Consider this: You may have spend countless hours
perfecting the code in your application and forming great functionality based on
your extensive experience in a particular field. Maybe your application is unique in
features and just maybe no other developer can offer the functionality that you can.
But does your application’s appearance represent the genius coding underneath or
is your application just an old rusty noisy car with a supercharged engine?

Now don’t start blaming Clarion; your application is a child sprouted from both you
and Clarion. Mother Clarion may be old and ugly but it still offers you a world of
options, and all the genes are in place and ready for use. The mother isn’t the
problem in this case, it’s the seeds from the father (or if these words are starting to
make you feel uncomfortable, “the input from the coder”) that is the problem here.

Highlighting prompts and lists

Why settle for Clarion generated browses on an outdated tab control? Why have
your prompts in a form placed on that same tab control?

B e a u t i f y i n g C l a r i o n A p p l i c a t i o n s

56

It doesn’t make sense to me to place either on a tab, especially now that Clarion
offers sorting by clicking on list headers. Tabs clutter your screen and frankly
confuse the end-user.

There is an argument that box-shaped controls can indicate to an end-user that this
list is important or these prompts are some kind of group that need to be seen as a
whole. A tab or transparent panel, though, confuses your end-users because
although it is beveled it doesn’t really distinguish your controls from the
background.

What controls are alternatives to the tab to make your prompts and lists look more
attractive? There are panel and box controls, but let’s be honest, they’re not much to
look at either. Adding a graphic underneath your prompts and lists doesn’t work
either when your end-user’s display size is different from the one you used at design
time.

So that’s it then? No ’out of the box’ solutions for this display problem?

Well, remember I said it was “all your” fault? Well it is! Why is it we’re so creative
when it comes to coding features yet so limited when it comes to the user interface?
Let’s start with a more creative approach; how do you want your application to
look? For me that meant I did some research with Google’s picture-search. When I
couldn’t find an example that pleased me I realized that my browser’s start page was
showing me just the thing I had in mind: Microsoft’s Live.com (www.live.com)

Figure 1: Standard Clarion generated browse and update

R e d r a w i n g c o n t r o l s

57

website featured nice glassy looking panels for each separate item. I could just see
my app with these kind of panels lighting up my application.

But of course I now needed a way to produce this effect in Clarion, and preferably
without too much effort.

Redrawing controls

What I’m going to do now is create a procedure that lets me redraw a control. The
procedure should take a control as a parameter, and some bytes to indicate if It
should draw a header, shadow and if the control is a button or not (for buttons I’m
going to change some properties.)

If I’m going to draw a new panel on the window instead of the old one (be it a panel,
button or box or whatever) I’m going to have to know what to draw and with what
dimensions. So lets zoom in on the glass panel. Drawing this panel is done in four
phases:

1) The panel surroundings, and possibly a drop shadow.

2) The panel header with a gradient

3) The panel body which is just a bunch of white lines.

4) The panel footer which again is a gradient.

Figure 2: Dreaming of glass panels and buttons

B e a u t i f y i n g C l a r i o n A p p l i c a t i o n s

58

Almost all of this panel can be done by making horizontal lines in a certain color.
The only exceptions are the panel surroundings and the shadow lines which are
only 1 pixel in width. These are drawn obviously with vertical lines. Maybe you
noticed that the panel is square on the header but rounded on the bottom; this also
means I have to connect my horizontal and vertical surrounding lines with a
diagonal and make my footer lines a bit smaller than the body lines.

The DrawGlassPanel procedure

All of the drawing is done by a single procedure called DrawGlassPanel. This
procedure is contained in the template, which is included in the downloadable
source at the end of this chapter.

When drawing graphics I prefer to use pixels instead of dialog units (which are the
default screen measurement units.). For this I need to instruct the window to
measure in pixels.

I don’t want to mess up other template or manual code so I need to make sure that I
turn this on only for my procedure, and after it is completed I switch back to the
original measurement units. I define a byte and store the current value of
PROP:PIXELS (a byte, True or False), then set the pixels property to True. At the
end of the procedure I set PROP:PIXELS back to the original state.

DrawGlassPanel PROCEDURE(LONG MyControl,BYTE DrawHeader,|

 BYTE DrawShadow,<BYTE IsButton><BYTE IsButton>)
OrgPixels = 0{PROP:PIXELS}
0{PROP:PIXELS} = TRUE
! Drawing code

Figure 3: Zooming in on the glass panel to see how it is build up

D r a w i n g t h e l i n e (s)

59

0{PROP:PIXELS} = OrgPixels

Maybe you noticed that I have defined a parameter called IsButton. This parameter
is to tell the procedure that the control I specified is in fact a button. The reason for
this is that in case of a button I need to set some properties that I would not set for a
panel or box. So my next step in this procedure is to set the properties for my
defined control.

IF IsButton = TRUE

 MyControl{PROP:FLAT} = TRUE

 MyControl{PROP:SKIP} = TRUE

 IF ~MyControl{PROP:TIP}

 MyControl{PROP:TIP} = MyControl{PROP:TEXT}

 END

 HiddenButton = MyControl{PROP:HIDE}

ELSE

 MyControl{PROP:HIDE} = TRUE
END

This code hides all non-button controls and makes button controls flat (I’m
drawing my own bevel). Also the button is set to be skipped in the tab order but if
you prefer then you can comment this out. If your button doesn’t have a tooltip the
procedure sets it to the button text and the variable HiddenButton stores the
button’s hide state; if it is hidden I don’t want to draw a new button.

Drawing the line(s)

The first thing is to draw the surrounding lines for the control. These lines can be
drawn in two ways with shadow and without. If the parameter DrawShadow is set to
true then the surrounding lines on the top and left will be gray and the lines on the
bottom and right will be black (the shadow will drop from the right and bottom so I
start the shadow from black; if you wanted the shadow the other way around then
also change the line colors here.)

Drawing the lines is pretty easy; the Clarion LINE procedure will take care of this.
But be sure to start by setting the line thickness and color. SetPenWidth(1) will set
the thickness to one pixel which is exactly what I want. SetPenColor() will set the
color of the line I’m about to draw.

The hard part is to determine at what X and Y position to draw and how long and in
what direction.

B e a u t i f y i n g C l a r i o n A p p l i c a t i o n s

60

IF DrawShadow = TRUE
 SetPenColor(COLOR:BLACK)

ELSE

 SetPenColor(13883352)
END
LINE((MyControl{PROP:XPOS}+MyControl{PROP:WIDTH})|
 ,MyControl{PROP:YPOS},0,(MyControl{PROP:HEIGHT}-2))
LINE((MyControl{PROP:XPOS}+MyControl{PROP:WIDTH}),|
 (MyControl{PROP:YPOS}+(MyControl{PROP:HEIGHT}-2)),-2,2)
LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}|
 +MyControl{PROP:HEIGHT}),(MyControl{PROP:WIDTH}-3),0)
IF DrawShadow = TRUE
 SetPenColor(COLOR:SILVER)

ELSE

 SetPenColor(13883352)
END
LINE(MyControl{PROP:XPOS},MyControl{PROP:YPOS},|
 MyControl{PROP:WIDTH},0)
LINE(MyControl{PROP:XPOS},MyControl{PROP:YPOS},0,|
 (MyControl{PROP:HEIGHT}-2))
LINE(MyControl{PROP:XPOS},(MyControl{PROP:YPOS}+|
 (MyControl{PROP:HEIGHT}-2)),3,3)

Note that the pen color I’m setting depends on the DrawShadow parameter. This is
because if I don’t want a shadow underneath my panel I want the panel to sink into
the background. I could just not draw a border at all in this case, but this makes the
panel kind of bleed into my window. So if there should not be a shadow, a very light
gray line is drawn around the panel, lighter than the default COLOR:SILVER.

If you noticed, each horizontal and vertical side (up and right, down and left)
consists of three lines, one horizontal, one vertical and one diagonal. The X and Y
are based upon the location off the original control and the length of the line is
determined by the width or height of my original control.

Dropping a shadow

The drop shadow consists of 2 lines. (but is started after the black right and bottom
line.)

IF DrawShadow = TRUE
 SetPenColor(COLOR:GRAY)
 LINE((MyControl{PROP:XPOS}+MyControl{PROP:WIDTH})+1,|

G e t t i n g a h e a d (e r)

61

 (MyControl{PROP:YPOS}+1),0,(MyControl{PROP:HEIGHT})-2)
 LINE((MyControl{PROP:XPOS}+MyControl{PROP:WIDTH})+1,|
 (MyControl{PROP:YPOS}+MyControl{PROP:HEIGHT})-2,-3,3)
 LINE((MyControl{PROP:XPOS}+3),(MyControl{PROP:YPOS}+|
 MyControl{PROP:HEIGHT})+1,(MyControl{PROP:WIDTH}-4),0)
 SetPenColor(COLOR:SILVER)
 LINE((MyControl{PROP:XPOS}+MyControl{PROP:WIDTH})+2,|
 (MyControl{PROP:YPOS}+2),0,(MyControl{PROP:HEIGHT})-3)
 LINE((MyControl{PROP:XPOS}+MyControl{PROP:WIDTH})+2,|
 (MyControl{PROP:YPOS}+MyControl{PROP:HEIGHT})-2,-4,4)
 LINE((MyControl{PROP:XPOS}+4),(MyControl{PROP:YPOS}+|
 MyControl{PROP:HEIGHT})+2,(MyControl{PROP:WIDTH}-5),0)
END

Basically this is a black line, followed by a gray line, followed by a silver line.

Again each shadow line is made up out of three lines.

Getting a head(er)

If the parameter DrawHeader is set to true it means I need to draw a header on the
panel.

The header has a total height of 17 pixels (plus the surrounding lines to make the
header stand out more) boxing your header in. The gradient covers 10 colors in
total. (If you want your panel to have a different color you should change these 10
values to new gradient values; you could simply create a nice gradient with your
favorite graphics program and select 10 colors from the image.) Each line is drawn,
and for each gradient change a new color is set using SetPenColor. The Y position
increments for every line:

IF DrawHeader = TRUE
 SetPenColor(16777215)
 LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+1),|
 (MyControl{PROP:WIDTH}-2),0)
 LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+1),0,18)
 LINE((MyControl{PROP:XPOS}+MyControl{PROP:WIDTH})-1,|
 (MyControl{PROP:YPOS}+1),0,18)
 SetPenColor(15592421)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+2),|
 (MyControl{PROP:WIDTH}-3),0)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+3),|
 (MyControl{PROP:WIDTH}-3),0)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+4),|
 (MyControl{PROP:WIDTH}-3),0)

B e a u t i f y i n g C l a r i o n A p p l i c a t i o n s

62

 SetPenColor(15658214)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+5),|
 (MyControl{PROP:WIDTH}-3),0)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+6),|
 (MyControl{PROP:WIDTH}-3),0)
 SetPenColor(15921386)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+7),|
 (MyControl{PROP:WIDTH}-3),0)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+8),|
 (MyControl{PROP:WIDTH}-3),0)
 SetPenColor(16052972)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+9),|
 (MyControl{PROP:WIDTH}-3),0)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+10),|
 (MyControl{PROP:WIDTH}-3),0)
 SetPenColor(16184558)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+11),|
 (MyControl{PROP:WIDTH}-3),0)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+12),|
 (MyControl{PROP:WIDTH}-3),0)
 SetPenColor(16316144)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+13),|
 (MyControl{PROP:WIDTH}-3),0)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+14),|
 (MyControl{PROP:WIDTH}-3),0)
 SetPenColor(16579316)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+15),|
 (MyControl{PROP:WIDTH}-3),0)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+16),|
 (MyControl{PROP:WIDTH}-3),0)
 SetPenColor(16777210)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+17),|
 (MyControl{PROP:WIDTH}-3),0)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+18),|
 (MyControl{PROP:WIDTH}-3),0)
 SetPenColor(15592421)
 LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+19),|
 (MyControl{PROP:WIDTH}-3),0)
 CurPos = 20
ELSE
 CurPos = 1
END

When the header is drawn the variable CurPos is set to a value. This is the Y position
where I will start when I draw the panel body.

A d d i n g t o y o u r b o d y c o u n t

63

Adding to your body count

Now that I have a header (or not, depending on the DrawHeader parameter) I can
start by drawing the panel body. I could skip this part entirely which would make
the panel transparent by showing the window background color, however this may
not be such a great idea. The gradient I have chosen depends on a white
background so if the window is silver it would make one silly looking panel.

SetPenColor(16777215)
LOOP cnt#=CURPOS TO (MyControl{PROP:HEIGHT}-20)

LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+cnt#),(MyContro
l{PROP:WIDTH}-1),0)
END

Since I’m only using one color for the panel body I can simply loop the lines. If you
want to use a gradient here you’ll need to add a bit more code.

In the header I decided what the starting position would be by setting CurPos.

So I’m going to loop starting from CurPos until my position is equal to my original
panel’s height minus 20 (pixel height for the footer).

The end of the line

To finish things off I still need to create a footer.

This is done basically the same as creating the header, with some exceptions:

1) Unlike the header this gradient doesn’t need to be boxed in.
Instead, the footer gradient should be as wide as the body.

2) The bottom of the panel is rounded which means the x position of
the last two lines should be incremented one pixel each. As a
result, the width should be decreased to match the rounding on the
right.

The gradient is chopped up in eight parts, each part with their own color. The last
part consists of five lines all in the same color; this emphasizes the gradient and
’thicknesses of the panel more.

SetPenColor(16776957)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+0))|

B e a u t i f y i n g C l a r i o n A p p l i c a t i o n s

64

 ,(MyControl{PROP:WIDTH}-1),0)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+1)),|
 (MyControl{PROP:WIDTH}-1),0)
SetPenColor(16711162)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+2)),|
 (MyControl{PROP:WIDTH}-1),0)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+3)),|
 (MyControl{PROP:WIDTH}-1),0)
SetPenColor(16645367)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+4)),|
 (MyControl{PROP:WIDTH}-1),0)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+5)),|
 (MyControl{PROP:WIDTH}-1),0)
SetPenColor(16644852)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+6)),|
 (MyControl{PROP:WIDTH}-1),0)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+7)),|
 (MyControl{PROP:WIDTH}-1),0)
SetPenColor(16579057)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+8)),|
 (MyControl{PROP:WIDTH}-1),0)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+9)),|
 (MyControl{PROP:WIDTH}-1),0)
SetPenColor(16578798)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+10)),|
 (MyControl{PROP:WIDTH}-1),0)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+11)),|
 (MyControl{PROP:WIDTH}-1),0)
SetPenColor(16578280)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+12)),|
 (MyControl{PROP:WIDTH}-1),0)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+13)),|
 (MyControl{PROP:WIDTH}-1),0)
SetPenColor(16447207)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+14)),|
 (MyControl{PROP:WIDTH}-1),0)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+15)),|
 (MyControl{PROP:WIDTH}-1),0)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+16)),|
 (MyControl{PROP:WIDTH}-1),0)
LINE((MyControl{PROP:XPOS}+1),(MyControl{PROP:YPOS}+(cnt#+17)),|
 (MyControl{PROP:WIDTH}-1),0)
LINE((MyControl{PROP:XPOS}+2),(MyControl{PROP:YPOS}+(cnt#+18)),|
 (MyControl{PROP:WIDTH}-3),0)

M a k e u p

65

Make up

Now that the procedure is finished I can add it to my app as a global procedure.
Then from any window I can alter the panels and buttons and whatever else I want.

So that’s it, I’m done with the makeup, and I can now add lovely glass panels to my
application!

What’s that? You’re not still mad at me because I said ’it was all your fault’, are you?
You are? Well okay then, I’ll make it up to you by taking this a few steps further.

The template

If you start changing your buttons and panels, you will agree with me it is a bit of a
hassle to do this for every button/panel you have. And what about resizing controls
at runtime?

So here’s a thought, why not put all of this configuration information into a
template?

If you download the example application you will also get a nice .tpl file with all the
mentioned code.

Add the global extension to add the DrawGlassPanel procedure to your application,
and add the procedure extension locally to a window to configure what controls you
want to upgrade.

The template provides two tabs:

Glass panels

This is where you can manually select which controls you want to turn
into glass panels.

Choose if you want a header on the panel and if you want a drop
shadow.

Glass buttons

This tab is default set to ’Do not update any buttons’.

Remove this check to update all the buttons on your window.

B e a u t i f y i n g C l a r i o n A p p l i c a t i o n s

66

You can choose if the buttons should have a drop shadow or not.

If you like, you can exclude certain buttons by simply adding them to
the exclude list.

If you remove the check ’Update all buttons on the window’ you can
now add the buttons you do want changed to the ’Upgrade only these
buttons’ list. In this case you can choose for each button if you want a
drop shadow or not.

Important note: If you are using the template in Clarion versions lower than 6 then
the BLANK function used in the window resize doesn’t exist (it was introduced in
C6). This means that in C5.5 or lower resizing the window will not resize the panel.

Conclusion

I hope to have demonstrated that a little time and creativity can make a lot of
difference in your application. Sure beauty is only skin or GUI deep, but that doesn’t
mean it has no role in selling your app. An application that looks good and works
according to standards will sell much easier than ugly or awkward-to-use software.
Think about how you want your app to look and behave, and find a way to make it
happen! There are lots of freeware additions available and even more high quality
commercial options to upgrade your application. Invest some time and creativity, or
if you lack either of these, some money, to give your application the presentation it
deserves!

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n07beauty.zip

67

REPLICATING IDLE: THROWING USERS OUT

by Steven Parker

“When the user hasn’t done anything for minutes (or seconds), I want to close the
window. How can I do this?” This question comes up fairly frequently. As is so
often the case using Clarion, there are a number of ways to accomplish the goal of
throwing the user out (there are several non-Clarion ways to accomplish this but
they are not germane here).

The Clarion language provides one obvious solution, the IDLE statement. As the
Language Reference states:

IDLE Arms a procedure that periodically executes....

An IDLE procedure is active while ASK or ACCEPT are waiting for user
input. Only one IDLE procedure may be active at a time. Naming a new
IDLE procedure overrides the previous one. An IDLE statement with no
parameters disarms the IDLE process.

Unfortunately, while IDLE looks tailor made to the task, as I observed in Replicating
IDLE: All Quiet on the Keyboard? (www.clarionmag.com/cmag/v3/v3n5idle.html),
it isn’t a usable solution:

IDLE has been broken since (at least) Clarion for Windows 1.5. And, it
is broken badly. For example, the documentation states “Only one IDLE

R e p l i c a t i n g I D L E : T h r o w i n g U s e r s O u t

68

procedure may be active at a time. Naming a new IDLE procedure
overrides the previous one.” This is true in 16 bit; false in 32 bit (new
IDLE procedures in 32 bit are unlikely to execute at all).

In 32 bit programs, an IDLE procedure on the app frame works (i.e., an IDLE
procedure called from the frame). But no other IDLE works; an IDLE procedure
called further down the calling chain not only doesn’t override any IDLE procedure
that may have been called in the frame, it simply doesn’t work. I wrote “Replicating
IDLE” in 2001; at that time, not only did the IDLE procedure respond only to
keystrokes in the frame procedure, the called procedure needed to be in the same
module as the frame.

Perhaps it would be less unfair to SoftVelocity to say that there is a major
documentation bug. In fact, I think that most of us who have been around for a
while have just stopped using IDLE and consider it a 16 bit relic.

As I said, Clarion typically provides multiple paths to application nirvana and in
this case, another path is most definitely required.

But Wait!

”But,” you may be thinking (I certainly did) “if I can start an IDLE procedure on the
frame, I could post events to the frame and reset the frame’s IDLE procedure.” Also,
SoftVelocity introduced the NOTIFY statement (at least for 6.x users) since
“Replicating IDLE” appeared. Not only has NOTIFY been well received within the
community (i.e., it works, works well and works easily), it too would appear
appropriate to the job.

The reason I rejected the IDLE approach in 2001 and the reason I continue to reject
it is that it is both too complicated and too insensitive.

First, “too complicated.” Yes, posting events to the frame is easy (see, for example,
Sidebar Menus – www.clarionmag.com/cmag/v2/v2n7sidebars.html). But, in this
case, should the inactivity period be up, an event has to be posted back to the
desired procedure. So, the frame needs to know the correct procedure to be
affected. If that procedure is not the first procedure on the thread, it must be on top.
If it is on a different thread, THREAD() must be known. Frankly, “complicated”
seems a bit of an understatement when trying to post an event back to the correct
procedure.

T a k e E v e n t

69

Second, “Insensitive.” I am thinking that posting a user defined event back to a
browse (that user defined event, in turn, calling Post(Event:CloseWindow)) is not
especially troublesome. But what if the procedure to be closed is a data entry form?
I have seen cases where partially completed forms have been saved by
Post(Event:CloseWindow) and required fields have been left empty. And what
about “Action on aborted Add/Change?”

No, posting events to the frame, having the frame’s IDLE procedure check whether
action is required and, if it is, posting an event back to the “caller” is just too scary.
Of course, an additional issue is that every procedure in an application would have
to communicate with the frame to prevent the IDLE procedure call or every
procedure would start receiving spurious events. If a procedure did not post events
to the frame, the frame’s IDLE would hit its timeout and... what would it do? “Event
bloat,” not elegant at all.

TakeEvent

I feel, based on what I learned researching “Replicating IDLE,” that the embed
points for the TakeEvent and Event:Timer methods are what I need. They have the
virtue of not limiting me to only one IDLE at a time (I can use these embeds in any
or all open windows). Neither do these embeds limit me to calling only procedures
(I can write in-line code or call a local method or routine) or only procedures
without parameters. All of these are restrictions of the IDLE statement.

This flexibility is especially useful in throwing users out because a simple

Post(Event:CloseWindow)

or

Post(Event:Accepted,?Cancel)

(in the case of forms) is all I really need to do. I don’t need to call a procedure at all
to throw a user out.

The solution I came to five years ago was to use TakeEvent to see whether the user
had been active or not. If the user had been active, I reset my timeout. For example:

Timeout = Clock() + (NumberOfMinutes * 6000)

In this code I compute the actual time at which to throw the user out (see
UpdateCustomers2 for an example of setting the time of day at which to kick the

R e p l i c a t i n g I D L E : T h r o w i n g U s e r s O u t

70

user out – note that I convert the number of minutes before time out to hundredths
of a second, the same units that Clock() uses). Or I use a countdown timer. This
code:

Ticks = DefaultNumberOfTicks

resets the Ticks value (assuming DefaultNumberOfTicks is already in Clarion
Standard time – see Marking Time, Part 1 (www.clarionmag.com/col/98-01-
makingtime1.html) ; UpdateCustomers1 is an example of a countdown timer).

Because any event, any mouse click, keystroke, anything calls TakeEvent, the
TakeEvent embed really is the ideal place to check whether an event has occurred
and what event it is. If a user event occurs, like a keystroke or mouse click, I want to
restart the time counter.

However, because timer events also call TakeEvent, Event:Timer will too. I don’t
want to reset my counter(s) just because the timer fired. So, my TakeEvent code is:

If Event() <> Event:Timer

 ! reset counter

End

Doing the dirty

I use the window’s Timer method to see if the inactivity period has expired and then
I act as needed. This part is easy.

In a browse (in the sample app, see BrowseCustomers):

If Event() = Event:Timer
 Timeout -= 1
 If Timeout = 0 ! countdown
 0{Prop:Timer} = 0 ! to zero

 Message('Timed out. Substitute IDLE is ' & |

 'working.','IDLE()',ICON:Exclamation)

 0{Prop:Timer} = 100

 Post(Event:CloseWindow)

 End

End

kicks the user out.

W h o D i d W h a t ?

71

In a form (see UpdateCustomers1 or 2), I prefer to mimic the user’s clicking the
Cancel button:

If Event() = Event:Timer
 If Clock() > Timeout ! clock .GT. computed time
 SELF.CancelAction = Cancel:Cancel

 Post(Event:Accepted,?Cancel)

 End

End

Note that I also explicitly set SELF.CancelAction = Cancel:Cancel. This ensures
that my app doesn’t hang with one of the “Are you sure?” messages.

Who Did What?

If an event is posted and it is not a user event, i.e. the timer has ticked over, I can
check whether the inactivity period has or has not expired in Event:Timer
(obviously, the window will need a timer). If it has expired, I can act.

Here is where it gets harder. Much harder.

In a browse’s TakeEvent method:

If Event() <> Event:Timer

 ! compute or reset
End

is sufficient. BrowseCustomers shows this technique.

However, in a form, TakeEvent receives a number of events, many of which are
neither timer nor user events. These include OpenWindow, Resume, Sized, Selected,
Suspend and GainFocus. In fact, in 5.5 (I haven’t tried this .APP in 6.x) several of
these events fire constantly. As a result, regardless of the method used to determine
inactivity, the inactivity computation never trips. (GainFocus, particularly, fires a
lot – a lot – given that this form is called by a STARTed procedure, I don’t suppose
this is really surprising; but it is a royal PITA to have my timer reset every time my
CPU time slices back to my form).

Checking KeyBoard() doesn’t work. After the first keystroke, KeyBoard()always
returns True. Again, the condition is never satisfied. Alerting keys and checking
those, similarly, gives no joy. Take my word in this. Please.

To make a long story short:

R e p l i c a t i n g I D L E : T h r o w i n g U s e r s O u t

72

Case KeyCode()
Of 33 to 128 orof MouseLeft orof TabKey
 ! compute or reset
 SetKeyCode(0)
End

seems to do just what I want. The trick is in SetKeyCode(0). This ensures that the
next cycle of the Accept loop doesn’t trigger Case KeyCode(). As they say, “salt to
taste,” you may want to check different key codes (I just grabbed the basic
alphameric keys for this example).

Try either ThrowOut1 or 2. Tab around. Click on each field in turn. It will not time
out. Enter something in each field but do not press a button. Fold your hands in
your lap. A few seconds later (the default in the sample app is five seconds), the
form disappears! And that is just what I want.

Note: For purposes of this demonstration, only run one browse at a
time.

Summary

Kicking a user out ought to be easy. It is, if you are kicking her/him out of a browse
or, perhaps, a “simple” window. It gets more... challenging when data entry forms
are the target of the exercise.

The essentials are easy. I know I have to know:

• How long the user is allowed to be inactive

• What action to take (different actions for different template
procedures)

• When to reset my counter

Resetting the counter, however, isn’t so easy as I thought.

If Event() <> Event:Timer
 ! reset counter
End

is counterproductive in a form. And that was my big lesson from this: there are
more events in forms than are dreamt of in my philosophies.

S o u r c e c o d e

73

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n10kickout.zip

R e p l i c a t i n g I D L E : T h r o w i n g U s e r s O u t

74

75

THROWING USERS OUT: METHODS OF
COMPUTATION

by Steven Parker

In the previous action packed episode I looked at ways of throwing users out of
windows. While I did raise a sweat, I was able to do it without incurring any bodily
damage (primarily to myself – defenestrating users can get quite messy). I did
discover that there are more events being posted in some template procedures than
I had, once upon a time, accounted for. But it all turned out right in the end.

One issue remains to be elucidated: how to figure out it is time to... dispose of the
user.

There are three methods of computing this:

• The time of day method

• The countdown method

• The count up method

T h r o w i n g U s e r s O u t : M e t h o d s o f C o m p u t a t i o n

76

But first, the assumptions

I make one and only one assumption. I don’t think it is an unreasonable one.

That assumption is that the amount of time a user is allowed to be inactive is stored
in a variable. The variable can be in a configuration file, an INI file, a registry entry.
Further, I assume that the variable is global. (This is a safe use of static data; it is
read many times but very rarely, if ever, written.)

And now, another assumption

I make one and only one more assumption: my base unit is “seconds.” So, either the
inactivity variable is a number of seconds or is converted to seconds (see Marking
Time, Part 1 (www.clarionmag.com/col/98-01-makingtime1.html) for a full
discussion of converting various expressions of time to other expressions and to
Clarion time).

So,

Timeout = GLO:NumberOfSeconds

or

Timeout = GLO:MinutesAllowed * 60

to give me the seconds I expect.

Why seconds? I’m glad you asked.

I use seconds for two reasons. First, I can set a timer on a window for one second
(100 in the Timer prompt on the Window Properties worksheet) and have
matching units to work with all around. Using seconds means I do not have to do
any further conversions.

Second, I believe that any timeout amount that cannot be comfortably expressed
and understood in seconds is just too long.

T i m e o f d a y

77

Time of day

When thinking about “when do I give the user the boot,” time of day is probably the
first method that comes to mind.

When the user enters a procedure or when the user is active (does something), I can
compute the time of day at which he/she should be thrown if they do nothing
further.

To compute the time of day to kick them out I convert my number of seconds to
Clarion ticks (okay, one more conversion was needed) and add to the current time:

Timeout = Clock() + (GLO:NumberSeconds * 100)

Timeout now contains the clock time at which to dump the user. Timeout is
recomputed whenever there is a user event, so it is always current.

Then

If Event() = Event:Timer
 If Timeout => Clock()

 Message('Time to go!','Bye Bye',ICON:SoLong)

 ! but really Post(Event:CloseWindow)
 ! or Post(Event:Accepted,?Cancel)
 End
End

and the user is out.

This is all fairly straightforward. This is all very logical and, even, intuitive.

Except. Except that it embodies an assumption that can undermine the entire
process: It does not allow for an application to be running at midnight. Midnight
rollover is discussed in “Inter-Date Computations” on page 579 and Replicating
IDLE: All Quiet on the Keyboard? (www.clarionmag.com/cmag/v3/v3n5idle.html)
And the reader may want to take a moment to look at these articles.

So, while still fairly straightforward, midnight rollover handling can produce some
hard to read code. One of my first demonstrations of handling this circumstance
looked like this:

!TakeEvent
If Event() <> Event:Timer
 Timeout = Today() + |
 ((Clock() + (GLO:NumberSeconds * 100)) |
 / 8640000)

T h r o w i n g U s e r s O u t : M e t h o d s o f C o m p u t a t i o n

78

End

(so far, not too bad) and

!Timer
If Event() = Event:Timer
 If GLO:NumberSeconds > 0
 !new day, adjust for midnight rollover
 If (Today() > INT(Timeout)) |
 AND (Clock() + 8640000 > |
 ((Timeout - INT(Timeout)) * 8640000)) |
 OR (Today() = INT(Timeout)) AND |
 (Clock() > ((Timeout - INT(Timeout)) * 8640000))
 SELF.CancelAction = Cancel:Cancel
 Post(Event:Accepted,?Cancel)
 End
End

(Ick.) This works by checking the dates first then making the appropriate time
comparison. Alternately, I could create a second StarDate (see “Inter-Date
Computations” on page 579) in the Timer embed and subtract:

If Event() = Event:Timer

 If GLO:NumberSeconds
 StarDateNow = Today() + (Clock() / 8640000)
 If StarDateNow - Timeout > 0
 SELF.CancelAction = Cancel:Cancel
 Post(Event:Accepted,?Cancel)
 End
 End
End

Effective, more readable than the previous codelet, but still much less readable than
If Timeout => Clock().

Countdown

I really shouldn’t need to calculate the time of day at which to expel the user, at least
not when I am willing to set my window timer to one second (for the reasons
mentioned earlier). In other words, its intuitiveness notwithstanding, the time of
day method is more complex than it needs to be, at least for general use.

Since I know the number of seconds (or minutes converted to seconds) after which
to time out, I should be able to simply count down the remaining time. Something
like:

C o u n t d o w n

79

If Event() = Event:Timer

 Timeout -= 1

 If Timeout = 0
 !do something
 End
End

With a window timer set to 100 (one second), Timeout will be decremented
precisely once per second. Isn’t it just great when a plan comes together?

If I do this, then TakeEvent becomes a simple reset of Timeout to its initial value:

If Event() <> Event:Timer

 Timeout = GLO:NumberSeconds
End

Not only is this easier to read than setting the time of day or creating a StarDate, it is
faster. Because it is a simple assignment, no computations, it executes just about as
fast as code can execute.

More important, midnight rollover is automatically handled with nothing further to
consider. (It might be more accurate to say that midnight rollover is simply ignored:
time of day never even enters the equation at all). The sample apps accompanying
this chapter (C55) implement this technique in BrowseCustomers, for example.

Counting down works. Even better, it allows displaying the countdown on the
window (see BrowseCustomers and UpdateCustomers1 in the sample app).

Counting down works with one small exception (is anyone here surprised?).
Actually, on reflection, the exception isn’t in the least “small.”

If there is an MDI frame procedure and the “Display the date and/or time in the
current window” extension template is used, the timeout will never be hit. This
assignment:

Timeout = GLO:NumberSeconds

will be updated every time the date/time is updated in the frame. Placing this code:

0{Prop:Timer} = 0

in ThisWindow.Init, Enter procedure scope (Priority 501) will turn off the
frame’s timer. (Because this code is executed before the current procedure’s window
is opened, “0” still refers to the frame’s window. The procedure’s timer is entirely
undisturbed.) In the sample app, I implement turning off the frame timer in
BrowseCustomers. Try commenting out this line and you will see that the browse
with the “IDLE” code never times out. (Prop:Timer is restored at the very end of

T h r o w i n g U s e r s O u t : M e t h o d s o f C o m p u t a t i o n

80

ThisWindow.Kill.) If you don’t want to comment out and recompile, just open all
the demo browses sequentially (not all of them touch the timer); BrowseCustomers
will no longer time out.

There is a very important lesson in the previous paragraph: code in one procedure can
affect the window of another procedure. If code is called before Open(Window) or after
Close(Window), the “current” procedure’s window is not the one affected.

Count up

A count up timer is just a variation on a countdown timer (one can suppose that a
developer’s choice between a countdown and a count up timer says something
about them psychologically but, happily, that is a subject for another time and
place).

TakeEvent remains a simple reset of Timeout:

If Event() <> Event:Timer

 Timeout = 0

End

Event:Timer tests whether the maximum number of seconds has passed:

If Event() = Event:Timer
 Timeout += 1
 If Timeout => GLO:NumberSeconds
 SELF.CancelAction = Cancel:Cancel

 Post(Event:Accepted,?Cancel)

 End

End

Et voilà!

But wait! There’s more!

Using any of the techniques discussed in this chapter and the last one allows two
very interesting development techniques:

1) I can have any number of timers on any number of windows

S o u r c e c o d e

81

2) I can have any number of inactivity checks on a single window.

The first is obvious. The second less so but, I think, rather important. Let’s say I
want to clear a particular field after x number of seconds and kick the user out after
y number. These techniques make this as straightforward as creating the first
codelet, copy, paste, and change variables names/actions.

If Event() <> Event:Timer

 Timeout = GLO:NumberSeconds

 ClearTime = GLO:ClearSeconds
End

And

If Event() = Event:Timer
 Timeout += 1
 If Timeout => GLO:NumberSeconds
 !do something
 End
 ClearTime += 1
 If ClearTime => GLO:ClearSeconds
 Clear(pre:Field)

 End

End

Now, that’s pretty cool.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n10kickout.zip

T h r o w i n g U s e r s O u t : M e t h o d s o f C o m p u t a t i o n

82

83

RECURSIVE ADDS

by Steven Parker

Heads down data entry makes the ability to add multiple records without having to
return to a browse desirable. Even customers in lighter duty situations want it.

In the last millennium (a.k.a. before ABC), recursive inserts had to be done by hand
(formerly known as the “tear your shirt off, beat your chest and roll your own”
approach):

Listing 1. Classic recursive adds

Loop

 Get(Customer,0)

 Clear(CUS:Record)

 GlobalRequest = InsertRecord

 UpdateCustomer

 If GlobalResponse = RequestCancelled then Break.

End

Code like this is still useful, by the way. If you want to call an update procedure
without first calling a browse, this is just what you would do (if you only want a
single record at a time inserted, remove the loop and the GlobalResponse check).
Not bad for a piece of code originally written for CDD.

R e c u r s i v e A d d s

84

If, however, record priming is necessary (because of autonumbered keys or default
values in the dictionary), further steps are needed to use this code. Why? Field
priming occurs in the browse. C4/ABC made this change, moving field priming out
of the form and into the browse, to support Edit In Place. So, the form no longer
knows about its default values (as I recall, autonumbering, in the absence of
priming, will occur when the record is saved; but other initial field values will not
be primed).

If field priming is necessary, it is possible to call the PrimeRecord method in the data
entry form. (For a complete primer on the way forms are called in Clarion and an
explanation of priming in the form, see Calling Form Procedures
(www.clarionmag.com/col/98-04-callingform.html). While written in the last
century, it is still relevant and the techniques described still work. How To Ignore
The Form Template (www.clarionmag.com/cmag/v4/v4n10ignoreforms.html)
discusses field priming further as well as dynamically enabling and disabling
buttons.)

To avoid having to do record priming in the form (suppose you’re reusing a form
also called from a browse and you’re worried about double initializing), the code in
Listing 1 can be modified as follows:

Listing 2. Recursive adds · la ABC

Loop
 Get(Employees,0)
 Clear(EMP:Record)
 GlobalRequest = InsertRecord
 Access:Employees.PrimeRecord
 Access:Employees.PrimeAutoInc
 UpdateEmployees3
 If GlobalResponse = RequestCancelled then Break.
End

In the demo app accompanying this chapter, select Browse | Browseless from the
main menu. The code is in the embed for this menu option. The only caveat is that
the form cannot be MDI (you can’t call an MDI window directly from an app frame)
If you do not want to create a new, non-MDI window, consider STARTing a Source
procedure; this Source procedure would contain the code in Listing 2 and would
allow reuse of an existing MDI update form.

For the highest speed data entry, when data entry operators really know what they
are doing, browseless recursive adds are the way to go. For environments that are
not data entry intensive, there are other options.

T h e d e f a u l t o p t i o n

85

The default option

Clarion has provided a template prompt and supporting code to enable recursive
inserts since Clarion 4.

Simply by selecting Insert another record from the drop down, the data entry form
automatically recurses. There is even the option to ask first (see the checkbox just
below the After successful insert prompt).

This seems fairly flexible (especially considering the cost). Yet many users are still
not happy. If I create a form and select Insert another record, the user has to press
the Cancel button to end data entry. This, some users think, is not only
unreasonable but constitutes unnecessary “work.” As if such complaints were not
enough, I have users who enter a new record and, seeing the form blank itself,
either do not know what to do next or think the record wasn’t created. (Neither
training nor tool tips nor... help.)

Figure 1: Template prompt for Recursive Adds

R e c u r s i v e A d d s

86

Leave it to users to take a perfectly easy development task and turn it into a chore –
as if their paying me somehow entitles them to make demands!

Buttons on the browse

On consideration, I realize that there are cases when a user might reasonably be
expected not to want recursive inserts. For example, when creating a (sizeable)
purchase order, recursive inserts are just what is wanted. But, a user editing an
exiting purchase order might want to add just one item. In this case, automatically
being in a recursive insert could be inconvenient.

With that in mind, explicitly making both data entry methods – single and batch --
available makes some sense (and the user is making a choice for which they are
responsible). To affect this, I need to show my user both a standard insert button
and a batch mode button:

To implement the two button approach, I could use the code in Listing 2 for batch
mode and be done with it. The standard Insert button would handle single item
inserts. Indeed, I could do this and the form would close and the browse flash on

Figure 2: Single and Batch Insert buttons

U n d e r t h e b o n n e t

87

each iteration. As Henry Plotkin observed (“Aesthetically Pleasing Recursive
Updates” on page 47), this looks very unprofessional.

Since the standard template implementation is quite smooth, it would be nice if I
could piggyback what I want to do on what is already in the box. So, a quick look
under the covers is in order.

Under the bonnet

I know that the form template supports recursive inserts. What I need to know is
“How?” Examining the generated code, I discover that the templates use the
InsertAction variable. (Here’s how I find out what properties are being affected:
open the form template – from the Clarion main menu, Setup | Template Registry –
and search for the prompt text. Then trace the template symbol to something that
looks like code.)

If I look at the code generated when Return to caller is selected, I see this code:

IF SELF.Request = ViewRecord

 SELF.InsertAction = Insert:None

 SELF.DeleteAction = Delete:None
 SELF.ChangeAction = 0
 SELF.CancelAction = Cancel:Cancel

 SELF.OkControl = 0

ELSE
 SELF.CancelAction = Cancel:Cancel
 SELF.OkControl = ?OK

 IF SELF.PrimeUpdate() THEN RETURN Level:Notify.

END

If I now select “Insert another record,” I see the same code, with one addition (in
bold):

IF SELF.Request = ViewRecord
 SELF.InsertAction = Insert:None
 SELF.DeleteAction = Delete:None
 SELF.ChangeAction = 0
 SELF.CancelAction = Cancel:Cancel
 SELF.OkControl = 0
ELSE
 SELF.InsertAction = Insert:Batch

 SELF.CancelAction = Cancel:Cancel

 SELF.OkControl = ?OK

R e c u r s i v e A d d s

88

 IF SELF.PrimeUpdate() THEN RETURN Level:Notify.
END

This suggests that I can, at run time, change SELF.InsertAction from nothing
(property not assigned, as in Figure 2) to Insert:Batch (as above; the other values
SELF.InsertAction can take are: Insert:None – inserts not allowed;
Insert:Caller – return immediately after inserting, this is the template default;
and Insert:Query). Or, if I have designed the form to use Insert:Batch, I can
change it to Insert:Caller. Specifically, it looks like I can pass in parameters, now
that Clarion 6 supports full parameter passing, to the form and set
Self.InsertAction on the fly.

Where? How? Design decision time.

And now, back to our show

In the demo app, Browse | Single Add/Batch Add Buttons calls the browse shown in
Figure 2, above. If you press the Insert button and add a record, you are returned to
the browse. If you press the Batch button, you are in recursive add mode and have
to press Cancel to exit the form.

The procedure name is BrowseEmployees if you want to follow along.

While there are two buttons, there is only one update form. The “trick” is in passing
a parameter to the form, a feature not fully supported in the stock templates until
6.x:

A n d n o w , b a c k t o o u r s h o w

89

Recurse is a local variable and is set when pressing the Batch button (by default, the
form will be single insert). In fact, the sum total of code in BrowseEmployees is in
the Batch button’s Accepted embed:

Recurse = 1

Post(Event:Accepted,?Insert:2)

The Post statement is how two buttons call only one form. For complete reliability,
Recurse should be cleared, ResetFromAsk looks like a good place to do that (it is
after the call to the update procedure).

Everything else happens in the update form, UpdateEmployees. Because the browse
passed a parameter, the form has to be prototyped to receive it:

Figure 3: Passing a parameter to the update form

R e c u r s i v e A d d s

90

The magic happens in ThisWindow.INIT, reading and using the parameter:

If pRecurse and Self.Request <> ViewRecord

 Self.InsertAction = Insert:Batch

End

This codelet need only be placed after the template generated code shown in Figure
2. In the demo app, you will find it at priority 7600, just after OpenFiles.

And, there you go! It works; it’s smooth.

And, sure enough, there are users who are unable to figure out in advance that they
want to add several records. These users also cannot be bothered to finish one
record, return to the browse and click the Batch button (and my boss wonders why
I consider spec a moving target). These users want...

Buttons on the form

Buttons on the data entry form, as shown in Figure 5, allow users to decide, after
beginning data entry, to go into batch mode. (Actually, I default this form to batch
mode and use the button on the left to break out of batch mode.) Given how simple,
relatively, buttons on the browse were to implement, I am optimistic about buttons
on the form.

Figure 4: The form’s matching prototype

B u t t o n s o n t h e f o r m

91

My concern is whether or not I can reset Self.InsertAction after the window is
fully initialized. If I cannot, I’m hosed. If I can, Listing 3 supplies the answer.

Listing 3

Self.InsertAction = Insert:Caller

Post(Event:Accepted,?OK)

Inserting Listing 3 in a purpose-created button’s Accepted embed will do. This
assumes that I set the default behavior to be Insert another record. Thus, the
template Ok button is renamed OK & Repeat and the button displaying Ok is
actually a new button. If the form was created to start in recursive mode, the Ok
button would be the template’s Ok button and Ok & Repeat would be the purpose-
created button, with the code in Listing 4.

Listing 4

Self.InsertAction = Insert:Batch

Post(Event:Accepted,?OK)

In the sample app, Single / Batch Add From Form demonstrates this technique. As it
turns out, while InsertAction is set in INIT, it is used in several other places. The
last of these places is TakeCompleted. So, if I change Self.InsertAction before

Figure 5: Buttons on the form

R e c u r s i v e A d d s

92

TakeCompleted, I can bail out of whichever mode the form is in using the code in
Listing 3 or 4 in the new button.

Eureka! Done.

Summary

There are four ways to do recursive inserts. Two (“roll your own” and the way built
into the templates) are not dynamically changeable. Two (buttons on the browse,
buttons on the form) are end user configurable.

More instructive, however, is my trick of using the template’s own code to trace
down the variables and methods necessary to accomplish a goal. By examining the
form template, I discovered InsertAction and that made changing entry modes at
run time almost easy.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n10repeatadd.zip

93

A SURVEY OF EMBED USAGE

by Dave Harms

Embed points are Clarion’s great strength: they let you embed custom code within
generated code so you get the best of both worlds. But there are a bazillion embed
points. How do you know which ones to use? One way is to study the
documentation and make educated guesses. Another is to ask experienced Clarion
developers which embeds they favor.

A while ago I decided to automate the latter approach. Clarion APPs can be
exported as TXAs, which are text files containing all of the APP’s information,
including embed points. I wrote some code to parse TXAs looking for the embeds,
and I published some preliminary results in January. I also asked developers to send
me their TXAs for analysis. The response was better than I expected, and I now have
over 300 TXAs in hand. In this chapter I’ll go over some of my findings, and I’ll
show the SQL statements I used to extract the data.

A storage problem

In my original analysis I stored embed data on the Clarion Magazine server, which
is physically about 1500 miles (2400km) from my office. As I only had a handful of
TXAs to process, the slowdown induced by inserting records across the Internet

A S u r v e y O f E m b e d U s a g e

94

was only a minor inconvenience. But with over 300 TXAs to process I needed to set
up a local database.

This seemed like an excellent opportunity to reacquaint myself with PostgreSQL
(www.postgresql.org), which is one of the few truly free open source SQL databases
(the other major player being Firebird (www.firebirdsql.org) ; MySQL
(www.mysql.com), contrary to popular perception, is not free for commercial use).
I’ll have more on installing and running PostgreSQL another time; for now I’ll just
say that I installed PostgreSQL without difficulty and I’ve been pleased with its
performance in my limited testing to date.

The schema

Here’s my database schema as described by psql, the PostgreSQL command line
interpreter. First, the list of tables and sequences (a.k.a. autonumbering keys):

embeds=# \d
 List of relations
 Schema | Name | Type | Owner
--------+-----------------------------+----------+----------
 public | embed | table | postgres
 public | embed_embedid_seq | sequence | postgres
 public | embedapp | table | postgres
 public | embedapp_embedappid_seq | sequence | postgres
 public | embedproc | table | postgres
 public | embedproc_embedprocid_seq | sequence | postgres

And here are the details for each of the three tables: embedapp, embedproc, and
embed:

embeds=# \d embedapp;
 Table "public.embedapp"
 Column | Type | Modifiers
--------------+---------------+-----------------------------------
 embedappid | integer | not null default nextval
 ('embedapp_embedappid_seq'::regclass)
 txa | character(60) |
 embedchainid | integer | not null

Indexes:
 "embedapp_pkey" PRIMARY KEY, btree (embedappid)

embeds=# \d embedproc;
 Table "public.embedproc"
 Column | Type | Modifiers

P a r s i n g T X A s

95

--------------+---------------+-----------------------------------
 embedprocid | integer | not null default nextval
 ('embedproc_embedprocid_seq'::regclass)
 embedappid | integer | not null
 embedchainid | integer |
 procname | character(60) |
 procfromabc | character(60) |
 proccategory | character(60) |

Indexes:
 "embedproc_pkey" PRIMARY KEY, btree (embedprocid)

embeds=# \d embed
 Table "public.embed"
 Column | Type | Modifiers
--------------+---------------+-----------------------------------
 embedid | integer | not null default nextval
 ('embed_embedid_seq'::regclass)
 embedchainid | integer |
 embedprocid | integer | not null
 embed | character(100) |
 param1 | character(60) |
 param2 | character(60) |
 param3 | character(60) |
 priority | integer |
 linesofcode | integer |

Indexes:
 "embed_pkey" PRIMARY KEY, btree (embedid)

The embedapp table corresponds to the TXA; the embedproc table stores procedure
embed information; and the embed table holds the data for each embed, including
the embed name, the parameters, the priority number, and the number of lines of
code (although at present I’m not tracking lines).

Parsing TXAs

I very briefly covered the process of parsing TXAs in the first embeds analysis
article, so I won’t go into that here except to note that I’m now also filtering based
on template type. For this discussion I’m only looking at TXAs from ABC
applications.

And once again I feel compelled to note that this task would be a heck of a lot easier
of TXAs were XML files because of what I perceive as inconsistent tag usage. That’s
just one more example of the virtues of XML over ad-hoc text file formats.

A S u r v e y O f E m b e d U s a g e

96

Procedure types

The first useful bit of information I extract after processing the TXAs is a summary
of the procedure types represented in the database. Here’s the SQL statement:

select count(*) as count, ProcFromABC,ProcCategory

 from EmbedProc group by ProcFromABC,ProcCategory

 order by count desc, ProcFromABC, ProcCategory;

And here are the first fifty records:

Count Procedure Template

1457 Source

1272 Window

1174 Window Browse

932 Window Form

538 Report

430 Process

101 Process Process

92 Window Window

85 Frame

72 Source Source Window

71 Report Report

25 Browse

20 Window Assign

18 Splash

17 Window ReverseEngineer

17 Source Library

15 Window Browse Tree

14 Window SFR

14 Source Global

13 Window assign

P r o c e d u r e t y p e s

97

13 Window UT BOM – Select

13 Window UT BOM

13 Report Invoices

11 Form

10 Process MapMaker

10 Source Source

9 Source Source Report

8 Window Select

7 Browse Reallocate

7 Window ReverseEngineering

6 Window Menu

6 Window re-assign

6 Window Analyses

5 Window UTBOM

5 Window Actions

5 Window Import

5 Window SQL

4 Source Function

4 Source Generic Function

4 Window New

4 Window Generic Window
Dialog

4 Source Holder

4 Window Import-Export

3 Form Form

3 Window Library – Window

3 Process Actions

3 Window Viewer

3 GENERATED

A S u r v e y O f E m b e d U s a g e

98

This list can be a bit confusing to read at first. The Procedure column is the
procedure type, and for the most part this is limited to one of Frame, Window,
Report, Process and Source. Generally speaking only the first few rows are of much
significance, as most procedures with 25 or fewer instances are custom templates.

I was a bit surprised to see Source procedures in the number one spot. These are
hand coded procedures, but created within the AppGen. It’s a good thing to see;
almost any application will have some code that lends itself to a custom function,
and placing this code in a source procedure makes it more maintainable.

Window procedures are a bit of a catch-all, since browses and forms are both built
on top of generic windows. This statement retrieves all the Window procedure
subtypes:

select count(*) as count, ProcCategory from EmbedProc
 where ProcFromABC = 'Window' group by ProcCategory
 order by count desc, ProcCategory;

And here are the results:

Count Category

1272 not specified – generic window

1174 Browse

932 Form

92 Window

20 Assign

17 ReverseEngineer

15 Browse Tree

14 SFR

13 UT BOM

13 UT BOM – Select

13 assign

8 Select

7 ReverseEngineering

6 Analyses

6 Menu

P r o c e d u r e t y p e s

99

6 re-assign

5 Actions

5 Import

5 SQL

5 UTBOM

4 New

4 Generic Window Dialog

4 Import-Export

3 Library – Window

3 Promote

3 Viewer

2 Assign UT – H

2 BrowseTree

2 CODE window

2 Calendar

2 Fields

2 Generate

2 Global

2 Graphs

2 H-T and H-T

2 Invoices

2 Materials

2 Moisture

2 Ruddscale

2 Tag

2 UT-H Tag

2 Wizard

1 Diary

1 FTP

1 Groups

A S u r v e y O f E m b e d U s a g e

100

Again, only the first few rows are really valuable for analysis as the custom
templates make their appearance soon afterward. Window procedures without a
specific subtype are generic windows, on which developers populate their own
controls. Browse, Form and Window subtypes are procedures created with their
respective wizards.

The embeds

Now on to the embeds. In ABC, embed points are for the most part locations within
virtual methods, which is itself a topic well beyond the scope of this chapter. But in
short, ABC applications rely heavily on the ABC class library, and most of the code
that does the work is contained in those classes. Whereas legacy applications
generate all the code your application needs, ABC applications generate derived
classes that add the functionality you specify in the templates, along with any code
you place in embed points.

This is the statement I use to retrieve the list of most-used embed points:

select count(*),embed from embed group by embed order by count
desc,embed;

And here are the results:

1 MapMaker

1 Reallocate

1 Remove/Reassign

1 ReportManager

1 SFR-T and H-T

1 SFRTag

1 SFRTag and H-T

1 Selects

1 Setup – E

1 Solace VariView

1 Source

1 UT Tag

T h e e m b e d s

101

Count Embed Description

7392 %ControlEventHandling Events for controls on the
window

6293 %WindowManagerMethodCodeSection WindowManager methods, code
section – one for each method

1560 %ProcedureRoutines Local routines

1281 %ProcessedCode After the CODE statement in a
Source procedure

1256 %BrowserMethodCodeSection BrowseManager methods

1183 %DataSection Before the CODE statement in a
Source procedure

1086 %ProcessManagerMethodCodeSection Process/Report methods

733 %WindowEventHandling General window events

430 %ControlPostEventHandling Code to execute after window
control event handling

296 %LocalDataAfterClasses Procedure data, after class
declarations

179 %ControlHandling General control handling

160 %AfterFileOpen After files are opened

144 %TreeSectionMethodCodeSection Third party

135 %ControlPreEventHandling Code to execute before
window control event
handling

135 %UltraTreeMethodCodeSection Third party

127 %BeforePrint Legacy embed – same as
TakeRecord, before printing

116 %NewMethodCodeSection At end of procedure, before
routines

106 %FormatBrowse Legacy embed, same as
SetQueueRecord

A S u r v e y O f E m b e d U s a g e

102

100 %WindowManagerMethodDataSection Window manager methods,
data section – one for each
method

88 %ProcessActivity Legacy embed, same as
process/report TakeRecord
method

86 %AfterWindowOpening Legacy embed, same as
WindowManager.Init priority
8100

83 %LocalProcedures After %LocalRoutines embed

71 %GlobalData For global data declarations

71 %ProgramSetup Program setup, after dictionary
is initialized

The following embeds are not annotated

68 %TagMethodCode

64 %EditInPlaceManagerMethodCodeSec
tion

63 %FileDropMethodCodeSection

63 %ProcedureSetup

61 %UTVMMethodCodeSection

60 %GlobalMap

57 %AfterPrint

53 %BeforeFileOpen

48 %BeforeFileClose

41 %ModuleDataSection

40 %AfterFileDeclarations

40 %BeforeWindowOpening

40 %BrowseBoxEmpty

40 %PreviewerManagerMethodCodeSecti
on

36 %AfterGlobalIncludes

35 %BrowseBoxNotEmpty

T h e e m b e d s

103

35 %BrowserEIPManagerMethodCodeSect
ion

33 %BreakManagerManagerMethod
CodeSectionLevelAction

33 %RecordFilter

32 %ProcedureInitialize

30 %FileLookupMethodCodeSection

26 %AfterInitialGet

26 %NetTalkMethodCodeSection

25 %BeforeGlobalIncludes

23 %XPTaskPanelTaskClickedAfterCode

22 %FM2Init

22 %FileManagerCodeSection

21 %AfterOpeningReport

21 %BrowseBoxDoubleClickHandler

21 %BrowserMethodDataSection

19 %DataSectionAfterWindow

18 %AfterFileClose

17 %DataSectionBeforeWindow

17 %EndOfProcedure

17 %XPTaskPanelTaskLogicAfterCode

16 %LSiBeforeEndpage

16 %NewMethodDataSection

15 %AfterPrimaryNext

15 %ProcessManagerMethodDataSection

14 %AfterProgramCode

12 %BeforePrimaryNext

12 %ListboxStyleAfterDefine

12 %OnInsertAfterPriming

12 %PostWindowEventHandling

11 %ProgramEnd

A S u r v e y O f E m b e d U s a g e

104

10 %BeforeInitialGet

10 %NetTalkMethodRoutineSection

9 %BeforePrintPreview

9 %FileDropComboMethodCodeSection

9 %NextTabEmbed

8 %BeforeSecondaryDisplay

8 %XPThemeWindowAfterInit

7 %AfterCallingUpdateOnAdd\

7 %AlertKeyCaseKEYCODE

7 %LSiAfterOpeningFiles

7 %ProcRoutines

6 %AfterEntryPointCodeStatement

6 %BeforeAccept

6 %BeforeCallingUpdateOnRemove

6 %BeforeFileAction

6 %BeforeSecondaryDisplayCreate

6 %BeginAddEntryRoutine

6 %DasTagAfterTagOnOff

6 %FinishWizard

6 %LSiAfterOpeningReport

6 %ToolbarDropItemAction

5 %BackTabEmbed

5 %BeforeCallingUpdateOnEdit

5 %BrowseBeforeDelete

5 %LSiEndOfReport

5 %LocatorMethodCodeSection

5 %RelationManagerCodeSection

5 %ResizerMethodCodeSection

5 %TreeSectionMethodDataSection

and a bunch more...

E v e n t e m b e d s

105

There are obviously some third party embed points in this list, such as those for
NetTalk, DAS Tools, and Clarion Handy Tools. Some of these embeds (such as
%ProcedureRoutines and %BeforePrint are single embeds; others represent
multiple embeds, such as %ControlEventHandling. Also note that there are still
quite a few developers using the Legacy embed view – this view in the embed list
shows the familiar Legacy names which eases the transition to the ABC classes.

Event embeds

The first parameter to the %ControlEventHandling embed is the field equate, and
the second is the event, so to get the list of commonly used event equates I use this
statement:

select count(*),param2 from Embed
 where embed = '%ControlEventHandling'
 group by param2 order by count desc, param2;

And here is the data:

No big surprises on the event handling, except maybe that so few coders use drag/
drop or other mouse movement events.

Priority Event

2777 Accepted

90 AlertKey

88 Selected

72 NewSelection

15 PreAlertKey

10 Drop

9 Drag

7 TabChanging

3 MouseIn

2 Expanded

1 MouseUp

A S u r v e y O f E m b e d U s a g e

106

WindowManager method embeds

How about the WindowManager method embeds? Here’s the SQL (note that I’m back
to param1 again):

select count(*),param1 from Embed
 where embed = '%WindowManagerMethodCodeSection'

 group by param1 order by count desc, param1;

And the data:

Count Method

4944 Init

160 Kill

91 Reset

87 Open

83 AskPreview

78 Update

74 TakeCompleted

66 Run

56 PrimeFields

50 OpenReport

35 TakeNoRecords

28 TakeFieldEvent

26 TakeWindowEvent

17 SetControlProperties

14 Ask

14 PrimeUpdate

13 InitControlProperties

12 TakeEvent

11 TakeAccepted

5 InsertAction

W i n d o w M a n a g e r m e t h o d e m b e d s

107

Clarion programmers love that WindowManager.Init method. And why not? It’s a
great place to prime variables, create controls, and do all sorts of other setup tasks.
Here’s a closer look the preferred priorities:

select count(*),priority from Embed

 where embed = '%WindowManagerMethodCodeSection'

 and param1 = 'Init' group by priority order by priority;

5 TakeSelected

4 EndReport

4 TakeRecord

3 TakeCloseEvent

3 TakeNewSelection

2 SetControlValues

1 SetAlerts

Count Priority

6 1

1 2

1 5

1 10

35 50

35 300

34 450

45 500

234 501

1 1000

4 1300

8 1500

11 1700

7 1800

1 2000

A S u r v e y O f E m b e d U s a g e

108

Okay, I could go on with that list for a few more pages. Here’s something more
sensible – priorities grouped by thousands:

select count(*),floor(priority/1000)*1000 as floor from Embed

 where embed = '%WindowManagerMethodCodeSection'

 and param1 = 'Init'
 group by floor order by floor;

Ah, that’s a bit more useful. The data now shows the number of embed points at
priority 0-999, 1000-1999, and so forth. (As an aside, this is one of the reasons I
love working in SQL. I didn’t have to write any fancy code to process the list of
embeds and do sums – I just employed a server side function (floor, in this case)
and let the server do the work. I’m far from an SQL expert but I often use statements
like these to generate ad-hoc reports.)

4 2001

2 2250

3 2300

89 2500

7 2501

 hang on a
sec...

Count Priority

392 0

31 1000

133 2000

50 3000

440 4000

615 5000

325 6000

1158 7000

1238 8000

554 9000

8 10000

W i n d o w M a n a g e r m e t h o d e m b e d s

109

But what do these priorities mean? Embed priorities simply let you assign code at
various places in the Init code. Here’s an example of Init code taken from the
Embeditor:

ThisWindow.Init PROCEDURE

ReturnValue BYTE,AUTO

! Start of "WindowManager Method Data Section"
! [Priority 5000]

! End of "WindowManager Method Data Section"
 CODE
 ! Start of "WindowManager Method Executable Code Section"
 ! [Priority 300]

 ! Enter procedure scope
 GlobalErrors.SetProcedureName('ImportTXAs')
 ! [Priority 2700]

 ! Snap-shot GlobalRequest
 SELF.Request = GlobalRequest
 ! [Priority 4950]

 ! Parent Call
 ReturnValue = PARENT.Init()
 ! [Priority 5050]

 ! Set options from global values
 IF ReturnValue THEN RETURN ReturnValue.
 SELF.FirstField = ?List1
 SELF.VCRRequest &= VCRRequest
 SELF.Errors &= GlobalErrors
 ! [Priority 5300]

 ! BIND variables
 ! [Priority 5800]

 ! Setup Toolbar Object
 SELF.AddItem(Toolbar)
 ! Initialize the procedure
 CLEAR(GlobalRequest)
 CLEAR(GlobalResponse)
 ! [Priority 6500]

 ! Procedure setup standard formulas
 IF SELF.Request = SelectRecord
 SELF.AddItem(?Close,RequestCancelled)
 ELSE

A S u r v e y O f E m b e d U s a g e

110

 SELF.AddItem(?Close,RequestCompleted)
 END
 ! [Priority 7300]

! Open Files
 Relate:TextFile.Open
 Relate:embed.Open
 Relate:embedapp.Open
 Relate:embedchain.Open
 Relate:embedproc.Open
 SELF.FilesOpened = True
 ! [Priority 7800]

 ! Open the window
 SELF.Open(Window)

 ! [Priority 8005]

 ! Call ListBoxStyle Define Routine
 Do DefineListboxStyle
 ! [Priority 8080]

 ! Restore from INI file
 INIMgr.Fetch('ImportTXAs',Window)
 ! [Priority 8400]

 ! Process field templates
 ! [Priority 8800]

 ! Prepare Alert Keys
 SELF.SetAlerts()
 ! [Priority 9500]
 DIRECTORY(txaq,'*.TXA',ff_:NORMAL) !Get all files and directories
 ! End of "WindowManager Method Executable Code Section"
 RETURN ReturnValue

Files are opened later on in the process; since embed code often uses file data, it’s no
surprise the majority of the embed points in use are later on in the Init method.

Browse embeds

Here’s the code to extract the browse embed usage data. As with window events,
browse events are really places to insert code into class methods.

select count(*),param2 from Embed
 where embed = '%BrowserMethodCodeSection'
 group by param2 order by count desc, param2;

B r o w s e e m b e d s

111

As you probably know, when Clarion displays data in a browse, it’s really showing
you the data it has in a queue, the structure of which corresponds to the fields
you’ve defined in the browse. The SetQueueRecord method is called whenever the
code retrieves a row of data and populates the queue record, so inserting your own
code here is a good way to set up calculated fields.

A handful of method calls make up the majority of browse embeds.
TakeNewSelection is called whenever the user selects a new record;
ValidateRecord is called for each record which is to be loaded into the queue – if

480 SetQueueRecord

123 TakeNewSelection

92 ValidateRecord

75 ApplyFilter

50 TakeKey

35 PrimeRecord

20 ResetFromView

13 Init

13 UpdateWindow

8 Ask

5 ApplyRange

5 ResetFromAsk

5 ResetQueue

4 TakeEvent

4 UpdateBuffer

3 SetAlerts

2 Open

2 Reset

2 ResetSort

2 ScrollOne

2 SetFilter

1 SetSort

A S u r v e y O f E m b e d U s a g e

112

you have a filter condition that can’t easily be set in the templates you can add it
here, and return one of Record:OK, Record:Filtered, or Record:OutOfRange.
ApplyFilter is typically used to update the browse filter based on various other
conditions such as the value of local variables. TakeKey is used to process alerted
keystrokes, including mouse clicks.

Process/Report embeds

There are several ABC classes involved in processes and reports. ProcessClass is
derived from ViewManager, as is BrowseClass. And that makes sense since
processes, browses and reports all deal in sequential processing of records. The
ReportManager class is derived from WindowManager and adds the code needed to
run a process and generate a report. Consequently, reports use many of the same
embed points as windows and browses.

Embeds by procedure type

I have one last list of embeds, organized by procedure type. Here’s the SQL:

select ProcFromABC, count(*) as count, embed
 from EmbedProc p left join Embed e
 on (p.embedprocid=e.embedprocid)
 group by ProcFromABC, embed
 order by ProcFromABC, count desc, embed;

This list includes embeds generated by third party and custom products, so all of
these won’t necessarily be available in your application. But if you stick to the
embeds with the highest occurrences in each procedure type you’re most likely
looking at ABC embeds.

Procedure
Type

Count Embed

Browse 89 %ControlEventHandling

Browse 49 %WindowManagerMethodCodeSection

Browse 40 %ProcedureRoutines

E m b e d s b y p r o c e d u r e t y p e

113

Browse 14 %TagMethodCode

Browse 10 %BrowserMethodCodeSection

Browse 10 %ControlHandling

Browse 7 %UltraTreeMethodCodeSection

Browse 5 %DataSection

Browse 3 %WindowEventHandling

Browse 1 %EditInPlaceManagerMethodCodeSection

Browse 1 %WindowManagerMethodDataSection

Form 43 %WindowManagerMethodCodeSection

Form 37 %ControlEventHandling

Form 7 %ProcedureRoutines

Form 6 %EditInPlaceManagerMethodCodeSection

Form 4 %BrowserMethodCodeSection

Form 2 %DataSection

Form 1 %BrowserEIPManagerMethodCodeSection

Form 1 %GlobalMap

Form 1 %LocalDataAfterClasses

Form 1 %LocalProcedures

Frame 187 %WindowManagerMethodCodeSection

Frame 134 %ControlEventHandling

Frame 84 %WindowEventHandling

Frame 28 %DataSection

Frame 27 %ProcedureRoutines

Frame 7 %LocalDataAfterClasses

Frame 6 %ToolbarDropItemAction

Frame 4 %GlobalMap

Frame 3 %ControlPostEventCaseHandling

Frame 3 %ControlPostEventHandling

Frame 3 %GlobalData

Frame 3 %ProcedureSetup

A S u r v e y O f E m b e d U s a g e

114

Frame 3 %ProgramSetup

Frame 3 %ToolbarAction

Frame 3 %WindowManagerMethodDataSection

Frame 2 %FileDropMethodCodeSection

Frame 2 %ProgramEnd

Frame 1 %AfterFileClose

Frame 1 %AfterFileDeclarations

Frame 1 %AfterFileOpen

Frame 1 %AfterGlobalIncludes

Frame 1 %AfterWindowOpening

Frame 1 %AnyFontABCDisable

Frame 1 %AnyFontABCEnable

Frame 1 %BeforeGlobalIncludes

Frame 1 %BeforeWindowClosing

Frame 1 %BeforeWindowOpening

Frame 1 %BeginningExports

Frame 1 %BrowserMethodCodeSection

Frame 1 %ControlPreEventHandling

Frame 1 %DLLExportList

Frame 1 %DataSetupSection

Frame 1 %FM2Init

Frame 1 %ListboxStyleAfterDefine

Frame 1 %LocalProcedures

Frame 1 %ToolbarInitBeforeCode

Frame 1 %ToolbarMethodCodeSection

Frame 1 %ValidateSelection

Menu 4 %ProcedureRoutines

Menu 3 %WindowEventHandling

Menu 1 %WindowManagerMethodCodeSection

Process 702 %WindowManagerMethodCodeSection

E m b e d s b y p r o c e d u r e t y p e

115

Process 500 %ProcessManagerMethodCodeSection

Process 132 %ProcedureRoutines

Process 86 %ProcessActivity

Process 37 %AfterFileOpen

Process 36 %DataSection

Process 34 %BeforeFileClose

Process 32

Process 29 %WindowEventHandling

Process 25 %ControlEventHandling

Process 12 %ProcedureSetup

Process 11 %LocalDataAfterClasses

Process 10 %ControlPostEventHandling

Process 9 %ProgramSetup

Process 6 %BeforeFileOpen

Process 5 %AfterFileClose

Process 5 %ControlPreEventHandling

Process 4 %AfterGlobalIncludes

Process 4 %DataSectionBeforeWindow

Process 3 %DataSectionAfterWindow

Process 3 %EndOfProcedure

Process 3 %GlobalData

Process 3 %GlobalMap

Process 3 %ProcedureInitialize

Process 3 %ProcessManagerMethodDataSection

Process 2 %AfterFileDeclarations

Process 2 %AfterProgramCode

Process 2 %BeforeWindowOpening

Process 2 %ProgramEnd

Process 1 %AfterTurnQuickScanOn

Process 1 %BeforeWindowMakeover

A S u r v e y O f E m b e d U s a g e

116

Process 1 %LocalProcedures

Process 1 %NetTalkRefreshCode

Process 1 %WindowEventOpenWindowBefore

Report 730 %WindowManagerMethodCodeSection

Report 584 %ProcessManagerMethodCodeSection

Report 126 %BeforePrint

Report 113 %ProcedureRoutines

Report 68 %AfterFileOpen

Report 56 %AfterPrint

Report 45 %WindowEventHandling

Report 42 %ControlEventHandling

Report 40 %PreviewerManagerMethodCodeSection

Report 32 %BeforeFileOpen

Report 31 %BreakManagerManagerMethodCodeSectionLeve

lAction

Report 26 %AfterInitialGet

Report 21 %DataSection

Report 20

Report 18 %AfterOpeningReport

Report 16 %LSiBeforeEndpage

Report 12 %ProcedureSetup

Report 12 %ProcessManagerMethodDataSection

Report 9 %BeforeInitialGet

Report 9 %BeforePrintPreview

Report 7 %LSiAfterOpeningFiles

Report 6 %LSiAfterOpeningReport

Report 6 %ProgramSetup

Report 5 %LSiEndOfReport

Report 4 %DataSectionBeforeReport

Report 4 %GlobalMap

E m b e d s b y p r o c e d u r e t y p e

117

Report 3 %AfterOpeningWindow

Report 3 %ControlPostEventHandling

Report 3 %GetNextRecordNextSucceeds

Report 3 %GlobalData

Report 3 %LocalDataAfterClasses

Report 3 %ProgressCancel

Report 2 %AfterFileClose

Report 2 %BeforeKeySet

Report 2 %ChildViewManagerMethodCodeSection

Report 2 %ControlPreEventHandling

Report 2 %HandCodedViewStatements

Report 2 %LSiAfterPrintingDetail

Report 2 %LSiBeforePrintingDetail

Report 2 %NewMethodCodeSection

Report 2 %ReportTargetMethodCodeSection

Report 2 %TargetSelectorManagerMethodCodeSection

Report 1 %AfterFileDeclarations

Report 1 %AfterGlobalIncludes

Report 1 %AfterTurnQuickScanOff

Report 1 %BeforeClosingReport

Report 1 %BeforeLevel1HdrPrt

Report 1 %BeforeOpeningWindow

Report 1 %FileDropComboMethodCodeSection

Report 1 %LSiBeforeOpeningFiles

Report 1 %LSiReportCanceled

Report 1 %NewMethodDataSection

Report 1 %PostPrintFromQueue

Report 1 %ProcedureInitialize

Report 1 %ProgramEnd

Report 1 %ReportAfterLookups

A S u r v e y O f E m b e d U s a g e

118

Report 1 %mhViewValidate

Source 1275 %ProcessedCode

Source 829 %DataSection

Source 342

Source 76 %ProcedureRoutines

Source 26 %ProgramSetup

Source 23 %AfterFileDeclarations

Source 20 %GlobalMap

Source 19 %GlobalData

Source 12 %FM2Init

Source 12 %LocalProcedures

Source 9 %AfterGlobalIncludes

Source 9 %BeforeGlobalIncludes

Source 7 %AfterProgramCode

Source 7 %ProcRoutines

Source 7 %WindowManagerMethodCodeSection

Source 6 %FileManagerCodeSection

Source 5 %ProgramEnd

Source 5 %RelationManagerCodeSection

Source 3 %BeforeFileOpen

Source 3 %EndOfReportGeneration

Source 3 %RecordFilter

Source 3 %RelationManagerDataSection

Source 2 %AdditionalDebugHooks

Source 2 %AfterEntryPointCodeStatement

Source 2 %AfterFileClose

Source 2 %AfterOpeningReport

Source 2 %BeforeFileClose

Source 2 %ProcessActivity

Source 2 %ProgramProcedures

E m b e d s b y p r o c e d u r e t y p e

119

Source 2 %ProgramRoutines

Source 2 %mhViewInit

Source 1 %AfterClosingExports

Source 1 %AfterDctDestruction

Source 1 %AfterDctInitialization

Source 1 %AfterFileOpen

Source 1 %AfterLevel1FtrPrt

Source 1 %AfterPrint

Source 1 %BeforeFileDeclarations

Source 1 %BeforeInitialGet

Source 1 %BeforeLevel1HdrPrt

Source 1 %BeforeWindowOpening

Source 1 %EndOfProcedure

Source 1 %ErrorManagerCodeSection

Source 1 %ErrorManagerDataSection

Source 1 %FieldLevelValidation

Source 1 %FileManagerDataSection

Source 1 %LocalDataAfterClasses

Source 1 %ProcedureSetup

Splash 17 %WindowManagerMethodCodeSection

Splash 4 %ControlEventHandling

Splash 2 %EventCaseBeforeGenerated

Splash 1 %AfterFileOpen

Splash 1 %AfterGlobalIncludes

Splash 1 %BeforeWindowOpening

Splash 1 %GlobalMap

Splash 1 %ProcedureRoutines

Splash 1 %WindowManagerMethodDataSection

Splash 1

Window 7061 %ControlEventHandling

A S u r v e y O f E m b e d U s a g e

120

Window 4557 %WindowManagerMethodCodeSection

Window 1241 %BrowserMethodCodeSection

Window 1160 %ProcedureRoutines

Window 569 %WindowEventHandling

Window 414 %ControlPostEventHandling

Window 273 %LocalDataAfterClasses

Window 262 %DataSection

Window 169 %ControlHandling

Window 144 %TreeSectionMethodCodeSection

Window 128 %UltraTreeMethodCodeSection

Window 127 %ControlPreEventHandling

Window 114 %NewMethodCodeSection

Window 106 %FormatBrowse

Window 95 %WindowManagerMethodDataSection

Window 85 %AfterWindowOpening

Window 77

Window 68 %LocalProcedures

Window 61 %FileDropMethodCodeSection

Window 61 %UTVMMethodCodeSection

Window 57 %EditInPlaceManagerMethodCodeSection

Window 54 %TagMethodCode

Window 52 %AfterFileOpen

Window 42 %GlobalData

Window 40 %BrowseBoxEmpty

Window 35 %BeforeWindowOpening

Window 35 %BrowseBoxNotEmpty

Window 35 %ProcedureSetup

Window 34 %BrowserEIPManagerMethodCodeSection

Window 30 %FileLookupMethodCodeSection

Window 30 %RecordFilter

E m b e d s b y p r o c e d u r e t y p e

121

Window 28 %ProcedureInitialize

Window 27 %GlobalMap

Window 27 %ProgramSetup

Window 26 %NetTalkMethodCodeSection

Window 23 %XPTaskPanelTaskClickedAfterCode

Window 21 %BrowseBoxDoubleClickHandler

Window 21 %BrowserMethodDataSection

Window 20 %AfterGlobalIncludes

Window 17 %XPTaskPanelTaskLogicAfterCode

Window 16 %DataSectionAfterWindow

Window 16 %FileManagerCodeSection

Window 15 %AfterPrimaryNext

Window 15 %BeforeGlobalIncludes

Window 15 %NewMethodDataSection

Window 13 %AfterFileDeclarations

Window 13 %DataSectionBeforeWindow

Window 13 %EndOfProcedure

Window 12 %BeforeFileClose

Window 12 %BeforeFileOpen

Window 12 %BeforePrimaryNext

Window 12 %OnInsertAfterPriming

Window 12 %PostWindowEventHandling

Window‘ 11 %ListboxStyleAfterDefine

Window 10 %NetTalkMethodRoutineSection

Window 9 %FM2Init

Window 9 %NextTabEmbed

Window 8 %AfterFileClose

Window 8 %BeforeSecondaryDisplay

Window 8 %FileDropComboMethodCodeSection

Window 8 %XPThemeWindowAfterInit

A S u r v e y O f E m b e d U s a g e

122

Window 7 %AfterCallingUpdateOnAdd

Window 7 %AlertKeyCaseKEYCODE

Window 6 %BeforeAccept

Window 6 %BeforeCallingUpdateOnRemove

Window 6 %BeforeFileAction

Window 6 %BeforeSecondaryDisplayCreate

Window 6 %BeginAddEntryRoutine

Window 6 %DasTagAfterTagOnOff

Window 6 %FinishWizard

Window 6 %ProcessedCode

Window 5 %AfterProgramCode

Window 5 %BackTabEmbed

Window 5 %BeforeCallingUpdateOnEdit

Window 5 %BrowseBeforeDelete

Window 5 %LocatorMethodCodeSection

Window 5 %ResizerMethodCodeSection

Window 5 %TreeSectionMethodDataSection

Window 4 %AfterEntryPointCodeStatement

Window 4 %BeforePreparingRecordOnAdd

Window 4 %BrowseAfterChange

Window 4 %BrowseAfterInsert

Window 4 %DasTagAfterTagAll

Window 4 %DasTagBeforeKillTaging

Window 4 %FormAllow

Window 4 %UltraTreeMethodDataSection

Window 3 %AfterCallingUpdateOnEdit

Window 3 %AfterCallingUpdateOnRemove

Window 3 %AfterSecondaryNext

Window 3 %AfterTagOp

Window 3 %BCSIfSelect

E m b e d s b y p r o c e d u r e t y p e

123

Window 3 %BeforePrimaryDisplayCreate

Window 3 %BeforeUntagAll

Window 3 %BrowseBeforeChange

Window 3 %BrowseBeforeInsert

Window 3 %ControlOtherEventHandling

Window 3 %CustomAlertEmbed

Window 3 %DasTagBeforeTagAll

Window 3 %FileLookupMethodDataSection

Window 3 %ListboxStyleBeforeDefine

Window 3 %PrimeFields

Window 3 %TEBrowseDropHandlingAfter

Window 3 %TEDropIDOk

Window 3 %XPTaskPanelTaskLogicBeforeCode

Window 2 %AcceptLoopAfterEventHandling

Window 2 %AcceptLoopBeforeEventHandling

Window 2 %AdditionalDebugHooks

Window 2 %AfterImportExcel

Window 2 %BCSLicenseEmbed

Window 2 %BeforeCallingUpdateOnAdd

Window 2 %BeforePrimaryDisplay

Window 2 %BeforeWindowClosing

Window 2 %BreakManagerManagerMethodCodeSectionLeve

lAction

Window 2 %BrowseAfterDelete

Window 2 %DasTagAfterInitTaging

Window 2 %DasTagBeforeTagOnOff

Window 2 %FieldLevelValidation

Window 2 %LookupRelated

Window 2 %NetTalkAfterInitSection

Window 2 %NetTalkMethodDataSection

A S u r v e y O f E m b e d U s a g e

124

Window 2 %OnInsertBeforePriming

Window 2 %ProcessManagerMethodCodeSection

Window 2 %TETreeDropHandlingAfter

Window 2 %VerResourceValueList

Window 2 %WindowInitializationCode

Window 1 %AcceptLoopBeforeFieldHandling

Window 1 %AfterFileNext

Window 1 %AfterInsertRecord

Window 1 %AfterOpeningReport

Window 1 %AfterTotalLoop

Window 1 %AfterTurnQuickScanOff

Window 1 %AfterWindowClosing

Window 1 %AuditData

Window 1 %BeforeAddingStyles

Window 1 %BeforeFlipAll

Window 1 %BeforeFlipOne

Window 1 %BeforeInlineFileAction

Window 1 %BeforePrint

Window 1 %BeforeSecondaryNext

Window 1 %BeforeTagAll

Window 1 %BeforeTagOne

Window 1 %BeforeUntagOne

Window 1 %BrowseBoxAfterUpdate

Window 1 %BrowsePrepNormal

Window 1 %BrowsePrepSelectRecord

Window 1 %DasTagAfterUnTagAll

Window 1 %DasTagBeforeUnTagAll

Window 1 %EIPClickAccepted

Window 1 %EIPEventSelected

Window 1 %EndOfFormatBrowse

C o n c l u s i o n s a n d r e c o m m e n d a t i o n s

125

Conclusions and recommendations

Clarion ABC applications present a bewildering array of embed points, but as this
analysis shows, the vast majority of embeds are in just a few areas, including
window initialization, event handling, browse display, and source code procedure
code and data.

There are still a lot of developers using legacy embed names, which suggests a lack
of familiarity with ABC. While legacy embeds have the lure of familiarity they mask
the real workings of ABC, and that can make it more difficult to use ABC to its
fullest. If you’re using ABC but you’re not sure what’s really happening behind the
scenes, it’s time to start reading. Resources include the Clarion ABC help, and
ClarionMag’s ABC Internals (www.clarionmag.com/cmag/
topics.html?subcategoryid=71) and Using ABC (www.clarionmag.com/cmag/
topics.html?subcategoryid=45) topics. You may also want to take a look at a couple

Window 1 %FEPreCodeSection

Window 1 %FileDropMethodDataSection

Window 1 %HandyInterNetFtpBeforeInit

Window 1 %HandyInterNetFtpULAborted

Window 1 %HyperActivePostCodeSection

Window 1 %HyperActivePreCodeSection

Window 1 %INIManagerCodeSection

Window 1 %JSTokenTextSelected

Window 1 %MCRTAfterSetQueueRecord

Window 1 %PDFXCDriverDocSaved

Window 1 %PXCDV3PBeforeRunEmbed

Window 1 %ProgramEnd

Window 1 %RefreshWindowBeforeLookup

Window 1 %TaskbarIconEmbed

Window 1 %TaskbarIconMessageProcessing

Window 1 %WinEventTaskBarPopupItems

Window 1 %WindowOtherEventHandling

A S u r v e y O f E m b e d U s a g e

126

of books: Bruce Johnson’s Programming in Clarion ABC (clarionshop.com/
pdetail.cfm?id=440) is available from CapeSoft, and Russ Eggen’s Programming
Objects in Clarion is available in the ClarionMag store (www.clarionmag.com/cmag/
store.html) in print and PDF versions.

There is also clearly a lot of code in source procedures. While this is better than
having that same code sprinkled throughout embeds, a lot of it can probably be
converted to classes (see CLASSy ASCII File Importing (www.clarionmag.com/
cmag/v4/v4n12classyascii.html) g for an example), particularly where several
source procedures work on common data.

For further information on using embeds see the list of Related Articles on this
page, or go to the Embeds topical index page (www.clarionmag.com/cmag/
topics.html?subcategoryid=52).

My thanks again to all who contributed TXAs.

127

Templates

129

ANOTHER SINGLE BROWSE FOR MULTIPLE
LOOKUPS

by Nardus Swanevelder

I recently started working on a new project where I had to code a browse and an
update screen for 22 tables that only of only two fields each. The two fields in the
table are an autonumber field, declared as a LONG, and a description field, declared
as a STRING. The coding of 22 similar browse and update screens seemed like a lot
of duplication, and that is when I recalled the article A Single Browse For Multiple
Lookups (www.clarionmag.com/cmag/v4/v4n07lookups.html), was written by
Randy Rogers in 2002.

In his article Randy wrote: “I am sure most Clarion programmers have been faced
with the same dilemma. After normalizing your database you find you have many
tables that are basically the same: a code and a description.”

His plan to fix this problem was simple, and I quote: “compare two browses to
discover the differences, then create a common browse procedure that would
receive the differences as parameters and use edit-in-place to update the fields.
Once the common browse was completed, I intended to create a template that
would generate the code to call the common browse for each of the lookup tables.”

A n o t h e r S i n g l e B r o w s e F o r M u l t i p l e L o o k u p s

130

The only issue I had with this approach was the way the template made the decision
to generate the code to call the common browse. His argument that “I knew all the
non-lookup tables in the dictionary had more than two fields, so I created the
template to generate code for all files with only two fields” is valid, but my
experience showed me that sometimes I didn’t want to include all the two field
tables in the common lookup template.

One solution Randy offered was to use the User Option for the tables that will call
the common browse, but he felt that would be too much work. I agree that it is a lot
of work adding the user option to all the tables but the biggest problem I have with
this approach is that you need to go into the data dictionary and look at individual
tables to see which tables will call the common browse.

The approach that I took does mean that you have to do some typing up front, but
after that the process to add or remove lookup tables from and to your application is
quite easy. I will cover this in more detail later on.

Due to the fact that Randy had written his article nearly four years ago I also
decided to re look at the code for the common browse.

Before I explain the browse code, I need to highlight the fact that my solution only
works for a multi-DLL application. That is you need at least a data DLL and the
main EXE. The source procedure will be added to the data DLL and the generated
procedures will be called from the main EXE.

The browse code

Okay, back to the code, I started by comparing two of the browses I have generated.
What I found was that each browse required a caption, a view, a relation manager,
two keys, a pointer to the autonumber field, a pointer to the description field and
the procedure name. Armed with this list of differences I took one of the generated
browses and used it as the starting point to code a source procedure. When creating
the procedure prototype, I added a prefix of sz to the labels that had been created
by the generator; this was to minimize the code changes I would need to make.
Here’s what the final prototype looks like:

GenerateLookupBrowse PROCEDURE (*cstring szCaption, |
 VIEW BRW1::View:Browse, RelationManager szRM, KEY szKeyN, |
 KEY szKeyA,*? szAutoNumber, *? szDescription, *cstring szProcName)

T h e b r o w s e c o d e

131

Every browse has a Queue that contains LIKE variables for each of the table fields.
Since all of the lookups will have the same format, I modified the generated Queue
to reflect this known data layout.

Queue – before

Queue:Browse:1 QUEUE

LSTAPHOTYP:SysIdStaffPhotoType

LIKE(LSTAPHOTYP:SysIdStaffPhotoType)
LSTAPHOTYP:DescriptionStaffPhotoType
LIKE(LSTAPHOTYP:DescriptionStaffPhotoType)
LSTAPHOTYP:CounterPrefix LIKE(LSTAPHOTYP:CounterPrefix)
Mark BYTE
ViewPosition STRING(1024)
 END

Queue – after

Queue:Browse:1 QUEUE
AutoNumber LONG
Description CString(512)
Mark BYTE
ViewPosition STRING(1024)
 END

Only two of the methods need to be changed, and those lines are in boldface.

ThisWindow.Init

GlobalErrors.SetProcedureName(szProcName)

SELF.Request = GlobalRequest

ReturnValue = PARENT.Init()

IF ReturnValue THEN RETURN ReturnValue.

SELF.FirstField = ?Browse:1

SELF.VCRRequest &= VCRRequest

SELF.Errors &= GlobalErrors

SELF.AddItem(Toolbar)

CLEAR(GlobalRequest)

CLEAR(GlobalResponse)

IF SELF.Request = SelectRecord

 SELF.AddItem(?Close,RequestCancelled)

ELSE
 SELF.AddItem(?Close,RequestCompleted)
END
szRM.Open
SELF.FilesOpened = True
BRW1.Init(?Browse:1,Queue:Browse:1.ViewPosition,|

 BRW1::View:Browse,Queue:Browse:1,szRM,SELF)

A n o t h e r S i n g l e B r o w s e F o r M u l t i p l e L o o k u p s

132

SELF.Open(QuickWindow)

QuickWindow{PROP:TEXT} = szCaption

Do DefineListboxStyle

BRW1.Q &= Queue:Browse:1
BRW1::Sort1:StepClass.Init(+ScrollSort:AllowAlpha,ScrollBy:Runtime)

BRW1.AddSortOrder(BRW1::Sort1:StepClass,szKeyA)

BRW1.AddLocator(BRW1::Sort1:Locator)

BRW1::Sort1:Locator.Init(,szDescription,1,BRW1)

BRW1::Sort0:StepClass.Init(+ScrollSort:AllowAlpha)

BRW1.AddSortOrder(BRW1::Sort0:StepClass,szKeyN)
BRW1.AddLocator(BRW1::Sort0:Locator)
BRW1::Sort0:Locator.Init(,szAutoNumber,1,BRW1)
BRW1.AddField(szAutoNumber,BRW1.Q.AutoNumber)

BRW1.AddField(szDescription,BRW1.Q.Description)

Resizer.Init(AppStrategy:Surface,Resize:SetMinSize)

SELF.AddItem(Resizer)

INIMgr.Fetch(szProcName,QuickWindow)

Resizer.Resize

QuickWindow{PROP:buffer} = 1

BRW1.AddToolbarTarget(Toolbar)

BRW1.ToolbarItem.HelpButton = ?Help

SELF.SetAlerts()

RETURN ReturnValue

ThisWindow.Kill

IF SELF.FilesOpened

 szRM.Close
END
IF SELF.Opened
 INIMgr.Update(szProcName,QuickWindow)

END

The extension template

Here’s the code for the extension template that converts a regular browse to a
reusable browse:

#!---
#TEMPLATE(dcLookups, 'DinamiComp - Common Lookup
Generator'),FAMILY('ABC')

#!---

#!

T h e e x t e n s i o n t e m p l a t e

133

#!
#SYSTEM

#DECLARE (%UModule)

#!

#!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
#! PROCEDURE EXTENSION
#!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
#!
#EXTENSION(dcGenerateLookups,'DinamiComp''s Generate Lookup
Procedures-Procedure')

#!

#SHEET

#TAB('General')

 #Insert(%SETCC)

 #BOXED ('Debugging'),Section,AT(,95,,20)

 #PROMPT ('Disable All DinamiComp

Templates',Check),%DisableAll,AT(10)

 #ENDBOXED

#ENDTAB
#TAB('Settings')
 #Insert(%SETAPP)
 #DISPLAY ('')

 #BOXED ('Options'),AT(,65,,40)

 #DISPLAY ('')
 #DISPLAY ('Source Lookup Procedure Name')
 #PROMPT ('',@s150),%SourceLookupProcName,AT(,,180,)
 #ENDBOXED
#ENDTAB
#TAB('Files')
 #DISPLAY ('')
 #BUTTON ('Lookup Files...'),MULTI(%LookupFileMultiCount,
 %LookupFileMulti & ' : ' & %ProcedureNameMulti
 & ' : ' & %ScreenCaptionMulti),INLINE
 #DISPLAY ('Screen Caption')
 #PROMPT
('',@s255),%ScreenCaptionMulti,REQ,DEFAULT(''),At(,,180,)
 #DISPLAY ('Select Lookup File.')
 #PROMPT ('',FILE),%LookupFileMulti,REQ,
 WHENACCEPTED(%StripExclamation(%LookupFileMulti))

 #DISPLAY ('Select lookup numeric key')

 #PROMPT ('',KEY),%LookupNumericKeyMulti,REQ,AT(,,150,)
 #DISPLAY ('Select lookup alphabetic key')
 #PROMPT ('',KEY),%LookupAlphabeticKeyMulti,REQ,AT(,,150,)
 #DISPLAY ('Select Lookup field 1 (AutoNumber)')
 #PROMPT ('',FIELD),%LookupFieldIDMulti1,REQ,
 WHENACCEPTED(%StripExclamation(%LookupFieldIDMulti1))
 #DISPLAY ('Select Lookup field 2 (Description)')

A n o t h e r S i n g l e B r o w s e F o r M u l t i p l e L o o k u p s

134

 #PROMPT ('',FIELD),%LookupFieldIDMulti2,REQ,
 WHENACCEPTED(%StripExclamation(%LookupFieldIDMulti2))
 #DISPLAY ('Procedure Name')
 #PROMPT
('',@s255),%ProcedureNameMulti,Default('Browse'),REQ,At(,,180,)
 #ENDBUTTON
#ENDTAB
#ENDSHEET
#!---
#! Add the procedures to the map
#!---

#AT(%GlobalMap)

#IF(%DisableAll=%False)
#SET(%UModule,UPPER(%Module))
MODULE('%UModule')

 #INDENT(-5)

 #FOR(%LookupFileMultiCount)

 #SET(%ValueConstruct,%ProcedureNameMulti)

%[32]ValueConstruct PROCEDURE
 #ENDFOR
 #INDENT(5)

END

#ENDIF
#ENDAT
#!---
#! Add the procedures to the export list
#!---

#AT(%DLLExportList)

#IF(%DisableAll=%False)

 #FOR(%LookupFileMultiCount)
 #SET(%ValueConstruct,%ProcedureNameMulti & '@F')
 %[55]ValueConstruct @?
 #ENDFOR
#ENDIF
#ENDAT
#!---
#! Generate the Browse:LookupFile procedures
#!---
#AT(%ProcessedCode),PRIORITY(7500)

#IF(%DisableAll=%False)

#FOR(%LookupFileMultiCount)

#!---
%ProcedureNameMulti PROCEDURE
!--
szCaption CString(256)
szProcName CString(256)
View:Browse View(%LookupFileMulti)
 Project(%LookupFieldIDMulti1)

T h e e x t e n s i o n t e m p l a t e

135

 Project(%LookupFieldIDMulti2)
 END
 CODE
 szCaption = '%ScreenCaptionMulti'
 szProcName = '%ProcedureNameMulti'
 %SourceLookupProcName(szCaption, View:Browse,
Relate:%LookupFileMulti, |
 %LookupNumericKeyMulti, %LookupAlphabeticKeyMulti, |
 %LookupFieldIDMulti1, %LookupFieldIDMulti2, szProcName)
 RETURN
#ENDFOR
#ENDIF
#ENDAT
#!--
#GROUP(%SETCC)

#!---

#BOXED('DinamiComp Template Set'),SECTION,AT(,10,,65)
 #DISPLAY ('')
 #DISPLAY ('DinamiComp CC Lookup Template Set for Clarion 6.3')
 #DISPLAY ('Copyright 2006 All Rights Reserved WorldWide.')
 #DISPLAY ('')
 #DISPLAY ('Version 1.0')
#ENDBOXED
#!---
#GROUP(%SETAPP)
#!---
#BOXED('DinamiComp Lookup Templates'),SECTION,AT(,10,,45)
 #DISPLAY ('')
 #DISPLAY ('Automatic Lookup-File Procedure Creation')
 #DISPLAY ('')
#ENDBOXED
#!---
#GROUP (%StripExclamation,*%zField)
#!---
 #IF(SUB(%zField,1,1)='!')
 #SET(%zField,SUB(%zField,2,LEN(%zField)-1))
 #ENDIF

I registered my new template and attached it to the GenerateLookupBrowse
procedure.

A n o t h e r S i n g l e B r o w s e F o r M u l t i p l e L o o k u p s

136

When you double click on DinamiComp’s Generate Lookup Procedures Template
you are presented with the screen in Figure 2.

On the Files tab you populate the tables for which you want common browse
screens. The information that you need to for each record, as shown in Figure 3, is
as follows:

• Screen Caption – the screen caption of the browse screen for this file

• Lookup File – the file that you want to browse and update

• Numeric key – the key for the autonumber field

• Alphabetic key – the key for the description field

• Lookup Field 1 – the autonumber field

• Lookup Field 2 – the description field

Figure 1: Source Procedure

Figure 2: Template Prompts – Files Tab

T h e e x t e n s i o n t e m p l a t e

137

• Procedure Name – the name of the procedure that will be generated.
You will use this name to call this procedure from the main menu.

I know this is a lot of information but it gives you full control over what happens
with the common browse.

Figure 4 shows what a populated screen looks like:

The template generates a procedure for each entry in its list. Here is the code for one
such procedure:

BrowseLAddressTypes PROCEDURE
szCaption CString(256)
szProcName CString(256)

Figure 3: Template Prompts – Individual Items

Figure 4: Template Prompts – Populated Screen

A n o t h e r S i n g l e B r o w s e F o r M u l t i p l e L o o k u p s

138

View:Browse View(LAddressTypes)

 Project(LADDTYP:SysIdAddressType)

 Project(LADDTYP:DescriptionAddressType)

 END
 CODE
 szCaption = 'Address Types'
 szProcName = 'BrowseLAddressTypes'
 GenerateLookupBrowse(szCaption, View:Browse,
Relate:LAddressTypes, |
 LADDTYP:PK_AddressType, LADDTYP:SK_AddressType_Description, |
 LADDTYP:SysIdAddressType, LADDTYP:DescriptionAddressType,
szProcName)
 RETURN

Finally, I added menu options to my application frame in the EXE application to
call each of the generated browses, and then I compiled the application.

This is what the above browse looks like in my application (look and feel by
Capesoft MakeOver – capesoft.com/accessories/makesp.htm):

What do you need to do to add more lookup tables?

1) Open your dictionary and add the new table to your dictionary.

2) Open the Data application, go to the GenerateLookupBrowse
procedure, open DinamiComp’s Generate Lookup Procedures
Template and add the new Lookup table info. Remember to make a
note of the procedure name.

Figure 5: Sample Browse

F e a t u r e s t o b e a d d e d

139

3) Compile the Data DLL.

4) Open the Main application, open the frame procedure and add the
new Lookup table as a menu item with the procedure name as in
step 4.

5) Double click on the ToDo procedure and specify it as external.

6) Compile your main EXE, run the application and test the new
lookup browse

Features to be added

I could not get the features on the browse templates’ Extended Options tab
(including sort headers) to work. Perhaps someone would like to take that on.

Summary

With a little work up front, you can easily add new lookup tables to your
application. If you want to modify the look and feel of the lookup browses, you only
need to change the one browse procedure and it is done. Randy has put it so nicely
in his article: “The entire application is considerably smaller because of this
approach, and you have relieved yourselves of the repetitious and boring task of
fine tuning wizard-generated browses.”

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n07lookup.zip

A n o t h e r S i n g l e B r o w s e F o r M u l t i p l e L o o k u p s

140

141

AN ECONOMICAL RECORD STATUS
CONTROL

by Nardus Swanevelder

On a couple of my latest projects I kept on running out of screen space. What I
mean by this is that I just have too many prompts and fields to populate and you
can only add so many tabs. I started to look at my screen design to see where I could
save space.

I saw that I used the following structure, made up of six read-only fields, on all of
my update screens:

A n E c o n o m i c a l R e c o r d S t a t u s C o n t r o l

142

You can clearly see that the area in the red rectangle takes up a lot of space. I
decided to see if I could create one entry field to display all of this information on
one line.

I wanted the entry field to be populated based on certain rules. In pseudo code the
implementation of these rules looks like this:

If UserCreate <> '' and UserCreate <> ''
 Control = 'Created by John on 16/01/2005 ' |
 & '- Changed by Sean on 23/05/2006'
ElsIf UserCreate <> '' and UserCreate = ''
 Control = 'Created by John on 16/01/2005'
ElsIf UserCreate = '' and UserCreate = <>
 Control = 'Changed by Sean on 23/05/2006'
Else
 Control = ''
End
Display(Control)

The Clarion Code looks like this:

If PEO:UserCreate <> '' and PEO:UserChange <> ''
 LOC:RecordCreatedChanged = 'Created by: ' |
 & Clip(PEO:UserCreate) & ' on ' |

 & format(PEO:DateCreate,@d17) & ' ' |

 & format(PEO:TimeCreate,@t7) & ' - ' |

 & 'Changed by: ' & Clip(PEO:UserChange) |
 & ' on ' & format(PEO:DateChange,@d17) |
 & ' ' & format(PEO:TimeChange,@t7)
Elsif PEO:UserCreate <> '' and PEO:UserChange = ''
 LOC:RecordCreatedChanged = 'Created by: ' |

Figure 1: Normal method for displaying the User Create and User Change Status

T h e t e m p l a t e

143

 & Clip(PEO:UserCreate) & ' on ' |
 & format(PEO:DateCreate,@d17) |
 & ' ' & format(PEO:TimeCreate,@t7)
Elsif PEO:UserCreate = '' and PEO:UserChange <> ''
 LOC:RecordCreatedChanged = 'Created on ' |
 & format(PEO:DateCreate,@d17) & ' ' |
 & format(PEO:TimeCreate,@t7) & ' - ' |
 & 'Changed by: ' & Clip(PEO:UserChange) |
 & ' on ' & format(PEO:DateChange,@d17) |
 & ' ' & format(PEO:TimeChange,@t7)
Else
 LOC:RecordCreatedChanged = ''
End

This is a lot of code to type on every update form. Time for a template! But first, see
Figure 2 for an example of what the screen will look like after the new method is
implemented.

The template

The first question that needs to be answered is what kind of template to create? You
could use a code template but then you would have to create a local variable on
each update form, you would have to populate that control on the screen, and then
you would have to remember to add the code template. Those are too many things
to remember; a much better choice is a control template.

The Clarion help defines a control template as follows:

Figure 2: New Method for displaying the User Create and User Change Status

A n E c o n o m i c a l R e c o r d S t a t u s C o n t r o l

144

Control templates (#CONTROL) place a related set (one or more) of
controls on a procedure’s window and generate the executable source
code into the procedure’s embed points to provide the controls’
standard functionality.

The control part of the template is easy as I only want an entry field that will display
the information:

CONTROLS
ENTRY(@s200),AT(,,290,10),USE(LOC:RecordCreatedChanged)
 , SKIP, TRN, CENTER, READONLY
END

I want the entry to be read-only, transparent, skipped and it must center the text.
The control should also be at least 290 DLUs wide.

I need to know which table fields are the Create and the Change fields, and
therefore I populated my control with the following prompts:

#PROMPT ('User Create Field',FIELD),%UserCreateField,REQ
#PROMPT ('Date Create Field',FIELD),%DateCreateField,REQ

#PROMPT ('Time Create Field',FIELD),%TimeCreateField,REQ

#DISPLAY ('')

#PROMPT ('User Change Field',FIELD),%UserChangeField,REQ

#PROMPT ('Date Change Field',FIELD),%DateChangeField,REQ
#PROMPT ('Time Change Field',FIELD),%TimeChangeField,REQ

Figure 3 shows the template properties as displayed in the Window Formatter.

Figure 4 shows the appearance of the control in the Window Formatter.

Figure 3: Example of populated Control Template properties

T h e t e m p l a t e

145

Next I have to define a local variable that will hold the display string:

#AT(%DataSection),PRIORITY(4000)

LOC:RecordCreatedChanged String(200)

#ENDAT

I generate the display code into the WindowManager’s Init method, as follows:

#AT(%WindowManagerMethodCodeSection,'INIT'),PRIORITY(8001)

If Self.Request <> InsertRecord

 #If(%ChangeUserREQ)

 If %UserCreateField <> '' and %UserChangeField <> ''
 LOC:RecordCreatedChanged = 'Created by: ' |
 & Clip(%UserCreateField) & ' on ' |
 & format(%DateCreateField,@d17) & ' ' |
 & format(%TimeCreateField,@t7) & ' - ' |
 & 'Changed by: ' & Clip(%UserChangeField) |
 & ' on ' & format(%DateChangeField,@d17) |
 & ' ' & format(%TimeChangeField,@t7)
 Elsif %UserCreateField <> '' and %UserChangeField = ''
 LOC:RecordCreatedChanged = 'Created by: ' |
 & Clip(%UserCreateField) & ' on ' |
 & format(%DateCreateField,@d17) & ' ' |
 & format(%TimeCreateField,@t7)
 Elsif %UserCreateField = '' and %UserChangeField <> ''
 LOC:RecordCreatedChanged = 'Created on ' |
 & format(%DateCreateField,@d17) & ' ' |
 & format(%TimeCreateField,@t7) & ' - ' |
 & 'Changed by: ' & Clip(%UserChangeField) |
 & ' on ' & format(%DateChangeField,@d17) |
 & ' ' & format(%TimeChangeField,@t7)

Figure 4: Screen after the control template has been populated

A n E c o n o m i c a l R e c o r d S t a t u s C o n t r o l

146

 Else
 LOC:RecordCreatedChanged = ''
 End
 #ELSE
 If %UserCreateField <> ''
 LOC:RecordCreatedChanged = 'Created by: ' |
 & Clip(%UserCreateField) & ' on ' |
 & format(%DateCreateField,@d17) & ' ' |
 & format(%TimeCreateField,@t7)
 Else
 LOC:RecordCreatedChanged = ''
 End
 #ENDIF
End
#ENDAT

Note that I used the standard MS Windows short date and time formats, @d17 and
@t7. If you are not happy with this you will have to change the template to use the
format that you want or change the template to ask what format it should use for
the date and time.

As you can see in the above code, I only build the display string if Self.Request is
not equal to InsertRecord. There is no point in building this string on an Insert as
both the Create and Change information should be empty. I have also added an
option to the code template where you can specify that a specific control does not
have Change information. I found that in certain instances I allow a user to create a
record but not to change it and therefore I had no Change fields to populate in my
template.

Features to be added

There are several ways this template can be enhanced. You can change the entry
control to a PROMPT or a TEXT field so that it will be possible for the text to wrap. You
can also modify the template to allow for multiple instances on a single form.

Using the template

Adding the template to an update form is easy:

S u m m a r y

147

• Register the template, which you can find in the attached source
code

• Open your application and open the procedure where you want to
add the new code template

• Click on Populate, Control Template and choose the DC Create/
Change Status-Control template

• Position the cursor where you want the control and click with the
mouse

• Complete the control’s properties, as shown in Figure 3.

Summary

By combining six read-only fields into a single string, I saved a lot of space on my
update forms. And by creating a control template, I made it easy to populate this
string with the right data. Control templates are relatively easy to write, and best of
all, if you need to make changes to the code, you only need to change the template
to have your changes appear throughout your application.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n08screencontrol.zip

A n E c o n o m i c a l R e c o r d S t a t u s C o n t r o l

148

149

A TEMPLATE DEBUGGER

by Russell Eggen

I’ve asked for a template debugger for quite some time now and even had some
friendly discussions with Bob Zaunere about SoftVelocity producing one. Bob does
like the idea as he concedes he would like one as well. He was also quite clear that
Clarion has some higher priorities and I can’t really argue that point. But dang! I
sure wish I had a template debugger! I even had a few ideas about how to make one,
but never got past the concept stage.

The subject of template debuggers recently came up on the Internet Relay Chat
(IRC) #cw-talk channel (see radfusion.com/irc.htm for details).

One of the nice things about IRC rooms is they are open 24/7, and since we have
Clarion developers in just about all time zones there are usually a few present. It’s
great to have some live people to bounce some ideas off. IRC can be a life saver for
those who are on site dealing with an emergency, work solo or just plain want some
assistance.

Mark Goldberg is a regular on #cw-talk and we often toss stuff back and forth. If his
name sounds familiar, it should be. Mark is one of the contributors to the Debuger
class (www.clarionmag.com/cmag/v5/v5n01debuger.html) (originated by Skip
Williams) which is also freely available on my web site (radfusion.com/
downloads.htm).

A T e m p l a t e D e b u g g e r

150

I mentioned to Mark about my desire to get a template debugger. Mark is a 99.99%
hand coder, but he did see the logic of having a template debugger.

Then he dropped a bombshell on me. He said he figured out how to use
SysInternals’ DebugView (now owned by Microsoft and available at
www.microsoft.com/technet/sysinternals/Miscellaneous/DebugView.mspx), a free
system log viewer, with templates, in essence giving template coders a debugger!

It sounded exciting, but I figured it had to be complex. I’m glad I was wrong; after
Mark explained his technique, it took me about three minutes to make a template
debugger. All you need is Clarion.

The Ingredients

The magic is a very simple Clarion DLL. Here is the entire source:

 PROGRAM

 MAP

 ODS(*CSTRING),Name('ODS')

 MODULE('Winapi')

 OutputDebugString(*CSTRING),PASCAL,RAW,|

 NAME('OutputDebugStringA')

 END
 END

 CODE

ODS PROCEDURE(*CSTRING argMsg)
 CODE
 OutputDebugString(argMsg)

That is all there is to it. ODS stands for “Output Debug String”. The idea is that
you’ll call the ODS procedure from the templates (via a neat little #GROUP), and the
string you pass will appear instantly in the Windows system log, which DebugView
displays in a scrolling window.

Your project settings should be like this:

-- Output Debug String for Templates
#noedit

#system win32

#model clarion dll

#pragma define(maincode=>off)

A d d i n g O D S M e s s a g e s t o T e m p l a t e s

151

#pragma debug(vid=>full)
#pragma optimize(cpu=>386)
#compile "ods.clw"

#link "C:\Clarion6\BIN\ods.dll"

Save this as a .PR or .PRJ file (a text project file). Please note the last line. If that is
not your Clarion bin location you will need to change it. And you need an export
map in the same folder specified in the #link line above:

NAME 'ODS' GUI

 EXPORTS
 ODS @?
 ; ODS@FRsc @?

That is the entire DLL source you need. Load up the .PR project file and compile the
DLL; verify that the DLL is in your Clarion bin folder.

Adding ODS Messages to Templates

Next, you need to add a small #GROUP to your templates. I called mine ODS as well.
Here’s the source:

#GROUP(%ODS,%Debug)

#RUNDLL('ODS.DLL','ODS','DebugTrue symbol is now: ' & %Debug),WIN32

#GROUP statements are like template procedures, and the first line of the #GROUP is
like a procedure prototype. The first parameter is the name of the #GROUP. The
second parameter is a string value, passed by value. This lets me pass expressions as
well as variables.

#RUNDLL calls my DLL, which is listed in the first parameter. The second is the
public procedure in my DLL and the third is the parameter passed to my procedure.

I needed to give this a test, but where to start? I decided on a #PROMPT set up as a
check box. That should be easy. But why #PROMPT? Because it has this really neat
attribute, WHENACCEPTED(), which triggers whenever the developer changes a value
in the templates.

I decided to use my Debuger template as a test subject. Below is the code for my
checkbox that turns the Debuger on or off for a given application (line break
added):

#PROMPT('Activate Debuger class ?',CHECK),%DebugTrue,DEFAULT(%True),

A T e m p l a t e D e b u g g e r

152

 WHENACCEPTED(%ODS('DebugTrue set to ' & %DebugTrue)

This single line of code (wrapped for readability) displays a check box with text.
The value is stored in the symbol %DebugTrue. The WHENACCEPTED line is, in this
case, like the Accepted event “embed” for this “control”. When I check or uncheck
the box, the AppGen will call my %ODS #GROUP.

So when I fire up DebugView, I see this after ticking the checkbox twice:

Conclusion

This is just a very simple demonstration of how you can use this DLL and
DebugView to debug your templates. For example, you could examine the data
inside #FOR loops using #FIX(%MySymbol,%OriginalSymbol) and other such
constructs. Just add a line of code like this:

#INSERT(%ODS,'Symbol value is ' & MySymbol)

Or you can just output some text like this:

#INSERT(%ODS,'My debug message here')

Figure 1: Template debugging in action

C o n c l u s i o n

153

If you modify the shipping templates keep in mind that upgrades may cause you to
lose your changes.

A T e m p l a t e D e b u g g e r

154

155

A CLASS WRAPPER FOR THE SIMPLEOCR
API

by John Dunn

Recently I completed a document management system that required the indexing of
key information from the documents scanned into the system. In order to reduce
data entry time and increase the accuracy of the indexed data I decided to add
Optical Character Recognition (OCR) capabilities to the program.

Since there were no readily available OCR tools for Clarion, I decided to look for a
reasonably priced OCR library that would meet the needs of my program. After
some searching I found two libraries that looked promising. The first library that I
tested was the OCR Developer’s Toolkit from CardReader Inc. (www.edti.com) I
tested version 8.0 but found quite a few inaccuracies in the documentation, which
they readily admitted had not been fully updated from version 7.0. More
discouraging, however, were the numerous errors I received attempting to scan
various .tif images that had more than one bit per pixel resolution.

A C l a s s W r a p p e r f o r t h e S i m p l e O C R A P I

156

SimpleOCR

The second OCR library I tested was the SimpleOCR API from Simple Software
(www.simpleorc.com). They advertise their library as the only royalty free OCR
API. This was very appealing to me. My evaluation of this library was very positive
so I decided to purchase the unlimited license. The SimpleOCR API is offered as a
DLL or as an ActiveX control called SimpleOCX. I decided to use the DLL interface
since it is a more direct link to the functions provided in the library.

The SimpleOCR API provides a large number of functions that the documentation
categorizes into the following groups:

• Tiff File Manipulation

• Image Management

• OCR Functions

• Scanner Functions

• Set of Images Management

Since I am using ImageEx (www.solidsoftware.de) for scanning, image
manipulation and management, I mainly concentrated on implementing the OCR
functions in the SimpleOCR library. That being said, I still needed to implement a
few of the file and image management functions that are required by the OCR
process, such as the Load Image (LoadImg) and Load Multiple Images
(LoadMultipleImg) functions.

Class wrapper

My aim was to write a class wrapper to encapsulate the various OCR functions and
data. Before doing that, I created a small procedural program to test each of the
functions I needed one at a time. My first task was to use LibMaker to create a
Clarion compatible .lib file from the ocrdll.dll that is supplied as a part of the
SimpleOCR API package. I assembled all of the SimpleOCR functions that I needed
in my program and converted the prototypes to Clarion. Here is the OCRDLL.Lib
module I created:

 MODULE('OCRDLL.Lib')
AddImage PROCEDURE(LONG plImageSet,LONG plImage),SHORT,|
 RAW,PASCAL

C l a s s w r a p p e r

157

CreateMultipleImg PROCEDURE()LONG,RAW,PASCAL
DeskewImg PROCEDURE(LONG plImage),LONG,RAW,PASCAL
DIBToImg PROCEDURE(LONG plhDIB),LONG,RAW,PASCAL
EraseBlackBordersImg PROCEDURE(LONG plImage),LONG,RAW,PASCAL
ExtractImgArea PROCEDURE(LONG plImage,LONG plXPos,|
 LONG plYPos,LONG plWidth,|
 LONG plHeight),LONG,RAW,PASCAL
FreeImg PROCEDURE(LONG plImage),RAW,PASCAL
FreeMultipleImg PROCEDURE(LONG plImageSet),RAW,PASCAL
GetNbImages PROCEDURE(LONG plImageSet),LONG,RAW,PASCAL
GetImage PROCEDURE(LONG plImageSet,LONG plIdx),|
 LONG,RAW,PASCAL
GetImgRes PROCEDURE(LONG plImage,*LONG plHRes,
 *LONG plVRes),RAW,PASCAL
GetImgSize PROCEDURE(LONG plImage,*LONG plWidth,|
 *LONG plHeight),RAW,PASCAL
LoadImg PROCEDURE(LONG plFilenameAddress),LONG,|
 RAW,PASCAL
LoadMultipleImg PROCEDURE(LONG plFilenameAddress),LONG,|
 RAW,PASCAL
OCR PROCEDURE(LONG plImage,LONG plNoisy),|
 LONG,RAW,PASCAL
OCRSetProgressHandler PROCEDURE(LONG plProc),LONG,RAW,PASCAL
OCRSetOutputHandler PROCEDURE(LONG plProc),LONG,RAW,PASCAL
RotateImg PROCEDURE(LONG plImage,LONG plAngle),LONG,|
 RAW,PASCAL
SaveImg PROCEDURE(LONG plFilenameAddress, |
 LONG plImage),LONG,RAW,PASCAL
SaveMultipleImg PROCEDURE(LONG plFilenameAddress, |
 LONG plImage),LONG,RAW,PASCAL
SetLanguage PROCEDURE(LONG plLanguage,LONG plDictDir),|
 RAW,PASCAL
SetOutputMode PROCEDURE(LONG plMode),RAW,PASCAL
SetOutputWindow PROCEDURE(LONG plhWnd),RAW,PASCAL
 END ! module

In addition to the above OCRDLL.DLL interface module I had to prototype and
create output and progress handler callback procedures. The output handler allows
the program/class to manage output events and data that has been processed by the
OCR engine. There are a number of events that are generated by the OCR engine
but I only needed three of them:

• The eOT_Text event indicates that a character has been recognized
and its ASCII value is available to be processed. This is where I add
processed characters to the output string.

• The eOT_ENDL event indicates that an end of line has been reached.
When this event is received I add CR/LF characters to the output
string.

A C l a s s W r a p p e r f o r t h e S i m p l e O C R A P I

158

• The eOT_ENDZ event indicates that the end of a text area has been
reached. As with the end of line event, I also add CR/LF characters
to the output string when this event is received.

The progress handler allows the OCR engine to display the progress of the OCR job.
If a progress control exists on a screen that interfaces with the OCR class, the field
equate value of the progress control is passed to the class and used by the progress
handler.

Callbacks

The SimpleOCR output and progress handler functions are armed by passing the
address of the output and progress handler procedures to the library’s
OCRSetOutputHandler and OCRSetProgressHandler functions:

SELF.lOutputHandlerAddress = ADDRESS(OutputHandler)

SELF.lOutputHandler = |

 OCRSetOutputHandler(SELF.lOutputHandlerAddress)
SELF.Trace(eMethodName & 'lOutputHandlerAddress = ' |
 & SELF.lOutputHandlerAddress)
SELF.Trace(eMethodName & 'lOutputHandler = ' |
 & SELF.lOutputHandler)
IF SELF.lProgressFEq ~= 0
 SELF.lProgressHandlerAddress = ADDRESS(ProgressHandler)
 SELF.lProgressHandler = |
 OCRSetProgressHandler(SELF.lProgressHandlerAddress)
 SELF.Trace(eMethodName & 'lProgressHandlerAddress = ' |
 & SELF.lProgressHandlerAddress)
 SELF.Trace(eMethodName & 'lProgressHandler = ' |
 & SELF.lProgressHandler)
END ! if

The SimpleOCR API can be set to process the following languages out of the box:

• American English

• UK English

• French

• Dutch

• Custom

Four modifiable dictionary files are provided that have the extension of .wdc. Two
support programs allow you to list the contents of a dictionary file and to add words

C h a r a c t e r r e c o g n i t i o n

159

to the dictionary: WDC2List.Exe. and List2WDC.Exe. The accuracy of the OCR
engine can be enhanced by the use of the appropriate dictionary file. There is also
an option to use no dictionary at all if so desired. The SetLanguage function allows
you to tell the OCR engine which dictionary file to use. Before calling this function
the library needs to know the directory in which the dictionary file can be found.

Character recognition

The OCR library allows you to load single and multiple page .TIF (Tagged Image
File Format) files. The images to be processed can be cleaned up by several useful
functions that will enhance the accuracy of the conversion. The deskew function
will attempt to ’straighten out’ the graphical elements in an image so that they can
be better interpreted by the OCR engine. Another function will attempt to ’reduce
noise’ or the small specs and marks that are sometimes picked up in the scanning
process. When converting text on forms, the ’erase black borders’ function can be
helpful in increasing OCR accuracy. There is no hard and fast rule about which of
these methods will help improve the chances of getting a clean conversion to text.
Generally, the cleaner and crisper the scanned image is the better the OCR results
will be. In the attached example program I provide a way to configure these image
manipulation options at run time.

The example program demonstrates the use of my OCR wrapper class. You will
need to download the API demo from SimpleOCR and install it. This will provide
the ocrdll.dll, dlltwain.dll and dictionary (.wdc) files you will need to run the
example program. The demo will also provide several .tif image files that can be
used to test the OCR functionality.

The implementation of the class in an application or program is very simple. The
class definition (OCRClass.Def) and include file (OCRClass.Inc) must be included
in the global section of the program. In an app I generally place these include
statements in the ’After Global Includes’ embed.

INCLUDE('OCRClass.Def'),ONCE

INCLUDE('OCRClass.Inc'),ONCE

Two project defines need to be added to the project global options defines tab:

OCRDllMode=>0
OCRLinkMode=>1

A C l a s s W r a p p e r f o r t h e S i m p l e O C R A P I

160

If these are not added to the project your program will generate an immediate GPF.
The settings above indicate that the class will be linked into the program being
compiled.

The OCR object can be instantiated in many ways but I generally declare it in the
data section like this:

oOCR cOCR

Before calling the main OCR method to process an image, the language, dictionary
and various OCR properties should be set. If you are displaying the processed text
and/or a progress bar the field equates of these controls need to be set also. In the
example program this is done just after the CODE statement, as follows:

bLanguage = GETINI(eINISection,'Language',|
 eEnglish,eINIFileName)
sDictDir = GETINI(eINISection,'DictDir',|
 oOCR.ProgramDir(True),eINIFileName)
sInputFile = GETINI(eINISection,'InputFile',|
 '',eINIFileName)
oOCR.bOutputToClipboard = GETINI(eINISection,'OutputToClipboard',|
 '0',eINIFileName)
oOCR.bLoadSingleImage = GETINI(eINISection,'LoadSingleImage',|
 '1',eINIFileName)
oOCR.bReduceNoise = GETINI(eINISection,'ReduceNoise',|
 '1',eINIFileName)
oOCR.bDeskewImage = GETINI(eINISection,'DeskewImage',|
 '1',eINIFileName)
oOCR.bEraseBlackBorders = GETINI(eINISection,'EraseBlackBorders',|
 '0',eINIFileName)
oOCR.bTraceOn = GETINI(eINISection,'TraceOn',|
 '0',eINIFileName)
oOCR.bLanguage = bLanguage
oOCR.sDictDir = sDictDir
oOCR.lProgressFEq = ?bProgress
oOCR.lOutputTextFEq = ?sOutputText

The main OCR processing is done in the OCR method. You pass the image file path/
name and the page number to this method. The page number is needed for
processing multipage .tif images. You will notice that I have made some provisions
for processing Device Independent Bitmaps (DIB) that may have been loaded into
memory. This functionality is not complete at this point in time, so the second
parameter to pass the handle of the DIB is simply set to zero.

You will also notice that there is an option to turn on debug tracing. When this is
option is checked, debugging information will be output to the system debug log.
You can use DebugView from SysInternals (now available from Microsoft at

C h a r a c t e r r e c o g n i t i o n

161

www.microsoft.com/technet/sysinternals/Miscellaneous/DebugView.mspx) to view
the trace/debug messages as they are being processed.

In my working copy of the class, I implemented a few methods from a couple of
other classes. I have removed those dependencies and included some of those
methods directly in this class. The constructor and destructor methods were used to
instantiate and dispose of these implemented classes but since they are not a part of
this version of the OCR class they do not really do anything. I decided to leave them
for tracing purposes as there are trace calls which will make it clear in the debug log
when the object is instantiated and destroyed.

Figure 1 shows a screen shot of the example program that includes all of the major
elements used in the OCR process, and which shows the results of the OCR
conversion after it has processed the English.Tif image file:

The Load Single Image option, when checked, will only load page one of a
multipage .tif file. When this is unchecked all pages of a multipage .tif file will be
loaded and processed. In my document management program I allow the user to
specify the page they want to convert to text. The Image info button displays the
resolution and size of the selected image.

Figure 1: OCR test program

A C l a s s W r a p p e r f o r t h e S i m p l e O C R A P I

162

My experience of the SimpleOCR engine is that it is very solid and reliable. Clearly
scanned images of 200 to 300 DPI convert quite well without the need to deskew or
reduce noise. The demo package includes a skewed image that converts nicely with
the deskew option in effect.

The SimpleOCR API is well documented and quite easy to implement in Clarion.
My class wrapper makes it even easier to pop OCR into an application. The
unlimited license is not inexpensive ($2850 as of this writing), but it is royalty free.
You can purchase an organizational license for $1150, which lets you distribute the
API to all users within your company, or for full control you can get a source code
license for $5000.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n07ocrsrc.zip

163

IMPROVING ON THE NON-RELATED LOOKUP
TEMPLATE

by Nardus Swanevelder

Clarion ships with a template called Lookup Non-Related Record. This template is a
code template and it allows you to do a lookup from a table that is not related to the
primary table. While the template handles basic lookups just fine, it doesn’t always
do everything I want it to do. And while I could write embed code for the additional
functionality, a better long-term solution is to extend the template, which is what I
will demonstrate in this chapter.

Using the stock template

Let’s say you have a Lookup table that consists of a system ID and a description, and
you want to display the description based on the system ID stored in another table.
You can do this with the Lookup Non-Related Record template.

Here’s an example using a tax lookup:

I m p r o v i n g O n T h e N o n - R e l a t e d L o o k u p T e m p l a t e

164

Tax Lookup Table - Pre(TAX)

PK_Tax Key(TAX:SysIDTax) !Primary Key

SysIdTax Long

DescriptionTax String(50)

Client Table - Pre(CLI)

SysIdClient Long
FirstNameClient String(50)
SurnameClient String(50)
SysIdTax Long

In your update form for the client you won’t display the SysIdTax value; you would
rather display the Tax Description. One way to do this is to populate the
TAX:DescriptionTax field on your update screen, but the problem is that you have
to make sure that the correct tax record is active when you open the update
form.The code to do this will be something like this:

TAX:SysIdTax = CLI:SysIdTax
Access:Tax.Fetch(TAX:PK_Tax)

The Lookup Non-Related Record template generates this code exactly. But why use
this template, since it is not a lot of code to type? Two reasons. The first reason is
that it is easier to just click on buttons and select values compared to trying to
remember the exact spelling of the field names, queue names etc. The second reason
is that if you make a change to the field name in the dictionary Clarion will
automatically change the code for you, so no compile errors.

A d d i n g f u n c t i o n a l i t y

165

Adding functionality

I use the scenario above quite a lot but I needed some added functionality. One of
the things I do differently is that I don’t populate the TAX:DescriptionTax field
onto the update form, I populate a local variable onto the update form that I derive
from the TAX:DescriptionTax field. How does this change the code mentioned
above?

TAX:SysIdTax = CLI:SysIdTax
Access:Tax.Fetch(TAX:PK_Tax)

LOC:DescriptionTax = TAX:DescriptionTax

The other problem I have with the Clarion template is that it will do the fetch even
if the user is inserting a record. This is not acceptable to me; instead, this is what I
want my code to look like:

If Self.Request <> InsertRecord
 TAX:SysIdTax = CLI:SysIdTax

 Access:Tax.Fetch(TAX:PK_Tax)

 LOC:DescriptionTax = TAX:DescriptionTax
End

So why create a new template? Why not just add the extra code around Clarion’s
template code? Firstly I am lazy; I don’t want to have to type all that code if I don’t

Figure 1: Clarion Lookup Non Related Record

I m p r o v i n g O n T h e N o n - R e l a t e d L o o k u p T e m p l a t e

166

have to. Secondly, if I change my field names it would be nice if Clarion changes my
code for me, and that will only happen if the code is template driven.

The code template

As always when I am creating a new template I first look for a template that does
more or less what I need. Clarion supplied as with the Non-Related Lookup
template so this was my starting point.

You can find the Clarion code in abcode.tpw in your Clarion template directory.
(You can also find the code in code.tpw but this is the legacy code) The Clarion
template has a lot of code that I don’t really need, particularly related to multi-part
keys (some line breaks added for readability):

#!---
#CODE(LookupNonRelatedRecord,'Lookup Non-Related Record'),

 HLP('~TPLCodeLookupNonRelatedRecord')

#DISPLAY('This Code Template retrieves a non-related record from a
file.')
#DISPLAY('')
#PREPARE

 #CALL(%LoadHigherKeysComponets,%FindFileFromKey(%LookupKey),

 %LookupKey,%LookupField,'Single Value')

#ENDPREPARE
#PROMPT('Lookup
Key',KEY),%LookupKey,REQ,WHENACCEPTED(%LoadHigherKeysComponets(
 %FindFileFromKey(%LookupKey),%LookupKey,%LookupField,'Single
Value'))
#PROMPT('Lookup
Field',COMPONENT(%LookupKey)),%LookupField,REQ,WHENACCEPTED(

 %LoadHigherKeysComponets(%FindFileFromKey(%LookupKey),%LookupKey

 ,%LookupField,'Single Value'))
#PROMPT('Related Field',FIELD),%RelatedField,REQ
#BOXED,WHERE(%False),AT(0,0,0,0)
 #BUTTON('LookupHigherKeys'),MULTI(%HigherKeys,%HigherKey)
 #PROMPT('Lookup Higher Field',COMPONENT(%LookupKey)),%HigherKey
 #ENDBUTTON
#ENDBOXED
#ENABLE(ITEMS(%HigherKeys))
#BUTTON('Higher Key Component'),FROM(%HigherKeys,%HigherKeyField&' =
'&

 CHOOSE(%HigherKeyValueType,'Current

Value',%HigherKeyValueVariable,

T h e c o d e t e m p l a t e

167

 %HigherKeyValueFixed)),AT(,,175),HLP('~TPLHigherKeyComponent')

 #ENABLE(%False)
 #PROMPT ('Key Field:',
FIELD),%HigherKeyField,DEFAULT(%HigherKey)
 #ENDENABLE
 #PROMPT('Value Type:',DROP('Current Value[1]|Variable Value[2]|
 Fixed Value[3]')),%HigherKeyValueType,DEFAULT(1)
 #BOXED,WHERE(%HigherKeyValueType=2),AT(,30)
 #PROMPT ('Value:', FIELD),%HigherKeyValueVariable
 #ENDBOXED
 #BOXED,WHERE(%HigherKeyValueType=3),AT(,30)
 #PROMPT ('Value:', EXPR),%HigherKeyValueFixed
 #ENDBOXED
#ENDBUTTON
#ENDENABLE
#DISPLAY('')
#DISPLAY('The Lookup Key is the key used to perform the lookup. If
the Lookup')
#DISPLAY('Key is a multi-component key, you must insure that the other
key')
#DISPLAY('elements are primed BEFORE this Code Template is
executed.')
#DISPLAY('')
#DISPLAY('The Lookup field must be a component of the Lookup Key.
Before execution')
#DISPLAY('of the lookup code, this field will be assigned the value
of the related field.')
#DISPLAY('')
#DISPLAY('The Related field is a component of the primary file, which
relates to the')
#DISPLAY('lookup field.')
#DISPLAY('')
#IF(ITEMS(%HigherKeys))

 #FOR(%HigherKeys),WHERE(%HigherKeyValueType<>1)

#IF(%HigherKeyValueType=2)

 %HigherKeyField = %HigherKeyValueVariable
#ELSE
 %HigherKeyField = %HigherKeyValueFixed
#ENDIF
 #ENDFOR
#ENDIF
 %LookupField = %RelatedField #<! Move value for lookup
#FIND(%Field,%LookupField) #! FIX field for lookup

 Access:%File.Fetch(%LookupKey) #<! Get value from file

#ATSTART

#CALL(%LoadHigherKeysComponets,%FindFileFromKey(%LookupKey),

 %LookupKey,%LookupField,'Single Value')

#ENDAT

I m p r o v i n g O n T h e N o n - R e l a t e d L o o k u p T e m p l a t e

168

#!---
#GROUP(%FindFileFromKey,%parKey),PRESERVE
#DECLARE(%MyFile)
#FOR(%File)
 #FOR(%Key),WHERE(%Key=%parKey)
 #RETURN(%File)
 #ENDFOR
#ENDFOR
#RETURN('')

I removed all the code I don’t need and added the necessary code to do the
assignment I want; I also added the code to check the Self.Request status.

This is how my template code looks:

#CODE(dcLookupNonRelatedRecord,'DC Lookup Non-Related Record')

#DISPLAY ('This Code Template retrieves a non-related record from a
file.')
#DISPLAY ('')
#PROMPT ('Lookup Key',KEY),%LookupKey,REQ
#PROMPT ('Lookup Field',COMPONENT(%LookupKey)),%LookupField,REQ
#PROMPT ('Related Screen Field',FIELD),%RelatedScreenField,REQ
#DISPLAY ('')
#PROMPT ('Related Field',FIELD),%RelatedField,REQ
#DISPLAY ('')
#PROMPT ('Screen Field',FIELD),%ScreenField,REQ
#DISPLAY ('')
If Self.Request <> InsertRecord

 %LookupField = %RelatedField #<! Move value for lookup

#FIND(%Field,%LookupField) #! FIX field for lookup
 Access:%File.Fetch(%LookupKey) #<! Get value from file

 %ScreenField = %RelatedScreenField

End

Nice and short – see Figure 2 for an example of the template prompts.

Figure 2: dc Lookup Non Related Record

S u m m a r y

169

The above template will generate the following code:

If Self.Request <> InsertRecord

 SYSUSE:SysIdUser = CERTSLO:SysIdNameCompletedForm

 Access:SystemUsers.Fetch(SYSUSE:PK_SystemUsers)

 LOC:UserNameCompletedForm = SYSUSE:UserName

End

Summary

By simplifying the existing Clarion Lookup Non-Related Record template, I was
able to retain all the functionality I need for my lookups, while easily adding a few
new features, including an additional Screen Field prompt and conditional lookup
code execution.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n07nonrelated.zip

I m p r o v i n g O n T h e N o n - R e l a t e d L o o k u p T e m p l a t e

170

171

Threading

173

GLOBAL VARIABLES, THREADS, CRITICAL
INTERSECTIONS AND THE DANGERS OF
UNPROTECTED SETS

by John Morter

The recent Aussie DevCon (www.clarionmag.com/cmag/
topics.html?categoryid=148&subcategoryid=0) was an excellent event, and we
were most fortunate to have the knowledgeable and entertaining Bruce Johnson and
Jono Woodhouse (a.k.a. “The Capesoft Clowns”) as presenters, especially when
they delved into some of the meatier topics, such as C6 threading.

Bruce started out with an explanation of some of the pitfalls associated with the
changes delivered with Clarion 6 to support the pre-emptive thread model. You can
read more about Bruce and Jono’s presentation in Geoff Robinson’s report.

For those of you wondering whether all the fuss and angst heaped upon us by this
thread-management de-simplification is worth all the trouble, Bruce gave one
example that “sold” me: It’s Clarion’s new threading model capability that enables
us to write Windows Service applications. Essentially, it’s another modernisation of
our development language of choice.

G l o b a l V a r i a b l e s , T h r e a d s , C r i t i c a l i n t e r S e c t i o n s a n d t h e D a n g e r s o f U n p r o t e c t e d S e t s

174

Looking back to what I’d gleaned for myself, up until when Bruce & Jono put me
straight, I now realize that I knew just enough to be dangerous: I had a few
misconceptions, as you will see.

I’m not going to attempt to explain the change introduced with C6 (from a
cooperative threading model), other than to recommend you to the SoftVelocity
“Multi-Threaded Programming Guide”. It may take multiple reads to make any
sense out of it (at least, that was my experience), but every time you refer back to it
you’re sure to hear another penny drop! There have also been a number of excellent
Clarion Magazine articles on this topic. These two resources reinforce each other
well.

Common misconceptions

I knew, from my Clarion Magazine reading, that dangers lurked when assigning
values to global STRINGs because it’s possible for a thread-switch to occur mid-way
through the assignment, such that the global variable ends up containing part of
what one thread was assigning to it and part of what another thread was half-way
through doing before it was interrupted. But I thought I was safe assigning values to
LONGs and BYTEs, etc., because assignment to these variables occurs at the “atomic
level” (in a single Assembler-level instruction). However, Bruce pointed out a
subtlety that’s now oh-so-obvious.

g:GlobalLONG = g:GlobalLONG * (g:GlobalBYTE + LocalBYTE)

This is an example that could get you into trouble because, although it’s true that
the final assignment to g:GlobalLong will occur within one instruction, you cannot
be sure what intermediate steps the compiler may generate, and it’s possible that a
fateful thread-switch could change the value of any of those intermediaries – with a
scrambled result.

I decided to do some investigation into these possibilities, with the following code:

!===
TotallyUnsafeTestA PROCEDURE
LocalLONG LONG
LocalString STRING('AAAAAAAAAA')
PEEKString STRING(50)
 CODE
 RESUME(START(TotallyUnSafeTestB))

! START new Thread w/o waiting for this one to complete

!

C o m m o n m i s c o n c e p t i o n s

175

 LOOP i# = 1 TO 100000
 GlobalLONG = LocalLONG+1
!
 GlobalSTRING = LocalString & LocalString & LocalString & |
 LocalString & LocalString
 PEEK(ADDRESS(GlobalSTRING),PEEKString)

 IF PEEKString <> ALL('A',50) AND PEEKString <> ALL('B',50)|

 STOP('UnsafeA: LocalString='& LocalString &' Thread#='& |
 THREAD() &' i#='& i# &' LocalLONG = ' & LocalLONG |
 &'<10>Ooops !<10>GlobalString = '& PEEKString)
 BREAK
 END
 LocalLONG = GlobalLONG
 END!Loop
!---
TotallyUnsafeTestB PROCEDURE
LocalLONG LONG
LocalString STRING('BBBBBBBBBB')
 CODE
 LOOP i# = 1 TO 100000
 GlobalLONG = LocalLONG+1
 GlobalSTRING = LocalString & LocalString & LocalString & |
 LocalString & LocalString
!
 LocalLONG = GlobalLONG
 END!Loop
 STOP('UnsafeB: LocalString='& LocalString &' Thread#='& |

 THREAD() &' i#='& i# &' LocalLONG = ' & LocalLONG)

!===

The first procedure (TotallyUnsafeTestA) invokes the second
(TotallyUnsafeTestB) and they both update global data, just inviting something to
go wrong... and it soon does.

Note: Global variables are defined as GlobalSTRING STRING(100) and
GlobalLONG LONG.

Figure 1: The danger of unprotected sets

G l o b a l V a r i a b l e s , T h r e a d s , C r i t i c a l i n t e r S e c t i o n s a n d t h e D a n g e r s o f U n p r o t e c t e d S e t s

176

After 5,495 loops through this test (I’ve seen this as low as 17!) the two threads
have tripped over each other, and the result in GlobalSTRING is certainly not what
one might expect.

Note that there’s also something “interesting” going on with LocalLONG... I’ll come
back to that later (don’t let me forget).

In everyday practice, with the typical user-driven application, this problem is
unlikely to occur very often(!), but it’s the clearly proven fact that it can occur that
should make us all much more careful when working with global variables.

And, it actually gets worse!

From bad to worse

I didn’t understand what the problem might be with global queues, provided they
are primed at program start-up (when there is only one thread) and then only ever
read, never updated, by subsequent application threads. However, as Bruce
explained, a pointer keeps track of the “current position” in the queue. And this
pointer is a global variable (unless the queue is THREADed, which would defeat the
purpose of a shared queue). So, it would probably not take too long for two threads,
reading through the same queue, to get themselves confused.

The clear and simple message imparted by Bruce and Jono was; ”Don’t use global
variables if you can avoid doing so... but, if you must, then use some guaranteed
protection”.

The lessons I learned from my investigations for this project have certainly
dissuaded me from using global variables in any new application I write. But most
of us have older apps around; with “old-fashioned” programming techniques built-
in, and great care is needed when converting these to C6, and beyond.

How is this done?

Firstly, it is safe to use variables as global constants [eg. GlobalConstant
STRING('Clarion 6.3')], provided they are never (that’s never, ever) changed
within the application (unless you use some of the protection techniques explained
later in this chapter, which is where I’m slowly heading).

P r a c t i c i n g s a f e s e t s

177

However, the potential problem is that while you may have had no intention of
changing a variable’s value when you originally wrote the application, some future
requirement may see you (unthinkingly) updating it without realizing the dangers.

A naming convention is a good way to remind yourself about the state and purpose
of your application variables; especially for global variables, because their definition
is usually well out-of-sight when you’re coding those potentially dangerous embeds.

For example:

gt:ThreadedGlobal LONG,THREAD !Thread-safe

gc:GlobalConstant STRING('Colour') !Must never be updated

Better yet:

ge:GlobalEquate EQUATE('Hue') !Never CAN be updated

As Jono pointed out, changing the names of your global variables is an excellent
way to flush-out all those places where you may have misused them... because the
compiler will very quickly identify them all for you!

Many of us have fallen into bad habits with regard to using global variables as a
means of communicating between procedures, whereas the safe (and more
professional) approach is to pass parameters to procedures and receive return
values from them. For a working example of the syntax involved, see the
CityStateZip procedure in the Invoice.APP sample application.

All the same, there will probably be times when use of a global variable is the most
pragmatic solution to a programming requirement, but we must guard against the
dangers involved.

Practicing safe sets

It’s obvious that we need a way to ensure, when we set a value to a global variable,
that we end up with a guaranteed and expected result, because being correct “most
times” is not good enough for most of our users.

The solution recommended by Bruce & Jono was straightforward; use critical
sections to protect access to your global variables, and use them consistently. This
makes good sense. It’s not wise to have conditional approaches to doing similar
things, because you’re likely to make the occasional incorrect decision about which
alternative you apply.

G l o b a l V a r i a b l e s , T h r e a d s , C r i t i c a l i n t e r S e c t i o n s a n d t h e D a n g e r s o f U n p r o t e c t e d S e t s

178

The ubiquitous Steve Parker published an article titled Implementing a Critical
Section: Fast and Effective (www.clarionmag.com/cmag/v6/
v6n10criticalsection.html) that explains how to implement global variable
protection in just four lines of code.

I decided to test the theory:

!===
TotallyUnsafeTestC PROCEDURE
LocalLONG LONG
LocalString STRING('AAAAAAAAAA')
PEEKString STRING(50)
 CODE
 RESUME(START(CriticalSectionTestB))

! START new thread w/o waiting for this one to complete

 LOOP i# = 1 TO 100000
 GlobalLONG = LocalLONG+1
 GlobalSTRING = LocalString & LocalString |
 & LocalString & LocalString & LocalString
 PEEK(ADDRESS(GlobalSTRING),PEEKString)

 IF PEEKString <> ALL('A',50) AND PEEKString <> ALL('B',50)

 STOP('UnsafeC: LocalString='& LocalString |
 &' Thread#='& THREAD() |
 &' i#='& i# &' LocalLONG = ' & LocalLONG |
 &'<10>Ooops !<10>GlobalString = '& PEEKString)
 BREAK
 END
 LocalLONG = GlobalLONG
 END!Loop
!---
CriticalSectionTestB PROCEDURE
LocalLONG LONG
LocalString STRING('BBBBBBBBBB')
 CODE
 LOOP i# = 1 TO 100000
 GP.Wait()

 GlobalLONG = LocalLONG+1

 GlobalSTRING = LocalString & LocalString & |
 LocalString & LocalString & LocalString
 LocalLONG = GlobalLONG
 GP.Release()

 END!Loop

 STOP('CriticalSectionB: LocalString='& |
 LocalString &' Thread#='& THREAD() |
 &' i#='& i# &' LocalLONG = ' & LocalLONG)
!===

P r a c t i c i n g s a f e s e t s

179

I’m using the same testing technique as shown in Figure 1, above. This time,
however, I’ve used a critical section to protect the global variables... or so I thought.
(See Steve Parker’s article for the details. My “GP” prefix is equivalent to Steve’s
“MyCriticalSection” prefix.)

Figure 2 shows the results:

Mmmmmm... Not quite what I was expecting!

You will recall I mentioned some initial misconceptions. You see, I was accepting
what I was reading much too literally. I was (mis)understanding that a critical
section would “lock” my globals so that other threads couldn’t corrupt them.
Assuming that Wait() meant “wait for a lock” and Release() meant “now release
the lock” seemed quite reasonable to me back then. But that wrongly assumed that
Lock and Release were doing something unseen to my variables.

OK. Testing involves trying out different approaches and reviewing the results.
After pursuing a couple of other dead-ends, I ended up with this next example.

!===
CriticalSectionTestA PROCEDURE
LocalLONG LONG
LocalString STRING('AAAAAAAAAA')
PEEKString STRING(50)
 CODE
 RESUME(START(CriticalSectionTestB))

! START new thread w/o waiting for this one to complete

!
 LOOP i# = 1 TO 100000
 GP.Wait()

 GlobalLONG = LocalLONG+1
 GlobalSTRING = LocalString & LocalString |
 & LocalString & LocalString & LocalString
 PEEK(ADDRESS(GlobalSTRING),PEEKString)

 IF PEEKString <> ALL('A',50) AND PEEKString <> ALL('B',50)

Figure 2: The danger of a little bit of knowledge

G l o b a l V a r i a b l e s , T h r e a d s , C r i t i c a l i n t e r S e c t i o n s a n d t h e D a n g e r s o f U n p r o t e c t e d S e t s

180

 STOP('CriticalSectionTestA: LocalString='|
 & LocalString &' Thread#='& THREAD() |
 &' i#='& i# &' LocalLONG = ' & LocalLONG |
 &'<10>Ooops !<10>GlobalString = '& PEEKString)
 GP.Release()

 BREAK

 .
 LocalLONG = GlobalLONG
 GP.Release()

 END!Loop

 STOP('CriticalSectionA: LocalString='& LocalString &' Thread#='&

THREAD() |
 &' i#='& i# &' LocalLONG = ' & LocalLONG)
!---
CriticalSectionTestB PROCEDURE
LocalLONG LONG
LocalString STRING('BBBBBBBBBB')
 CODE
 LOOP i# = 1 TO 100000
 GP.Wait()

 GlobalLONG = LocalLONG+1
 GlobalSTRING = LocalString & LocalString |
 & LocalString & LocalString & LocalString
 LocalLONG = GlobalLONG
 GP.Release()

 END!Loop
 STOP('CriticalSectionB: LocalString='& LocalString |
 &' Thread#='& THREAD() |
 &' i#='& i# &' LocalLONG = ' & LocalLONG)
!===

I stopped and thought about this for a while... actually, for quite a while. Then I
went to bed. Next morning the situation was much clearer to me. I now realize that
a critical section is really more like a critical intersection.

Figure 3: Success, at last

P r a c t i c i n g s a f e s e t s

181

It works like this: Each thread happily drives down its execution path until it
reaches a critical intersection, marked by a Wait(). At this point it asks The Senior
Traffic Cop (aka the Windows Operating System): “Is anyone else working in the
critical intersection just now?”. The STC checks her list and, when she’s satisfied
that no other thread is in the way, she gives the next thread in the queue a green
light. When the thread has finished what it was doing in the middle of the critical
intersection, and it has emerged safely out the other side, then it’s good behaviour
to tell The STC that it’s safe to hand-over the green light to another thread (because,
otherwise, none of the other threads will ever get their turn). This “OK, I’m
finished” is communicated via a Release().

Now look back to the source code above Figure 2.

The TotallyUnsafeTestC thread was acting like one of those drivers you see in the
news. He was speeding down his execution path, oblivious to all other threads on
the road, and drove straight through the critical intersection without first checking
that he had a green light... just as the other thread was bending over to pick up that
GlobalSTRING. The impact was fatal!

As is true on our highways and byways, threads (drivers) are not safe unless
everyone is obeying the same road-rules. The Figure 3 source code demonstrates
how to arrive safely.

OK, I’m comfortable with that. So all I need to do is make absolutely sure that I
never (that’s never, ever) forget to ensure that every foray into a critical intersection
is made safely and consistently... by Wait(ing) for a green light first, and always
Release(ing) the green light when I’m finished. Too easy!

And then I re-read Steve’s article:

Watch Out! There is only one caveat, one thing you must be careful about. If you do
not release the critical section at the earliest possible moment, your application will
appear to hang. Whenever another procedure tries to enter the critical section, if the
previous one has not been released, it will be blocked until such time as the first
procedure releases the critical section.

G l o b a l V a r i a b l e s , T h r e a d s , C r i t i c a l i n t e r S e c t i o n s a n d t h e D a n g e r s o f U n p r o t e c t e d S e t s

182

So, it’s not quite so straightforward as simply matching each Wait() with a
Release(), such as one does with IF/END constructs. Rather “logical” matching is
required, so that each Wait() must be matched in the execution path by a Release().

An example of this can be seen in Figure 4, where there are two Release()
statements for the one Wait(). The Release() just above the BREAK is essential to
ensure that The STC is advised that the critical intersection green light currently
“owned” by that thread can be passed on to another thread. Otherwise, the
circumstance that Steve warns us about will certainly occur.

Mmmmmm.... I’m not so comfortable with this any more.

I figured there had to be a better way of ensuring that global variables are always
fully protected. I wasn’t at all happy about a “solution” that fixed one problem only
to introduce the potential of causing a different problem somewhere else.

For a while I thought I’d found the ideal solution when I read Steve’s follow-on
article Critical Procedures: Synchronisation for the Lazy (www.clarionmag.com/
cmag/v6/v6n10criticalproc.html). Steve writes:

The main advantage of using the CriticalProcedure class to handle
the locking and releasing for you is that if you have multiple RETURN
statements in your procedure.... This means that no matter how many
Return statements I have in my procedure, all the exit points are
covered.

However, this is not a good technique to use in most situations because there’s no
way to force the Release() of a CriticalProcedure, as Steve makes clear in his
article. For example, if a CriticalProcedure is used in the ThisWindow.Init
section of a browse (and assuming that all threads are “driving according to the

Figure 4: “Logical” matching of Wait(s) and Release(s)

T h e r e ’ s g o t t a b e a b e t t e r w a y

183

rule-book”) then any other thread will be stalled until the browse procedure has
completed, which may not be until its user gets back from lunch!

There’s gotta be a better way

The idea for a Global Variables Protection Class actually formed in my mind as I
was listening to Bruce & Jono’s presentation on the merits and perils of C6
threading. (Although, as demonstrated above, I didn’t appreciate at all back then
what a long way I had to go to properly understand what I was trying to achieve.)

In the next chapter I’ll continue with my explanation of this learning process and of
the resulting class and template set, which packages-up a number of approaches to
ensuring protection of global variables.

(No, I haven’t forgotten about the strange goings-on with that LocalLONG... I’ll cover
that in the next chapter.)

Acknowledgements, thus far

Thanks, obviously, go to Bruce, Jono and Steve.

I’d hate Russ Eggen to think (when he sees all those STOPs in my code) that I wasn’t
listening to his Aussie DevCon presentation on using the Clarion Debugger. On the
contrary, he motivated me to get back into the habit of using the Debugger, which I
found to have improved in quite a few subtle ways since I last used it, and it was
invaluable in my investigations and testing. (There’s still a place for very careful use
of STOPs too, but).

Thank you also to Phil Will at ProDomus (www.prodomus.com) for his generous
sponsorship of the Aussie DevCon; I was lucky enough to win a selection of his Edit
& Lookup tools.

G l o b a l V a r i a b l e s , T h r e a d s , C r i t i c a l i n t e r S e c t i o n s a n d t h e D a n g e r s o f U n p r o t e c t e d S e t s

184

185

A GLOBAL VARIABLES PROTECTION CLASS

by John Morter

In the previous chapter I wrote about providing safe access to global variables in
Clarion’s new(ish) pre-emptive thread model environment, using critical
(inter)sections.

I’ve decided that I like critical (inter)sections, for a number of reasons; i) They’re
quick and simple to implement, ii) they’re quite efficient (I have proven that, to my
own satisfaction, in timing tests) and iii) they’re very flexible (one can invoke them
at will).

However, there’s also a potential and serious problem involved. Each Wait(for a
green light) that’s issued must be matched with a subsequent (It’s OK now
to)Release(the green light). Otherwise it’s possible to cause a gridlock, as the result
of one thread “hogging” the green light and preventing all other (rule abiding)
threads from getting their turn through the critical intersection.

And preventing this problem is not as simple as it may first seem. The matching
requirement is “logical”, not just “structural”. That is, it applies in the logical
execution path. So, avoiding it is not as straightforward as having an equal number
of Release(s) in your code as you have Wait(s). Rather, your code must execute an
equal number of Release(s) as it does Wait(s).

A G l o b a l V a r i a b l e s P r o t e c t i o n C l a s s

186

I decided to implement a solution that allowed me to exploit all the “good things”
about Critical interSections, whilst helping me to minimize the risk of “bad things”
happening.

These were my solution design must-haves:

• I wanted an ABC-like implementation, so that my critical
intersection management system would be easy to use, with all the
gory logic hidden within a class.

• I didn’t want to have to rethink the implementation of my critical
intersection management system each time I used it, and I wanted its
implementation to be so simple that I would happily use it all the
time. In other words, I needed to wrap my class up in a template, for
automatic implementation.

• I wanted some additional value added to the class; I’d been recently
caught out with a bug that resulted from attempting to assign a
string value to a global too long for the global to hold, and which
was not immediately obvious because the definition of the global
was out-of-sight and long forgotten. I wanted to catch basic
problems like this at development time.

• The central purpose of my class was to warn me if I had any
outstanding Wait(s) at critical points in my application (such as,
when exiting from a procedure)... along with provision of some
easy-to-use methods for safe and protected access to global variables.

I ended up with the following methods in my Globals Protection (GP) class.

SetGlobal method

GP.SetGlobal PROCEDURE (*? GlobalVariable,<? LocalVariable>,|
 BYTE pDoChecks=True)
 CODE
 SELF.Wait()
 IF pDoChecks ! Note: Checks Will be ASSERTed in Debug-mode ONLY
? IF ~OMITTED(LocalVariable)

? ASSERT(ISSTRING(GlobalVariable)=ISSTRING(LocalVariable),|

? '<10>GP.SetGlobal<10>Warning: Variable-type mismatch in '|

? & ' GP.SetGlobal <10>Attempting to Set: [<39>' |
? & LocalVariable & '<39>]<10>')
? IF ISSTRING(GlobalVariable)

? ASSERT(LEN(CLIP(LocalVariable))<=LEN(GlobalVariable),|

S e t G l o b a l m e t h o d

187

? '<10>GP.SetGlobal<10>Warning: GlobalVariable ' |
? & '[SIZE(' & LEN(GlobalVariable) & ')] will receive '|
? & 'truncation from [SIZE(' & LEN(LocalVariable) |
? & ') = <39>' & CLIP(LocalVariable) & '<39>]<10>')
? END
? END
?
 END
 GlobalVariable = LocalVariable
 SELF.Release()
 RETURN

Comments and explanations

• This method is used like this: GP.SetGlobal(g:VariableName,
LocalVariable) or: GP.SetGlobal(g:VariableName, 'String') or
GP.SetGlobal(g:VariableName, 99).

• It’s equivalent to assigning, say, g:VariableName = LocalVariable
– but in a safe and caring way, as provided for by the matching
Wait() and Release().

• The global variable name is passed into this class method by address
(as specified by the '*' in the procedure prototype), thereby
ensuring that nothing is actually done to or with the variable until it
can be protected by the Wait().

• The local variable can be a VariableName, or a value (eg.
'Somestring' or 256) or an expression.

Therefore, this provides a safe way of assigning, say;

GP.SetGlobal(g:VariableName, (LocalBYTE * SIZE(LocalSTRING)))

with one proviso: it’s advisable not to use global variables in the expression, because
the passed expression will be evaluated before the GP.SetGlobal method executes,
and then a copy of the result is passed in for assignment to the global variable. If
variables used in that expression are subject to change by another thread, you could
get some unexpected results. But typically you’ll be passing constant values to the
method, and assigning those values or the result of an expression containing known
values to another variable, so that shouldn’t be a limitation.

• The local variable can be omitted, in which case the result is
equivalent to g:VariableName = '' or g:VariableName = 0
depending on the global variable’s data-type (String or Numeric,
respectively).

A G l o b a l V a r i a b l e s P r o t e c t i o n C l a s s

188

• There are checks to warn if a mixed data-type assignment is being
used, such as g:GlobalLONG = LocalSTRING, or if an incoming
string is too long for the global variable to hold (for protection
against those simple-but-hard-to-find bugs).

If, however, you wish to allow a mixed data-type assignment (say, to set the
contents of a global LONG to the value of a string known to contain numbers) then
an optional third parameter, when set to False/zero, will cause the checks to be
skipped. For example: GP.SetGlobal(g:GlobalLONG, LocalNumericString, 0)

• These checks will be ASSERTed only if your application has been
compiled in Debug-mode (as defined in the application’s global
Options). That is, only when you’re developing and testing. The ?
characters in column one of these ASSERTions ensure that the
conditions are not tested once your application has been compiled in
Release mode.

• There’s a guaranteed Release() for the Wait(). There’s no threat of
causing a thread “grid lock” with this method.

GetGlobal method

GP.GetGlobal PROCEDURE (*? LocalVariable, *? GlobalVariable,|
 BYTE pDoChecks=True)
 CODE
 SELF.Wait()
 IF pDoChecks ! Note: Checks Will be ASSERTed in Debug-mode ONLY
? ASSERT(ISSTRING(GlobalVariable)=ISSTRING(LocalVariable),|
? '<10>GP.GetGlobal<10>Warning: Variable-type mismatch in '|
? & GP.GetGlobal <10>Attempting to Get: [<39>' |
? & GlobalVariable & '<39>]<10>')
? IF ISSTRING(LocalVariable)

? ASSERT(LEN(CLIP(GlobalVariable))<=LEN(LocalVariable),|

? '<10>GP.GetGlobal<10>Warning: LocalVariable [SIZE(' |

? & LEN(LocalVariable) & ')] will receive truncation from [SIZE('
|

? & LEN(GlobalVariable) & ') = <39>' |

? & CLIP(GlobalVariable) & '<39>]<10>')
? END

 END

 LocalVariable = GlobalVariable
 SELF.Release()
 RETURN

T e s t i n g

189

Comments and explanations

• This method is simply the opposite of GP.SetGlobal. It’s used like
this; GP.GetGlobal(LocalVariable, g:VariableName) – that is, it’s
the equivalent of LocalVariable = g:VariableName.

• As for GP.SetGlobal, the assignment process is protected by a
Wait() and a matching Release(). Therefore, this method provides
an entirely safe way to involve global variables in an expression,
without concern about the potential for a thread-switch part way
through the calculation of any intermediate steps. For example;

GP.GetGlobal(LocalVariable, (g:GlobalBYTE * SIZE(g:GlobalSTRING)))

• All else is pretty much the same as for GP.SetGlobal except, of
course, that the global variable name/value/expression cannot be
omitted.

Testing

I am now equipped to repeat my earlier tests and check the results:

PartiallySafeTestA PROCEDURE

LocalLONG LONG
LocalString STRING('AAAAAAAAAA')
PEEKString STRING(50)

 CODE

 RESUME(START(PartiallySafeTestB))

 ! START new thread w/o waiting for this one to complete

 LOOP i# = 1 TO 100000

 GP.SetGlobal(GlobalLONG,(LocalLONG+1))

 GP.SetGlobal(GlobalSTRING,(LocalString & LocalString & |
 LocalString & LocalString & LocalString))
 PEEK(ADDRESS(GlobalSTRING),PEEKString)

 IF PEEKString <> ALL('A',50) AND PEEKString <> ALL('B',50)

 STOP('PartSafeA: LocalString='& LocalString |
 &' Thread#='& THREAD() |

 &' i#='& i# &' LocalLONG = ' & LocalLONG |

 &'<10>Ooops !<10>GlobalString = '& PEEKString)

A G l o b a l V a r i a b l e s P r o t e c t i o n C l a s s

190

 BREAK
 END
 GP.GetGlobal(LocalLONG,GlobalLONG)
 END
 STOP('PartSafeA: LocalString='& LocalString &' Thread#='& THREAD()
|
 &' i#='& i# &' LocalLONG = ' & LocalLONG)

!---

PartiallySafeTestB PROCEDURE

LocalLONG LONG
LocalString STRING('BBBBBBBBBB')
PEEKString STRING(50)
 CODE
 LOOP i# = 1 TO 100000
 GP.SetGlobal(GlobalLONG,(LocalLONG+1))
 GP.SetGlobal(GlobalSTRING,(LocalString & LocalString |
 & LocalString & LocalString & LocalString))
 GP.GetGlobal(LocalLONG,GlobalLONG)
 END
 STOP('PartSafeB: LocalString='& LocalString &' Thread#='& THREAD()
|

 &' i#='& i# &' LocalLONG = ' & LocalLONG)

I was initially perplexed by the result that I got, in Figure 1.

But then I realized it was my testing that was at fault.

What’s happening is that, although the individual global variable assignments (via
the sets and gets) are safe, this safety (afforded by the Wait(s) and Release(s) in
which they’re encapsulated) does not apply “between” the lines of code in these
procedures. And, although it took quite a few iterations to trip-up (65,102 in this
example), eventually a thread-switch occurs at exactly the wrong time... and
Ooops! is the result.

Figure 1: A false alarm

T e s t i n g

191

You’ll need to trust me here (or test this to your own satisfaction); I temporarily
moved the test-for-Ooops code to inside the GP.SetGlobal method, and no Oopses
were detected.

However, there’s a lesson here – and the “interesting” result in LocalLONG (also
noticed early in the previous chapter, “Global Variables, Threads, Critical
interSections and the Dangers of Unprotected Sets” on page 173) lends weight to
this lesson.

In case the “strangeness” about the result in LocalLONG is not immediately obvious,
I’ll explain: Take a closer look at the relevant code:

GP.SetGlobal(GlobalLONG,(LocalLONG+1))
!eq. to GlobalLong = LocalLONG + 1
GP.GetGlobal(LocalLONG,GlobalLONG)
!eq. to LocalLONG = GlobalLONG

In the actual test-code I’ve separated these lines with the GlobalSTRING assignment,
but that was just to allow more time for something to go wrong.

One’s first-glance expectation for the result in LocalLONG is the same as for the
result in the implicit numeric variable, i# (which is declared locally, and is
therefore naturally protected). However, by handing the value in LocalLONG over to
GlobalLONG, albeit very temporarily, opportunity is set up for the other thread to
grab its turn between the time of the handover and the subsequent retrieval.
Eventually, the two threads trip over each other and the resulting values in both
instances of LocalLONG spin way out of expected range.

The lesson is this: If your work with global variables extends over multiple lines of
code then it’s not good enough to protect individual assignment statements from
interruption by a thread-switch... you must protect the entire passage of execution,
until some point where you’re comfortable for (the potential of) a thread-switch to
occur.

This leads me naturally to a description of the other methods in my Globals
Protection class. However, before I go there, I’ll deal with the question I asked

Figure 2: That’s more like it... Sort of !

A G l o b a l V a r i a b l e s P r o t e c t i o n C l a s s

192

myself at this stage: “Is there any point then in bothering with the GP.SetGlobal/
GetGlobal methods?”.

After a bit of thought, I decided the answer is “Yes”, because there are many times
when all that’s required is to assign or retrieve a value from a global variable , and
these methods provide a totally safe and very easy-to-use means of doing so (in
minimal lines of code). Besides, they also provide the added value of automatic
checking for “silly” coding mistakes (but only during development and testing
stage, when my application is compiled in debug-mode).

Now, on to a description of the remaining methods in my Globals Protection class;

GP.WaitForGreen PROCEDURE
 CODE
 SELF.Wait() ! Calls to Wait() can be nested
 GP.TotWaitCount += 1
 GPt:WaitCount += 1
 RETURN

If you’ve been following my “Traffic Cop” analogy then this will be perfectly
obvious to you. GP.WaitForGreen is pretty much just a Wait() in disguise, but with
some additional “smarts” that will make better sense very shortly.

It’s important to note here that GPt:WaitCount is a THREADed global variable; it’s
keeping track of the number of outstanding Wait(s) for each thread. Conversely,

Figure 3: Silly me!!

Figure 4: Again!

T e s t i n g

193

GP.TotWaitCount is not THREADed; it’s keeping track of the overall number of
outstanding Wait(s).

Because I’m careful to work with GP.TotWaitCount only within the safety of a
Wait()/Release(), there is no risk of two or more threads mucking around with
this counter at the same time.

GP.ReleaseGreen PROCEDURE
 CODE
 IF GPt:WaitCount
 ! Number of calls to Release() MUST NOT exceed calls to Wait()
 GP.TotWaitCount -= 1
 GPt:WaitCount -= 1
 SELF.Release()
 ELSE
? ASSERT(0,'<10>GP.ReleaseGreen<10>Wait/Release mismatch: '|

? & 'Call made to GP.ReleaseGreen without preceding '|

? & 'call to GP.WaitForGreen<10>')
 END
 RETURN

Before the Release() is issued, a check is made to ensure there truly is a Wait()
outstanding for the current thread. If so, the Release() proceeds and the count of
outstanding Wait(s) can be decremented.

Otherwise, provided the application is compiled in Debug mode, an ASSERTion
failure is returned to warn about the Wait/Release mismatch encountered in the
execution path.

I am now at another point where I can run some tests and check the results.

FullySafeTestA PROCEDURE
LocalLONG LONG
LocalString STRING('AAAAAAAAAA')
PEEKString STRING(50)
 CODE
 RESUME(START(FullySafeTestB))
 ! START new thread w/o waiting for this one to complete

 LOOP i# = 1 TO 100000

 GP.WaitForGreen !<<<
 GlobalLONG = (LocalLONG+1)
 GlobalSTRING = (LocalString & LocalString & LocalString & |
 LocalString & LocalString)
 PEEK(ADDRESS(GlobalSTRING),PEEKString)

 IF PEEKString <> ALL('A',50) AND PEEKString <> ALL('B',50)

 STOP('FullySafeA: LocalString='& LocalString |
 &' Thread#='& THREAD() |

A G l o b a l V a r i a b l e s P r o t e c t i o n C l a s s

194

 &' i#='& i# &' LocalLONG = ' & LocalLONG |

 &'<10>Ooops !<10>GlobalString = '& PEEKString)
 END
 LocalLONG = GlobalLONG
 GP.ReleaseGreen !<<<
 END
 STOP('FullySafeA: LocalString='& LocalString &' Thread#='|
 & THREAD() &' i#='& i# &' LocalLONG = ' & LocalLONG)

!---

FullySafeTestB PROCEDURE
LocalLONG LONG
LocalString STRING('BBBBBBBBBB')
PEEKString STRING(50)
 CODE
 LOOP i# = 1 TO 100000
 GP.WaitForGreen !<<<
 GlobalLONG = (LocalLONG+1)
 GlobalSTRING = (LocalString & LocalString & LocalString & |
 LocalString & LocalString)
 LocalLONG = GlobalLONG
 GP.ReleaseGreen !<<<
 END
 STOP('FullySafeB: LocalString='& LocalString &' Thread#='|
 & THREAD() &' i#='& i# &' LocalLONG = ' & LocalLONG)
 GP.ReleaseGreen !<<< Nothing to Release(!)

I’m very happy with this result...

And did you notice the unmatched GP.ReleaseGreen at the end of
FullySafeTestB?

Figure 5: Looking good – No “funny stuff” here

T e s t i n g

195

And, the point of the overall count of outstanding Wait(s)?

As explained by Clarion Help:

A CLASS method labeled “Destruct” is a method which is automatically
invoked when the object leaves scope.

That is, when an application terminates, just before the class/object and its
associated memory contents are destroyed, any method named Destruct is
automatically called.

My GP class has a Destruct method that REPLACEs the Destruct method defined for
the class on which my GP class is actually based (that is, SoftVelocity’s
CriticalSection class). This allows for some additional checks to be made during
the last gasps of the application.

GP.Destruct PROCEDURE

 CODE
 IF GP.TotWaitCount ! Not ALL Wait(s) have been Release(d)
 LOOP UNTIL GP.TotWaitCount = 0
 SELF.Release()
 GP.TotWaitCount -=1
 END!LOOP
? ASSERT(0,'<10>GP.Destruct<10>Wait/Release mismatch: '|
? & 'TOTAL number of calls to GP.WaitForGreen exceeded '|
? & 'the TOTAL number of calls to GP.ReleaseGreen<10>')
 END
 ! Now do whatever SV's CriticalSection.Destruct normally does
 PARENT.Destruct
 RETURN

Figure 6: Gotcha !

A G l o b a l V a r i a b l e s P r o t e c t i o n C l a s s

196

A Template wrapper

An associated template makes the Class very simple to implement, and it provides
the option to add even more rigorous checking for Wait()/Release() mismatches.

Simply add this extension template (via your application’s Global Properties) for
automatic instantiation of the Globals Protection (GP) class, and you may then
immediately use all the GP methods, as detailed above, anywhere in your embed
code.

By checking (or ticking, depending upon your cultural background) the option to
Generate GloVarProtection syntax hints, you will cause the template to insert some
reminders about usage of the GP.Methods at the end of each application procedure.

The other option, to Check for (and Release) outstanding Waits, generates a test
similar to the one described above that’s triggered when the class DESTRUCTs, but
this one is fired at the exit point of each application procedure and it checks only
for Wait(s) outstanding for the current thread. The bold line of code below results
from checking/ticking this option.

ThisWindow.Kill PROCEDURE

ReturnValue BYTE,AUTO

 CODE
 ReturnValue = PARENT.Kill()
 IF ReturnValue THEN RETURN ReturnValue.
 IF SELF.FilesOpened
 Relate:DummyTable.Close

 END

Figure 7: Global (application-level) extension template

A T e m p l a t e w r a p p e r

197

 IF SELF.Opened
 INIMgr.Update('DummyProcess',ProgressWindow)

 END

 GlobalErrors.SetProcedureName

 GP.MatchWaitRelease(GP:ActionFlag) !Generated by GloVarProtection

template
 RETURN ReturnValue

Note use of the ActionFlag parameter to enable customization of the action to be
taken when a mismatch is detected.

GP.MatchWaitRelease PROCEDURE (BYTE pActionFlag=1)
RetVal BYTE(Level:Benign)
 CODE
 IF GPt:WaitCount
 ! Not all Wait(s) for this Thread have been Release(d)
 RetVal = Level:Notify
 IF pActionFlag = 1 OR pActionFlag = 2
? ASSERT(0,'<10>GP.MatchWaitRelease<10>Wait/Release mismatch: '|
? & 'Number of calls to GP.WaitForGreen exceeds the number '|
? & of calls to GP.ReleaseGreen<10>')
 END
 IF pActionFlag = 2 OR pActionFlag = 3
 LOOP UNTIL GPt:WaitCount = 0
 ! Release all outstanding Wait(s) for this Thread
 SELF.ReleaseGreen
 END!LOOP
 END
 END
 RETURN RetVal

The default setting (= 1) for GP:ActionFlag can be overridden in Embed code.

If any outstanding Wait(s) are detected, then;

• A value of 2 results in display of the ASSERTion message and the
Release() of all outstanding Wait(s) for the current thread.

• A value of 1 results in display of the ASSERTion message, only.

• A value of 3 results in the Release() of all outstanding Wait(s),
only.

• A value of 0/False causes any outstanding Release(s) to be
completely ignored.

I am finding it useful to call the GP.MatchWaitRelease() method from Embed
points just below where I have conditional calls to WaitForGreen() and
ReleaseGreen() to ensure I have them properly matched in the logical execution

A G l o b a l V a r i a b l e s P r o t e c t i o n C l a s s

198

path. I usually allow the default value for ActionFlag (=1) to apply, because then I
have the comfort of knowing that the ASSERTion check will always be performed for
me whilst I’m testing (with my application compiled in Debug mode) and that it
will be ignored once my application has been shipped (after being thoroughly tested
and re-compiled in Release mode).

Putting it all together

I’ve included four files with the source for this chapter:

• jmGloVPr.inc and jmGloVPr.clw contain the Globals Protection
(GP) class definitions and logic. They should be placed in your
%Root%\LibSrc folder.

• AB_AddOn.tpl and jmGloVPr.tpw are the template files. They
should be placed in your %Root%\Template folder.

• AB_AddOn.tpl is a “container” for templates I collect and write for
myself. To make available to your application the templates defined
therein, you will need to register this template-chain via the
Setup|Template Registry menu option.

I do hope you will find this class and template set useful. At very least, my aim has
been to share my discoveries about critical (inter)sections with the Clarion
community (at the same time as earning some more Clarion Magazine subscription
credits!).

Acknowledgements

I used CapeSoft’s Object Writer templates (capesoft.com/accessories/owsp.htm) to
create my Class files (jmGloVPr.inc and jmGloVPr.clw). The documentation that
comes with this freebie from CapeSoft provides a wealth of good information about
creating and using classes, and the value-for-money is unbeatable.

At one point, whilst grappling with some problems I was having with variables/
properties in my class, I put out a request for help on the
softvelocity.public.clarion6 newsgroup, and I received an almost instant response
from Jim Kane. Wow! Guidance from “The Master” (thanks Jim).

S o u r c e c o d e

199

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n06varsthreads.zip

A G l o b a l V a r i a b l e s P r o t e c t i o n C l a s s

200

201

CLASSES FOR BACKGROUND PROCESSES

by Dave Harms

One of the most-anticipated features of Clarion 6 is also one of the least-used. It is
the ability to run “worker” threads in the background. Worker threads, often called
daemon threads in the *nix world, are processes that don’t interact with the user.
They may be used for retrieving emails, spooling print jobs or any of a number of
tasks.

So threads are a great way to handle background tasks. But threads seem very
procedural: you start some code running, and it runs until it ends. What if you want
to use threads in an object-oriented environment? Is it even possible to have a class
that runs on its own thread? How do you control threads in an object-oriented
environment?

I’ll try to answer some of those questions, but to make sure that everyone’s clear on
the background thread concept, I’ll start with some procedural code.

C l a s s e s F o r B a c k g r o u n d P r o c e s s e s

202

A background procedure

The simplest way to create a background process is to START a procedure (one that
doesn’t open a window) and let it sit in a LOOP, punctuated by YIELD or SLEEP
statements. Here’s an example of a thread that makes a beep noise once per second:

GoBeep procedure
 code
 loop
 sleep(1000)

 beep

 end

Sleep, by the way, is a straight call to the Windows API function by that name. You
prototype it this way:

 map
 module('winapi')

 sleep(long),raw,pascal

 end
 end

All Sleep does is tell the operating system to ignore this thread for the specified
number of milliseconds.

You can call the procedure this way:

START(GoBeep)

There’s only one problem with the above code: once you start GoBeep, it’ll never
stop running. You can shut down your application, but that loop is still going to
execute, and you’ll have to kill the app off in the task manager. So obviously you
need a way to shut down the loop. The easiest way to do this is with a global
variable:

GoBeep procedure
 code
 loop
 sleep(2000)
 beep
 if glo:stopped
 break
 end
 end

All you need to do is set glo:stopped to a non-zero value, and the loop terminates.
Easy, if not particularly neat.

A l m o s t S T A R T i n g a c l a s s

203

You can test this code in the example application. Choose the Test menu, and then
select Procedure Test. The background thread will begin and you’ll hear the beeps.
Then select Test|Disable Procedure Test to toggle the value of Glo:Stopped. A
check mark will appear beside that menu item, and as long as the check mark shows
(meaning glo:Stopped = 1) any running instance of the background procedure
will immediately terminate.

But what if you want multiple copies of this procedure running at the same time?
Setting Glo:Stopped will shut them all down. Other mechanisms suggest
themselves – you could pass in the address of the global variable to use as a
shutdown mechanism. Or you could poll a global procedure for a shutdown notice.
But all of this takes away from the desired unity of a worker thread. Ideally you
want something just a bit more self-contained. And that leads to the idea of a class
that can run in the background.

Almost STARTing a class

Actually, you can’t run a class in the background. START only works with
procedures, not classes. How about running a class’s method in the background? As
it turns out, you can’t do that either. That’s because the implicit first parameter of
any method is the class itself (well, technically the class’s instance, a.k.a. the
object). START doesn’t allow a class/object as a parameter.

START does, however, allow you to pass up to three strings to a STARTed procedure,
and this turns out to be a very useful feature.

If you can’t START a class, or a class’s method, then the next best thing is to START a
procedure, and pass the object’s address to the procedure as a string. The
procedure’s job is to use the address to locate the object, then sit in a loop and call
the object’s methods as needed.

Figure 1: The Disable Procedure Test option toggled on

C l a s s e s F o r B a c k g r o u n d P r o c e s s e s

204

The example

Take a look at the following class declaration, contained in cciworkr.inc:

!ABCIncludeFile

 OMIT('_EndOfInclude_',_CCIWorkerPresent_)
CCIWorkerPresent EQUATE(1)

cciWorkerClass
class(),TYPE,MODULE('CCIWorkr.CLW'),LINK('cciWorkr.CLW',_ABCLinkMod
e_),DLL(_ABCDllMode_)
Running byte(0),private
StopThread byte(0),private
Start procedure
Stop procedure
Stopped procedure,byte
DoTask procedure,private
 END

 EndOfInclude

cciWorkerClass has two properties, Running and StopThread. Running is set to true
as soon as the thread begins, and to false when the thread exits. StopThread is a flag
that the background thread must check each time through the loop. You could just
use one flag to indicate a stopped/started thread, but there may be a delay between
the request to stop and the actual termination of the thread, depending on the
nature of the task. It’s safer to track the “stop requested” state separately from the
“stopped” state.

The Start method STARTs a procedure (you’ll see that declaration in a moment),
and the Stop method sets the StopThread flag. The Stopped method is called by the
STARTed procedure to determine when to exit. And finally the DoTask method
contains the code the background process is to call on a regular basis.

Here’s the first block of source code from cciworkr.clw:

MEMBER

 include('cciworkr.inc'),once

 map
 WorkerThread(String addr)
 module('winapi')
 sleep(long),raw,pascal

 end

 end

T h e e x a m p l e

205

This class source file has a local map, which contains two procedures used by this
class. The first is the procedure that will be STARTed; the second is the Windows
API Sleep call.

The key here is that although cciworkr.clw contains the methods for the
cciWorkerClass, it also contains the associated procedural code. Having everything
in one location eases maintenance.

Here’s the code for the WorkerThread procedure. This is absolutely straight
procedural code – it isn’t part of the class. But there is an important trick right after
the code statement.

WorkerThread procedure(String addr)
worker &cciWorkerClass
 code
 worker &= (addr)

 if worker &= null

 message('worker object is null - exiting worker thread')
 return
 end
 worker.running = true
 worker.StopThread = false
 loop
 if worker.StopThread
 break
 end
 sleep(1000)
 worker.doTask()
 end
 worker.running = false

This procedure contains a local reference variable of type cciWorkerClass. That
means it can point to any cciWorkerClass object. If you look ahead a little to the
Start method you’ll see that the first parameter to WorkerThread is the address of
the current object. WorkerThread then does a reference assignment:

worker &= (addr)

The parentheses are essential – they convert the numeric addr string to an actual
address. Without the parentheses you’ll get an illegal reference assignment error.

Now that WorkerThread has an object to work with, it can call methods on that
object. It also checks the StopThread property to know when it should break out of
its loop and resets StopThread to False. Each time through the loop the procedure
calls the DoTask method to do whatever useful work the class can do. In this case
the task is, again, just to emit a BEEP.

C l a s s e s F o r B a c k g r o u n d P r o c e s s e s

206

Here are the class methods:

 INCLUDE('CCIWORKR.INC')

cciWorkerClass.DoTask procedure
 code
 beep

cciWorkerClass.Start procedure
 code
 if ~self.running
 self.Running = true
 start(WorkerThread,,address(self))

 end

cciWorkerClass.Stop procedure
 code
 self.StopThread = false

cciWorkerClass.Stopped procedure
 code
 return choose(self.running=0,true,false)

The really handy thing about this approach is that the code that uses this class
simply creates an instance and calls methods. Your declaration might look like this:

worker cciWorkerClass

Here’s the code to start the class:

worker.start()

And here’s the code to stop it:

worker.stop()

That’s pretty easy – starting and stopping the thread is as easy as calling a couple of
methods. You can easily add a pause feature to bypass the DoTask method. And you
can even have multiple instances of the class running and they won’t step on each
others toes. Although the WorkerThread procedure is called multiple times, each
has its own associated cciWorkerClass instance.

C o n s t r u c t o r s , d e s t r u c t o r s , a n d G P F s

207

You can test this code with the Test Class (unsafe) option in the example
application. You’ll see the window in Figure 2.

Click the two thread starting buttons, and you should hear two regular beeps in the
background. Click the buttons again to turn off the threads.

But be careful – this option is labelled (unsafe) for a reason. If you start a thread, be
sure you stop it before closing the window. If you don’t close all background
processes first, you’ll get a GPF. That’s because the thread is still running even after
the procedure terminates, and is still attempting to access the cciWorkerClass
instance which (as near as I can tell) has been trashed by Clarion’s automatic
garbage collection.

Constructors, destructors, and GPFs

You’ll notice that I didn’t use constructors and destructors in cciWorkerClass. In
general, when running background processes, I prefer to exert control over when
threads start up. This is especially important when you are dealing with multiple
objects, where initialization must happen in a specific order, or when you need to
set properties on an object before starting the thread (remember that you cannot
pass parameters to a Clarion constructor).

It is, however, possible to use constructors and destructors with this background
process technique, and in particular the destructor demonstrates an important
technique for thread cleanup.

Here’s a derived class which adds constructors and destructors:

cciSafeWorkerClass
class(cciWorkerClass),TYPE,MODULE('CCIWorkr.CLW')
Construct procedure

Figure 2: The test window

C l a s s e s F o r B a c k g r o u n d P r o c e s s e s

208

Destruct procedure
 END

And here are the method declarations:

cciSafeWorkerClass.Construct procedure
 code
 self.Start()

cciSafeWorkerClass.Destruct procedure
 code
 self.Stop()
 loop
 if self.stopped() then break.
 yield

 end

In Clarion, Construct and Destruct are “magic” method names; these are the
methods called when an application is allocated memory, and when it is disposed
of. That’s the case whether you declare a static object or use NEW and DISPOSE.

In the example application, choose the Class Test (safe) menu option. A window
similar to Figure 2 will appear, but both threads will already be running. That
means the beeps will be synchronized so you’ll hear them as one beep, but after a
few seconds they’ll get out of sync (and it would be interesting to know why...). You
can stop and start the threads with the buttons, but if you leave a thread running
and close the window you will not see a GPF. The reason for that is the code in the
Destruct method which requests thread terimination and then goes into a loop
until the thread has actually terminated.

It’s vital that the Destruct code loops until the thread has terminated; as long as the
thread is running, terminating the object makes a GPF likely, if not inevitable.

Although this code works fine, I advise you do a lot of testing if you use an
automatic destructor in a production environment. Since I’m not privy to the
internals of Clarion’s garbage collection mechanism, I can’t guarantee that a class
will never be trashed in this siutation. Perhaps the best approach is to explicitly call
a cleanup method, and then have that same method called from the destructor, just
in case your explicit call goes missing (and be sure that calling your cleanup
method multiple times will not cause other errors or GPFs!).

T h r e a d s a f e t y

209

Thread safety

You may have noticed that I’m not using a critical section or other mechanism to
prevent simultaneous calls to the Stop or Start methods from mucking up the data.
In part that’s because these simple assignments are atomic; setting a BYTE or a LONG
to a value happens all at once, and two threads can’t contend for the data. But
USHORT assignments are not atomic, and certainly STRING assignments aren’t either.

The other reason I haven’t used critical section is that there are only two threads
involved; the one on which the object is created, and the one which the object itself
creates. There is only one property which can be written by both threads at the
same time, and that is StopThread. If the first thread somehow sets StopThread to a
non-false value at an inopportune time, the worst thing that happens is the thread
will terminate, and since the only way to set StopThread is to call Stop, I would
assume that’s what was supposed to happen. If the worker thread sets StopThread
to false just before the loop, and just after a call to Stop by the first thread, then the
thread will not stop, but that’s not something that a critical section would fix
anyway, and would have to be sorted out in a design review.

Summary

Although Clarion 6’s true threading was hailed as a great step forward, worker
threads remain underappreciated. Happily they’re not that difficult to implement
when they’re wrapped up in an object-oriented framework.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n10workerthread.zip

C l a s s e s F o r B a c k g r o u n d P r o c e s s e s

210

211

WHEN START STARTS

by Steven Parker

Dave Harms recently observed (“Classes For Background Processes” on page 201),
“One of the most-anticipated features of Clarion 6 is also one of the least-used.”
That feature is, in the final analysis, preemptive threading (his chapter shows how
to do preemptive threading inside OOP). There have been a number of articles
written about the gotcha’s and how-to-deal-with’s of preemptive threading. I have,
myself, made some contribution to this. Dave’s chapter is one of the few “here is a
cool thing you can do with preemptive threads.”

Controlling START

Now I want to show you another cool thing you can do with the C6 threading
model: control when a STARTed thread actually starts.

”But Herr Doktor,” you may be thinking “when I START a procedure, obviously it
starts.” You would not be the first person I’ve spoken with recently to think this
and, like them, you’d be wrong. And I can prove it.

Start(NextProc) does not, in fact, immediately launch NextProc. Not only doesn’t
NextProc not launch immediately, the documentation quite clearly says so.

W h e n S T A R T S t a r t s

212

The documentation on the START statement includes this:

Code execution in the launching thread immediately continues with
the next statement following the START and continues until an
ACCEPT statement executes. Once the launching thread executes
ACCEPT, the launched procedure begins executing its code in its new
thread, retaining control until it executes an ACCEPT.

Read that carefully. The statement immediately after Start(NextProc), for example,
executes immediately, not the first statement in NextProc. Accept, it seems,
adjudicates threading within the RTL.

Let’s construct an application to test this.

First, I’ll place an item on the main menu, Standard START(). This calls a procedure
labeled StdStart. Actually, the main menu STARTs StdStart.

StdStart is a Source template procedure. The entirety of its code is:

Start(NextProc)
Stop('I just started NextProc')

NextProc is also a Source procedure. Its code is:

Message('Hi! This is NextProc')
Return

If Start(NextProc)is immediately launched both StdStart’s Stop window and
NextProc’s Message window should be visible simultaneously.

They are not.

You may prove this by running the demo app downloadable at the end of this
chapter. (Written in 9054, the EXE is compiled locally so you do not need any
runtimes to see the effects.) If you click Standard START() on the main menu, you
will see StdStart’s Stop window. You will not see NextProc’s Message window. You
will not see it even if you move the Stop window out of the way.

You will see the Message window when you click “Ignore” on the STOP window.

Just as I claimed, Start() does not immediately launch the named procedure. The
procedure does not launch until Accept cycles. In this case, of course, STOP
suspends the Accept loop so NextProc, precisely as documented, does not start.

In many, if not most cases, this isn’t important. But there are times when I want the
called procedure to start right [expletive deleted] now! How can I do that?

R e s u m e

213

Resume

When SoftVelocity changed the threading model and rewrote the support code, they
introduced a new, thread-related, statement: Resume. The Language Reference states:

The RESUME procedure restores a thread that has been suspended with
the SUSPEND statement. If the threadno parameter is a number of a
thread that was previously suspended by the call to SUSPEND, its
suspending count is decremented. If the suspending count becomes
equal to zero(0), execution of the thread continues from the point
where it has been suspended. Therefore, the number of calls to
RESUME must be equal to the number of calls to SUSPEND for the
thread execution to resume.

RESUME can also be used to activate a new thread immediately.
Normally, a procedure does not allocate memory for thread variables
until the ACCEPT event handler is executed. RESUME can be used to
activate a new thread directly upon procedure entry.

Read the second paragraph again.

Suppose I copy StdStart to ResumeStart and change its code to read:

Resume(Start(NextProc))
stop('I just started NextProc')

If I understand the documentation correctly, NextProc will launch immediately. If
NextProc launches immediately, then I should see both windows.

This is just what happens (see Figure 1).

W h e n S T A R T S t a r t s

214

In the demo app, select “Resume(Start)” from the main menu to prove it to yourself.

Summary

In the vast majority of cases, Accept cycles frequently enough that the slight delay
in launching a new thread is not only unnoticeable, it is irrelevant. However, there
are times when “immediately” has to mean “right now, not in a fraction of a
second.” In fact, it could be more than a fraction of a second. I have a case where I
want to start a thread to print part of a report while the remaining code in an embed
peforms several hundred computations. In my case, it takes up to four seconds for
the remaining code to execute and, therefore, up to four seconds before Accept
regains control.

Adapting a remark made years ago, in another context: you don’t always need to use
Resume to launch a thread immediately. But, when you do, there’s no substitute.

Figure 1: Resume(Start... and both procedures are running

S o u r c e c o d e

215

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n11resume.zip

W h e n S T A R T S t a r t s

216

217

Reports

219

PRINTING A TREE FROM A PAGE LOADED
BROWSE

by David Podger and Deon Canyon

During October and November of 2005, Clarion Magazine published our article A
Tree in a Page Loaded Browse: the Sequel (www.clarionmag.com/cmag/v7/
v7n10pagetree1.html), in three parts. Its content built upon two articles by Ronald
van Raaphorst which appeared in Clarion Magazine in May 2003.

Taken together, the above articles explained a simple way to implement an “any-
level, any-length” tree in a single .tps file and to view and manipulate it from within
a standard Clarion page-loaded browse.

A dialogue tree

There are many uses for such a file structure, but our interest was to use it to
represent interactive dialogue. A stripped-down example of a dialogue tree is shown
in Figure 1.

P r i n t i n g A T r e e F r o m A P a g e L o a d e d B r o w s e

220

There are four record types shown in Figure 1:

• SScripta script consists of a set of “questions”

• Q Questionone or more possible responses are attached to each
question

• R Response”actions” are executed when a given response is chosen

• A Actionan action executes an expression and saves the result

As can be seen, this tiny tree has a length of seven items, with four levels. In
practice our dialogues need no more than 50 levels, but benefit from having no
length limit.

At run-time, when a script is executed, the end-user chooses a pathway through the
script by selecting from amongst the offered responses. For now, however, we are
just interested in the design environment.

Follow-on questions may be attached to responses, as may be seen in Figure 2.

Even more questions (and their associated responses and actions) may be added, to
the required depth.

Figure 1: A simple dialogue tree

Figure 2: Added follow-on questions

T h e t r e e d e s i g n

221

The tree design

It will help at this point to explain Ronald van Raaphorst’s contribution to the
design of a tree file, using a brief excerpt from our earlier article. He proposed that
for each entry in the above tree there should be a hidden CSTRING field that
controlled everything. In the code below we use his name (SeqNo) for this field. It is
the only additional data field needed to produce the above tree in a standard page
loaded browse.

Here are the control strings for the entries in Figure 2:

Type Control string Level
S 0001 1
Q 0001.0001 2
R 0001.0001.0001 3
A 0001.0001.0001.0001 4
A 0001.0001.0001.0002 4
R 0001.0001.0002 3
Q 0001.0001.0002.0001 4
R 0001.0001.0002.0001.0001 5
A 0001.0001.0002.0001.0001.0001 6
R 0001.0001.0002.0001.0002 5
A 0001.0001.0002.0001.0002.0001 6
S 0002 1

Each additional level in the tree adds another five characters to the control string.

The tree file is kept in the sort order dictated by this string. A brief inspection of the
above control strings will confirm that they are indeed in that order. The decimal
points that separate each level are for readability only, but very handy for that, as
can be seen. When it comes to inserting additional entries anywhere in the tree,
there is no problem, there is room for thousands of entries.

What about the Level values shown in the above table: where do they come from?
As explained, the control string provides everything. It gives the level number, by
using this simple expression: Level = INT(LEN(SeqNo) / 5) + 1.

As will be seen below, the code that prints a dialogue tree does so by re-generating
its structure from the SeqNo field and from nothing else.

In the time that has passed since the above article was written we have been
attempting some longish case studies and eventually ran into the need for hard
copy. The output needed is more like a flowchart or diagram, because dialogue trees
can splay out sideways and run to a number of pages. Once on paper they can be

P r i n t i n g A T r e e F r o m A P a g e L o a d e d B r o w s e

222

studied, shared with a group and revised before being modified within the
development environment. Creating a good dialogue is a non-trivial task.

Mercifully, a kind of inevitable discipline exerts itself on the authors of interactive
dialogues. If they entertain too many possibilities they find their dialogue has
become unmanageable. Typically, a “green” line of connected responses is defined,
which runs through the dialogue from beginning to end. Then there are “orange”
lines that run for a while, but ultimately fizzle out or rejoin the main stream. “Red”
lines are more swiftly curtailed.

In a complex dialogue there may of course be more than one green line, but
normally there are only a few. The effect of this discipline, imposed as it were by
common sense, is that dialogue trees do not splay out too far. They take on a
vertical orientation, generally work their way downwards and do not sprawl
unpredictably. This simple tendency informed our solution. Figure 3 shows a brief
example dialogue. It asks a few questions to determine how many descendants the
respondent has. It has a depth of eight levels.

The browse in Figure 3 is a standard Clarion browse of a tree. Please refer to the
earlier articles to see how it works. The full content of the highlighted entry in the

Figure 3: An example dialogue

P r i n t i n g t h e t r e e

223

browse is shown in a hot field below the browse. The pseudo code in that hot field
shows the simple downward flow of a dialogue being bypassed using a jump
function (logically identical to a goto). Jumps are represented diagrammatically to
the right of the browse and may go forward or back.

Printing the tree

So, how could the tree in Figure 3 get onto hard copy? One way would be to use
third-party tools that allow printing direct from a browse. Used to the full, these
tools will print everything in the tree, including the line icons that delineate the tree
and the characters “S”, “Q”, “R”, and “A”, which are also icons. But they are a
resource-heavy way to go for just one output, when you add up all the tools needed
and their impact on program size.

The solution illustrated in Figure 4 presents the tree as a standard ASCII file. Pretty
it is not. But being in this unadorned format it can be viewed by Notepad and
printed.

Note that the expressions in an Action entry can be as long as required, since they
may be spread over multiple lines. This chapter does not cover the printing of jump
lines, which are a bit specific to a dialogue, but it does explain the code needed to
do the tree itself.

Figure 4: A plain solution

P r i n t i n g A T r e e F r o m A P a g e L o a d e d B r o w s e

224

Getting started on coding

The line characters in Figure 4 are to be found in a font called MS Linedraw. Its file
name is LineDraw.ttf and it can be downloaded and made available to any Clarion
program, or be selected from within Notepad. Google lists a number of download
sites. The line characters are identical to those in the old DOS extended character
set and have the same decimal values. A Google search on “ASCII codes” provides
convenient tables. Figure 5 shows an extract from one such table. Each character’s
decimal value and appearance is shown.

Some preliminary manipulation of the TRE:SeqNo field in the TREE file is needed to
create a tree ready for printing. This is done in three stages using a queue called
StringQu. The queue is defined globally so as to be accessed by multiple
procedures.

The fields in StringQu are shown in Figure 6, an extract from the data definition
entered into the Global Properties of the app.

Figure 5: An extract of extended ASCII codes

G e t t i n g s t a r t e d o n c o d i n g

225

The queue fields are:

The only fields that are read from the TREE file are:

Figure 6: The fields in StringQu

SQU:RecNum Holds running number from 1 to the number of
entries in the queue

SQU:Label Holds the contents of the TRE:TreeAuto field, an
unchanging number identifying every record in the
TREE file.

SQU:Type A single character field containing “S”, “Q”, “R” or
“A”

SQU:Level The level value calculated from the TRE:SeqNo field

SQU:EndLine The TRE:TreeAuto value of the record marking the
end of the vertical line which began at the
TRE:TreeAuto in SQU:Label

SQU:Lines A 50 character field holding the tree lines as they
will be printed

SQU:JumpLines Not used in this chapter

TRE:PlayAuto An unchanging number identifying each “Play” or
Case Study

TRE:SeqNo The hidden CSTRING field that defines a tree’s
structure

TRE:TreeType A single character field containing “S”, “Q”, “R” or
“A”

TRE:TreeAuto An unchanging number identifying every record in
the TREE file

P r i n t i n g A T r e e F r o m A P a g e L o a d e d B r o w s e

226

Note that the queue entries are of a manageable size, principally because they do
not need to hold the contents of the TRE:SeqNo field.

The routine doing the work is CalcLines and its job is to produce a finished
StringQu which can then be used to create an ASCII file in the format shown in
Figure 4. The main task of the first of the three stages is to extract needed fields out
of TREE and write them to StringQu as follows:

CalcLines ROUTINE
 ! build initial version of StringQu
 FREE(SotringQu)

 CLEAR(TRE:Record)

 STREAM(TREE)

 ! confine to one Case Study

 TRE:PlayAuto = GLO:Play
 ! key has two fields: TRE:PlayAuto and TRE:TreeAuto
 SET(TRE:Key_SeqNo,TRE:Key_SeqNo)

 LOOP

 NEXT(TREE)

 IF ERRORCODE() THEN BREAK.

 IF TRE:PlayAuto <> GLO:Play

 ! out at end of the one Case Study
 BREAK
 End
 ! Script, Question, Response, Action
 SQU:Type = TRE:TreeType[1]
 ! save unchanging ID of TREE record
 SQU:Label = TRE:TreeAuto
 IF SQU:Type[1] = 'S'
 ! just gets the indenting right
 SQU:Lines[1] = ' S'
 ELSE
 ! target for lines during 3rd pass
 SQU:Lines = ''
 END
 SQU:Level = INT(LEN(TRE:SeqNo) / 5) + 1

 ! calculated in the next stage

 SQU:EndLine = 0
 ADD(StringQu)

 END

 FLUSH(TREE)

The above code pretty much explains itself, with some help from the comments. At
its conclusion all the information needed to construct a printable tree is contained
in StringQu, but it needs some further work.

G e t t i n g s t a r t e d o n c o d i n g

227

The second stage of the CalcLines routine reads StringQu for just one purpose – to
calculate a value for SQU:EndLine. When this is done the level, starting point and
length of every vertical line in the tree will be known. The trick is to read the queue
backwards, saving up line end points until they can be written back into the entries
where the respective lines began.

 ! calculate ending RecNum for each line and
 ! save in the record where the line begins
 PrevLevel = 0
 ! array of 50 LONG's, one per level
 CLEAR(LevelArray)

 ! read queue backwards

 LOOP RecNum = RECORDS(StringQu) TO 1 BY -1

 GET(StringQu,RecNum)

 IF SQU:Level < PrevLevel

 ! if going up to a higher
 ! level in tree then write
 ! array value at index

 SQU:EndLine = LevelArray[SQU:Level+1]
 ! SQU:Level+1 to SQU record
 ! and zero entry in array
 LevelArray[SQU:Level+1] = 0
 END
 ! save RecNum for tracing
 SQU:RecNum = RecNum
 ! purposes only
 PUT(StringQu)

 ! if level has changed and no

 ! value is present as yet, then
 ! save RecNum in the SQU:Level'th
 ! position in LevelArray
 IF SQU:Level <> PrevLevel
 IF ~LevelArray[SQU:Level]
 LevelArray[SQU:Level] = RecNum
 END
 END
 ! and update PrevLevel
 PrevLevel = SQU:Level
 END

For those who are interested, the best way to understand the above code is not for
me to attempt an essay on it! Rather, study the comments as you work through a
pencil and paper exercise and see that it works.

In the last stage the LevelArray is cleared and used again. It is here that the
SQU:Lines field can be filled in with the special line drawing characters. All the

P r i n t i n g A T r e e F r o m A P a g e L o a d e d B r o w s e

228

lines across one entry are generated by the inner LOOP based on what is found in the
LevelArray.

 ! now, drop in the line characters
 CLEAR(LevelArray)

 ! read forwards in StringQu

 LOOP RecNum = 1 TO RECORDS(StringQu)

 IF RecNum = 1

 GET(StringQu,RecNum)

 ! hold for next entry in queue

 NextNum = SQU:EndLine
 SQU:Lines = ' S'
 PUT(StringQu)

 ELSE

 GET(StringQu,RecNum)
 IF NextNum >= RecNum
 ! if Endline is equal or less
 ! than current record then the
 ! SQU:EndLine from the
 ! preceding record was written to.
 LevelArray[SQU:Level] = NextNum
 END
 LOOP I# = 1 TO SQU:Level
 ! writes lines to each position
 ! in SQU:Lines up to SQU:Level
 ! but only if LevelArray contains
 ! an EndLine value there
 IF LevelArray[I#]
 ! if so, decide which line char:
 IF I# < SQU:Level
 ! a vertical line
 SQU:Lines[I#] = '<179>'
 ELSIF LevelArray[SQU:Level] = RecNum
 ! an ending corner
 SQU:Lines[I#] = '<192>'
 SQU:Lines[I#+1] = SQU:Type
 LevelArray[I#] = 0
 ELSE
 ! or mid-line connector
 SQU:Lines[I#] = '<195>'
 SQU:Lines[I#+1] = SQU:Type
 END
 PUT(StringQu)
 END
 END
 IF SQU:Level = 1
 SQU:Lines = ' S'
 PUT(StringQu)
 END

A d d i n g t h e c o n t e n t

229

 ! hold for next entry in queue
 NextNum = SQU:EndLine
 END
 END

For tracing purposes StringQu can be viewed in a List control, just to be sure it is
okay. An example is shown in Figure 7.

Adding the content

At this stage in the proceedings, the structure of the dialogue tree has been
extracted successfully. The next steps is to join it up with the tree’s content, take
care of Action entries that will run for more than one print line, and output an
ASCII file. These tasks are addressed in the routine BuildTREEFILE.

The TREEFILE is defined in the After File Declarations Global embed:

TreeName STRING(64)
TREEFILE FILE,DRIVER('ASCII'),NAME(TreeName),|

 PRE(TRA),CREATE

 Record RECORD,PRE()
 Line STRING(255)
 END
 END

Figure 7: Displaying StringQu in a List

P r i n t i n g A T r e e F r o m A P a g e L o a d e d B r o w s e

230

The routine begins by using the Case Study name to give a name to the ASCII file. It
then proceeds to CREATE the file before it is opened, which has the effect of deleting
any existing file of that name and beginning with an empty ASCII file..

BuildTREEFILE ROUTINE
 ! form the name for the TREEFILE to be
 ! generated, using the Case name
 TreeName = CLIP(PATH()) & '\Generate\' & |

 CLIP(LOC:CaseName) & '.TXT'

 CREATE(TREEFILE)

 IF ERRORCODE()

 MESSAGE('Failed creating TREEFILE')

 END

 OPEN(TREEFILE)

 IF ERRORCODE()

 MESSAGE('Failed opening TREEFILE')
 END

The routine then reads all the records in the TREE file for the case and reads each
matching entry from StringQu.

 T# = 0

 CLEAR(TRE:Record)

 STREAM(TREE)

 TRE:PlayAuto = GLO:Play

 SET(TRE:Key_SeqNo,TRE:Key_SeqNo)

 LOOP

 NEXT(TREE)

 IF ERRORCODE() THEN BREAK.

 IF TRE:PlayAuto <> GLO:Play
 BREAK
 END
 T# += 1
 GET(StringQu,T#)

A matching entry from StringQu is read for each TREE record, and a record in the
ASCII file is built from a fixed length SQU:Label, a variable length set of vertical
lines from SQU:Lines and the text in the TRE:TreeText field. As needed, long
entries are formed into multiple records.

 ! divide TreeText if CR there
 X# = INSTRING('<13>',TRE:TreeText,1,1)

 IF X#

 ! blank the first CR found
 TRE:TreeText[X#] = ' '
 TRA:Line = FORMAT(SQU:Label,@n_5) & ' ' |

A d d i n g t h e c o n t e n t

231

 & CLIP(SQU:Lines) & |

 ' ' & TRE:TreeText[1 : (X#-1)]
 ELSE
 TRA:Line = FORMAT(SQU:Label,@n_5) & ' ' |
 & CLIP(SQU:Lines) & ' ' & TRE:TreeText
 END
 ADD(TREEFILE)

 IF ERRORCODE()

 MESSAGE('Failed adding to TREEFILE')
 END
 L# = LEN(CLIP(TRE:TreeText))

 !reduce S# - clip off last line & icon

 S# = LEN(CLIP(SQU:Lines)) - 2
 CLEAR(SaveLines)
 ! these are the lines to be duplicated
 ! in the following rows
 SaveLines = SQU:Lines[1 : S#]
 ! if needed, add extra rows to dialogue
 LOOP WHILE X#
 ! save beginning of remainder of TRE:TreeText
 Y# = X# + 2
 ! see if another CR/LF
 X# = INSTRING('<13>',TRE:TreeText,1,1)

 ! more to chop up?

 IF X#
 ! blank the CR found
 TRE:TreeText[X#] = ' '
 ! ending corner needs no following vertical
 IF SQU:Lines[S# + 1] = '<192>'
 TRA:Line = FORMAT(SQU:Label,@n_5) & ' ' |
 & CLIP(SaveLines) & ' ' & TRE:TreeText[Y# : (X#-1)]
 ELSIF SQU:Lines[S# + 1] = '<195>'
 ! but mid-line connector needs one
 TRA:Line = FORMAT(SQU:Label,@n_5) & ' ' |
 & CLIP(SaveLines) & |
 '<179> ' & TRE:TreeText[Y# : (X#-1)]
 END
 ELSE
 IF SQU:Lines[S# + 1] = '<192>'
 ! ending corner needs no following vertical
 TRA:Line = FORMAT(SQU:Label,@n_5) & ' ' |

 & CLIP(SaveLines) & |

 ' ' & TRE:TreeText[Y# : L#]
 ELSIF SQU:Lines[S# + 1] = '<195>'
 ! but mid-line connector needs one
 TRA:Line = FORMAT(SQU:Label,@n_5) & ' ' |
 & CLIP(SaveLines) & |
 '<179> ' & TRE:TreeText[Y# : L#]
 END

P r i n t i n g A T r e e F r o m A P a g e L o a d e d B r o w s e

232

 END
 ADD(TREEFILE)

 IF ERRORCODE()

 MESSAGE('Failed adding to TREEFILE')
 END
 END
 END
 FLUSH(TREE)

 CLOSE(TREEFILE)

And that is it. The end result is an output working diagram at a very low cost in
program size and which is fast and effective. Figure 4 has already shown what it
looks like.

233

PRINTING UNKNOWN QUEUE FIELDS

by Bjarne Havnen

Now and then I make procedures that use a lot of queues which have some fields in
common, but the presentation in lists requires varying numbers of LONGs to hold
color, style, icon information, making it a little nightmare to keep a TYPE definition
synchronized with the local queues and listboxes.

I need to create reports from these queues, and I like to use a generic report that
reports the fields I know, ignoring every other field (and, for that matter, the order
in which this fields appear).

I taught a Clarion class the other day where one of the participants needed to
accomplish the same task. I demonstrated one way to do it, which I find rather
clever.

The template override

In Clarion 6, you need to switch templates to change a report from table-based to
queue-based. I don’t understand why queue-based reports are managed using code
overriding the standard template since a class to process a queue exists (see my
earlier article about using the QueueProcessManagerClass – www.clarionmag.com/

P r i n t i n g U n k n o w n Q u e u e F i e l d s

234

cmag/v7/v7n03qprocess.html), but the template override works just fine and is very
easy to understand.

The first thing I do is design the report using locally defined variables. The report’s
prototype is set to (*Queue passedQ). Note that the queue is not named; the
procedure just takes a queue, no matter what design that queue has.

I set the reports data source to Queue and tell the report to process passedQ. Now, I
can call the report with any queue. So far, no information is visible in the report, it
just loops Records(passedQ) times. I need to find the fields I want for the report
and assign their value to the local variables.

Who()?, What()?

My very first queue reporting task needed to report on five queues with record
history data. All these queues had only three fields in common: Prompt,
CurrentValue and NewValue. Each queue had a variety of color fields, icons and
other fields with obscure usage.

I do not particularly like to design reports, so if I can get away with one report for
all these queues, I am more than happy.

Among my favourite Clarion functions are Who() and What(). These functions make
it possible to extract the information needed from any structure. If I want to find a
field labelled Name, I can easily locate and use that field with no knowledge of the
structure in question:

i=0

Loop
 i+=1
 If Not Who(passedq,i) !no field
 Break !terminate loop
 End
 If Match(Who(passedq,i),'*Name',Match:NoCase+Match:Wild)

 !field found, assign value

 Loc:Name = What(passedq,i)
 End
End!loop

It’s that simple. Note that I’m using the Clarion MATCH function, which accepts a
regular expression. I’m doing a case insensitive match, and I use a wildcard so I can

W h o () ? , W h a t () ?

235

handle queues with and without prefixes. All I need to do in my report procedure is
to specify all the fields and embed the code in TakeRecord before Print().

Obviously, doing the loop for every record in the queue is overkill. One time should
be sufficient if I use reference variables instead. Unfortunately, reference variables
can’t be used in a report, so I need both a reference and an assignment to the local
variable for every field I need to report. I move the code above to the beginning of
the procedure and replace the line

Loc:Name = What(passedq,i)

with

Ref:Name&=What(passedQ,i)

Then , in the Print() embed, I do the field assignment

Loc:Name = Ref:Name

This is simple code in two embeds enables me to send in any queue holding a
predetermined field or fields. I can even send a queue with fewer fields, all I get is
an empty column.

P r i n t i n g U n k n o w n Q u e u e F i e l d s

236

237

PRINTING A “NO RECORDS” REPORT

byBruce Johnson

The request seemed simple. Take a program that is currently generating reports,
and modify it so that the reports are generated even if there is no data.

The standard behavior for a Clarion, ABC, report, if there is no data, is to pop up a
message which says “No records”. Suppressing this message is easy, but the client
wanted something slightly different. What he wanted was that the report would still
print, but with a data band explaining why there wasn’t any data to print.

As with many things ABC, the solution is simple. However it takes a bit of digging
to get everything just right. In short, you’ll need to create a special report detail
band, set it to only display if there are no records, and then manually force the
report to print.

Add the detail band

The first thing to do is to create a new band on the report. Call this band
NoDataDetail (see Figure 1).

P r i n t i n g a “ N o R e c o r d s ” R e p o r t

238

Set the band filter

Set the filter for this band to

False

This will ensure that the band is not printed when records are found.

Figure 1: Creating NoDataDetail

O p e n t h e r e p o r t

239

At first glance the rest should be an easy problem. You can set a filter for each band,
so all it then needs is a suitable filter so the band is printed if no others are printed.
Unfortunately it isn’t this simple. The usual ABC behavior is to check for records
first, and if there’s no data, then don’t open the report at all.

Open the report

The TakeNoRecords method is the starting point to the solution. This is the method
that is called when no data is present for the report.

In this case though more code is required. The report has to be opened, and the
ReportManager class (which is the class driving the report) has to be correctly
informed that the report is open.

In the ThisWindow.TakeNoRecords method, before the parent call, add this code:

IF Not SELF.Report &= NULL

 SELF.OpenFailed = 0

 OPEN(SELF.Report)

Figure 2: Setting NoDataDetail’s filter

P r i n t i n g a “ N o R e c o r d s ” R e p o r t

240

 IF Not SELF.Attribute &= NULL

 SELF.Attribute.Init(SELF.Report)
 END
 PRINT(Rpt:NoDataDetail)

 BandPrinted = True ! this line is optional, see step 7 below

 IF Not SELF.Preview &= NULL
 SELF.Report{PROP:Preview} = SELF.PreviewQueue.FileName

 END

END
RETURN

The item in bold is the name of the “no data” detail that was created earlier in step
1.

Modify AbReport.Inc

Unfortunately, at the time of writing this (Clarion 6.3, build 9055), there is a slight
complication. In the line above, Self.OpenFailed = 0, the OpenFailed property is
set to zero. This property is set to one by the class, just before the call to
TakeNoRecords. The complication is that the OpenFailed property is a PRIVATE
property of the class.

In order to use this property in the app it needs to be set either as PROTECTED or as
public. To do this you need to edit the \Clarion6\Libsrc\AbReport.Inc file.

Search the file for

OpenFailed BYTE,PRIVATE

and replace it with

OpenFailed BYTE !,PRIVATE

Changing the ABC classes is never a great idea. Ideally you would not need to make
the change mentioned in Step 4. In future versions of Clarion it may not be
necessary to do so. I strongly suggest that you avoid making changes to ABC
whenever possible. And keep in mind that if you do make changes you’ll you’ll have
to redo this modification after upgrading to a new release.

That said, the nature of the change is relatively safe. It cannot introduce any side-
effects to existing programs, and won’t affect all your other reports in this, and
other, apps. Since the change means making the property more visible (not less so)
by definition it cannot affect any existing code.

S e t O p e n R e p o r t ’ s r e s u l t t o 0

241

The nature of the change is also “visible”. If the change is not made, the compiler
complains. This is better than a feature simply not working anymore. This means if
Clarion 6.3, build 9056 still has this property set as Private, then the compiler will
complain, basically prompting you to make the change again.

The risk in modifying the shipping classes is that SoftVelocity may change how the
class works and remove OpenFailed entirely; after all, you make code private so you
have the freedom to rewrite it without affecting how others use the class. But the
odds of OpenFailed going away are fairly low.

Set OpenReport’s result to 0

If there are records for the report, then the OpenReport method, in the class, returns
a non-zero value. Since code may be added to the OpenReport method by other
report add-ons, it’s important to reset this result to zero. Since the report should
always be opened, it’s simple to override the ReturnValue which is returned by
OpenReport.

So in the ThisWindow.OpenReport method, straight after the call to
Parent.OpenReport add the following line;

ReturnValue = 0

Set SELF.Response

The only thing left to do is to set the property Response to RequestCompleted. This
is best done in the AskPreview method, before the parent call.

SELF.Response = RequestCompleted

PARENT.AskPreview

The report will now print if no records are found.

P r i n t i n g a “ N o R e c o r d s ” R e p o r t

242

Other considerations

It’s worth making sure that the report accurately detects that there are no records to
print. In other words, TakeNoRecords only gets called if there is no data for the
report. It doesn’t get called if there is data for the report, but no bands are printed.

My point here is that you can add filters to all your bands, and even though there is
data being processed, because of the band filters nothing is printed. In this case
you’ll get a blank report (with just the header and footer) but no NoDataDetail
band.

One solution to this is to make sure that records are properly filtered using the
template options and, if necessary, using the ThisWindow.ValidateRecord embed
point. If you return from ValidateRecord (setting ReturnValue to either
Record:Filtered or Record:OutOfRange) then TakeNoRecords will still be called.

Handling a blank report

If filtering the data completely in ValidateRecord is not possible, and you must use
band filters, then you need to add some code to handle the case of a blank report. In
this situation there is data, but because of the band filters, no bands are printed.
This is more likely with reports with complicated band filters.

If you think you are going to encounter this situation, then the solution is a two
step process. First you need to set some local variable to true the moment any band
is printed. Second, in the EndReport method, before the parent call, test this
variable. If it is false, print the NoDataBand.

For example, assuming the variable is called BandPrinted, declared as a LONG, then
the code in ThisWindow.EndReport would look like this;

If Not BandPrinted
 Print(RPT:NoDataDetail)

End

S u m m a r y

243

Summary

Suppressing a “No records” message in a report is easy; printing a “No records”
report is a bit more complicated, but still relatively straightforward provided you
don’t mind making (and maintaining) a simple modification to one of the standard
ABC classes. And you may need to add a bit more code if your detail band filtering
removes any records that would otherwise have printed.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n12norecords.zip

P r i n t i n g a “ N o R e c o r d s ” R e p o r t

244

245

WRITING TO A PRINTER PORT: SENDING
ESCAPE CODES

by Steven Parker

The problem: How do I send a control code (a.k.a. escape sequence or printer
control) to a printer? The Clarion report structure no longer supports sending
embedded control codes. There is no Clarion statement that allows sending them, at
least not since CDD.

In fact this problem is a problem because of Windows. Clarion certainly contributes
to the problem. But, it is first and foremost caused by Windows.

How does Clarion contribute? In making the transition to Windows, TopSpeed
changed the PRINT() statement. In Clarion for DOS (all iterations, as far as I can
recall), the PRINT() statement immediately sent its argument directly to the printer.
So, for example, embedding

Print('Hi there!')

caused the string “Hi there!” to go immediately to the printer. Similarly,

Print('<12>')

W r i t i n g T o A P r i n t e r P o r t : S e n d i n g E s c a p e C o d e s

246

immediately sent a form feed (”printed” a form feed). Complete programmer
control was as easy as:

If NDX = Records(ListQueue)

 Print('<12>')

End

In fact, a CDD developer was rarely, if ever, required to embed escape sequences in
a report. Any control code, any, could be selected from the report formatter menu.
Control codes or printers not supplied by TopSpeed could easily be added to a
printer control file (which had to be distributed). This was the subject of my article
“Printer Control in 3.0” (Clarion Tech Journal, 6, 2; March/April 1994), 12 years
ago. Granted, Clarion for Windows does allow setting font attributes for one or
more report controls, landscape/portrait orientation, etc., right in the report
formatter, without resorting to control codes.

With some work, and remembering to call SetTarget, fonts can be affected
dynamically at runtime. A good number of report properties can be affected with
SetTarget at run time. With more work, a degree of program control of form feeds is
possible (see, for example, Reports: OOP, ABC and Ignoring Templates, Part 3 -
www.clarionmag.com/cmag/v7/v7n08ignorereports3.html). But what Clarion now
allows me to do seems limited compared to the complete programmatic control I
had in DOS. For example, try embedding the Print('<12>') code snippet in a
Windows report. It won’t compile.

Microsoft itself, however, is primarily responsible for these difficulties. When
Windows became the mediator between the program and the computer and
between the computer and the printer, when Microsoft decided to isolate hardware
and make direct communication with it all but impossible, strange things began to
happen.

Hardware manufacturers eventually came to love this (it did take a while). Under
Windows, hardware no longer needs to work quite so hard – printers can be
“dumber” since the hard work of formatting documents is done in software. A
vendor’s hardware line can be more generic under the skin, reducing production
costs.

The page to be printed is created by Windows, not the printer, not the user’s
application. Then it is dumped to the printer, again by Windows. Windows is
specifically designed to isolate end user applications from hardware (and quite a lot
else; in fact, I am beginning to think that the transition from line printing to page
printing is the real conceptual mistake underlying the current conundrum). The

247

printer “only” needs a way to translate Windows GDI commands into its own
proprietary formats.

Enter the “driver.”

Driver software, of course, is much cheaper to produce and distribute than
precision hardware. On the other hand, producing stable and accurate drivers has
turned out to be a somewhat more ambitious and elusive goal. Add to that, any bugs
that may or may not exist in the printer driver sit on top of any bugs that may exist
in Windows. This wonderful symbiosis has evolved over the years so that it now
seems that what ought to be an updated driver is accompanied by a new model
printer. This new model, of course, is just the previous printer with some slight
change (sometimes only the driver). The change makes the new printer
incompatible with the previous model; the difference may be a slight as a
renumbered printer cartridge. The HP Laser Jet III driver can be used on Laser 4s
and the full family of 5s, for example, but this is a thing of the past now. An Epson
C88 will not respond to the C86 driver even though they are essentially the same
machine.

The fact is that developers simply cannot rely on two printers of the same make and
model producing identical output. Two machines manufactured 20 seconds apart
may render fonts slightly differently or a given stroke noticeably differently. These
same two machines may have different non-printable areas. This last is a major and
often reported problem.

I have seen non-printable areas on department class lasers (duty cycles of 5000 or
more pages per month) vary from 1/8 inch to almost 1/2 inch. The spec for the
machines is 1/4 inch. In DOS, a 1/4 inch unprintable margin meant exactly that, 1/4
inch. In Windows, it means “a smallish distance.”

Trying to produce precision output, as required by labels or government or
insurance forms can become quite a challenge to the hair line. And, these are cases
where minor adjustments of left or right margins (see www.clarionmag.com/cmag/
v2/v2n10nudge.html) just won’t do; moving the output slightly one way causes
even more output to be cut off on the other side.

There are printer commands to “reset” the margins, to ignore the non-printable area
in these kinds of printers (“Windows printers” do not, so far as I know, advertise
their control codes; higher end machines do make this information available –
though sometimes you have to search, vigorously, for it). Thus the current exercise:
How to get these commands to the printer?

W r i t i n g T o A P r i n t e r P o r t : S e n d i n g E s c a p e C o d e s

248

Forward to the past

So, how in this Windows world do I do a DOS-ism? In fact, there are several ways.
They fall into two basic categories: easy and hard. The hard way is to use the
Windows API (there is another hard way; it involves the Spooler API but I think
that is best left alone for a while). The easy ways, there are two that come
immediately to mind, are wrappers for the hard way.

With a little help from my friends, however, using the API is not so terribly hard.
The easy ways, therefore, are all that much easier. The friend, in this case, is Paul
Attryde and his The Clarion Insider (www.attryde.com/clarion/index.htm) web site.
Paul earns his daily bread using the API to enable applications to talk to hardware.
So his advice and site are a most valuable resource.

Two of his Clarion Insider articles are particularly important to the task at hand: 16-
bit Serial RS232 Communications (www.attryde.com/clarion/col_serial16.htm) and
32-bit Serial RS232 Communications (www.attryde.com/clarion/cw_serial32.htm)
(several of Paul’s Clarion Insider articles are available in the Clarion Online archives
here at Clarion Mag; these two are not among them as they never had a chance to
appear in Clarion Online).

These articles are so important that I am going to assume you have read them both.
Both. The 16-bit Serial RS232 Communications (www.attryde.com/clarion/
col_serial16.htm) article provides not only the foundation required for
understanding 32-bit Serial RS232 Communications (www.attryde.com/clarion/
cw_serial32.htm), it contains information that is still necessary in 32 bit Windows
for accessing devices on serial ports (if serial ports interest you).

”Why ‘good Doctor’, are you referring us to articles on serial communication when
our printers are parallel devices?” Good question. Easy answer. Accessing,
outputting to and releasing a port is the same for both serial and parallel ports.
Some aspects of serial ports setup, for example baud, stop bits and parity, are not
required for parallel ports. In other words, those bits are irrelevant. But everything
else is the same for both.

The key to writing directly to a port, Paul tells us, is that “for the 32-bit API
Microsoft removed the port-specific APIs... and made the file API calls of
CreateFile(), ReadFile(), WriteFile() and CloseHandle() work with both files
and ports.”

So, the sequence to drop a control code directly to a printer is

CreateFile

C r e a t e F i l e

249

WriteFile

and

CloseHandle

Time to look at these three calls.

CreateFile

Windows is a lot like Clarion. Did you know that?

In Clarion, everything has an FEQ (Field EQuate – look up “Field Equate Labels” in
the on-line help; this is a seminal concept in Clarion).

In Windows, everything has a handle.

An FEQ is a number, the number of a control. A handle is a number, the number of
a Windows object.

To use an API to address a Windows device, you need to know its handle (one
rather significant difference is that Clarion not only creates FEQs but automatically
makes them available as Field Equate Labels; in Windows, you have to go get
them). In the case of ports, CreateFile (msdn.microsoft.com/library/
default.asp?url=/library/en-us/fileio/fs/createfile.asp) is the API to get that handle:
“The CreateFile function creates or opens a file, file stream, directory, physical
disk, volume, console buffer, tape drive, communications resource, mailslot, or
named pipe. The function returns a handle that can be used to access an object.”

CreateFile (CreateFileA in ANSI, CreateFileW in Unicode) is one of those calls
with a typically lengthy Microsoft prototype:

CreateFileA(*CSTRING lpFileName, |

 ulong dwDesiredAccess, |
 ulong dwShareMode, |
 ulong lpSecurityAttributes, |
 ulong dwCreationDisposition, |
 ulong dwFlagsAndAttributes, |
 ulong hTemplateFile),long, raw, pascal

lpFileName is a CString, passed by address. It is the variable containing the name
of the port whose handle you want.

W r i t i n g T o A P r i n t e r P o r t : S e n d i n g E s c a p e C o d e s

250

dwDesiredAccess: a DWord (ULong but a Long will do) indicating whether you want
to read, write or do both. Generic_Write (040000000H) and Generic_Read
(080000000H) and Generic_Write + Generic_Read (0C0000000H) are the options.
To simply output to a printer, 040000000H will do.

dwSharedMode: ”The sharing mode of an object, which can be read, write, both, or
none.” Printing is not a shared operation. So this parameter is “0” (zero).

lsSecurityAttributes: security attributes are not relevant. Zero. The same is true
for and (in fact, it must be zero for when getting a handle to a port).

dwCreationDisposition: “An action to take on files that exist and do not exist.”
However, for ports, only OPEN_EXISTING (3) is permitted. So, “3” it is. (You can
create a file programmatically but a new port requires a card and screw driver.)

So, a call to CreateFile looks like this:

PortName = 'LPT1:'
PortID = CreateFileA(PortName, 040000000H, 0, 0, 3, 0, 0)

Yes, network printers can be accessed this way. From the DOS prompt, or in a batch
file, do a Net Use to assign the network printer to a port name. Name that port in
the PortName assignment. That’s it.

Error checking? In this case, quite easy. If CreateFile fails, it returns -1. Otherwise,
it returns the desired handle:

If the function succeeds, the return value is an open handle to a
specified file. If a specified file exists before the function call and
dwCreationDisposition is CREATE_ALWAYS or OPEN_ALWAYS, a call
to GetLastError returns ERROR_ALREADY_EXISTS, even when the
function succeeds. If a file does not exist before the call, GetLastError
returns 0 (zero).

If the function fails, the return value is INVALID_HANDLE_VALUE.
To get extended error information, call GetLastError.

So, a fully qualified call looks like this:

PortName = 'LPT1:'
PortID = CreateFileA(PortName, 040000000H, 0, 0, 3, 0, 0)
If PortID = -1
 Message('Attempt to open ' & Clip(PortName) &|
 ' failed.','Error',ICON:Hand)
 Return
End

W r i t e F i l e

251

WriteFile

”The WriteFile function writes data to a file at the position specified by the file
pointer. This function is designed for both synchronous and asynchronous
operation.” This is the call to do the actual writing.

Writefile (msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/
writefile.asp), therefore, does the actually “printing” and, again, has a very involved
prototype:

WriteFile(long hFile, |
 *cstring lpbuffer, |
 long nNumberOfBytesToWrite, |
 *long lpNumberOfBytesWritten, |
 ulong lpOverlapped), short, raw, pascal

hFile: “Handle to the file. The file handle must have been created with the
GENERIC_WRITE access right.” In other words, this is the handle to the port
gotten with CreateFile.

lpBuffer: “Pointer to the buffer containing the data to be written to the file.” This,
then, is a CString, passed by address. It is the variable containing the string to be
printed. No directly passing a string; if you do, you get a compiler error. A String is
not a CString and the compiler knows it.

nNumberOfBytesToWrite: “Number of bytes to be written to the file.” I don’t quite
understand this one. The string to print is a CString so the length should be easily
computed by the function. But, it is required.

lpNumberOfBytesWritten: “Pointer to the variable that receives the number of
bytes written.” I don’t find this useful myself but it is required. It could be used to
check that the number of characters printed matches what you think you sent in the
previous parameter.

lpOverlapped: I had a link to a discussion of this on MSDN. I’m not sure the author
understood this fully (since he seemed to contradict himself on the subject several
times). He certainly couldn’t explain it so that I understood it. Short take: don’t
bother, send zero.

Return Value: If the function succeeds, the return value is nonzero.

The full call, then, is:

StringtoPring = 'yada yada' ! prime output
PrintLen = Len(Clip(StringToPrint)) ! get length

W r i t i n g T o A P r i n t e r P o r t : S e n d i n g E s c a p e C o d e s

252

x = WriteFile(PortID,StringToPrint,| ! write it
 PrintLen,Written,0)

CloseHandle

As soon as possible after “printing,” close the handle. If you don’t, nothing else can
use the device. Failing to close the handle is like LOCKing a file and not UNLOCKing it.
Bad. Reboot required.

This is prototyped very straightforwardly:

CloseHandle(ulong hObject), short, raw, pascal

taking the handle from CreateFile as its only parameter.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error
information, call (msdn.microsoft.com/library/en-us/debug/base/
getlasterror.asp).

So the call to CloseHandle is:

x = CloseHandle(PortID)

Or,

If ~CloseHandle(PortID)
 Message('Whoops!')
End

The Sample App

As one might expect, the prototypes for the three API calls are in the Global Map
embed. One datum is global, PortID. There is no particular reason I made this
global. It could have and probably should have been local. Lazy me.

The one procedure in the .APP calls a window. You can enter a string to print. I
made this string 40 characters long. 40? I presented this to the Chicago Area User
Group using a receipt printer to demonstrate. A receipt printer has a line width of
40.

S u m m a r y

253

Everything occurs in the Accepted embed for the string. The code there is precisely
what has been outlined above.

The only caveat is that this procedure is completely device-independent. That is, no
formatting is done, the string is just written to the printer as is. Of course, that is the
point.

Suppose that the escape sequence for some formatting that is needed, say to set a
left margin, is ESC 19. This must be sent to the printer, “printed,” before sending
the text:

PortName = 'LPT1:'
PortID = CreateFileA(PortName, 040000000H, 0, 0, 3, 0, 0)
Sequence = '<27>19'
X = WriteFile(PortID, Sequence, 3, Written, 0)
PrintLen = Len(Clip(StringToPrint))

x = WriteFile(PortID,StringToPrint,PrintLen,Written,0)

x = CloseHandle(PortID)

It would be a good idea to follow this with “printing” the control code to turn off
the formatting. Just like CDD.

Summary

The reader is urged to examine the resources that went into this chapter in detail:

• 16-bit Serial RS232 Communications: www.attryde.com/clarion/
col_serial16.htm – Paul Attryde’s guide to port communications,
geared to serial ports.

• 32-bit Serial RS232 Communications: www.attryde.com/clarion/
cw_serial32.htm – Paul’s guide to the 32 bit API.

• CreateFile: msdn.microsoft.com/library/default.asp?url=/library/en-
us/fileio/fs/createfile.asp

• WriteFile: msdn.microsoft.com/library/default.asp?url=/library/en-
us/fileio/fs/writefile.asp

• Closehandle: msdn.microsoft.com/library/default.asp?url=/library/
en-us/sysinfo/base/closehandle.asp

Sending escape sequences is hard to get your head around. These resources make it
much, much easier.

W r i t i n g T o A P r i n t e r P o r t : S e n d i n g E s c a p e C o d e s

254

Looking over the steps to “write directly to the printer,” I see a real need for a
wrapper procedure. I see a need for a single call, like PRINT() in DOS, which takes
what I want to print and where I want it to go.

Stay tuned, I think I will come back to that in the next chapter. Afterwards I will
look at the easy ways of talking directly to a printer.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n02escapecodes.zip

255

PRINT DIRECTLY TO PRINTER MADE EASIER

by Steven Parker

In the previous chapter I explored sending text and control codes directly to a
printer port.

Writing directly to the printer involves three API calls that must be prototyped in
the Global Map:

MODULE('win32.lib')
 CreateFileA(*CSTRING lpszName, |
 ulong fdwAccess, |
 ulong fdwShareMode, |
 ulong SecurityDescriptor, |
 ulong fewCreate, |
 ulong fewAttrsAndFlags, |
 ulong hTemplateFile),long,raw, pascal
 WriteFile(long hFile,
 *cstring buffer, |
 long nNumberOfButesToWrite, |
 *long lpNumberOfBytesWritten, |
 ulong lpOverlapped), short, raw, pascal
 CloseHandle(ulong hObject), short, raw, pascal

Direct printing also requirs six variables:

PortID Long
StringToPrint String(40)

P r i n t D i r e c t l y t o P r i n t e r M a d e E a s i e r

256

PrintLen LONG
Written LONG
PortName CSTRING(20)
x LONG ! receives various return values

And, finally, each and every time I want to write something directly to a port, I need
to call five lines of code:

PortName = 'LPT1:'
PortID = CreateFileA(PortName, 040000000H, 0, 0, 3, 0, 0)
PrintLen = Len(Clip(StringToPrint))
x = WriteFile(PortID,StringToPrint,PrintLen,Written,0)
x = CloseHandle(PortID)

Repeating all the data and all the code each time I want to write directly is... not
good form.

A single call

What I really want is a simple, single call whenever I want to print directly to the
printer. What I want is something like:

PrintLine(StringToPrint , PortToPrintToo)

Why pass the port each time? Yes, I could prime the PortName variable globally.
Then I would not have to pass it to my new procedure. But that would mean also
that I am restricted to one printer when running an application. While it is true that
many, if not most applications run against a single printer, this is an artificial
restriction that could negatively impact me. Easily.

Passing the port each time, however, also constrains me: I probably have to store
the port or ports globally (in a data file, an INI file, a queue, memory file or the
like).

Or I could use the PROPPRINT:Port property of PRINTER{PROPPRINT:Device}. Since
I usually have to reset PRINTER{PROPPRINT:Device} to use another printer,
PROPPRINT:Port should give the value needed for PortName. I leave this as an
exercise for the reader (just remember to include prnprop.clw in the Global
includes).

Digression: Did you notice that I said that I “usually” reset
PRINTER{PROPPRINT:Device}? If using a Clarion report, this variable
will, indeed, need to be changed to print reports to different printers

T h e s o u r c e p r o c e d u r e

257

(to “redirect” output). In this case, PROPRINT:Port is sufficient to get
the port name. However, the WriteFile API is completely unaware of
the default printer or any other installed printer for that matter (it
doesn’t know or care about what is installed in Windows). WriteFile
can output to any printer whether or not Windows knows about it.
Receipt printers, for example, are often not “installed” and, hence, are
unknown to Windows. This does not stop WriteFile from printing to
them. This is why getting the necessary value for PortName is a design
decision.

In any case, the trade off seems to me to be worth it.

So, instead of the code shown, above, I want something like:

PortName = 'LPT1:'
PrintLine(StringToPrint,PortName)

where, in a real world application, PortName is primed programmatically.

The source procedure

Creating PrintLine() turns out to be quite easy. Create a Source procedure. Move
all of the data required into it. But simply copying in the code will not work.

The port name and string to be written must be CStrings for the API calls. To avoid
forcing myself to declare CStrings all over the place, the first thing PrintLine()
must do is convert the incoming Strings to CStrings (if the incoming string is
already a CString, no harm done):

StringToPrint = pLineToPrint
PortName = pPort

After that, the remaining code does the printing:

PortID = CreateFileA(PortName, 040000000H, 0, 0, 3, 0, 0)
PrintLen = Len(Clip(StringToPrint))
x = WriteFile(PortID,StringToPrint,PrintLen,Written,0)
x = CloseHandle(PortID)

The sample app shows this and is available for download.

The obvious question is: Why not make a template out of this? The answer is that
this has already been done and I’m not a big fan of wheel -reinventing. In fact, the

P r i n t D i r e c t l y t o P r i n t e r M a d e E a s i e r

258

templates written by others constitute what I called the “easy” way of writing
directly to a printer. I intend to look at these easy ways next....

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n02escapecodes2.zip

259

THE EASIEST WAY TO WRITE TO A PRINTER
PORT

by Steven Parker

In the last less-than-action-packed installment (“Writing To A Printer Port: Sending
Escape Codes” on page 245), I said that I was not going to create a template for the
write-directly-to-port wrapper procedure discussed. There is a very good reason for
not creating that template. It’s been done already. At least twice that I know of. And
it’s been done very well.

The two third party products that I know about are Martin Allen’s Nova templates
(www.jdidata.com/clarion.asp) and Capesoft’s Winevent (www.capesoft.com/
accessories/eventsp.htm).

The Nova Templates

A US$20 shareware product, the Nova Templates (www.jdidata.com/clarion.asp)
provide four extensions. LinePrint is the one for which these templates are best
known. In fact, this template set is often referred to as simply “the line print
template.”

T h e E a s i e s t W a y T o W r i t e T o A P r i n t e r P o r t

260

LinePrint Template adds a global function LinePrint() which allows
bypassing the Windows Print Engine. With LinePrint you are able to
print directly to the printer ports and files.

The documentation notes that LinePrint is designed for “barcode printers or label
printers requiring certain control codes or plain text input to print correctly.” The
last mentioned use, sending control codes, is what started me on this series of
articles,.

The LinePrint function is quite similar to the wrapper I created in the previous
chapter:

LinePrint(StringToPrint, <DeviceName>, <CRLF>)

There are two differences between what I did in my wrapper procedure and what
Marty does.

The first difference is that the port (second parameter) is optional. If omitted, the
default printer is the target. If specified, the default printer is ignored. UNC names
are supported.

The second is that carriage return, line feed is assumed. The template automatically
appends a carriage return, line feed unless a non-zero value is passed in the third
parameter. Also, if you examine the code in the TPL file, you will note that carriage
return, line feed is automatically not appended if the StringToPrint is a form feed.
Neat.

There is one documented “limitation” (it may or may not be a limitation but it is
good that it is mentioned): “The maximum line (StringToPrint) length is 500 char
which (in most cases) should be more than enough.” This is immediately followed
with a worthy piece of advice: “By customizing the template source you can
increase the buffer size. Just set different size for the variable hpvBuffer.”

Also note the comment: “The LinePrint uses API functions that are compatible with
all the Windows versions since Windows 1.0.” Looking at the template code, I do
not find CreateFile, WriteFile or CloseHandle. These functions did not exist
until 32 bit Windows.

The Nova Templates use OpenFile (msdn.microsoft.com/library/default.asp?url=/
library/en-us/fileio/fs/openfile.asp), _lwrite (msdn.microsoft.com/library/
default.asp?url=/library/en-us/devnotes/winprog/_lwrite.asp) and _lclose
(msdn.microsoft.com/archive/default.asp?url=/archive/en-us/dnarw98bk/html/
fileoperations.asp), all 16 bit functions. All are included in Kernel32.lib so they
continue to work.

W i n e v e n t

261

I have tested the Nova templates with a serial printer (though not recently) and a
parallel printer. WritePort_Easy2.APP (compiled locally and in the downloadable
source) and WritePort_Nova.TXA show an implementation of the Nova Templates.

The template works and works well. It is easy to implement.

Winevent

Winevent offers a wide range of port communications functions. These include:

• NewPort – a wrapper for CreateFile

• WritePort – a wrapper for WriteFile

• ClosePort – a wrapper for CloseHandle

which are directly related to the task of sending control codes to printers. Winevent
can also read from ports and, generally, service a substantial range of serial port
settings and activities (not as many customized functions as CLAComm, but the
basics are made much easier than using the API).

The three functions listed above are the three used to write to a port.
WritePort_Easy.APP (compiled locally and in the downloadable source) and
WritePort_Easy.TXA show an implementation using Winevent to write directly to a
printer.

NewPort, however, is the most interesting function to me. It is interesting because it
bailed me out of a deep hole a few years ago.

NewPort (string pmode, <long pInb>,<long pOutb>,byte pUseEvents=0)

I support an app that has to write to customer displays. These are serial devices,
often called pole displays. Serial ports require much more work than other kinds of
ports. Devices on serial ports have attributes like baud, parity, stop bits, flow
control, etc., etc.

In order to work with these devices, serial ports require a Device Control Block (the
reader is referred to Paul Attryde’s article Synchronous Serial Communications –
www.attryde.com/clarion/col_serial16.htm). The DCB contains the various settings
required by the attached device. Several additional API calls are required to apply
the DCB and initialize the port.

T h e E a s i e s t W a y T o W r i t e T o A P r i n t e r P o r t

262

Creating a Device Control Blocks is very, very easy to get wrong. Very. My app failed
when the Device Manager specs did not match the specs I was trying to set.

Using the information from Paul’s article, using CLAComm, using... anything I
could think of, three days later still no joy. I turned to Winevent and noticed that
NewPort’s first parameter is a “string such as would be accepted by the DOS MODE
command.”

For example:

PortId = NewPort('Com1:9600,n,8,1')

Well, I remember the MODE command and, in fact, had been getting around my
problem by opening a DOS window and typing the MODE command for the device.

In other words, NewPort takes care of creating and applying the Device Control
Block.

Eureka! It was working.

Summary

Either of these third party products does the job of sending control codes to
printers. Given that they are available, there really is no need for me to make a
template out of my wrapper procedure. In fact, given that they exist, there is no
reason I should have bothered creating that wrapper at all. With quality third party
products it is rarely the case that the cost/benefit ratio comes down on the side of
“roll your own,” doing it yourself.

The only thing neither of these templates support is printing to USB printers (on
USB ports, not using serial or parallel converter cables).

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n03writeporteasy.zip

263

USING DOS FILES TO SEND PRINTER CODES

by Olivier Cretey

In “Writing To A Printer Port: Sending Escape Codes” on page 245, Steve Parker
wrote about using the API to write directly to parallel port devices. That’s a useful
technique, but there are other ways.

When introducing the Win32 model, Microsoft took some ideas from Unix, as it did
with DOS. From these borrowings, Windows inherited some pipes and a console
(remember the old COPY CON syntax?). Microsoft also took the idea that a device can
be managed just like a simple file. Because of that decision, the API calls Steve
discussed in his chapter all reference basic file manipulations: opening a file,
writing to that file, and closing it. Even the error checking is file oriented. So a
device can be used like a file. Well, not all devices, but parallel and serial ports can
be used this way.

This statement stayed in my mind for a long time until I had to write a little project
with Clarion: I had to send some commands to a serial device, without the need to
get an answer back. The simple answer was to use WinEvent or Clacom, two
Clarion add-ons, which make serial port programming easier than calling the
Windows API. But I called the API anyway, just like Steve did. A little later
somebody asked me if I could write a small program to send ESC commands to a
printer, so I did a cut and paste of my API code. My previous little project had
required a file name of 'COM2:9600,N,8,1'; I replaced this with 'LPT1:'.

U s i n g D O S F i l e s T o S e n d P r i n t e r C o d e s

264

The lowly DOS file

File name... a DOS file name... did I say DOS File ?

What a shame ! I’m using a tool to manipulate files all the day (and night
sometimes) and I didn’t realise that my favourite tool was offering the right file
driver to accomplish what I was doing with these API calls! From a Clarion point of
view, I needed to open a DOS File, write to its buffer, close it, and of course do some
simple error checking. Nothing fancy, I doing this all the time when I’m writing
ASCII log files. I ended up with a very simple Clarion project using the DOS file
driver. Here’s the code:

Program
 Map
 End
Prn File, Driver('DOS'),Create,Name('LPT1:')
Record Record
Line String(1024)
 End
 End
 Code
 Open(Prn)

 if Not ErrorCode()

 ! Bold on Bold off Form Feed
 Prn.Line = '<27,60>' & 'Hello World !' & '<27,70>' & '<12>'
 Add(Prn)

 if ErrorCode()

 Message(ErrorCode() & ' ' & Error(), 'Writing Error !')

 End
 Message(Clip(Prn.Line) & ' Printed on ' & Clip(Prn{Prop:Name}),|
 'Printing Done !')
 Close(Prn)

 Else

 Message(ErrorCode() & ' ' & Error(), 'Opening Error !')
 End

As you can see, it is very simple, but there are a few lines worth explaining.

Prn File, Driver('DOS'),Create,Name('LPT1:')

I declare a standard DOS file and label it Prn, just because it is a short meaningful
label. The only special thing is its name: 'LPT1:' I could use 'PRN:' for the default
parallel port, or 'LPT2:' or any valid (from a DOS point of view) device name. That
means that I can use 'COM2:9600,N,8,1' or any other COM port to send commands
to a serial device. I use this technique to tell my modem to dial a number for me.

S e n d i n g c o m m a n d s

265

Line String(1024)

I’m using a 1024 byte buffer for this file. This value isn’t required, it is only an old
habit. I could use 2048 or 255, it does not matter.

After the Code statement I open the file:

Open(Prn)

Sending commands

The file must be open to enable communication from the program to the parallel
port. When calling the API I need a handle to the file; using this technique, the
Clarion DOS driver takes care of the handle. I just write to the file.

Prn.Line = '<27,60>' & 'Hello World !' & '<27,70>' &
 '<12>'

Here we go! I’m filling the buffer with a mixed of ESC commands and text. 27 is the
escape code, followed by its complement code; 60 (or < - Bold on), 70 (or F - Bold
off); 12 is the form feed command. For more ESC commands, read your printer’s
documentation.

Add(Prn)

The Add command sends the content of the buffer to the file; since the file is really
the LPT1: device, the data goes right to the printer. I could break Prn.Line into
shorter commands, or even use equates to define ESC codes to add clarity to the
source. For example:

! Constant Equates
BoldOn Equate('<27,60>')
BoldOff Equate('<27,70>')
FormFeed Equate('<12>')

!Code
Prn.Line = BoldOn & 'Hello World !' & BoldOff
Add(Prn)
Prn.Line = FormFeed
Add(Prn)
Close(Prn)

I’ve finished using the printer, so I close the file and therefore the connection to the
printer.

U s i n g D O S F i l e s T o S e n d P r i n t e r C o d e s

266

USB printers

You should also be able to use a USB printer with another trick:

• Share the USB printer from the Windows printer control panel.

• From the command line (Windows Start Button, Execute, type
cmd.exe), then type net use LPT1 [enter]

To verify that the USB printer is now using LPT1, type from the command line:

net view \\computer_name (file:///\\computer_name) [enter]

LPT1 should appear under “used as” column on the USB printer line.

Editor’s note: Petar Subica in the SV newsgroups recommended adding
/persistent:yes to the end of the NET USE command.

Summary

Basic printing services and serial communications are not implemented by the
Clarion language, but there are many places Clarion developers need them. There
are Point Of Sale systems where ESC commands are needed to configure printers or
open serial cash drawers.. Many applications need to do simple modem
communications (the downloadable source includes an example). You can probably
think of other examples. Using the simple technique I’ve described here, you can
address many of these tasks without the complexity of a bunch of API calls or
classes, and without the hassle of DLL updates and redistribution.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n03portdriver.zip

267

DIRECT-TO-USB PRINTING

by Steven Parker

Using the API to write directly to printer, as outlined in “Writing To A Printer Port:
Sending Escape Codes” on page 245, enables me to send text and/or control codes
directly to parallel printers. Wrapping the API calls, as outlined in “Print Directly to
Printer Made Easier” on page 255, makes it easy to send output directly to printers.

Setting up a Device Control Block, a non trivial exercise (see 16-bit Serial RS232
Communications – www.attryde.com/clarion/col_serial16.htm), allows outputting
to serial devices. Because it is so easy to mess up creating a DCB, I use Winevent
(see Writing to a Printer: The Easy Way) to output to customer displays (pole
displays like you see in many stores), read scales and, yes, print to serial printers.

The only thing I can’t do using the API or this template is print to USB printers.

USB need not apply

USB ports do not have convenient names like “LPT1” or “COM27” to pass to the
CreateFile API to get the handle needed for a WriteFile call.

But.

D i r e c t - T o - U S B P r i n t i n g

268

But. The port is a property of a Windows printer and Clarion gives me access to a
number of printer properties for the currently set printer. Check out PROPRINT in
the on-line help.

One of the properties I can access is PROPPRINT:Port. The port! And, assuming the
USB printer is installed and PROPPRINT:Device contains its name (as known to
Windows):

Printer{PROPPRINT:Port}

returns a port name that I can use in CreateFile (typically, it returns “USB001”).

There is one wee problem: the handle returned by CreateFile is always -1,
INVALID_HANDLE, for USB ports. Therefore WriteFile can’t work to a USB port.

So much for building on what I already know.

Crawling around MSDN, I discovered why: USB is a bus, not a port. I don’t happen
to remember where I saw that. But that’s why the port handle is invalid.

Further rooting in MSDN (msdn.microsoft.com/library/default.asp?url=/library/en-
us/gdi/prntspol_6m91.asp) revealed this:

The Microsoft® Windows® graphics device interface (GDI) enables
applications to use graphics and formatted text on both the video
display and the printer. Windows-based applications do not access the
graphics hardware directly. Instead, GDI interacts with device drivers
on behalf of applications.

So, it looks like outputting to USB devices is a GDI function. And, sure enough, the
About Printing (msdn.microsoft.com/library/default.asp?url=/library/en-us/gdi/
prntspol_6m91.asp) topic is indeed a subtopic of “Windows GDI.”

You should follow the links on the “About Printing” page, attempting to decipher
how to print to a Windows printer. You will then understand why I calmly, coolly
and rationally threw my hands up in surrender.

It’s not that I can’t master the printing subsection of the GDI. It’s that I simply don’t
have the ambition to master it. Nor, as it turns out, need I. It’s been done for me.

D E V C O N t o t h e r e s c u e

269

DEVCON to the rescue

At the last DevCon I wandered into the Third Party Exhibition area. John Hickey
(POSitive Software) exclaimed “Parker! My goodness you look terrible!”

Now, I was freshly shaved and coiffed. I was wearing a freshly pressed suit, stiffly
starched shirt and my tie was well knotted. I’d just had my first cup of coffee (okay,
so it was mid-afternoon). How could I look terrible? Yes, I had been worrying over
printing to USB devices and I don’t want to have to use a report structure nor force
my users to install a USB receipt printer driver and set it as their default printer. But
“look terrible?”

Joking aside (I don’t starch my shirts), John pointed me at a piece of freeware by
Trevor G. Leybourne which allows programmatic control over printing to any
installed printer. This .APP outputs directly to the printer but does so through the
windows printer driver and spooler subsystem.

Since my interest is in receipt printers, I figured I could get away with the Generic/
Text Only driver assigned to a USB “port.” Since, Epson, for example, does not
provide a driver disk with their receipt printers, using a built in Windows driver is
appealing. In fact, Epson buries their drivers in a restricted-access web site. Once
you find and download the driver, it turns out that it is a two step install: you have
to select the printer model (one install covers a large number of printers) and the
target port. One wrong mouse click and there’s no way to recover. Samsung requires
two installs: one for the printer and one to move it to USB. My users couldn’t handle
this (it later turned out that you can create an image of your Epson install that can
be run from Setup Builder – but you must create an image for each O/S).

Trevor’s readme states, “You can only send Text and Control Codes (no graphics or
true type fonts).” Just what I need. His pseudo-code proves it:

IF PRINTDRV::Initialise() THEN
 PRINTDRV::WriteText('This line one of text')
 PRINTDRV::WriteText('This line two of text')
 PRINTDRV::WriteText('This line three of text')
 PRINTDRV::WriteText('This line four of text')
 PRINTDRV::WriteText('This line five of text')
 PRINTDRV::Finalise()
END

Printing through the Windows’ spooler is a three step process, using Trevor’s
wrapper for the Spooler API:

1) Initialize a printer

D i r e c t - T o - U S B P r i n t i n g

270

2) Write the text

3) Close the printer

(Leave it to Windows to obfuscate the obvious and complexify the simple.) From
Trevor’s documentation:

Initialise (British spelling): The Spooler API requires a handle, just
like CreateFile. But the Spooler uses a handle to a printer, not a file or
port. The Initialise procedure gets that handle.

Initialise starts by checking whether a handle to the printer already exists. If so, it
returns immediately. If not, it gets that handle and:

• opens the printer (OpenPrinter API)

• initializes some required structures

• starts a document (StartDocPrinter API)

and

• starts a page (StartPagePrinter API).

If you do not send Initialise a printer name, Trevor’s code assumes the Windows
default printer or the last printer assigned via PRINTER{PROPPrint:Device}. If you
do send a name, it uses the passed printer.

WriteText: Writes the text and/or control codes, up to 132 characters.
This procedure uses the WritePrinter API and automatically appends a
carriage return/line feed.

Finalise: This is when the data is actually printed. As Trevor observes,
this is a Windows thing (a “feature”). The Finalise procedure
terminates the page (EndPagePrinter API), terminates the document
(EndDocPrinter API) and closes the printer (ClosePrinter API). Yup,
a Windows thing. Finally, it releases the handle (if it didn’t do this, the
printer would be locked).

A thought: the Clarion PRINT statement must wrap all these API calls.

Caveats

Printing one line at a time:

S u m m a r y

271

IF PRINTDRV::Initialise()
 PRINTDRV::WriteText('This is my text')
 PRINTDRV::Finalise()
END

will take forever. The spooler takes several seconds to flush and reset. Count on
three to four seconds to Finalise.

If you have to do a single line or control code, well, you have to do what you have to
do. But, saving as much as possible in a queue or IMDD file and dumping it in a
loop is recommended.

Summary

I’m not one for reinventing the wheel. I doubt many Clarion developers are. I firmly
believe that quality third party products are always cheaper, in the short run, than
“rolling your own.”

Mr. Leybourne’s PrintDRV.APP (Clarion 5.5 -- a copy is available at my download
center (www.par2.com/cws/c5launch.dll/d7.exe.0) as well as a modification in C6
by Jim Gambon) solves direct-to-USB printing problems. I can use the Generic /
Text Only driver or I can install a manufacturer’s driver. I don’t need a report
procedure. My users get to use cool new thermal printers, and my sincerest thanks
to Trevor.

D i r e c t - T o - U S B P r i n t i n g

272

273

Databases

275

WHITEMARSH’S USE OF MIMER WITH
CLARION

by Michael Gorman

This is a very brief review of the Whitemarsh (www.wiscorp.com) use of the Mimer
DBMS. Much more information can be obtained from the Mimer website
(www.mimer.com).

Whitemarsh chose Mimer as the DBMS for use with the demo and default versions
of the Metabase (www.wiscorp.com/metabase_demo.html) for a number of reasons.
These included its very small footprint, ease of installation, ease of use with Clarion,
and it’s conformance to ISO/ANSI SQL.

Getting Mimer

The process of obtaining Mimer is simple. Go to the website (www.mimer.com),
download a developer copy, and then start using it. The instructions are quite clear.

W h i t e m a r s h ’ s U s e O f M i m e r W i t h C l a r i o n

276

There is no charge for the developer copy, although it is restricted to 10 concurrent
users. It is my understanding that server licenses are about $2500 for an unlimited
quantity of users.

Mimer doesn’t come with all the “stuff” that you probably “should never” use
anyway, such as a Mimer proprietary query language, Mimer proprietary report
writers, and a Mimer proprietary stored procedure language.

To compensate for these “missing” pieces, we recommend WinSQL (www.indus-
soft.com/SynametricsWebApp/WinSQL.jsp) for the ODBC SQL client, and we use
Crystal Reports (www.businessobjects.com/products/reporting/crystalreports/
default.asp) for report writing. They more than compensate, and they also provide a
level of independence from the DBMS engine.

Clarion & Mimer

Clarion External names are required for all columns. And since we let Mimer do our
auto-incrementing on the primary key, we had to the primary key fields Read Only
(Column Properties, Attribute tab) for every table. This causes Clarion to send a
null value to Mimer, and Mimer then generates the correct value.

Mimer doesn’t return the primary key value for a newly inserted row as does
Clarion with TPS. So, to get the value, and to enable the Whitemarsh metabase to be
independent of any specific SQL DBMS, we have an autoincrement key for every
table, and also a unique key.

For example, the Student table has a StudentPkey with StudentId for the
autoincrement, and StudentUniqueKey with StudentLast, StudentFirst,
StudentMI, StudentBirthDate to frame a unique key for a student. When, in this
example you store the student’s record, you definitely would provide the
StudentLast, StudentFirst, StudentMI, StudentBirthDate. Once you get the okay
that the record is stored, you just do a Get with the UniqueKey and then you have
the primary key ID value so you can go on and store, for example, the student’s
address which might be in another table.

The only other thing was that we broke the Mimer SQL script file into three
streams, one for the tables, primary keys and unique keys, one for the auto-
incrementing commands, and a third file for just the foreign keys.

We generated all the SQL scripts with Roberto Artigas’s DCT2SQL
(www.clarionpost.com/dl_info.asp?id=15) script generator. It’s quite good.

C l a r i o n & M i m e r

277

Mimer has a stored procedure language that is the ANSI standard SQL programming
language. We don’t use it because none of the other SQL DBMSs have implemented
it. Otherwise we would.

Mimer has a backup and recovery capability, data export and import, security, and
transaction management.

All in all, Mimer is a good SQL DBMS. Once you’ve implemented it, you can forget
about it.

W h i t e m a r s h ’ s U s e O f M i m e r W i t h C l a r i o n

278

279

USING THE SQL ADVANCED TAB

by Bjarne Havnen

In Clarion 6 a SQL Advanced tab was introduced to the Browse Box Behaviour
window. The tab’s primary purpose appears to be to display calculated fields, for
example SUM, AVG, COUNT, but these fields can display any kind of information, such
as from stored procedures and lookups in unrelated tables. In this chapter I’ll
explain the usage of this tab and the related SQL properties (PROP:Name,
PROP:Where, PROP:Order ,and PROP:GroupBy), and I’ll give a demonstration of
highly effective totalling on a regular Clarion ABC browse.

U s i n g t h e S Q L A d v a n c e d T a b

280

The basic idea of these template changes is rather simple: You set up a list of fields
for the view engine and you specify the field values.

If you have a VIEW with the above fields (for now ignoring the Value column), the
runtime library will create a SELECT statement like this:

Select a.Field1,A.Field2, A.Field3 From Orders A Join,Where etc....

With the values specified above, however, the templates will generate some code to
assign the SQL statements (where specified) to each field. I’ll explain the syntax of
that code a little later, but the basic idea is to use the new PROP:Name syntax to
replace a field in the SELECT statement with a custom SQL statement. In this way

Figure 1: The SQL Advanced tab

Field SQL statement Meaning

Ord:Field1 Sum(b.Total) Sum itemlines

Ord:Field2 (Select CustNo from
Customers Where
CustomerId =
a.CustomerId)

Display non linked field
instead of linked field

Ord:Field3 1 1

281

you can embed sub-selects and aggregate functions in the SQL statement that’s sent
to the back end.

Here’s a simple example. My challenge is a quite common one: I like to display the
total sales per product. For this example I’ll use the Order_details table from the
Northwind sample database. This table does not store the totals, so I can’t just do a
SUM(TOTAL) which I otherwise would have done.

The syntax to get the sum per product is:

SELECT a.ProductID, b.ProductName, SUM(a.UnitPrice * a.Quantity -
 a.UnitPrice * a.Quantity * a.Discount) AS Total
 FROM [Order Details] a INNER JOIN

 Products b ON b.ProductID = a.ProductID

 GROUP BY a.ProductID, b.ProductName

Figure 1 shows Clarion 6’s SQL Advanced tab with several custom field
assignments. The reason for assigning a value of 1 to ORDERID and PRODUCTID is the
way Clarion projects fields when linking other tables – the linking fields in both
tables are projected and the SQL engine won’t allow this. Assigning a value of 1 to
the field makes the query look like:

Select Sum etc, 1,1, b.productId, b.productname group by...

which is legal. More on this later.

The example in Figure 1 won’t work, however. Most queries are illegal because the
primary key field is projected into the view structure. This has since been fixed with
a checkbox to suppress the primary key field (look on the Extended options tab),
but there are still quite a few pitfalls. The primary key field is also the preferred
ORDER BY field, unless PROP:ORDER is overridden in the Additional Sort field. Also,
when browsing the result of a total query not related to a particular record you will
need to set the browse to File Loaded since there is no means for Clarion to refresh
without refreshing the entire browse.

U s i n g t h e S Q L A d v a n c e d T a b

282

What properties?

The SQL Advanced tab involves PROP:NAME, PROP:GROUPBY and PROP:HAVING, which
all require correct SQL syntax just like PROP:SQL. Initially I didn’t understand the
importance of these properties, as I’d been using PROP:SQL for all my custom SQL
code. My enlightenment came later – and I’ll get back these properties in a bit. First,
here’s a real world example.

Regular Totaling – retiring ResetFromView

In Clarion’s standard (non-SQL Advanced) approach getting a total means scanning
the records in the view. This is okay for most parent-child relations, but it is a
performance killer in unfiltered browses and likewise when a filter is applied that
cannot be evaluated on the server. I can make the totalling conditional, but
unfortunately I can’t change the filter from, say, this month’s orders to all orders
without toggling the totalling variable. I doubt I have to demonstrate that scanning
a million records on every reset results in a big performance hit. One day I made
that mistake with my customer’s data, which set me on a quest to solve the problem.

MS SQL Server and Sample Database

If you don’t already have SQL Server and the Northwind
database, you may wish to install Microsoft’s freely available
SQL Server 2005 Express Edition (msdn.microsoft.com/
vstudio/express/sql).

The Northwind example database is not included with SQL
Sever Express but is available as a separate download
(www.microsoft.com/downloads/
details.aspx?familyid=06616212-0356-46a0-8da2-
eebc53a68034&displaylang=en).

R e g u l a r T o t a l i n g – r e t i r i n g R e s e t F r o m V i e w

283

What I wanted to do was to make a VIEW similar to the browse view but with a
minimum of fields, using the browse’s filter and retrieving the total on the filtered
view. In order for the filters to be valid I also had to join some related tables, which
immediately caused a failure due to Clarion’s JOIN implementation.

When you use JOIN Clarion projects all fields in a table, unless you specify
individual fields with PROJECT(field). When combined with PROP:NAME using an
aggregate function, the SELECT statement is invalid. Consider this view:

View:Orders View(Orders)
 Project(Ord:Total)

 JOIN(Cus:K_CustomerId,Ord:CustomerId)

 Project(Cus:Name)
 End
End

Say I use PROP:Name to replace Ord:Total with a SUM statement:

View:Orders{'Ord:Total',Prop:Name}='Sum(Total)'

This code will result in a select statement such as:

Select Sum(Total),b.Name from orders...

This SQL is invalid because it combines an aggregate function with a non-aggregate
field (b.Name) and there is no Group By clause. If, however, I add this statement:

View:Orders{'Cus:Name',Prop:Name}=1

then the SQL sent to the backend will be:

Select Sum(Total),1 From Orders Join Customers on...

which turns out to be perfectly valid SQL.

Below is some sample code that overrides the ResetFromView method to total some
fields in a related table. I also do a count on the resultset in order to display the
number to the user. Invalid filters will report the totals on the entire table, and this
way I can take appropriate action if the number of records totalled is equal to the
total number of records in the table. This is based on my own tables; I’ll leave it up
to you to make it work in yours.

BRWOrders.ResetFromView PROCEDURE

!variable to hold file status
LStat Ushort

U s i n g t h e S Q L A d v a n c e d T a b

284

!Declare view, same joins as the browse view, but less fields

View:Orders View(Orders)

 Project(Ord:OrderId)
 Project(Ord:Total)
 JOIN(Cus:K_CustomerId,Ord:CustomerId)

 Project(Cus:Name)

 End
End

 CODE
 LStat = Self.Primary.me.SaveFile() !save pointer
View:Orders{Prop:Filter}=Self.View{Prop:Filter} !Copy Filter

 View:Orders{Prop:Order}='SQL(1)' !order by first field to suppress

the Primary field
 Open(View:Orders) !open view

 View:Orders{'Ord:Total',Prop:Name}='Sum(Total)'

 View:Orders{'Ord:OrderId',Prop:Name}='Count(OrderId)'
 View:Orders{'Cus:Name',Prop:Name}=1
 Set(View:Orders)

 Next(View:Orders)

 Recs = Ord:OrderId
 Total = Ord:Total
 Close(View:Orders)

 Self.Primary.Me.RestoreFile(lStat)

 Return

This override gives me the total opposite of an application hang – it results in an
immediate response. The one thing it does not do is handle the conditional
totalling. This can be solved by repeating the sequence per condition and appending
the filter to the regular filter.

PROP:Name

PROP:Name is not a new property, but in good Clarion spirit it is extended to the
VIEW structure.

Consider this VIEW:

View:Orders VIEW(Orders)

 PROJECT(Ord:Total)
End

P R O P : G R O U P B Y

285

As I indicated earlier, with PROP:NAME I can change the value retrieved from the
backend:

View:Orders{‘Ord:Total',PROP:NAME} = ‘Sum(Total)'

This will transform the query from:

Select Total From Orders

to

Select Sum(Total) From Orders

PROP:Name can be used with any value, as long as that value is valid SQL.

PROP:GROUPBY

This property sets the SQL Group By clause. If I extend the view from above to
include a customer number the query will fail with the error “column is invalid in
the select list because it is not contained in a aggregate function and there is no
GROUP BY clause”.

I can use PROP:GroupBy to show totals per customer:

View::Orders{Prop:GROUPBY}='customerid'

PROP:HAVING

HAVING is a filtering query element; it can be used to narrow the result set to match
any criteria. For example:

! show only customers having at least
! 10000 dollars worth of orders.
View:Orders{PROP:HAVING}='Sum(Total)>10000'

This is a basic example, and it might not work. SQL is a beast, and it is not tamed by
Clarion alone – a developer needs to know both his SQL and his Clarion to have
any fun. When using PROP:HAVING you have to evaluate one of the fields in the
query list, and sometimes you have to remember to prefix the fields with A, B,C, D
etc based on their position in the file (this can be changed with PROP:ALIAS).

U s i n g t h e S Q L A d v a n c e d T a b

286

Recently I have made an habit of prefixing every field regardless of the number of
tables in the view; that way the code won’t break if I join more tables.

SQL() and PROP:ORDER

SQL() is a new function in Clarion 6. It is a replacement for PROP:SQLFILTER and
PROP:SQLORDER that can be used to concatenate a regular Clarion expression with a
SQL expression. Thus, it can be used in the filter and order field of any Clarion
VIEW. I’ve used it extensively to do table lookups with EXISTS or IN instead of
linking all possible tables. Typically, when I needed to email my Clarion customers
I used a query to runtime filter the customer list to only those who had purchased
some of my Clarion-related products.

PROP:ORDER has existed for ever, right? Yes it has, but if you try to use PROP:NAME
without a valid order part, the query will fail. The reason is that Clarion expects an
ORDER clause as part of any view processing statement. If you don’t provide one,
Clarion will by adding the primary key field as the ORDER BY part. This will cause a
similar “column is invalid” error. One solution is to set the additional sort order to
the same as the PROP:GROUPBY columns, where that applies. Another solution that I
stumbled over is to use the SQL() function and set:

View:Orders{Prop:Order}='SQL(1)'

With MSSQL the number refers to the select list, so the server will group by the first
query element, in this case SUM(Total), ordering with the lowest value first. This
simplifies the coding in some circumstances. It is also considered by SoftVelocity
development team to be the best workaround for a missing PROP:ORDER.

Why not just use PROP:SQL then?

Now, what’s the point of using these properties instead of the more common
PROP:SQL approach? The answer is, believe it or not, simplicity. These properties
can be used together with all the different VIEW properties, so I can combine a
Sum(), AVG(), COUNT() with, for example, PROP:FILTER, using the best of both
worlds.

P R O P : W H E R E

287

I tend to make errors with date filtering in my PROP:SQL statements. If I choose to
filter on the Clarion date using PROP:FILTER, the RTL will translate for me. My code
looks like this:

View:Orders{Prop:Filter}='Ord:CustomerId=1 And '|
 & 'Ord:OrderDate_Date>=Date(1,1,Year(Today()))'
View:Orders{'Ord:Total',Prop:Name}='Sum(Total)'

What the two approaches have in common is that the filter that is sent to the
backend is valid SQL. Clarion doesn’t translate everything, but the view engine will
handle invalid filters on the client. This can’t work with aggregate functions, as they
are evaluated at the server. Recently, one of my customers made a filter using
MONTH() and YEAR() and TODAY(). It was rather clever, but the combination resulted
in a client side filter, effectively reporting the grand total of the entire table instead
of the filtered result. I changed the filter to something like

Ord:OrderDate>=Date(Month(Today()),1,Year(Today()))

and the Clarion RTL translated it correctly.

Another important difference is that when using PROP:SQL I can’t use SET(view) as I
would otherwise. This difference is one more thing to think of and I like my code to
follow certain conventions. The old PROP:SQL approach and the new properties
share one common problem: because you’re using string constants for the field
names, changes in the dictionary aren’t automatically carried forward to your hand-
coded SQL statements.

PROP:WHERE

PROP:WHERE is actually a file property, not a VIEW property. It works just the way
PROP:SQLFilter does on a view. The practical use of this can best be seen in
conjunction with a LOOP NEXT (FILE) structure. Everywhere you would use a
CYCLE within such a loop, you can use a PROP:WHERE instead; the difference is that
you leave the evaluation on the server thus reducing network traffic. PROP:WHERE
can also be set in the dictionary as a driver string, but since it does not affect the
VIEW engine it doesn’t seems to be very useful.

Clear(File)
Ord:CustomerId = Cus:CustomerId

Set(Ord:K_CustomerId,Ord:K_CustomerId)

!get this year's orders

Orders{Prop:Where}='Year(OrderDate)=Year(GetDate())'

U s i n g t h e S Q L A d v a n c e d T a b

288

Loop Until Access:Orders.Next()
 !obsolete code block
 If Year(Ord:OrderDate_Date)<>Year(Today())

 Cycle

 End
 !End obsolete
 Do ActionPerRecord
End

Summary

The SQL Advanced tab is one of the new features in Clarion that seemed
unnecessarily complicated when it was first introduced, in part because the
template implementation was not complete, and because it looked like it just
provide another way to solve old problems. However, the properties involved
provide a common interface to the SQL engine. Since they can all be combined, the
developer can easily expand existing code without a complete rewrite. When used
in handcode, the code is easy to follow and as a consequence, easy to alter when
needed. My conclusion after exploring the SQL Advanced tab is that it represents
yet another Clarion feature which is commonly underestimated.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v9n03sqladvanced.zip

289

CREATING SQL FROM XML WITH XSLT

by Bernard Grosperrin

You’ve heard all about XML, and you may be even using it in some ways. Whether
or not you use XML, you may be wondering what all the fuss is about. After all, it’s
just another ASCII file with a flexible set of markup tags, right?

Well, yes, that’s right. But if that’s all you know and want to know about XML, you
are missing 90% of it!

And the main part you are missing is XSLT.

XSLT stands for eXtensible Stylesheet Language Transformation. The problem with
the XSLT acronym, as I see it, is the S, which is for Style. This leads many people to
think of XSLT as a style sheet for XML files, the way CSS files are style sheets for
HTML. But the important part of the acronym is the T, which stands for
Transformation. It is this aspect that makes XSLT so special and useful.

In this chapter I will attempt to show that XSLT is really much more a
Transformation Language than a Style Sheet, and hopefully I will demonstrate that
XML is worth a second look because of XSLT.

C r e a t i n g S Q L F r o m X M L W i t h X S L T

290

An XML template language

XSLT is a template language. Yes, templates, as in Clarion templates. That is, XSLT
allow you to generate about anything you want from an XML file, which contains
the “data”.

Consider the problem of downloading an XML file, in this case a price list, and
storing its contents in a SQL database. The “normal” way to do this is to:

1) Connect to the Internet

2) Download the file

3) Parse it, one way or another

4) Process the data to insert in a file

There are Clarion tools, classes, templates, for each one of those steps, and with the
right tools this process work well; there is nothing wrong with this approach. But
what if I tell you that you can have a single tiny procedure, which will be truly re-
usable with any XML file, and which allows you to do all of the above in a few lines
of code, really quickly? That’s what this paper is all about!

Transformation

As I said above, XSLT allow you to transform XML in any text format you want.
Most of the time XSLT is used to generate HTML, or XHTML, but there’s no reason
you can’t generate an ASCII, Comma delimited file, or an SQL script, or whatever
else you like.In the following example I will generate a text file (CSV) to Insert data
in an SQL table. I will make this work for PostgreSQL, but you can adapt this
method to the SQL database of your choice. (Although this example only creates
the INSERT statements, you could also quite easily modify the XSLT to generate the
CREATE TABLE script as well.)

Tools

What tools do you need to create and test an XSLT file? First, since XSLT, like XML,
is stored in simple text files, Windows Notepad will do. You can test the result of
your transformation by viewing the file in Internet explorer. This approach really

T o o l s

291

does work, and it is a zero cost solution (assuming you’re already running
Windows, of course). There are many XSLT tools which will enhance your
productivity. The “Rolls Royce” is XMLSpy, by Altova (www.altova.com/
simpledownload2.html?gclid=CJCxhr321ooCFRlmWAod_wK0gA)

If you don’t work a lot with XML-XSLT, you may need fewer features and more
simplicity than XMLSpy. SharpDevelop, the IDE upon which Clarion 7 and
Clarion.Net is built, has a decent XML/XSLT editor, just like Visual Studio, and
SharpDevelop will also do the transformation. My guess is that the new Clarion IDE
will have that same editor built in.

A debugger will allow you to follow the transformation step by step, which is an
excellent learning tool, as you can see on Figure 1. XMLSpy has a debugger, as does
the excellent shareware EditiX (www.editix.com) application. If you do more than
just a couple of tests because of this chapter, I suggest you pay the license, as this is
an excellent tool to work with XML/XSLT and even XSL:FO (The FO stands for
“formatting object XSL:FO does not transform exclusively to a text file, but to a
document containing sequences for printer , allowing, for example, to transform
directly to a PDF file, on the fly. XLS:FO is beyond the scope of this chapter.)

Figure 1: Altova XML Spy

C r e a t i n g S Q L F r o m X M L W i t h X S L T

292

Where to start?

The example XML file I will use is an extract, with some changes, of a real,
proprietary XML document, which is used to update prices. I changed the names
and the prices, and use only a few records instead on the 2500 something the
original file contains. The size reduction is only for convenience; even with about
2500 records the processing shown below is lightning fast. On my machine it takes
approximately 0.6 seconds to parse the XML and import the data.

Here is a short excerpt of the XML file:

<Extract>
 <Item>
 <PartNo>00211</PartNo>
 <PartDesc>SCHMURZ GRAND_SPORT</PartDesc>
 <PartPrice>396.80</PartPrice>
 <PartRetail>521.95</PartRetail>
 </Item>
 <Item>
 <PartNo>00216</PartNo>
 <PartDesc>SCHMURZ GRAND TOURISMO</PartDesc>
 <PartPrice>194.98</PartPrice>
 <PartRetail>256.95</PartRetail>
 </Item>
 <Item>
 <PartNo>00218</PartNo>
 <PartDesc>MICHELIN M+S</PartDesc>
 <PartPrice>187.15</PartPrice>
 <PartRetail>245.95</PartRetail>
 </Item>
</Extract>

To transform an XML file into some other format I need an XLST file. If I open
EditiX and create a new XSLT file (choose XSL 2:0 for XML), and replace
xsl:output method="xml" by method="text" (see the bold text below), I’ll have
the basic structure I need to start writing my XSLT file:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="2.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:xdt="http://www.w3.org/2005/xpath-datatypes"
 xmlns:err="http://www.w3.org/2005/xqt-errors"
 exclude-result-prefixes="xs xdt err fn">
 <xsl:output method="text" version="1.0" encoding="UTF-8"
indent="yes"/>

W h e r e t o s t a r t ?

293

 <xsl:template match="/">
 </xsl:template>
</xsl:stylesheet>

As you can see, an XSLT file is itself an XML file where each tag name has an xsl:
prefix.

There are books, tutorials, and web sites explaining everything you may ever want
to know about XSL so I won’t go into all the details. For more information see the
Resources section at the end of the chapter. The work really starts at
<xsl:template>, as this element will contain the set of rules to apply to a specified
node. As I want to work on the whole file and the root element is Extract I change
this tag to

<xsl:template match="Extract">
</xsl:template>

There is nothing inside this element yet; if you were to try a transformation now
(that is, run the XSLT file), you would just get an empty file. But if you change the
tag to this:

<xsl:template match="Extract">
 here is my first transformation!
</xsl:template>

a transformation will have the sentence “here is my first transformation!” inside
your result file.

OK, it’s nothing spectacular, or useful. Yet.

Take a closer look at the XML file above. Inside the root element Extract there are a
number of <Item> elements, and each <Item> element contains four elements,
<PartNo>, <PartDesc>, <PartPrice> and <PartRetail>. The XSLT file needs to be
able to loop through the XML file, and for each <Item> element get the values of
each of the four elements it contains. I’ll use the <xsl:for-each> tag for the loop:

<xsl:template match="Extract">
 <xsl:for-each select="Item">
 </xsl:for-each>
</xsl:template>

The xsl:for-each tag defines this XSLT file’s first rule: do something for each
<Item> element.. And the something is to write down the value of the sub-elements
with the <xsl:value-of> tag:

<xsl:template match="Extract">
 <xsl:for-each select="Item">
 <xsl:value-of select="PartNo"/>

C r e a t i n g S Q L F r o m X M L W i t h X S L T

294

 <xsl:value-of select="PartDesc" />
 <xsl:value-of select="PartPrice"/>
 <xsl:value-of select="PartRetail"/>
 </xsl:for-each>
</xsl:template>

If I transform my XML file with this XSLT, I obtain this:

00211SCHMURZ GRAND_SPORT396.80521.9500216SCHMURZ GRAND

TOURISMO194.98256.9500218MICHELIN M+S187.15245.95

The output is simply a long string, without any space, containing data extracted
from the XML file. The XSLT output is unusable and ugly, but the transformation
works.Clearly the output could benefit from some line breaks. Declaring a linefeed
variable in this XSLT script:

<xsl:variable name="new_line" select="'
'" />

The variable is new-line, and its value #xA; which is the HTML equivalent of a
linefeed + carriage return or, in Clarion terms, '<13><10>'. You won’t always need
this particular technique. For instance, XSLT is normally used for HTML where
carriage returns are a matter of convenience only and are not required, but this
XSLT file is generating a pure text file so I need a way to mark the end of a record. I
could use the #xA; value directly, but the variable makes the code a little more
readable.

Here’s the full script so far:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:xdt="http://www.w3.org/2005/xpath-datatypes"
 xmlns:err="http://www.w3.org/2005/xqt-errors"
 exclude-result-prefixes="xs xdt err fn">
 <xsl:output method="html"/>
 <xsl:variable name="new_line" select="'
'" />
 <xsl:template match="Extract">
 <xsl:for-each select="Item">
 <xsl:value-of select="PartNo"/>
 <xsl:value-of select="PartDesc" />
 <xsl:value-of select="PartPrice"/>
 <xsl:value-of select="PartRetail"/>
 <xsl:value-of select="$new_line" />
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

W h e r e t o s t a r t ?

295

The result looks a little better:

00211SCHMURZ GRAND_SPORT396.80521.95
00216SCHMURZ GRAND TOURISMO194.98256.95
00218MICHELIN M+S187.15245.95

To create a comma delimited file, simply add commas and quotes as needed:

 <xsl:for-each select="Item">
 <xsl:value-of select="PartNo"/>
 <xsl:text>,"</xsl:text>
 <xsl:value-of select="PartDesc" />
 <xsl:text>",</xsl:text>
 <xsl:value-of select="PartPrice"/>
 <xsl:text>,</xsl:text>
 <xsl:value-of select="PartRetail"/>
 <xsl:value-of select="$new_line" />
 </xsl:for-each>

This XSLT code gives the result:

00211,"SCHMURZ GRAND_SPORT",396.80,521.95
00216,"SCHMURZ GRAND TOURISMO",194.98,256.95
00218,"MICHELIN M+S",187.15,245.95

But I said I wanted to generate an SQL script to directly insert this data into a table.
Let’s do it, then:

 <xsl:for-each select="Item">
 <xsl:text>INSERT INTO pricelist(partno,partdesc,partprice,
 partretail) VALUES('</xsl:text>
 <xsl:value-of select="PartNo"/>
 <xsl:text>','</xsl:text>
 <xsl:value-of select="PartDesc" />
 <xsl:text>','</xsl:text>
 <xsl:value-of select="PartPrice"/>
 <xsl:text>','</xsl:text>
 <xsl:value-of select="PartRetail"/>
 <xsl:text>');</xsl:text>
 <xsl:value-of select="$new_line" />
 </xsl:for-each>

Run the XSLT again and you get the following output, which is a valid set of
PostgreSQL INSERT statements:

INSERT INTO pricelist(partno,partdesc,partprice,partretail)
 VALUES('00211','SCHMURZ GRAND_SPORT','396.80','521.95');
INSERT INTO pricelist(partno,partdesc,partprice,partretail)
 VALUES('00216','SCHMURZ GRAND TOURISMO','194.98','256.95');
INSERT INTO pricelist(partno,partdesc,partprice,partretail)
 VALUES('00218','MICHELIN M+S','187.15','245.95');

C r e a t i n g S Q L F r o m X M L W i t h X S L T

296

This is not the whole story, though, and does not fully show the power of XSLT.

In fact, in many places in my original XML file the description contains quotes:
instead of, say, MICHELIN M+S, the file may contain something like MICHELIN 'M+S'.
And the insert will fail because in PostgreSQL quotes are special characters needing
to be escaped.

One way to solve this problem is to replace, inside a description, a single quote with
a double quote. PostgreSQL is happy with this solution and I am too, as long as I am
consistent through the whole database.

Now, I know how to do this search and replace in Clarion, but I am using XSLT
here, and there is no way to include a little piece of Clarion code....

Did I say XSLT was a language? I did! So there should be some way to do a search
and replace, right? In fact there are a number of ways, but I will demonstrate just
one.

I will write a “kind of” recursive function which splits a description into what is
before what I search, and what is after, so that I can replace as many single quotes as
needed in a description; this code then calls itself for each after portion until no
more single quotes are found.

First, I need to declare two variables, search and replace:

<xsl:variable name="search"><xsl:text>'</xsl:text></
xsl:variable>
<xsl:variable name="replace"><xsl:text>"</xsl:text></
xsl:variable>

The &apos text is for the single quote (’), and " is for the double quote (”).

Then, I need to write my “function” using an <xsl:template> tag:

<xsl:template name="replace-string">
</xsl:template>

Yes, I am writing a second template, inside my “stylesheet”. This one does not
“match” anything, but has a name, which will allow me to call it from inside the
previous template. If you’re familiar with the Clarion template language, you can
think of this as being similar to a #GROUP statement

I need to be able to pass parameters, so I declare them like this:

<xsl:template name="replace-string">
 <!-- search for this: -->
 <xsl:param name="search" select="string(.)"/>

W h e r e t o s t a r t ?

297

 <!-- and replace it with this: -->
 <xsl:param name="replace" select="string(.)"/>
 <!-- here is the original string: -->
 <xsl:param name="string" select="string(.)"/>

each parameter has a name and a select attribute that points to “self”, or the value
passed with the name.

Now, I need something like Clarion’s CASE structure, or an IF/THEN/ELSE to handle
multiple test conditions. In XSLT, xsl:choose does the job:

<xsl:choose>
 <xsl:when test="not(contains($string, $search))">
 <!-- if there are no more appearances of $search in the
 $string, output the rest of the string and stop. -->
 <xsl:value-of select="$string"/>
 </xsl:when>

The <xsl:otherwise> tag is an ELSE for when $search is found in $string:

 <xsl:otherwise>
 <!-- output the part of the $string that is before the
 first appearance of $search. -->
 <xsl:value-of select="substring-before($string, $search)"/>

 <!-- output the replacement $replace. -->
 <xsl:value-of select="$replace"/>

Finally this template calls itself again, using the part of $string that come after the
first $search:

 <xsl:call-template name="replace-string">
 <xsl:with-param name="search" select="$search"/>
 <xsl:with-param name="replace" select="$replace"/>
 <xsl:with-param name="string" select="substring-after($string,
$search)"/>
 </xsl:call-template>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

That’s the generic search and replace function. It receives three parameters: the
original string, the search for string, and the replace with string. You can follow step
by step in an XSLT debugger what is happening; the steps are as follows:

First call:

$string = MICHELIN 'X+S'
$search = '
$replace = “
First Iteration Output= MICHELIN “

C r e a t i n g S Q L F r o m X M L W i t h X S L T

298

Second call:
$string= MICHELIN “X+S'
$search='
$replace=”
Second Iteration Output=MICHELIN “X+S”
Third call:
$string = MICHELIN “X+S”
$search='
$replace=”
Exit immediately with the value of $string

Finally, I need to modify the main template to call the search and replace function:

<xsl:call-template name="replace-string">
 <xsl:with-param name="search" select="$search"/>
 <xsl:with-param name="replace" select="$replace"/>
 <xsl:with-param name="string" select="PartDesc" />
</xsl:call-template>

Here’s the whole script so far:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="text" version="1.0" encoding="UTF-8"
indent="yes"/>
 <xsl:variable name="new_line" select="'
'" />
 <xsl:variable name="search"><xsl:text>'</xsl:text></
xsl:variable>
 <xsl:variable name="replace"><xsl:text>"</xsl:text></
xsl:variable>
 <xsl:template match="Extract">
 <xsl:for-each select="Item">
 <xsl:text>INSERT INTO
pricelist(partno,partdesc,partprice,partretail) VALUES('</xsl:text>

 <xsl:value-of select="PartNo"/>
 <xsl:text>','</xsl:text>
 <xsl:call-template name="replace-string">
 <xsl:with-param name="search" select="$search"/>
 <xsl:with-param name="replace" select="$replace"/>
 <xsl:with-param name="string" select="PartDesc" />
 </xsl:call-template>
 <xsl:text>','</xsl:text>
 <xsl:value-of select="PartPrice"/>
 <xsl:text>','</xsl:text>
 <xsl:value-of select="PartRetail"/>
 <xsl:text>');</xsl:text>
 <xsl:value-of select="$new_line" />

W h a t a b o u t C l a r i o n ?

299

 </xsl:for-each>
 </xsl:template>

<xsl:template name="replace-string">
 <!-- search for this: -->
 <xsl:param name="search" select="string(.)"/>
 <!-- and replace it with this: -->
 <xsl:param name="replace" select="string(.)"/>
 <!-- here is the original string: -->
 <xsl:param name="string" select="string(.)"/>

 <xsl:choose>
 <xsl:when test="not(contains($string, $search))">
 <!-- if there are no more appearances of $search in the
 $string, output the rest of the string and stop. -->
 <xsl:value-of select="$string"/>
 </xsl:when>
 <xsl:otherwise>
 <!-- output the part of the $string that is before the
 first appearance of $search. -->
 <xsl:value-of select="substring-before($string, $search)"/>

 <!-- output the replacement $replace. -->
 <xsl:value-of select="$replace"/>
 <!-- repeat the process, using the part of $string that
 comes after the first appearance of $search. -->
 <xsl:call-template name="replace-string">
 <xsl:with-param name="search" select="$search"/>
 <xsl:with-param name="replace" select="$replace"/>
 <xsl:with-param name="string" select="substring-after($string,
$search)"/>
 </xsl:call-template>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>
</xsl:stylesheet>

What about Clarion?

I have an XSLT script, and I know it works because I tested it inside EditiX with my
XML file, and I get a nice SQL script as output, but this has nothing to do with
Clarion, at least so far. I’ll explain how to integrate this code into a Clarion app in
the next chapter.

C r e a t i n g S Q L F r o m X M L W i t h X S L T

300

301

CALLING XSLT CODE FROM CLARION

by Bernard Grosperrin

In the previous chapter I explained how XSLT works, and I showed how to convert
XML into SQL INSERT statements using a stylesheet. In this concluding chapter I’ll
show how to integrate that code into a Clarion application.

But first, to show how simply an XSLT transformation can be executed from within
a program I made a small C# program which is included in the downloadable
source zip. There is no error checking, as this is really for demo purpose, and not
production, but it demonstrates how to make the code smaller and simpler, much
easier to see what’s going on. The relevant part is as follows:

void TransformButtonClick(object sender, EventArgs e)

{
 // Load the XML Document
 XPathDocument myXPathDoc =
 new XPathDocument(XMLFileName.Text);
 // Load the XSL
 XslCompiledTransform myXslTrans =
 new XslCompiledTransform();
 myXslTrans.Load(XSLFileName.Text);
 // Create the output stream
 XmlTextWriter myWriter =
 new XmlTextWriter("SQLScript.sql", null);
 // Do the actual transformation
 myXslTrans.Transform(myXPathDoc,null,myWriter);

C a l l i n g X S L T C o d e F r o m C l a r i o n

302

 myWriter.Close();
 // Open the document in the text box
 TransformationResult.LoadFile("SQLScript.sql",
 RichTextBoxStreamType.PlainText);
}

This C# program makes use of the .NET XSLT libraries. I mentioned at the start of
this chapter that I needed to download the XML file, but the example uses a local
filename. That’s not a problem – the constructor to XpathDocument also accepts
URLs, so you can just as easily use a file on another server as input. A Clarion.NET
version of the program would look very similar to this C# example.

Figure 1 is a screenshot of the C# program in action. I’ve blurred out the data for
security reasons.

Figure 1: Transformed data (blurred for security reasons) in a C# application

T r a n s f o r m i n g t h e e a s y w a y

303

Another option is to use MS XML COM object directly from Clarion. This works
beautifully, but I am not going to explain it here, as it’s a bigger topic and well
outside the scope of this chapter.

Both XMLFuse (www.thinkdata.com/products/fuse/xmlfuse.asp) and
EasyCOM2INC (www.ingasoftplus.com/id104.htm) will allow you to use the MS
XML COM objects more easily from within a Clarion application.

Clarion’s own XML classes are not an option, as they don’t validate against a DTD or
Schema, nor do they allow for URL instead of a path, which is a very important
feature in transforming XSLT (as I will explain later). As soon Clarion’s XML classes
do validation, they will be an option to consider (although they’re unlikely to accept
URLs as easily as local files).

Transforming the easy way

To make transforming XSLT as easy as possible I made a small OLE object, which
you can call from Clarion with a single line of code. At first I wanted to make a DLL,
using the inverse P/Invoke method. Although I found an example
(www.clarioncentral.com/inversep.htm) which works beautifully, I have been
unable to get it to work with my own XSLT code. The DLL is created properly but I
get an initialization error when starting my Clarion program. It might be due to the
fact that I have three (yes, three).Net frameworks on my machine, 1.1, 2.0 and 3.0.
I will experiment more with inverse p/Invoke, but this is more because of personal
interest than absolute necessity.

Creating an OLE object in C#

Since I couldn’t resolve the DLL loading error I reverted to an OLE object, following
Wade Hatler’s excellent articles (www.clarionmag.com/cmag/
topics.html?subcategoryid=315). I believe we all will certainly continue to create
Win32 applications for a while, but .Net Framework offers a vast range of built-in
functionality. And while OLE is not the best and fastest method to “consume” .Net
from Clarion, it’s very simple to do. Read and re-read Wade’s series on .Net in
ClarionMag to learn about making C# and Clarion work together.

C a l l i n g X S L T C o d e F r o m C l a r i o n

304

I used SharpDevelop (www.icsharpcode.net/OpenSource/SD) to create the OLE
object, thereby killing two birds with one stone: learning C#, and learning how to
use Clarion future IDE.

The very first thing I did was to write a little C# program to test the idea of a single
line call to transform XSLT, and to validate the syntax. This is a Windows Forms
program, nothing sophisticated at all.

You will find the project and files in the code to download with this paper. The
downloadable source includes randomly generated data.

Once I’d verified my code worked as expected, it was time to create the OLE
component to use from Clarion. Following Wade’s example, I created a second
Project in my solution using the Class Library type instead of a Windows
Application type, as seen in Figure 2.

The only real difference between the test application version and the class library
version is that I wrote a method accepting three strings as parameters, for each of
the files involved: the XML file, the XSLT file, and a file to store the result of the
transformation:

public static void BGTransform(string pXMLFile, string pXSLTFile,
 string pSQLoutput)
{
 XPathDocument myXPathDoc = new XPathDocument(pXMLFile);

Figure 2: The C# project tree

C r e a t i n g a n O L E o b j e c t i n C #

305

 XslCompiledTransform myXSLTrans = new XslCompiledTransform();
 myXSLTrans.Load(pXSLTFile);
 XmlTextWriter myWriter = new XmlTextWriter(pSQLoutput,null);
 myXSLTrans.Transform(myXPathDoc, myWriter);
 myWriter.Close();
}

But first, I have a strong warning about this code and the OLE object accompanying
this chapter: Don’t use this in production! This is an example only, and you will
need to add your own error checking code. For instance, if the files are not
respectively XML and XSLT, or are not well formed, the transformation will not
happen but you will not know why! For production work, you should validate the
XML file against a DTD or schema (even if you have to create the schema yourself).
Without validation any changes to the XML or XSLT formats will not be
intercepted, and either your transformation will not work or it will give unexpected
results. Also, for production work, you may need to pass identifications parameters
to the web site where you are grabbing the XML file. The .Net Framework (like the
COM object) has the properties and methods to do this, but I wanted to keep this
example as simple as possible, as the focus on this chapter is XML transformation,
not writing a production ready OLE control in C#!

Now that I have my method, I need to make this class library (compiled into a
DLL), an OLE control usable from Clarion. Wade’s article covers this subject
thoroughly, using Visual Studio 2005; I’ll explain only the differences in doing the
same task in SharpDevelop 2.1 beta.

First, I need to add one line to my list of using declarations:

using System.Runtime.InteropServices;

Unlike Wade, I found the Assembly key file was required if I wanted to be able to
generate the COM object. In SharpDevelop, if you right-click on the project name,
as seen in Figure 3, the last choice in the drop-down menu is Properties. The third
tab, Signing, is where you indicate you want to sign the assembly. Specify the key
file created with the sn.exe utility (as explained by Wade).

Figure 3: Signing a C# assembly in Visual Studio

C a l l i n g X S L T C o d e F r o m C l a r i o n

306

As I want to have my DLL/OLE object in the same directory than the Clarion
application, I indicate the correct output path from the Project properties
Compiling tab, shown in Figure 4.

It’s also there that I check the Register for COM Interop box, which will make this
.Net assembly visible as an OLE object. The very last thing to do is to indicate which
class I want to expose to COM. As there is only one, the code is short, as you can
see:

namespace TransformXML
{
 /// <summary>
 /// Description of MyClass.
 /// </summary>
 [ClassInterface(ClassInterfaceType.AutoDual)]
 public class TransformXMLclass
 {
 public void BGTransform(string pXMLFile,
 string pXSLTFile, string pSQLoutput)

Now I can build the project and get a DLL which is a OLE/COM object.

The last step is to register my brand new assembly for COM. I have not found a
built-in automated way to do this from inside the SharpDevelop IDE, but the
Project Properties, on the Build Events tab, has provision for a Post-build event
command line, where I can add the command line for Regasm.exe.

I would take this step for a complex project, but in this case I simply used the .Net
Framework SDK 2.0 command prompt to run regasm and register my object. In the
source zip you will find a TransformXML32.reg file, also generated by regasm,
which will allow you to do this on your machine very simply.

Figure 4: Setting the output path

F i n a l l y , C l a r i o n !

307

Now, it’s time to verify that all this worked, so I run MS OLE/COM Object viewer
(Figure 5) to see if I can find my shiny new object.

Finally, Clarion!

Finally it’s time to go back to Clarion to run the transformation. As this involves
only a simple method call and no user interface, the code is quite simple:

Transform = CREATE(0, CREATE:OLE)

Transform{PROP:create} = 'TransformXML.TransformXMLclass';

I created an application, without a dictionary at first, to test the control. I created a
window procedure and added three entry fields from local variables. To each entry
field I added a DOS Lookup control template. I also added an RTF control (which
could also have been a text control) and an Exit button to close the window. Then,
to initialize the control, I added the above two lines in the ThisWindows.Init
embed.

Figure 5: Finding the new COM object with the viewer

C a l l i n g X S L T C o d e F r o m C l a r i o n

308

Transform is a long declared in the procedure data. The transformation process is
in a routine, and takes only one line of code:

 Transform{'BGTransform(' & XMLFileName |
 & ',' & XSLTFileName |
 & ',' & SQLFileName & ')'}

This routine is called from the FileDialog button for the result file, which loads the
file in the RTF control after the transformation is done.

The Accepted event for the button has two lines of code:

DO TransformXML
RTFControl5.Load(SQLFileName)

As you can see, it only takes a few lines of Clarion code to do the actual
transformation.

One more thing: You may recall that I said at the beginning of this chapter that my
goal was to get those data into a SQL table. My relational database engine of choice
is PostgreSQL, so I will show how to do this with PostgreSQL, but most of the SQL
servers allow bulk import, so you should be able to adapt this technique to your
specific case.

You could, as I have done at first, use XSLT to generate INSERT INTO statements,
which you can then process in a loop with PROP:SQL. And it might be your only
choice if your database does not have a batch import feature, or if you have to do
this from a station not connected directly to the server, but only via TCP/IP.

If you are doing this import from a station on the LAN, or even better, from the
server itself, what follows is what I believe to be the best way to do a batch import.

PostgreSQL has a COPY command allowing a bulk import from a text file. The caveat
is that this is executed on the server, not the workstation, so the file has to be
available to the server, with a path from the server point of view. Which means
either I have to copy the file on the server, or I have to use a path meaning
something to the server; the file has to be on a shared local drive, and I need to give
to the server the UNC path. I could also map my local drive to a drive letter on the
server, but this can quickly be a nightmare if I have to help my users to do this. It
also won’t work if my server is Linux, although the UNC method should be fine.

Another issue is that in PostgreSQL the backslash is a special character, so if you
want to include backslash in a string you have to escape it. I found much simpler to
replace backslashes with forward slashes, which work as well in a UNC path.

F i n a l l y , C l a r i o n !

309

If you want to experiment with this method with PostgreSQL you need to create a
database, then create a single table (see the script provided in accompanying
download), then import that table in a dictionary and set that dictionary in your
application global properties (assuming you followed my example and created the
initial application without a dictionary).

Once that is done you can create a browse box below the text control to display
just-imported records in the SQL table.

Again, this requires very little manual code:

ConvertUNCtoSlash ROUTINE
! For postgresql, \ is a special character which would need
! to be escaped. I do the conversion here, which is simpler
! than escaping backslashes
 LOOP I# = 1 to len(SQLFileName)

 IF sqlFilename[I#] = '\'

 sqlFileName[I#] = '/'
 END
 END
LoadIntoDB Routine
 DO ConvertUNCtoSlash
 setcursor(cursor:wait)

 Start# = Clock()

 ! a single line of code to insert the records, VERY quickly.....

 SEND(Pricelist,'COPY pricelist FROM ''' & SQLFileName & '''')

 IF FileErrorCode()

 Message('Error: ' & FileError() & '<13,10>' & 'SQL: ' |

 & Pricelist{PROP:SQL})

 End

 BRW7.resetfromFile()

 SELECT(?list,1)

 End# = Clock()

 endclock = Clock()
 Total# = End# - Start#
 ?Button5{PROP:TEXT} = RECORDS(Pricelist) |

 & ' records processed in ' & Total# & '/100th of a second....'

 Setcursor()

About half of the code in LoadIntoDB routine is there to evaluate how long it takes
to process the records. Inserting the records takes only one line of code.

I changed my initial XSLT style sheet to have tabs between the fields, as this is the
default separator for PostgreSQL, and removed the SQL statements. Both style
sheets are provided in the accompanying code.

C a l l i n g X S L T C o d e F r o m C l a r i o n

310

Figure 6 shows the final result: 81/100th of a second to both parse the XML and
insert 2648 records in the database on the LAN. As inserting the records took 0.61
seconds, parsing took 0.20 seconds.

Where to next?

As noted above, one advantage of this method, is that your files (XML and XSLT) do
not need to be local, as this technique will work just as well with URLs as with local
files.

In the accompanying source code you will find a modified C# example with an hard
coded URL to a style sheet on my server, allowing you to explore the structure of
any XML file.

Figure 6: The Clarion program using the .NET library

S o u r c e c o d e

311

There are at least two advantages to using the .NET classes as demonstrated in this
chapter:

• You don’t need additional code to connect to the Internet and
download the file.

• If your XSLT file is on your own server, rather than shipped to
clients, you can make changes as needed without having to ship or
to recompile anything.

I hope this chapter has inspired you to learn more about XSLT. For further
information I encourage to to explore the following resources. And feel free to email
me if you have any questions.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v9n04xslt.zip

Resources:

• SharpDevelop (#D) (www.icsharpcode.net/OpenSource/SD)

• Wade Hatler’s paper (www.clarionmag.com/cmag/v7/
v7n08dotnetinterop1.html)

• XMLSpy (www.altova.com/simpledownload2.html)

• EditiX (www.editix.com)

• XSL Transformations (en.wikipedia.org/wiki/XSLT)

• W3Schools (www.w3schools.com/xsl/default.asp)

• MSDN (msdn.microsoft.com/msdnmag/issues/0800/XSLT)

• O’Reilly (www.oreilly.com/catalog/xslt)

• XMLFuse (www.thinkdata.com/products/fuse/xmlfuse.asp)

• EasyCOM2INC (www.ingasoftplus.com/id104.htm)

• PostgreSQL (www.postgresql.org)

C a l l i n g X S L T C o d e F r o m C l a r i o n

312

313

EXTERNAL BUSINESS RULES WITH THE IN-
MEMORY DRIVER

by Nardus Swanevelder

Towards the end of 2004 I wrote a series of articles on Clarion’s Business rules
(www.clarionmag.com/cmag/v6/v6n10bizrules1.html). I discussed what you need
to do to implement the standard business rule functionality in your application, and
I showed how to write a template that will enable you to change your rules at
runtime.

One of the problems with my approach was the fact that I used a Global queue to
store the business rules, and as you are hopefully aware by now Global queues can
be a problem in Clarion 6 with the new threading model.

So what to do, what to do? The one option is to encapsulate your Global Data
assignments in a critical section. Various articles have been published on this
subject, but the one that I found very informative and easy to implement is the use
of critical sections, as discussed in Geoff Robinson’s Aussie DevCon: Mambo,
Critical Sections/Threading, and Ingres (www.clarionmag.com/cmag/v8/
v8n05devcon-day2b.html).

The second option you have is to use SoftVelocity’s In-Memory Database Driver
(IMDD), which is what I’ll explore in this chapter. The IMDD is thread safe due to

E x t e r n a l B u s i n e s s R u l e s w i t h t h e I n - M e m o r y D r i v e r

314

the fact that it is a file driver, and the File Manager class is thread safe. The only
draw back with the IMDD driver is that you have to purchase it from SoftVelocity. It
does not ship as part of Clarion Personal Edition or Clarion Enterprise Edition. The
IMDD can be used for much more than replacing your Global queues with a thread
safe option, but that is a discussion that does not form part of this chapter.

I am using the IMDD driver in most of my applications and recently I decided to
upgrade my External Rules template to cater to the IMDD driver. I have left the
option to use Global queues in the template for backward compatibility, but please
take note that if you use the Global queues in this template, it is not thread safe.

The basics of business rules

For those of you that did not read the previous series of articles
(www.clarionmag.com/cmag/v6/v6n10bizrules1.html), and for those of you that
can’t remember them anymore, here’s a quick recap.

I use three tables to store my business rules externally to my application. The first
table stores the Rule System Identification Number, the Rule Description, the actual
Rule Expression, the Control where you want the rule icon to be displayed and an
offset for displaying the rule icon to the left of the control on the screen. Figures 1
and 2 show you sample screens of the Browse and Update screens for this table.
Figure 3 gives you an example of what the rule icon looks like.

Figure 1: The Browse screen for the business rules

T h e b a s i c s o f b u s i n e s s r u l e s

315

The second table stores the Action that you want to enforce if the rule is valid, and
the use variable of the control to which the action will be applied. For example: if
the rule is valid disable the ?OK control.

Figure 2: Example of a Rule

Figure 3: Update Form where there are active
rules – note that the OK button is disabled

E x t e r n a l B u s i n e s s R u l e s w i t h t h e I n - M e m o r y D r i v e r

316

The third table stores the names of the procedures for which the rule is excluded.

Now you know how to populate the application with your business rules, and you
know what a screen will look like when the rules are enforced. The next step is to
look at what is involved to add this functionality to your application.

Step 1. Add tables to your dictionary

You have to add the three tables as discussed above, and if you are going to use the
IMDD, you also have to import the three IMDD tables that correspond to the
queues in the non-IMDD version.

Step 2. Global Template

Add the DinamiComp’s External Business Rules global template to your
application’s global extensions. Complete the Queue/In-Memory tab as well as the

Figure 4: Example of Actions available per Control

Figure 5: Example of Procedure Name

T h e b a s i c s o f b u s i n e s s r u l e s

317

Rule Settings tab. For an explanation of the Rule Settings tab please read my
previous article. In a multi-DLL application you need to add the Global extension to
each of your apps where you want to test for rules on a procedure basis. The
template will automatically take care of defining the external references where
necessary.

Click the Use In-Memory Driver checkbox if you are going to make use of the
IMDD. Select the file IMDD Rules Table name by clicking on the button next to the
entry field. I could not get the lookup button to work for a IMDD key so you have
to manually enter the IMDD Rules table’s primary key.

Follow this same process to complete the prompts for the Controls Per Rule and
Override Procedures Per Rule tables.

Figure 6: Main Global Template

E x t e r n a l B u s i n e s s R u l e s w i t h t h e I n - M e m o r y D r i v e r

318

Step 3. Load Rules into Global Queues or IMDD table

The next step is to populate the queue or the IMDD tables with the information
from the database.

To make this easier I have created a Code Extension that you call in the Main
procedure of your application. Please note that this template does not make use of
the InMemoryCachedTableLoad template that ships with the IMDD product. I have
no experience with this table and therefore have not used it in my template.

Figure 7: Population of In-Memory Data Driver Info

C o d e c h a n g e s t o t h e t e m p l a t e

319

Step 4. Add Procedure Extension

Step 5. Add Rules Browse and Update screens to your application

This step is only required if you believe that the client has sufficient skills/
knowledge to have access to this function.

Code changes to the template

The first thing I did was to add a new #TAB to the Global Extension to be able to
specify if the application is going to make use of Global queues or the In-Memory-
Database-Driver (IMDD).

This is the code needed to add the new Tab (with some line breaks added for
readability):

Figure 8: Read Rules from Database in to Global Queue or IMDD

Figure 9: Procedure Template where you want rules to be checked

E x t e r n a l B u s i n e s s R u l e s w i t h t h e I n - M e m o r y D r i v e r

320

#TAB('Queue/In-Memory')
 #DISPLAY ('')
 #BOXED('In-Memory'),Section
 #DISPLAY ('Use In memory driver in place of Global Queue')
 #DISPLAY ('Will fix Threading issues.')
 #DISPLAY ('Should have TPS/SQL files as well as In-Memory')

 #PROMPT ('Use In-Memory Driver',CHECK),%UseIMD,At(10,30)

 #ENABLE(%UseIMD=%TRUE)
 #DISPLAY ('Select IMDD "Rules" Filename')
 #PROMPT ('',FILE),%IMDRules,REQ
 #DISPLAY ('Select IMDD "Rules" Key')

 #PROMPT ('',@S255),%IMDRULEKEY,REQ

 #DISPLAY ('Select IMDD "Controls Per Rule" Filename')
 #PROMPT ('',FILE),%IMDControlesPerRule,REQ,
 WHENACCEPTED(%StripExclamation(%IMDControlesPerRule))

 #DISPLAY ('Select IMDD "Controls Per Rule" Key')

 #PROMPT ('',@S255),%IMDControlesPerRuleKey,REQ
 #DISPLAY ('Select IMDD "Override Procedures Per Rule"
 Filename')
 #PROMPT ('',FILE),%IMDOverrideProcPerRule,REQ,
 WHENACCEPTED(%StripExclamation(
 %IMDOverrideProcPerRule))
 #DISPLAY ('Select IMDD "Override Procedures Per Rule" Key')
 #PROMPT ('',@S255),%IMDOverrideProcPerRuleKey,REQ
 #ENDENABLE
 #ENDBOXED
#ENDTAB

The next step was to change the Procedure extension to be able to make use of the
Global Queues or the IMDD tables.

 #!IMD
#Embed(%CheckIfRulesBeforeApplyingRulesB,'Check if Rules Before
applying the Rules - Begin')

 Access:%IMDRules.Open()

 Access:%IMDRules.UseFile()

 IMDRUL:SysIdRule = 0
 Set(%IMDRULEKEY,%IMDRULEKEY)

 Loop

 If Access:%IMDRules.Next() <> Level:Benign THEN BREAK.

 !Check if rule's control is on screen

 LWQ:ControlName = Upper(IMDRUL:ControlName)

 Get(LocalWindowQueue,LWQ:ControlName)

 If not error()

#Embed(%CheckProcBeforeApplyingRules,
 'Check Procedure Before applying the Rules')
 !If rule's control is on screen - add rule

C o d e c h a n g e s t o t h e t e m p l a t e

321

 !Check if rule is not overridden on this procedure
 IMDOPR:SysIdRule = IMDRUL:SysIdRule
 IMDOPR:ProcedureName = Upper('%Procedure')
 Access:%IMDOverrideProcPerRule.TryFetch(|

 %IMDOverrideProcPerRuleKey)

 If error()
 !Procedure is not overridden - add Rule
#Embed(%CheckProcNotOverriddenApplyRules,

 'Check Procedure Not Overridden Apply the Rules')

 %RuleBaseName.AddRule(IMDRUL:SysIdRule,|

 Clip(IMDRUL:RuleDescription),|

 Clip(IMDRUL:RuleExpression)|
 ,LWQ:ControlEquate,IMDRUL:Offset)
 !Check rule's rule-action-control
 IMDCPR:SysIdRule = IMDRUL:SysIdRule
 Set(%IMDControlesPerRuleKey,%IMDControlesPerRuleKey)
 Loop
 If Access:%IMDControlesPerRule.Next() <> |
 Level:Benign THEN BREAK.
 If IMDCPR:SysIdRule <> IMDRUL:SysIdRule then break.
#Embed(%CheckProcControlApplyRulesB,
 'Check Procedure Control Apply the Rules - Begin')
 !If rule's rule-action-control is on window
 !add control to rule
 LWQ:ControlName = IMDCPR:ControlName
 Get(LocalWindowQueue,LWQ:ControlName)
 If not error()
 %RuleBaseName.AddControlToRule(|
 IMDRUL:SysIdRule,LWQ:ControlEquate,|
 IMDCPR:RuleAction)
 End
#Embed(%CheckProcControlApplyRulesE,
 'Check Procedure Control Apply the Rules - End')
 End
 End
 End
 End
 Access:%IMDRules.Close()

#Embed(%CheckIfRulesBeforeApplyingRulesE,

 'Check if Rules Before applying the Rules - End')
 #END

The last step was to populate Global Queue or IMDD tables with Rule data from
database. To automate this process I created the following Code Template:

#!@@@
#! Code Extension
#!@@@

E x t e r n a l B u s i n e s s R u l e s w i t h t h e I n - M e m o r y D r i v e r

322

#Code(dcExternalRulesCodeReadRules,'DinamiComp''s Read Rules into

Global Queues/IMDD-Code')
#!
#SHEET

 #PROMPT('Open and Close Rule

Files',Check),%LocalOpenCloseRuleFiles,AT(10),DEFAULT(1)
#ENDSHEET
 #IF(%LocalOpenCloseRuleFiles = 1)
 Access:Rules.Open()
 Access:Rules.UseFile()
 #ENDIF
 #IF(%UseIMD=%FALSE)
 Free(RulesQueue)
 RUL:SysIdRule = 0
 Set(RUL:PK_Rules,RUL:PK_Rules)
 Loop
 If Access:Rules.Next() <> Level:Benign THEN BREAK.
 RQ:SysIdRule = RUL:SysIdRule
 RQ:RuleDescription = Clip(RUL:RuleDescription)
 RQ:RuleExpression = Clip(RUL:RuleExpression)
 RQ:ControlName = Clip(RUL:ControlName)
 If Sub(RQ:ControlName,1,1) = '?'
 RQ:ControlName =
Sub(RQ:ControlName,2,Len(Clip(RQ:ControlName)))
 End
 RQ:Offset = Clip(RUL:Offset)
 Add(RulesQueue,RQ:ControlName)
 If error() then stop(error()).
 End
 #ELSE
 !#IMD
 Access:%IMDRules.Open()
 Access:%IMDRules.UseFile()
#Embed(%LoadRulesInMemoryTableB,
 'Load Rules In Memory Table - Begin')
 RUL:SysIdRule = 0
 Set(RUL:PK_Rules,RUL:PK_Rules)
 Loop
 If Access:Rules.Next() <> Level:Benign THEN BREAK.
 IMDRUL:SysIdRule = RUL:SysIdRule
 IMDRUL:RuleDescription = Clip(RUL:RuleDescription)
 IMDRUL:RuleExpression = Clip(RUL:RuleExpression)
 IMDRUL:Controlname = Clip(RUL:ControlName)
 If Sub(IMDRUL:ControlName,1,1) = '?'
 IMDRUL:ControlName =
Sub(IMDRUL:ControlName,2,Len(Clip(IMDRUL:ControlName)))

 End

 IMDRUL:Offset = Clip(RUL:Offset)
#Embed(%LoadRulesInMemoryTableBeforeAdd,

C o d e c h a n g e s t o t h e t e m p l a t e

323

 'Load Rules In Memory Table - BeforeAdd')
 Access:%IMDRules.Insert()

 If error() then stop(error()).

 End
#Embed(%LoadRulesinMemoryTableE,
 'Load Rules In Memory Table - End')
 Access:%IMDRules.Close()
 #ENDIF
 #IF(%LocalOpenCloseRuleFiles = 1)
 Access:Rules.Close()

 Access:ControlsPerRule.Open()
 Access:ControlsPerRule.UseFile()
 #ENDIF
 #IF(%UseIMD=%FALSE)
 Free(RulesControlQueue)
 CPR:SysIdRule = 0
 CPR:SysIdControlsPerRule = 0
 Set(CPR:FK_ControlePerRule_Rules,CPR:FK_ControlePerRule_Rules)
 Loop
 If Access:ControlsPerRule.Next() <> Level:Benign THEN BREAK.
 RCQ:SysIdRule = CPR:SysIdRule
 RCQ:ControlName = Clip(CPR:ControlName)
 If Sub(RCQ:ControlName,1,1) = '?'
 RCQ:ControlName = |
 Sub(RCQ:ControlName,2,Len(Clip(RCQ:ControlName)))
 End
 RCQ:RuleAction = Clip(CPR:RuleAction)
 Add(RulesControlQueue,RCQ:SysIdRule)
 If error() then stop(error()).
 End
 #ELSE
 #!IMD
 Access:%IMDControlesPerRule.Open()
 Access:%IMDControlesPerRule.UseFile()
#Embed(%LoadControlsPerRuleInMemoryTableB,
 'Load Controls Per Rule In Memory Table - Begin')
 CPR:SysIdRule = 0
 CPR:SysIdControlsPerRule = 0
 Set(CPR:FK_ControlePerRule_Rules,CPR:FK_ControlePerRule_Rules)
 Loop
 If Access:ControlsPerRule.Next() <> Level:Benign THEN BREAK.
 IMDCPR:SysIdRule = CPR:SysIdRule
 IMDCPR:ControlName = Clip(CPR:ControlName)
 If Sub(IMDCPR:ControlName,1,1) = '?'
 IMDCPR:ControlName = |
 Sub(IMDCPR:ControlName,2,Len(Clip(IMDCPR:ControlName)))
 End
 IMDCPR:RuleAction = Clip(CPR:RuleAction)
 Access:%IMDControlesPerRule.Insert()

E x t e r n a l B u s i n e s s R u l e s w i t h t h e I n - M e m o r y D r i v e r

324

 If error() then stop(error()).
 End
#Embed(%LoadControlsPerRuleInMemoryTableE,
 'Load Controls Per Rule In Memory Table - End')
 Access:%IMDControlesPerRule.Close()
 #END
 #IF(%LocalOpenCloseRuleFiles = 1)
 Access:ControlsPerRule.Close()
 Access:OverrideProcPerRule.Open()
 Access:OverrideProcPerRule.UseFile()
 #ENDIF
 #IF(%UseIMD=%FALSE)
 Free(RulesProcQueue)
 OPR:SysIdRule = 0
 OPR:SysIDOverrideProcRule = 0
 Set(OPR:FK_OverrideProcPerRule_Rules,|
 OPR:FK_OverrideProcPerRule_Rules)
 Loop
 If Access:OverrideProcPerRule.Next() <> Level:Benign THEN BREAK.
 RPQ:SysIdRule = OPR:SysIdRule
 RPQ:ProcedureName = Clip(OPR:ProcedureName)
 Add(RulesProcQueue,RPQ:SysIdRule,RPQ:ProcedureName)
 If error() then stop(error()).
 End
 #ELSE
 #!IMD
 Access:%IMDOverrideProcPerRule.Open()
 Access:%IMDOverrideProcPerRule.UseFile()
#Embed(%LoadOverrideProcPerRuleInMemoryTableB,
 'Load Override Procedure Per Rule In Memory Table - Begin')
 OPR:SysIdRule = 0
 OPR:SysIDOverrideProcRule = 0
 Set(OPR:FK_OverrideProcPerRule_Rules,|
 OPR:FK_OverrideProcPerRule_Rules)
 Loop
 If Access:OverrideProcPerRule.Next() <> Level:Benign THEN BREAK.
 IMDOPR:SysIdRule = OPR:SysIdRule
 IMDOPR:ProcedureName = Clip(OPR:ProcedureName)
 Access:%IMDOverrideProcPerRule.Insert()
 If error() then stop(error()).
 End
#Embed(%LoadOverrideProcPerRuleInMemoryTableE,
 'Load Override Procedure Per Rule In Memory Table - End')
 Access:%IMDOverrideProcPerRule.Close()
 #END
 #IF(%LocalOpenCloseRuleFiles = 1)
 Access:OverrideProcPerRule.Close()
 #ENDIF

S u m m a r y

325

Summary

In my series on Clarion Business Rules I showed how you can extend Clarion’s
business rules functionality to use rules defined in tables. In this way you can
supply new business rules (global or local to a procedure) to your customers
without having to update the application itself – instead, you simply send along an
updated set of rules tables. In this chapter I extended the template to enable you to
use the In-Memory Database Driver in stead of Global Queues, for a thread-safe
solution.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n06bizrules.zip

E x t e r n a l B u s i n e s s R u l e s w i t h t h e I n - M e m o r y D r i v e r

326

327

USING SQL IDENTITY IN CLARION 6

by Nick Pattinson

In Bob Zaunere’s blog entry (www.softvelocity.net/community/blogs/clarion_news/
archive/2005/12/14/400.aspx) on C6.3 developments and enhancements, he
highlights how the SQL drivers can now fetch an identity (that is, an auto-
increment primary key) from the backend when a new record is inserted.

I was particularly pleased to see this since, at a UK Clarion Users’ Group meeting
last year when we had a teleconference with Bob, I highlighted this issue with using
Clarion with SQL, and suggested that the lack of a solution out of the box would
come across as a major deficiency. He took the comment on board, and reckoned
that this would be a new feature for C7. So, he’s early!

Unfortunately, in C6.3 build 9050, this feature didn’t work completely, but it’s been
fixed in build 9051; I have a couple of apps in the wild that use the feature and have
found it stable and reliable.

Regrettably, this makes redundant John Griffiths’ very elegant solution SQL
Identity: Another Approach (www.clarionmag.com/cmag/v6/
v6n02sqlidentity.html), published in 2004.

U s i n g S Q L I d e n t i t y i n C l a r i o n 6

328

The problem

There remains, however, work to be done in this area. While this new feature works
well for, say, a batch operation, where you need to get the identity of a just-added
record, it does not address the problem of getting an identity value on a form, when
you want to add child records while adding the parent record.

When inserting a new row in an ISAM database, the database driver actually inserts
the record at the start of processing and changes the request to ChangeRecord. The
effect of this is that, when inserting a new child for the recently-inserted parent, a
parent row exists and foreign key constraints on the new child will be satisfied.

When using an SQL backend, however, the database driver only inserts the new
row when the record is saved – typically when the user presses OK. There is thus no
parent record in the database while the user is filling out the new record, and
therefore no parent primary key. The child’s insert will fail because of violation of
the foreign key constraint.

The first step is to be able to get the primary key value using the new driver feature;
the second is to cause an insert to happen, so that the primary key value is available
for the child records.

Getting the primary key value

A simple setting in the dictionary will cause an application to retrieve a primary key
value that the server has generated during an insert; this value can now be
populated into the foreign key field of new children.

The dictionary settings are well documented in the Online Help – look under
“Server Side Auto incrementing” in the index, or search for “IsIdentity”. If you are
using Microsoft SQL Server, then you need to add the Boolean user option to the
field in your dictionary that maps on to the Identity column on the backend (See
Figure 1.)

G e t t i n g t h e p r i m a r y k e y v a l u e

329

SoftVelocity has made it easy for me to get the new value for an automatically-
incremented column on the backend.

Coding was required, however, to insert the new row before the first new child can
be added. When using an SQL driver, Clarion apps only insert a new row on
completion of the form, yet I want to add children on the same form that adds the
new parent.

Whilst responses to Bob Z.’s blog suggests that SV hasn’t addressed this issue in
C6.3, the solution is actually quite straightforward:

In any ABC window procedure, the procedures to maintain children are called in
ThisWindow.Run PROCEDURE(USHORT Number,BYTE Request):

 CODE

 GlobalRequest = Request

Figure 1: User Option for an Identity column

U s i n g S Q L I d e n t i t y i n C l a r i o n 6

330

 EXECUTE Number

 SelectEngineer

 SelectTestPiece(LOC:Dummy,LRF:IDTestPiece)
 UpdateLRFJob
 END
 ReturnValue = GlobalResponse

RETURN ReturnValue

In the above example, the new parent needs to exist prior to the creation of a new
LRFJob row by the procedure UpdateLRFJob.

The Request parameter passed into ThisWindow.Run contains the required record
operation – InsertRecord, ChangeRecord, SelectRecord, etc...

If I can detect whether or not the parent exists in the database, then I can also
automatically insert the new parent immediately before the call to the procedure
that will insert the new child.

Further, if I take control of the form’s SELF.Request, and ensure that its value is
ChangeRecord after I’ve successfully inserted the new parent row, then I have a
simple mechanism for telling if I need to create the new row or not.

Finally, I only need to concern myself when Request is InsertRecord: if it’s
ChangeRecord, then I know that the parent exists otherwise there wouldn’t be a
child to Change. Similarly for DeleteRecord and, if Request is SelectRecord, I’m
looking up a foreign key record for this form’s record.

In pseudo-code:

if SELF.Request = InsertRecord and Request = InsertRecord
 if form's data meets validation rules,
 insert new row
 change SELF.Request to ChangeRecord
 end
end
if above code didn't fail,
 Continue with remainder of procedure
End

In Clarion code:

ThisWindow.Run PROCEDURE(USHORT Number,BYTE Request)

ReturnValue BYTE,AUTO

! Start of "WindowManager Method Data Section"
! [Priority 5000]
! End of "WindowManager Method Data Section"
 CODE

G e t t i n g t h e p r i m a r y k e y v a l u e

331

 ! Start of "WindowManager Method Executable Code Section"
 ! [Priority 50]
 !NGPSQLIdentity before parent call
 If SELF.Request = InsertRecord and Request = InsertRecord

 If not Access:LRF.ValidateRecord() !Ensure form data's valid

 If Access:LRF.Insert()

 Message('Failed to insert new LRF record prior to '|
 & 'inserting new child.')
 ReturnValue = RequestCancelled

 Else

 SELF.Request = ChangeRecord

 End

 Else
 ReturnValue = RequestCancelled
 End
 End
 If ReturnValue <> RequestCancelled ! Do nothing if Insert failed
 !End of NGPSQLIdentity before parent call
 ! [Priority 2800]
 ! Parent Call
 ReturnValue = PARENT.Run(Number,Request)
 ! [Priority 5500]
 IF SELF.Request = ViewRecord

 ReturnValue = RequestCancelled

 ELSE
 GlobalRequest = Request
 EXECUTE Number

 SelectEngineer

 SelectTestPiece(LOC:Dummy,LRF:IDTestPiece)
 UpdateLRFJob
 END
 ReturnValue = GlobalResponse

 END

 ! [Priority 7500]
 !NGPSQLIdentity after parent call
 End !If ReturnValue <> RequestCancelled
 !End of NGPSQLIdentity after parent call
 ! [Priority 9300]
 ! End of "WindowManager Method Executable Code Section"
 RETURN ReturnValue

In the above (real, working) example, I check whether I need to insert the new row
(If SELF.Request = InsertRecord and Request = InsertRecord). If I do need to
do the insert, I check that the new row satisfies my validity rules (If not
Access:LRF.ValidateRecord()) and, if it does, I insert and change the form’s
request to ChangeRecord.

U s i n g S Q L I d e n t i t y i n C l a r i o n 6

332

If, however, the insert fails, I set ReturnValue to RequestCancelled and surround
the standard Clarion procedure code (priority 2800 to 7500) with a test for
ReturnValue, and only execute it if ReturnValue is not RequestCancelled.

Since this code falls well into the category of something one will always do, it ought
to be templated. Now, if I described myself as an indifferent template programmer,
I’d be dramatically overstating my skills, so I see the following as a functional way
forward, to be taken to its conclusion by others. Had I the skills, I would wish the
template only to add or execute the code if the form’s file has a PROP:SQLIdentity,
and I would like the template to get PROP:Name for the form’s file from the
associated template values.

Here’s the basic extension (#AT statements have line breaks added):

#EXTENSION(NGPSQLInsert,'SQL: Insert parent prior to Child
insert'),PROCEDURE

#!

#! Inserts parent SQL row immediately prior
#! to execution of procedure to insert Child.
#! Ensures new Child won't fail FK Constraint.
#DISPLAY('This extension manages the insert')
#DISPLAY('of a new SQL row')
#PROMPT('Table into which new row is to be
inserted:',FILE),%NGPTable,REQ

#AT(%WindowManagerMethodCodeSection,'Run','(USHORT Number,

 BYTE
Request),BYTE'),PRIORITY(2500),WHERE(%ProcedureCategory='Form')
!NGPSQLIdentity
If SELF.Request = InsertRecord and Request = InsertRecord
 If not Access:%NGPTable.ValidateRecord()
 If Access:%NGPTable.Insert()
 Message('Failed to insert new %NGPTable record prior to inserting
new child.')
 ReturnValue = RequestCancelled
 Else
 SELF.Request = ChangeRecord
 End
 Else
 ReturnValue = RequestCancelled
 End
End
If ReturnValue <> RequestCancelled
#ENDAT

#AT(%WindowManagerMethodCodeSection,'Run','(USHORT Number,BYTE

Request)
 ,BYTE'),PRIORITY(8500),WHERE(%ProcedureCategory='Form')
!NGPSQLIdentity

S u m m a r y

333

End !If ReturnValue <> RequestCancelled
#ENDAT

Summary

As of version 6.3, build 9051, Clarion has the ability to reliably retrieve server-side
auto-increment (identity) values. With the additional code I’ve shown here, you can
use this new functionality to add child records while adding the parent record.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n05sqlidentity.zip

U s i n g S Q L I d e n t i t y i n C l a r i o n 6

334

335

MULTI-USER PRIMARY KEYS: A SOLUTION

by Rhys Daniell

It’s easy to forget that back in the early days of Clarion, most applications had a
single user. These days it’s not uncommon to find hundreds of Clarion end users
operating over a single database. Clarion has scaled amazingly well, except for one
niggling flaw. This flaw isn’t Clarion’s fault per se; it stems from the table/form
paradigm so loved by users and developers, and it arises when you have multiple
users using the same form to add records to a table with an incrementing primary
key.

There are other kinds of primary keys, but a numeric primary key (often called a
SysID) which cannot be modified by the user is increasingly desirable and brings
benefits when working with SQL and development tools including Clarion.

The easiest way of generating primary key values is to use Clarion’s autoincrement
feature. When you open a form to add a record, this finds the next available value
for the primary key, and then reserves it for you by adding a record (mostly blank
except for the primary key value) to the table. If you cancel out of the form, the
record is deleted.

This brings drawbacks if you have multiple users accessing the same table/form
simultaneously. At the very least, if a user views the browse while another user is
adding the record, they will probably see what appears to be a blank record in the
browse list. Depending on your database design, the second user may even get a

M u l t i - U s e r P r i m a r y K e y s : A S o l u t i o n

336

duplicate key error message if they try to insert a record at the same time as the first
user. If the second user completes an add, and the first user subsequently cancels
theirs, there will be a gap in the primary key sequence. This shouldn’t matter – after
all the primary key is supposed to be hidden from the end user – but it does matter a
lot to a small handful of obsessive users!

Finally, if a user suffers a system crash while the insert form is open, a blank record
will remain in the browse until deleted. If users are in the habit of deleting such
blanks, sooner or later they will delete a record which is a legitimate add in
progress, causing another user to lose their work. In our case, the last straw was a
ClarioNET implementation of an application where the remote operators
(perversely or otherwise) took to shutting down the ClarioNET client without
leaving the form, leaving large numbers of orphan records.

The most obvious solution to this problem, provided you are using a SQL back end,
is to use an IDENTITY field for the primary key. This will cause the database to
generate a unique value for the primary key when the record is added, taking away
the need to “reserve” the value at the start of the add. This is a good solution, unless
you plan to add child records within your form, in which case you need the primary
key value to establish the record relationships (and have Clarion’s referential
integrity delete the child records when you cancel the add).

A solution

Well, here’s another solution. While it’s based on using a SQL database, it could be
adapted to other file systems. The key points are:

1) Create a managed “stack” of primary IDs.

2) At the start of an add, get an ID from the stack, and reserve it.

3) If the add is cancelled, make the ID available again.

4) If the add is completed, use the ID and mark it non-available.

You will need a PrimaryKeys table which keeps track of available IDs for any
number of tables. Fields include:

A s o l u t i o n

337

Initially, this table stores the last used PrimaryID for each table. The Status is set to
1 (in use).

When an insert form is opened, a GetNextPrimaryID() function adds a new record
with the next PrimaryID and a status of 0 (reserved). (That’s just the simplified
version – see below for more.) When the insert form is completed, an
UpdatePrimaryID() function sets the status of this record to 1 (in use).

If the insert form is cancelled, UpdatePrimaryID() sets the status to 2 (discarded).If
the record is subsequently deleted by the user, UpdatePrimaryID() sets the status to
3 (deleted).

Now, what happens if the user opens the form and never comes back (due to a
system crash, or worse)? Even though the status is set to 0 (in use),
GetPrimaryID() assumes it’s available if more than 24 hours old (expired). IDs for
discarded and deleted records are assumed to be immediately available. In other
words, primary key values which are not used are recycled, eliminating those holes
in the number sequence. And users can add as many records simultaneously as the
hardware allows, without seeing blank records in the browse.

Source code for all the above is available below. It’s written for MSSQL and the
Clarion (legacy) templates, but the same principles can be applied to other database
systems and the ABC templates. Please note that some coding skills are required to
get it working in your application – anyone (including SV) who wants to turn it into
something plug ‘n’ play is welcome to do so.

Here are the steps you need to take:

1) Create the PrimaryKeys table (SQL script below)

2) Create the GetNextPrimaryID and UpdatePrimaryID SQL stored
procedures

3) If you have existing data, add starting values to PrimaryKeys table

4) Create a Clarion source procedure to call the stored procedures

Field Type

TableName VARCHAR(30)

PrimaryID INT

Status TINYINT

ReservedDateTime DATETIME

M u l t i - U s e r P r i m a r y K e y s : A S o l u t i o n

338

5) For each table with an autoinc primary key, remove the autoinc
attribute in the Clarion dictionary

6) For each table with an IDENTITY primary key, modify the SQL
database to make this field non-identity

7) Add the extension template to the form for each table.

Step 1 – Create the PrimaryKeys table

Here’s the SQL script to create the PrimaryKeys table and accompanying index
(written for MS SQL):

CREATE TABLE PrimaryKeys(

 TableName VARCHAR(30),
 PrimaryID INT NOT NULL,
 Status TINYINT DEFAULT(0),
 ReservedDateTime DATETIME DEFAULT(GetDate()),
 CONSTRAINT KTableNamePrimaryID
 PRIMARY KEY(TableName, PrimaryID))
GO
CREATE UNIQUE INDEX KTableNamePrimaryIDStatus ON

 PrimaryKeys(TableName, PrimaryID, Status)

GO

Step 2 – Create two stored procedures

These two stored procedures reside on the MS SQL server.

CREATE PROC GetNextPrimaryID @TableName CHAR(30)

 AS
 DECLARE @NextPrimaryID INT
 -- see if there's an expired value
 SELECT @NextPrimaryID = MIN(PrimaryID)

 FROM PrimaryKeys

 WHERE TableName = @TableName
 AND (Status > 1 OR (Status = 0
 AND ReservedDateTime < GetDate() - 1))

 IF @NextPrimaryID IS NOT NULL -- found a disused one
 BEGIN
 UPDATE PrimaryKeys

S t e p 3 – A d d s t a r t i n g v a l u e s

339

 SET ReservedDateTime = GetDate(), Status = 0
 WHERE TableName = @TableName
 AND PrimaryID = @NextPrimaryID
 GOTO EndProc
 END
 -- get the next value
 SELECT @NextPrimaryID = MAX(PrimaryID) FROM PrimaryKeys
 WHERE TableName = @TableName
 IF @NextPrimaryID IS NULL SET @NextPrimaryID = 0
 SET @NextPrimaryID = @NextPrimaryID + 1
 INSERT INTO PrimaryKeys(TableName, PrimaryID)
 VALUES(@TableName, @NextPrimaryID) -- other values set by default
EndProc:
 SELECT @NextPrimaryID
GO
CREATE PROC UpdatePrimaryID @TableName CHAR(30),
 @PrimaryID INT, @Status TINYINT
 AS
-- Status: 0 = reserved 1 = taken 2 = discarded 3 = deleted
 UPDATE PrimaryKeys
 SET Status = @Status
 WHERE TableName = @TableName AND PrimaryID = @PrimaryID
GO

Step 3 – Add starting values

You only need to prime the PrimaryKeys table if you already have data in the table
which is getting its IDs from PrimaryKeys. Replace 'Customers' and 'CustID' with
the name of your table and its primary key.

INSERT INTO PrimaryKeys(TableName, PrimaryID, Status)

 SELECT 'Customers', MAX(CustID), 1 FROM Customers

Step 4 – Create a Clarion source procedure

You’ll need this Clarion source procedure to call the stored procedures. In this
example, ResultsTable is a special table I use to get results from a SQL query. You
can use any table which has a LONG as the first field.

These are the procedure prototypes (you won’t need to add these separately if
you’re create the source procedure within an APP):

M u l t i - U s e r P r i m a r y K e y s : A S o l u t i o n

340

GetPrimaryID(STRING TableName, *LONG PrimaryID), BYTE
UpdatePrimaryID(STRING Tablename, LONG PrimaryID, |
 BYTE NewStatus)

And here are the procedure definitions:

GetPrimaryID FUNCTION (pTableName, pPrimaryID)
! gets the next primary ID off the 'stack'
! (PrimaryKeys table) and reserves it for 24 hours
FilesOpened BYTE(0)
RetVal BYTE(0)
 CODE
 DO OpenFiles
 ResultsTable{Prop:SQL} = 'CALL GetNextPrimaryID(''' |

 & CLIP(pTableName) & ''')'

 IF ERRORCODE()
 MESSAGE('Database error generating primary id -|' & |
 ERROR() & '|' & FILEERROR(), 'System Error', Icon:Hand)
 DO ProcedureReturn
 .
 NEXT(ResultsTable)

 pPrimaryID = RT:Field1

 IF pPrimaryID THEN RetVal = TRUE.
 DO ProcedureReturn
 DO CloseFiles
 RETURN(RetVal)

OpenFiles ROUTINE
 PUSHBIND
 CheckOpen(ResultsTable,0)

 FilesOpened = True

CloseFiles ROUTINE
 POPBIND

UpdatePrimaryID PROCEDURE (pTablename, pPrimaryID, |
 pNewStatus)
! Start of "Data Section"
! [Priority 3500]
! Status: 0 = reserved (made available in 24 hours
! if not selected)
! 1 = taken (not available any more)
! 2 = discarded (form add cancelled, now available)
! 3 = deleted (record deleted, now available)
! I guess reuse could be made optional
!
! most importantly, to prevent a PrimaryID being
! reused, set status = 1

FilesOpened BYTE(0)

S t e p 5 – R e m o v e a u t o i n c

341

 CODE
 DO OpenFiles
 ResultsTable{Prop:SQL} = 'CALL UpdatePrimaryID(''' & |

 CLIP(pTableName) & ''', ''' & pPrimaryID & ''', ''' |

 & pNewStatus & ''')'

 IF ERRORCODE()
 MESSAGE('Database error updating primary id -|' & |
 ERROR() & '|' & FILEERROR(), 'System Error', |

 Icon:Hand)

 .

 DO CloseFiles
OpenFiles ROUTINE
 PUSHBIND
 CheckOpen(ResultsTable,0)
 FilesOpened = True
CloseFiles ROUTINE
 POPBIND

Step 5 – Remove autoinc

You must remove the autoinc attribute for your table’s primary key in the Clarion
dictionary;

Step 6. Remove IDENTITY

You also need to make sure there’s no IDENTITY attribute on the primary ID field in
your table. Ideally, you should make a copy of the table, drop and recreate it, and re-
import the data. Alternatively, create a temporary column to hold the current
primary key value and then drop and recreate the primary key column without the
IDENTITY attribute.

Step 7 – Add the extension template

You’ll need to add the following extension template to any forms that use this
autonumbering technique. Note that this extension is written for the Clarion

M u l t i - U s e r P r i m a r y K e y s : A S o l u t i o n

342

(legacy) templates and may need changes to work with ABC. Put the following code
in a TPW file and add an appropriate #INCLUDE statement in your TPL file (some
line breaks added for readability).

#! Templates, Clarion code, and SQL script for
#! 'Multiuser primary keys' ClarionMag article
#! Author: Rhys Daniell, rhys@capebyronsystems.com.au
#|
#! author takes no responsibility (attribution would be nice)
#! you are welcome to re-use, modify, and re-distribute
#!
#EXTENSION (GetPrimary, 'Get next primary key value'),

 PROCEDURE, FIRST

#PROMPT('Table requiring primary key value:',FILE),

 %PrimaryFile, DEFAULT(%Primary), REQ

#DISPLAY('Gets next available primary key value from ''stack'' of
values ')
#DISPLAY('Requires GetNextPrimaryID and UpdatePrimaryID')
#DISPLAY(' functions (which use stored procs of same name)')
#DISPLAY(' and PrimaryKeys table')
#DISPLAY('')
#DISPLAY('(c) Cape Byron Systems 2006')
#AT (%PrimeFields), FIRST

#FIX(%File, %PrimaryFile)

#FIX(%Key, %FilePrimaryKey)

#SELECT(%KeyField, 1)

IF ~GetPrimaryID('%PrimaryFile', %KeyField) THEN DO ProcedureReturn.

#ENDAT

#AT (%BeforeFileClose)

#FIX(%File, %PrimaryFile)
#FIX(%Key, %FilePrimaryKey)
#SELECT(%KeyField, 1)
IF OriginalRequest = InsertRecord
 IF LocalResponse = RequestCompleted
 UpdatePrimaryID('%PrimaryFile', %KeyField, 1) ! 1 = taken
 ELSE
 UpdatePrimaryID('%PrimaryFile', %KeyField, 2) ! 2 = discarded
 IF RIDelete:%PrimaryFile().
 END
ELSIF OriginalRequest = DeleteRecord AND LocalResponse =
RequestCompleted
 UpdatePrimaryID('%PrimaryFile', %KeyField, 3) ! 3 = deleted
END
#ENDAT

You are welcome to use this code as you see fit. Enjoy!

343

EMBEDDING THE SQLITE ENGINE IN
CLARION APPLICATIONS

by John Taylor

Clarion programmers typically use ISAM drivers (such as TPS), or an SQL
Accelerator (such as ODBC or the MSSQL driver) and sometimes ADO.
Additionally some databases can be embedded, such as SQLite (sqlite.org) and
Firebird (www.firebirdsql.org), both of which are free products (SQLite is in the
public domain).

This chapter looks at embedding SQLite into a Clarion application. The sample
code provides a simple SQLite data access class wrapper and a project (using the
class) which runs some performance comparisons between the embedded SQLite
engine and the TopSpeed file driver, and I’ll discuss those results.

Embedding the SQLite engine is simply a matter of linking in the SQLite3.DLL so
that you can make a few calls to the database engine. SQLite becomes part of your
application, and there is no database backend.

E m b e d d i n g T h e S Q L i t e E n g i n e I n C l a r i o n A p p l i c a t i o n s

344

What SQLite is and is not

As stated on sqlite.org, “SQLite is a small C library that implements a self-
contained, embeddable, zero-configuration SQL database engine.” It implements
most of SQL92 and has a reputation for a small footprint with impressive
performance and strong reliability. It’s well suited for embedded devices (such as
PDAs, cell phones, etc).

SQLite is not designed for a client/server environment where a number of users
would be updating the database concurrently. Multiple processes can read data
concurrently, but if one process updates data, the database is locked until the
update is complete. You also have the choice of creating tables on disk or in
memory.

Because SQLite is essentially designed for single user access it does not have
security provisions (there are no SQL Grant/Revoke commands). An SQLite ODBC
driver (www.ch-werner.de/sqliteodbc) is available, however.

The clever guy behind SQLite (en.wikipedia.org/wiki/SQLite) is D. Richard Hipp
(www.linuxformat.co.uk/
modules.php?op=modload&name=Sections&file=index&req=viewarticle&artid=1
9), who offers consulting services to the many companies using SQLite.

Topspeed/SQLite performance comparisons

SQLite is fast, particularly on deletes. These comparisons were run on my old
laptop (single CPU, IDE drive, 512MB Ram, WinXP).

T o p s p e e d / S Q L i t e p e r f o r m a n c e c o m p a r i s o n s

345

Here’s the performance data:

Firstly, let me say these comparison tests are flawed, mainly because these are vastly
different kinds of databases. One uses SQL, the other simple ADD, PUT and DELETE
(with LOGOUT/COMMIT) commands. As well, SQLite has various settings with no
equivalent in TPS. The comparisons are however useful as a rough performance
guide. I used a single table with five keys/indexes (I guess the single table favors the
TPS driver).

The results show the embedded SQLite database outperforming the TPS driver,
except in the case of reading by the primary key where TPS is marginally quicker.
Actually if you rip out the UTF-8 encoding from the supplied class then SQLite is
also quicker reading by the primary key.

Some points to bear in mind when running the comparison tests (which are
included in the source):

Figure 1: Permance results

Operation Rows TPS
(sec.)

SQLite
(sec.)

Increase/
Decrease

Inserts (Gen) 50,000 93.56 14.84 +6.30

Updates (Gen) 25,000 96.74 11.14 +8.68

Deletes (Gen) 25,000 72.21 1.47 +49.12

Reads – Primary Key (Gen) 25,000 0.61 0.67 -1.10

Reads – Primary Key (Show) 25,000 0.60 0.67 -1.12

Reads – Complex Key (Show) 25,000 2.92 0.80 +3.65

Reads – Decimal Key (Show) 25,000 3.02 0.77 +3.92

E m b e d d i n g T h e S Q L i t e E n g i n e I n C l a r i o n A p p l i c a t i o n s

346

• Unload as many programs as possible (anti-virus/anti-spyware
programs come to mind, they love to fire up CPU intensive
background processes).

• If you can, repeat the same test a few times – Window caching plays
a part.

• Avoid using too few records/rows.

You should however feel reasonably comfortable that the tests provide some sort of
guide and that there is some consistency. It’s also advisable to take a look and see
how the tests are coded.

There are additional tweaks to SQLite that can further improve its performance. For
instance, when performing a large number of updates/deletes you can up the cache
size (see the Pragma cache_size command). I intended to do this for the delete test,
but found it was not necessary.

In terms of database size, the resultant TPS file is quite a bit smaller then the SQLite
database, but that’s because the auto vacuum pragma is switched off (so it doesn’t
interfere with performance tests) and the VACUUM command has not been run. The
VACUUM command is used to eliminate free pages, aligns table data to be contiguous,
and otherwise cleans up the database file structure. A vacuumed SQLite database is
about the same size as the equivalent TPS files. File size is normally not an issue for
Windows-based systems, but you can certainly enable auto vacuum or use the
Vacuum command if you wish.

So, will you ever get to use it?

Although SQLite has many uses, embedding SQLite into your Clarion application is
not going to fit the bill for most Clarion projects, for two main reasons.

1) SQLite is not designed or suited for a multi user client server
environment.

2) Templates rely heavily on the dictionary (and there is no native
SQLite driver for Clarion).

However, if client server is not an issue and you are prepared to do some hand
coding (this is normally the case when using a SQL database anyway), then you
may want to consider using SQLite to gain the power of SQL without going to a
fully fledged SQL engine (and with zero database setup). Or you may wish to take
advantage of a specific SQLite feature, like high performance, or use it as a dynamic

S Q L i t e c l a s s q u i c k s t a r t

347

memory table without purchasing any Clarion add-on. Or maybe you are forced to
use a SQLite database created in an external application.

With a little creativity you may find many reasons to embed SQLite in a Clarion
app. For example, some systems which connect to a SQL backend also need a local
(lightweight) database to hold a fair amount of data to operate in an offline mode.

SQLite is also a good way to handle large volumes of data efficiently and without
much overhead. A couple of months ago I had a requirement to normalize data in a
few hundred stores. There were some pretty large TPS files (100MB plus and more).
The TPS driver proved really, really slow, particularly with a high volume of deletes
on large files with loads of keys. Additionally, store systems don’t always have a
very big time window to run lengthy jobs and TPS files are not always ideal for
intensive I/O operations. SQLite is a good choice for this kind of task.

And for those of us waiting for Clarion.NET there are already a number of SQLite
.NET wrappers (www.sqlite.org/cvstrac/wiki?p=SqliteWrappers).

SQLite class quick start

Included in the source zip is my SQLite class, which wraps up access to SQLite
databases in a Clarion-friendly format.

The SQLite class has the THREAD attribute, so each thread gets its own instance of a
SQLite object. The class uses only a few SQLite API calls (there are actually over
100), and it has been coded to use Unicode UTF8 although SQLite also supports
UTF16 (a number of API calls have UTF8 and UTF16 versions).

There are three main easy-to-use methods in the class:

• SQLite.OpenDB(String pDBName),Long

• SQLite.Exec(<String pSQL>,Long
pUseFieldMatching=False),Long,Proc

• SQLite.CloseDB()

SQLite.OpenDB takes a string parameter which is the name of the database file. This
string will be encoded as UTF8 by the method.

SQLite.Exec is used to perform SQL commands, which returns True (success) or
False (failure). If there is a result set and you wish it to be populated into a queue,
then you need to specify a queue. The queue can be correctly populated two ways:

E m b e d d i n g T h e S Q L i t e E n g i n e I n C l a r i o n A p p l i c a t i o n s

348

3) By ensuring the order of the columns in the result set matches the
order of the columns in the queue (the default and quickest way),
or

4) By matching the result set column names to the queue column
names (the pUseFieldMatching parameter must be set to True).

The following code retrieves the contents of MyTable which has a structure
matching the queue definition:

DataQ Queue
RecID LONG
Char BYTE
Str CSTRING(64)
Dec Decimal(15,3)
Real Real
 End
 Code
 If SQLite.OpenDB('MySQLite.DB') <> True
 Message('Unable to open SQLite database')
 Return
 End
 SQLite.CallbackQ &= DataQ
 SQLite.Exec('SELECT * FROM MyTable')
 SQLite.CloseDB()
 !DataQ has now been populated

The following table shows the performance comparison between populating the
queue by ordinal sequence and by name matching, using both a SQLite disk and
SQLite memory database.

The following code shows how to attach to a second SQLite database and create a
dynamic memory table:

If ~SQLite.OpenDB('SQLite.DB')
 Message('Unable to Open SQLite DB')
 Return
End

 Rows Ordinal
Seq. (Sec.)

Name
Matching
(Sec.)

Ordinal
Seq.
Increase

SQLite Disk File 25,000 1.09 1.39 +1.27

SQLite Memory File 25,000 0.67 0.82 +1.22

Memory File Performance
Increase

 +1.63 +1.70

I n s i d e t h e s u p p l i e d S Q L i t e C l a s s

349

SQLite.Exec('ATTACH '':memory:'' AS Mem')
SQLite.SQL = |
 'CREATE TABLE Mem.MySQLiteTable (RecID INTEGER PRIMARY KEY,'|

 &' Char INTEGER NOT NULL, Str TEXT NOT NULL COLLATE NOCASE, '|

 &'Dec REAL NOT NULL)'
If ~SQLite.Exec()
 Return
End
SQLite.ProgressControl = ?ProgressBar
SQLite.Exec('BEGIN TRANSACTION;INSERT INTO Mem.MySQLiteTable '|

 &'SELECT RecID,Char,Str,Dec FROM SQLiteTable;COMMIT')

!*** Memory Table Populated ***!
! Remember to detach memory table when you're done
SQLite.Exec('DETACH ''Mem''')

The class also provides a method to install a busy handler. This simply performs a
delay (in milliseconds) to allow another process to complete an update and unlock
the table, to hopefully prevent a SQLite Busy return code. You call the method like
this:

SQLite.InstallBusyHandler(3000) !3 seconds

Inside the supplied SQLite Class

The class uses only a few of the SQLite API calls, as shown below. There are also
some callbacks, as well as methods for UTF8 to ANSI and ANSI to UTF8 encoding.

Module('SQLite api')
 sqlite3_errmsg(Long),Long,C
 sqlite3_free(Long),C
 sqlite3_exec(Long,*cString,Long,Long,Long),Long,C,Raw
 sqlite3_close(Long),Long,C,Proc
 sqlite3_open(*cString,Long),Long,C,Raw
 sqlite3_progress_handler(Long,Long,Long,Long),C
 sqlite3_busy_timeout(Long,Long),Long,C,Proc
End

SQLite.OpenDB(String pDBName),Long

The database is opened (using sqlite3_open) and then some pragma commands
are run. There is no userid, password or server when connecting to the database.
The database may, or may not exist.

From the SQLite documentation:

E m b e d d i n g T h e S Q L i t e E n g i n e I n C l a r i o n A p p l i c a t i o n s

350

Note to Windows users: The encoding used for the filename argument of
(www.sqlite.org/capi3ref.html#sqlite3_open#sqlite3_open) () must be UTF-8, not
whatever codepage is currently defined.

Two important settings are made in this method.

• PRAGMA synchronous=0 (0=Off, 1=Normal, 2=Full)

• PRAGMA page_size=n

Both of these settings affect performance.

With synchronous OFF (0), SQLite continues without pausing as soon as it has
handed data off to the operating system. When synchronous is FULL (2), the SQLite
database engine will pause at critical moments to make sure that data has actually
been written to the disk surface before continuing. When synchronous is NORMAL,
the SQLite database engine will still pause at the most critical moments, but less
often than in FULL mode.

Before setting the page size, the code uses a Windows API call (GetDiskFreeSpace)
to determine the cluster size (the default cluster size for NTFS is 4096). The page
size is set to the cluster size (and must be a power of 2, >= 512 and <= 8192). You
can only set the page size for a new database.

SQLite.CloseDB()

This method will be called by the destructor to ensure the database is always closed
before the thread dies.

SQLite.Exec(<String pSQL>,Long pUseFieldMatching=False)

SQLite.Exec is a wrapper for sqlite3_exec. It’s important to understand how the
sqlite3_exec function works. You can optionally supply a callback to this
function, which is how the result set is populated to a queue. The callback is fired
for every row in the result set, on the same thread as the sqlite3_exec API call.
When all the rows have been returned to the callback the sqlite3_exec API call
completes. The callback can abort the process by returning a non-zero value.

If an error is encountered, this method will display the error message (and return
False).

Please note that although more than one SQL command can be passed to this
method, only one queue can be used to populate data. If a queue is specified and
SQLite.Exec has multiple SQL commands it will attempt to append to the queue (I
have not tried this).

I n s i d e t h e s u p p l i e d S Q L i t e C l a s s

351

The callback can also update a progress control but you need to set some properties:

SQLite.ProgressControl = ?MyProgressBar
SQLite.ProgressTotal = 5000

The sqlite3_exec c prototype is as follows:

int sqlite3_exec(
 sqlite3*, /* An open database */
 const char *sql, /* SQL to be executed */
 sqlite3_callback /* Callback function */
 void *, /* 1st argument to callback function */
 char **errmsg /* Error msg written here */
);

The third parameter is where the callback is specified and that’s fine, but... the
callback is part of the SQLite class, and remember that the first implicit parameter
to a class method is Self. For this reason you ordinarily can’t use a class method as
a callback. The good news is that the fourth parameter is a void pointer (pointer to
data of an unspecified type) which is passed as the first argument to the callback.

If Address(Self) is used as the fourth parameter, the problem is solved. If the
fourth parameter is set incorrectly the callback method (SQLite.Callback) would
still be called, but statements inside the callback which use Self (such as
Add(Self.CallbackQ)) could make bad things happen (i.e. a GPF). In fact all the
SQLite callback functions seem to cater to this first argument, of a void pointer.

Of course you could code each callback separately, not using a class callback but a
regular function callback. The prototype would need to change as follows (please
remember to dereference the first argument with MemCpy):

SQLiteCallback(Long pAny,Long pArgC,Long pArgV,Long pCol),Long,C
...
Loc:Long Long
 Code
 MemCpy(Address(Loc:Long),pAny,4)

If you wish to update a progress control and there is no result set returned (as with
a DELETE command), then the experimental sqlite3_progress_handler API call is
used to install another callback which updates a non-calibrated progress control.
The property for the progress control must be set.

SQLite.Callback (Long pArgC,Long pArgV,Long pCol),Long,C,Private

This callback method is specified in the sqlite3_exec API call, and it performs the
following:

E m b e d d i n g T h e S Q L i t e E n g i n e I n C l a r i o n A p p l i c a t i o n s

352

1) Populates the result set to a queue (UTF8 to ANSI encoding
performed)

2) Updates the progress control (if required)

SQLite.Progress(),Long,C,Private

This callback method is specified in the sqlite3_progress_handler API call. It
updates a progress control (not calibrated) and fires after N virtual machine
opcodes. If it returns a value other than zero it will cause the current query to be
aborted (and rolled back), in which case sqlite3_exec will return SQLITE_ABORT.

SQLite.ACPtoUTF8(*cString pInOut),Long,Private,Proc

This method translates a string from an ANSI code page to UTF8. Please note that
pInOut must be long enough as some conversions can result in a longer string then
the ANSI string. For example, if your computer is setup to use the Windows-1252
code page then the ANSI character for the Euro Symbol Ä is a single byte '<128>'
(in hex 80). This translates to 3 bytes when UTF8 encoded '<226,130,172>' (in
hex E2 82 AC). Also remember to allow for the CSTRING null terminator. If the
buffer is too small the method displays an error message and returns False.

SQLite.UTF8toACP(*cString pInOut),Long,Private,Proc

This method translates strings from UTF8 encoding to ANSI.

Conclusion

I hope this introduction to SQLite has given you some idea of when an embedded
SQLite Clarion program is suitable. Performance comparisons against the TopSpeed
driver only serve as a rough guide, but SQLite clearly offers some attractive
performance gains, and the supplied class makes it easy to use the SQLite API.
Whether you choose to write your own code, or use/extend this class, working with
SQLite is a pretty painless operation.

S o u r c e c o d e

353

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v9n02sqlite.zip

E m b e d d i n g T h e S Q L i t e E n g i n e I n C l a r i o n A p p l i c a t i o n s

354

355

PROP:SQL AND EMBEDDED SINGLE
QUOTES

by John L Griffiths

If you use MS-SQL with your Clarion programs, and you write your own SQL
statements, then you’ve probably run into problems with quote characters. SQL
statements use quote characters to delimit streams, and if you have quotes inside
your strings you need to double them up so MS-SQL doesn’t treat them as the end
of the string. This chapter will show you a few quoting tricks, and will also provide
you with a handy function – SingleQuoteDoubler().

The problem with QUOTE

SoftVelocity does provide the QUOTE function, but QUOTE was built to mainly serve
the needs of the Clarion compiler. The problem with QUOTE is that it isn’t that smart
about how it doubles up characters, as I’ll explain shortly. Read more on QUOTE in
the Clarion help.

My need showed up when users would enter free text in a text box, usually whilst
on the phone with their clients. These users were adding notes which often

P R O P : S Q L A n d E m b e d d e d S i n g l e Q u o t e s

356

contained words with single quotes, measurements shown as 5’ 11” and amount <
$300 or rarely, curly braces around a word {perhaps}.

I was writing the data to the SQL database using {PROP:sql} with a long CSTRING.
Names such as O’Brien and D’Angelo or measurements like 5’ 11” produced single
embedded quotes within the {PROP:sql} string. This would cause the insert
statement to fail.

Here’s the problem. I was building an insert statement string {using PROP:SQL} from
various fields. The troublesome one was the MyNote CSTRING with the free form
data.

Say the user entered : ‘Mr O’Brien phoned today < 5PM.’ I would build up my insert
statement in code this way:

'SqlStr='INSERT tblNote (sysid,TheNote) values (' & CliSysid &
',<39>'

 & MyNote & '<39>)'

and the resultant string looked like this:

'INSERT tblNote (sysid,TheNote) values (1234,'Mr O'Brien phoned today
<
 5PM.')

Sending this string to the MS-SQL engine will fail, because of the embedded single
quote in Mr O’Briens name. I need to double up any single quotes before sending
the string with {PROP:SQL}, and for MS-SQL it needs to look like this:

'INSERT tblNote (sysid,TheNote)
 values (1234,'Mr O''Brien phoned today < 5PM.')

The QUOTE function will perform this doubling of the single quote. I can use it this
way:

SqlStr='INSERT tblNote (sysid,TheNote)
 values (' & CliSysid & ',<39>' & QUOTE(MyNote,0) & '<39>)'

The problem now is, that QUOTE will also double up any less-than signs, and any
left-curly braces. This would give the following INSERT command:

'INSERT tblNote (sysid,TheNote)
 values (1234,'Mr O''Brien phoned today << 5PM.')

Another problem with QUOTE is that calling it again will double everything again.

Thus I found the need for a function to only double up the single quotes, and to
only do it once.

T h e p r o b l e m w i t h Q U O T E

357

Here is the source code for the function. It is also in the (CW 6.1) sample
application file, and also in the attached example .zip as a CLW file.

SingleQuoteDoubler PROCEDURE (STRING p:str) !,STRING

ii LONG,AUTO
lenstr LONG,AUTO
WorkStr STRING(8000)
posit SHORT,dim(8000)
ii2 LONG
OnEVEN BYTE ,AUTO

 CODE
 workstr = p:str
 lenstr = LEN(CLIP(workstr))

 IF lenstr < 1 ! cant fix this one

 RETURN ''
 END
 LOOP ii = 1 TO lenstr

 IF VAL(workstr[ii]) = 39 ! a single quote here

 posit[ii] = ii

 ii2 += 1 ! count number found
 END
 END
 IF ii2 = 0
 RETURN CLIP(p:str) ! None Found
 END
 IF ii2 = 1 ! only found the one, so...
 LOOP ii = 1 to LenStr
 IF posit[ii] > 0

 WorkStr = workstr[1: ii] & '<39>' |

 & workstr[ii+1 : len(clip(workstr))]
 RETURN clip(workStr)
 END
 END
 ELSE ! Found more than 1
 OnEVEN = 00b !false
 LOOP ii = (lenstr) to 1 by -1
 IF posit[ii] > 0
 DO ThisPosition
 ELSE
 OnEven = 01b !true
 END
 END
 END
 RETURN clip(workStr)

ThisPosition routine
 OnEven = BXOR(OnEven , 01b) ! TOGGLE IT

P R O P : S Q L A n d E m b e d d e d S i n g l e Q u o t e s

358

 CASE ii

 OF 2 TO (lenstr -1)
 IF oNeven = 01b
 EXIT
 END
 IF posit[ii -1] = 0
 workstr = workstr[1: ii] & '<39>' |
 & workstr[ii+1 : len(clip(workstr))]
 EXIT
 END
 OF Lenstr
 ONeven = 00b ! MUST BE FOR FIRST ON AT TAIL
 IF posit[ii -1] > 0 !nextlower is already quote
 EXIT
 END
 workstr = workstr[1: ii] & '<39>'
 OF 1
 IF OnEven = 01b
 EXIT
 END
 IF posit[2] > 0
 EXIT
 END
 workstr = '<39>' & workstr[1 : LEN(CLIP(workstr))]
 END

The example app

The example application uses a single table dictionary to connect to the Customers
table in the MS-SQL example database Northwind. The dictionary only includes a
few of the fields from within the Customers table.

The application also builds a global scope temporary table in the MS-SQL database.
This temporary table is only in existence until you close the example app. You can
run the example, and add some notes with single quotes, less-than signs and left-
curly braces. You may then view the temporary table (called ##TblNote) with Query
Analyzer or Enterprise Manager while your program is still running.

The Application also uses dummy temporary files to talk to the database in several
places.

Figure 1 shows a note being entered by the user.

S u m m a r y

359

This note has one each of the problem characters. Figure 2 shows what is stored in
the database.

The text in the left hand column uses my function. The one on the right uses the
Clarion QUOTE function.

Summary

If you use {PROP:SQL} in your applications to send strings to the database, then you
need to watch out for strings that may contain embedded single quotes. The Clarion
QUOTE function may do the job for you, or you may find out, as I did, that a little
custom code does the job better.

One final word of warning. You should not blindly accept free form text input from
users when accessing a SQL database. There is the danger known as an “SQL
Insertion Attack (msdn.microsoft.com/library/default.asp?url=/library/en-us/
cpguide/html/cpconsecureadonetcodingguidelines.asp) ” (thanks to Russ Eggen for
the link) whereby a disgruntled employee/user with a little background in SQL may
attempt to alter or delete data.

Figure 1: Entering a note

Figure 2: The stored data

P R O P : S Q L A n d E m b e d d e d S i n g l e Q u o t e s

360

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n02quotes.zip

361

Windows Vista

363

ENCRYPTION AND APPLICATION SIGNING

by Jane Fleming

Who do you think you are? Why should I trust you?

Of course, we’re all friends here. (Right?) But the Internet – and, increasingly, the
whole world of computing – is potentially dangerous. As Microsoft and others
scramble to protect us, it’s only a matter of time until your users start seeing
ominous “unverified publisher” warnings such as that shown in Figure 1.

Figure 1: Unknown Publisher security warning

E n c r y p t i o n a n d A p p l i c a t i o n S i g n i n g

364

Setupbuilder 5 gives you the ability to sign your program installers. But increasing
Windows security makes it advisable to be able to sign your actual software
products as well.

In this chapter, I’ll go over the basics of digital certificates, then walk you through
signing an individual piece of software. Since signing is something you do to a
compiled program, using Microsoft’s tools, you’ll need to go through the process
each time you ship a new version. (You can also sign DLLs, CAB files, and MSI files
with the tools I’ll be describing.) I’ll also cover a way of automating the signing
process.

Caveat: as with many other aspects of my life, this is an area where I know enough
to be dangerous but don’t claim great expertise.

What is a digital certificate?

Basically, a digital certificate is a group of bytes that serves to verify one’s identity.
But in all common computer uses, that’s only a part of what this data does.

Many people are first exposed to digital certificates (whether they know it or not)
when they start purchasing items online. When you go to the check out with your
purchases, usually the website address changes. Instead of beginning with the
familiar http://, it now begins with https://. The S stands for secure.

Beyond that change in the address bar, you may have noticed a browser icon that
appears when you have a secure connection. With Internet Explorer, it looks like a
padlock.

If you double-click the padlock, you’ll see the site’s certificate information

Figure 2: Browser certificate icon indicating a secure connection

W h o i s i t ?

365

The certificate contains a good bit of information. To me, the three most important
items it shows are:

1) Who is the entity?

2) Who vouches for that entity’s identity?

3) What is the entity’s encryption code?

Who is it?

Certificates are issued for various purposes. When a website uses a certificate for
secure HTTPS, the issued to name (www.amazon.com in Figure 3) should exactly
match the first portion of what you’ve typed into your browser’s address bar. If it
doesn’t, most browsers will warn you that the certificate is suspicious.

But the focus of this chapter is on signing code, not on web shopping carts. (I
haven’t forgotten. Really!) For the purposes of purchasing a code-signing

Figure 3: Web (SSL) certificate general tab

E n c r y p t i o n a n d A p p l i c a t i o n S i g n i n g

366

certificate, the issued to field can be pretty much anything that you can prove to the
issuer – your own name or a company name. When I bought my certificate, I
supplied a copy of the business license I have in my company’s name.

Who vouches for that?

When it comes to vouching for a company’s web site or application, it’s all a matter
of trust in the organization doing the vouching. Over the years, a number of
Certification Authorities (CAs) have been established. As browsers and operating
systems are updated, a current listing of those trusted authorities is supplied. You
can see the root authorities your browser recognizes. If you’re using Internet
Explorer 6.0, click Tools, then Internet Options, then Content. Click the
Certificates button. Then click the Trusted Root Certification Authorities tab. You’ll
see a list of your browser’s trusted CAs.

You’ll also see an Import button. Yes, this means you can tell your browser about
other people/entities you want to trust.

You can get tools online to make your own digital certificates. If you have access to
a copy of Windows 2000 Server (or 2003), you can install the Certificate Server
service on it and create all the certificates you want for free.

But there’s a slight problem here. Unless I can convince everybody I may encounter
to consider Jane’s Fine Certificate Authority as a trusted source, anything that uses
the certificates I’ve created myself will still raise warning flags.

For a large enterprise, you can use Active Directory to instruct all the computers on
your network to trust Jane’s Fine Certificate Authority. But for an environment over
which you don’t have such control, you’ll need help from a recognized CA.

Certificates are hierarchical. If I have a certificate issued by a trusted CA, then I’m
trusted as well. Or if I have my own corporation and my own certificate server, and
on my certificate server I install a certificate from a recognized CA, then the
certificates from my server will inherit that trustworthiness. Figure 4 shows a
hierarchy containing one intermediate certificate service. I could click on either the
top authority or intermediate authority to view its certificate details.

W h a t i s t h e e n t i t y ’ s e n c r y p t i o n c o d e ?

367

What is the entity’s encryption code?

Ah yes. There must be some trick to this, or anybody could make a certificate and
call himself Accounts-Receivable for Microsoft. The answer is encryption, and
before I talk about how a certificate is encrypted I need to explain two types of
encryption.

Symmetric encryption

I imagine most programmers have had at least a little contact with encryption at
some point in their lives. The simplest encryption systems – and those most easy to
understand – are symmetric. This means that the same password or secret phrase is
used both to encrypt and to decrypt the material one is protecting. Here’s an
example:

Figure 4: Certification hierarchy

E n c r y p t i o n a n d A p p l i c a t i o n S i g n i n g

368

You may have used the exclusive-OR (XOR) function at times to encrypt and
decrypt simple strings in your software.

Exclusive-OR is a logical function that combines two numbers. If a specific bit of
both the data byte and the encrypting byte is a 1 or a 0 (i.e., both bits are the same),
the corresponding bit of the resulting byte will be a 0.

If a specific bit of the data byte is a 1 and the corresponding bit of the encrypting
byte is a 0 (or vice versa), the corresponding bit of the resulting byte will be a 1.

In other words, the resulting bit will be 1 only if the two bits being combined are not
the same.

In a truth table format, it would be expressed:

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

Let’s say the data byte is the letter Q, which is an ASCII 81, and you’re going to use
a value of 182 to encrypt it:

81 = 01010001

182= 10110110
XOR= 11100111 (decimal 231

The encoded byte that this process has produced from the original letter Q is an
ASCII 231. (Notice that either two ones or two zeroes have ‘added together’ to result
in 0, but where the bits don’t match the resulting bit is a 1.)

Now comes the interesting part. When you XOR the result (231) with the encoding
byte (182), you wind up with the original ASCII 81 (the letter Q). So you’ve used
the same key (in this case, just a byte with a decimal value of 182) first to encrypt
the data and then later to decrypt it.

Here’s a snippet of Clarion code that uses the exclusive-OR function to encrypt a
string, using a key string rather than a single encryption value:

InputString string(30) ! string to be encrypted
OutputString string(30) ! encrypted output string
KeyString string(30) ! my secret key
I SHORT

 CODE
 KeyString='vsdfasdf*(*)@$ljasdbe5qwe'|
 & 'Pw2rqasdvvQWEQRWEVqdva'
 loop i=1 to len(clip(InputString))

U p s i d e a n d D o w n s i d e o f S y m m e t r i c E n c r y p t i o n

369

 OutputString[i]=chr(bxor(val(InputString[i]),|

 val(KeyString[i])))

 end ! loop

You could also dimension a byte OVER the string to avoid having to flip back and
forth between VAL and CHR. But don’t use a CSTRING or it will see a byte that’s wound
up set to zero as a terminating character. For longer strings, you can loop back
through the key string.

To decrypt OutputString, just repeat the exclusive-OR process.

This demonstration used a simple exclusive-OR, but there are many other
algorithms.

Upside and Downside of Symmetric Encryption

The upside to symmetric encryption is that it tends to be fast and is easy to
understand.

The downside is that you need to keep KeyString a secret, but you need to share it
with anybody who needs to be able either to encrypt or decrypt your material. The
wider a secret is shared, the less secure it will be.

Asymmetric Encryption

The solution to not having to share a secret encryption key is to use asymmetric
encryption.

Here, instead of using a single key both to encrypt and to decrypt the material, you
use one key, called a public key, to encrypt, and the other key, the private key, to
decrypt. You must keep your private key secret, but because information can be
encrypted with your public key you can still manage to exchange information with
other people.

Let’s go back to the list of certificates in the web browser. On the Details tab (in IE
6.0 – other browsers may have a different location for the data) one of the items of
information available to the user (or to a browser or other program) is the public
key (Figure 5).

E n c r y p t i o n a n d A p p l i c a t i o n S i g n i n g

370

There are two ways to use public/private keys: encryption, and signing.

Encryption

If I give you my public key, you can encrypt information and send it to me. Nobody
else can read it unless they have access to my private (secret) key. In fact, I can give
my public key to everybody. (Hey, that’s why it’s called public!)

What if I need to send information back to you? It can’t be done securely with my
key system. But you can send me your public key, and I can use it to encrypt my
replies to you. Then you’d use your private (secret) key to decode what I sent. (A
much more elegant method, SSL (Secure Sockets Layer), combines public/private
keys and symmetric keys; I’ll describe that briefly a little later.)

Figure 5: Public key

S i g n i n g

371

Signing

Aha, signing! Something that’s beginning to sound relevant!

If I use my private (secret) key to encode something, anybody can use my public
key to decode it. That’s not very useful for keeping information secret. But if I use a
strong encryption algorithm, the very fact that my public key decodes the
information is a pretty sure sign that my private key encoded it (or ‘signed’ it).
Using the private key to sign something is a guarantee of its validity (sometimes
referred to as non-repudiation). Note that to sign a piece of software, I don’t need to
encrypt the entire file. The signing process creates a hash of the file, which is then
encrypted. If a hash created on the user’s computer doesn’t match the hash the
author encrypted in the file, then the file has been altered.

The browser or operating system that opens your software will use the public key
information to be sure you signed it, and will use its copy of the Certification
Authority’s public key. If your information is traceable back to an authority that the
browser or operating system trusts, the user will see something like Figure 6,
instead of Figure 1.

If I click on the link next to the Name: prompt, I’ll be taken to Beach Bunny
Software’s website.

If I click on the link next to the Publisher: prompt, I’ll see the digital signature
information (Figure 7).

Figure 6: The same program as Figure 1, but now it has been signed

E n c r y p t i o n a n d A p p l i c a t i o n S i g n i n g

372

In Figure 7, note that the date and time at which the program was signed are
specified. The certificate I purchased is valid for two years. Because the date and
time of signing are specified, even after my certificate expires, this program won’t
set off warning bells because it was signed while the certificate was valid. The signer
in the Countersignatures section is the time stamp service that verifies when the
program signing was performed. (For this to be done, I needed an Internet
connection at the time I signed the program – more on that later.) Clicking the
Details button will bring up the certificate of the time signing server. Clicking View
Certificate will show details of my signing certificate (Figure 8)

Figure 7: Signature details

C o m b i n i n g P u b l i c / P r i v a t e K e y s w i t h S y m m e t r i c K e y s

373

Notice that my certificate in Figure 8 is similar to Amazon’s (Figure 3). But there are
differences. There are a number of types of digital certificates. A certificate for code
signing will not work as an SSL certificate on a web server. An SSL certificate won’t
work to authenticate a certificate server. When you purchase a certificate, be sure
you buy the type you need.

Combining Public/Private Keys with Symmetric
Keys

You may have noticed that Amazon’s public key (Figure 5) is a 1024-bit key. But
what about the 128-bit SSL encryption our web browsers are so proud of?

SSL (Secure Sockets Layer) is the protocol used for secure web page (HTTPS)
exchanges. Glossing over details (Microsoft has a good description of those in the
SSL handshake reference linked to at the end of this chapter), when I go to check
out at Amazon.com over an HTTPS connection, my browser first gets Amazon’s

Figure 8: Details of my code signing certificate

E n c r y p t i o n a n d A p p l i c a t i o n S i g n i n g

374

public key. It also checks the certificate to make sure it’s really talking to Amazon
and not to Joe Hacker. My browser invents a secret ‘master’ key for this session. It
uses Amazon’s public key to encrypt the master key, and sends it to Amazon.
Assuming only Amazon has access to Amazon’s private key, only Amazon can read
the secret master key my browser has created. After some more negotiation, both
Amazon and my browser create one or more symmetric session keys based on that
master key my browser sent at the beginning of the exchange, and they start using
them to encrypt the subsequent flow of information back and forth. With modern
browsers, these session keys are 128 bits in length. As mentioned earlier, symmetric
keys have much less computational overhead and can be processed quicker than
public/private key systems.

For that matter, Microsoft’s Encrypting File System also uses a combination of key
types. When you encrypt a file, the system invents one or more secret symmetric
session keys for that file. It then uses your public key to encrypt a copy of the
session key(s), and stores the copy in the file’s header. When you go to use the file
the next time, it uses your private key to decrypt the session key(s), and then uses
the session key(s) to decrypt the file.

The file’s header also stores at least one more instance of the encrypted session
key(s). The Recovery Agent public key is also used to encrypt a copy of the session
key(s). This means that if a user’s account is deleted or his profile becomes corrupt,
the Recovery Agent should be able to recover his data. In an Active Directory
domain, the Recovery Agent is typically the first Administrator account on the first
domain controller (not the Administrators group). On a standalone computer, the
Recovery Agent is the original Administrator account. This is why it is not a good
idea to use EFS on a standalone computer when you’re signed on as the
Administrator. Eggs and baskets come to mind...

Next time

At this point you should have a usable grasp of basic encryption and signing
concepts. In the next chapter I’ll show how to actually sign your applications.

375

SIGNING YOUR APPLICATIONS

by Jane Fleming

In an Internet-connected world, security is becoming increasingly important. How
do your users know the application on their computer is the same application you
created? The answer is to give each of your EXEs and DLLs an encrypted signature,
in a process called signing.

In the previous chapter I explained the concepts of encryption and signing; now it’s
time to put all the pieces together.

Your digital certificate

As explained in the previous section, it’s important to have a digital certificate that
is signed by an authority that all your potential clients are likely to recognize.

The best known certification authority is probably Verisign (www.verisign.com). A
code-signing certificate from them will cost you $895 for a two-year validity period.
Ouch!

S i g n i n g Y o u r A p p l i c a t i o n s

376

Comodo’s certificates are substantially less expensive – $99 for one year or $179 for
two years. Don’t get lost navigating their website, though. Use this link:
www.instantssl.com/code-signing/code-signing.html.

Editor’s note: Lindersoft, which makes the popular SetupBuilder
installer utility, has partnered with Comodo and offers reduced
priciding to Lindersoft customers. See lindersoft.com/200702211.htm
for details.

When you purchase your certificate, you’ll need to make a couple of decisions. I
opted to include an e-mail address, specified a 2048-bit key, and chose to store my
private key in a file (Figure 1).

Figure 1: Certificate options

Y o u r d i g i t a l c e r t i f i c a t e

377

As the screen in Figure 2 illustrates, you’ll next need to create a password.

Then you’ll supply your company and contact information, and pay for the
certificate.

For SSL certificates, it is important to spell out (not abbreviate –
msdn.microsoft.com/library/default.asp?url=/library/en-us/seccrypto/security/
distinguished_name_fields.asp) your state or province. I’m not sure whether that’s
true for code-signing certificates, but I spelled my state name anyway.

I faxed a copy of my city-issued business license, and had my confirmation e-mail
the same day.

Figure 2: Private key password

S i g n i n g Y o u r A p p l i c a t i o n s

378

Using the information contained in your confirmation e-mail, you’ll pick up your
certificate. Again, I opted to store mine in a file (Figure 3).

Now might be a good time to copy both the certificate and private key files onto a
floppy or CD and to store those along with your password in a safe deposit box or
other secure location.

The Signing Software

To actually sign your EXEs and DLLs you’ll use a couple of small utilities from
Microsoft, but you’ll have to install a current version of the Platform SDK to get
them. Microsoft’s website has a number of references to signtool.exe, but many of
the links are outdated. I suggest going to microsoft.com (www.microsoft.com) and
in the search window typing:

server 2003 r2 SDK web install

On the search results page, in addition to the web install you’ll see links by which
you can download the SDK in seventeen .cab files of 25 megabytes apiece or as an
image to burn onto a CD. Microsoft also has a CD available for the bandwidth-
challenged.

Figure 3: Picking up your certificate

S i g n i n g y o u r c o d e u s i n g t h e w i z a r d

379

You’re only going to need a minimum of components, but the install still required
about 240 MB on my hard drive. I used the web install link (which is why I
specified web install in the search string), and started the installation by clicking the
psdk-x86.exe button.

Once the installer begins, installing Tools and Redistributable Components (Figure
4) will suffice.

You’ll be able to delete most of what the install program puts on your disk after the
installation is finished.

Signing your code using the wizard

You can sign your code using command line tools, or using Microsoft’s wizard. The
wizard provides the easiest interaction, but you’ll quickly find it annoyingly time-
consuming. Later, I’ll show you how to automate the process using a batch file.

The signing program is called signtool.exe; you can find it in the Bin folder under
the folder into which you installed the SDK.

Figure 4: Installing portions of the Platform SDK

S i g n i n g Y o u r A p p l i c a t i o n s

380

You will need to invoke this tool from a command prompt, or else make several
shortcuts using the appropriate command-line switches.

From the command line, navigate to the Bin folder and then type

signtool signwizard

Click through the wizard’s welcome screen, then browse and select the program or
DLL that you want to sign. On the next screen, click the Custom button and then
Next.

Assuming you saved your certificate in a file, click the Select from File... button,
then navigate to your certificate file. (Figure 5).

Figure 5: Selecting the certificate

S i g n i n g y o u r c o d e u s i n g t h e w i z a r d

381

On the next screen (Figure 6), select your private key file.

When you click Next, you’ll need to enter the password you specified when you
created your private key. After doing so, you’ll be asked for a hash algorithm.
Select the default (sha1) and click Next.

Figure 6: Selecting the private key

S i g n i n g Y o u r A p p l i c a t i o n s

382

Accept the defaults on the next screen (Figure 7) and click Next.

On the next screen, you can optionally add a description of your program and a web
link. The information I typed in Figure 8 will produce the screen shown in Figure 6
in the previous chapter when a user runs my program.

Figure 7: Additional certificates (accept the defaults)

S i g n i n g y o u r c o d e u s i n g t h e w i z a r d

383

The next screen (Figure 9) gives the option of time stamping your signature. (I
discussed the purpose of time stamping in the previous chapter)

Two URLs that you can specify for time stamping are:

• timestamp.comodoca.com/authenticode

• timestamp.verisign.com/scripts/timstamp.dll (note that
timstamp.dll does not contain the letter e.)

Yes, Verisign’s time stamp server will countersign a program you’ve signed using a
Comodo certificate, if Comodo is your preference.

Figure 8: Optional description and web link

S i g n i n g Y o u r A p p l i c a t i o n s

384

After you click Next from the time stamp screen, you’ll have an opportunity to
review your choices. Then click Finish. You’ll again need to enter the password for
your private key. Your firewall may notify you that signtool.exe is attempting to
access the Internet (it’s connecting to the time stamp server). Then you should get
a message saying that the wizard completed successfully.

Verifying the Signature

At this point, you have a couple of options for checking your work.

You can use signtool.exe again, with a different command. As the file I signed was
called evil.exe, the command I would use would be:

signtool verify /pa /v e:\forscore\evil.exe

Figure 10 shows the result.

Figure 9: Optional time stamp

V e r i f y i n g t h e S i g n a t u r e

385

You can also use Windows Explorer to check the signature.

Figure 10: Using signtool to verify the signature

S i g n i n g Y o u r A p p l i c a t i o n s

386

Navigate to the file you’ve signed, right-click it, click Properties, and select the
Digital Signatures tab. You can now click on the signer and then click the Details
button to view the signing certificate and information (Figure 11).

Signing your code by batch file

Now that you’ve accustomed yourself to the trauma of wandering around the
command prompt, you’re probably ready to automate the signing process.

Your first job is to create a single file that combines your digital certificate and your
private key. The tool you’ll use is pvk2pfx.exe. It’s also in the Bin folder where you
installed the Platform SDK.

Figure 11: Verifying the signature in Windows Explorer

C r e a t i n g t h e B a t c h f i l e

387

To give myself a little legroom, I made a new folder, into which I copied
pvk2pfx.exe, mycert.spc, and mykey.pvk. You may want to do likewise.

Assuming the password for my private key is janepassword, and that I want a
different password (mynewpass) for use with my batch file, the command is:

pvk2pfx –pvk mykey.pvk –pi janepassword –po
 mynewpass –spc mycert.spc –pfx Jane.pfx

Line break added. (Note that there is a space between each switch and its
parameter. Although the text wraps in this chapter, it should all be typed on one
line, after which you press Enter.).

• –pi specifies the input password (the password I typed in when I
bought my certificate)

• -po specifies the output password (the password that my new .pfx
file will use)

• -pvk and –spc specify my private key and certificate files

• -pfx specifies the name of the .pfx file I want to create.

The rest is easy!

Creating the Batch file

Copy your new PFX file into your development folder. You may also want to copy
signtool.exe into that folder, just to make things simpler.

Next, use Notepad to create a batch file called signstuff.bat. (As you’re probably
aware, Notepad may want to name that file signstuff.bat.txt unless you put the file
name within quotation marks when you save it.)

My batch file looks like this:

@echo off
signtool sign /f Jane.pfx /p mynewpass
/t http://timestamp.comodoca.com/authenticode
/d "My Groovy Program"
/du http://www.beachbunnysoftware.com/idpa/
/v f*.exe uncommit.exe scr1bx.dll scr1cx.dll scr1dx.dll

This file is only two lines long. The second line wraps in this chapter, but it should
be all one line when you create it. Each switch after the word sign consists of a

S i g n i n g Y o u r A p p l i c a t i o n s

388

forward slash and one or two letters, a space, and then the parameter that switch is
specifying. You’ll recognize that you’re providing pretty much the same
information as you did when you used the wizard interface to sign a program.

The first line of the batch file tells the batch processor not to echo commands to the
screen.

The second line does the signing:

• It invokes signtool.exe with the sign command

• /f specifies the signing file (The PFX file you created. Mine is
Jane.pfx)

• /p specifies the password for the PFX file, the one you specified when
you created that file

• /t specifies the time stamp option, and is followed by the URL of a
time stamp server.

• /d is a description of the EXE/DLL being signed (“My Groovy
Program”) If the description has spaces, be sure to enclose it in
quotation marks.

• /du is the URL a user can click to get more information about the
signed material.

• /v asks for verbose output as the signing process runs

• At the end of the batch file’s command line is a list of the files to be
signed. You can use wild cards and/or specific names. My batch
illustration signs all exe files beginning with the letter f, a specific
executable (uncommit.exe), and three specific DLLs.

Conclusion

Signing your software projects is one important step you can take toward increasing
user confidence and security. Signing may seem complicated, but once you’ve
assembled your certificate and a few software tools and have learned how to write a
simple batch file, signing your project(s) can become a very simple process.

A d d i t i o n a l R e a d i n g

389

Additional Reading

• Authenticode 101 from Microsoft (msdn.microsoft.com/workshop/
security/authcode/intro_authenticode.asp)

• Authenticode 102 from Microsoft (www.microsoft.com/technet/
archive/security/topics/secaps/authcode.mspx?mfr=true)

• Windows 2000 and 2003 Certificate Servers (msdn.microsoft.com/
library/default.asp?url=/library/en-us/seccrypto/security/
certificate_services.asp)

• The SSL handshake (support.microsoft.com/kb/257591)

• Comodo’s (somewhat outdated) overview of the signing process
(www.instantssl.com/code-signing/code-signing-process.html)

• Wikipedia’s explanation (en.wikipedia.org/wiki/
Digital_signature#Implementation_of_public-
key_digital_signatures)

S i g n i n g Y o u r A p p l i c a t i o n s

390

391

SIGNING YOUR APPLICATIONS: NEW
CHALLENGES

by Jane Fleming

So you get a call from a customer. “When I run your program I get a screen telling
me it may be dangerous! It worked fine last week.”

”Argh!” you think. “I’m digitally signing my programs now. What’s going on?”

”Have you just installed Internet Explorer 7?” you cannily inquire.

And you’ve figured out your customer’s problem.

In this chapter, I’ll describe several possible approaches to dealing with the warning
messages: a couple of ways to use a general solution that trusts all computers on
your local network, a more granular method where you specify what specific
computer(s) you want to trust, and a bit of an end run that’s more granular still.

In Microsoft’s (commendable) efforts to protect computer users, they’ve added
additional security with various Service Packs and updates. But who would have
thought that a new version of IE would affect how you run programs on your
computer even when you don’t have IE open? However, if your computer is part of
a network and you are running a program that resides on another machine’s hard
drive, IE’s security will have its fingers in the pie.

S i g n i n g Y o u r A p p l i c a t i o n s : N e w C h a l l e n g e s

392

I’ve previously written about signing program files, and how signing is becoming
more important as computer security awareness increases. In spite of my accurate
and heartfelt disclaimer that I’m far from an expert on this subject, I’ve since had
communication with several folks who’ve been encountering the new post-IE7
warnings.

I certainly don’t have all the answers, but will share a few insights that have come
from those conversations and from some reading and experimenting. I hope that
any of you who have developed other solutions will write your own articles and
communicate on the news groups.

A little background

At this point in the history of computer security we rather expect to be warned
when we download a file from the Internet. And, indeed, the warning boxes I
showed in the code signing chapters reflected that dynamic. If you have IE7
installed, you’ll see similar warnings if you run an application from a server on your
local network. But unlike the screen shots in my prior chapters, these messages
don’t identify themselves as originating with Internet Explorer.

If the program you’re trying to run is not signed, you’ll see something like Figure 1.

If the program is signed, you’ve moved from a red warning icon to a yellow one
(Figure 2), but all is not warm and fuzzy. And to add to a user’s confusion, the
warning refers to the Internet even though the user is trying to run the program
from a server on a local network.

Figure 1: Unsigned program warning

T u r n i n g i t o f f m a n u a l l y

393

Turning it off manually

David Johnson was the first developer who communicated with me about this issue.
The solution he found and showed me involves changing a single setting in Internet
Explorer.

To my amazement, I found that (in XP SP2, at least – I’m not yet running Vista)
even an ordinary user has permissions to change these security settings. The fact
that ordinary users can make these changes leads to a caveat – in that the settings
we’re going to look at are maintained in the Current User portion of the Windows
Registry, they will be different for each user who signs on to a computer. So if
multiple people with individual user accounts use a given computer at different
times, each of them will have to make the changes.

To make the changes, open the Tools menu in IE7 and select Internet Options
(Figure 3).

Figure 2: Signed program warning

S i g n i n g Y o u r A p p l i c a t i o n s : N e w C h a l l e n g e s

394

Select the Security tab. Click on the Local Intranet icon. Then click the Sites button
(Figure 4).

Figure 3: Select Internet Options

T u r n i n g i t o f f m a n u a l l y

395

The default setting for a new IE7 installation is shown in Figure 5. Note that the
Automatically detect intranet network box is checked and the others are checked
but disabled.

The easiest solution is to clear that first check box. Leave the others checked
(Figure 6). And keep clicking OK until you’ve exited the configuration section.

Figure 4: Security options tab

Figure 5: Default local intranet setting

S i g n i n g Y o u r A p p l i c a t i o n s : N e w C h a l l e n g e s

396

You should now find that you can run an application from another machine on
your local network and not get that warning window each time.

Turning it off with code

Jeff Slarve took the IE7 settings option a couple of steps further. As a first effort, Jeff
came up with a Camtasia-created 15-second instructional video to show his users
how to change the setting to what’s shown in Figure 6.

Then he spent some time using Regmon to see what was changing in the Registry,
and found the flag in question. As mentioned above, the setting is in the Local User
portion of the Registry, so it will need to be made by each account that uses a
specific computer.

Jeff wrote a little app to detect that setting and offer to change it for the user. His
PRJ file and source code are included in the source zip file linked to at the end of
this chapter.

Turning it off granularly

If you have users who don’t want to trust all computers on their internal network,
you can tell Windows to trust one or more specific servers.

To do so, again click the Sites button (Figure 4), then click the Advanced button.
Enter the name of the server you want to trust, in UNC format (Figure 7).

Figure 6: Check box cleared

T u r n i n g i t o f f g r a n u l a r l y

397

Be sure you clear the https check box.

After you click Add, you’ll see the name converted in format and listed in the lower
portion of the window (Figure 8).

If you were to look in the Registry, you’d find a new key has been added under
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet

Settings\ZoneMap\Domains (Figure 9).

Figure 7: Adding a specific trusted computer

Figure 8: Trusted computer has been added

S i g n i n g Y o u r A p p l i c a t i o n s : N e w C h a l l e n g e s

398

The File value of 1 means this domain (actually, Server2 in this case rather than
what you’d normally consider a domain) is in the Local Intranet zone.

A wealth of information about these Registry settings is in the “Rosetta Stone
(support.microsoft.com/kb/182569/en-us) ” page I found after I’d explored this part
of the Registry enough to have some specific search terms to try on Microsoft’s site.
If you ever wondered where various parameters get stored if you specify Custom
Level for the security level for any of the zones, wonder no more.

By the way, if you watch these entries while playing with the interface in IE,
remember that Regedit doesn’t update in real time. Hit F5 to force it to refresh.

All users?

It seemed it would be convenient if there could be a setting for all users, rather than
requiring that each user of a computer go through this configuration process.

I tried adding an identical key into the ZoneMap section of the HKEY_LOCAL_MACHINE
section of the Registry, but was not able to get it to work.

I also tried setting the Autodetect value in HKLM to zero, but that didn’t work on my
test machine either.

An end run – my application only

After I first installed IE7 I wasn’t able to reproduce this “are you sure” problem that
people had been talking about.

But then, when I log on to a computer the first thing I do is open a couple of
command prompt windows.

Then, to run an app from another machine I type:

net view \\myserver

Figure 9: Registry entry added for trusted computer (view full size image

A n e n d r u n – m y a p p l i c a t i o n o n l y

399

net use z: \\myserver\myshare

z:

myprog

And everything runs fine without the warning.

So this gave me an idea. How about running an app using a batch file on the client?
And... it works!

You can run a network app by batch file one of two ways.

1) Map a drive. This is probably best, as it gives you a handle for the
“Start in” section of the shortcut that you’ll create in a moment.
Assuming you have already mapped a drive (perhaps creating a
persistent mapping), just change to that drive and invoke your
program. The batch file might consist of these two lines:

 @z:

 @myprog.exe /anystartupswitch<</PRE>

2) Use a UNC name. If your program can find its data, this is another
alternative. You don’t need to map a drive. Just create a one-line
batch file:

 @\\myserver\myshare\myprog.exe /anystartupswitch

Remember that an @ at the beginning of a command in a batch file prevents that
command from “echoing” to the user’s screen. If you have more than a line or two,
you can put a command at the top of the batch file to turn off echo for the entire
batch file:

@ echo off

So you’ve made a batch file and tested it from the command line. Now you make a
shortcut on the desktop. There’s a cosmetic downside – the user sees a DOS window
open, and that window stays open the entire time your invoked program is running.

But that’s easy to fix in the shortcut you created to the batch file.

The key here is to tell the shortcut to run Minimized (Figure 10). The DOS window
won’t appear and your app will open with whatever its regular window size setting
happens to be.

S i g n i n g Y o u r A p p l i c a t i o n s : N e w C h a l l e n g e s

400

Because I’ve mapped a drive for this example, I’m specifying that drive (Z:) in the
Start in: field. Depending on how your app finds its data, that may or may not be of
value.

To get away from the generic “gearbox” icon Windows uses for shortcuts to batch
files, click the Change Icon... button and browse to the icon you want to use. You
can select an .ico file on the local computer, or browse to an icon on your mapped
drive – whether that is a separate icon file or an icon embedded within the
application you’re invoking (or even embedded in a different application). An
advantage to using the second method for the icon (from the mapped drive) is that
if, for some reason, the server is not available and the shortcut can’t read the icon, it
will revert to a blank window icon (Figure 11). Instant network diagnostics!

Figure 10: Shortcut for batch file

F o r S e t u p B u i l d e r u s e r s

401

For SetupBuilder users

If you know the mapping you’re going to use, you can also create the shortcut in
SetupBuilder and specify the icon you want to use.

As for “real” networks...

It occurred to me that there is a fly in the ointment as far as having users change
security settings in Internet Explorer. If a computer is a member of an Active
Directory domain, it’s trivial for a network administrator to use Group Policy to
remove the Security tab altogether from IE on all computers on the network. An
administrator can also use the Internet Explorer Administration Kit
(www.microsoft.com/technet/prodtechnol/ie/ieak7/default.mspx) to deploy custom
images of IE.

To test this circumstance I cobbled together a small Active Directory network – one
Windows 2000 domain controller and a Windows 2000 member server. Both
machines have the latest service packs and updates.

Creating accounts on the servers with the same name and password as one I use on
the laptop enabled me to access their shares using my XP Pro SP2 laptop. I left IE 7
at its default settings and got the “are you sure” window each time.

Then I joined the laptop to the domain.

Now when I signed on with a domain user account (regular user, no special
privileges)... voila. No more warnings. With the default IE settings!

Sooo... this is perhaps why Microsoft hasn’t been deluged with complaints. There’s a
certain level of trust invested in computers that are a member of the domain, and
the warning doesn’t appear.

Figure 11: Batch file shortcut when network connection isn’t available

S i g n i n g Y o u r A p p l i c a t i o n s : N e w C h a l l e n g e s

402

To verify, I removed the laptop from the domain and the “are you sure” behavior
returned when I tried to run a program. Joined it to the domain again and no
warnings appeared.

I have not had an opportunity to test this with Server 2003 Active Directory.

I also haven’t tested it with any *nix networks. In that those boxes would normally
be used only as file servers, I presume the workstation wouldn’t have the inherent
trust it develops for machines in its own security domain.

David Johnson’s problem was using a Snap server for the program, so obviously that
doesn’t have the security implications of a domain structure either.

I also haven’t done any experiments with NDS (Novell) networks.

Miscellaneous security annoyances

You’ve probably noticed that Microsoft decided not to trust compiled HTML help
(.CHM) files a while back. The folks at Help and Manual have updated their free tool
(www.helpandmanual.com/products_hhreg.html) to change that behavior. Their
new version now supports Vista.

There’s been another change to block downloaded files. If you download an .EXE or
.CHM file from a web server, when you double-click it to run it from your hard
drive you’ll first get the “may be dangerous” warning window. If the file is an .EXE
and is not signed, you’ll see a window like Figure 12. Note that the difference
between this and Figure 1 is the “Always ask” check box. If the file is signed, you’ll
see a screen similar to Figure 2, but again with the “Always ask” box.

M i s c e l l a n e o u s s e c u r i t y a n n o y a n c e s

403

If you download a compiled help (.CHM) file onto your hard drive and double-click
to run it you’ll see Figure 12 (a .CHM file cannot be signed). If you do not clear that
check box, the help file’s contents will be masked (Figure 13).

Figure 12: Download from Internet, running from local hard drive

Figure 13: Compiled help file with content masked

S i g n i n g Y o u r A p p l i c a t i o n s : N e w C h a l l e n g e s

404

Again, the “helpful” suggestions will likely confuse a user, because he knows he’s
not trying to open the help file from the Internet.

If you have not cleared that check box and look at the file’s Properties page, you’ll
see a new button – Unblock. Clicking that button will make the file’s contents
available from that time onwards, and it will no longer bring up the “may be
dangerous” window. If you (or your user) clear the “Always ask” check box on the
warning screen, that has the same effect as clicking the Unblock button.

Conclusion

As I used to tell my networking class students, “Be glad computers aren’t easy or a
lot of us would be out of jobs.”

I’ve tried to describe a few ways of running your application from a network server
without being bombarded with warnings every time. As mentioned in the
introduction, I don’t claim to have definitive answers and hope that you’ll pass
along whatever you may learn.

Figure 14: The Unblock button

A d d i t i o n a l R e a d i n g

405

Additional Reading

• The “Rosetta Stone” of IE security Registry entries
(support.microsoft.com/kb/182569/en-us)

• “How to use security zones in Internet Explorer”
(support.microsoft.com/kb/174360)

• Enhanced browsing security in XP SP2 (www.microsoft.com/
technet/prodtechnol/winxppro/maintain/sp2brows.mspx)

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v9n01signing.zip

S i g n i n g Y o u r A p p l i c a t i o n s : N e w C h a l l e n g e s

406

407

MANIFESTS FOR HAND CODED APPS

by Mark Riffey

I’ve never been much of a hand-coder, well, at least not since leaving the mainframe
world. It’s not that I can’t do it, I just haven’t seen a need to with the projects I’ve
worked on. Sure, there have been tiny little exceptions, but no full-blown hand-
coded apps.

Then one fine Montana afternoon I was sitting in a coffee shop with a hand-coder I
first met at ETC 2002. Among other things, I was showing him an AppGen creation
that I was working on for him. He noticed that my buttons were a lot purtier (that’s
a highly technical term) than the buttons in his hand-coded apps. My app looked
nicer because Clarion 6 now has template support for Windows XP Themes, a way
of applying a consistent look and feel to Windows controls.

He wondered aloud how to make this happen for his hand-coded app. I said I wasn’t
sure, but I thought it was a matter of adding a compiler pragma and a manifest XML
file. I mentioned that I could ask a few guys that I know who do a fair bit of hand
coding – as I was sure they had probably done this – and get back to him.

The task turned out to be even easier than I thought.

M a n i f e s t s f o r H a n d C o d e d A p p s

408

Manifest destiny

A manifest is a XML file that tells Windows XP (etc) how to “pimp my app” and
make it look like all the other slick-looking apps out there. A manifest won’t change
how the application looks on earlier versions of Windows.

Definition from my unofficial ClarionMag slang dictionary: “Pimp my
app” – A reference to the MTV car customization show, “Pimp My
Ride”: Take steps to improve the cosmetic appearance of a standard
Windows application by using an XML visual control parameters file to
automatically display visual control enhancements that are available to
applications when running on Windows XP and subsequent versions of
Windows

So how to apply a manifest to a hand coded app? Later that weekend, I thought I’d
look in the Clarion docs. It turns out that there’s a short blurb about the use of the
manifest statement in the .exp file, indicating that the manifest needs to be
referenced in the “Library, object and resource” part of the project.

I now knew where to reference my manifest file, but I didn’t have a manifest file. I
looked on my hard drive (with Google Desktop) for the filespec *.exe.manifest
file, but didn’t have a single one. Apparently the Clarion IDE creates one long
enough to run the linker and then cleans up after itself.

Googling beyond my desktop, I found a standard manifest file on a Visual Basic
page, and modified it slightly:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<assembly xmlns="urn:schemas-microsoft-com:asm.v1"

manifestVersion="1.0">
<assemblyIdentity
 version="1.0.0.0"
 processorArchitecture="X86"
 name="Microsoft.ClarionMagStyles"
 type="win32"
/>
<description>Clarion Magazine Manifest for HandCoded Apps</
description>
<dependency>
 <dependentAssembly>
 <assemblyIdentity
 type="win32"
 name="Microsoft.Windows.Common-Controls"
 version="6.0.0.0"
 processorArchitecture="X86"

M a n i f e s t d e s t i n y

409

 publicKeyToken="6595b64144ccf1df"
 language="*"
 />
 </dependentAssembly>
</dependency>
</assembly>

Russ Eggen later pointed out to me that ABCHAIN.TPL contains pretty much the
same XML code, starting at line 866. There is a minor difference in the description:

<description>Clarion 7 application.</description>

Paste the XML into Windows Notepad or your favorite text editor. Save it into your
development folder as appname.exe.manifest where appname is the name of your
application. This is a requirement. REPEAT: The manifest file must be named after
your application EXE filename and live in the folder where your app is when it is
linked.

There is no need to change any of the stuff in the XML source, though my tinkering
has shown that the <description> tag and the name attribute on the
<assemblyIdentity> tag can be changed. However, such changes are pointless. No
one ever sees these files but you.

To test the manifest, simply ensure that it’s in your application directory as noted
above, and add it to your project. Actually the manifest doesn’t have to be added to
your project, but if you don’t do this, you’ll need to ship the manifest file with your
app. So add it to the project.

Figure 1 shows the example application without the manifest, and Figure 2 shows
the app with the manifest.

M a n i f e s t s f o r H a n d C o d e d A p p s

410

Figure 1: C6 application without manifest

Figure 2: C6 application with manifest

F r o m t h e e d i t o r

411

Recompile and run. That’s it. You don’t need to make any .exp file changes, nor
changes to any code.

Note that Windows XP’s manifest support doesn’t know what to do with the non-
standard Windows controls that Clarion uses. These are called “owner-drawn”
controls. The result of this is that not all controls in your app will be XP-ized and
that might not produce a pleasing mix of appearances – that’s your call. An owner-
drawn control is a Windows control that doesn’t come from the standard Windows
library – instead it is drawn by the application, or in the case of Clarion
applications, by the clarion runtime library. One example is the Sheet/Tab control
that Clarion provides. According to the Clarion Roadmap (www.softvelocity.net/
community/blogs/clarion_news/archive/2006/08/10/1048.aspx) C7 will include
theme support for all controls. I’m sure my beta copy will be here any minute now.

Last but not least, there might be a way to get the PowerOffice Power-XPTheme
(www.cwtemplates.com/more_xptheme.asp) third party add-on to work with hand-
coded apps, but I haven’t pursued that. I do use it with my appgen-based apps.

From the editor

Carl Barnes has kindly provided a screen shot of the app running under Vista. Carl
added icon buttons and second checkmark and button controls. The Close button is
highlighted because the mouse is over it.

M a n i f e s t s f o r H a n d C o d e d A p p s

412

 Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n12manifest.zip

Figure 3: The example app (with extra controls) under Vista

413

GET AHEAD OF YOUR COMPETITION WITH
VISTA AND OFFICE 2007

by Mark Riffey

Please make it stop.

Stop shaking, that is. See, I’ve been shaking my head a lot. Shortly after the Vista
and Office2007 gold releases came out on MSDN there were some discussions in
the Clarion newsgroups about the difficulty of running Clarion applications on
Vista, installing applications on Vista, and the compatibility of Office-enabled
Clarion applications with Office 2007.

The best of these conversations have been going on in the SetupBuilder newsgroup,
primarily because Friedrich clearly recognized some time ago that when Vista was
ready for the general population his products had to be ready to properly run and
install a program under Vista. His comments (and not just the technical ones)
showed that it was very clear to him how important Vista-compatibility was to his
business. I doubt there is anyone reading this that thinks that Friedrich doesn’t get
it.

One thing really stunned me about these conversations: The number of developers
who not only weren’t ready for Vista and O2007, but also hadn’t even seen these two
products. It follows that a fairly substantial portion of those participating in the

G e t A h e a d O f Y o u r C o m p e t i t i o n W i t h V i s t a A n d O f f i c e 2 0 0 7

414

conversations had done very little testing on Vista or O2007 – and the scary thing
was that most admitted that they hadn’t done any testing. To go a step further, a
Clarion Magazine survey indicated that a fair number of people hadn’t even seen the
O2007 ribbon interface (blogs.msdn.com/jensenh/archive/2005/09/14/
467126.aspx), much less knew what it was, did, or looked like.

Rose colored glasses

If you’re looking at Vista and O2007 as just another giant hassle cooked up by the
friendly folks in Redmond (you know, because it’s their job to make your life
miserable), try again. Frankly, if Vista truly makes your life miserable, your
business model could use some work, but that’s a story for another column.

Ok, wise guy...

So how do I think you should view Vista and O2007? In my view, these products
present a huge opportunity for some vendors right now, and a pretty good
opportunity for most everyone else for the next year. Why? Because one thing that
sets any business apart from others (it’s not like a software company is “different”)
is doing things that competitors are too stupid, too ignorant, or too lazy (or some
combination of all three) to do.

Here’s why I think Microsoft’s new products present an opportunity:

If you’re ahead of the competition, the last thing you want to do is slack off and
coast because you’re the leader. The more things you do that your competitors are
too lazy, ignorant, unimaginative, or unwilling to do, the more likely they will fall
farther and farther behind you.

If you’re in the hunt for the lead, but not yet the leader, you are apparently doing
a number of things right, or at least you’re no worse off than the rest of the leading
vendors in your market. You still need to differentiate yourself from the leader,
unless you like your view of the lead dog. Being first to market with an app that is
tested and ready for Vista and O2007 is one way to do this, and demonstrates
several things.

• It shows that you are the up and coming vendor to watch. You are
the first to market.

A n o t - s o - s h o r t C l a r i o n b e d t i m e s t o r y

415

• It shows that the leader is being complacent, compared to you.

• It (more or less) forces your competitor to consider altering their
development plans, or face the pleasure of having you “poke the
bruise” about being the new leader in the. Either way you win
because when they react they have to divert resources and alter their
plans. Meanwhile, you are moving forward as planned, not as a
reaction.

If you’re substantially behind the competition, do you really expect to catch up
with them by doing the same thing they do? I doubt it. You have to stand out. You
have to be better than they were in every way you can conceive, and you have to
invent new ways to be better. You have to create apple-orange comparisons, because
you can’t (yet) win the apple-apple comparison. Being lazy is no way to catch up,
much less take and keep the lead.

A not-so-short Clarion bedtime story

Finally, let me tell you a true story that illustrates why your choices in dealing with
these new releases during the beta cycle (or otherwise) matter.

A few years ago when Windows XP was in beta, I installed it on my laptop as soon
as it became available on MSDN. My primary development machine was a desktop
at my office so this wasn’t a huge inconvenience to me, but it still provided plenty of
testing opportunities in the evening and on weekends when I was working with
Office, messing around on the ‘net, or coding.

I took that laptop home in the evenings, and I always kept it in sync with my
desktop, at least as far as Clarion and my source code were concerned. This gave me
an extra offsite backup, a ready-to-use development center in case of a fire, theft or
other disaster at the office, and it allowed me to work from home or out of town as
necessary on an exact copy of the current “gold” code.

The lessons learned and fixes made during the beta cycle on that laptop allowed my
company to be ready for XP the day that the gold release was put up on MSDN, a
full two months before it came back from manufacturing and became available to
the public. It also allowed us to tell clients who also were testing XP betas that we
were testing, we were ready, and not to worry. Those clients were the ones calling
to ask what we were doing and if we had said “waiting for XP Gold” that would
have left them wondering about how serious we really were about our business.

G e t A h e a d O f Y o u r C o m p e t i t i o n W i t h V i s t a A n d O f f i c e 2 0 0 7

416

Why should I care if my clients worried? I don’t know about you, but I care about
my clients’ worry level a lot. I look at it this way: If my products and services cause
my customer to lose sleep, or cause them to wake up at 2 am thinking about me, I’m
in big trouble. You don’t ever want to be that vendor.

Payday

The payoff came at a trade show during the XP Beta 2 cycle. My laptop was also
used for driving the demonstrations that we performed in the booth at trade shows.
We were in Biloxi doing a show and a prospect came up and started crowing to my
salesperson about his use of XP Beta 2 and how he was ahead of his competition and
so on. I heard this and since we hadn’t started the demo yet, I decide to have a little
fun. While he was talking to a salesperson I quietly switch the XP beta into
“Windows 2000 mode”, i.e. no pretty menus, no big red X in the corner of the
screens, etc.

The demo started and soon the prospect began to complain about all the software
vendors at the show, how they were so lame because they couldn’t tell him when
they would be ready for XP and so on. Finally he started riding me about it, because
I was “obviously” doing a demo on Windows 2000 just like all the other lame
vendors.

I let him dig his hole for a few more minutes, and as he started to rag on me a little
bit more about XP I asked him to hold on for a moment. I hopped over to the
control panel and told Windows to start running XP in “pretty mode” (the red X,
fading menus and all that). I shared with him that I’ve been testing with XP since
Beta 1 and that we will be there with a new build the first day that XP Gold is
available on MSDN, two months before most people would even have XP. All along
he thought we were in Windows 2000, but in fact we had been demoing all
weekend in XP Pro Beta 2. He started doing a little dance in the booth. No, there
wasn’t any music.

As you might expect, I got that guy’s two grand and change right then and there,
plus he brought other friends (who were also in the same business) back to our
booth to show them how smart he was to buy from the only vendor who was ready
for XP before it was even released.

T h e g o o d p a r t ?

417

The good part?

The good part is that this client became an unpaid evangelist. Everywhere he went,
it was “us, us, us”. Sure, he wanted his peers to know that he was smarter than
them, but we were the real beneficiary of his evangelism, evidenced by the number
of people who mentioned his name when they spoke with us.

The point

If you are waiting, waiting, waiting and thinking “well, none of my competition is
ready, so I don’t have to be either” or “all my clients are still running windows 98
and 2000 so I don’t care”, you need to turn that logic around. It really wasn’t that
hard to turn a negative (having to retest everything, redo all the screen shots in my
docs to include that red X, etc.) into a big positive and a competitive advantage. Set
yourself substantially apart from your competition as the “vendor that is always
ready, so we don’t have to worry”.

Rub your hands together

Maybe 95% of your clients are on Windows98 right now, but what happens when
that request for 2000 seats comes in? You know, the one that requires Vista
support? It does happen. Your reaction is either <expletive deleted>, or “heeheehee”
followed by rubbing your hands together because you know your stuff is the only
product that matches the requirements.

I’m absolutely not suggesting that you upgrade every machine in your shop to Vista
right now. That’s not the approach to take. I’m suggesting that your lead developer
(or your only developer) switch to Vista and O2007 on at least one of the machines
they use regularly so that they can start learning the issues, feeling the pain and
solving the problems before they become problems to your clients.

G e t A h e a d O f Y o u r C o m p e t i t i o n W i t h V i s t a A n d O f f i c e 2 0 0 7

418

The bigger picture

You are more than a software vendor of a product or system to your clients, or at
least you should be. You should be the vendor they ask first about changes in the
industry because they simply assume that you are ready, based on your past
behavior. You must become known as an authority in your industry, because if you
aren’t, someone else will be. Position yourself through your behavior as the
indispensable expert and you become the one whose solutions everyone thinks they
have to have. Or you could be the other vendor. It’s your choice.

This isn’t about being the smartest person in the newsgroups. You simply have to be
better prepared, more experienced and more up to date on what’s new and what’s
coming around the bend than any client or prospect. There’s an old saying that
describes the situation perfectly: “In the land of the blind, the one-eyed man is
king.” There’s a lot of opportunity in being the only vendor who is ready for Vista,
ready for O2007 and so on.

Preparation has several other benefits:

• If your competition is one of those “wait and see” vendors who will
test Vista when they start getting complaints about it (maybe), then
you have another slight edge with which to weaken their pitch and
strengthen yours.

• It’s not just about Vista or O2007, but about being there for your
clients in general. You’re the vendor who makes sure that your stuff
works when your client has to buy a new PC that comes with Vista
and O2007 on it.

• You’re the vendor who can proactively give your customers
purchasing advice and talk about your experiences with Vista and
O2007 in your newsletter (and you have to have a newsletter, even if
it’s just an emailed one), giving them the clear impression that you
are on top of things in your industry and eventually, the only one to
trust.

Keeping on top of important software releases like Vista and Office 2007 gives your
customers confidence, confirms to them that they made the right choice, and makes
it easy to get that next year’s support/upgrade contract payment.

419

VISTA-COMPLIANT INI FILES

by Randy Rogers

The release of Microsoft Windows Vista introduced a new set of challenges for
programmers, particularly in the area of Vista’s enhanced security. Vista provides
some remedies including XP compatibility modes and the use of virtual folders.
This may work in the short term, but in the longer term it will be better if your
program is Vista compliant. The location of application data, temporary files, and
other files that are shared by multiple users of the computer should be reviewed and
changed as necessary.

Special folders used frequently by applications, but which may not have the same
name or location on any given system, are identified by unique system-independent
Constant Special Item ID List (msdn.microsoft.com/library/default.asp?url=/library/
en-us/shellcc/platform/shell/reference/enums/csidl.asp), or CSIDL, values. In this
chapter I’ll demonstrate a derived INIClass called VistaINIClass that uses the
SHGetFolderPath API call to translate the CSIDL constants into folder locations.
You simply specify the constant for the desired location, and the class takes care of
storing the INI file in that folder. I’ve also included a small template to make it even
easier to implement the class in your applications.

My solution does not deal with the GETINI / PUTINI built in procedures. They could
be overridden by modifying the builtins.clw file and providing replacement
procedures. I have an aversion to modifying any files shipped by SoftVelocity, so I

V i s t a - C o m p l i a n t I N I F i l e s

420

decided to convert any GETINI / PUTINI procedure calls in my code to INIClass (or,
in my case, VistaINIClass) method calls instead.

The class deals strictly with INI file types; INI registry value types are passed
through to the PARENT unchanged.

INI folders

INI files provide a particular challenge because they normally reside in the
Windows folder. Under Vista the Windows folder is protected so the INI file gets
copied to a virtual folder. This means that every user of the computer will have a
copy of the INI file located in a virtual folder. In other words, the INI file is no
longer shared and changes made by one user are not seen by other users. This
behavior may be just what you want; if so I would suggest using a
“MyCompanyName” subfolder of the CSIDL_PERSONAL (My Documents) folder to
store the INI files.

If you want to share an INI file between multiple users then a “MyCompanyName”
subfolder of the CSIDL_COMMON_APPDATA folder seems to be the preferred location.
This is a protected folder under Vista, so you need to grant access rights to your
subfolder to the appropriate users / group. This could be handled by your install
program or by using the cacls.exe command line program that comes with
Windows. A good article on using cacls.exe can be found at TechRepublic
(articles.techrepublic.com.com/5100-1035_11-1050976.html).

I have a large number of DLL and EXE applications that require modification to
make them Vista compliant. Since the Clarion IDE and ABC Templates do not
recognize CSIDL values it seemed, at first, like this was going to be a daunting task.
After thinking about the problem for a while I finally decided that deriving the
INIClass and providing my own Init method would be a simple, elegant, and
easily maintainable solution.

The VistaINIClass

The downloadable source contains the class files and a sample application that uses
the class. Here’s the declaration from vistaINIClass.inc:

!ABCIncludeFile(ABC)

T h e V i s t a I N I C l a s s

421

!==
!Copyright ©2007 Keystone Computer Resources
!Creation Date: 2007/02/20
!==
 COMPILE('ENDCOMPILE',_ABCLinkMode_)
 PRAGMA ('link (shfolder.lib)')

 !ENDCOMPILE

OMIT('_EndOfInclude_',_vistaINIClassPresent_)

vistaINIClassPresent EQUATE(1)

 INCLUDE('ABUTIL.INC'),ONCE

CSIDL_PERSONAL EQUATE(00005h) !My Documents
CSIDL_COMMON_APPDATA EQUATE(00023h) !All Users\Application Data

vistaINIClass CLASS(INIClass), TYPE,|

 MODULE('vistaINIClass.clw'), |
 LINK('vistaINIClass.clw',_ABCLinkMode_),|
 DLL(_ABCDllMode_)
Init PROCEDURE(STRING FileName, UNSIGNED nvType, |
 LONG extraData = 0) !,EXTENDS
 END
!_EndOfInclude_

The class needs the SHGetFolderPath API call which is in Windows’ shfolder.dll.
The PRAGMA statement causes the shfolder.lib file to be linked in. You will need to
create the LIB file from the DLL with LibMaker.exe.

There are many CSIDL values; this example only declares the ones I intend to use.
The downloadable source contains equates for all documented CSIDL values.

The vistaINIClass is derived from INIClass and only needs to override one of the
Init methods:

vistaINIClass.clw
 MEMBER
!==
!Copyright ©2007 Keystone Computer Resources
!Creation Date: 2007/02/20
!==

HANDLE EQUATE(LONG)

HWND EQUATE(HANDLE)

HRESULT EQUATE(HANDLE)
DWORD EQUATE(LONG)
S_OK EQUATE(0)

V i s t a - C o m p l i a n t I N I F i l e s

422

 INCLUDE('vistaINIClass.inc'),ONCE

 MAP

 MODULE('kernel32.dll')

 kcr_CreateDirectory(*CSTRING szPath, |

 LONG lpSecurityAttributes),|
 BOOL,PASCAL,RAW,NAME('CreateDirectoryA')
 kcr_GetLastError(),LONG,PASCAL,NAME('GetLastError')
 END
 MODULE('Shfolder.dll')
 kcr_SHGetFolderPath(HWND hwnd, LONG csidl, HANDLE hToken, |
 DWORD dwFlags, *CSTRING szPath),HRESULT,RAW,|
 PASCAL,NAME('SHGetFolderPathA')

 END

 END

vistaINIClass.Init PROCEDURE(STRING FileName, UNSIGNED nvType, |
 LONG extraData = 0) !,EXTENDS
hr HRESULT
hFile HANDLE
szPath CSTRING(File:MaxFilePath)
CSIDL LONG

 CODE
 !check for INI file type
 IF nvType = NVD_INI
 !check for simple filename
 IF ~INSTRING('\',FileName)

 ! Use the following to place ini files in user's

 ! "My Documents\YourCompanyName" folder
 CSIDL = CSIDL_PERSONAL

 ! Use the following to place ini files in the
 ! "All Users\Application Data\YourCompanyName" folder
 !CSIDL = CSIDL_COMMON_APPDATA

 hr = kcr_SHGetFolderPath(0,CSIDL,0,0,szPath)
 IF hr = S_OK
 !TODO: change 'MyCompanyName' to the name
 ! you want to call the subfolder
 szPath = LONGPATH(szPath) & '\MyCompanyName'
 IF kcr_CreateDirectory(szPath,0)
 PARENT.Init(szPath & '\' & FileName, nvType, extraData)

 ELSE

 IF kcr_GetLastError() = ERROR_ALREADY_EXISTS
 PARENT.Init(szPath & '\' & |
 FileName, nvType, extraData)
 ELSE

T h e t e m p l a t e

423

 PARENT.Init(FileName, nvType, extraData)
 END
 END
 ELSE
 PARENT.Init(FileName, nvType, extraData)
 END
 ELSE
 PARENT.Init(FileName, nvType, extraData)
 END
 ELSE
 PARENT.Init(FileName, nvType, extraData)
 END
 RETURN

The first few lines of code declare some equates, include the class declaration file,
and prototype the API calls needed by the class.

This example uses the CSIDL_PERSONAL folder as the location to store the INI files.
Comment this line and uncomment the following line to use the
CSIDL_COMMON_APPDATA folder instead. Remember to grant users access rights to
your subfolder.

The class has the path hard coded so remember to change it in the source before
using the class in a production environment.

Next the code creates the path, checks for errors, and calls the PARENT method to
complete the work.

All that remains is to replace the INIClass in the application Global
Properties|Classes|General|INI Manager with VistaINIClass. That’s pretty easy to
do, but takes a lot of clicking if you have many applications to convert. I decided to
create a small extension template to do a lot of the work for me.

The template

The VistaINIClass.tpl template file contains one global extension, as follows:

#!===
#! Keystone vistaINIClass Template
#! Author: Randy Rogers (KCR) <rrogers@keystonecr.com>
#! Copyright: ©2007 Keystone Computer Resources
#! ALL RIGHTS RESERVED
#!===
#TEMPLATE(vistaINIClass,'vistaINIClass Template'),FAMILY('ABC')

V i s t a - C o m p l i a n t I N I F i l e s

424

#!

#!
#! --
#EXTENSION(vistaINIClassGlobal,'Add vistaINIClass to
app'),APPLICATION

#! --

#DISPLAY('This template adds the vistaINIClass.')
#DISPLAY('')
#DISPLAY('There are no prompts for this template')

#AT(%BeforeGenerateApplication)

 #CALL(%SetClassDefaults(ABC), 'INIManager', 'INIMgr',

'vistaINIClass')

#ENDAT

The template sets the default value for the ABC INIManager to VistaINIClass. To
use the template simply register vistaINIClass.tpl and then add the global extension
to each application.

Viewing CSIDL values

The downloadable source includes a small application that displays the paths
associated with the various CSIDL values. You’ll need to register the
vistaINIClass.tpl file first, or else ignore the template warning and change the INI
Manager class manually. You may need to click on the Refresh Application Builder
Class Information button on the Global Properties window, Classes tab.

Summary

Microsoft Vista introduces a number of security-related problems, and one of these
is the need to use virtual folders rather than the Windows folder for INI file
locations. With this class and template you can store your INI files in Vista-friendly
locations.

S o u r c e c o d e

425

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v9n03vistaini.zip

V i s t a - C o m p l i a n t I N I F i l e s

426

427

RUNNING CLARION 6 ON VISTA

by Dave Harms

Bob Foreman’s blog entry at www.softvelocity.net/community/blogs/clarion_news/
archive/2007/05/03/1635.aspx covers two known issues with running Clarion 6.3
(build 9056) under Vista:

• 1. Text or Buttons on some IDE windows are clipped if you are using
the Vista Aero style.

• 2. The Windows Help (WinHlp32.exe) program is no longer
included with Windows operating systems starting with Windows
Vista

Fixing clipped text

The clipping solution is to go to the Aero advanced settings, choose the Item
dropdown list, and set the border padding to 0 or 1. \

R u n n i n g C l a r i o n 6 o n V i s t a

428

Fixing WinHlp32.exe

There are two solutions to the second problem.One is to use Microsoft’s updated
WinHlp32.exe for Vista, although if you do so the Clarion help file will only be
partly functional. A better solution is to copy XP’s WinHlp32.exe to your vista
machine. Bob’s blog entry has all the details, but in summary you:

1) Turn off UAC and log in as Administrator.

2) Locate Vista’s WinHlp32.exe in Windows explorer, right-click on
the file and choose Properties.

3) On the Security tab, Advanced button, Owner tab, change the
owner to yourself.

4) Save your changes, then repeat Step 1.

5) Navigate back to the place where you set the user, choose that user,
then click Edit. Grant yourself full control.

6) Rename the Vista WinHlp32.exe to something else.

7) Copy the XP WinHlp32.exe to the Vista machine

Bob says to be sure in both cases to use the WinHlp32.exe from the Windows
directory and not the system32 subdirectory. For details please refer to Bob’s blog
entry at www.softvelocity.net/community/blogs/clarion_news/archive/2007/05/03/
1635.aspx – the entry was posted on May 3, 2007 in Clarion News.

429

Version Control

431

AN INTRODUCTION TO CVS AND WINCVS

by Nardus Swanevelder

Version control software has long been popular with software developers, and
particularly development teams, because it offers a centralized repository for source
code, and tracks and manages changes to that source code. But what if you’re a
Clarion programmer, working on your own? Why do you need Version Control?
Have you ever lost a file due to corruption? Ever wished you had a copy of a
previous version? Ever wished you did not delete that file? Ever wished you knew
why you made that change again? Do you have different tracks of the same
software? If you answered yes to any of these questions you need version control.

But Version Control software is expensive, isn’t it?

Thanks to open source software there is a popular, free option called Concurrent
Versions System (CVS). That takes care of the cost objection. (There is also another
up and coming open source version control system called Subversion
(subversion.tigris.org), but that is a story for a future article.)

But isn’t using version control difficult? Not really, and to prove that I will take you
through the process of installing WinCVS, and show you how to start using it to
control your software versions.

Before I continue, I want to emphasize that the purpose of this chapter is to
introduce you to Version Control Systems, and not to explain Soft Velocity’s

A n I n t r o d u c t i o n t o C V S a n d W i n C V S

432

implementation of its version control interface. You can use any version control
system without using the built-in version control functionality in Clarion 6. The
built-in version control functionality uses TXA files for the modules in your
application and TXD files for your dictionary. As far as I am aware the checkout
command in Clarion 6.1 does have a problem if you are using CVS as your version
control system.

The method I am going to explain in this chapter will use the CLW files, INC files,
APP files etc. The only catch using this method is that you have to import the APP
and DCT files as binary files (more on this later). The advantage of using this
method of version control is that it is compatible with all versions of Clarion. Yes,
even Clarion 2.1 for DOS (although I haven’t done this personally). And of course
you can use version control with all sorts of files, not just Clarion files.

What is CVS?

CVS is a version control system, dating back to 1986, that has been developed in the
public domain by many people. Currently, CVS is maintained as an open source
development project hosted by Collab.Net, Inc (www.collab.net). Links to the CVS
source code, binaries for various platforms and documentation can be found on the
CVS project home page (www.cvshome.org).

The biggest limitation of CVS is that it uses a command line interface. Since most
developers prefer a graphical user interface, several groups around the world have
developed graphical front ends to the CVS core. One of the better front ends that is
available for the Windows Operating System is WinCVS (www.wincvs.org),
another open source project.

WinCVS is a Windows GUI that runs on top of CVS. WinCVS also make use of
CVSNT and Python, which I’ll touch on later. For more information on WinCVS
you can visit their official web site. (www.wincvs.org)

To download the latest version of WinCVS go to the official download page
(www.wincvs.org/download.html). At the time of writing this chapter the latest
recommended version of WinCVS was WinCVS 1.3.20.3 (released 2004-11-21). To
get the latest WinCVS documentation you can visit the following download page.
(www.wincvs.org/doc.html) You will find WinCVS documentation in MS Word or
PDF format, along with a FAQ, CVS documentation, presentations etc.

W h a t i s C V S ?

433

The WinCVS installation contains a version of CVSNT, which is the actual CVS
server, but if you need to get a more up to date version of CVSNT you can visit their
official web site. (www.cvsnt.org)

CVSNT is the most widely supported, feature rich and secure CVS Server and Client
available today on Windows, Mac OS X, Solaris, HPUX, and Linux.

CVSNT development began as simply a port of CVS 1.10 and then 1.11 to
Windows, however it quickly became clear that vital new security and features were
being added to CVSNT that CVS users on all platforms required. CVSNT then
became available for Unix as well as Windows, and now supports most of the active
software development platforms available.

CVSNT does install two services on your Windows machine. They are called
“CVSNT Service” and “CVSNT Locking Service”. You do not have to do anything
with these services; they are started automatically when you switch your machine
on.

Before you can start installing WinCVS you may need to download another
application called Python. Python is an interpreted, interactive, object-oriented
programming language. It is often compared to Tcl, Perl, Scheme or Java. Don’t
worry, you do not have to learn a new language – WinCVS uses Python but you
won’t need to write any Python code.

To get more information on Python visit their official web site. (www.python.org)

To download the latest version of Python go to the download page
(www.python.org/download). Remember to download the Windows version. At the
time of writing this chapter the latest recommended version of Python was the
Python 2.4 Windows installer. I had problems installing and running this version
and reverted back to Python version 2.3.4

It is just about time to start the WinCVS installation process, but before you do that
there is one more tool you might want to use. WinCVS supports the use of an
external file comparison tool, and thanks to open source you have a couple of free
options available to you:

CSDiff is a basic file comparison application and is available at the following web
site. (www.componentsoftware.com)

KDiff3 has more features than CSDiff but is more difficult to use, you can find it at
the following web site. (kdiff3.sourceforge.net)

A n I n t r o d u c t i o n t o C V S a n d W i n C V S

434

After you have downloaded the above applications you can start the installation
process:

Installing WinCVS

1) Unzip WinCVS13B20-3.zip

2) Run Setup.Exe

3) Follow the prompts and choose Full Installation

4) Follow the rest of the prompts and click on Install button

5) After WinCVS has been installed make sure that you tick Install
CVSNT and click on the Finish button

6) Follow the prompts and choose Full Installation

7) Follow the rest of the prompts and click on Install button

8) Click on Finish button

The next step is to install the Python application

Installing Python

1) Run Python-2.3.4.exe

2) Follow the prompts

3) I changed the default location of Python to: c:\Program
Files\GNU\Python

4) Click the Finish button

That is it for the installation of WinCVS, all you have to do now is to install your file
comparison tool of choice.

Terminology

With any new subject there is always new terminology that you need to understand
before you will be able to grasp the full concept of the new subject.

R u n n i n g W i n C V S f o r t h e f i r s t t i m e

435

Repository

The CVS repository stores a complete copy of all the files and directories which are
under version control. Normally, you never access any of the files in the repository
directly. Instead, you use CVS commands to get your own copy of the files into a
working directory, and then you work on that copy.

The repository can be local or can reside on a remote server. Note that the
repository is not a subdirectory of the working directory, or vice versa; they should
be in separate locations. For this chapter I will assume that the repository is local.

Working files

Working files means the place (folder) where you check your files out to, so that
you can work with them. When you are finished with your changes you check
(commit) them back into the repository.

Modules

Modules are either symbolic names for some collection of source directories and
files, or paths to directories or files in the repository

CheckOut

When you checkout you create or update the working directory with copies of the
source files specified by modules. You must use checkout before using most of the
other CVS commands, since most of them operate on your working directory. If you
use checkout it will create directories any missing directories.

Commit (CheckIn)

Use commit when you want to incorporate changes from your working files into the
repository. Commit will only change the files in the repository that you have really
changed.

Running WinCVS for the first time

After you have finished the installation of WinCVS you need to configure the
WinCVS system, create a repository, and import your source code before you can
using the version control functionality.

Configure Preferences

A n I n t r o d u c t i o n t o C V S a n d W i n C V S

436

1) Start WinCVS

2) Click on Admin, Preferences

3) On the Globals Tab

• Make sure “Checkout read-only” is not checked.

4) On the CVS Tab

• Complete the path to the “Home” folder for e.g. c:\WinCVS

5) On the WinCVS tab

• Complete the path to the “External diff” file comparison
application, if you installed it.

• Complete the path to the “Default editor”

• Complete the path to the “TCL Dll”

6) On the Command Dialogs Tab, Skip dialogs (don’t show dialog
screens)

• Update

• Diff

• Graph

• Log

• Annotate

• Status

• File action

Figure 1: WinCVS Preferences

R u n n i n g W i n C V S f o r t h e f i r s t t i m e

437

If you tick any of the “Skip dialogs:” options in Figure 1 you will not get the
command dialog screen for that option when you execute it. To display the
command dialog screen in future, you have to hold the Shift key in while choosing
the function. The Update option’s command dialog screen is displayed in Figure 2.

Create repository

1) Click on Remote, Create a new repository

2) Complete the path to the “CVSRoot” and click on Ok. You can use
c:\WinCVS for example.

First Import

1) Select the folder that contains the source files

2) Select the source files that you want to import into the repository

3) Click on Remote, Import Module. Figure 3 will display.

Figure 2: Update settings

A n I n t r o d u c t i o n t o C V S a n d W i n C V S

438

4) Make sure that the Binary and Text files are indicated correctly

• If you aren’t using this method to import your files WinCVS
will not import binary files as binary, unless you are using the
right masks.

5) Click on continue, and the window in Figure 4 will display.

Figure 3: Import filters

R u n n i n g W i n C V S f o r t h e f i r s t t i m e

439

1) Complete the following on the Import Settings Tab

• Repository path – for e.g. choose an existing name or type a
new name like “School”. This will be your module name.

• Vendor Tag – “Cmag” (The symbolic name is: branch 1.1.1)

• ReleaseTag – Release -1 (The symbolic name is: – revision
1.1.1.1)

2) Leave the “Import options” tab the same

3) Change the Globals Tab

• Uncheck Checkout read-only

4) Click on Ok

Figure 4: Import settings

A n I n t r o d u c t i o n t o C V S a n d W i n C V S

440

Figure 5 shows what the repository will look like after the import:

The “,v” after the file extension means that the file is marked as read-only. This is
correct, so that the file set read-only. Also note that all files are marked as text. This
is also correct, and the APP and DCT files will still be exported correctly as binary
files.

You have your files in the repository and you are ready to start working on them.

Start with Checkout

Use the Checkout function before you make changes to your files:

1) Go to the Repository, and choose the Module that you created with
the import – for e.g. School

2) Select all the files you want to Export

3) Click on Remote, Checkout Module

4) Complete the Checkout Settings Tab, as shown in Figure 6.

• Module Name and Path – School

Figure 5: Repository after import

S t a r t w i t h C h e c k o u t

441

• Local folder to checkout to: (Select the folder (one level up)
where you want to export the files to)

5) Leave Update Options and Merge Options Tabs as is.

6) Make sure under the Global Tab that Checkout read-only is not
checked

7) Click on Ok

Figure 7 is what the working folder will look like after the checkout.

Notice that the APP and DCT files were exported as binary files.

8) You are now ready to open Clarion and work on the files

Figure 6: Checkout settings

A n I n t r o d u c t i o n t o C V S a n d W i n C V S

442

How do I know which files changed and which files are new?

Figure 8 shows how to distinguish between files that have been changed and files
that have been added. New files will be indicated by a status of Unknown and
changed files will be indicated by a status of Modified.

Commit changed files

You need to commit changed files to update the repository

1) Go to your working folder

2) Select the changed files that you want to commit, right click and
choose commit. You will see the window in Figure 9.

Figure 7: Working folder after checkout

Figure 8: Determining modified files/new files

C o m m i t c h a n g e d f i l e s

443

3) Enter a Comment that describes the changes you made. Leave the
rest of the settings the same and click on OK.

Commit new files

You need to do a commit to add new files to the repository

1) Select the new files that you want to add to the repository, click on
the Add button or Add Binary button depending on the file type.

2) After you added the files to the repository you need to commit
them to the repository. While the files are selected, right click and
choose commit

Now that you have an idea of how to use the basic version control features, you’re
ready to start using WinCVS with Clarion. That’s the subject of the next chapter.

Figure 9: Commit settings

A n I n t r o d u c t i o n t o C V S a n d W i n C V S

444

445

CVS, WINCVS AND CLARION

by Nardus Swanevelder

In the previous chapter I covered the basics of version control using CVS and
WinCVS. Now it’s time to look at how to apply these techniques to your Clarion
development.

Filters

To begin with, you can use filters to reduce the number of files in your WinCVS
view. As Figure 1 shows, you have Name, Extension, Revision, Option, Encoding,
State, and Tag filters available to you.

Filename Filter

.clw;.app – only display the CLW and APP files

Figure 1: Filter settings

C V S , W i n C V S a n d C l a r i o n

446

Extension Filter

clw;app – another way to display only CLW and APP files

Revision Filter

Here you can enter a revision number like 1.1 for example. It will then display all
the files with the revision number of 1.1.

State Filter

Modified – only displayed modified files

Checking for differences

It is easy to check for differences between different versions of the same document.
Just follow the steps below:

1) Go to the Working folder or Repository folder

2) Select the file, right click and choose Diff Selection, as in Figure 2.

• Choose the “compare type” you want (see Figure 3):

• Local copy against the same remote revision

• Local copy against another revision/tag/branch or date

• Two revisions/tags/branches or dates against each other

• If you want to use your external compare program make sure
that you ticked “Use the external diff”

C h a n g e l o g s

447

Change logs

How do I get a Log of the changes that was made to a file?

Figure 2: The Diff menu item

Figure 3: Using an external difference program

C V S , W i n C V S a n d C l a r i o n

448

Getting a list of changes to a specific file is easy – just follow the steps below:

1) Go to the working folder

2) Select the file you want to have a log off

3) Right click, choose Log Selection

4) You will get a log in the WinCVS Output Pane. See Figure 4 for an
example.

The log will look something like this:

cvs log SCHOOL001.clw (in directory
 C:\Clar6\Cmag\7. Nardus - Version Control\School\)
***** CVS exited normally with code 0 *****
Rcs file : 'c:\WinCVS/School/SCHOOL001.clw,v'

Working file : 'SCHOOL001.clw'
Head revision : 1.2

Branch revision :
Locks : strict
Access :
Symbolic names :
1.1.1.1 : 'Release-1'
1.1.1 : 'CMag'
Keyword substitution : 'kv'
Total revisions : 3
Selected revisions : 3
Description :

Revision : 1.2

Date : 2005/1/12 9:44:4
Author : 'Nardus.Swanevelder'
State : 'Exp'
Lines : +1 -1

Figure 4: The output pane

F i l e s t a t u s

449

Keyword : 'kv'
CommitID : '85041e4f1635ebf'
Description :

filename: SCHOOL001.clw;
Added a comment

Revision : 1.1

Date : 2005/1/12 9:34:49
Author : 'Nardus.Swanevelder'
State : 'Exp'
Lines : +0 0
Branches :
1.1.1
Description :

Initial revision

Revision : 1.1.1.1

Date : 2005/1/12 9:34:49
Author : 'Nardus.Swanevelder'
State : 'Exp'
Lines : +0 0
Description :

First Import

===

File status

To get the status of a file is straightforward – just follow the next steps:

1) Go to the working folder

2) Select the file

3) Right click, choose Status Selection

4) You will get the status of the file in the WinCVS Output Pane. The
Status can be:

• Locally Modified

• Locally Added

C V S , W i n C V S a n d C l a r i o n

450

• Up-to-date

5) Check Working Revision

6) Check Repository Revision

Revision graphs

How do I get a graphical representation of the revisions of a file?

Getting a graphical representation is very simple. Just complete the steps below:

1) Go to working folder

2) Select the file

3) Right click, choose Graph Selection

4) The right pane changes and now shows a workflow type of graph,
as in Figure 5.

5) You can click on the different nodes which will display the
following information in the Output Pane

 Revision : 1.2
 Date : 2005/1/12 9:44:4
 Author : 'Nardus.Swanevelder'

Figure 5: Viewing the revision graph

R e v i s i o n g r a p h s

451

 State : 'Exp'
 Lines : +1 -1
 Keyword : 'kv'
 CommitID : '85041e4f1635ebf'
 Description :
 filename: SCHOOL001.clw;
 Added a comment

• Revision – This is the revision of the file/node

• Date – This is the date and time when the changes were
committed

• Author – Which person made the changes to the file

• State – Exp

• Lines +1 -1

• Keyword

• kv – text

• b – binary

• Description – This is the description that you added the during
the commit process.

• Filename – the name of the file that was committed.

6) If you want to retrieve a specific version right click on the correct
revision and choose Retrieve or Retrieve as

7) If you want to change the active node, right click and choose “Tag
to selected (Sticky)”. The tag will be indicated by a red box, as in
Figure 6.

Figure 6: Changing the active node

C V S , W i n C V S a n d C l a r i o n

452

8) If you right click and choose “Update (remove sticky)”, your
working folder will be updated with the version from the
repository of the current selected node.

9) To close the graphical view click on the top node (School001.clw)
in the tree and choose close.

Version numbers

Getting a line by line representation of your file with version numbers on each line
is a breeze – just follow these steps:

1) Go to working folder

2) Select the file

3) Right click, choose Annotate Selection

4) Remember that this will only work on a text file. It will not work
on an application file as this is a binary file.

5) Here is an example pulled from the WinCVS Output Pane.

1.2 (Nardus.S 10-Jan-05): new comment by Nardus S
1.3 (Nardus.S 10-Jan-05): extra comment by Nardus
1.1 (Nardus.S 10-Jan-05):
1.1 (Nardus.S 10-Jan-05): MEMBER('SCHOOL.clw')

Tips

Take note of the following tips; they will save you a lot of time.

1) Select the text that you need from the WinCVS output pane and
cut and paste it into whatever application you want it. An example
of the text that you can cut and paste is the log of changes you
made to a file. You can cut and paste the log into MS Word and
send it to your client as proof of the changes you made to the
client’s application.

2) Press the F2 key in the WinCVS application to open a Windows
Explorer browser displaying the current selected folder in the
WinCVS view.

S u m m a r y

453

3) If you are using a big application it will be beneficial to use one
procedure per module. In Clarion, after you opened your
application, click on the Application menu and choose
“Repopulate Modules”. Choose 1 procedure per module. In the
School example this will increase your number of CLW files from 4
to 30 files. This can lead to longer compile times, but it lets CVS
track procedures one at a time, which is very helpful when viewing
differences. You must be careful, however, not to renumber
modules. And that leads to tip #4.

4) Based on a tip from Rick Martin it will make life easier if you give
your module names more meaning full names. Try using the
procedure name as the module name. For e.g. instead of using
School006.clw you can change the module name to
UpdateCourses.clw.

5) If you are running a process in WinCVS and it looks like it is in a
loop, it might be. To stop such a process you can click on the “Stop
CVS” button. I got WinCVS to go into a loop when I used the
import command incorrectly.

6) Read the WinCVS User Guide as listed under recommended
reading, below. It is more useful than the WinCVS Online help.

7) It will be meaningless to use annotation and diff on a binary file.

8) You can import all Clarion bin, libsrc, template files as well as all
third party files. This will enable you to go back to any version/
patch of Clarion or your third party developer without re-installing
any software. This tip is also from Rick Martin.

Summary

Version control software is an immensely useful tool for both single developers and
development teams and CVS is the most widely used, free version control system
currently available. With CVS, and the WinCVS client, you can easily make small
changes to source code and then undo those changes the next day. And because
your work is versioned, if some incorrect change is made to the data somewhere
along the line, just undo that change.

I’ve given you a basic background to CVS and WinCVS. As you progress in your
knowledge, you may want to pay special attention to the topics of Tags, Branches,

C V S , W i n C V S a n d C l a r i o n

454

Watchers (multi-user environment) and you might want to learn how to use a
remote repository.

Recommended reading:

• WinCVS User Guide – WinCVS1-.3.doc or WinCVS1-3.pdf
(available at www.wincvs.org)

• Version Management with CVS 1.12.9 by Cederqvist – cedeqvist-
1.12.9.pdf (available at www.wincvs.org)

455

VERSION CONTROL WITH CVS AND
CLARION 6.X

by Bernard Grosperrin

Version Control is a very wide subject, and I am not going to cover the whole thing
from A to Z in a single paper. Nardus Swanevelder did an excellent job already,
presenting the basics of Concurrent Versions System (CVS) and how you can use it.

I am going to look at how you can use CVS to keep track of SoftVelocity releases
and hotfixes, as well as of third party tools, and how you can keep track of changes
you made to one of the releases of your software, after you’ve started development
of the next wonderful killer version.

So, in a way, I am going to look at CVS starting by the end, the results, then look at
how to organize your daily work with Clarion and CVS. Nardus covered the
installation on a standalone machine; I will briefly explain the installation of
CVNST on a Linux server, but this is not going to be a “How-to” install CVSNT
discussion. I will refer you to web pages doing this much better and in greater
detail.

You will also discover that CVS use is not limited to keeping track of your
development, it can also be used for everything else you do where keeping revisions

V e r s i o n C o n t r o l w i t h C V S a n d C l a r i o n 6 . x

456

of text files can be important, like a web site, documents, SQL scripts, installation
scripts, etc, etc.

The software

Let me quickly state which software I’m using, so that you can find and install those
tools:

Server

For the server, you can use either CVS or CVSNT. Both can be installed on Linux,
CVSNT has a Windows version.

• CVS: https://www.cvshome.org

• CVSNT: www.cvsnt.com/cvspro/ and www.cvsnt.org/wiki

Client

There are a number of clients out there for Windows, Tortoise being interesting and
easy to use, but there are many features in WinCVS missing in Tortoise, one of
them being the ability to extend the commands via Python Macros, which I will do
to customize WinCVS for Clarion.

• WinCVS: www.wincvs.org

Python

It may seem strange that an discussion of version control introduces a scripting
language, but WinCVS uses Python as its macro language, and I would suggest you
download and install Python (version 2.3 or 2.4), along with the PythonWin
extensions, for which I will have a use later...

• Python: www.python.org

• PythonWin: www.python.org/windows/pythonwin/

Differences Comparison tool

One of the strong points of version control is the ability to compare different
revisions of a file. CVS has a built in tool, but it is not too user friendly as it

S o f t V e l o c i t y v e r s i o n s a n d h o t f i x e s

457

compares line by line, out of context. There are other, better tools. Personally, I use
Beyond Compare, but do your own search and select your own.

• Beyond Compare: www.scootersoftware.com/

Editor

You can set up WinCVS so that it will open a file in your favorite programming
editor. I use Multi-Edit, but you can use any editor you like. Multi-Edit can also be
set up to work with CVS, so if you work quite a bit on classes, SQL Scripts, HTML,
CSS, etc. you can do all your work and version control management without leaving
Multi-Edit!

• Multi-Edit: www.multiedit.com/

SoftVelocity versions and hotfixes

Now, let’s assume you have a CVS server installed/available somewhere, and you
have installed WinCVS (although what I describe here will work just as well on a
standalone system as described by Nardus).

Say I work with Clarion 6.x, and it happens that SoftVelocity just released a new
hotfix. But I have made some changes to ABFILE.CLW, because I wanted my own
version of PrimeAutoIncServer (and there are too many privates properties to derive
cleanly), or I changed some templates, or none of the above, as I never modify
anything directly, I just want to be able to roll back easily if something is wrong
with the new fix.

Let’s see how CVS can help.

The first thing to do, if not already done, is to put my Clarion6 directory under
version control. I could either do that for the whole Clarion 6 directory tree, or
select only the directories I want. My directories 3rdparty,Bin,Lib, Libsrc, and
Templates are under version control. I will explain later how you do that; for now,
let’s just say it’s done.

I just downloaded Clarion 6.1 hotfix build 9031, and I want to update my Clarion 6
working directory.

As SV hotfixes check that I have the correct versions of the DLL before installing, I
have to install on an existing Clarion directory, but not my working directory. Let

V e r s i o n C o n t r o l w i t h C V S a n d C l a r i o n 6 . x

458

me be clear about this: You need to have a Clarion directory tree, which you will
use only to “feed” CVS. Your “real” Clarion working directory tree is only updated
from CVS, never directly from SoftVelocity updates. To do that, I simply copy my
whole Clarion 6 directory, renamed with the last hotfix number: something like
Clarion6_9031. The cleanest way to proceed would be to install a clean
Clarion6_updates directory from the original CD, then update it with each of the
releases/hotfix, and each time do the procedure I am going to describe. That way
you would have all SoftVelocity releases under version control. If you did not make
any modifications to SV shipped files, I would recommend this as the best start.

Now that I have a Clarion6_9031 directory, I need to tell version control that I am
importing a “vendor update”. I select the first directory from my “vendor update
directory tree” that I want to have under version control, BIN, right click and select
“import Module” in the popup menu. It is important to check that the directory
name matches exactly the directory name existing on the server, as I want this new
import to go to the same directory on the server where my Clarion tree is. Only my
local directory, to import from, must be different. WinCVS run an import filter, to
differentiate between text files and binary files. There is normally no correction to
be made here, so I click OK to go to the Import Settings Window.

What I am interested in, in this window, as seen in Figure 1, are the Vendor tag and
Release tag settings. Vendor is SoftVelocity, release is Clarion_6-1_9031. Note that
you can’t have spaces in a tag name. Note also that, my server being a Linux box, I
have to be careful with cases. For instance, if on your server the directory is Bin,
rename the directories on your “vendor update” directory tree as created by
Clarion’s install to match exactly; if you import a BIN directory, you will create
another directory, not update the existing one!

Once you click on OK, CVS will update your BIN directory on the server with SV’s
latest patch.

Do the same for each directory under version control.

S o f t V e l o c i t y v e r s i o n s a n d h o t f i x e s

459

Once you are done importing Modules for this new release, select your Clarion 6
working directory from WinCVS, and select Update for each directory under
version control. Now, if you think this is a slightly tortuous procedure to update
Clarion, and take 30 minutes where it took usually less than five, I will entirely
agree with you! So, where are the benefits?

They are almost too numerous to list.

First, it’s now pretty easy to see what has changed between two revisions. For
example, I can see that AbFile.clw (Figure 2)did not change at all between the last
three hotfixes, while AbDrops.clw (Figure 2) has a change between 9029 and 9030.
How do I know this? I just right click on the files, and select Graph from the popup
menu:

Figure 1: CVS vendor Import

V e r s i o n C o n t r o l w i t h C V S a n d C l a r i o n 6 . x

460

Verrsion 1.1 is the original version, created when I imported the whole module into
CVS (I was on hotfix 9028). You can see that for ABFile, vendor version 1.1.1.2 has
all three release labels pointing to it, indicating it’s the same version and there has
been no changes, while Abdrops has only 9029 pointing to revision 1.1.1.2, and
9030 and 9031 pointing to revision 1.1.1.3. I can as easily look at those changes.
With AbDrops.clw selected, I select Diff from the popup menu. In the dropdown
list box on top “Diff compare options”, select “Two revisions/tags/branches or dates
against each other”, as seen on Figure 3, Diff settings.

Figure 2: AbFile and AbDrops graphs

Figure 3: Diff settings

S o f t V e l o c i t y v e r s i o n s a n d h o t f i x e s

461

For revision or date #1, click on the lookup button to have “select tag/branches”
displayed (Figure 4), select the older version, then select the newer for Revision or
date #2.

Don’t forget the check the box “Use the external diff” if you want to see the changes
in your preferred compare program. I use Beyond Compare.

Among a few other lines changed (Beyond Compare shows six sections different,
Figure 5), I can discover that 9030 and 9031 have a new ResetfromItem method in
the FileDropComboClass. I could have discovered the same thing reading SV release
notes item (FEATURE: New method to reset the FDCB to an item in the list.
ResetFromItem PROCEDURE(LONG Item)), but that does not tell me which file is
involved and how the code looks like, and where would be the fun, anyway?

Figure 4: Select a tag/branch

V e r s i o n C o n t r o l w i t h C V S a n d C l a r i o n 6 . x

462

Tagging a product release (version)

One of the most recurrent problem of any software company, either individual or
corporation, is to be able to freeze a development environment at a specific point in
time, matching the release of a product.

Let’s say you proudly release version 10.09 of your killer application, and
immediately start working on the next, the BIG one, version 11, which will have all
the features you have been dreaming to implement for so long. You conscientiously
update your third party products, as well as your Clarion version, change a few
templates, and work, work, work....

Suddenly, the phone rings. Your biggest, most important client has discovered a
showstopper bug, while you are still months away from releasing version 11. You
know you have to immediately stop any new development to fix that bug. And then,
it hits you. You can’t!

You can’t because you have no ideas what version of each third party tool you were
on. When you loaded the APP you have so preciously backed up and labeled Killer
App 10.09, you get tons of error messages, templates missing, prototypes of
functions and classes changed, etc, etc.....

Figure 5: Comparison with Beyond Compare

M o d u l e s

463

OK, maybe that’s a bit of a caricature, as it’s possible to backup the entire Clarion
directory each time you have a new release, but, I don’t do that systematically
enough, and I know that this is not purely a fairy story...

So, how do you use CVS to avoid this kind of Clarion developer drama?

Modules

To manage complete versions of your development environment you have to define
a module on your server.

CVS use the word “module” for any directory in your server repository. Here, we
are talking about a logical, or virtual, directory, not a physical directory.

So, what is a logical module, seen from the server? It is a way to group files and
directories belonging to a project. In fact, it’s a pretty simple ASCII file, named,
guess what, “modules”, residing in your server’s CVSROOT directory (which was
automatically created when you first initialized the CVS server, or your local
installation).

I would suggest, if you have not already done so, that you Checkout CVSROOT
somewhere on your local drive, so that you can edit your version control
configurations files, and commit them, without sitting in front of your server. You
will even be able to go back if you make some mistakes, as this a way for CVS to put
itself under version control! (Please, please, if you are on a standalone machine,
never directly update files in the repository!)

To demonstrate a module, I will use the Clarion example Invoice application. But to
make the example more realistic, I will move the directory to an Invoice directory
on my drive. What I want to have in this Module for any Invoice product release is
everything that I might need to have later on to be able to change and recompile.
This means I need to include the directories and files required by the application,
such as any Clarion or third party BIN, LIBSRC, TEMPLATE, and IMAGE
directories, as well as my working directory. I would need to add to that any other
file/directory used in my final product, like the install script, SQL scripts if any are
used, etc, etc.

To put my new folder Invoice under version control, I select it from WinCVS. I then
right-click on it, select Import Module from the popup menu; the import filter
window show what files will be imported as binaries, and which one as text. As for
now I am not digging into Clarion 6’s use of CVS, I leave aside APVs and DCVs, the

V e r s i o n C o n t r o l w i t h C V S a n d C l a r i o n 6 . x

464

renamed TXAs and TXDs generated by Clarion for Version Control. I will let CVS
handle APP and DCT files, which it recognizes as binaries. (I will look at Clarion 6
integration with CVS later, but this will show to you that, even if you have an older
version of Clarion, you can benefit from CVS, although not with the maximum
flexibility).

Here is what the graph for Invoice.App looks like after initial import (Figure 6). For
an initial import from WinCVS and with CVSNT as server, you need to select
“Don’t create vendor branch or release tag, on the tab import settings, and “Create
CVS directories while importing” on the Import options tab.

Now, if you open the Modules file from your CVSROOT directory, you will see that
it includes some kind of help text, but as with many Unix-originated documents,
you can’t say it’s too user friendly.

I am interested in the -a option, aliases. Here is what my Invoice module looks like
(line breaks added):

INVOICE -a Invoice Clarion6/BIN Clarion6/Template
 Clarion6/LIB | Clarion6/LIBSRC Clarion6/images
 Clarion6/3rdParty/Template | Clarion6/3rdParty/bin
 Clarion6/3rdParty/libsrc

As you can see, it’s a simple list of directories. Be careful – these must be the full
directory paths from inside your CVS repository, not your machine! And if your
server is Linux, you had better type the exact case, or you will have errors.

Let’s say that after some last modifications to Invoice.app, I am ready for release. To
mark the big event from a CVS point of view, I want to “tag” this module, which is
like taking a snapshot of the state of each file in all those directories.

To do this, I go to the Remote menu and select the Create a tag by module option.
To be sure that I select the INVOICE Module, not just my Invoice directory, I click
on the lookup button on the right of the drop down list box, to access the server
defined modules, and enter the name for my tag (Note that spaces and dots are not
allowed).

Figure 6: Invoice after initial import

R e l e a s e

465

Now, be careful! With CVS (I am not sure about CVSNT) there is tagging and then
there is tagging! If you tag by Module, using the Remote menu option, you tag on
the server, that is, the tag will be put on the HEAD (last revision), which seems
pretty normal. But sometimes that’s not what you want! Example: You carefully
update Clarion 6.1 as soon as SoftVelocity release a hotfix, test it and develop with
it, as I described above. But, you have another directory(or machine) for your
production application, which you don’t update to the latest, preferring to release
from a stable version. In that case, you would use Modify/Create a tag, rather than
Remote/Create a tag by module.

Modify will tag relative to the currently active version, indicated in the graph by the
little document icon, rather than systematically to the HEAD (The HEAD being
always the last version, active or not). This means that, if you are in a multi-
developer environment, you might very well be polishing a new version, for which
you are using Clarion 6.1, built 9028 (for example), while on the server, the last
version is Clarion 6.1 build 9032. You might very well use this latest version from
another machine, for tests and maybe development of a new application. For your
current work, if you develop with 9028, you want to tag 9028 with your production
files, which is what I mean by “the currently active version”. If this is the case, you
will want to use Modify/Create a tag, as Remote/Create a tag would tag 9032. It
might sound more complex than it really is. Just sit in front of WinCVS on your
machine, tests those options, and you will quickly understand what this is all about.

Release

Here is the graph for Invoice.App immediately after release:

Notice, on Figure 7, the little icon document with “01” inside. It shows that 1.3 is
the currently active revision, and the file is binary. It’s your clue, if you have
complex graphs with branches and tagging, of where you are on the tree.

Figure 7: Invoice after tagging for release 10-9

V e r s i o n C o n t r o l w i t h C V S a n d C l a r i o n 6 . x

466

Now, I work a little on my next invoice version, and commit revisions 1.4 and 1.5.

Now that I have updated and committed my work on Invoice.app, the phone rings,
my wealthiest (and best) client calls with a major showstopper bug found in Invoice
10.9. I need a fix a.s.a.p. Problem is, I have some new and un-tested classes in my
new version that I introduced immediately after the release, as well as a few beta
releases of third party tools. I can’t afford to fix the bug and send something to that
client with all those un-tested changes. Solution? Branching.

Branching Out

It’s time to “Branch-Out”, using my “release tag” as point from which to branch.

I need to rename my working directories before I make changes for this branch
version, or else when I checkout code for the branch, I will overwrite my working
files. In CVS terms, I need a new “sand-box”!

Practically, for the time where I will need to work on both my old version and the
current version, I will have an “Invoice_Original” directory, as well as a
“Clarion6_Original” directory. If I have defined my INVOICE module properly,
checking it out should recreate everything I need to work with my version at the
time, so no worries, and my paths and redirection file will stay correct. Now, you
might wonder why it would be needed to create a new “Sandbox” when I branch
out?

The reason is that CVS does not treat binary files and text files equally. When I
checkout the branch, everything will be fine. But when I will want to go back to the
trunk, that is my last revision, out of the branch, after committing my changes on
the branch, if I do an “update”, CVS will MERGE my text files, and not replace
them, like it does for binaries, and that might very well NOT be what I want! It is
much better to work with totally separated directories, and merge manually exactly
what I decide to merge.

Important: Do not forget to commit your redirection file and .C6ee.ini
file, if you want to find your own settings when you will have to
checkout an older branch of Clarion.

Now that I have renamed my directories, I go to CVS Remote menu, and select the
Create a Branch option, as seen on Figure 8:

B r a n c h i n g O u t

467

Most importantly, I use the second tab, as seen on Figure 9, to select the point from
which I am going to branch out:

CVS lets me know that the branching went well (line breaks added).

cvs -d :pserver;username=xxxx;password=xxxx;hostname=
 192.168.1.105:/home/cvsroot... rtag -b -r Release_version_10-9
 Branch_of_Invoice_Version_10-9 INVOICE
cvs rtag: Tagging Invoice
cvs rtag: Tagging Invoice/HELPSRC

Figure 8: Create Branch settings, tab Rtag Settings

Figure 9: Create Branch settings, Tab 2, tag Options

V e r s i o n C o n t r o l w i t h C V S a n d C l a r i o n 6 . x

468

cvs rtag: Tagging Clarion6/BIN
cvs rtag: Tagging Clarion6/BIN/Flash
cvs rtag: Tagging Clarion6/Template
cvs rtag: Tagging Clarion6/3rdParty/Template/_BACKUP_
cvs rtag: Tagging Clarion6/3rdParty/bin
cvs rtag: Tagging Clarion6/3rdParty/libsrc
***** CVS exited normally with code 0 *****

It might surprise you to see this working just fine, without any error, when I just
renamed my directories! The branch/tag happened on the server, in the repository –
the branch files don’t yet exist on the local drive.

To work on this older version, I need to checkout this branch. I go to the Remote
menu, checkout module (INVOICE), and on the second tab “Update options”, as
seen on Figure 10, , I select my branch:

Once you click OK, CVS re-creates the directories on your machine, and you are
back in the environment you had at the time you tagged your release!

Bug FIX!

For demonstration purposes, my bug fix is actually just a comment:

Figure 10: Checkout by branch

B u g F I X !

469

Fast and simple...but an excellent way to see what CVS does, even if this is a binary
file, although CVS is much better dealing with pure text files (you will see later
what is at the same place in my file AFTER release).

Let’s have a look at the graph, too:

During the commit, CVS lets me know I am actually working on the branch, telling
me that the new revision is 1.3.2.1, while the previous version was 1.3. the extra
digits tells me that I am not on the trunk anymore, and you might see on the graph
the little document icon indicating the active revision is on 1.3.2.1, which is the
first revision of the branch

cvs commit -m "Bug Fixed!" invoice.app (in directory D:\Invoice\)

Checking in invoice.app;

/home/cvsroot/repository/Invoice/invoice.app,v <-- invoice.app
new revision: 1.3.2.1; previous revision: 1.3
done
***** CVS exited normally with code 0 *****

Figure 11: Bug Fixed!

Figure 12: Bug Fixed on invoice branch

V e r s i o n C o n t r o l w i t h C V S a n d C l a r i o n 6 . x

470

Now what happen if another developer on another machine continues working on
the new version, not knowing I am working on the previous version? Nothing
changes, as his active branch is still the main trunk, and its commit would create
revision 1.6.

Once you are done fixing your bug(s), compiling and delivering the fix to your
client(s) you check your changes in to CVS. Then you can delete your Invoice and
Clarion working directories, rename Invoice_original and Clarion6_original back to
Invoice and Clarion, update your module, just to be safe, and carry on..... Let’s say I
made some changes on the version I have installed on my laptop, as seen on Figure
13. Here’s the code I committed:

No bug fix here – this is a new feature, so this branch is really separated from the
main trunk.

And the matching graph on Figure 14 after I update from my main machine:

But, you are going to ask, what if I want to MERGE the fix that I did for the old
version with the new one?

Figure 13: Last change made from the Laptop

Figure 14: Invoice after change 6 on the Trunk

B u g F I X !

471

Well, CVS allows that also. It’s called “pruning back” to the main tree. There are
some cases where it might be needed and convenient to do so, but I would never
attempt this at a whole module level, as CVS doesn’t know how to merge binaries. If
you were actually trying this with APP files and or DLLs/EXEs, CVS would rename
your current files, and bring back the branch version! Not good at all!

If you want to merge individual text files, you can update, with the option to “reset
any sticky tags”, and “merge with one rev/tag”. This creates a new revision as a
result of the merge that you will need to commit.

Now that you have a pretty decent idea of what’s possible to do with CVS, I hope
you are impatient to install it and start using it, if you have not already done so.
Next I’ll describe how to set up a server-based CVS installation; if you want to
install CVS locally, refer to Nardus’s chapter “An Introduction to CVS and WinCVS”
on page 431.

V e r s i o n C o n t r o l w i t h C V S a n d C l a r i o n 6 . x

472

473

CVS SERVER AND CLIENT INSTALLATION

by Bernard Grosperrin

In the previous chapter I explained the concepts behind CVS, and how these apply
to Clarion developers. Now I’ll cover the CVS server and client installation and
configuration in more detail.

I am not going to fully detail an installation for the server, as there are too many
specificities, depending on your own local configuration, needs, operating system,
company policies, etc. I will just give you some pointers as well as some directions
you can take to improve on a basic install. For example, I will not expand much on
security, but I would suggest, mostly if you want to have collaborative work
through the Internet, to look at SSH tunneling.

My own server runs on Fedora Core 3 from Red Hat (www.redhat.com), so you
may have to adapt these instructions for other Linux distributions.

For Windows, installing is pretty straightforward, but I would suggest reading the
documentation anyway if you want things to run smoothly.

I recommend you do not use a shared directory for your repository. You need a
server, and it would be a lot better and safer in the long run if your repository was
not visible in your network neighborhood. WinCVS 1.3 will not accept to work on a
shared directory anyway.

C V S S e r v e r A n d C l i e n t I n s t a l l a t i o n

474

You probably have an old machine somewhere you don’t know how to recycle, or a
computer you let the kids play with. This could make a pretty decent CVS server
with Linux, if you are diplomatic enough...

I just switched from using CVS (which is part of Fedora Core 3 distribution), to
CVSNT, so this chapter is all about CVSNT, and I will try to point out differences
when necessary. (I recommend using CVSNT over CVS)

CVSNT Install on Red Hat Fedora Core 3

As CVS is part of the Red Hat Fedora Core 3 distribution, I will simply upgrade the
already-installed CVS to CVSNT. There is a perfect upward compatibility between
CVS and CVSNT, so it’s not a big deal to switch, even if you are already using CVS
extensively. CVSNT Wiki has a pretty good explanation, which I followed step by
step: www.cvsnt.org/wiki/InstallationLinux (www.cvsnt.org/wiki/
InstallationLinux)

First, don’t forget to remove your pre-existing CVS installation with the command:

rpm –e cvs

If you are installing CVSNT on a machine that has no previous CVS installation,
you should at first create a directory to be your CVS repository, as well as a cvs user
and group, and give the cvs group all the rights to the cvs directory tree.

You can install a binary RPM, but I prefer to install sources when available, and
build the application on my machine.

Then from inside your cvsntxxxx directory, build CVSNT from the source with the
following three commands:

./configure
make
make install

Depending on your hardware this can take a bit of time, but it really works just fine,
and ensures that CVSNT is correctly built for your particular Linux installation.

As indicated by the CVSNT Wiki page, rename and modify the Pserver file. You just
have to indicate the directory that you are going to use as CVS repository.

Then, you have to build up your cvspserver file. Here is mine (line breaks added):

W i n C V S i n s t a l l a n d c o n f i g u r a t i o n

475

service cvspserver
{
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 passenv = PATH
 server = /usr/local/bin/cvs
 server_args = -f --allow-root=/home/cvsroot/repository --
allow-root=/home/cvsroot/public_repos pserver
}

Obviously, you will have to adapt to your own paths. Restart xinetd (using the
command service xinetd restart), and you should have access to your new CVSNT
server!

Continue to follow the CVSNT Wiki page for Lockserver and the repository setup if
this is a new install for you. Don’t init your repository if it already exists !

If you need/want to install SSH, you need to do so now. If you are going to work
from your own local network, without external access, you don’t need to worry
about SSH.

Now it’s time to set up the WinCVS client.

WinCVS install and configuration

Nardus explained the WinCVS in “An Introduction to CVS and WinCVS” on
page 431, and I encourage you to read it now if you haven’t already. Just a little
remark: his install is on a standalone Windows machine. You don’t need a full
CVSNT install if you have a separate server, and you will not have the Locking
service running on your machine, as it has to be running on the server.

You can set a CVSROOT environment variable, but I don’t really recommend doing so,
as WinCVS allow you to work with multiple servers; as you can very well have your
own in-house server for your own work, an outside server for some work you are
collaborating on, and maybe a few open-source CVS servers. (For instance, you can
checkout the sources for WinCVS and compile it yourself if you have Visual C++
6.0). All the settings are kept on a per directory basis. WinCVS will ask you the
settings when they are needed, but most of the commands use what is stored in
your (hidden) CVS directory created each time you checkout a module.

C V S S e r v e r A n d C l i e n t I n s t a l l a t i o n

476

Configure applications and directories

You know that Clarion, unlike many other tools, does not store all source in ASCII
files (unless you program entirely by hand rather than using APPs and DCTs). And
CVS doesn’t know how to merge binary files that well. Luckily enough, with
Clarion 6 SoftVelocity introduced a way to customize the Version Control feature,
so that it can work with CVS, among other versioning software.

When you use the Version Control interface, Clarion will create a TXA file
(renamed APV) for each module in your application, plus one for Applications
Options, as well as a TXD File (renamed DCV) for your dictionary.

I suggest that you rename each of your modules in a more meaningful way than
Appli001, Appli002, etc, if you want to know what each file is and what it does! I
will demonstrate this with the Clarion Invoice application that I previously put
under Version control the “brute force” way, that is the binary app file itself.

As seen in Figure 1, Invoice has only four modules, Invoice.clw, Inv001.clw,
Inv002.clw and Inv003.clw.

Figure 1: Invoice Modules “out of the box

C o n f i g u r e a p p l i c a t i o n s a n d d i r e c t o r i e s

477

Each module has about seven procedures. This will not help me much if I have
three or four programmers working together, as they all would have to commit the
same module once they are done. And the file names do not make it clear where
PrintInvoice is, for example.

So the very first thing to change, in order to make it easier and more efficient to use
CVS with Clarion, is to split my application in more modules, and give them
meaningful names. I don’t absolutely need to have one procedure per module, but
it’s better if I can reach that level of granularity. (I am not trying to say that it is
mandatory to rename all your modules, version control will work just fine without
doing this, but, in the long run, you will thank me for this suggestion.)

To manually change your modules in a Clarion application, select the procedure
you want to change, go to the procedure menu, select change module, then select
New Module, give the name you want, and validate. It’s as simple as that!

Okay, I know it’s a long and tedious job, mostly if you have hundreds of procedures
per application in 30 or 50 apps! But it’s time well spent, and it will pay back very
quickly.

You can see in Figure 2 how the application looks like after this transformation.

Figure 2: Invoice Modules after transformation for CVS

C V S S e r v e r A n d C l i e n t I n s t a l l a t i o n

478

Now I can look at my files and have a pretty good idea of what procedure they
contain, and what they are supposed to do.

On your file menu in Clarion, you may have noticed the new options Check In and
Check Out. Click on Check In, as seen in Figure 3.

Figure 3 shows all my modules with the task “add” in front of them. This seems
pretty logical, as I am just creating these modules and they are not yet under version
control. The only thing I have done so far to configure Clarion with CVS is to select
CVS (Button Configure CVS, then load commands, select CVS), and put a “rem” on
the line in front of each set of commands! As these commands are all command
line, a rem instruction will just disable any command, but Clarion will still create
my APV and DPV files, and for now that’s all what I want from Clarion. I’ll do the
rest in CVS.

Notice that I use a subdirectory named CVSApplicationName as the Archive
directory for Clarion, so that the APV and DCV files are not mixed with my other
files in my working directory.

So, what happens now if I click OK on this dialog? I will see the DOS command
window pop up a few times, and not much more. Once finished, I can see in my
CVSInvoice\Invoice subdirectory that I have my APV files, one per module. I still
need to do the same for my dictionary, to get a DCV file the same way.

Figure 3: Checkin Dialog from Clarion

C o n f i g u r e a p p l i c a t i o n s a n d d i r e c t o r i e s

479

As this new sub-directory is not under version control, yet, I need to import it.
Clarion will (if I wish) allow me to commit changes, but I first need to repeat the
same process explained by Nardus in his First Import paragraph: Select my
CVSInvoice Sub-directory, right click, select import, OK the filter, check the box to
not create vendor tag, and to create CVS directories while importing.

Once done, CVS shows me the directory with my files now having a revision
number, as seen in Figure 5.

Figure 4: cvsinvoice\Invoice before adding the files to CVS, all flagged as unknown

C V S S e r v e r A n d C l i e n t I n s t a l l a t i o n

480

After this initial import, I can, if I want to, configure Clarion so that I would be able
to commit directly from Clarion. Everything has advantages and inconveniences,
but I am sure many of you will want to be able to directly commit from Clarion. I
will show to you how to do this, but I also like the control WinCVS gives me, and
the capability to make a lot of operations automatic. At the end, you can judge
which method seems better for you.

To make Clarion work properly with CVS, the easiest way is to look at the
commands generated by WinCVS: For example, If I select commit for a file,
WinCVS show this command in the console:

cvs commit -m "no message" UpdateCompany_Invoice.APV (in directory
D:\Invoice\CVSInvoice\)

So, in Clarion, I enter the exact same command, adapting to what Clarion indicates
for comments, files and directories, as seen in Figure 6.

Figure 5: cvsInvoice\Invoice after adding files to CVS

C o n f i g u r e a p p l i c a t i o n s a n d d i r e c t o r i e s

481

As indicated earlier, as I am making some experiments and tests, right now, I simply
put rem in front of each command line to not commit directly,as in Figure 6. You
will need to have the directory where CVS is located in your path, for Clarion to be
able to use it. If you install WincvS 1.3 xx, this directory should be

C:\Program Files\GNU\WinCvs 1.3\CVSNT

As you might have guessed, Commit in CVS terminology, is the same as check in for
many other Version Control Systems. (The terminology is important. You don’t
“check in” with CVS, as you are free to continue working on your files after
committing).

For “Add” the WinCVS command is add, as seen here (line break added):

cvs add BG_FILE_2.CLW BG_FILE_2.INC
 (in directory D:\Clarion6\LIBSRC\)

There are no comments for add with CVS, as the files are simply filtered and flagged
to be committed. The comment will be included when you commit the files, so after
adding your modules from Clarion, you need to go to WinCVS and commit your
files from there.

Remove is like add, but with different consequences. Here is what the console
displays on a delete (line breaks added):

'BrowseAllOrders_invoice.clw' has been
 moved successfully to the recycle bin...
cvs remove BrowseAllOrders_invoice.clw
 (in directory D:\Invoice\)
cvs server: scheduling

Figure 6: Commit settings in Clarion

C V S S e r v e r A n d C l i e n t I n s t a l l a t i o n

482

 `BrowseAllOrders_invoice.clw' for removal
cvs server: use 'cvs commit' to remove
 this file permanently

This command remove does two things: it deletes the file from your disk (in the
Windows way, moves the file to the recycle bin), and it flags it for removal from the
server repository. It’s important to do both, as if you simply delete the file from your
disk, the next time you update this directory, CVS will re-import it, and you might
have some surprises when compiling if you end up with modules supposedly
eliminated. (That is, unless you use the macros included in the source for this
chapter – those macros read the project in the Application Options.APV file,
avoiding any errors of this kind).

As with the add command, the files to be deleted have to be committed to be
effectively removed from the repository.

The last set of commands to put into Clarion is for checking-out, or updating in CVS
language.

cvs update -P Main_Invoice.APV
 (in directory D:\Invoice\CVSInvoice\)

Again, I will translate this command into Clarion with cvs update -P "%P\%F"

Note: I never check out directly from Clarion, mostly because it takes
too long, as I have to go to each module individually and set the option
one for each one. Also, for some Applications, it seems that Clarion
trashes the app file if I don’t import the whole TXA at once, as when
the “application Options” files is merged with the current one, the
AppGen does not seem to find the embeds properly, and duplicates the
code in orphan embeds.. Happily enough, the set of macros and
Clarion utility I’ve included with this chapter makes updating your
application(s) a breeze.

Directory Structure

As you might have guessed from the above, I work with a standard directory
structure, to make it easier to not mix modules in a multi application product, and
to make committing and updating as automatic as I possibly can. This structure is
mandatory for my macros to run properly.

My directory tree looks like this:

D i r e c t o r y S t r u c t u r e

483

Product
 Cvsproduct
 Appname
 Appname

All that is fine and dandy, but you might be a bit reluctant to adopt this same
structure if you have a few products, and each one of them has 30-50 applications.
That’s a lot of work just to be able to put your applications under version control!
WinCVS can be adapted more precisely to your tools and environment via macros
written using Python, as seen in Figure 7, so I wrote a macro just for that, it takes
one click and a few seconds to create the structure described above:

You must have selected the directory you want to prepare, and this directory must
contain at least one .APP file for this macro to do something.

If you are curious about Python, Figure 8 shows the code for this macro.

Figure 7: Macro to prepare directory selected from the Macros Menu

C V S S e r v e r A n d C l i e n t I n s t a l l a t i o n

484

I am far from being an expert in Python, and I am sure this code could take less
lines, but I always prefer my code to be readable. And Python code is very readable,
due to the mandatory tabs. As an example, I will use the Clarion DLLTutor
example, as this directory has four applications. Here is the console output in
WinCVS once the macro has finished working:

Preparing D:\Clarion6\Examples\DLLTUTOR to be used with WinCVS and
Clarion6.
Create directory D:\Clarion6\Examples\DLLTUTOR\cvsDLLTUTOR.
Create directory D:\Clarion6\Examples\DLLTUTOR\cvsDLLTUTOR\Allfiles.
Create directory D:\Clarion6\Examples\DLLTUTOR\cvsDLLTUTOR\Dlltutor.
Create directory D:\Clarion6\Examples\DLLTUTOR\cvsDLLTUTOR\Reports.
Create directory D:\Clarion6\Examples\DLLTUTOR\cvsDLLTUTOR\Updates.
...done Preparing D:\Clarion6\Examples\DLLTUTOR for CVS.

Figure 8: Prepare for CVS python Macro source code

R e a s o n s t o u s e W i n C V S r a t h e r t h a n C l a r i o n

485

And here is what I get in WinCVS file manager once I refresh the display (F5):

Reasons to use WinCVS rather than Clarion

The main reason to not interact with CVS entirely from Clarion is that Clarion
works exclusively file by file. If you are a member of a development team, you need
to periodically update your working directory, and it’s a lot faster and easier to do
so by updating the whole directory, rather than updating each module of an
application. Imagine an application of about 25, 30 DLLs, one EXE, with an average
of 25 procedures per application. WinCVS allow you to update all this source with
one click! From inside Clarion, you will have wrist pain before being done with your
750 modules.

But, you are going to tell me, how can I use the APV’s files that I just updated from
my co-workers, without doing mouse gymnastics from inside Clarion?

As you have seen in the screen shot showing Clarion CVS macros, and with the
example above, there are macros that I use to rebuild the TXA and DCT files from
the APVs and DCVs files. These are in the downloadable zip at the end of this
chapter.

Figure 9: DLL tutor directory after the macro has been launched

C V S S e r v e r A n d C l i e n t I n s t a l l a t i o n

486

Administration, automatisation

CVS works just fine without ever changing anything in your administrative files,
but there are numerous cool features you can add to your CVS toolbox.

I talked a little about CVS administration earlier, when I suggested that you
checkout your CVSROOT module, and update the modules file to be able to tag and
branch your last release.

There is also a useful hook for a notification feature, by which CVS emails all the
users when files have been committed to certain directories. CVS does not do this
directly, it just provide hooks, in the form of files. These files live in your
CVSROOT directory, and which you can use to run scripts. CVS reads those files,
and executes anycommands they contain. For example, the loginfo script will
execute after commit, once the log file is written, while the commitinfo script will
execute prior to commit, to check that a commit matches certain criteria. (Note, all
this works on Linux and should work on Windows, but it’s possible some scripts
may need an adaptation for Windows). You may also want to try Bo Berglund’s
CVSMailer script (web.telia.com/%7Eu86216121/cvsmailer/CVSMailer.html).

To get email notification to work, you need to use your loginfo file, found in
CVSROOT, as well as a Perl script (part of the code to download with the paper).
Here is a line of my loginfo file (line breaks added):

DEFAULT $CVSROOT/CVSROOT/mailer.pl -f
 $CVSROOT/CVSROOT/commitlog –m|
 bernard@bgsoftfactory.com %s

DEFAULT means “everything else”, as in you can have other lines before, specifying
other directories, and using other scripts. You can also have as many emails
addresses as you want/need. Commitlog is the log written after a commit, so this line
means that the Perl script receives that log as parameters after a commit, along with
the specified email address(es) and the name of the files being committed. The
script parses the log and sends an email to each address specified on the line,as this
one I just received while making changes on Invoice.app:

Date: Thursday February 10, 2005 @ 13:47
Author: bernard

Update of /home/cvsroot/repository/Invoice
In directory linuxserver.bgsoftfactory.com:/tmp/cvs-serv30831

Modified Files:
 Tag: Branch_out_Invoice_for_Version_10-9

T o o l s , i d e a s

487

 INVOICE.app INVOICE.BPP
Log Message:
Change made on the branch.

This is very useful, mostly if you have more than one person working on a project.
It helps to know who did what, and to remind you that you may have to update
your code base before going to work on some of these files.

There are entire books explaining a lot more about CVS that I would ever be able to,
and I suggest that you refer to them if you want to master CVS, along with the on-
line documentation already suggested by Nardus (www.clarionmag.com/cmag/v7/
v7n02basiccvs1.html). I have been using the following books to learn CVS and
discover its possibilities:

• Essential CVS, O’Reilly, ISBN 0-596-00459-1

• Open Source Development with CVS, Paraglyph press, ISBN 1-932111-
81-6

Tools, ideas

There is no real limit to what can be done to improve and extend CVS. For my work
in Clarion with CVS, I have written a few macros in Python, as well as a couple of
utilities in Clarion to be able to save time and make CVS a more pleasant and safe
experience. You will find those in the downloadable zip at the end of this chapter.

One thing I have not done yet is link an update command on a directory with the
macro reloading the apps in Clarion and a batch compile utility. That way I could
update and recompile a whole product made of about 50 DLLs!

As of now I am working on a little utility which lives in the system tray, and grabs
any email with “CVS update:” as subject. This way I avoid cluttering my mailbox,
and I’m reminded of what I may need to update.

The administrative files in CVSROOT allow running scripts as “post-commit”, and
this could be used to clone your working directory with another directory to which
each newly committed file would be copied. That would be an excellent way to have
an always up-to-date copy of your work, on which you could periodically run a
batch compile. As you can see, the possibilities are endless.

I hope this introduction to CVS has given you the desire to try and see for yourself
what version control with CVS can do for you. If you have any questions, feel free to

C V S S e r v e r A n d C l i e n t I n s t a l l a t i o n

488

email me. I have also set up a page on my web site dedicated to CVS and Clarion:
www.bgsoftfactory.com/clarion/CVS. You can find further assistance there.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v7n04cvs.zip

489

UNDERSTANDING THE CLARION 6 VERSION
CONTROL INTERFACE

by Benjamin Dell

Why is version control important, and how can it be useful to me?

The term Version Control System (VCS) is defined as a means of tracking various
versions of a set of files. These may be any files, not necessarily source code, and can
include icons, templates, DLLs, etc.

So here you are, writing the next great killer application. Maybe you are by yourself,
or you only have one other developer to worry about. Why should you bother with
version control software? After all, you are probably used to being able to modify
anything you want at any time, and the worst you might have to do is tell the other
person that you are going to work on some code now, so don’t touch it until done.

Why give up all this freedom?

Well, the most important information available to you in a version control system is
the latest version of your source code and/or development environment. Another
benefit is to know what files are in use. You have maybe twenty test files for testing
code and only nine files for actual product development. If you add your genuine
source files to the VCS system, you know what files are in use and which is not.

U n d e r s t a n d i n g T h e C l a r i o n 6 V e r s i o n C o n t r o l I n t e r f a c e

490

Sometimes even with the best of intentions we decide to do the wrong thing and
wish we could go back to having the code as it was before we did the changes.
Searching a VCS for a module or procedure is so much easier than going through
Zip files or layers of backed up app files trying to find the one that you want.

The Clarion 6 Version Control System

Clarion 5.5 shipped with a readymade and “Clarionized” VCS. Clarion 6 introduced
the concept of “you are in charge of your own versioning management,” thereby
making us all go learn new skills in the open source and affordable VCS
marketplace.

Some of us are too lazy to learn new skills when we have such nice development
environment to keep us busy, and simply stopped using version control.

Now I am all for new technology, learning new skills (my wife says it keeps me
young) and trying all crazy and weird things, but when I remember what Clarion
5.5 Version Control brought to the table, I just have to salute the people at UTA for
their excellent work.

I had been using Clarion 5.5’s version control in each and every small and large
project I did, be it single developer or multi-developer projects. I really, really
wanted the same ease of operation and RAD-ness in Clarion 6, which I enjoyed in
Clarion 5.5.

I learned Subversion, GN‘U-VCS, etc, but I discovered they did not give me nearly
the same capabilities that the Clarion 5.5 VCS system had for concurrent developer
control. Out of frustration, I decided that I first need to find out what the cryptic
VCS help information in the Clarion Help file actually meant, and if there was
anything I could do to make my life easier.

This is a diary of that journey. Along the way I will tell you what I learned, what
seemed good, what astounded me and what I decided to do about it....and give birth
to a new baby called RVCS – Right Version Control System (www.riebens.co.za/
index.php?name=Downloads&d_op=viewdownload&cid=2) – because it feels so
right for me to use. I should emphasise that you do not need RVCS to do version
control with Clarion, or to benefit from this chapter.

T h e i n a n d o u t s o f C l a r i o n 6 ’ s V C S s y s t e m

491

The in and outs of Clarion 6’s VCS system

The VCS support in Clarion 6 is designed to support any VCS system that has a
command line interface. The Clarion 6 VCS system also supports Module level
control of source files instead of procedure level control found in previous Clarion
versions.

Another change in Clarion 6 VCS is that you can only version control files for
which the IDE can generate TXA or TXD files. This means in effect that you can not
version control your development environment using the built-in VCS system
interface, although this is still possible by making use of the command interface
(visually or via batch files)for your VCS system of choice. (See David Harms’ article
Putting Clarion 6 Under Version Control With TortoiseSVN (www.clarionmag.com/
cmag/v7/v7n06c62svn.html) for more information on this subject.)

To start off learning the Clarion 6 VCS interface I started by putting the trusty old
People example application under version control.

The Clarion 6 VCS interface does the following version control tasks (leaving aside
for the moment the issue of creating a repository to hold the versioned files):

1) It takes each and every module for the current application and
creates a separate TXA file for the module, and then it also creates a
TXA file to contain the application options.

2) It writes these TXA files one at a time to the directory location
specified in the setup of the VCS interface. (See Fig 1 below)

3) Then it contacts the third party VCS system to tell it what file was
put in the directory and what to do with it, and it waits for an
answer before it continues with the next file.

All this sounds very good, but in a multi developer situation, how does one
developer create the VCS database and the other developer know about this
database and use the files in the VCS database?

Here’s where you need some careful planning.

Figure 1: VCS repository database location

U n d e r s t a n d i n g T h e C l a r i o n 6 V e r s i o n C o n t r o l I n t e r f a c e

492

You see, the Clarion 6 VCS interface can only work on an application or dictionary
that is already loaded into the IDE. This differs from the Clarion 5.5 method where
the VCS files could be extracted (checkout), and worked upon without the
application being loaded into the Clarion IDE.

After some thought, it seems the best way to achieve multi developer access to a
single VCS database would then be to follow the following simple practice:

• Decide on a location that is accessible to all the developers via a DOS
command or path statement. This would typically be a mapped drive
on a remote computer.

• Make sure at least one developer has the latest and greatest source of
the application that is of interest.

• This developer must compile the application to make sure there are
no problems, bugs and other beasties floating around to make
trouble later on.

• This developer creates the VCS database and does an add to the
database for all the modules of the application.

• Repeat the above steps for all the applications and the dictionary that
constitute the entire software development project.

• Once all the applications and dictionary are added to the VCS
system, each of the concurrent developers gets an exact copy of the
first developer’s project directory. This is a very important step. If
the developers do not copy the first developer’s project directory,
they will loose the project VCS settings that were created when the
project was put into VCS control, and will not be able to check out
code correctly. (Their VCS systems will show the project as not
checked in yet)

• Each developer sets up their VCS commands the same as the first
developer’s VCS commands in the Clarion 6 IDE.

• Each developer opens the current copy of their application and starts
development. As they want to check something into the VCS
database, they need to check in the work to the VCS system.

In a normal situation, each developer will then be doing work on the applications
and check in their work to the VCS system as needed.

Once a full version of the applications needs to be compiled, a developer will have
to check out all the modules of the application and compile it. When checking out,
care needs to be taken that no work not yet checked in to the VCS database is

D e t a i l s o f o p e r a t i o n

493

overwritten with old work that is in the database repository. The reason for this
checkout is not so much to mark who is working on what inside the third party
VCS system, but to get all the code that all the developers have worked on in one
central location for compilation.

So what happens if someone is doing a compile locally to test some code without
having checked out the complete application(s) and dictionary? I don’t know, and I
never used the Clarion 6 VCS interface up to that point. I was getting too agitated
with the many, many steps and checks and balances that I had to keep in mind to
make the VCS system behave anywhere close to how I wanted it to behave in a
multi-developer environment. I do know for a fact that the no developer can make
changes to another developer’s code without checking that code out of the VCS
system first..

What I want in a multi developer environment is the ability for any of the
developers to check out the portion of the application they are going to be working
on, and the rest of the application that someone else is already working on to be
able to do a test compile on the latest version of the application.

I also want any developer to be able to check out a previous version of the code for
comparison purposes or to get the lost procedure code that was so brilliant and went
missing in the later versions.

All of these checkouts had to be controlled such that a wrong check in did not
overwrite newer correct code with older code.

I played around with GNU VCS, Subversion and PVCS, but none really satisfied me
as to what I could do without a great deal of trouble, and without leaving the
Clarion 6 IDE.

Instead I decided to analyse the operations of the Clarion 6 IDE based VCS system
in greater detail so that I can get an idea of how it really works, as the help files
seems to cryptic for me and left me too much to my own guesses and conclusions.

Details of operation

Coming back to the People example application, I decided to see what happens if I
just used the Clarion 6 IDE interface for VCS without any third party VCS system
attached.

U n d e r s t a n d i n g T h e C l a r i o n 6 V e r s i o n C o n t r o l I n t e r f a c e

494

I created my Version Control Database as in Figure 1 above, and then cleared the
VCS command names of any VCS application references. The command in Figure 2:

was changed to:

And behold....The Clarion IDE creates a few files of interest.

First it extracts a TXA file for Each and Every module in the current active
Application (app) and also creates a TXA for the Application global settings and
puts all these files in the path specified when setting up the version control system
(Figure 4).

It also creates a file called People.AVC in the home directory of the currently loaded
application, and a file called VCStemp.bat.

The People.AVC file is a very interesting file in that it holds a list of commands that
was last executed by the VCS system. Below is a sample of the people.avc file.

Checkin Directory=D:\ClarionRCS\People
Project=People
Parts=5
Part1=Application Options
Part2=people.clw
Part3=peopl001.clw
Part4=peopl002.clw
Part5=peopl003
[State]
Application Options=No Action
people.clw=No Action
peopl001.clw=Check Out

Figure 2: The default checkout command line

Figure 3: The modified checkout command line

Figure 4: The archive directory

D e t a i l s o f o p e r a t i o n

495

peopl002.clw=Check Out
peopl003=Check Out
[__Dont_Touch_Me__]
Sectors=0

These last actions are important as the VCS system needs to keep track of what it
needs to do on the next Check-Out or Check-In action specified by the developer.

For instance, if the Peopl001.clw file was checked out, obviously it needs to be
checked in on the next check in action by the developer, but people.clw will not be
checked in as it was never checked out.

This is all very interesting, but brings me back to my multi user environment
problem. Say Developer A checks out Peopl001.clw at 10:30, and Developer B
checks out Peopl001.clw at 10:31. Developer A works on this module and adds now
code. Developer B adds some comments to the current code.

Developer A checks in the code at 10:45 and Developer B check in the code at
10:47. What code is the latest version? The one last checked in.

Please note that the code for Developer A will not be lost, but the correct code may
not be the latest version, as the old code Developer B checked in was the last code
checked in with just new comments.

It would be nice to have some notice of this kind of conflict, and I will get to that a
bit later on.

How about the VCStemp.bat file?

Well let me tell you. This is really a little beauty of good old DOS engineering.

The VCStemp.bat file gets called by the IDE VCS system to handle the actual work.
This means the IDE VCS system loops through all the modules in the list to be
checked in or out and calls the Batch file to actually do the work.

@PUSHD .
@RVCS checkout 'People' 'D:\ClarionRCS\People' 'peopl003.APV'
@POPD
@IF %ERRORLEVEL% NEQ 0 pause
@IF %ERRORLEVEL% NEQ 0 ECHO %ERRORLEVEL% > VCStemp.$$$
EXIT %ERRORLEVEL%

Let’s examine the batch file commands.

U n d e r s t a n d i n g T h e C l a r i o n 6 V e r s i o n C o n t r o l I n t e r f a c e

496

@PUSHD .

@PUSHD . pushes a directory name onto the directory stack. Note the “.” after the
command. This means that the command pushes the current working directory (e.g.
c:\clarion6\examples\people) onto the directory stack. Pushd always sets Clarion’s
current working directory to the directory on the top of the stack, so it can be
restored later. Without this feature you would have to rely on the CVS to restore the
original working directory.

@RVCS checkout 'People' 'D:\ClarionRCS\People' 'peopl003.APV'

Next, the third party VCS system is called to do its magic with the TXA files
supplier. In this batch file, the third party VCS system is called via RVCS.exe. It is
thus imperative that your Clarion environment has a path access to the VCS system
that you install. If the VCS system you install does not register itself with the
windows environment, you may have to do so yourself by setting the name using
the PATH command, or registering it via the environment variables in the Windows
control panel.

Note that the TXA file is now called APV according to the settings in the VCS setup
window, in Figure 5.

Then the Clarion 6 IDE VCS system waits for the called third party VCS system to
complete its work and return an error code.

Is no DOS error code is returned by the third party VCS system, the Clarion6 VCS
Interface assumes the file has been version controlled successfully.

If a DOS Error code is returned a typically cryptic VCS error is displayed, as in
Figure 6.

Figure 5: The new application and dictionary extensions

D e t a i l s o f o p e r a t i o n

497

In this instance no mention is made of the fact that the third party VCS system has
declared this an invalid option as no previous check-out has taken place.

@POPD

Remove an element from the current directory stack. With no options, POPD
removes the top directory stack element and sets the current working directory to
the directory name of the new top element. In short this means that the current
working directory is set back to the one stored on the directory stack by the pushd
command.

@IF %ERRORLEVEL% NEQ 0 pause

If the DOS error level returned by the third party VCS system is not 0 (zero), the
batch file is paused and a message “Press any key to continue...” is presented to the
user in a DOS environment window.

 @IF %ERRORLEVEL% NEQ 0 ECHO %ERRORLEVEL% > VCStemp.$$$

If the DOS error level returned by the third party VCS system is not 0 (zero), the
error level is written to the file called VCStemp.$$$. The reason for this may be that
the Clarion 6 IDE VCS interface can pick up that there was an error and operate on
it.

EXIT %ERRORLEVEL%

This is to exit the DOS command session and pass the error level, if any, back to the
Clarion IDE.

As can be seen from the batch file, moving away from the DDE interfaces can be a
good thing, as any third party VCS system can be controlled via this batch file.

Figure 6: A typical VCS error message

U n d e r s t a n d i n g T h e C l a r i o n 6 V e r s i o n C o n t r o l I n t e r f a c e

498

Exporting module TXAs

Another very useful function of the Clarion 6 VCS interface is that it exposes the
application to the developer in a module level TXA file, something not available
natively via the DDE system, and otherwise requiring a lot of work to do manually
via Selective Exporting. This allows any developer to take the txa and txd files
generated by the VCS system and use it in any way they see fit.

For example, say you don’t have a third party VCS system available, and you want to
do some really important coding that you are unsure will work, or which has the
chance of producing IDE lockups, crashes or GPFs. Here’s what you do:

1) Load your application and define your VCS Repository database.

2) ADD your application using the VCS interface.

3) Make your code changes in the application, compile it and run it.

4) If something goes horribly wrong, roll back your changes by
CHECKing OUT the application or modules you were working on
from the VCS repository.

5) If everything worked according to plan, CHECK IN your changed
modules using the VCS interface.

Summary

The Clarion 6 VCS Interface allows you too check out source code, work on the
source code and check back in the new code. It also creates a TXD for the dictionary
and a TXA file for each of the modules of the current application.

What it does not do is any error checking on who has the latest version of source
code in a multi-developer environment.

VCS systems are a very valuable tool in both a single user and a multi user
environment. Version control is as important as having regular backups of your
development environment and source code. Take the time to study and use version
control; these tools will save you many more hours that it took to learn how to use
them.

499

USING MS VISUAL SOURCE SAFE WITH
CLARION

by Marty Honea

Most developers, at one time or another, lose programming changes due to
overwritten files, or end up with numerous copies of an application on their
machine in an attempt to save a trail of their work. Version control software solves
the problem of lost code and provides a nice tidy trail useful for tracking changes
made to an app. In this chapter I’ll talk about the software I use for version control,
and I’ll tell you how I use it.

Visual SourceSafe (msdn.microsoft.com/vstudio/previous/ssafe), also referred to as
VSS, is a software solution to version control offered by Microsoft. Using VSS is
quick and simple, but there are a few things that will end up ruining your day if
you’re not careful. I’ll try to point out as many of those as I can in this outline of
how I use VSS.

U s i n g M S V i s u a l S o u r c e S a f e W i t h C l a r i o n

500

Installation

Installation of VSS is very simple. The only thing to consider is where you’re going
to install it. If you’re using it by yourself, to keep revisions of your code, you’ll be
fine with installing it locally to your development machine. If you’re using it to
track development of multiple developers, preventing one developer from
overwriting another’s modifications, you’ll want to install it in a shared directory on
a server that is accessible to all the developers who will use it. The latter use is the
most common use for version control, and is the one I’ll focus on in this chapter. All
my suggestions can apply to both uses, but will be worded to address multi-user
environments.

Setup

In setting up VSS, you will want to consider the needs of your development staff
and how they work. If you have a core set of applications, and multiple projects that
use this core, you might want to create a project that contains this core set and then
create VSS “shares” of that project for the other projects. This prevents duplication
of your core pieces and keeps all the projects tied to a common set of files. If the
core project changes, you’ll get those changes the next time you check out your
project.

If you have multiple projects that started with a similar set of applications, but will
not stay synced up to the starting project, then you might set up a branch of the
starting project.

In VSS, sharing a file means it exists equally in all the projects to which it is shared.
Branching a file breaks the shared link, making the file in that project independent
of all other projects. I try to share as many of the common files as possible. I hate
trying to keep multiple dictionaries synced. I’m lazy and duplicating work is way
down on my list of things I like to do.

The first time you log into VSS you will need to log in as Admin. You can use the
Visual SourceSafe Administrator (SSADMIN.EXE) to add additional users as
needed, giving them either read access, or read/write access. But for now I’ll be
working as the Admin to show you how to set up projects. When I log in for the
first time, the screen looks like Figure 1.

S e t u p

501

On the left, a pane displaying All Projects is empty. And on the right, there is a pane
that will display the files included in the projects. To create a project right click in
the all projects pane and select Create project from the popup menu. The Create
Project form will open, as shown in Figure 2.

Figure 1: The VSS main window

Figure 2: The Create Project form

U s i n g M S V i s u a l S o u r c e S a f e W i t h C l a r i o n

502

Give the project a name, and a Comment that makes it easy for other developers to
understand what’s contained in that project. Then click the OK button. The project
is now listed on the left, and is ready to have files added to it.

Adding files

To add files to a project, I can just drag the file to the pane on the right, and VSS will
ask me if I want to set the folder I dragged the file from as the personal working
directory for this project. I’ll go into more detail about personal working directories
a little later, but since this directory is the one that I’ll do most of my work on this
project in, I’m going to answer Yes. After selecting Yes, I’m presented a form to
enter comments for this file. If I select the advanced button on the lower right hand
side of this form, I get something that looks like Figure 3.

The options here are pretty self explanatory. I’m big on commenting each file
individually. It’s hard to remember everything you need to know about a file, when
you haven’t looked at it in a year. This is the place to put that information. I
uncheck the “Apply same comment to all” check box which is defaulted to checked.

You’ll notice there is a “Store only latest version” check box here too. To me, that
defeats the purpose of having a version control system. But I’m sure that someone
out there had that need, so here is where you would set it. The “Check Out
immediately” option will store your file in VSS, and then immediately mark it as
checked out so that no one else can do so before you get back to it. And the
“Remove local copy” does exactly that. Once the file is copied to VSS, VSS removes
the copy from your machine.

Figure 3: File comments

S h a r i n g c o d e

503

I never change the File type option from Auto-detect. It does a pretty good job of
detecting if a file is text or binary on its own.

Sharing code

After checking in the core pieces, I create another project named “My Program”.
This will be the project that contains everything needed to compile this program. In
it, I’ll share the core pieces and add the files unique to this project. To add the core
pieces, I right click on “My Program” and select share from the popup menu.

From this browse, I select the files I want to share. On the bottom right hand side of
the browse is a check box labeled “Branch after share”. If this is checked, VSS will
make a separate copy of the files. This is useful if you’re starting with an old project,
and will be making changes to this new project that you don’t want reflected in the
old project.

After making sure all the common files are shared. I can drag and drop the unique
files for this project into it in the same manner that I used creating the base project.

Figure 4: Creating a share

U s i n g M S V i s u a l S o u r c e S a f e W i t h C l a r i o n

504

If you look at the icons used for the files in the “My Program” project, you’ll notice
the unique file uses a single page icon, and the shared files use an icon that looks
like multiple pages. This makes it easy to identify shared files at a glance.

To branch a project, I would follow the same steps as before but this time I would
check the “Branch after share” option. This will copy the files from the other project
to this new project. When working on files from this new “Stand alone project” I
would not have to worry about compatibility with other projects.

This is useful for working on different revisions of software. For instance, if you
were moving an app from Clarion 5.5 to Clarion 6, you could start by making a
branch of 5.5 as a starting point, and anything from that point forward would not
affect the 5.5 version.

Figure 5: Specialized icons for shared files

Figure 6: Using Branch after share

C h e c k i n g o u t c o d e

505

Checking out code

Now that my projects are set up, I’d like to check out a copy of the project. This is
simple to do. I right click on the project and select the Check Out option from the
popup menu.

If I select the advanced button on the resulting browse I see the window in Figure 7.

Most of this is fairly self explanatory. The comment entry allows me to document
why I checked out the project. The “To” entry lets me select a path to where I’m
going to put the project. This will default to my personal working directory. Setting
up a personal working directory that VSS will remember for each project saves me
time when checking out, and helps keep me from checking out multiple copies of
the project. The project is always located in the same place. I can check out a
project, and then open it with Clarion’s pick dialog. Like I said, I’m lazy and
anything that saves me time makes me happy. If my timesaver helps me get into a
routine that helps to minimize mistakes on my part, that’s even better.

The Recursive check box checks out the project and all its subprojects. I use this for
categorizing my files. For instance, I try to keep images in a separate folder. So
under most of my projects there will be an Icons project. When I do a recursive
checkout, all my icons are refreshed also.

The Build Tree checkbox is hidden until the Recursive checkbox is checked. It gives
me the ability to create the working directory using the same directory structure
defined in VSS.

The “Don’t get local copy” check box allows me to check out a project, but leave my
local files intact. This can be dangerous. Some developers will get the latest copy of

Figure 7: Advanced checkout options

U s i n g M S V i s u a l S o u r c e S a f e W i t h C l a r i o n

506

a file without checking it out. They’ll try different approaches to what they’re trying
to accomplish, and then when they get what they want, they’ll check out the project
without getting a local copy and check it back in. This opens up the possibility that
someone else has checked out a copy of the file and checked it back in with changes
since the developer started with their changes. It’s a bad idea and defeats the
purpose of Version Control. Just don’t do it!

The “Allow multiple checkouts” check box allows multiple users to check out this
file/project simultaneously. If another user already has this file checked out, the
check box is selected and unavailable. If multiple check outs are disabled for this
project, the check box is cleared and disabled. When a file or project is exclusively
checked out, the icon for that item has a red box around it. Here again, Just don’t do
it! It defeats the purpose of Version control. Only let one developer makes change
to a file at a time. If you keep this principle at all times, you won’t have developers
mad because someone else overwrote their changes. Nobody likes to have to make
their changes twice.

When I check out the project all the files in the project will icon will have a red box
around it (see Figure 8), and the details for that checkout will be displayed. Who
checked out the file, when they checked it out, and which directory they checked it
out to on their machine will be listed next to each file. VSS will put a writable copy
of the file in that directory. Once I’ve checked out the needed file(s), I’m ready to
work on the project in Clarion.

Getting the latest version

Developers can get the latest copy of a file or an entire project by right clicking and
selecting Get Latest Version from the popup menu. They can do this at any time,
even when a file is checked out. So it’s a good idea to check in changes often.

Figure 8: Icons for checked out files

G e t t i n g t h e l a t e s t v e r s i o n

507

Getting the latest version copies a file to the local machine and sets the read only
attribute.

Before checking in a file, always make sure you have closed the file in the Clarion
IDE. Bad things happen when you don’t. For instance, if you haven’t closed your
APP before checking it in, VSS will pick up the APP file, which doesn’t necessarily
have your latest changes stored in it yet. Meanwhile your changes are in the current
working copy, which has the AP~ extension. This will give you the false impression
that everything is backed up. When you check the file out the next time, VSS will
overwrite your changes with the version you checked in. Saving the file would
work, but closing the file leaves no doubt. Always, always, always, close your
application before checking in.

Checking in a file is just as easy as checking out. I select the file/project I wish to
check in and right click. This time I select the Check In option from the popup
menu. The Check in window in Figure 9 appears.

I try to add comments when I check in. It makes it easier to track versions if I have
to go back a version for some reason.

The Keep checked out check box will put a copy of the file in the VSS database and
will keep it checked out to me.

The Remove Local copy option will check the file in and remove it from my system.

I guess this is a good place to mention how VSS stores the files. VSS creates a set of
subdirectories and makes duplicate copies of files that are checked in. It doesn’t
actually store everything in a database. This feature makes backing up VSS very
simple. There’s no worry about backing up a SQL database, just make sure the main
directory for VSS is in the backup queue and you’re good to go. This also means that

Figure 9: The Check In window

U s i n g M S V i s u a l S o u r c e S a f e W i t h C l a r i o n

508

the VSS directory will continue to grow as time goes on and more and more check
ins are recorded. So keep this in mind when you decide where to put your directory.

From time to time I check out a project, and then I realize that for some reason or
another I didn’t really need to check it out. I might check out a file and then after
going through the code find that the Procedure I need to modify is actually in
another App, or I might realize that the problem I’m working on is a data issue and
not a code issue. When this happens, I don’t want to check the file back in, adding
another unneeded copy to the VSS directories. Fortunately VSS includes an Undo
checkout option on the popup menu that handles this very situation (Figure 10).

The drop down options for dealing with the local copy of the file are Replace, Leave,
and Delete. They’re pretty self explanatory.

Every window in VSS has an entry in the help file that can be accessed by pressing
the help button. If there’s ever any doubt about which options to pick, click that
button. The help is laid out in an easy to use manner, and should help prevent you
doing something that you will regret later.

Summary

VSS isn’t the perfect solution to version control, but it’s one of the least painful
routes I’ve found. VSS is fairly easy to set up, very simple to use, and if you keep in
mind the few “gotcha’s” I’ve documented here it could save your bacon on more
than one occasion. I know it has saved mine a time or two.

Figure 10: Undoing a checkout

509

DLLs

511

ELIMINATING CIRCULAR DLL CALLS

by George Lehmann

Common wisdom has it that lazy programmers are good programmers, because
they’ll find the most efficient way of accomplishing a given goal just to create the
least amount of work for themselves. But sometimes common wisdom just isn’t as
wise as it might seem. A case in point is the (hopefully) unintentional practice of
cross-linking, or circular references between DLLs. You know how it goes. You’re
creating a new function for X.DLL and you need a procedure that does some task.
You realize you already have a procedure that does that in Y.DLL, so you just check
the export box, recompile, call that procedure and you’re done. Sometime later you
need a function in Y.DLL that’s in X.DLL. Do that over and over across multiple
DLLs and you’ll very soon have a tangled web of DLLs that call up, down, and
across what you used to call your “hierarchical tree-structured application.”

Programmers universally agree that circular calling is bad practice. But in the same
breath most of them will also tell you they’ve been doing it for years with no
problems and have no plans to eliminate these circular references. Usually the
biggest aggravation is that you have to make two passes the first time through a
compile of all the modules (if you don’t have the .lib files already) in order to get
things to work. After that, you’re usually quite unaware of the existence or the
extent of cross-linking between your various DLLs.

E l i m i n a t i n g C i r c u l a r D L L C a l l s

512

For reasons I don’t fully understand but which are suggested to be linked to the new
threading model, this picture evidently changed radically for the worse with Clarion
6.x. It seems now that mutually dependent DLLs can wreak major havoc with
memory de-allocation, particularly at thread shutdown time, resulting in various
“memory could not be read/written” errors during program execution. Bob
Zaunere, in a news group posting on 4/29/05, stated “If DLLs are mutually
dependent, the order of calls to their thread detaching code is undefined at the OS
level....instances of data in the first DLL can be killed before the destructors using
them are called in the second DLL.” Sounds pretty bad to me.

I decided, in an effort to eliminate some recurring but impossible to reproduce
GPFs with this very “memory could not be read” error, to take the 30+ app files that
comprise our program and spend a couple of days untangling the years of circular
references between DLLs. Ten days later, it still seemed like a worthy thing to have
done, but if I’d have known the level of effort involved I might have found
something more fun to do, like getting a root canal without Novacaine.

Getting started

My first attempt was to try drawing a map of the relationships between various
DLLs. I took a blank piece of paper and started drawing circles for each DLL and
then drawing arrows from one circle to another, trying to create a hierarchical tree
of the program. After about the 6th DLL, the lines started crossing over each other
and I knew this was a hopeless approach, even if I could come up with software to
do the drawings.

Then I found an article in Clarion Magazine titled “Who Calls Who – Keeping
Track Of DLL Calling Order (www.clarionmag.com/cmag/v5/v5n04dllorder.html) ”
by Steffen Rasmussen. This is a wonderful article describing just the hell I was going
through, and it provided a key concept for finding these problems in compile order.
Steffen’s spreadsheet matrix approach clearly identified circular references between
DLLs and gave me a tool for evaluating changes to compile order and DLL
dependency. My first attempt at mapping the compile order I was using is listed
below in Figure 1. By counting the items in the upper half of the matrix (where they
shouldn’t be), I could compare the relative worth of any given ordering, with this
initial stab scoring a terrible 29. As in golf, the lower your score the better, but
unlike that sport my very realistic goal here was to get a perfect score of zero.

A u t o m a t i n g t h e e v a l u a t i o n p r o c e s s

513

I started by moving some of the apps up or down in the compile order just to
eliminate false positives from my naÔve ordering. Within a couple of passes I had
the score down to 25, but even using a spreadsheet quickly proved overly
burdensome. Every time I changed something I’d have to start over and fill in all
those x’s from scratch. After making the fifth or sixth chart I decided I had to try
something different to be able to efficiently evaluate the changes I was making.

Automating the evaluation process

Along came a tip to try a TXA analyzer written by Bob Campbell. (It’s available from
the Download Center at Par2.com (www.par2.com) if you want to look at the
original form of this program.) I modified Bob’s code to pick apart the TXA files to

Figure 1: First compile order

E l i m i n a t i n g C i r c u l a r D L L C a l l s

514

find procedure references. See the accompanying download for my compile order
analyzer with accompanying documentation.

Looking at some sample TXA files, I was able to deduce that external module
declarations always had this form:

[MODULE]
NAME 'Acctutil.lib'

where the value following the NAME tag was always the name of the module being
referenced. If the module was an ordinary source module, I’d see this pair of lines:

[MODULE]
[COMMON]

Finally, the procedure name declaration would follow the [MODULE] declaration
looking like this:

[COMMON]
FROM ABC ExternalDLL
[PROMPTS]
[PROCEDURE]
NAME selectcustomer

In the case of a procedure declared within a source module, I’d see Generated
instead of the ExternalDLL tag as show above.

So, taking the information about module names, procedure names, and export lists
from the TXA files, I could now quickly generate lists of procedures, including what
module they were defined in and what module(s) they were being referenced from.

Trying to find an optimum ordering

Now that I could quickly and accurately see the changes I made to procedure
declarations it was time to start looking at what was in each module and how they
related to each other.

The first thing I discovered was that of the 507 external references in the program,
about 30 of them were declared as coming from the wrong module! It seems
Clarion is perfectly content to allow declaring a procedure as coming from X.DLL
even though it really comes from Y.DLL, as long as both X.DLL and Y.DLL are
included in the modules referenced by the current DLL. Whether or not this caused
problems is unclear, as these have obviously been in my program for years. The

T r y i n g t o f i n d a n o p t i m u m o r d e r i n g

515

cure was very simple: I just changed the external lib selection setting on the
offending modules.

What I wanted was some way to predict the best compile order (i.e. produce the
lowest number of circular references) given the current module declarations. It
turns out that this is a lot easier to imagine than it is to actually program. I’m
guessing that somewhere out there is a math wizard that can turn a set of
topological cross-references like this into an optimally ordered set, but it’s clear this
is not going to be me. The first idea I came up with was to tackle the problem by
brute force, trying literally every combination possible to see which one scored the
lowest. This was a bad idea, as the number of passes required is n! (n factorial if you
don’t remember high-school algebra), and the number of ways to order 20+
modules quickly climbs into the gazillions (20! is roughly 2 x 1018 or two
quintillion). Even on my fastest machine I could process no more than 30,000
passes a minute. This might take a while...

So I came up with a heuristic approach that reduced the total number of passes
required significantly by starting the list with those modules that have no external
references at all (such as the typical globals dll or an interface dll). Then after each
pass I would save the first consecutive set of modules that had zero errors (see
Figure 2) to start the list for the next pass. Thus I’d only have to try random
combinations of the modules that still showed errors from their current ordering. It
turned out in the end that if there was a possible ordering with zero errors it would
only take the new routine a few hundred passes at most to find a workable ordering.
But if there are circular reference errors, even this improved brute force method
fails, so I added a manual cap at 1,000 passes. In practice I found that if a perfect
ordering was not found in a 1,000 passes, millions more would likely not make any
difference.

I then created a gridded report from the best-run data that looked like Steffen’s
Excel spreadsheet so I could graphically see where the best ordering so far was
failing. By looking at the printout, it was obvious that some optimizations could be

Figure 2: Consecutive modules with no errors

E l i m i n a t i n g C i r c u l a r D L L C a l l s

516

forced by hand to improve the score. I devised another list to capture the best order
so far, allow manual re-ordering, and then added a checkbox to force the ordering
of the first n modules to be locked in position. I’d now taken my compile order
analysis as far as it could go without actually modifying my app files.

Modifying the program

It was time for the part I was dreading even before I started working on this whole
project. I was going to take a functional program and spend an unknown amount of
time tearing it apart a little bit at a time and rebuilding it in a different order in the
hope of making it more stable. In spite of the nagging issues with the sporadic
GPFs, this certainly seemed like a classic case of “if it ain’t broke, don’t fix it.”

I started by randomly picking a ‘1’ that appeared above the diagonal line on my
unsuccessful compile order report and finding out what caused it to be there. In the
example in Figure 3 you can see the LLops module and the AcctPayb module both
have references to each other. When I looked at the procedures being called in both
modules, it turned out that AcctPayb wanted to call a label-printing routine in
LLops, and LLops in turn wanted to call a browse in AcctPayb to select a vendor for
which to print a label. This is a very common scenario when reports are separated
from the data entry functions, something I’ve practiced for a long time. In this case
the solution was to change the LLops procedure to call a new SelectVendor browse
instead of the general browse used to update vendors, and to move the simple
SelectVendor browse into a separate vendor utility module. This wound up fixing

Figure 3: Cross-referenced modules

M o d i f y i n g t h e p r o g r a m

517

several errors at once as several other modules had this same back and forth
relationship with the AcctPayb module.

In general, these improper orderings fell into three basic classifications:

1) A procedure is defined in one module but doesn’t have to be in that
module, and is called from another module which in turn has
procedures which are called from the first module.

2) Like #1, but a procedure is referenced both by other procedures in
the defining module and multiple other modules.

3) Two or more major procedures call each other from different
modules.

Case #1 is the simplest to deal with. To illustrate, consider the following
procedures:

• Module A

• Proc A1 Generated, calls B1

• Proc B1 External from B

• Module B

• Proc B1 Generated, but not called by anything in B.

• Proc B2 Generated, calls A1

• Proc A1 External from A

The best example of this is B1 being a browse of some sort which is called from the
application’s main frame menu, but neither B1 nor any of it’s children are called by
any other procedures in module B. The simplest solution here is to move procedure
B1 (and any children) from DLL B into DLL A, and eliminate A’s dependence on B
altogether. Now A can compile in front of B and the world is happy.

Case #2 is more complex simply because the “other modules” now have multiple
cross-references themselves and it is not possible to simply move one procedure to
another DLL to make the world happy. The easiest solution here is to create a new
DLL and move the commonly-referenced procedures to the new DLL, then adding
this new DLL to all the other modules that previously looked for the procedure in
the old cross-referenced DLL. The AcctPayb/LLops case mentioned earlier falls into
this category.

The important thing with cases 1 and 2 is to not move any more procedures than
you have to. Any procedure that does not have the External attribute can be moved
between DLLs without consequence (unless it’s being called by procedures that are

E l i m i n a t i n g C i r c u l a r D L L C a l l s

518

staying behind), but moving a procedure with the External attribute could possibly
make the inter-dependencies worse than they already are. In the process of my
detanglement, I wound up creating half a dozen DLLs that had only 2 or 3
procedures in them. So be it.

Case #3 is the most difficult to deal with, and it happens more than you would
think. In my program, I had several of these to deal with.

One was where a customer update form had a child procedure that allowed
selecting multiple aircraft for linking to the customer account, while the aircraft
browse used for selecting the aircraft had a call (in the update form) to the customer
browse to allow selecting which customer an aircraft could be linked to. Another
case was a charter quote generation screen which had a button to call up a
scheduling window, while the scheduling window had code to create and edit a
charter dispatch (which was in the same module with the charter quote and
referenced the charter quote browse as well).

Let’s look at the charter quote problem. I had two choices in this case: Combine
three modules together, which would have implications on the compile order for
other modules, or change program functionality. While I was reluctant to penalize
my users just because I wanted to optimize my compile order, after several attempts
to combine the three modules I decided it was in their best interest to do just that.
The changes I made reduced the ready access to certain functions (such as a button
on the charter screen to call up scheduling), but in the end it did not take any
program functionality away since they could always go back to the menu to get to
the program function in question.

Summary

Now that it’s done, you can bet I’m going to be a lot more careful in the future about
creating references between DLLs. And when I do I’ll be analyzing the effect on
compile order before I release the changed program.

Was it worth it? I easily spent 80+ hours on this (at least half of that was developing
the tools), and enlarged my program from 1838 procedures and 507 external
references in 30 app files to 1848 procedures and 556 external references in 41 app
files. Compile time for the whole program increased about 20%, and the total disk
space image of all the compiled DLL files increased by about 800,000 bytes or about
1.5%.

S o u r c e c o d e

519

The reward was at the user sites. The removal of circular references, and this alone,
completely eliminated those “memory could not be read” GPFs in our program.
Yes, I slept well after that.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v9n02dllcalls.zip

E l i m i n a t i n g C i r c u l a r D L L C a l l s

520

521

NIFTY WINDOW TRICKS AND SMART DLL
LOADING

by Larry Sand

It’s an age old question: “How do I use a Windows API function that is not available
in all versions of Windows?” The simple answer is that you only call the function if
it’s available at runtime. You do this by attempting to dynamically load the module
where the function resides, and if that succeeds you call the function by address. If
you can successfully load the module and get the address of the procedure, it exists
in this version of Windows. There’s no need to try to identify the version of
Windows; either the function exists or it doesn’t.

In this chapter I’ll demonstrate this technique with some API calls that are only
available in Windows 2000 and later, and which allow you to gradually fade in a
window and make an area transparent or opaque.

Getting started

Some time ago, in a Clarion Magazine article (www.clarionmag.com/cmag/v3/
v3n5runtimedlls1.html) I described how to prototype procedures with a little

N i f t y W i n d o w T r i c k s A n d S m a r t D L L L o a d i n g

522

compiler trick that allows you to call them by address. That article describes a class
called LoadLibClass; I’ll make use of that class here. So the first thing you’ll need is
to review that article and download the associated source zip.

Changes required to LoadLibClass

The LoadLibClass header from the original article used _ABCLinkMode_ and
ABCDLLMode to control linking and to specify whether or not the class was
exported from a DLL. If you plan to use this code in Legacy, or if your ABC classes
are exported from a DLL, you will need to find this class definition:

LoadLibClass CLASS,TYPE,MODULE('LoadLib.clw'),|
 LINK('LoadLib.clw',_ABCLinkMode_),|

 DLL(_ABCDllMode_)

and change it to:

LoadLibClass CLASS,TYPE,MODULE('LoadLib.clw'),|
 LINK('LoadLib.clw',1),|
 DLL(0)

This change means that the class is always linked into the module where the header
file is included. You may also change the Link and DLL attributes to use equate
constants. In Clarion 6 you must define these in the “Project Defines”. If you
attempt to use equates in your code when using Clarion 6 to define these values,
your program will GPF when the constructor fires.

Layered windows

One use of layered windows is to make a window fade into view. Your program can
accomplish this via the native alpha blending capabilities of Windows 2000 and
higher. Alpha blending (en.wikipedia.org/wiki/Alpha_blending) is a technique that
allows you to combine two images and specify the transparency of either image.

Windows 2000 introduced transparent layered windows. A window created in
Windows 2000 and higher has an extended style bit identified by the constant
WS_EX_LAYERED. Note that this style does not work with MDI child windows. When
this bit is set, you may modify the transparency through the Windows API
SetLayeredWindowAttributes API call. Because SetLayeredWindowAttributes is

L a y e r e d w i n d o w s

523

only available on Windows 2000, Windows XP, and Windows Server 2003 you will
need to load it at runtime.

Before you can use SetLayeredWindowAttributes, you must have a way to set the
extended style bit for your window. To do this you use the Windows API functions
GetWindowLong and SetWindowLong. They’re defined like this on MSDN:

LONG GetWindowLong(

 HWND hWnd,
 int nIndex
);

LONG SetWindowLong(
 HWND hWnd,
 int nIndex,
 LONG dwNewLong
);

These translate to the following Clarion prototypes:

GetWindowLong(UNSIGNED hWnd,|
 SIGNED nIndex |
),Long, Pascal, Name('GetWindowLongA')

SetWindowLong(UNSIGNED hWnd, |
 SIGNED nIndex, |
 Long dwNewLong |
),Long, Pascal, Proc, Name('SetWindowLongA')

GetWindowLong takes two arguments. The first is the hwnd or handle to the window.
All of the Windows API functions discussed in this chapter use this value to identify
the window that they wish to change. Clarion has two handle properties for a
window, the handle to the client area (Window{Prop:ClientHandle}) and the
handle to the entire window including the non-client area (Window{Prop:Handle}).
This example uses the hwnd returned by Window{Prop:Handle}.

The second parameter, nIndex, is a constant that describes what information you
wish to get from the window. In this case, it’s the extended style data identified by
the constant GWL_EXSTYLE (decimal value -20). You can find the value of these
constants in the Windows header files from Microsoft. GetWindowLong returns the
requested long value, or zero if there was an error.

SetWindowLong takes three arguments. The first two are identical to GetWindowLong.
The third parameter dwNewLong is the information that you want to store in the
WindowLong identified by the nIndex parameter. The return value is the previous
value or zero if the function failed. You should always use GetWindowLong to first get

N i f t y W i n d o w T r i c k s A n d S m a r t D L L L o a d i n g

524

the current data and then make your changes to that value and put it back with
SetWindowLong.

Both Clarion prototypes of GetWindowLong and SetWindowLong require the name
attribute with an “A” appended to their name to signify that you’ll use the ANSI
versions. There are UNICODE versions of these functions that have a “W”
appended to their names.

GetWindowLong and SetWindowLong take care of the requirement to change the
value of the extended style bit that allows Windows to draw the layered windows.
To change the window’s transparency or translucency levels you must call the
SetLayeredWindowAttributes function.

SetLayeredWindowAttributes is defined on MSDN as:

BOOL SetLayeredWindowAttributes(
 HWND hwnd,
 COLORREF crKey,
 BYTE bAlpha,
 DWORD dwFlags
);

Here’s the Clarion prototype for this function:

SetLayeredWindowAttributes(UNSIGNED hwnd, |
 UNSIGNED crKey, |
 BYTE bAlpha, |
 UNSIGNED dwFlags|
),BOOL, Pascal, Proc, DLL(_fp_)

SetLayeredWindowAttributes takes four arguments and returns a nonzero value
for success. The first parameter is hwnd or handle to the window. The next two
parameters crKey and bAlpha are mutually exclusively. crKey is a four byte value
that contains a Clarion color equate or an RGB value in the same format as the
Clarion color equates. bAlpha is a byte value, 0 to 255 that represents 0 to 100%
opacity. And the fourth parameter dwFlags accepts a constant that tells the function
if it should use the crKey or bAlpha parameter.

It’s important to note that using bAlpha makes the entire window transparent to the
specified degree, and crKey only makes the specific color completely transparent.
There’s no alpha blending choice when using the crKey parameter. Note that
whenever the window or color is completely transparent, all mouse events are
translated to the window showing through that area. More about that later.

SetLayeredWindowAttributes returns nonzero when it succeeds and zero for
failure. Notice that this prototype has the DLL(_fp_) attribute added to the

L a y e r e d w i n d o w s

525

prototype. This is necessary for its use with the LoadLibClass from the previous
article.

In your global data section you’ll need the following four constants

LWA_COLORKEY Equate(00000001h) !use the crKey parameter
LWA_ALPHA Equate(00000002h) !use the bAlpha parameter
GWL_EXSTYLE Equate(-20) !GetWindowLong Extended Style
WS_EX_LAYERED Equate(00080000h) !Window Style Extended Layered

Include the header file for the LoadLibClass like this:

 Include('LoadLib.inc'),Once

The code in your global map for the three Windows API functions should look like
this:

 Map
 Module('Win32API')
 SetLayeredWindowAttributes(UNSIGNED hwnd, UNSIGNED crKey, |
 BYTE bAlpha, UNSIGNED dwFlags),BOOL, Pascal, Proc, DLL(_fp_)
 SetWindowLong(UNSIGNED hWnd, SIGNED nIndex, Long dwNewLong),|
 Long, Pascal, Proc, Name('SetWindowLongA')
 GetWindowLong(UNSIGNED hWnd, SIGNED nIndex),Long, Pascal, |
 Name('GetWindowLongA')
 End
 End

Don’t forget to declare your function pointer variable for
SetLayeredWindowAttributes:

fpSetLayeredWindowAttributes Long, |
 Name('SetLayeredWindowAttributes')

If you’re confused about this function pointer variable declaration, please re-read
my earlier article (www.clarionmag.com/cmag/v3/v3n5runtimedlls1.html).

Now that you have the necessary Windows API functions prototyped you’ll need an
instance of the LoadLibClass. I’ve labeled the object User32, since the
SetLayeredWindowAttributes function is located in the User32.dll library on
Windows 2000 and greater.

User32 LoadLibClass

As soon as the program loads, attempt to load the library and assign the address of
SetLayeredWindowAttributes to the function pointer variable:

fpSetLayeredWindowAttributes = 0
If llcUser32.LlcLoadLibrary('User32.dll', |
 Method:GetModuleHandle) = 0

N i f t y W i n d o w T r i c k s A n d S m a r t D L L L o a d i n g

526

 fpSetLayeredWindowAttributes = |
 llcUser32.LlcGetProcAddress('SetLayeredWindowAttributes')
End

After this code executes, your function pointer equals zero if
SetLayeredWindowAttributes is not available in the version of Windows executing
the code. Whenever you want to call SetLayeredWindowAttributes you only need
to test if the function pointer is not zero. If you do call
SetLayeredWindowAttributes when the value of the function pointer is zero, your
program will GPF. Don’t do that.

Once you have this setup work out of the way, you can call GetWindowLong,
SetWindowLong, and SetLayeredWindowAttributes to make the window fade into
view as it opens. This code can be in any window procedure in your program that
has the User32 object and fpSetLayeredWindowAttributes function pointer
variable in scope.

In your procedure declare a Byte for the alpha blend value, a Long for the
ExtendedStyle information, and an UNSIGNED for the hwnd. You can use the return
value from Prop:Handle in the function calls without assigning it to an integer
variable. However, Clarion returns all properties as strings and the code passes the
handle many times. This code allows Clarion to auto-convert the string to an
integer once in the assignment.

windowAlphaBlend Byte,Auto

exStyleLong Long,Auto
thisHWnd UNSIGNED,Auto

As soon as the window is opened and before any other code executes you can turn
on the layered extended style bit and change the alpha blend value via the
SetLayeredWindowAttributes function. This code makes the window fade into
view:

Open(W)
thisHWnd = W{Prop:Handle}
If fpSetLayeredWindowAttributes <> 0
 exStyleLong = GetWindowLong(thisHWnd, GWL_EXSTYLE)
 exStyleLong = BOR(exStyleLong, WS_EX_LAYERED)

 SetWindowLong(thisHWnd, GWL_EXSTYLE, exStyleLong)

 Loop windowAlphaBlend = 0 to 255 by 5
 Yield

 SetLayeredWindowAttributes(thisHWnd, 0, |

 windowAlphaBlend, LWA_ALPHA)
 Display
 End
 SetWindowLong(thisHWnd, GWL_EXSTYLE, |

L a y e r e d w i n d o w s

527

 BXOR(exStyleLong, WS_EX_LAYERED))
 Display
End

First notice that the calls to GetWindowLong, SetWindowLong, and
SetLayeredWindowAttributes are all wrapped in the if statement; If
fpSetLayeredWindowAttributes <> 0. None of this code is necessary if the version
of Windows on the computer doesn’t support SetLayeredWindowAttributes. When
this code executes on a computer with Windows 98, the window will open
normally and computers with Windows 2000 or better, the window fades into view.

To accomplish this, the code calls GetWindowLong with the handle to the window
specifying the GWL_EXSTYLE index constant to retrieve the window’s extended style
long integer. Next the WS_EX_LAYERED window style bit is turned on by ORing the
value returned by GetWindowLong (for more on combining values using bitwise
operations, see the Clarion Help for BAND, BOR, and BXOR). The ExStyleLong is sent
back to the window by calling SetWindowLong with the same first two parameters as
GetWindowLong and the ExStyleLong.

Now that the extended window style is set to allow layered windows, you can call
SetLayeredWindowAttributes. Remember that the bAlpha argument of the
SetLayeredWindowAttributes expects a value from 0 to 255 representing 0 to
100% opacity.

Now it’s time to fade in the window. The loop calls Yield,
SetLayeredWindowAttributes, and Display. Yield allows other programs some
processor time, and SetLayeredWindowAttributes is called with the handle to this
window, 0 for the crKey (this isn’t used), the windowAlphaBlend value, and the
constant LWA_ALPHA. The LWA_ALPA constant tells SetLayeredWindowAttributes to
ignore the crKey parameter and use the bAlpha parameter instead. Then the
Display statement causes the window to repaint without entering the Accept loop.
Without the Display statement, you’ll never see the effect of the alpha blending.

Finally, when the loop completes its execution, SetWindowLong is called again to
turn off the WS_EX_LAYERED bit of the extended style long by exclusive ORing it with
the style bit. Using BXOR in this manner will toggle the bit on and off. Normally
you’d need to test that the bit was on with BAND before executing the BXOR so you
didn’t accidentally turn it back on. This code isn’t testing for this condition because
the WS_EX_LAYERED bit was just set on by the earlier call to SetWindowLong. Turning
this style bit off is necessary because Windows allocates a significant amount of
memory for the alpha blending and redirection. Turning this bit off frees those
resources.

N i f t y W i n d o w T r i c k s A n d S m a r t D L L L o a d i n g

528

If you wish to leave your window displayed transparently, do not turn the
WS_EX_LAYERED extended style bit off.

Compile and run the code included in the download for this chapter (SetLayAb.prj
and SetLayAb.clw). On Windows 2000 and higher you should see the window fade
into view. On Windows 95, 98, and ME you should see the window opened
normally. Go ahead and change the step or limit for the windowAlphaBlend values.
Comment out the final call to SetWindowLong so the Extended style bit is not turned
off to see what happens with final windowAlphaBlend values less than 255.

”Look, there’s a hole in my window”

Now that you know how to use alpha blended layered windows it’s time to look at
how to make a single color transparent. Remember that an alpha blended layered
window affects the transparency of the entire window. In contrast, use of the color
key transparency makes one color completely transparent. This transparency is the
same as if you use an alpha blend value of zero. The difference is that it only affects
one color. If you did specify an alpha blend value of zero, your window would
disappear. It has the same effect as hiding the window.

SetLayeredWindowAttributes allows you to make a single color completely
transparent by passing an RGB color as a COLORREF in the crKey parameter. It is no
coincidence that the byte order in the Clarion color equates are identical to a
COLORREF. If you read the bytes of a COLORREF from left to right they are Reserved,
Blue, Green, and Red. This is different from the Windows API data type RGBQUAD
that has the bytes in this order: Reserved, Red, Green, and Blue. Because a COLORREF
and Clarion color equate are identical, you may use a Clarion color equate (like
COLOR:Blue) to define the transparent color. For a color that isn’t described by one
of Clarion’s color equates, declare an UNSIGNED or a LONG variable with a group over
it like this:

myBGRcolor Long

BGRGroup Group,Over(myBGRcolor)
red Byte
green Byte
blue Byte
reserved Byte
 End

The group declared over the UNSIGNED allows straightforward access to the bytes
that represent red, green and blue. Each RGB component has a range of 0 to 255.

” L o o k , t h e r e ’ s a h o l e i n m y w i n d o w ”

529

Zero means none of that color and 255 means 100% of that color. For example, to
use the color green make these assignments:

BGRGroup.red = 0

BGRGroup.green = 255 !or 0FFh
BGRGroup.blue = 0

To use this, pass myBGRcolor for the crKey parameter of SetLayeredWindow
attributes.

Time to put this together and drill some holes in your window. Consider this code
used to turn on transparency for a color key:

If fpSetLayeredWindowAttributes <> 0
 exStyleLong = GetWindowLong(thisHWnd, GWL_EXSTYLE)
 SetWindowLong(thisHWnd, GWL_EXSTYLE, |
 BOR(exStyleLong, WS_EX_LAYERED))
 SetLayeredWindowAttributes(thisHWnd, COLOR:Red, 0, |
 LWA_COLORKEY)
End

You should be familiar with the first three lines of code already. First and foremost
this code tests that the function pointer variable is not equal to zero before
proceeding. Next it gets the extended style long and turns on the WS_EX_LAYERED
style bit. Finally, it calls the SetLayeredWindowAttributes function. Instead of
passing a value for bAlpha, the call passes COLOR:Red for the crKey parameter and
zero for the bAlpha parameter; dwFlags is set to the constant LWA_COLORKEY. This
constant tells SetLayeredWindowAttributes to use the COLORREF in crKey instead
of the bAlpha value. This causes Windows to draw the layered window with
anything colored red as completely transparent.

The really interesting thing is that not only is the area transparent, but it’s as if
Windows drilled a hole in your window wherever the color red used to be painted.
If you move your mouse pointer over this area the cursor will change depending on
the window below your transparent window. All mouse actions in the transparent
area affect the window displayed in that transparent area.

Now to turn the transparency off you’ll use this code:

If fpSetLayeredWindowAttributes <> 0
 exStyleLong = GetWindowLong(thisHWnd, GWL_EXSTYLE)
 If BAND(exStyleLong, WS_EX_LAYERED) <> 0
 SetWindowLong(thisHWnd, GWL_EXSTYLE, |
 BXOR(exStyleLong, WS_EX_LAYERED))
 End
End

N i f t y W i n d o w T r i c k s A n d S m a r t D L L L o a d i n g

530

The only thing different here is that the code tests if the WS_EX_LAYERED extended
style bit is turned on before toggling it off. This is done using binary AND with the
extended style long and the WS_EX_LAYERED style bit. When the return value of this
BAND statement is non zero, the bit is already set and it’s safe to exclusive OR (BXOR)
the extended style long. If you didn’t test this and the bit was off, you’d end up
turning it on. BXORing a bit in this manner toggles it on and off.

Try it out, load the project (SetLayTn.prj and SetLayTn.clw) and compile it. Then
press the Make box Transparent button. That very red box is replaced with the
window underneath. Move your mouse over the transparent area and click.

Wrapping it up

Both examples presented in this chapter are projects, not apps. I prefer to unit test
small bits of code in a simple hand coded project because it allows me to see all of
the code in one block. However, many Clarion programmers never look at the
source code of their applications except in the embed window or embeditor of the
IDE. With that in mind, I’ve included a Clarion 6 Legacy example that shows a
template-generated splash window that fades away as it closes.

The next time you’re faced with deciding whether or not to include a feature that’s
only available in a newer version of Windows, you don’t have to omit it to maintain
compatibility. Simply use this method to conditionally implement it in your
program so you’ll have the best of both worlds. You won’t be able to use this strategy
for every new feature, but it will add another tool to your toolbox.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n04transparent.zip

531

REUSABLE CODE AND HAND CODED DLLS

by Jeffrey Slarve

Many years ago, when I was relatively new to Clarion for Windows (I think it was
version 1.0), I remember reading an essay by Dave Harms about splitting an
application into DLLs. It was a big jump for me to grasp why splitting an app up
was a good thing, how dingdang easy it was to do, and how much faster my
development progress would become. But get it I did. DLLs allowed me to work on
small chunks of a project without having to re-compile the entire thing with every
little change/test that I needed to make. All was blissful in the world, and I lived
happily ever after. The end.

Well, not quite the end. As time went on, and I had project after project (project, in
this case, meaning all of the components of a software application) to write, I found
myself duplicating code between projects. Many of these functions were very
generic and didn’t rely on a dictionary, so I tried making a generic DLL that did not
require a dictionary or other global data, but the Application Generator thought it
was way smarter than I was (which, in fact, it might very well have been). The
AppGen wanted to either generate a bunch of global variables (GlobalRequest,
GlobalResponse, etc.) as External, or Local. If global data was Local, meaning
memory would be allocated for these variables in the DLL, then the templates
would generate the .EXP file and include those global variables, causing duplicate
symbol linking errors. If I told the AppGen to make global data external, then I had

R e u s a b l e C o d e a n d H a n d C o d e d D L L s

532

to make sure that any global data used by my DLL was also declared in any project
where I wanted to use my generic DLL.

At first, I tried tricking the Appgen into doing my bidding, using the Local setting
and modifying the .EXP file after the code was generated, but eventually I gave up
with using Appgen to create a generic DLL. It was way too complicated. Especially
when ABC came to be, and there were all those global class declarations.

But yikes! Now what was I going to do? Creating a DLL by hand was an option, but
that seemed complicated, and way too much trouble. But then I remembered that
the code would rarely change, so this effort would basically only have to be done
one time and it wouldn’t hurt to learn how to do this. Besides, I had much to gain
by putting my frequently used generic functions into their own DLL:

1) Reusable code. No more rewriting/importing a DayOfWeek()
function, or a function to get a widget from a dofladgey. All that
has to be done is attach that special DLL to an app and it’s ready to
go.

2) Write once, modify in one place. If any changes need to be made to
any of the generic functions, then they only need to be fixed in one
place. Often, the applications that make use of this generic DLL
will not need any recompiling. They only need recompiling if one
of the following situations occurs:

• Any of the prototypes change. If any of the prototypes for the
functions/procedures in the DLL change, then the applications
making use of this DLL won’t be able to find the procedure
unless they are recompiled.

• New procedures are added. It’s usually safe to not re-compile
an existing app if all you did was add some new prototypes to
the existing generic DLL. If, of course, you need to make use of
the new functions, then a recompile will be needed regardless.

• New Clarion version. You can’t normally share a DLL that was
compiled with one version of Clarion with another. Well, you
can, but not without a lot of knowledge, or special tools. It’s
better to recompile.

3) Easy maintenance. Once you set a DLL up, it’s very easy to make
changes to it. It’s way easier than trying to make these changes to
the same DayOfWeek() function in 20 apps.

4) Coolness. DLLs are very cool. Very very cool, indeed.

H a n d c o d i n g t h e D L L

533

Handcoding the DLL

There are a few things you need to create when hand coding a DLL. Some of them
might seem a little bit foreign to someone that hasn’t dealt with this aspect of
programming before, but they really aren’t difficult to do once you get the hang of
it. These steps are as follows:

1) Create a folder

2) Create a PRJ file

3) Create the source file(s)

4) Create an EXP file

5) Compile the DLL

6) Share the DLL prototypes

7) Make the DLL available to other applications

8) Use the DLL

Create a folder

The first step is to create a new folder somewhere in your Clarion development
directory tree. It’s a good idea to give your DLL a special place for all of it’s
components. It’s the least you could do for it, seeing how well it will treat you in the
future.

Create a .PRJ File

The .PRJ or Project is the daddy (or mommy, if you prefer) of your DLL. It needs to
know everything that’s included in your DLL, including file drivers, external LIB
files, icon resources, and source code. Without the project, I don’t know what I
would do. Probably go fishing or play guitar.

Creating a PRJ is very easy in the Clarion IDE:

1) Click File|New then select Project.

R e u s a b l e C o d e a n d H a n d C o d e d D L L s

534

2) You’ll be presented with a file dialog where you can type the name
of your project. This may or may not be what you choose to name
your DLL. Click Save.

3) Now you should see a window that says New Project File. In this
window, you can:

4) Enter a Project Title. This field is optional.

5) The Main File is the name of the main .CLW file for your project.
Just type the name here, then press TAB. It needn’t be a file that
exists yet.

6) The Target File will probably be the same as the name of the Main
File, except it will have a .EXE extension. This will change to DLL,
after you change the Target Type to DLL. Click OK.

You have just created a project. If this is your first project, then congratulations are
in order.

You might have noticed that there is another Target Type called Library. Libraries
are very similar to DLLs, but they have advantages/disadvantages when compared to
using a DLL. I prefer to use DLLs because they are easier to manage, and require far
fewer full-rebuilds of all of your .APP/.PRJ files than do .LIB files. If you make any
change at all to a LIB, you will need to recompile (well, at least relink) all
applications that use the LIB. The only downside to a DLL that you have one extra
file to distribute with your application. Usually, having that extra file is an
advantage because if you make a change to the DLL, all you have to do is ship that
one file.

Figure 1: Creating a new project

C r e a t e t h e . C L W f i l e (s)

535

Create the .CLW file(s)

None of this would go anywhere without your .CLW or other source code files.
These are where you write your functions/procedures. Just for the purpose of this
chapter, I’m going to use one of the functions on my ClarionFAQ.com
(www.clarionfaq.com/faq) website. This function is used to move a Parent control
(GROUP, OPTION, etc.) on a window, and subsequently move all of its child controls
in pseudo unison. If you’d ever tried to move one of these parent controls at run-
time, you’d know that the child controls have no idea that they’re supposed to move
along with their daddy too.

There are a few minimal things that need to be placed in the main module of your
DLL’s source code in order for it to compile.

1) PROGRAM or MEMBER statement. Even though this DLL isn’t a
program or a member of anything yet per se, the compiler needs
this. If you use MEMBER, be sure to use it without any parameters.
This can go on the first line, anywhere after the first column.

2) MAP statement. This is where you put the prototypes for the various
functions that you’ll be using in and exporting from your DLL.

map

 JSMoveParentControl(Long pParentFEQ,Long pXShift,|
 Long pYShift,Byte pMoveType=0)
end

3) CODE section. This is where you, uh, write your code. Please see the
accompanying mydll.clw to see how this all goes together.

Create an .EXP file

The .EXP, or Export or Module Definition file is what you use to tell the project
what variables and/or functions will be exposed, or exported to applications that
use your DLL. Sometimes you might have functions that are only useful to other
functions in the DLL, so they might not need to be exported. The .EXP can be either
somewhat complex or very simple, but either way it’s just a text file. The Clarion 6
help file has lots of information on .EXP files, but it might be a little bit difficult to
find. Just do a search for .EXP then look for Module Definition Files.

Here’s what the .EXP looks like:

R e u s a b l e C o d e a n d H a n d C o d e d D L L s

536

NAME 'MYDLL' GUI
EXPORTS
 JSMOVEPARENTCONTROL@FlllUc @?Be sure to put at least one blank
line here!

Notice the line that says JSMOVEPARENTCONTROL@FlllUc. You might notice that it
doesn’t look anything like the original prototype for JSMoveParentControl(). Why
is this, you ask? I don’t know. I don’t think anyone knows. It just works. But what it
really is, is a thing called Name Mangling (www.clarionmag.com/cmag/v7/
v7n03callingc3.html). This is a fitting title, seeing how messed up the name
appears. What name mangling does, is allow procedure overloading to be
communicated when linking one entity to another. Name Mangling can also be
turned off by using the NAME() attribute, and that might work okay for you for the
most part, but it isn’t a big chore to mangle the names yourself. Luckily, there’s an
example program under %CWROOT%\Examples\src\pro2exp. Just compile that
program and enter your prototype into the entryfield, then press the Tab key.
Pro2EXP will show you your mangled prototype.

Note: See that sentence about putting a blank line underneath the last
export? That’s very important, and was the cause of about an hour’s
worth of frustration on my part while writing this chapter. Before I
added that line, the IDE (C5.5) kept crashing and would not export my
function when it finally linked the DLL.

Compiling your DLL

Okay. Click on that lightning bolt and let ‘er rip. Hopefully, like me, you get
everything to compile correctly the first time. Ha ha. Okay, you finally got it to
compile. Now what? After a successful compile of a DLL project, you end up with a
.LIB file and a .DLL. The .LIB file is the glue that connects your app to your DLL.
You place into the project of the app that makes use of the .DLL. When you connect
the DLL to your application in this manner, you must have the DLL placed in a
location where the application can find it. (See also, a trio of articles that Larry Sand
wrote about Loading DLLs At Runtime.)

S h a r i n g t h e D L L p r o t o t y p e s

537

Sharing the DLL prototypes

I usually create an include file for including into my application so I don’t have to
do any typing, and all of my special functions are available to me. Simply copy the
MAP section to a separate file. You’ll use that in a moment.

Making your DLL available

The Clarion environment has a few different folders for different files. The
%CWRoot%\bin folder is where DLLs are usually placed. The %CWRoot%\lib folder
is where the .LIB files are usually placed. What I usually do when I’m ready to
publish my DLL (after testing) is run a batch file to clean up my DLL’s folder and
copy the LIB/DLL files to their proper places. Here is an example of what my batch
file looks like:

 copy mydll.dll e: \c55\bin
 copy mydll.lib e:\c55\lib
 copy mydll.inc e:\c55\libsrc
 del *.bkp
 del *.bak
 del *.lnk

Using your DLL

Now that you have your DLL, you’re most likely going to want to make use of it. I
guess if you wanted to be extra fancy, you could write a template that includes the
DLL into your app. It’s so simple to do, however, that I almost never bother with a
template. Here’s all that you have to do:

Open the App that you wish to add your DLL to.

Click on the Module tab.

Click on the Application menu item then select the Insert Module. A Select Module
Type window will open.

R e u s a b l e C o d e a n d H a n d C o d e d D L L s

538

Select External DLL. A module properties window will open.

In the Name field, enter the name of your DLL with a LIB extension.

In the Map Include File field, enter the name of your include file.

Note: If you do choose to use an include file here, the procedures will
not automatically be visible to the AppGen, although you can use them
in embed points. It can be frustrating if you don’t know about this
behavior. If you need your DLL procedures to be visible to AppGen,
you’ll have to enter them manually instead of using the include file.
Select the DLL’s module, and press Insert or choose Procedure|New to

Figure 2: Selecting ExternalDLL

Figure 3: Specifying the LIB properties

S o u r c e c o d e

539

create each procedure, making sure to set the procedure prototype as
necessary. You may also want to check the Declare Globally option.

Now, if everything’s set up correctly, you’ll have full use of your DLL functions.

Looking back on this chapter, it might seem like a whole lot of hassle to go through
for just a DLL, but it really is worth the effort. Once you get your special DLL set
up, it’s very easy to add new functions to it as time goes by, and you’ll never have to
code them again. If you do have to maintain that code again, it will only be in one
place. And best of all, you won’t have to fight with the AppGen over what
declarations do or don’t get exported. Isn’t that nice?

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v7n04dllbyhand-jsPro2xp.091.zip

• Download this file from Jeff’s ClarionFaq.com site:
www.clarionfaq.com/faq/index.php?page=index_v2&id=24&c=12)

Carl Barnes wrote a utility template that makes use of the LinkName() function
from the Clarion Template Language. CBMangle.zip contains the template, and
CBSampleInputOutput.zip contains a sample input file and an example of what the
output looks like. One big advantage to using the template language for generating
an EXP is that the LinkName() function would most likely (hopefully) have the
most correct logic in it for handling anything new in the language. Thanks, Carl.

• v7n04dllbyhand-CBMangle.zip)

• v7n04dllbyhand-CBSampleInputOutput.zip)

R e u s a b l e C o d e a n d H a n d C o d e d D L L s

540

541

GENERIC DLLS THE TEMPLATE WAY

by Bjarne Havnen

A couple of years ago I found myself in the exact same situation as Jeff Slarve
described in “Reusable Code and Hand Coded DLLs” on page 531, and I started to
make my own generic DLL.

I like to use the application generator. Not because I don’t like to handcode,
absolutely not, but because the .APP and .DCT gives me fewer files to back up, and
all that trivial coding is left to the templates.

Back to the future

I quickly discarded using the ABC templates for my common DLL; it just couldn’t
be done without problems. On the other hand, the ABC templates weren’t really
necessary either, since my common DLL would just include small pieces of code
that really didn’t need any ABC. The Clarion templates covered most of my needs.

There are a few drawbacks with using the Clarion templates

1) The DLL will be slightly bigger than a handcoded project

G e n e r i c D L L s T h e T e m p l a t e W a y

542

2) It is riskier to compile an application in different versions of
Clarion: an APP can be modified if the templates change, but
source code isn’t touched by the generator.

3) As Jeff pointed out, the export or libfile must be modified before
using the DLL

The first problem doesn’t matter to me. I think the benefit of being able to use a
dictionary and templates evens that one out. The second I overcame by either write-
protecting the application, or by saving to different names for each version of
Clarion. I prefer the latter because it gives me the possibility of using both C5.5 and
C6.1 programs in the same directory.

For some time I was happy with my DLL application, I added several new functions
each day that I just imported from other applications. I could live with having to
modify the export file once, since the workload was mainly on adding the functions.
But the day I started to make new functions one at a time, I found my approach
unworkable. For every new function I was caught by the third problem: I had to
modify the EXP before I could use the DLL’s LIB file in my applications. These
modifications were time-consuming.

I got a tip that I should make a project instead, but at that point, Jeff’s article wasn’t
written and I failed in the attempt, mainly because of the name mangling. Then I
realized that somewhere within the template system there had to be a piece of code
that already handled this, right?

Not only did I find the function to do it, namely the LinkName() function, but I
discovered that I could completely override the generation of the export file.

Export file embed points

If you examine the Application part of the Clarion template chain, you will see two
things that are relevant to the task. One is a call to %ConstructExportFile, and the
other is a hidden embed, %AfterGeneratedApplication. This embed is the last
embed before the application is considered generated, and any code you generate
here will replace/override anything previously generated.. Since the export file is
already made at this point, I know I can replace it with my own version. I would
like my template code to be pretty similar to the original, so this gives me the first
piece of code:

#At(%AfterGeneratedApplication),Where(%ProgramExtension='DLL')

E x p o r t f i l e e m b e d p o i n t s

543

 #Insert(%AdiConstructExportFile)

#EndAT

Next I had to design the %AdiConstructExportFile group. What I did was simply
copy the %ConstructExportFile group and remove anything that wasn’t related to
the procedures. All I need is the procedures to be exported, so why bother with the
global data and files?

The essential code in this group is very small:

NAME %Application GUI

EXPORTS

 #FOR(%Procedure)

 #IF(%ProcedureExported)
 #SET(%ExpLineNumber,%ExpLineNumber + 1)
 %(LINKNAME(%Procedure & %Prototype)) @%ExpLineNumber
 #ENDIF
 #ENDFOR

Technically, I don’t need all the conditions and embeds that are present in the
complete code. However, I find it convenient to test the application as an executable
before it is distributed, so while developing, the original files can be left untouched.
Also, if it should come to a point where a definition is to be exported, embeds are
there to override the override.

After reading Jeff’s article I added another group to construct the includefile. The
filename is set to applicationname + inc. Obviously, the code can be modified if this
is not suitable.

#Group(%AdiConstructIncludeFile)

#Equate(%IncFile,%Application&'.inc')

#MESSAGE('Generating Module: %IncFile', 1) #! Post generation
message
#MESSAGE('Generating Map Include File', 2) #! Post generation message
#MESSAGE('',3)
#Create(%IncFile)

#For(%Procedure),Where(%ProcedureExported)

 %Procedure %ProtoType #<!%ProcedureDescription
#EndFor
#Close(%IncFile)

Thanks for the idea, Jeff. This creates the Map Include File for the module and saves
me the trouble of writing up every procedure by hand in the template I use to
activate my custom DLL. I now use a template to include the custom DLL as well,
because I regularly forgot to remove the Standard Clarion DLL checkbox for the
External module, and I use the same DLL compiled for two versions of Clarion.

G e n e r i c D L L s T h e T e m p l a t e W a y

544

The demo application (mystuff.app) has a few pretty cool functions you might want
to explore, like the print functions, shellexecute wrappers, and AdiFilefind, which I
wrote one day I couldn’t find a file that I knew was on the disc. Also, DisplayQueue
is a nice utility function I use when I need to examine and possibly modify the
contents of any queue.

I also included a simple template (UseCustomDLL) that generates the necessary
code to attach a custom DLL that has been made by the OverrideExport template.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v7n05dllbytemplate.zip

545

HAND CODING EXPORT FILES

by Harry Hickey

Object-Oriented Programming (OOP) can be a wonderful thing. Unfortunately,
writing a class can sometimes be easier than using it, especially if you need to
export that class from a DLL.

The simplest way to export a class in Clarion is to make the class part of the ABC
library. Unfortunately, that ties the class directly to your Clarion ABC environment,
usually exporting from the base “Dictionary” DLL in a DLL-based system. If this is
not the desired goal, this is probably not the way to go.

There is a slightly more difficult method for exporting classes from any DLL, but it
involves playing around with the global export list embed (for apps) or the EXP file
(for projects). The DLL needs to export the Virtual Method Table (VMT), the TYPE
for the class, and each individual method (procedure) in the class.

Understanding the nuts and bolts

It is useful to understand the way Clarion handles a class. The data elements, or
properties, of a class are treated internally as a typed group structure. Therefore,
when you create an instance (or object) of the class, the data portion is treated as a

H a n d C o d i n g E x p o r t F i l e s

546

GROUP. For that reason, it is essential that the data elements in the class definition in
the instantiating program precisely match the ones in the DLL. Clarion will make
no attempt to line up your fields. It will simply pass a reference to the starting
location of that group in memory.

When exporting a class from a DLL, you must export a TYPE for the class. For an
example class called MyClass, there should be a TYPE$MYCLASS present in the export
file.

The procedures and functions, or “methods”, are generally exported by their
“mangled” name. For those not familiar with name-mangling, a simple procedure
MyProc which accepts no parameters would simply be exported as MYPROC@F (the @F
defines this as a procedure/function). This helps enable procedure overloading. If
you have another procedure, MyProc(STRING), , it which will not be confused with
MyProc since MyProc(STRING) will be exported as MYPROC@Fsb. The “sb” portion
shows the first parameter to be a Clarion STRING.

In a class, the data portion is always passed as the first parameter automatically
(which explains why, in class methods, checking for OMITTED(1) will never return
TRUE.) This data portion is the SELF which represents the instance of the class.
When calculating the mangled name for export, this instance data needs to be taken
into account. Because your Class data is really a specially defined group type (like
TYPE$MYCLASS above), Clarion requires that you preface the type name with the
length of the type name so it knows how many letters are part of the name. So, for a
method of the MyClass class that does not receive any additional parameters, the
mangled name would be WHATEVER@F7MYCLASS (where WHATEVER is the uppercase
name of the actual method and 7 is the number of letters in MYCLASS).

Any additional parameters follow; for instance if the Whatever method took a BYTE
as a parameter, the mangled name would become WHATEVER@F7MYCLASSUc (Uc is a
BYTE or unsigned char).

Return values from functions are ignored when mangling names. This gives the
function MyFuncton PROCEDURE and MyFunction PROCEDURE,BYTE the same
mangled names.

The only other piece of the puzzle is a reference to a Virtual Method Table (VMT).
Without the VMT, derived methods in the instantiating program would not work
with the class in the DLL. To export the VMT, Clarion needs to have a
corresponding entry in the export list. For MyClass, it would look like
VMT$MYCLASS.

C a l c u l a t i n g t h e e x p o r t l i s t i t e m s

547

Calculating the export list items

I will use the following class, SampleClass, as an example for building an export
table. The class definition is as follows:

SampleClass CLASS, TYPE
MyString STRING(10)
MyLong LONG, PROTECTED
MyByte BYTE, PRIVATE
Init PROCEDURE(STRING,LONG,*BYTE,<SHORT>), BYTE
MyMethod PROCEDURE,VIRTUAL
MyPrivate PROCEDURE,PRIVATE
Kill PROCEDURE
 END

In this example, there are three properties which establish the SampleClass data
type. There are also four methods. In order to make the MyPrivate method truly
PRIVATE, this method will not be exported (see Privacy Policy below).

The first step is calculating the mangled names for the three methods that will be
exported. The Kill method is the easiest, since it takes no parameters. It would
simply be written as KILL@F11SAMPLECLASS (remember, it is necessary to declare the
11 characters in SAMPLECLASS before using the class name itself).

The MyMethod method also takes no parameters. The VIRTUAL attribute does not
affect the naming, although it does affect how the Virtual Method Table treats this
method.

Init takes several parameters, and gets mangled as INIT@F11SAMPLECLASSsblRUcOs.
If this looks confusing, see the list of mangled variable types at the end of this
chapter.

Here is the example export list:

VMT@SAMPLECLASS @1
TYPE@SAMPLECLASS @2
INIT@F11SAMPLECLASSsblRUcOs @3
MYMETHOD@F11SAMPLECLASS @4
KILL@F11SAMPLECLASS @5

In addition to exporting names, each exported item is expected to have a number,
or ordinal, associated with it. In a project, it is simple enough to assign an ordinal to
each exported item. If the exported items are being added to the export embed in an
APP, it is safest to let Clarion handle the numbering itself by using @? instead of a
specific number.

H a n d C o d i n g E x p o r t F i l e s

548

Hand-coded EXP files must include the line

EXPORTS

prior to the export list itself.

Don’t forget the basics

In order to use this DLL from another program, the LIB file must be included in the
project, and the class declaration must also be present, with appropriate linking
information. Changing the first line from

SampleClass CLASS, TYPE

to

SampleClass CLASS, TYPE, MODULE('MyDLL.DLL')
,LINK(MyDLL.dll',_ABCDLLMode),DLL(_ABCDLLMode)

is all that is really needed here.

Privacy policy

The checking of PRIVATE and PROTECTED attributes is really a function of the
compiler. Once the class is compiled, there really are no such attributes.

Because the entire data section is passed as a group, there really are no such things
as PRIVATE or PROTECTED properties. Even if a property is marked as PRIVATE in the
DLL declaration, simply removing the PRIVATE attribute from the property in the
declaration of the instantiating program will make that property public.

As for the methods, any method that is exported can be accessed, even if it is
PRIVATE, just by removing the PRIVATE attribute in the instantiating program. If a
method must be truly private, it should not be exported. PROTECTED methods must
be exported to be accessed from the instantiating program, so there’s no way to
absolutely enforce the PROTECTED attribute.

W h e n t h i n g s g o w r o n g

549

When things go wrong

If the linker reports an error that a procedure is unresolved for export, check the
mangled name in the export file. The export name must exactly match the name
that Clarion will calculate.

Summary

All that is needed to export a class from a DLL is a properly defined export file. For
each exported class, the export file must have an entry for a Virtual Method Table
(VMT$), an entry for the class type (TYPE$), and an entry for each exported class
method. Compiling the DLL will create a LIB file that can be used for linking to the
DLL.

Resources

Some Parameter Types for Mangled Names

BYTE = Uc
SHORT = s
LONG/SIGNED = l
ASTRING = sa
STRING = sb
CSTRING = sc
GROUP = g
VIEW = Bi
QUEUE = Bq
KEY = Bk
FILE = Bf
REPORT = Br
? = u

H a n d C o d i n g E x p o r t F i l e s

550

Important Prefixes for Mangled Types

O for optional parameter

R for parameter passed by Reference (* parameters)

P for Optional Reference parameter

U for unsigned

551

Tips & Techniques

553

ENCRYPTING DATA WITH NUMBER BASE
CONVERSION

by Dermot Herron

I sell software to send automatic SMSs (Short Message Service or “text” messages)
to a cell-phone (mobile) to remind people to come for appointments. Each SMS
sent deducts its cost from a pre-paid amount of money as it is sent. The software
also expires after a pre-set date. To administer this I needed a simple system to
verbally transfer semi-encrypted LONGs from a client, to me, and back again, to
update the dates and money. Large number bases (i.e. a number base larger than the
usual 10) are very compact when you need to transfer numeric information over the
phone, or by other voice communication means. Others in the Johannesburg
Clarion User Group have used this system to enable software after download.

It works like this: The software is originally supplied with a sum of money in its
“buffer”. In use the software deducts each SMS cost from this money. When the
software starts to run out of this pre-paid money the user pays money into my bank
account, tells me how much, and then opens a window which shows him a string of
alphanumeric characters which he quotes to me. This string is calculated from his
current money balance, serial number and date of expiry, all stored as LONGs. I
type these into a small program which allows me to add the amount he deposited to
his credit and specify a new expiry date. I quote back to him the newly calculated

E n c r y p t i n g D a t a W i t h N u m b e r B a s e C o n v e r s i o n

554

sequence and he types this in. Decoded, this updates his credit and expiry date. I
normally include the current date in the encrypted data, to make the code expire
automatically so it cannot be applied more than once.

Over the years I have developed a sequence of alphabetic characters and numbers
that can be read by humans with a minimum of verbal confusion. This consists of
the 10 numbers 0-9, and 21 letters. The five letters left out (with the potentially
confused character in brackets) are O(0) I(1) U(V) Q(0) and G(C). The total comes
to 31 characters, which allows me to have a base31 number (which is also a prime
number, a helpful feature, as I’ll explain later).

In the “accept” code of the program’s entry field, I automatically make the obvious
substitutions, 0 for O, 1 for I, etc. so the users and I don’t have to worry about what
we are reading out. (One could extend the “base” with some of the symbol
characters, such as @ and &, but a lot of my users don’t know the names of the
symbols (like ~, which is tilde) so I have found it safer not to use them.

How to do a general base conversion.

The steps in a base conversion are:

• Take a digit number that is higher than the highest expected number
of digits, and divide by the Divisor = Base * (No-of-digits – 1). (If the
first division yields a number greater than the base, you have too few
digits and must increase the start digit number. I haven’t done this in
the example)

• Take the integer of the result.

• If the integer is 0, reduce the number of digits by one and try again.

• When the first non-zero result does come in, set a flag to remember
there is a result (in case of a subsequent zero).

• Put this “number” into the corresponding string-position and reduce
the digit number.

• Calculate (Remainder * Divisor) to find what is left

• Repeat until last digit

An example converting base10 to base 3...

A 4-digit base3 number has the following structure:

H o w t o d o a g e n e r a l b a s e c o n v e r s i o n .

555

n4 n3 n2 n1

which means it has the value:

n4 * 33 + n3 * 3 2 + n2 * 31 + n1* 3 0

which is

n4 * 27 + n3 * 9 + n2 * 3 + n1* 1

(note that it goes from 33 to 30, not 34 to 31, since numbers are zero-based)

A real example:

Start with a decimal (base 10) value of 52 and convert it to base 3 (I have reduced
the shown “precision” for the sake of clarity, but the application will calculate to
16+ significant figures which is generally sufficient.)

4th digit

3 ^ 3 = 27 ! note the " ^ 3 " for the 4 digit

3rd digit (n3)

3 ^ 2 = 9
25 / 9 = 2.777778
INT(2.777778) = 2

0.77778 * 9 = 7

2nd digit (n2)

3 ^ 1 = 3
7 / 3 = 2.33333
INT(2.33333) = 2

0.33333 * 3 = 1

1st digit (n1)

8 ^ 0 = 1
1 / 1 = 1

Thus 52 = 1221

To convert from a number to a corresponding character (which is not necessary in
the case of base3, but is necessary in any case of base11 and above) I use the
position in a string of the available “digits” in the number system.

Take the hex string (16 characters long) as an example:

DigitStr = '0123456789ABCDEF'

E n c r y p t i n g D a t a W i t h N u m b e r B a s e C o n v e r s i o n

556

In the case of hex, the result of the INT() step (TmpShort in the code) is always a
short of 0 – 15. So to find the alpha character corresponding to TmpShort I use
string-slicing, thus:

TmpChr = DigitStr[TmpShort + 1]

(The + 1 is because the first character which corresponds to TmpShort=0 is character
No.1 in DigitStr.)

And here is where the “encrypting” comes in. If you scramble DigitStr but use the
same string on both sides, it becomes a little difficult to unscramble from the given
user-seen characters. And if you add a checksum (see later) which has to be
numerically correct before the characters are accepted, it becomes even more
difficult for a normal user to defeat the encryption.

The code that converts from base10 to any other base looks like this:

LongToStr PROCEDURE (pLong, pLen)
ResStr STRING(20) ! the result string - allow lots of space
Cntr SHORT ! loop counter
Divisor REAL ! what I am going to divide by at Cntr
TmpReal REAL ! intermediate results
TmpLong ULONG ! use this LONG to work on
TmpShort SHORT ! the temp integer value of that position
PosOut SHORT ! character I am working on in ResStr
LenRes SHORT ! Length of ResStr
DigitStr STRING(50) ! The encoding string
Base SHORT ! base of the number (LEN(DigitStr))

 CODE
 ! LongToString CODE
 ! prototype (LONG pLong, <SHORT pLen>), STRING
 ! where pLong is the LONG to convert to the number-base
 ! pLen is an optional LEN parameter if you want zero-padding
 ! passed pLong
 ! convert a LONG into a baseN No. and return the string
 ! This is normally declared more globally to be available
 ! in one common place for the decode as well as the encode
 ! - see the example
 DigitStr = '0123456789ABCDEFHJKLMNPRSTVWXYZ' ! base 31
 ! the "base of the number is the length of DigitStr
 Base = LEN(CLIP(DigitStr))

 ! this allows you to put '0's as prefix to the number

 ! The "0" is the first character of DigitStr
 IF pLen > 0
 ResStr = ALL(DigitStr[1], pLen)

 ELSE

 ResStr = ''

H o w t o d o a g e n e r a l b a s e c o n v e r s i o n .

557

 END
 ! value of Cntr may need increasing if the base is very short
 ! e.g. base 8 because the first division may result in more
 ! than expected. A programmers warning may be needed here to
 ! prevent suprises.
 Cntr = 8 ! this is the number of times it divides by the base
 TmpLong = pLong ! have to modify TmpLong
 PosOut = 1 ! was 0
 LOOP

 ! start from the most significant

 Cntr -= 1
 !am I done?
 IF Cntr < 0 THEN BREAK.
 ! Divisor is the "value" of the "Cntr" position in the number
 Divisor = Base ^ Cntr
 ! This is the "value" of Cntr position including the rest
 ! of the number as decimal places
 TmpReal = TmpLong / Divisor
 ! the actual "value" of this position
 TmpShort = INT(TmpReal)
 ! am I still looking for the starting result?
 IF PosOut = 1 AND TmpShort = 0 THEN CYCLE.
 ! Always start at position 2 to signal that I HAVE started
 PosOut += 1
 ! if TmpShort is 0 it must return the 1st DigitStr,
 ! so it is TmpShort+1
 ResStr[PosOut] = DigitStr[TmpShort+1]
 ! put only the "rest" of the value back into TmpLong
 TmpLong = ROUND((TmpReal - TmpShort) * Divisor, 1)
 END
 ! get rid of "extra" zero-digits in ResStr
 IF pLen > 0
 LenRes = LEN(CLIP(ResStr))
 ResStr = ResStr[LenRes - pLen + 1 : LenRes]
 END
 RETURN(CLIP(LEFT(ResStr)))

Getting back to the LONG from Base31 is much simpler. You calculate the value of
each position times the number in there and add it all together.

 ! StrToLong DATA
tStr STRING(50) ! Temp string to work from
Base SHORT ! base of the number
LenTstr SHORT ! Length of tStr
tPos SHORT ! Position in tStr
Expnt SHORT ! exponent at this position
DigitStr STRING(50) ! The encoding string
RetVal LONG ! the resultant LONG

E n c r y p t i n g D a t a W i t h N u m b e r B a s e C o n v e r s i o n

558

 CODE
 ! prototype (STRING pStr), LONG
 ! it is up to you to make sure the LONG does not overflow
 ! (you could use a DECIMAL or a REAL perhaps?)
 ! This is normally declared more globally than this to be
 ! available in one common place for the decode as well
 ! as the encode - see the example
 DigitStr = '0123456789ABCDEFHJKLMNPRSTVWXYZ' ! base 31
 ! the number base
 Base = LEN(CLIP(DigitStr))
 ! put the passed string into a local string and make
 ! sure it is LEFT
 tStr = LEFT(pStr)
 LenTstr = LEN(CLIP(tStr))
 tPos = 0 ! pre-incremented in the LOOP
 RetVal = 0 ! result starts at 0
 LOOP
 tPos += 1
 IF tPos > LenTstr THEN BREAK.
 ! this is the "multiplier" of the value of that position
 ! note the -1 to make it zero-based - the position in
 ! DigitStr (-1) is the "value"
 Expnt = INSTRING(tStr[tPos], DigitStr, 1) - 1

 ! (Base^(LenTstr-tPos)) is the value of that position.

 ! (Remember the 1st character in the string is the
 ! MOST SIGNIFICANT DIGIT in the string - numbers are
 ! "counted" from the right)
 RetVal += Expnt * (Base^(LenTstr-tPos))
 END
 RETURN(RetVal)

If you need more than one LONG to store your data, convert each one separately and
concatenate the result. This is the real significance of pLen in the LongToString
function; it fixes the size of the output string, padding it with zeros.

Checksums

If you need to validate a number after transmission through an imperfect medium
(like voice), the most economical technique is to use some calculation to produce
one or two characters that can be sent with the original message. Then the receiving
end can do the same calculation and see if it gets the same character(s). If not, a re-
transmission can be requested.

C o n c l u s i o n

559

There are many different checksum/hash algorithms, all aimed at guaranteeing to
find errors with near-zero chance of compensating errors. CRC16 is one standard
for this and is very good, but unnecessarily complicated for this purpose. I use a
literal checksum – i.e. I add up the ASCII character values of all the characters and
find the remainder after division by the base. (This is where a base of a prime
number helps to improve the checksum. A non-prime number might return the
same result if one of its factors was used instead of the complete number, making it
more likely to get the same checksum for any given alteration of the code)

The checksum will have a value between 0 and base-1. Adding 1 to the checksum
allows a character to be identified in DigitStr, which can be concatenated to the
original string. This is not a very solid checksum but is easy to implement and
understand and is adequate for this simple purpose. (See the example ChkSum
function in the downloadable source.)

Conclusion

Changing the base of a number can be quite confusing until you suddenly “see”
how it works. Remember that the position in a string of “numbers” determines the
“value” of that position and the digit in that position fixes how many of that
“value”. So 315 as a decimal number contains 3 “Hundreds”, 1 “ten” and 5 “one”
units; from these facts I developed the above functions.

Base conversion using a string allows conversion from decimal into any other base
and back again. This makes it very useful in lots of places like converting from
decimal to hex or octal. If you scramble the base-string, you have elementary, but
useful, encryption. This is mainly useful for things like registration-codes or the
“sending” of money in rented software that the user must not be able to easily
reproduce. It is not a strong encryption method, but good enough to deter most
normal users.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n02convertbase.zip

E n c r y p t i n g D a t a W i t h N u m b e r B a s e C o n v e r s i o n

560

561

APP SHUTDOWN OPTIONS IN CLARION 6.2

by Dave Harms

Clarion 6.2 introduced two very handy new features: the ability to automatically
shut down a Clarion application when Windows shuts down (or the user logs off),
and the ability to easily shut down any application with a single function call (I
know, you’ve probably encountered this second feature in your own code, but I am
not talking about a GPF here).

I’ve been waiting a long time for the first of these features. I realize there have been
third party solutions for automatic shutdown available for almost an equally long
time, but this is something I’ve always felt should be available out of the box. And
the function call to trigger a shutdown can be particularly handy for things like
closing an application after a period of inactivity.

Using the templates

Both of these shutdown options are implemented as easy-to-use templates. One is a
global extension, and the other is a frame extension.

A p p S h u t d o w n O p t i o n s i n C l a r i o n 6 . 2

562

First, the auto-shutdown template. Bring up the application frame (that is, the main
menu) procedure’s properties window, and click on Extensions. Choose Class ABC,
Frame Extension. Figure 1 shows the template options.

Enabling the shutdown option adds this line to the application frame’s module map:

INCLUDE('WinExt.INC'),ONCE

If not already present, a derived TakeEvent method is added to the ThisWindow
(instance of WindowManager) declaration:

TakeEvent PROCEDURE(),BYTE,PROC,DERIVED

A new class is declared to handle the shutdown notification:

FrameExtension CLASS(WindowExtenderClass)

TrayIconMouseLeft2 PROCEDURE(),DERIVED
TrayIconMouseRight PROCEDURE(),DERIVED
 END

The FrameExtension class is initialized in ThisWindow.Init:

FrameExtension.Init(AppFrame,1,0,0{PROP:Icon},'')

One of the things that happens in the Init method is a new subclassing procedure is
installed for the application frame:

SELF.OrigWndProc = TheMainWindow{PROP:WndProc}

TheMainWindow{PROP:WndProc} = ADDRESS(WinExtSubClassFunc)

Subclassing in this context isn’t like OOP subclassing; it simply means that you’re
installing your own callback procedure so it can intercept the events the Windows
GUI is sending to this window. The subclassing function is prototyped at the top of
winext.clw, and you can find the source at the bottom of winext.clw. In particular,
WinExtSubClassFunc responds to two Windows messages, WM_QUERYENDSESSION
and WM_ENDSESSION.

OF WM_QUERYENDSESSION

 IF GloCurrentWinExt.AllowShutDown

Figure 1: Frame Extension options

T h e s y s t e m t r a y

563

 GloCurrentWinExt.OnShutDown=GloCurrentWinExt.ProcessShutDown()
 IF GloCurrentWinExt.OnShutDown
 RETURN(GloCurrentWinExt.OnShutDown)
 ELSE
 RETURN(False)
 END
 ELSE
 RETURN(False)
 END
OF WM_ENDSESSION

 IF GloCurrentWinExt.AllowShutDown

 NOTIFY(Event:CloseDown,THREAD())

 RETURN(True)

 ELSE
 RETURN(False)
 END

When you tell Windows you want to shut down, it sends all applications a
WM_QUERYENDSESSION message. If any application objects, you’ll see the familiar
“Application still active” error message. If all applications respond in the
affirmative, Windows next sends the WM_ENDSESSION message, telling the apps to
shut down.

If you’ve configured the template to allow auto-shutdown, WinExtSubClassFunc
will post the Event:CloseDown message to the current thread, which tells your
application to close all windows and terminate.

When each window receives the CloseDown event (or a CloseWindow event), the
WindowManager.TakeCloseEvent method executes. If you’re in the middle of
changing a record, and you try to close that form or the application itself, you’ll get
an “Are you sure you want to cancel?” message. But if Windows wants to close your
app, it just closes, as if you had cancelled the changes. And for the longest time this
was the standard answer I got from the Clarion developers of the day – you don’t
want automatic shutdown of your application, because the user might be in the
middle of some important changes. Well, maybe yes, maybe no. Now you can
decide.

The system tray

You’ll have noticed in the above source listings that the WindowExtenderClass also
handles system tray (a.k.a. taskbar notification area) operations. In fact, system tray
code makes up the better part of the class.

A p p S h u t d o w n O p t i o n s i n C l a r i o n 6 . 2

564

If you’ve enabled the Enable Tray Icon checkbox in the template, all that changes is
the call to FrameExtension.Init. The second parameter, AllowTrayIcon, is set to 1,
and if you’ve specified a tooltip, that’s also passed. Now when you minimize the
application, WindowExtenderClass (the instance name being FrameExtension) uses
the Shell_NotifyIcon API call to place an icon in the system tray, and then hide the
app frame and inactivates itself. Similarly, when you double-click on the icon,
WindowExtenderClass calls Shell_NotifyIcon to remove the icon, and then
unhides and activates the app frame.

One nifty thing about the template is it lets you easily add menu options to your
system tray icon. Click on the Tray Icon Mouse Right Button Menu button. For each
menu item you add, you can:

• Execute a routine

• Call a procedure

• Post event to a control (on the window associated with the
extension)

• Run a program

• Do nothing

These options use the expected prompts. Figure 2 shows the options for Call a
Procedure.

One final point about this template – if you’ve added the extension to the
application frame, the option Enable Tray Icon on App Lose Focus will be grayed
out. As noted in the help:

Figure 2: Calling a procedure from the system tray

C l e a n c l o s e d o w n

565

This option is only active if no MDI child windows are opened. This
“lose focus” option is designed to be used in applications with only one
window (like the IPDRV service manager).

In fact, the template code is looking for the string 'APPLICATION' in the window
structure. So it’s not enough that you don’t have child windows open; you can’t use
an application frame.

Clean closedown

The CleanCloseDown template, which is not in any way dependent on the Frame
Extension template, makes it easy to initiate an application shutdown from
anywhere in your code.

To use the template, go to Global Options, Extensions, and add the
CleanCloseDownGlobal template. There is only one prompt on this template; a
checkbox that lets you disable the functionality, ostensibly for compatibility testing
with third party products.

The template adds a function prototype to the global map:

CleanCloseDown()

There are also three new global definitions:

GLO:CleanCloseDown BYTE(0)
GLO:CleanCloseDownMainThread LONG
NOTIFY:CloseDown EQUATE(EVENT:CloseDown)

And at the end of the main source module, the CleanCloseDown implementation:

CleanCloseDown PROCEDURE()
 CODE
 GLO:CleanCloseDown = True
 NOTIFY(NOTIFY:CloseDown,GLO:CleanCloseDownMainThread)

The main procedure intializes the main thread number:

GLO:CleanCloseDownMainThread = THREAD()

There is also a new (or modified) WindowManager.TakeNotify method in the
application frame:

ThisWindow.TakeNotify PROCEDURE(UNSIGNED NotifyCode,SIGNED
Thread,LONG Parameter)

A p p S h u t d o w n O p t i o n s i n C l a r i o n 6 . 2

566

ReturnValue BYTE,AUTO

 CODE
 IF NotifyCode = NOTIFY:CloseDown
 POST(EVENT:CloseDown)

 END

 ReturnValue = PARENT.TakeNotify(NotifyCode,Thread,Parameter)
 RETURN ReturnValue

You can now call CleanCloseDown() from anywhere in your application (say on a
timer event, after a period of inactivity). CleanCloseDown() posts an event, using
the thread-safe NOTIFY mechanism, to the main application thread, which then
posts an EVENT:CloseDown to shut down the application. As the help notes, in a
multi-DLL project you’ll need to add this template to any DLLs from which you
want to call CleanCloseDown().

Summary

The FrameExtension and CleanCloseDownGlobal templates let you easily add a
variety of shutdown and system tray options to Clarion applications. I’m
particularly happy to have an out-of-the-box solution to having my Clarion apps
shut down automatically when Windows shuts down.

567

ACCESSING PRIVATE CLASS DATA

by Dave Harms

Here’s a little something from Jeffy’s bag of hacks. Occasionally you may find
yourself wanting access to a class’s private variable, usually somewhere deep in the
bowels of ABC.

Now, private variables are usually private for one of several reasons: a) giving a
private variable a new value at an unexpected time could cause an error or even a
GPF, b) the developer may have plans to remove or change the variable during a
rewrite, or c) there’s simply no plausible excuse for anyone to see it or change it. So
if you do muck about with something the developer intended to be private, you’re
on your own. No warranty express or implied.

The usual way to get at something that’s private in an ABC class is to remove the
PRIVATE modifier in the declaration. That works, although you’ll need to reapply
the change when you next update your Clarion installation.

No source change required

Jeff Slarve’s approach doesn’t require you to change any source code. Instead, it uses
WHO and WHAT to examine the class’s structure, find the matching variable, and

A c c e s s i n g P r i v a t e C l a s s D a t a

568

return a reference to that variable. And since your code declares that reference, you
can do whatever you like with it.

Nifty.

Just don’t tell anyone you’re doing this.

Here’s the source to a short program that includes Jeff’s FindWhere function:

 Program

 map
 FindWhere(*Group pG,String pLabel),Long
 end

 Include('Abreport.inc'),ONCE

R ReportManager
OpenFailedLocation Long
MyOpenFailed ANY
 Code

 OpenFailedLocation = FindWhere(R,'OpenFailed')
 If OpenFailedLocation
 MyOpenFailed &= WHAT(R,OpenFailedLocation)
 MyOpenFailed = 100
 !R.OpenFailed variable in the debugger is 100
 message('MyOpenFailed=' & MyOpenFailed |
 & '||The position of OpenFailedLocation is ' |
 & OpenFailedLocation)
 else
 Message('Could not find the "OpenFailed" property','Darn')
 end

FindWhere Procedure(*Group pG,String pLabel)!,Long
MAX_LABEL_SIZE EQUATE(300)! Not sure what the
 ! maximum size of a label is
A ANY
Ndx Long
Label String(MAX_LABEL_SIZE)
 Code

 Ndx = 0
 Loop

 Ndx += 1

 Label = WHO(pG,Ndx) ! Check to see if there's a label

 ! If there isn't a label, that doesn't necessarily

 ! mean that it's the end of the group. It's
 ! possible that there are some label-less properties.

P r o j e c t d e f i n e s

569

 If NOT Label
 A &= WHAT(pG,Ndx) !Attempt to get a reference

 If A &= NULL !If that's not successful

 Break !Give up
 end
 A &= NULL
 end
 If Upper(Label) = Upper(pLabel) ! If a match

 Return Ndx ! Here's the position

 end
 end
 Return 0

Jeff points out that you should check the return value from FindWhere for zero
before assigning the reference.

Project defines

The downloadable zip includes a project (PRJ) file and the source shown here. If
you use this with your own project remember to add the following to your project
defines:

ABCDllMode=>0
ABCLinkMode=>1

Without those project defines the test program will GPF. If you implement
FindWhere as a function in your APP the defines will already be set for you as
appropriate.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v9n01private.zip

A c c e s s i n g P r i v a t e C l a s s D a t a

570

571

THE FIVE MINUTE DEVELOPER: SORTING
QUEUES

by Dave Harms

While displayed queues are the most familiar to Clarion developers, non-displayed
queues have a myriad of uses. For one, queues can be sorted by multiple fields,
functioning much like multi-component keys.

The SORT function

You sort queues with the SORT function, and you can pass up to 16 queue field
names for the sort order (for a grand total of up to 17 parameters, including the
queue which is passed first). The default sort is ascending, but you can make any
field descending by prefixing a minus character (–) to the field name. You can also
put a + character in front for ascending order, and there are no restrictions on the
actual order in which the fields appear in the parameter list:

SORT(MyQueue,+Field4,-Field2,-Field1,+Field3)

Note that reference field types and arrays cannot be used for sorting.

T h e F i v e M i n u t e D e v e l o p e r : S o r t i n g Q U E U E s

572

Customized sorting

SORT, used alone, only does case sensitive sorts, because it doesn’t keep a separate
key structure. If you want to do case insensitive sorting, you have several options.
One is to create an extra field in your queue with an UPPERed or LOWERed copy of the
data you want to sort, and sort on that field.

Another option, as demonstrated in the Clarion Help, is to use a custom sort
procedure. I’ll reproduce the code here, as there are a few points worth further
explanation:

PROGRAM
 MAP
 CaseInsensitive(*GROUP A, *GROUP B),SIGNED
 end

Q QUEUE
Val STRING(5)
 END

Window WINDOW('Test Sort'),AT(,,116,224),FONT('MS
SansSerif',8,,FONT:regular),IMM,SYSTEM,GRAY,AUTO
 BUTTON('Sort Case
Sensitive'),AT(8,3,95,14),USE(?SortCase),LEFT,DEFAULT
 BUTTON('Sort Case
INSensitive'),AT(8,20,95,14),USE(?SortNoCase),LEFT

LIST,AT(6,37,101,179),USE(?List1),FORMAT('7L(2)|M~Val~@s5@'),FROM(Q
)

 END

 CODE
 Q.Val = 'aaaaa'; Add(Q)
 Q.Val = 'AAAAA'; Add(Q)
 Q.Val = 'ddddd'; Add(Q)
 Q.Val = 'DDDDD'; Add(Q)
 Q.Val = 'EEEEE'; Add(Q)
 Q.Val = 'eeeee'; Add(Q)
 Q.Val = 'qqqqq'; Add(Q)
 Q.Val = 'QQQQQ'; Add(Q)
 Q.Val = 'zzzzz'; Add(Q)
 Q.Val = 'ZZZZZ'; Add(Q)
 Q.Val = 'ggggg'; Add(Q)
 Q.Val = 'GGGGG'; Add(Q)

 OPEN(Window)

C u s t o m i z e d s o r t i n g

573

 ACCEPT

 CASE ACCEPTED()
 OF ?SortCase ; SORT(Q, Q.Val)
 OF ?SortNoCase ; SORT(Q, CaseInsensitive)
 END
 END

CaseInsensitive PROCEDURE(*GROUP A, *GROUP B)!,SIGNED

 CODE
 IF UPPER(A) = UPPER(B) THEN RETURN 0
 ELSIF UPPER(A) > UPPER(B) THEN RETURN 1
 ELSE RETURN -1
 END

Note that the CaseInsensitive procedure is prototyped in the map as taking two
groups, passed by address. These parameters are actually queue records, and the
example uses the “implicit first field” to do the comparison. That is, you can use the
queue name as a synonym for the first field. It is possible to use the sorting
procedure to sort on a different field, but you’ll need to employ a little WHO and
WHAT magic. I’ll leave that as the proverbial exercise for the reader (or a later
installment).

You can call this function anything you like – just be sure it has the correct
prototype, and that it’s visible to the SORT function. For instance, if you create your
SORT procedure using the AppGen, you will need to either check the Declare
Globally option on the procedure properties, or ensure that the source procedure is
in the same module as the procedure that uses it as a parameter to SORT.

As noted in the help, within your custom sort procedure you want to return 0 if the
two elements have the same value, 1 if the first element has a higher value than the
second, and –1 if the first element is lower than the second. That gives you an
ascending order. As you may have guessed, if you reverse the 1 and –1 values you’ll
get a sort in descending order.

The custom sort procedure is useful when you have data such as numeric strings,
Roman numerals, and the like, as noted by Gordon Smith in Custom Queue Sorting
(www.clarionmag.com/cmag/v4/v4n07qsort.html). The necessary code has been
simplified a bit since Gordon’s article, as you can see; among other things, you no
longer need the NAME attribute on the sort procedure.

T h e F i v e M i n u t e D e v e l o p e r : S o r t i n g Q U E U E s

574

575

THE FIVE MINUTE DEVELOPER: DISPLAYING
QUEUES

by Dave Harms

The QUEUE is one of the Clarion language’s most powerful, useful, and unique
structures. You may take the QUEUE for granted, but if you try to duplicate QUEUE
functionality in another programming language, you’ll quickly come to appreciate
what a wonderful construct is the QUEUE.

In this installment I’m not going to focus on the mechanics of reading and writing
queues – you can get all that from the Clarion help. Instead, I’ll outline a few key
points about displaying queues.

The FROM attribute

The most common use of a queue is to display data in a list box. To bind a QUEUE to
any list box, you simply specify the QUEUE’s label as the LIST’s FROM attribute (and
note that you can also supply a string constant or a GROUP as the FROM attribute).
Here’s an example of a list box displaying a queue called Queue:Browse:1 (this is a
highly abridged declaration, as I’ll explain in a moment):

T h e F i v e M i n u t e D e v e l o p e r : D i s p l a y i n g Q U E U E s

576

LIST,AT(8,20,342,124), FROM(Queue:Browse:1)

FROM binds the queue to the list box, so that all of the data in the queue is
automatically displayed. If you don’t specify any formatting information, then the
list box will simply display all of the queue’s fields, in order, as best as it can. In
most cases, however, you’ll want to specify the formatting, via the FORMAT attribute,
or the list box formatter in the IDE (which creates a format string). Here’s a
complete list box declaration with the FORMAT attribute:

LIST,AT(8,20,342,124),USE(?Browse:1),IMM,HVSCROLL,|
 MSG('Browsing Records'),|
 FORMAT('64R(2)|M~AdID~C(0)@n-14@80L(2)|' &|
 & 'M~Description~@s255@64R(2)|M~NameID~C(0)' &|
 & '@n-14@44D'(16)|M~Amount~C(0)@n10.2@20L(2)' &|
 & '|M~Paid~@s1@'),FROM(Queue:Browse:1)

This is an example of a fairly small format string, as the list box has only five fields
and no icons, colors, or other special modifiers. And there really are a lot of
modifiers – just check out FORMAT in the Help.

PROP:FORMAT

You really don’t want to have to write format strings by hand, which is why there’s a
list box formatter. On the other hand, there are sometimes good reasons to fool
around with format strings. You might want to create a set of commonly used
format strings, and let your user choose the one appropriate to the task (with
different field ordering, colors, icons, etc.). It’s easy enough to do – you can read and
write format strings with PROP:FORMAT. This was, in fact, one of the very first
features that David Bayliss demonstrated to Clarion developers when Clarion for
Windows made its debut at the Boca Raton DevCon.

Try this: Find any list or browse box in your application, and double-click on the
control in the editor to bring up the embed list. In the All Events embed, place the
following code:

0{PROP:TEXT} = ?listBoxEquate{PROP:FORMAT}

That line of code will cause the format string to be displayed in the current
window’s title bar. Try dragging the list’s columns around and watch the format
string change.

P R O P L I S T

577

PROPLIST

Working directly with a format string can be quite complicated; it’s a lot easier to
use the PROPLIST properties (see FORMAT, again) to read and write the properties of
any one individual column. For instance, this code will set the title of the second
column:?listBoxEquate{PROPLIST:Header,2} = ‘Column 2’

In most cases PROPLIST properties are read/write. For instance, to read the current
header you use this code:

MyString = ?listBoxEquate{PROPLIST:Header,2}

PROPLIST properties let you read and/or control colors, styles, decimal settings, tips,
positioning, grouping, headers, icons, mouse clicks, borders, and tree appearance.

There are a number of products out there that deliver browse customization via
PROPLIST and FORMAT. I’ve always been a fan of Xplore (www.icetips.com/
xplore.php), which was originally developed by Brian Staff, and which is now sold
and supported by IceTips.

Incidentally, any translation utility that handles browse headings will also work via
the format string.

Spend some time reading the docs for FORMAT – you’ll be amazed at what the format
string can do for your applications.

T h e F i v e M i n u t e D e v e l o p e r : D i s p l a y i n g Q U E U E s

578

579

INTER-DATE COMPUTATIONS

by Steven Parker

Basic date math, such as adding days to a date, or finding the number of days
between two dates, is easy in Clarion. Time math gets a little trickier, because of the
way Clarion assigns time values. And things really start to get interesting when
calculations involve midnight rollover and other operations involving date/time
values on different dates.

Date arithmetic

Because Clarion stores dates as Longs, date arithmetic is simple arithmetic. For
example:

ElapsedDays = EndDate - BeginDate
TotalDays = EndDate - BeginDate + 1
FutureDate = DateVariable + numberOfDays

My favorite is:

xDate = Deformat(20040419,@d12)

If (Today() - xDate) % 14 = 0

 RecurringProcedure

I n t e r - D a t e C o m p u t a t i o n s

580

End

This code allows me to perform RecurringProcedure every 14 days, precisely on
the anniversary of 19 April 2004.

Likewise, because Clarion stores time of day as a Long, time arithmetic is also very
easy. But, because midnight is defined as “1” (there is no zero in Clarion time),
there is an inherent offset of one (see The Clarion Advisor – Calculating Times
(www.clarionmag.com/cmag/v1/v1n2calculatingtimes.html) for a complete
discussion of handling the issues this can and does cause):

ElapsedTime = (Clock() – 1) – (BeginTime – 1) + 1

And, because the result of a time computation is a numeric, computing and
displaying elapsed time or displaying a countdown timer is just arithmetic. See
Marking Time, Part 1 (www.clarionmag.com/col/98-01-makingtime1.html),
Marking Time: Round 2 (www.clarionmag.com/col/98-02-makingtime.html) and
Another Approach to Time Calculations (www.clarionmag.com/col/99-04-
timecalc.html) to see various approaches to computing and display time differences.

Time computation is a very popular subject in the Clarion world. I have cited four
articles but there are more. And despite this fairly extensive coverage, questions
about computing the difference between two dates and times recur on the
newsgroups with almost predictable regularity.

Midnight rollover

”Midnight rollover” is the term that has come to describe a condition requiring
comparison of times on different days. When doing time computations, it is
necessary to understand how to determine whether one (or more) midnights, days,
have passed. It is not safe to simply assume the two times are on the same day.
Neither is it safe to assume that, if there has been a midnight rollover, only one day
has passed. In fact, it isn’t even safe to assume that there has indeed been a midnight
rollover.

To get a handle on the issues, let’s start by thinking in terms of four variables (all
Longs):

BeginDate
BeginTime
EndDate
EndTime

M i d n i g h t r o l l o v e r

581

Assume that BeginDate and BeginTime were assigned values programmatically. The
ending date and time are often just Today() and Clock(). They could also have
received values programmatically, for example, in a time clock application.

I want to be able to determine the difference between EndTime and BeginTime. So
first, I need to determine whether or not one or more days have passed. This part is
simple enough, just compare BeginDate and EndDate.

There are exactly three possibilities. Either EndDate is greater than BeginDate, the
two are equal or BeginDate is greater than EndDate.

If EndDate = BeginDate, the dates are the same, there has been no midnight
rollover and

ElapsedTime = (EndTime – 1) – (BeginTime – 1) + 1

gives me the information I need. I can convert ElapsedTime to seconds (suppose I
want to do something when my program has been idle for a certain number of
seconds), minutes or hours (an employee time clock application, for example). I
can convert ElapsedTime to show how much time has elapsed. Etc.

The remaining two conditions require programmer action.

If BeginDate > EndDate, this is an elapsed time condition that should never occur.
There are only three things I can think off to cause this: (1) a user resetting her/his
clock, (2) a failing system clock (motherboard failure) or (3) an “SPE” (stupid
programmer error). After eliminating (3), any other time If BeginDate > EndDate,
I would think in terms of a very noticeable message and summarily terminating the
application.

That leaves If EndDate > BeginDate. Unfortunately, this isn’t quite
straightforward.

While EndDate – BeginDate tells me how many days have elapsed (and I can
multiply to get the number of hours, minutes or seconds), the time variables cannot
be directly compared any more. This fact is obvious when considering a time clock.
Suppose an employee clocks in at 23:00 and clocks out at 07:00. EndTime will be
greater than BeginTime. So instead of translating to eight hours, it will compute as a
negative number (-576000 ticks), an impossibility. If I try to be clever and use the
absolute value or try to subtract the smaller number from the larger, I get 16 hours.

Why? 23:00 (11:00 P.M.) is 8,280,000 clock ticks. 07:00 is 2,520,000 clock ticks.
The difference is -5,760,000 which translates back to -16 hours. It should be eight,
of course.

I n t e r - D a t e C o m p u t a t i o n s

582

The situation would be even worse for an employee clocking in at noon on Tuesday
and clocking out at 17:00 Wednesday. This would give seven hours instead of 31.

If I add one day (8,640,000) to EndTime, making the computation:

 11,160,000
- 8,280,000
===========
 2,880,000

I get a correct translation to eight hours.

So, a completely general codelet would look like:

If EndDate = BeginDate
 ElapsedTime = (EndTime - 1) - (BeginTime - 1) + 1
Elsif EndDate < BeginDate
 Stop('Invalid dates!')
Else
 ElapsedDays = EndDate - BeginDate
 ElapsedTime = ((EndTime - 1) + (ElapsedDays * 8640000)) |
 - (BeginTime - 1) + 1
End

In fact, if you can deal with four variables, I think this would handle all your ET
computing needs.

StarDates

StarDates are the most often mentioned solution to the problem of cross-date time
computations. Some are not comfortable with tracking four variables, as above. A
StarDate needs only two (and one can be a local variable).

I have it on reliable authority that the StarDate technique was introduced in Dave
Howington’s Logix Models for Clarion Professional Developer (therefore, about 15
years ago). It is exceedingly ingenious. A StarDate uses a single variable, typically a
Real(15,8) or Decimal (13,6) – without entering into the Real vs. Decimal debate,
both these data type, pictured as shown, do work – to contain both the date and the
time. Therefore, two times can be compared using StarDates without worrying
about midnight rollovers.

A StarDate is constructed by taking the Clarion standard date and adding the time
expressed as a fraction. Thus, the integer portion of a StarDate is the date and the
fractional portion is the time.

S u m m a r y

583

Time can be expressed as a fraction by dividing it by 8640000 (the maximum
number of clock ticks in a day). For example:

BeginDate = Today() + (Clock() / 8640000)

StarDates are converted back into a date and a time by reversing the arithmetic.

BeginDate = Int(StarDate)

The time is the fractional portion and I get it by subtracting the date:

BeginTime = StarDate - INT(StarDate)

To finish the conversion to a Clarion standard time, multiply by 8640000.

BeginTime *= 8640000

So,

If Today() > INT(Timeout)

there has been a midnight rollover and I can check EndTime + 8640000, as above.

Summary

Personally, I find that StarDates are great when testing whether a time out period
has expired (see Replicating IDLE: All Quiet on the Keyboard? –
www.clarionmag.com/cmag/v3/v3n5idle.html). When the dates and times are
already in a file or queue, the codelet above does the job.

I n t e r - D a t e C o m p u t a t i o n s

584

585

A BETTER DATE FUNCTION

by Carl Barnes

Here’s a replacement for the Clarion DATE function that fixes some of DATE’s
limitations.

I frequently want to go back x days or months. DATE() cannot handle something
like DATE(1,-15,2000). This function also handles going forward before calling
DATE() so the C5 leap year problem is fixed with DATE(14,29,1999).

The DateFixed2 procedure

Here’s the source, or you can use the version in the downloadable APP, below.

DateFixed2 PROCEDURE(long _Month,long _Day, long _Year)

RetDate long,auto
YrsAdj long,auto

 CODE

 ! Passing Date Function a Negative or Zero,

A B e t t e r D A T E F u n c t i o n

586

 ! Month or Day Does not work, it returns
 ! a bad value. There was a bug with 14/29/1999
 ! not seeing it as 2/2000 and as a Leap Year

 ! So try to get the date parts into correct range

 ! values before using Clarion Date()
 !If all zeros then do not try to adjust and get confused
 IF ~_Month AND ~_Day AND ~_Year THEN RETURN 0.

 ! Date cannot deal with Negative or zero Month
 ! so how many years am I off + 1
 if _Month < 1
 ! advance Month forward
 YrsAdj = 1 + ABS(_Month) / 12
 _Month += YrsAdj * 12
 ! adjust years back
 _Year -= YrsAdj
 end
 ! If year passed as YY for 2000 (i.e. 00) and
 ! adjusted with -1 this fixes -1 to be 1999
 if _Year < 0 then _Year += 2000.

 ! In Leap Years but with Months > 12
 ! as noted by Clarion Mag
 if _Month > 12
 YrsAdj = (_Month - 1) / 12
 _Month -= 12* YrsAdj
 _Year += YrsAdj
 end

 ! In case 99 gets passed and +1 to
 ! 100 else (14,29,99) fails
 if _Year > 99 and _Year <= 999 then
 _Year += 1900
 end

 ! Date() cannot deal with Negative Day
 if _Day < 1
 RetDate = date(_Month, 1, _Year) - 1 + _Day
 else
 RetDate = date(_Month, _Day, _Year)
 end

 return RetDate

S o u r c e c o d e

587

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n01betterdate.zip

A B e t t e r D A T E F u n c t i o n

588

589

NEXT MONTH ANNIVERSARY DATE
FUNCTION

by John L Griffiths

Reading Carl Barnes’ “A Better DATE Function” on page 585 has prompted me to
put pen to paper (well, I really mean fingers to keyboard).

Often I need to advance a date by one month, but the date in the next month must
be based on the anniversary of an original date. In my case, this is the date an
account was opened. The standard DATE() function works fine if the account
opened date lies between the 1st and 28th day of the first month. But what if an
account opened on January 30 2005? Adding one month each time to the previous
in the series would give a dates of sequence of Jan 30, March 2 April 2 May 2.
Where did the February date go?

The nmDate function

So I built a very simple small function I call nmDate to give me the date for the next
month. I require a date for each month. I pass two values and the function returns
the next month’s date as a LONG.

N e x t M o n t h A n n i v e r s a r y D a t e F u n c t i o n

590

Here is the declaration:

nmDate(LONG piFromDate,LONG piAnnivOf),LONG

And here’s the code:

nmDate FUNCTION (LONG piFromDate,LONG piAnnivOf) !,LONG
 ! piFromDate is the date in the month which I want to
 ! advance and get the Next Months date. The piAnnivOf is
 ! the day of month value I wish to use as the anniversary
 !
NRD LONG,AUTO
 CODE
 CASE piAnnivOf

 OF 1 to 28

 NRD = date(MONTH(piFromDate)+1, piAnnivOf ,year(piFromDate))
 OF 29 to 31

 NRD= date(MONTH(piFromDate)+1, piAnnivOf ,year(piFromDate))

 IF DAY(NRD) < 5
 LOOP 4 TIMES
 NRD -= 1
 IF DAY(NRD) > 27

 BREAK

 END
 END
 END
 ELSE
 NRD = 0
 END ! CASE
 RETURN NRD

Getting the end of next month

Now, using nmDate and a starting date of Jan 31, I get the sequence of Feb 28,
March 31, April 30, etc. as shown in Figure 1.

S o u r c e c o d e

591

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n01datemonth.zip

Figure 1: Generating anniversary dates

N e x t M o n t h A n n i v e r s a r y D a t e F u n c t i o n

592

593

ADDING ARRAYS TO GENERIC QUEUES
WITH HOWMANY

by Alan Telford

Several years ago I wrote an article called Debugging Queues with Excel
(www.clarionmag.com/cmag/v5/v5n02debugq.html) in which I described how to
export the contents of a queue to Excel for easy viewing. I was extremely pleased by
the great feedback I got from readers.

BUT (there’s always a but...) I’ve always been aggravated by one limitation. My code
exported the queue contents as a CSV file, and my generic ExportQtoCsv procedure
would not work if the queue contained any arrays. When I forgot about this
limitation I would see the error in Figure 1.

Figure 1: The parameter typing error

A d d i n g A r r a y s T o G e n e r i c Q u e u e s W i t h H O W M A N Y

594

I avoided arrays in queues as much as possible, but when I did need arrays and
wanted to debug my queue I had to create a new queue which mimicked the
original but flattened the array (and I had to write the code to copy from ArrayQ to
FlattenedQ):

ArrayQ queue
field1 long
field2 long,dim(3)
 end
FlattenedQ queue
field1 long
field2_1 long
field2_2 long
field2_3 long
 end

Enough is enough!

This was too much work. How could I call myself a lazy programmer if I didn’t stop
this wasted effort? Fortunately Clarion 6 had arrived and with it a new language
function – HOWMANY(,).

• HOWMANY(ArrayQ,1) returns 1 as ArrayQ.field1 is not an array.

• HOWMANY(ArrayQ,2) returns 3 as ArrayQ.field2 is an array with
three dimensions.

Here is the original code, which takes a single record from myQueue and writes the
contents into the string Line:

Line = ''
Ndx = 0
loop

 Ndx += 1

 AnyVar &= WHAT(myQueue, Ndx)

 if AnyVar &= Null then break.

 Line = Line & choose(~Line,'', ',') & AnyVar
End

I need two new variables:

HowmanyCnt long
HowmanyNdx long

I also need an IF statement with an embedded loop (eight more lines of code):

E x t e n d i n g G r o u p T o I N I

595

Line = ''
Ndx = 0
loop
 Ndx += 1
 AnyVar &= WHAT(myQueue, Ndx)
 if AnyVar &= Null then break.
 HowmanyCnt = howmany(myQueue, ndx)
 if HowmanyCnt = 1
 Line = Line & choose(~Line,'', ',') & AnyVar
 else
 loop HowmanyNdx = 1 to HowmanyCnt
 AnyVar &= WHAT(myQueue, Ndx, HowmanyNdx)
 Line = Line & choose(~Line,'', ',') & AnyVar
 end
 end
end

I check each field in the queue for the number of dimensions. One dimension means
a normal field and is already handled by the existing code. More than one dimension
indicates an array field. This has an inner loop to traverse the array using WHAT to
get each field within the array.

Extending GroupToINI

You know what it’s like. As soon as you learn to use a new feature, you immediately
see other uses for it. Jeff Slarve wrote an article (www.clarionmag.com/cmag/v8/
v8n09grouptoini.html) showing how to store a group in an INI file. His function
didn’t support arrays either but I had to satisfy myself that I could remove that
limitation. The new lines are in bold:

GroupToIni Procedure(*Group pG,String pSection,|

 String pINIFile,Byte Direction=1)
Ndx LONG
A ANY
HowmanyCnt long
HowmanyNdx long

 Code
 Ndx = 0
 Loop
 Ndx += 1
 A &= WHAT(pG,Ndx)
 If A &= NULL then break.
 HowmanyCnt = howmany(pG,Ndx)
 if HowmanyCnt = 1

A d d i n g A r r a y s T o G e n e r i c Q u e u e s W i t h H O W M A N Y

596

 Case Direction

 of 1

 PutINI(pSection,WHO(pG,Ndx),A,pINIFile)

 of 2

 A = GetINI(pSection,WHO(pG,Ndx),,pINIFile)

 end

 else
 loop HowmanyNdx = 1 to HowmanyCnt

 A &= WHAT(pG,Ndx,HowmanyNdx)

 Case Direction

 of 1
 PutINI(pSection,WHO(pG,Ndx)&'_'&HowmanyNdx,|

 A,pINIFile)

 of 2
 A = GetINI(pSection,WHO(pG,Ndx)&'_'&HowmanyNdx,,|
 pINIFile)
 end
 end
 end
 end
 A &=NULL

The only significant difference is that this code appends the dimension count
WHO(pG,Ndx)&'_'&HowmanyNdx onto the field name.

Summary

Once again I can happily call myself a lazy programmer. My frustration with lack of
array support eventually drove me to learn how to use the clarion function HOWMANY.

Hmmm... but my new ExportQtoCsv and GroupToINI still doesn’t support
embedded groups, and Clarion 6 does have the new ISGROUP function. Maybe there
is another lazy programmer out there just waiting for the opportunity?

You can find a TXA version of this procedure in the downloadable zip. Import it
into your application, and make sure the Declare Globally checkbox is checked if
you want to use it anywhere.

S o u r c e c o d e

597

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n11howmany.zip

A d d i n g A r r a y s T o G e n e r i c Q u e u e s W i t h H O W M A N Y

598

599

A CUSTOMIZED DEEP ASSIGN FUNCTION

by Alan Telford

Programmers are fascinating creatures. When their curiosity is aroused they will
divert from whatever they’re doing to answer that call. I was struggling with an SQL
statement recently so I asked a colleague for help. She couldn’t give me an answer
right away so I went back to struggling. But... I had aroused her curiosity, and 15
minutes later the answer was in my email box and even included an apology for
taking so long.

Later that week it was my turn to be challenged. Another colleague had a procedure
SomeProc procedure(file pSource, file pTarget) and needed to copy all the
fields which were the same from file pSource to pTarget. “Easy”, I told him and
sent him on his way with this code snippet.

! declare a group reference to record buffer
sourceRecord &Group
targetRecord &Group

! assign the reference
sourceRecord &= pSource{prop:record}

targetRecord &= pTarget{prop:record}

! now use deep assign to copy the similar fields
TargetRecord :=: sourceRecord

A C u s t o m i z e d D e e p A s s i g n F u n c t i o n

600

Several minutes later he returned. “It didn’t work.” The deep assign from a group
reference to another group reference failed. As he only had a small number of files
he had to support, I gave him a temporary (but unsatisfying) workaround:

if pSource &= File1 and pTarget &= File2
 File2.record :=: File1.record
elsif pSource &= File2 and pTarget &= File1
 File1.record :=: File2.record
! add other combinations here
End

But I could not go back to work. The power of a good challenge was doing its work.

Rolling my own deep assign

I was already familiar with WHAT and WHO from writing my (www.clarionmag.com/
cmag/v5/v5n02debugq.html) function, so I figured all I had to do was loop through
both files reading their record structures, find which fields had the same names
(using WHO), retrieve the field reference into an ANY (using WHAT), save the matching
pairs to a queue, and finally use my matching pairs list to actually copy the like
fields.

Step 1: Design the data

I like to start with designing my data structures. I decided for simplicity that I didn’t
need to save every table field in my queue, but only the matching fields. This led me
to the following:

matchfieldQ queue
sourceNdx long
sourcename cstring(50)
sourceAny any
targetNdx long
targetname cstring(50)
targetAny any
 end

The queue holds one record for each pair of matching fields.

• sourceNdx is the position of the matching field in the source record.

• sourceName is the name/label of the matching field.

S t e p 2 : F i n d t h e M a t c h i n g P a i r s

601

• sourceAny is the reference to the field.

The Target file fields are named similarly.

Step 2: Find the Matching Pairs

Now that I have the data structure it’s time to write the code to find the matching
pairs. This code will only be executed once before the main file loop, so it should
focus more on readability than speed.

The Clarion help section on “FILE Structure Properties” shows me two useful
properties: File{prop:record} to get a group reference to the file’s record buffer,
and File{prop:fields} to return the number of fields declared in the RECORD
structure.

! get the reference to the record structure

sourceRecord &= pSource{prop:record}
TargetRecord &= pTarget{prop:record}
! get the number of fields in the record
sourceFieldCnt = pSource{prop:fields}

targetFieldCnt = pTarget{prop:fields}

Then to match the fields I have a loop within a loop. The outer loop retrieves the
name of each field in the Target file while the inner loop attempts to find a
matching name from the Source file.

loop targetndx = 1 to targetFieldCnt
 targetname = WHO(targetRecord, targetndx)
 loop sourcendx = 1 to sourceFieldCnt

 sourcename = WHO(sourceRecord, sourcendx)

 IF sourcename = targetname
 !save matching pair in matchfieldQ
 clear(matchfieldQ)

 matchfieldQ.sourceany &= null

 matchfieldQ.targetany &= null
 matchfieldQ.sourceNdx = sourcendx
 matchfieldQ.sourcename = sourcename
 matchfieldQ.sourceAny &= what(sourceRecord, sourcendx)
 matchfieldQ.targetNdx = targetndx
 matchfieldQ.targetname = targetname
 matchfieldQ.targetAny &= what(targetRecord, targetndx)
 add(matchfieldQ)
 break
 end

A C u s t o m i z e d D e e p A s s i g n F u n c t i o n

602

 end !loop sourcendx
end !loop targetndx

This is only a two-level loop, but you may notice one of my coding habits on the last
two lines. I like to identify the end statement so I know what statement block it
belongs with. I’m sure looking forward to the new Clarion IDE with support for
code folding!

Surprise surprise, the code next exports the queue to Excel so I can see what it
contains (refer to my Debugging Queues with Excel article – www.clarionmag.com/
cmag/v5/v5n02debugq.html).

ExportQtoCsv(matchFieldQ,'matchfieldQ.csv')

I compiled and ran my test program and expectantly looked for the CSV file but it
was not there.

Step 3: Debug the program

Reluctantly I changed to debug mode to track down the problem. I quickly
discovered that WHO() returns pre:name where pre is the file prefix. Each file has a
different prefix and therefore none of the field names were matching. I added a
StripPrefix() function to remove the prefix from the field name. Having solved
the problem of different prefixes I also used the UPPER() statement to prevent the
related problem of case sensitivity.

stripPrefix procedure(string pName) !,string
ret cstring(50),auto
pos long,auto
 code
 pos = instring(':',pName,1,1)

 if pos

 ret = upper(clip(sub(pName,pos+1,len(pName)-pos)))

 else

 ret = upper(clip(pName))

 end

 return(ret)

I modified the targetname and sourcename assignments as follows:

targetname = stripprefix(WHO(targetRecord, targetndx))
sourcename = stripprefix(WHO(sourceRecord, sourcendx))

S t e p 4 : F i n a l i z e a n d t e s t

603

With much satisfaction I noticed that the CSV was now produced, and I could
verify that my matchFieldQ had the correct list of matching field names.

Step 4: Finalize and test

Now that I had a list of matching fields it was straightforward to assign the
matching fields. I’ve included a basic file loop without error handling for
illustration.

set(pSource)
loop
 next(pSource)

 if errorcode() then break.

 loop ndx = 1 to records(matchfieldQ)
 get(matchfieldQ,ndx)

 matchfieldQ.targetany = matchfieldQ.sourceany

 end
 add(pTarget)

end !loop pSource

At this stage a bit of test design is a good idea. Some quick thinking gives the
following set of tests to run:

1) Copy source to an identical target file.

2) Change the order of fields in target file.

3) Change the order of fields in target file, and delete some fields.

4) Change the order of fields in target; delete some fields; add some
unique fields.

5) Add an array field into source and target record.

6) Add a group structure into source and target record.

7) Repeat tests for different field types (String, Byte, Long, Decimal
etc.)

I expected test 1-4 to all pass which they did. But I was rather surprised that tests 5-
6 also passed. I’m unsure whether they would work for different size arrays, or
differing record structure so I would suggest more exhaustive testing if these
elements are important to you. Although I do use arrays in queues, I try not to use
them in files, so tests 1-4 were the important ones for me.

A C u s t o m i z e d D e e p A s s i g n F u n c t i o n

604

Converting to a class and include file.

Now that my curiosity was satisfied and I had likewise conquered the challenge
(although it did take me much longer than the 15 minutes my colleague spent on
my coding problem) it was time to make this code usable by others. Which
approach should I use: A class or a procedure?

The deep assign needs to save the list of matching fields for reuse. It has two distinct
methods (a one time discovery of matching fields, and a repeated assigning of like
fields). It can probably be extended with more useful methods in the future.

Everything indicates that a class would be more appropriate, and you can find the
MTDeepAssignClass source files in the downloadable zip.

To use:

1) Save the INC/CLW files into the Clarion6\Libsrc folder, and refresh
the ABC include files (the easiest way is to exit and restart the
Clarion IDE).

2) Include the file at the module or global level (it will GPF if it’s
included at the local procedure level).

INCLUDE('MTDeepAssign.inc')

3) Declare a local object of this class (usually within procedure or
routine data).

MyDeepAssign MTDeepAssignClass

4) Call the init method before your main file processing loop:

myDeepAssign.init(sourceFile, targetFile)

5) Call the assign method inside your main file processing loop:

myDeepAssign.assign()

Steps 2 and 3 can be easily handled if you have either of the following:

• ABCFree templates (www.authord.com/Clarion) – use the
ClassDeclare extension template.

• Handy Tools HNDTools template (www.cwhandy.ca/hndcmp.html) –
use the EmbedObject extension template.

If you’re using Legacy templates, then replace mtdeepassign.inc with
mtdeepassign_noabc.inc. You can also test the class out with the enclosed C6
example application and dictionary.

S o u r c e c o d e

605

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n12deepassign.zip

A C u s t o m i z e d D e e p A s s i g n F u n c t i o n

606

607

SOLVING PROBLEMS WITH FINITE STATE
MACHINES

by John Christ

Over the years I’ve done a lot of parsing of text files, some of it trivial and some
fairly complex. Searching for text doesn’t always mean just finding one string inside
another string; often it means finding a string that occurs after another string, or
within a specific block of text, or only after a specified string has occurred x number
of times. Often times the code winds up looking very spaghetti-like, with lots of flag
variables to keep track of where I’ve been and where I’m going.

Does complex text searching always mean kludgey code? Hopefully not. There’s a
technique that’s been around a long time that I think is quite useful for solving a
variety of problems. It’s called a Finite State Machine (abbreviated hereafter as
FSM). Briefly, you determine the possible states your logic can be in, and then
determine what causes transitions between the states. All finite state machines have
an initial state, and hopefully a terminal state. All that’s left is finding the states in-
between.

In this chapter I’m applying the FSM technique to searching text, but it can be used
to solve many coding problems.

S o l v i n g P r o b l e m s W i t h F i n i t e S t a t e M a c h i n e s

608

An example

Consider the following block of text, which is one of many entries in a file a DHCP
server uses to record IP address leases:

Listing 1

lease 192.168.0.8 {
 starts 5 2006/10/13 16:39:17;
 ends 5 2006/10/13 22:39:17;
 binding state active;
 next binding state free;
 hardware ethernet 00:0f:ea:46:98:89;
 uid "\001\000\017\352F\230\211";
 client-hostname "office";
}

Say you want to extract the IP address for a specific client-hostname. “Simple!” you
say, “just look for the line that starts with 'lease' and the line that starts with
'client-hostname'.” Simple, yes, but not terribly rigorous, and it’s not guaranteed
to work at all. These files use a C-like syntax, and in C, curly brackets group items
and semicolons separate them. Newlines tend not to mean much. In fact, the
specification for this file just says this about a lease declaration:

lease ip-address { statements... }

Standard, line-oriented text searching won’t necessarily work in this situation. And
in any case I dislike arbitrary line or field length limitations. Unfortunately,
Clarion’s disk access is primarily record or block oriented. I’ve always missed the
character I/O capability C programmers take for granted.

With these considerations in mind, I’ve broken the job into three tasks, each
building on the one before it:

1) Create a class which performs character I/O, using the DOS driver
to retrieve blocks of characters, but encapsulating the ugly details
of passing them along one at a time. This will then produce a
character stream for the parser.

2) Create a parsing function, which reads characters and creates
tokens from the input stream.

3) Finally, create a finite state machine, which will act on the tokens
and extract the required information.

T h e C h a r a c t e r I / O C l a s s (C h a r F i l e I O)

609

The Character I/O Class (CharFileIO)

The C Standard Library provides a variety of functions for performing character I/O,
and the CharFileIO class mimics this capability. The class only needs Input, not
Output, so the functions implemented in the class are:

• fopen – open a file

• fclose – close the file

• getc – get the next character (as a LONG) from the file

• ungetc – push back one character if you’ve read too far

The class uses the DOS file driver to retrieve up to 512 characters at a time. The
buffer length and buffer position are private properties of the class. The getc
method:

• Checks buffer length and position to make sure there are characters
in the buffer and that it isn’t about to read past the end of the buffer.
If it is, the buffer is refilled with the next 512 characters.

• If there are available characters, returns the next one as an ASCII
code. Otherwise EOF (-1) is returned.

The ungetc function allows you to push back one character. For example, when
skipping over whitespace (spaces, tabs, etc.) you don’t know you’ve hit a non-
whitespace character until you’ve read it via getc. Ungetc allows you to put that one
character back at the head of the input stream.

A simple example of using the class is found in Listing 2.

Listing 2.

ReadFile PROCEDURE(STRING pTheFile)
fin &CharFileIO
c LONG
 CODE
 fin &= NEW(CharFileIO)
 fin.fopen(pTheFile)
 LOOP
 c = fin.getc()
 IF c = EOF
 BREAK
 END
 ! Do something with the character
 END
 fin.fclose()

S o l v i n g P r o b l e m s W i t h F i n i t e S t a t e M a c h i n e s

610

FSM1.zip provides a simple demonstration program for the Character I/O class.

The Parsing Function (GetToken)

While the character I/O class is intended to be generic, the parser must be adapted
to the grammar of the subject text. In the case of the DHCP server file I need to:

1) Skip over leading non-relevant character, such as comments and
whitespace. In this file, comments are lines starting with a # and
whitespace is tab, linefeed, carriage return and space (see Listing
3.)

2) Decide what characters delimit tokens (See Listing 4.)

3) Decide whether/how to handle quoted strings (See Listing 4.)

Listing 3:

LOOP
 c = fin.getc()
 CASE c
 OF EOF
 RETURN NULL
 OF VAL('#') ! comment, scan to end-of-line or EOF

 LOOP

 CASE fin.getc()

 OF 10 ! Linefeed

 BREAK
 OF EOF
 RETURN NULL
 END
 END
 OF 9 ! Tab
 OROF 10 ! Linefeed
 OROF 13 ! Carriage return
 OROF 32 ! Space
 ! Whitespace, keep going
 ELSE
 ! Non-whitespace encountered, read too far.
 ! Push the last character back and exit the loop
 fin.ungetc(c)
 BREAK
 END
END

T h e F i n i t e S t a t e M a c h i n e

611

The loop breaks when it encounters non-whitespace, and the next bit of code
dynamically creates a token:

token &= NEW CSTRING(maxTokenLength)

If necessary the size can be increased later. But for now, the code begins copying the
input stream to the token (see Listing 4.)

Listing 4.

LOOP
 c = fin.getc()
 CASE c
 OF EOF
 BREAK
 OF VAL('"') ! Double quote, toggle the flag and skip the character

 inQuote2 = 1 – inQuote2

 CYCLE

 OF 10 ! Linefeed

 OROF 13 ! Carriage return
 ! These terminate the token
 BREAK
 OF 9 ! Tab
 OROF 32 ! Space
 OROF VAL(';') ! Semicolon
 ! If inside double quotes, include these characters in the token
 ! Otherwise, these characters terminate the token
 IF inQuote2 = 0
 BREAK
 END
 END
 len += 1
 token[len] = CHR(c)
END

The Finite State Machine

It’s now time to design the state machine, and the first step is to determine what
states will be needed. It will probably be helpful to have Listing 1 available as you
read this list of states.

• State 0 is the initial state. The code calls GetToken until it returns
“lease”. This is the first element of a lease declaration, which
signifies a change of state. Move to state 1.

S o l v i n g P r o b l e m s W i t h F i n i t e S t a t e M a c h i n e s

612

• State 1 – In this state the code is waiting for an IP Address, so the
next token will be saved in the event that the client-hostname of this
lease matches the one I am looking for. Move to state 2.

• State 2 – The next character should be an open curly bracket. If
that’s what GetToken returns then the code moves to state 3,
otherwise it returns to state 0 and resumes waiting for a lease.

• State 3 – At this point the code is expecting to find statements or a
close curly bracket. The statement the code is looking for is “client-
hostname “office”;”. If GetToken returns “client-hostname” it moves
to state 5, otherwise it moves to state 4.

• State 4 – This statement didn’t start with “client-hostname” so the
code keeps reading tokens until it finds one delimited by a
semicolon (which indicates the end of a statement.) If it finds one it
moves back to state 3; otherwise it remains at state 4.

• State 5 – The code found “client-hostname” so it needs to compare
the next token with the client it is looking for. If it matches it saves
it. Regardless of whether it matches or not, the code moves to state
6.

• State 6 – The code has found everything of interest in this lease, so it
waits untill GetToken returns a close curly bracket, indicating the
end of the lease declaration. If found, the code returns to state 0,
otherwise it remains at state 6.

Now that the states have been determined, all that’s left is some fairly
straightforward coding. Here’s the loop (the state variable has a starting value of 0):

Listing 5.

LOOP
 token &= GetToken(fin, delimiter)
 IF Token &= NULL
 BREAK
 END
 CASE state

 OF 0

 ! Start and wait for a lease declaration
 IF UPPER(token) = 'LEASE'
 state = 1
 END
 DISPOSE(token)

 OF 1

 ! Found a lease, the next token should be an IP address
 ! If I were being rigorous, I'd probably want to look at this

T h e F i n i t e S t a t e M a c h i n e

613

 ! token and ensure that it at least resembles the format of an
 ! IP address
 IF NOT saveIpAddress &= NULL
 DISPOSE(saveIpAddress)
 saveIpAddress &= NULL
 END
 saveIpAddress &= token
 state = 2
 OF 2
 ! I've gotten what should be an IP address,
 ! the next token should be an open curly brace
 IF token = '{{'
 state = 3
 ELSE
 ! Didn't find an open curly brace, go back to looking
 ! for the start of a lease declaration
 state = 0
 END
 DISPOSE(token)
 OF 3
 ! After finding an open curly brace,
 ! or after a later statement ends with a ';'
 ! wait for "client-hostname'
 IF token = '}'
 state = 0
 ELSIF UPPER(token) = 'CLIENT-HOSTNAME'
 state = 5
 ELSE
 state = 4
 END
 DISPOSE(token)
 OF 4
 IF token = '}'
 state = 0
 ELSIF delimiter = VAL(';')
 ! Statement has ended, go back to looking for "client-hostname"
 state = 3
 END
 DISPOSE(token)
 OF 5
 ! This is the token found after "client-hostname"
 IF token = '}'
 state = 0
 ELSIF UPPER(token) = UPPER(pClientName)
 ! This is the client I am looking for, save the IP address
 ! But there could be more instances, so keep going and save
 ! the latest one.
 IpAddress &= saveIpAddress
 saveIpAddress &= NULL
 state = 6

S o l v i n g P r o b l e m s W i t h F i n i t e S t a t e M a c h i n e s

614

 ELSE
 state = 6
 END
 DISPOSE(token)
 OF 6
 ! I've found the client-hostname I am looking for,
 ! so wait for the end of the lease declaration
 IF token = '}'
 state = 0
 END
 DISPOSE(token)
 END
END

FSM3.zip contains a complete implementation of the finite state machine. As you
can see the FSM code itself is quite simple and easy to write; the work is in
determining the potential states and the data which triggers a change from one state
to another.

While this example is fairly simple, I hope it illustrates how you might use finite
state machine methodology for solving a variety of coding challenges. I find it to be
another way to approach a problem when I’m thinking “When I look at this I know
how to do it, but how do I tell the computer how to do it?”

Tips

• When your state machine grows to more than 5 or 6 states, give the
states EQUATEd names, like WAIT_FOR_LEASE or
WAIT_FOR_END_OF_LEASE. I find it improves the readability
immensely.

• Make sure each state has an exit condition even when there is
unexpected or corrupted input, otherwise you can “hang” in a state.

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n11fsm.zip

615

CLARION CHALLENGE RESULTS – REMOVE
LINKS

by Dave Harms

I received eight entries for the Clarion Challenge (www.clarionmag.com/
v8n02removelinks.html) I posted on March 2. The task: remove all <a> (Anchor)
tags from a block of HTML text, leaving behind everything else (including the text
between the<a> and tags).

The results: the fastest code was written by Geoff Robinson, with Larry Sand
coming in second. Congratulations to Geoff and Larry! Both win a prize, and I’ll
explain why later.

But first, I learned a very important lesson, one I’d forgotten in the many months
(years!) since the last Clarion Challenge, and that is to be as explicit as possible
about the project requirements! Not only were there numerous questions about
what it was I wanted the code to do, but I neglected to specify a test framework for
the results. I received APPs, PRJs, and even text files. So it took me a while to get
everything massaged into a test application.

I ran some very basic tests, with 5000 iterations of each call. The test machine is an
Athlon 64 3200+, and the results are shown in Figure 1. Note that I included my

C l a r i o n C h a l l e n g e R e s u l t s – R e m o v e L i n k s

616

own code (unofficially), which is what suggested the challenge to me in the first
place, and I’m happy to see that I got my clock cleaned by the winners.

After the rudimentary test done via code built into the application, I ran a set of
tests under CapeSoft’s Profiler, as shown below. These confirmed the earlier results.

To get the timings I only loaded the Main() procedure in Profiler – at this point I
didn’t want timing information on the content of each procedure call, just a
comparison between procedure calls. The table shows the results (with some
numbers abbreviated – Profiler shows figures with great precision, but all that data
made the original table too wide).

Figure 1: Test results using clock()

Total
Time

Total
Cycles

Longest
Cycles

Shortest
Cycles

Average
Cycles

Source

20.8 209056 2406.96 185 209 Geoff Robinson

37.2 374370 2546.69 367 374 Larry Sand

80.3 807825 11507.17 720 807 David Harms
(unofficial)

92.0 925519 8491.31 886 925 Gordon Smith

145.9 1466973 7598.38 1,395 1466 Charles Puett

486.1 4885323 31867.91 4,724 4885 Lee White

826.4 8304779 34606.57 7,834 8304 Brahn Partridge

C a r l o s G u t i e r r e z

617

Both Profiler and the simple clock() test yielded the same overall test results. But
clock() is a blunt tool, really only useful here after a high number of procedure
calls, because its maximum resolution is a hundredth of a second. In a 32 bit
application, you can use the QueryPerformanceCounter API call to get much finer
resolution, and you can use Clarion’s profiler hooks to get the time spent in any
given procedure or routine, but I don’t know any better way to evaluate Clarion
code performance than CapeSoft Profiler.

To profile individual entries, I simply selected that procedure, and that procedure
alone, from the list of procedures to profile. I then used the source view to examine
individual line execution times, as the figures below demonstrate. I also reduced the
number of iterations from 1000 to 50, as the extra profiling activity added a lot of
overhead.

Here are the results in reverse order, from slowest to fastest.

Carlos Gutierrez

Carlos wrote one of the most compact and entries, and it’s one I like a lot for its
simplicity. Carlos looks for the string <a or </a, and, when found, sets the InTag
flag to 1 until the closing > is found. Characters are only copied to the output string
when a tag is not found. Carlos also does all the necessary array index checking to
avoid running past the end of the input string.

CarlosGutierrez PROCEDURE (STRING inStr)
InTag BYTE
OutStr CSTRING(SIZE(inSTR))
I LONG
pstr cstring(size(inStr)+1)

 CODE
 OutStr = ''
 InTag = 0
 LOOP I = 1 TO SIZE(pStr)

 IF pStr[I] = '<'

 IF I < SIZE(pStr) AND UPPER(pStr[I+1]) = 'A'

 InTag = 1

 CYCLE

1329.9 13364747 44859.74 12,301 13364 Poul Jensen

5389.4 54159589 106861.07 51,635 54159 Carlos Gutierrez

C l a r i o n C h a l l e n g e R e s u l t s – R e m o v e L i n k s

618

 .

 IF I < SIZE(pStr)-1 AND pStr[I+1]='/' |
 AND UPPER(pStr[I+2]) = 'A'
 InTag = 1
 CYCLE
 .
 .
 IF pStr[I] = '>' AND InTag
 InTag = 0
 CYCLE
 .
 IF InTag THEN CYCLE.
 OutStr = OutStr&pStr[I]
 .
 RETURN OutStr

There’s only one problem with this code, and it’s a total performance killer:

OutStr = OutStr & pStr[I]

Individual characters are appended to the output string using the & operator. This
is very expensive, and results in very long execution times. Figure 2 shows Profiler’s
analysis, but I’ve abridged the screen shot to only show total execution time per line
The detailed analysis is at the end of this chapter.

Replacing the & with string slicing would move this procedure into somewhere
around third or fourth place.

After publication, Carlos sent me two updated versions of his source, with string
slicing. As expected, the improvement was dramatic. In testing, Gordon Smith’s

Figure 2: Cumulative execution times per line – CarlosGutierrez

C a r l o s G u t i e r r e z

619

time was .23; Carlos’ StripTag procedure turned in a time of .24, and StripATag
came in at .25. Here’s the source for those two procedures:

StripTag PROCEDURE(pStr)!,STRING
InTag BYTE
OutStr CSTRING(SIZE(pSTR))
I LONG
Pos LONG
 CODE
 OutStr = ''
 InTag = 0
 Pos = 1

 LOOP I = 1 TO SIZE(pStr)

 IF pStr[I] = '<'
 InTag = 1
 CYCLE
 .
 IF pStr[I] = '>'
 InTag = 0
 CYCLE
 .
 IF InTag THEN CYCLE.
 OutStr[Pos] = pStr[I]
 Pos += 1
 .
 OutStr[Pos] = '<0>'
 RETURN OutStr

StripATag PROCEDURE(pStr)!,STRING
InTag BYTE
OutStr CSTRING(SIZE(pSTR))
I LONG
Pos LONG
 CODE
 OutStr = ''
 InTag = 0
 Pos = 1
 LOOP I = 1 TO SIZE(pStr)
 IF pStr[I] = '<'
 IF I < SIZE(pStr) AND UPPER(pStr[I+1]) = 'A'

 InTag = 1

 CYCLE
 .
 IF I < SIZE(pStr)-1 AND pStr[I+1]='/' |
 AND UPPER(pStr[I+2]) = 'A'
 InTag = 1
 CYCLE
 .
 .

C l a r i o n C h a l l e n g e R e s u l t s – R e m o v e L i n k s

620

 IF pStr[I] = '>' AND InTag
 InTag = 0
 CYCLE
 .
 IF InTag THEN CYCLE.
 OutStr[Pos] = pStr[I]
 Pos += 1
 .
 OutStr[Pos] = '<0>'
 RETURN OutStr

Poul Jensen

Poul wrote one of the longer entries, anticipating a number of potential problems I
hadn’t considered, such as an output string too short for the input value. Poul set
up a ScanMode ITEMIZE structure to enumerate the possible states encountered
while stepping through the input string:

 ITEMIZE(1)

Scan_Normal EQUATE

Scan_Prefix EQUATE
Scan_Strip EQUATE
Scan_End EQUATE
Scan_Fill EQUATE
Scan_Close EQUATE
!Scan_Finish EQUATE
!Scan_Error EQUATE
 END
ScanMode SHORT

Poul’s code tests for the current scan mode, then uses the following EXECUTE
statements to update the indexes and copy string data:

EXECUTE ScanMode ! Update Target and Advance Position...

 _TargetString[TargetPos : TargetPos] = _SourceString[Pos : Pos]

 ! Keep 1
 Pos = Pos + 1 ! Ignore 1 before advancing (2 bytes "<a")
 Pos = Pos + 0 ! Ignore 0 before advancing
 ! (Ignoring/Stripping bytes)
 Pos = Pos + 0 ! Ignore 0 Before advancing (remove the ">")
 _TargetString[TargetPos : TargetPos] = _SourceString[Pos : Pos]
 Pos = Pos + 3 ! Ignore 3 before advancing (remove "")
END!Execcute

POS += 1 ! Advance 1 byte

B r a h n P a r t r i d g e

621

EXECUTE ScanMode ! Set Scanmode/Target position...
 TargetPos += 1 !Still Normal
 ScanMode = Scan_Strip !prefix So Now Stripping
 ScanMode = Scan_Strip !Still Strippingl
 ScanMode = Scan_Fill !END so Now Filling
 TargetPos += 1 !Still Filling
 ScanMode = Scan_Normal !Close so Normal
END!Execute

As Poul’s code is quite lengthy I won’t reproduce it all here. There were no single
areas that looked eligible for improvement other than my general observations
which you can read at the conclusion of this chapter.

Brahn Partridge

Brahn was the only contestant to write his code in the form of a class, called
HTMLCleanerClass. The procedure code looks like this:

BrahnPartridge PROCEDURE (*cstring sampleText)
HTMLCleaner HTMLCleanerClass
 CODE
 HTMLCleaner.StripTag(sampleText, HTML_TAG:Anchor)
 return

The prototype is in HTMLCleanerClass.inc:

HTMLCleanerClass EQUATE(1)
! Generated by CapeSoft's Object Writer
HTML_TAG:ANCHOR EQUATE('a')

HTMLCleanerClass Class(),Type,Module('HTMLCleanerClass.Clw'),|
 LINK('HTMLCleanerClass.Clw',1)
StripTag PROCEDURE (*CSTRING pCS, STRING pTag) ,|
 LONG,PROC ,VIRTUAL
Replace PROCEDURE (STRING pFind, STRING pReplace,|
 *CSTRING pInto) ,LONG,PROC ,VIRTUAL
 END

Brahn is a big fan of Object Writer (capesoft.com/accessories/owsp.htm), one of
CapeSoft’s free utilities, which he used to create this class. Note the string equate
used to specify HTML_TAG:Anchor.

The StripTag and ReplaceTag methods are as follows:

HTMLCleanerClass.StripTag PROCEDURE (*CSTRING pCS, STRING pTag)
openingTagStart LONG

C l a r i o n C h a l l e n g e R e s u l t s – R e m o v e L i n k s

622

openingTagEnd LONG
count LONG

 CODE
 ! Make everything lower case
 pTag = Lower(pTag)
 LOOP
 openingTagStart = InString('<60>' & pTag, Lower(pCS), 1, 1)

 IF openingTagStart = 0

 ! No more tags
 BREAK
 END
 openingTagEnd = InString('>', Lower(pCS), 1, openingTagStart)
 IF openingTagEnd = 0
 ! This should never happen in properly formed
 ! HTML but just in case
 openingTagEnd = Len(pCS)
 END
 ! Replace all string matching the opening TAG with ''
 ! If I am lucky I may even get more than one hit with this...
 !
 ! In fact, in the sample text there are 9 such luck hits
 count += SELF.Replace(pCS[openingTagStart : openingTagEnd],|
 '', pCS)
 END

 ! Remove all the closing tags
 SELF.Replace('<60>/' & pTag & '>', '', pCS)

 RETURN count
HTMLCleanerClass.Replace PROCEDURE (STRING pFind, |
 STRING pReplace, *CSTRING pInto)
locate LONG,AUTO
lastlocate LONG
lenFind LONG,AUTO
lenReplace LONG,AUTO
count LONG
 CODE
 ! Pre-Compute some static values
 pFind = Lower(pFind)
 lenFind = Len(pFind)
 lenReplace = Len(pReplace)
 LOOP
 locate = InString(pFind, Lower(pInto), 1, lastlocate+1)

 IF ~locate

 RETURN count
 END
 count += 1
 ! so I dont end up having recursive replacement !
 lastLocate = locate + lenReplace-1

L e e W h i t e

623

 pInto = Sub(pInto, 1, locate-1) & pReplace & |

 Sub(pInto, locate+lenFind, Len(pInto))

 END

The use of INSTRING and SUB appear to be the biggest performance bottlenecks in
this code, as you can see by looking at the profile. One big advantage of this code is
that it appears to be fully ready for multi-character tags such as <div>, <table> etc.
I didn’t test that capability, however.

Lee White

When I was first learning HTML, Lee was the guy I went to when I had questions.
So it’s no surprise to me that Lee’s code looks for error conditions others might have
missed! Here’s his code:

LeeWhite PROCEDURE (*cstring tempdata)
!TempData &CSTRING
hLen LONG,AUTO
CharNum LONG
CharNum2 LONG
Chars3 STRING(3)
 CODE
 hLen = LEN(TempData)

 LOOP CharNum = 1 TO hLen

 Chars3 = TempData[CharNum : CharNum + 3]
 ! spaces are not allowed between leading characters so
 ! don't bother looking
 IF Chars3 = '<<a ' OR Chars3 = '<<A '
 LOOP CharNum2 = CharNum + 3 TO hLen

 ! ">" is not an allowable characters within an anchor

 ! so next ">" is end
 IF TempData[CharNum2] = '>'
 TempData = TempData[1 : CharNum-1] & |
 TempData[CharNum2+1 : hLen]
 hLen -= CharNum2-CharNum
 BREAK
 END
 END
 END
 END
 ! 2 loops remove worry about mismatched tags
 LOOP CharNum = 1 TO hLen
 Chars3 = TempData[CharNum : CharNum + 3]
 ! spaces are not allowed between leading characters

C l a r i o n C h a l l e n g e R e s u l t s – R e m o v e L i n k s

624

 ! so don't bother looking
 IF Chars3 = '<</a' OR Chars3 = '<</A'
 LOOP CharNum2 = CharNum + 3 TO hLen
 ! a space CAN be found between "a" and ">"
 ! so account for the possibility
 IF TempData[CharNum2] = '>'
 TempData = TempData[1 : CharNum-1] & |
 TempData[CharNum2+1 : hLen]
 hLen -= CharNum2-CharNum
 BREAK
 END
 END
 END
 END
 return

The second loop is basically a repeat of the first, except that it’s looking for the
closing tag. This two-loop approach means that the string is traversed twice,
however, which significantly increases execution time. On the other hand, this code
makes no assumption that <a> is followed by , and will do less damage to
badly-formatted HTML.

Charles Puett

Charles’ entry was the only one to use a recursive approach. His code is as follows:

CharlesPuett PROCEDURE (String Astring)

ATagText STRING(LEN(Astring))
StartPos USHORT(0)
ATagLen USHORT(0)
EndPos USHORT(0)
NewLen ULONG
 CODE
 NewLen = Len(CLIP(Astring))

 !!! Find the beginning anchor (the <a)

 StartPos = INSTRING('<a ', LOWER(Astring),1)

 IF StartPos Then

 !!! If the anchor is found, determine where the end of it is at
(the ">")
 ATagLen = INSTRING('>',LOWER(Astring),1,StartPos)

 IF ATagLen THEN

 !!! If the end is found then find the link delimiter (the)
 EndPos = INSTRING('',LOWER(Astring),1,StartPos)
 END
 End

G o r d o n S m i t h

625

 IF EndPos Then
 !!! Pull out the text between the ending ">" and the "
 ATagText = Astring[ATagLen + 1 : EndPos - 1]
 !!! Return the passed string from its beginning up to the
beginning anchor
 !!! plus the extracted text and recurse through the remainder
of the passed string
 !!! until no more complete delimiter sets are found.
 Return Astring[1 : StartPos - 1] & CLIP(ATagText) &
CharlesPuett(Astring[EndPos + 4 : NewLen])
 End
 Return Astring

Each call to the function returns the passed string up to the first <a> tag, plus the
code inside the tag, and then the function calls itself for the remaining portion of
the string. Very few lines of code, and decent performance. As you’re probably
coming to expect, most of the performance hit is in the calls to INSTRING.

Gordon Smith

Gordon used an approach I wondered if any would consider: instead of making a
copy of the string, just rewrite the original string. After all, you’re removing text, so
you know that the new string will be shorter. And this is just what Gordon does,
moving the characters one at a time as needed, and setting the string’s last character
to a <0> value. The function also returns the number of characters removed. Here’s
the code:

GordonSmith PROCEDURE (*cstring html) ! Declare
Procedure
ACharMap_ string('<0>{64}<1><0>{31}<1><0>{158}'), static

ACharMap byte, dim(255), over(ACharMap_)

AlphaCharMap_ string('<0>{64}<1>{26}<0>{6}<1>{26}<0>{133}'),
static
AlphaCharMap byte, dim(255), over(AlphaCharMap_)
NotAlphaCharMap_ string('<1>{64}<0>{26}<1>{6}<0>{26}<1>{133}'),
static
NotAlphaCharMap byte, dim(255), over(NotAlphaCharMap_)

readPos unsigned(1)
writePos unsigned(1)
inATag bool(false)
 CODE
 loop while html[readPos] ~= '<0>'
 if not inATag
 if html[readPos] = '<'

C l a r i o n C h a l l e n g e R e s u l t s – R e m o v e L i n k s

626

 if (ACharMap[val(html[readPos + 1])] and |

 NotAlphaCharMap[val(html[readPos + 2])])

 inATag = true
 readPos += 1 ! Minor optimization
 elsif (html[readPos + 1] = '/' and |
 (ACharMap[val(html[readPos + 2])] and |
 NotAlphaCharMap[val(html[readPos + 3])]))

 inATag = true

 readPos += 2 ! Minor optimization
 end
 end
 end

 if not inATag
 ! Most of the time it will be quicker to just
 ! copy the char rather than to test if I need
 ! to copy it...
 html[writePos] = html[readPos]
 writePos += 1
 elsif html[readPos] = '>'
 inATag = false
 end
 readPos += 1
 end
 html[writePos] = '<0>'
 return readPos - writePos

Had I simply been reading the source, I would’ve expected this code to come out the
winner, based on its total reliance on string slicing and character testing via arrays.
Performance was definitely good, though not the best, and the most expensive
operations were copying the single characters within the string and incrementing
counters.

Larry Sand

Larry turned in the second fastest time by redeclaring the string as a byte array, and
using numeric equivalents in place of string testing. Here’s Larry’s code:

LarrySand PROCEDURE (*String htmlToStrip) ! Declare
Procedure
b Byte,Dim(Size(htmlToStrip)),Over(htmlToStrip)

readPos Long,Auto
writePos Long,Auto
OpeningTagPos Long,Auto

L a r r y S a n d

627

charsAsLong Long,Auto
charsAsBytes Byte,Dim(4),Over(charsAsLong)
charsAsWords UShort,Dim(2),Over(charsAsLong)

readAheadPos Long,Auto
j Long,Auto

SPACE_CHAR Equate(20h)
LT_CHAR Equate(3Ch) ! '<'
GT_CHAR Equate(3Eh) ! '>'
BEGIN_LOWER_ATAG Equate(3C61h) ! '<a'
BEGIN_UPPER_ATAG Equate(3C41h) ! '<A'
CLOSE_LOWER_ATAG Equate(3C2F613Eh) ! ''
CLOSE_UPPER_ATAG Equate(3C2F413Eh) ! ''

 CODE
 writePos = 1

 Loop readPos = 1 to Size(htmlToStrip)

 If b[readPos] = LT_CHAR
 OpeningTagPos = readPos

 ! read the next four characters starting with the '<' into
 ! a long to allow testing for A tags using integer math
 charsAsLong = 0
 j = 4
 Loop readAheadPos = readPos to Size(htmlToStrip)
 charsAsBytes[j] = b[readAheadPos]
 j -=1
 Until j < 1

 If charsAsWords[2] = BEGIN_LOWER_ATAG Or charsAsWords[2]=
BEGIN_UPPER_ATAG
 ! skip to the end of opening A tag
 Loop readPos = readAheadPos-1 to Size(htmlToStrip)

 If b[readPos] = LT_CHAR !something's wrong with the A tag

 readPos = OpeningTagPos
 Break
 End
 Until b[readPos] = GT_CHAR

 If b[readPos] = GT_CHAR
 Cycle
 End

 ElsIf charsAsLong = CLOSE_LOWER_ATAG Or charsAsLong =
CLOSE_UPPER_ATAG
 readPos = readAheadPos

C l a r i o n C h a l l e n g e R e s u l t s – R e m o v e L i n k s

628

 Cycle

 Else !it was not an A tag
 readPos = OpeningTagPos
 End
 End !Processing an opening tag character

 b[writePos] = b[readPos]
 writePos += 1
 End

 ! fill the remainder of the string with space characters
 Loop writePos = writePos to Size(htmlToStrip)
 b[writePos] = SPACE_CHAR
 End

 Return

Like Gordon, Larry works on a single string, but because it’s a STRING not a CSTRING
he has to pad it with spaces at the end.

I don’t think there’s a whole lot more you can squeeze out of pure Clarion code.

And the winner is... Geoff Robinson!

Geoff turned in the fastest time of all. His secret weapon? The memchr Windows
API call, which offers very fast searching of a character buffer. Here’s the code:

GeoffRobinson PROCEDURE (*STRING p:Str)

! - uses memchr which should be faster than
! instring, but requires:
! map
! MODULE('Standard C Library')
! MemChr(ULONG,LONG,UNSIGNED),LONG,NAME('_memchr')
! END
! end
!
!--

i LONG,AUTO,STATIC ! pointer to left angle bracket
j LONG ! pointer to right angle bracket
k LONG,AUTO,STATIC ! temp holding pointer
EndPtr LONG ! pointer to end of included text
StartPtr LONG ! pointer to start of next block of
 ! included text
Offset LONG,AUTO,STATIC ! used to convert absolute address

A n d t h e w i n n e r i s . . . G e o f f R o b i n s o n !

629

 ! to clarion character pointer

 CODE
 Offset = Address(p:Str) - 1

 LOOP

 ! 60 is left angle bracket
 i = MemChr(Address(p:Str) + j, 60, size(p:Str) - j)
 if ~i then break.
 i -= offset
 j = i + 1
 if j >= size(p:Str) then break. ! not enough room for rest of
tag
 if p:Str[j] <> 'a' and p:Str[j] <> 'A'
 if p:Str[j] = '/' and j < size(p:Str) - 1 and |
 (p:Str[j+1] = 'a' or p:Str[j+1] = 'A') and p:Str[j+2] = '>'
 j += 2 ! point to right angle bracket
 else
 cycle ! not an "a-tag"
 end
 else
 ! 62 is right angle bracket
 j = MemChr(Address(p:Str) + i, 62, size(p:Str) - i)
 if ~j then break.
 j -= offset
 end

 if EndPtr or StartPtr
 if i > StartPtr
 k = EndPtr + 1
 EndPtr = EndPtr + i - Startptr
 ! shuffle text down
 p:Str[k : EndPtr] = p:Str[StartPtr : i - 1]
 end
 else
 EndPtr = i - 1 ! pointer to last used char in string
 end
 StartPtr = j + 1
 END
 ! no more tags so shuffle down any text on the end
 if StartPtr > EndPtr then p:Str[EndPtr + 1 : size(p:Str)] = |
 p:Str[StartPtr : size(p:Str)].
 return

Once again, Geoff works directly on the passed string.

C l a r i o n C h a l l e n g e R e s u l t s – R e m o v e L i n k s

630

Figure 3 shows Profiler’s analysis, but again only showing total clock cycles per line
(Profiler also tracks longest, shortest, and average clock cycles).

Geoff wins a ClarionMag/Planet Clarion coffee mug (www.cafepress.com/
clarionmag) of his choice.

I hadn’t specifically said that entries had to be pure Clarion code, and using the
Windows API is definitely a legitimate technique for speeding up Clarion apps, so
Geoff’s first place is fully deserved. But I’m also awarding a mug to Larry for the best
“pure Clarion” entry.

Conclusions

After I had all the results in profiler, I did a bit of playing with the statistcal display,
looking at which lines of code took the longest to execute once, and which took the
most time, in total. As you’d expect, this revealed that string handling can be
expensive if not done carefully.

Figure 3: Cumulative execution times per line – GeoffRobinson

T h e C l a r i o n . N E T v e r s i o n

631

INSTRING, LEN, and SUB are all quite slow functions, and INSTRING got used a lot in
some of the entries. A single INSTRING call typically took from 75 to 200 clock
cycles.

Moving string data round also takes time, a point made by Jim Gambon in his
excellent two-parter on string handling (www.clarionmag.com/cmag/v5/
v5n07strings1.html). It’s no accident that the fastest functions all operated directly
on the original string, rather than make a copy.

The Clarion.NET version

No, I don’t have Clarion.NET in hand, but I think it’s safe to say it will have
standard .NET string handling, and full access to all of .NET. And that means that
the solution to this problem, in Clarion.NET, will probably look like this:

newString = System.Text.RegularExpressions.|

 Regex.Replace(origString,'</?(?i:a)(.|\n)*?>', '')

That’s right – one line of code, using regular expressions (RegEx). I found an
example of this code in a comment by Jorge on this page (weblogs.asp.net/
rosherove/archive/2003/05/13/6963.aspx). Clarion has some basic RegEx capability
in the MATCH function, but nothing like this, as far as I know. I haven’t checked
performance, so this .NET code might not measure up to the entries above. But it’s
probably good enough for just about anything you want to do, and it does illustrate
rather nicely the power and convenience awaiting Clarion developers in .NET.

Incidentally, you can easily expand the above code to remove multiple tags at once.
Here’s a version that removes anchor, image, div, and script tags (note the |
separator character):

newString = System.Text.RegularExpressions.Regex.|
 Replace(origString,'</?(?i:a|img|div|script)(.|\n)*?>', '')

If you want to play with regular expressions in Clarion, be sure to read Carl Barnes’
article (www.clarionmag.com/cmag/v3/v3n6match.html) on the subject. Among
other things Carl notes the new STRPOS function, which handles regular
expressions. None of the entries used it, and it might make for some flexible, easily
maintainable code.

C l a r i o n C h a l l e n g e R e s u l t s – R e m o v e L i n k s

632

Source code

See “Appendix A: Getting Support” on page 655 for information on how to get the
source accompanying this book.

• v8n03rmlinks-results.zip

C o m p l e t e t e s t r e s u l t s

633

Complete test results

Carlos Gutierrez

Figure 4:

C l a r i o n C h a l l e n g e R e s u l t s – R e m o v e L i n k s

634

David Harms

Figure 5:

C o m p l e t e t e s t r e s u l t s

635

Poul Jensen

Figure 6:

C l a r i o n C h a l l e n g e R e s u l t s – R e m o v e L i n k s

636

Brahn Partridge

Charles Puett

Figure 7:

Figure 8:

C o m p l e t e t e s t r e s u l t s

637

Geoff Robinson

Figure 9:

C l a r i o n C h a l l e n g e R e s u l t s – R e m o v e L i n k s

638

Larry Sand

Figure 10:

C o m p l e t e t e s t r e s u l t s

639

Gordon Smith

Lee White

Figure 11:

Figure 12:

C l a r i o n C h a l l e n g e R e s u l t s – R e m o v e L i n k s

640

641

METADATA MANAGEMENT: THE WAY TO A
WELL-ORDERED ENTERPRISE

by Michael Gorman

No one would argue that enterprises should have their financial books in order.
How else can you know where you’ve been, where you are, and where you project
you’d like to go? But just what is the “data” that’s in the financial books? It’s not real
data; rather it’s abstract representations of the real data. If it were real data, then
you’d actually see inventory data, reserves data, manufacturing cost data, and HR
benefits data. But you don’t. What you see are abstracted financial representations
of these data. That is, when you look at financial statements you’re looking at data
about these data, or to use the formal term, you’re looking at metadata.

What then is the financial system that manages all the financial data? It’s a financial
metadata management system. Of course you’ll call these systems names like General
Ledger. A key measure of the quality of the enterprise is the quality of its financial
metadata within its financial metadata management system. You cannot have
enterprise-wide, integrated and non-redundant quality financial data about your
products, sales, employees and customers without an integrated, federated and non-
redundant financial [metadata] management system. They go hand in glove..

Analogously, IT has its set of books and in those books are metadata. As with
financial-metadata, you need a metadata management system to manage IT

M e t a d a t a M a n a g e m e n t : T h e W a y t o a W e l l - O r d e r e d E n t e r p r i s e

642

metadata. It also follows that a key measure of the quality of the enterprise is the
quality of its IT metadata management system. You cannot have enterprise-wide,
integrated and non-redundant quality IT metadata data without an integrated,
federated and non-redundant metadata management system. They too go hand in
glove.

It’s all about quality, and this paper is focused on quality IT Metadata. How
important is good data quality? A Google search on the phrase “data quality” turns
up more than 2,600,000 hits, largely dealing with data quality problems and
solutions. Data quality problems are rooted in discordant semantics, which are, the
rules for meaning and usage. For example, what happens if your company lacks
policies for:

• Having or not having dashes in social security numbers

• Using 0 and 1 for Gender, vs 1 and 2 for Gender. (Value domain
mismatch)

• Name consistency: Mike Gorman vs. Michael M. Gorman (Same
person, different names errors)

• Name differentiation: Michael M. Gorman vs. Michael M. Gorman
(Different persons, same name)

• Standard formulas: For instance, March East Region Sales = Sales for
March of NE Division + Sales of March of SE Division, but, the
March Sales of NE Division is Net After Expenses, while the March
Sales of SE Division is Total Monthly Sales.

The challenge is not simply whether there are data quality issues, nor how to fix
them, but how to design these data quality issues out of the IT process from the
very beginning. Not only will enforcing data quality make fixing errors faster, it also
will make IT system development faster and cheaper to evolve and maintain.

The way to achieve data quality is to install an infrastructure of quality IT metadata,
and with it a quality metadata management system. But before you can do that
you’ll probably have to convince your boss of the benefits of metadata management.

Convincing the boss

Any enterprise-wide metadata management system and infrastructure has to have a
beneficial impact on the bottom line. Here are four key measures that will
determine your success:

D e s i g n a w a y E T L

643

1) Improves Quality

2) Improves Productivity

3) Decreases Cost

4) Decreases Risk

If your installed metadata management system cannot deliver these four key
measures then you should and will be judged a failure. So, what are you going to
do? Here are some suggestions for measuring the quality of IT metadata.

Design away ETL

Determine how many programs are being written to essentially perform an extract,
transform, and load (ETL – en.wikipedia.org/wiki/Extract,_transform,_load)
function. For example, if your sales, customer management, ordering, inventory,
and billing systems are all “stove pipes” then ETL software is required to bring all
that data together to have total customer or product management. If you had data
with high quality integrated and non-redundant semantics across these systems
and/or if these systems operated off a single integrated database, then these
programs would largely be unneeded. Instead of massive quantities of ETL
programs, the increased levels of integration can range from integrated semantics
across the set of multiple databases and information systems, to an integrated
database that all the separately created information systems can access, to a
completely integrated system. Yes, programs would be needed for building
summaries and the like, but in most enterprises the on-line analytical programs are
largely accomplishing that role. The existence of these ETL systems therefore is a
direct consequence of not having a quality metadata infrastructure. Compute the
life cycle cost of these systems and add this to the Cost of Bad Metadata
Management.

Consolidate and integrate

Determine how long it takes to design a program to process against a database. Does
the program have to “fight” with the database’s design and build all sorts of temp
files, extracts, and the like? All of that is generally due to bad database design. If
your enterprise policy is well engineered, that is, integrated, not conflicting, and
non-redundant, then so too will be your database designs. If a database is very well

M e t a d a t a M a n a g e m e n t : T h e W a y t o a W e l l - O r d e r e d E n t e r p r i s e

644

designed, then building the essential logic of the program is a code generation step.
For all of us, this is a “no brainer” with Clarion. If you are building many database
integration programs then you need to consider redesigning your databases to be
fewer in quantity and more integrated. In short, consolidate and integrate.

If you’ve already done that and your programs still “fight with the database” then
likely the database’s design is wrong. That’s either a design problem that needs IT
attention, or an enterprise-policy problem that needs corporate-management
attention. If your data capture and updating programs are all OK but your reporting
programs are a processing nightmare then consider building “data warehouse”
databases that contain data from many other databases and are tuned in design, for
example, for just reporting the total customer experience with your business (that
is, ordering, delivery, maintenance, returns, and feedback). Figure out the quantity
of function points (en.wikipedia.org/wiki/Function_point) of these programs and
divide each by the quantity of database tables that are being accessed. You should
have about 80 function points per table. A higher number means more embedded
processes as that’s the main source of the counts. A lower number means fewer to
essentially no embedded processes. I estimate the average cost to build the function
point, if you are using a code generator, to be about $50.

The very existence of this fight and all the infrastructure that must be created to
compensate is a direct result of not having a quality, enterprise-wide, and federated
metadata management infrastructure. Compute these costs and take the excess and
add it to the Cost of Bad Metadata Management.

Standardize reference data

Do you have standardized reference data? Reference data is metadata. It is created,
managed, distributed, and employed across all databases and information systems
in the enterprise either physically or virtually. In the examples above, are there
standard “city-state-zip” code tables that are available to all databases and systems?
Is there one place for all key customer data such as addresses, contacts,
assessments, rankings, and phone numbers? Compute the cost of defining each
effectively duplicated set of reference data, and then add all the costs in excess of
creating and maintaining reference data more than once to the Cost of Bad Metadata
Management.

M a s t e r d a t a

645

Master data

Do you have authoritative data sources? These are now called Master Data. Some
organizations also call these data Strategic Data. For example is there one definitive
place to which all key customer data updates are driven and then, because of that
there’s one definitive place from which all customer data can be referenced and/or
employed? Master data is just another version of the key slogan “Define once, use
many times.” Master data’s slogan is “create once, store once, and update once to
then use many times.” Regardless, the process and infrastructure of defining,
knowing about, and managing all this master data is metadata management. Thus, if
there is more than once definitive source for all multiply-used data, then compute
the cost all this data creation and maintenance (beyond the first instance) and add
that to the Cost of Bad Metadata Management.

Assign enterprise identifiers

Do you have enterprise identifiers for all assets that reside in the IT enterprise? An
enterprise identifier is a unique number that is not information-bearing, and that is
assigned to each asset as it first comes into existence within the enterprise. Is there a
central database and supporting metadata management system for maintaining all
metadata about these enterprise identified assets? In the above example there would
be “master” customer identifiers, product identifiers, employee-identifiers and the
like. Once these identifiers are defined and deployed complete knowledge about all
uses of customer data is available because the customer is definitively known
through the enterprise identifier. Enterprise identifiers are key to the successful
creation and deployment of authoritative data sources. If enterprise identifiers are
not created and maintained then compute the cost of all the cross reference
identifiers, and compute the cost of all the human and computer resources
necessary to determine the unique set of assets. Subtract from these costs the costs
to create and use a single set of enterprise identifiers. Add the difference to the Cost
of Bad Metadata Management.

M e t a d a t a M a n a g e m e n t : T h e W a y t o a W e l l - O r d e r e d E n t e r p r i s e

646

Remove redundancies

When the managers get together to build budgets for your business do they argue
about what the “numbers” mean? That is, do they have different numbers for the
count of employees, total sales, cost of inventory, value of assets, and all that? If
they have conflicting numbers, then once the cost of creating all those conflicting
numbers is accounted for, compute the cost of all those arguments and the cost of
coming to a determination of the correct “numbers.” The infrastructure that
contains all the definitions, the processes that compute the numbers, their
supporting systems, the calendar and business cycles that are operating to compute
the results, and of course the interrelationships among all these definitions,
numbers, calendars, and business cycles are all metadata and the system to manage
it is the metadata management system. Again, compute the cost of all these
redundancies, fights, time, effort and energy to resolve the discrepancies, and add
that cost to the Cost of Bad Metadata Management.

Now, if you are armed with these numbers then you can quickly say something like
this to the CIO:

If we have quality metadata and a quality metadata management system then we can
reduce the cost of all software design and implementation by at least 40%. We can
reduce the quantity of data storage by 50%.

The CIO will listen to your story because you’re talking the CIO’s language:
improved productivity, reduced cost, lowered risk, and increased quality. Metadata
management is the key foundation block to a well ordered enterprise just as is its set
of well-ordered financial books. It’s that simple.

647

PROVIDING GOOD CUSTOMER SUPPORT

by Drew Bourrut

They call day and night, email you even on weekends, and actually expect you to
help... customers! Arggh! But without them, you’re out of business. So what is the
best way to manage tech support? In this article I’ll first define what I believe is
good tech support, and then I’ll suggest ways to assure that type of support.

Let’s assume you have a product that requires you to answer questions about
everything from perceived bugs in the product, to how to use some extremely
simple feature. Let’s further assume that you are interested in providing good
support, both because you believe it’s the right thing to do, and because it may help
to increase business.

The customer’s perspective

The first thing to do is to not look at support from your perspective but rather from
your customer’s perspective. What does the customer want? Above all, the
customer would rather not have to contact you in the first place. So the easier your
product is to use and the more bug-free and reliable the product the happier the
customer (and having a too-buggy product could cause you to go out of business).

P r o v i d i n g G o o d C u s t o m e r S u p p o r t

648

Second, try to anticipate your customer’s preferred way of contacting you. Offer
choices. Email and telephone are perhaps the most common. If the customer is
going to use email, s/he probably doesn’t want to fill out a complex web application
form to ask a simple question. If by phone, the customer doesn’t want to have to
push a myriad of buttons before being given to the appropriate person. Further,
customers don’t want to be on hold for hours.

Third, if the problem cannot be resolved immediately and requires work on your
part, the customer almost certainly wants to be kept informed of the status of the
problem.

Finally, when the problem is resolved, the customer wants to know that the
problem has been resolved.

Let me give a simple example. I have cable Internet access. Suppose one day I
discover access to the Internet is down. I call my ISP and they say they will have to
research the problem and will contact me. But I’m impatient, so after an hour I
check... No service... Another hour goes by... no service... another hour... no
service.

At some point I stop checking. Two days go by and I’ve heard nothing. Then I
decide to check, and discover I have service. Should I be happy? I should be furious.
When was it fixed? For how long have I had service and not known it?

How could this have been made better? My ISP could have said, “We will phone
you when the problem is resolved.” They then could have had some sort of
automated system make the phone call and play a message stating that the problem
had be taken care of. I would have been a happy camper!

So, when there is a problem that cannot be immediately resolved the customer
probably wants feedback, and for such a customer probably no amount of feedback
is too much.

Providing support

Okay, you’re committed to good support, but it takes time to provide good support
and you don’t have the time. Simply put, this is nonsense. The key is in the
methodology. You need to create a process that works for you, and then use that
process each day every day, with every situation, big or small. For example, I use
my own product (which I call PSI HD) to track problems and their resolutions.

M y p r o c e s s

649

My process

Every problem a customer reports to my company goes through the following
process:

• Customer contacts me

• I enter the date and time of the contact, and a synopsis of the
problem.

• I now either solve the problem or add it to the queue of problems to
be solved.

• If I can immediately solve it I note what I did, complete the call or
email, and then move the problem to the solved problem folder.

• If the problem must be added to the queue, I state how long it may
take (is it hours, days, weeks?) and tell the customer.

• I keep the customer updated. For example, I have a standard form
email letter I keep, and which I periodically send to the customer
telling him that we are still working on the problem; in the email I
also note any parts of the problem that have been resolved. It takes
seconds to send out this email.

• When the problem is resolved, I call the customer if they’ve called
me, or email them if I was originally contacted by email. I state the
resolution of the issue.

• I note in the log what I’ve done, and then move the logged entry to
the completed folder. By the way, this folder becomes a great
resource for solving similar problems.

• Finally, regardless of the situation, after a period of time I double-
check by either calling the customer or sending another email to ask
if things are still okay.

• I periodically update the above process to make it better and more
efficient.

The routine

The key to success is in the routine. Do it the same way each and every time, and
always do what the customer requires.

P r o v i d i n g G o o d C u s t o m e r S u p p o r t

650

Here’s one more example. We were referred to a client (by one of our current
customers) to solve a spyware problem. Simple, we went, we ran various pieces of
software, and the spyware was reported as removed. We left a bill. The next day we
called, and asked “Is everything okay?” We were surprised to discover that the same
piece of spyware was back. We went back twice before it was fully removed. Time
passed and that customer moved to a new office. We were asked to make sure all of
the technology-related products were properly installed and set up at the new
location. When I asked why we were being asked to provide this service, the
customer said, “You’re the first company that ever called us back after a service call
to make sure things were working. And when they weren’t you took care of it and
checked back again. I know you’ll do the right thing.”

But let’s take a deeper look at this idea of routine. Fast food chains know about
routine. They know that if you do it the same way each time you spend less time
than if you re-event the wheel over and over again. You may see having a routine as
something that diminishes creativity. I argue that’s not so. Rather, having a good
routine allows more time for the creative process. I have various routines and so do
you. It may be getting up at the same time each day or eating dinner at a specified
time. In general, routines are what make creative time possible.

Creating a routine

There are three keys to creating a routine that you will be able to follow.

1) Put it in writing

2) Automate as much a possible

3) Re-work it when it fails to handle a situation.

Putting a routine in writing is key because a written procedure doesn’t depend on
your potentially faulty memory. Also, a written procedure can be revised. If you
simply try to create a routine in your head you’ll fail on two fronts. First, you won’t
be consistent, and without consistency you don’t have a routine. Second, it’s easier
to more thoroughly re-work a written routine than to depend on your memory.

For example, suppose you create a routine for handling un-solicited calls.
Occasionally you’ll have a situation not covered by your routine. By writing down
the routine you can easily modify it when it doesn’t work.

Here’s an actual example. When I receive an unsolicited call at home, I do the
following:

M o r e o n A u t o m a t i o n

651

• Ask the person’s name and company, and write it down

• Note the date and time of the call

• Ask to be put on the “Do Not Call” list.

Recently a company has been calling my home with a completely automated
message. I could not tell them to not call again since there was no person to talk to.
But at the end of the message there were instructions to press the numeral two to be
put on their Do Not Call list. I pressed it. A week later I got another call from them
and I had to listen to the whole message again to learn what number to press to
remove myself from their call list. But this time when I hung up I changed my
procedure and noted it on my form. I then updated the written procedure to remind
me and my wife of this change. I haven’t stopped them from calling but now I
immediately hit 2 and hang up.

Once you have a routine, automate it as much as possible. Our company has a
holiday card list, which I maintain using a piece of software that I use for no other
purpose. For quite some time I had a problem remembering what software to use
and how to use it. I created an automated procedure that, unasked, prints a
document December 1st. This document reminds me of what I need to do and how
to do it. Shazam!

Finally, rework your routines. As you saw in the phone example I changed the
routine when it failed to work. And make a routine of revisiting your routines.
You’ll only make the process better.

More on Automation

Here are three possible scenarios where automation can really help: a hardware
manufacturer, a software manufacturer, and a tree spraying company.

The hardware manufacturer

Let’s say you build computers that are sold over the internet. You probably get two
types of support calls: “How do I?” and “It doesn’t work!” calls. The “How do I?”
calls are the easiest to automate. Every time you get a question, you enter that
question into your support log. Then you log the solution into the same support
log, and finally add the question and solution to an online knowledgebase
searchable by your staff as well as by the customer. Don’t just rely on the Internet
version – by having an offline log you have access even when your Internet access is

P r o v i d i n g G o o d C u s t o m e r S u p p o r t

652

down. The next time similar a question is asked, the staff already have the answer.
Further since the customer can find the answer online, they may not call.

Hardware problems can also use automation up to and including issuing a Return
Material Authorization for computer return. But there is more you can do. When
the computer is received your system can automatically send an email to the
customer stating that you are in possession of their machine and telling the
customer when they can next expect to hear from you. When a tech puts the
hardware on the bench and starts to look at the machine this can trigger another
automated email, and every time the tech notes what she is doing to solve the
problem that can also be emailed to the customer.

The customer who knows where things stand is less likely to be calling you and
complaining.

The Software Manufacturer

Suppose you make a software product that you sell on the Internet. You know that
when you release version 1.0 that there are probably bugs in the software, and
certainly there will be updates and upgrades. So you’re not going to be surprised
when a customer emails you saying they’ve found a bug. You can automate
acknowledging the receipt of the message. You can automate making sure the email
is passed on to the correct person in your organization. And you can automate
keeping the customer updated on solving the problem. Sometimes the customer
may find a way to work around a bug. You can encourage the customer to report
these workarounds. Then finally all of this information can be automatically added
to an online searchable knowledgebase.

The Tree Spraying Company

I have a customer who has a tree spraying company. We’ve created custom software
for them that not only handles their sales and accounting functions but also helps
them automate handling complaint calls from their customers.. Typically, they get
complaints that a spraying was not done when it should have been, and complaints
about the quality of work. Perhaps they sprayed right after a rain storm and the
customer wants a re-spraying. They have a routine for handling both phoned-in
complaints as well as emailed complaints. They also could have an automated,
online system that would allow their customers to reschedule a missing or poorly
done spray, and also find out more about tree spraying in general. There they might
learn that an hour after a rain storm is a great time to spray against insects.

S u m m a r y

653

Summary

I’ve discussed those issues directly related to support from the customer’s
perspective. Other things to consider include tracking your time, tying support and
billing together, and even handling issues of replace vs. repair.

What’s important is that we can all do better at supporting our customers. Routines
are essential, and finding ways to automate those routines is just as important! You
already know that keeping the customer happy is good business and besides, that
customer may be me!

P r o v i d i n g G o o d C u s t o m e r S u p p o r t

654

655

APPENDIX A: GETTING SUPPORT

Getting the source code

Source code is available for download at:

http://www.clarionmag.com/books/tips4/

If you do not have access to the Internet, please contact the publisher at the
following address:

CoveComm Inc.
1036 McMillan Ave
Winnipeg, MB R3M 0V8 CANADA

Tel: 204-943-5165

Errata

Corrections to the book are listed at:

http://www.clarionmag.com/books/tips4/

If you find an error in the text, please report it via the above web page.

A p p e n d i x A : G e t t i n g S u p p o r t

656

657

AUTHOR INDEX

A

Abspoel, Roel
Beautifying Clarion Applications 55

B

Barnes, Carl
A Better DATE Function 585

Bourrut, Drew
Providing Good Customer Support 647

C

Canyon, Deon
Printing A Tree From A Page Loaded Browse 219

Christ, John
Solving Problems With Finite State Machines 607

Cretey, Olivier
Using DOS Files To Send Printer Codes 263

D

Daniell, Rhys
Multi-User Primary Keys - A Solution 335

Dell, Benjamin
Understanding The Clarion 6 Version Control Interface 489

Dunn, John
A Class Wrapper for the SimpleOCR API 155

E

Eggen, Russ
A Template Debugger 149

F

Fleming, Jane
Encryption and Application Signing 363
Signing Your Applications 375

A u t h o r I n d e x

658

Signing Your Applications - New Challenges 391

G

Gorman, Michael
Metadata Management - The Way to a Well-Ordered Enterprise 641
Whitemarsh’s Use Of Mimer With Clarion 275

Griffiths, John
Next Month Anniversary Date Function 589
PROP SQL And Embedded Single Quotes 355

Grosperrin, Bernard
Calling XSLT Code From Clarion 301
Creating SQL From XML With XSLT 289
CVS Server And Client Installation 473
Version Control with CVS and Clarion 6.x 455

H

Harms, Dave
A Survey Of Embed Usage 93
Accessing Private Class Data 567
App Shutdown Options in Clarion 6.2 561
Clarion Challenge Results – Remove Links 615
Classes For Background Processes 201
Running Clarion 6 on Vista 427
The Five Minute Developer - Displaying QUEUEs 575
The Five Minute Developer - Sorting QUEUEs 571

Havnen, Bjarne
Generic DLLs The Template Way 541
Printing Unknown Queue Fields 233
Using the SQL Advanced Tab 279

Herron, Dermot
Encrypting Data With Number Base Conversion 553

Hickey, Harry
Hand Coding Export Files 545

Honea, Marty
Using MS Visual Source Safe With Clarion 499

J

Johnson, Bruce
Printing a “No Records” Report 237

659

L

Lehmann, George
Eliminating Circular DLL Calls 511

M

Morter, John
A Global Variables Protection Class 185
Global Variables, Threads, Critical interSections and the Dangers of Unprotected Sets 173

P

Parker, Steven
Completely Dynamic Listbox Formatting? 17
Direct-To-USB Printing 267
Inter-Date Computations 579
Print Directly to Printer Made Easier 255
Recursive Adds 83
Replicating IDLE - Throwing Users Out 67
The Easiest Way To Write To A Printer Port 259
Throwing Users Out - Methods of Computation 75
Updating Hot Fields 39
When START Starts 211
Writing To A Printer Port - Sending Escape Codes 245

Pattinson, Nick
Using SQLIdentity in Clarion 6 327

Plotkin, Henry
Aesthetically Pleasing Recursive Updates 47
Edit-In-Place - Getting User Confirmation 29

Podger, David
Printing A Tree From A Page Loaded Browse 219

R

Riffey, Mark
Get Ahead Of Your Competition With Vista And Office 2007 413
Manifests for Hand Coded Apps 407

S

Sand, Larry
Nifty Window Tricks And Smart DLL Loading 521

Slarve, Jeffrey
Reusable Code and Hand Coded DLLs 531

A u t h o r I n d e x

660

Swanevelder, Nardus
An Economical Record Status Control 141
An Introduction to CVS and WinCVS 431
Another Single Browse For Multiple Lookups 129
CVS, WinCVS and Clarion 445
External Business Rules with the In-Memory Driver 313
Improving On The Non-Related Lookup Template 163

T

Taylor, John
Embedding The SQLite Engine In Clarion Applications 343

Telford, Alan
A Customized Deep Assign Function 599
Adding Arrays To Generic Queues With HOWMANY 593

W

Will, Phil
Internationalization Tools Standards - Learning from an ABC Calendar Workaround 3

661

SUBJECT INDEX

Symbols
!ABCIncludeFile 7
#compile 151

#link 151

#model 150

#pragma 150

.NET

calling from Clarion 303–308
XSLT 302

ABCDllMode 569

ABCLinkMode 569

A
ABC

BrowseClass

AddField 132
AddLocator 132
AddSortOrder 132
AddToolbarTarget 132
ApplyFilter 111
ApplyRange 111
Ask 111
Init 111, 131, 132
Open 111
PrimeRecord 111
Reset 111
ResetFromAsk 36, 111
ResetFromFile 46, 309
ResetFromView 111
ResetQueue 46, 111
ResetSort 111
ScrollOne 111
SetAlerts 111

SetFilter 111
SetQueueRecord 111
SetSort 111
TakeEvent 111
TakeKeys 111
TakeNewSelection 43, 111
UpdateBuffers 111
UpdateWindow 111
ValidateRecord 111

CalendarBaseClass 5
Ask 5
Setup 6

CalendarClass 4–16
CalendarSmallClass 5

IsHoliday 5
EditClass

Init 37
TakeEvent 36

ErrorClass

SetProcedureName 131, 197
FileManager

Close 321, 323
Fetch 44, 45, 50, 164, 165, 167, 169
Insert 323
Open 320
RestoreFile 284
SaveFile 284
TryFetch 321
UseFile 320
ValidateRecord 331

FileMangaer

Next 320
INIClass 419–424

Fetch 132
Init 422
Update 132, 197

ListFormatManagerClass 3
LocatorClass

Init 132
RelationManager

Close 196

662

ReportManager

AskPreview 241
OpenFailed 240
Report 239
Response 241
TakeNoRecords 239
TakeRecord 235

ResizerClass

Resize 132
StepClass

Init 132
TranslatorClass 7

TranslateWindow 9
ViewManager

AppendOrder 20
SetFilter 20
SetOrder 20

WindowExtenderClass 562, 563, 564
Init 562

WindowManager

 106
AddItem 131
Ask 106
AskPreview 106
BatchProcessing 52, 53
CancelAction 71, 80
ChangeAction 52
DeleteAction 87
EndReport 107
Fetch 168
Init 51, 80, 90, 109, 131, 183
InitControlProperties 106
InsertAction 51, 87, 88, 90, 91, 92,

106
Kill 132
OkControl 87
Open 106, 110, 132
OpenFiles 90
OpenReport 106
OriginalRequest 52
PrimeFields 106

PrimeUpdate 87, 106
Request 87, 131, 145, 168, 169, 331
Reset 45
Run 106, 329, 330
SetAlerts 107, 132
SetControlProperties 106
SetControlValues 107
TakeAccepted 106
TakeCloseEvent 107, 563
TakeCompleted 106
TakeEvent 69, 71, 79, 106, 562
TakeFieldEvent 106
TakeNewSelection 107
TakeNoRecords 106
TakeNotify 565
TakeRecord 107
TakeSelected 107
TakeWindowEvent 106
Update 106
ValidateRecord 242, 331
VCRRequest 131
ViewRecord 90

WindowResizerClass

Init 132
ABC classes

modifying 240
ABCFree templates 604

ACCEPT

and START 212
ACCEPTED 33

ADD 43, 226, 231, 232, 264, 265, 603

ADDRESS 158, 178, 179, 189, 206, 562, 629

ALIAS 50

ALL 556

alpha blending 522

and global variables 173–183

anniversary dates 589–591

ANSI 352

ANY 600–605

663

application signing

see signing applications

array

adding to queue 593–597
and HOWMANY 594
OVER GROUP 6

arrays 219–232

ASCII

codes 368
file 229

ASSERT 186, 188, 193

atomic assignments 174

automatic shutdown

see shutdown, automatic

autonumber key 327–333, 335–342

B
background processes

see threads, background

BAND 527

batch file

echo 399
running application 399

BEEP 202

BOR 526, 527

browse

see also ABC, BrowseClass

filtering 17
for multiple lookups 129–139
format string

multiple 25
hiding sort fields 22
multi-tabbed 21
sort field, displaying 24
sorting 56
sorting alternatives 56

business management 641–646

business rules 313–325

BXOR 357, 369, 527

C
C# 301–311

callback 352

Cancel

Cancel 71, 80, 87
CapeSoft

Profiler 616
WinEvent 261

CASE 32, 35, 590, 596, 610, 612

certification authorities 366

Change

Batch 52
Caller 52

ChangeRecord 50, 330, 331

CHAR 369

character I/O 609–614

CheckOpen 340

checksum 558

CHOOSE 166, 206

Clarion 6.3

running under Vista 427–428
Clarion challenge 615–639

Clarion Handy Tools 604

Clarion.NET 631

CLASS 421, 522

CLEAR 49, 81, 83, 131, 226, 227, 228, 230,
287, 601

CLIP 26, 142, 188, 230, 231, 253, 321, 340,
341, 357, 369, 556, 602, 624

CLOCK 77–78, 309, 580, 581, 583, 617

CLOSE 232, 264, 284

COLOR

Black 60
BtnFace 40
Silver 60

664

COMMIT 345

COMPILE 421

COMPONENT 166

Concurrent Versions System

see CVS

Constant Special Item ID List

see CSIDL

Construct method 208

constructors 207

control

creating at runtime 141–147
owner-drawn 411
redrawing 57

control template

creating 143
COPY CON 263

CRC16 559

CREATE 230, 307
attribute 264
OLE 307

critical section 178–183, 185–199, 313

CriticalSection

Release 178, 180, 182, 185–199
Wait 178, 179, 182, 185–199

CSV 290, 593

customer support 647–653

CVS 431–443, 445–454, 455–471, 473–488
see also WinCVS

CYCLE 611, 617

D
DATE 589–591

replacement 585–587
date

calculations 579–583, 585–587
pictures 10

DAY 590

DCT2SQL 276

DDE 498

Debuger 149

debugger

template 149–152
DebugView 150

deep assign

customized 599–605
defenestration 75

DEFORMAT 579

DELETE 43, 351

Delete

None 87
Destruct method 195, 208

destructors 207

Device Control Block 261, 267

digital certificate

obtaining 375–378
see signing applications

DinamiComp template 317

DISPLAY 142

DISPOSE 612

DLL

adding to APP 537
attribute 522
circular calls 511–519
generic 531–539, 541–544

template-based 541–544
hand coded 531–539
loading at runtime 521–530
multiple 130

DLU vs pixel 58

drive mapping 399

DRIVER 264

E
EditAction 35

665

Cancel 35
Forward 35
None 35

edit-in-place

see EIP

EIP 29–37, 84
keystrokes 34
overrides 34

embeds

commonly used 93–126
encryption 363–374, 553–559

asymmetric 369
private key 369–374
public key 369–374
symmetric 367

EQUATE 421

ERROR 42, 45

ERRORCODE 42, 45, 226, 230, 264

EVENT 70, 77–78, 79, 80, 81
 71
Accepted 33, 69, 71, 77–78, 80, 89, 91,

105
AlertKey 105
CloseDown 563, 566
CloseWindow 52, 69, 70, 77–78
Completed 52
Drag 105
Drop 105
Expanded 105
MouseIn 105
MouseUp 105
NewSelection 105
PreAlertKey 105
Selected 33, 105
TabChanging 105
Timer 70, 77–78, 79, 80, 81

Excel 593

EXECUTE 330, 331, 620

export file

creating 531–539
hand coding 545–550

export list 134

exporting procedures 134, 151

external data 532

Extract, Transform and Load 643

F
FEQ 35

field equate

see FEQ

file I/O 609

file manager

see ABC, FileManager

FILEERROR 341

FILEERRORCODE 309

finite state machines 607–614

FLUSH 226, 232

form, recursive 47–54

FORMAT 25, 142, 230, 231, 575–577

format string 575–577

FormatBrowse 101

FREE 226

FROM 576

function point, cost per 644

G
Gambon, Jim 271

GET 43, 83, 227, 228, 230, 320, 603

GETINI 596

glass

see user interface, glass look

global variables

and threading 173–183, 313
GlobalErrors

see ABC, ErrorClass

666

GlobalRequest 49, 83, 131, 329, 532

GlobalResponse 330, 331, 532

gradient, drawing 57–64

GROUP

in INI file 595
STATIC 6

H
Hatler, Wade 303

hex 555

Hickey, John 269

Hipp, D. Richard 344

hot fields 39–46
editing 42–46

HOWMANY 593–597

HTTPS 364

I
ICON

Exclamation 70
Hand 42, 45, 341
Question 35

IDE

clipped text under Vista 427
IDLE 67–70

and 32 bit apps 68
ImageEx 156

IMDD 313–325

INCLUDE 159, 422
SECTION 6

INI files

and Windows Vista 419–424
In-Memory Database Driver

see IMDD

Insert

Batch 51, 87, 88, 90, 91
Caller 88, 91

None 51, 87
Query 88

insert

recursive 83–92
template support 87

insert, priming on

see priming on insert 84
InsertRecord 83, 145, 168, 169, 330, 331

INSTRING 230, 231, 422, 558, 602, 622, 624
and performance 623, 631

INT 221, 226, 555, 556, 583

internationalization 3–16
date pictures 10
time pictures 10

ISSTRING 186, 188

ITEMIZE 35, 620

K
KEY 130, 164

L
leap year 586

LEFT 557

LEN 25, 188, 221, 226, 231, 253, 309, 357, 369,
556, 602, 623, 624

and performance 631
Level

Benign 320
Notify 87

Leybourne, Trevor G. 269

LIKE 131

LINE 59–64

line drawing font 224

LINK attribute 522

LIST 576

list box format

dynamic 17–27

667

LoadLibClass 522

LOCK 252

LOGOUT 345

lookup

non-related 163–169
LOOP 49, 83, 189, 193, 226, 227, 228, 230,
309, 357, 526, 557, 568, 594, 596, 601, 623

LOWER 624

M
manifest

Windows XP 407–412
MAP 150, 202, 422, 535

MATCH 234, 631

MEMBER 535

MESSAGE 42, 70, 77, 230

metadata 641–646

Microsoft Office 2007 414

Mimer 275–277

MODE 262

MODULE 134, 150, 202, 422, 522

MONTH 590

MS SQL Server 282

multi-DLL

see DLL, multiple

N
NAME attribute 264, 422

name mangling 536, 545–550

net use 266, 399

net view 266, 398

NEW 611

NEXT 226, 230, 284, 340, 603

Northwind database 282

Notepad 291

NOTIFY 563

and CloseDown event 566
Nova templates 259

number base conversion 553–559

O
OCR 155–162

OLE 303

OMIT 421

OMITTED 186, 546

ONCE 159

OPEN (file) 230, 264, 265

OPEN (report) 239

OPEN (view) 284

OPEN (window) 80, 572

optical character recognition

see OCR

optimization 615–639

OVER 625, 626

P
page loaded tree

see tree, page loaded

PASCAL 202, 422

PDCalendarBaseClass 7
PDCalendarSmallClass 8
PEEK 175, 178, 179, 189, 193

pixel vs DLU 58

pole display 261, 267

POST 52, 69, 71, 80, 89
to frame 68

PostgreSQL 94, 308
backslash character 308
copy 308

PowerOffice 411

PRAGMA 421

pragma

668

see #pragma

primary key 327–333
multi-user 335–342

priming on insert 84

PRINT 240, 242, 245–254, 255–258

printer

driver 247, 269
network 250
sending escape codes 245–254, 255–258,

263–266
USB 262

PRIVATE 548, 567

private data, accessing 567–569

private key

see encryption, private key

PRJ, creating 533

profiling 616
hooks 617

PROGRAM 150, 535

project

see also PRJ

file 151
settings 150

PROP

Buffer 132
ClientHandle 523
Create 307
Disable 35, 45
Fields 601
Flat 59
Format 26, 27, 576
GroupBy 279–288
Handle 523, 526
Having 279–288
Height 8, 59–64
Hide 45, 59
Icon 562
Name 279–288, 332
Order 279–288

Pixels 58
Preview 240
Record 599, 601
Skip 59
SQL 308, 309, 340, 341, 355–360
SQLIdentity 332
Text 8, 59, 132, 309, 576
Timer 70, 79
Tip 59
Where 279–288
Width 59–64
WndProc 562
XPos 59–64
YPos 59–64

PROPLIST

Header 577
properties 577

PROPPRINT

Device 256
Port 257, 268

PROTECTED 548

public key

see encryption, public key

PUT 33, 35, 42, 43, 45, 227, 228

PUTINI 596

Python 456

Q
QUEUE 131

and array 593–597
and reports 233–235
customized sorting 571
displaying 575–577
global 313
implicit first field 573
sorting 571–573
unknown fields 233–235

QUOTE 355–356

quotes, doubling 355–360

669

R
RAW 202, 422

Record

Filtered 242
OutOfRange 242

RECORDS 227, 228, 246, 309

recursion 624

recursive form

see form, recursive

recursive insert

see insert, recursive

recursive update

see update, recursive

regasm 306

REGION 44

regular expressions 631

REPLACE 195

report

see also ABC, ReportManager

adding detail band 237
band filter 238
blank 242
filtering 17
no records 237–243
queue-based 233–235
suppressing print 238

RequestCancelled 83, 331

RequestCompleted 241

resizer

see ABC, WindowResizerClass

RESUME 174, 178, 179, 189, 193, 213–215

RGB colors 529

Right Version Control System

see RVCS

RS232 248

RVCS 490–498

S
scanning 156

Secure Sockets Layer

see SSL

SELECT 45, 52, 309

SelectRecord 330

self

see ABC

SEND 309

serial

communications 248
port 261

server side autoincrement 327–333

SET 226, 230, 284, 287, 320

SETCURSOR 309

SetPenColor 59–64

SetPenWidth 59–64

SetupBuilder 364, 413

SharpDevelop 291

shutdown

automatic 67–81, 561–566
clean 565
template options 561–566

signing applications 363–374, 375–389
IE7 issues 391–405
utilities 378–388

SimpleOCR 155–162

SIZE 187, 188, 617, 619, 627

SLEEP 202

SMS 553

SORT 571

SQL 289–299, 301–311, 335–342
Advanced Tab 279–288
BEGIN TRANSACTION 349
CREATE TABLE 290, 338, 349
CREATE UNIQUE INDEX 338
creating from XML 289–299, 301–311

670

DECLARE 338
embedded 343
GROUP BY 96
Identity 341
identity 327–333
INNER JOIN 281
INSERT 290, 356
INSERT INTO 308, 339, 349
MAX 339
ORDER BY 96
Order By 281
SELECT 96, 279–288, 338
stored procedure 338–339
SUM 280

SQLite

embedded 343–353
SSL 370, 389

StarDate 78, 79, 582

START 174, 178, 179, 189, 193, 204, 206, 211–
215

STATIC 6, 76

STOP 175, 180, 190

STREAM 226, 230

string

parsing 610, 615–639
slicing 357, 618

stupid programmer error 581

SUB 322, 602, 623
and performance 623, 631

subclassing 562

Subversion 431, 490

SUSPEND 213

system tray, minimize to 563

T
TAB 55

template

debugger 149–152

family name 7
language

##INSERT 133
#AT 134, 145, 332, 342, 424, 542
#ATSTART 167
#BOXED 133
#BUTTON 166
#CALL 166, 167, 424
#CODE 166, 168, 321
#CONTROL 144
#DECLARE 133
#DISPLAY 133, 144, 320
#EMBED 320, 321
#EXTENSION 133, 332, 342, 424
#FIND 167, 168
#FIX 152, 342
#FOR 134, 152, 167
#GROUP 135, 151
#IF 134, 167
#INDENT 134
#INSERT 152
#PREPARE 166
#PROMPT 133, 144, 320, 342
#RUNDLL 151
#SELECT 342
#SHEET 133, 322
#SYSTEM 133
#TAB 133, 319
#TEMPLATE 132, 423
FAMILY 423
WHENACCEPTED 133, 152, 320

symbol

%AcceptLoopAfterEventHandling 123
%AcceptLoopBeforeEventHandling

123
%AcceptLoopBeforeFieldHandling 124
%AdditionalDebugHooks 118, 123
%AfterCallingUpdateOnAdd 104, 122
%AfterCallingUpdateOnEdit 122
%AfterCallingUpdateOnRemove 122
%AfterClosingExports 119

671

%AfterDctDestruction 119
%AfterDctInitialization 119
%AfterEntryPointCodeStatement 104,

118, 122
%AfterFileClose 103, 114, 115, 117,

118, 121
%AfterFileDeclarations 102, 114, 115,

117, 118, 121
%AfterFileNext 124
%AfterFileOpen 101, 114, 115, 116,

119, 120
%AfterGeneratedApplication 542
%AfterGlobalIncludes 102, 114, 115,

117, 118, 119, 121
%AfterImportExcel 123
%AfterInitialGet 103, 116
%AfterInsertRecord 124
%AfterLevel1FtrPrt 119
%AfterOpeningReport 103, 116, 118,

124
%AfterOpeningWindow 117
%AfterPrimaryNext 103, 121
%AfterPrint 102, 116, 119
%AfterProgramCode 103, 115, 118,

122
%AfterSecondaryNext 122
%AfterTagOp 122
%AfterTotalLoop 124
%AfterTurnQuickScanOff 117, 124
%AfterTurnQuickScanOn 115
%AfterWindowClosing 124
%AfterWindowOpening 102, 114, 120
%AlertKeyCaseKEYCODE 104, 122
%AnyFontABCDisable 114
%AnyFontABCEnable 114
%Application 543
%AuditData 124
%BackTabEmbed 104, 122
%BCSIfSelect 122
%BCSLicenseEmbed 123
%BeforeAccept 104, 122
%BeforeAddingStyles 124

%BeforeCallingUpdateOnAdd 123
%BeforeCallingUpdateOnEdit 104, 122
%BeforeCallingUpdateOnRemove 104,

122
%BeforeClosingReport 117
%BeforeFileAction 104, 122
%BeforeFileClose 102, 115, 118, 121,

342
%BeforeFileDeclarations 119
%BeforeFileOpen 102, 115, 116, 118,

121
%BeforeFlipAll 124
%BeforeFlipOne 124
%BeforeGenerateApplication 424
%BeforeGlobalIncludes 103, 114, 118,

121
%BeforeInitialGet 104, 116, 119
%BeforeInlineFileAction 124
%BeforeKeySet 117
%BeforeLevel1HdrPrt 117, 119
%BeforeOpeningWindow 117
%BeforePreparingRecordOnAdd 122
%BeforePrimaryDisplay 123
%BeforePrimaryDisplayCreate 123
%BeforePrimaryNext 103, 121
%BeforePrint 101, 116, 124
%BeforePrintPreview 104, 116
%BeforeSecondaryDisplay 104, 121
%BeforeSecondaryDisplayCreate 104,

122
%BeforeSecondaryNext 124
%BeforeTagAll 124
%BeforeTagOne 124
%BeforeUntagAll 123
%BeforeUntagOne 124
%BeforeWindowClosing 114, 123
%BeforeWindowMakeover 115
%BeforeWindowOpening 102, 114,

115, 119, 120
%BeginAddEntryRoutine 104, 122
%BeginningExports 114
%BreakManagerManagerMethod-

672

CodeSectionLevelAction
103, 116, 123

%BrowseAfterChange 122
%BrowseAfterDelete 123
%BrowseAfterInsert 122
%BrowseBeforeChange 123
%BrowseBeforeDelete 104, 122
%BrowseBeforeInsert 123
%BrowseBoxAfterUpdate 124
%BrowseBoxDoubleClickHandler 103,

121
%BrowseBoxEmpty 102, 120
%BrowseBoxNotEmpty 102, 120
%BrowsePrepNormal 124
%BrowsePrepSelectRecord 124
%BrowserEIPManagerMethod-

CodeSection 103, 113, 120
%BrowserMethodCodeSection 101,

113, 114, 120
%BrowserMethodDataSection 103, 121
%ChildViewManagerMethodCodeSec-

tion 117
%ControlEventHandling 101, 112,

113, 115, 116, 119
%ControlHandling 101, 113, 120
%ControlOtherEventHandling 123
%ControlPostEventCaseHandling 113
%ControlPostEventHandling 101, 113,

115, 117, 120
%ControlPreEventHandling 101, 114,

115, 117, 120
%CustomAlertEmbed 123
%DasTagAfterInitTaging 123
%DasTagAfterTagAll 122
%DasTagAfterTagOnOff 104, 122
%DasTagAfterUnTagAll 124
%DasTagBeforeKillTaging 122
%DasTagBeforeTagAll 123
%DasTagBeforeTagOnOff 123
%DasTagBeforeUnTagAll 124
%DataSection 101, 113, 115, 116, 118,

120, 145

%DataSectionAfterWindow 103, 115,
121

%DataSectionBeforeReport 116
%DataSectionBeforeWindow 103, 115,

121
%DataSetupSection 114
%DLLExportList 114, 134
%EditInPlaceManagerMethodCodeSec-

tion 102, 113, 120
%EIPClickAccepted 124
%EIPEventSelected 124
%EndOfFormatBrowse 124
%EndOfProcedure 103, 115, 119, 121
%EndOfReportGeneration 118
%ErrorManagerCodeSection 119
%ErrorManagerDataSection 119
%EventCaseBeforeGenerated 119
%FEPreCodeSection 125
%FieldLevelValidation 119, 123
%FileDropComboMethodCodeSection

104, 117, 121
%FileDropMethodCodeSection 102,

114, 120
%FileDropMethodDataSection 125
%FileLookupMethodCodeSection 103,

120
%FileLookupMethodDataSection 123
%FileManagerCodeSection 103, 118,

121
%FileManagerDataSection 119
%FinishWizard 104, 122
%FM2Init 103, 114, 118, 121
%FormAllow 122
%FormatBrowse 120
%GetNextRecordNextSucceeds 117
%GlobalData 102, 113, 115, 117, 118,

120
%GlobalMap 102, 113, 115, 116, 118,

119, 121, 134
%HandCodedViewStatements 117
%HandyInterNetFtpBeforeInit 125
%HandyInterNetFtpULAborted 125

673

%HyperActivePostCodeSection 125
%HyperActivePreCodeSection 125
%INIManagerCodeSection 125
%JSTokenTextSelected 125
%ListboxStyleAfterDefine 103, 114,

121
%ListboxStyleBeforeDefine 123
%LocalDataAfterClasses 101, 113,

115, 117, 119, 120
%LocalProcedures 102, 113, 114, 116,

118, 120
%LocatorMethodCodeSection 104, 122
%LookupRelated 123
%LSiAfterOpeningFiles 104, 116
%LSiAfterOpeningReport 104, 116
%LSiAfterPrintingDetail 117
%LSiBeforeEndpage 103, 116
%LSiBeforeOpeningFiles 117
%LSiBeforePrintingDetail 117
%LSiEndOfReport 104, 116
%LSiReportCanceled 117
%MCRTAfterSetQueueRecord 125
%mhViewInit 119
%mhViewValidate 118
%ModuleDataSection 102
%NetTalkAfterInitSection 123
%NetTalkMethodCodeSection 103,

121
%NetTalkMethodDataSection 123
%NetTalkMethodRoutineSection 104,

121
%NetTalkRefreshCode 116
%NewMethodCodeSection 101, 117,

120
%NewMethodDataSection 103, 117,

121
%NextTabEmbed 104, 121
%OnInsertAfterPriming 103, 121
%OnInsertBeforePriming 124
%PDFXCDriverDocSaved 125
%PostPrintFromQueue 117
%PostWindowEventHandling 103, 121

%PreviewerManagerMethodCodeSec-
tion 116

%PrimeFields 123
%Procedure 543
%ProcedureInitialize 103, 115, 117,

121
%ProcedureRoutines 101, 112, 113,

114, 115, 116, 118, 119, 120
%ProcedureSetup 102, 113, 115, 116,

119, 120
%ProcessActivity 102, 115, 118
%ProcessedCode 101, 118, 122, 134
%ProcessManagerMethodCodeSection

101, 115, 116, 124
%ProcessManagerMethodDataSection

103, 115, 116
%ProcRoutines 104, 118
%ProgramEnd 103, 114, 115, 117,

118, 125
%ProgramProcedures 118
%ProgramRoutines 119
%ProgramSetup 102, 114, 115, 116,

118, 121
%ProgressCancel 117
%PXCDV3PBeforeRunEmbed 125
%RecordFilter 103, 118, 120
%RefreshWindowBeforeLookup 125
%RelationManagerCodeSection 104,

118
%RelationManagerDataSection 118
%ReportAfterLookups 117
%ReportTargetMethodCodeSection

117
%ResizerMethodCodeSection 104, 122
%TagMethodCode 102, 113, 120
%TargetSelectorManagerMethod-

CodeSection 117
%TaskbarIconEmbed 125
%TaskbarIconMessageProcessing 125
%TEBrowseDropHandlingAfter 123
%TEDropIDOk 123
%TETreeDropHandlingAfter 124

674

%ToolbarAction 114
%ToolbarDropItemAction 104, 113
%ToolbarInitBeforeCode 114
%ToolbarMethodCodeSection 114
%TreeSectionMethodCodeSection 101,

120
%TreeSectionMethodDataSection 104,

122
%UltraTreeMethodCodeSection 101,

113, 120
%UltraTreeMethodDataSection 122
%UTVMMethodCodeSection 102, 120
%ValidateSelection 114
%VerResourceValueList 124
%WindowEventHandling 101, 113,

114, 115, 116, 120
%WindowEventOpenWindowBefore

116
%WindowInitializationCode 124
%WindowManagerMethodCodeSec-

tion 101, 106, 107, 108, 112,
113, 114, 116, 118, 119,
120, 145, 332

%WindowManagerMethodDataSec-
tion 102, 113, 114, 119, 120

%WindowOtherEventHandling 125
%WinEventTaskBarPopupItems 125
%XPTaskPanelTaskClickedAfterCode

103, 121
%XPTaskPanelTaskLogicAfterCode

103, 121
%XPTaskPanelTaskLogicBeforeCode

123
%XPThemeWindowAfterInit 104, 121

text searching 607–614

ThisWindow

see ABC, WindowManager

THREAD 68, 175, 180, 189, 193, 565
and POST 69

thread switch 174

threaded variables 177

threads 173–183

and global variables 313
background 201–209

TIFF files 156

time

calculations 579–583
midnight rollover 580
pictures 10

timeout, calculating 69, 76–81

TODAY 33, 288, 579, 581, 583

translation 3–16
see also ABC, TranslationClass

multi-language 4
tree

page loaded 219–232
TXA

and version control 491–498
TXD

and version control 491–498
TYPE 522

in export file 546
type casting 205

U
UNC name 399

Unicode 249, 524

UNLOCK 252

update, recursive 47–54

UPPER 320, 569, 602, 617, 619

USB printer 262, 266
direct printing 266, 267–271

user interface

glass look 55–66
improving 55–66

UTF-8 350, 408

V
VAL 357, 369, 610, 611, 626

675

version control 431–443, 445–454, 455–471,
473–488, 499–508

see also CVS

see also WinCVS

and the Clarion IDE 489–498
TXA 491–498
TXD 491–498

version control interface 432, 489–498

VIEW 138, 280, 283, 284
JOIN 283, 284
PROJECT 138, 283, 284

view

see also ABC, ViewManager

ViewRecord 87, 331

Virtual Method Table 546

Visual Source Safe

see VSS

VSS 499–508

W
WHAT 234–235, 568, 569, 573, 594, 596, 600–
605

WHO 234–235, 568, 573, 596, 600–605

WinCVS 431–443, 445–454, 455–471, 473–
488

branches 466
difference report 446–449
filters 445
installing 434–436
managing Clarion versions and hotfixes

457–462
window

see also ABC, WindowManager

fading 521–530
layered 522
opaque 521–530
transparent 521–530

Windows

API 521–530

CloseHandle 248–254, 255–258
COLORREF 528
CreateFile 248–254, 255–258, 268
CSIDL 419–424
CSIDL_COMMON_APPDATA 423
CSIDL_PERSONAL 423
GDI 268
GetWindowLong 523–530
GWL_EXSTYLE 523
LWA_COLORKEY 529
memchr 628
OutputDebugString 150
QueryPerformanceCounter 617
RGBQUAD 528
SetLayeredWindowAttributes 523–530
SetWindowLong 523–530
ShellExecute 544
SHGetFolderPath 419–424
Sleep 204
WM_ENDSESSION 563
WM_QUERYENDSESSION 562
WriteFile 248–254, 255–258
WS_EX_LAYERED 523–530

security, and CHM files 402
shortcut icon 400
Vista

Aero 427
and Clarion 6.3 427–428
competitive advantage 413–418
compliant INI files 419–424

XP themes in ABC 409
WinHlp32.exe on Vista 427

WinSQL 276

X
XML 289–299, 301–311

XMLSply 291

XOR 368

XP themes 407–412

676

Xplore 577

XSL

FO 291
Stylesheet 292–299

XSLT 289–299, 301–311
search and replace 297

Y
YEAR 288

YIELD 208, 526

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

