

Clarion Databases & SQL

Edited by David Harms

Clarion Databases & SQL

David Harms, Editor

Copyright © 1999-2004 by CoveComm Inc.

Published by:
CoveComm Inc.
1036 McMillan Ave
Winnipeg, MB R3M 0V8

All rights reserved. No part of this book may be reproduced or transmitted in any form by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. For information on getting permission for reprints or excerpts, contact
books@clarionmag.com.

See http://www.clarionmag.com/books for source downloads and errata

Library and Archives Canada Cataloguing in Publication

Clarion databases & SQL : a practical handbook of database design, flat file and SQL data
management, and Clarion data handling tricks / edited by David Harms.

Includes index.
ISBN 0-9689553-3-9

1. Clarion for Windows (Computer program language) 2. SQL (Computer program language) 3.
Database design. I. Harms, David (David Gerhard), 1959- II. Title. III. Title: Clarion databases
and SQL.

QA76.73.C22C527 2004 005.75'85 C2004-903849-4

The information in this book, and any source code and/or information in downloads referenced in
this book, is distributed on as “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this book, neither the publisher nor the editor assumes responsibility for
errors or omissions in the book, or in the instructions and/or source code in downloads referenced in
this book.

Clarion™ is a trademark of SoftVelocity, Inc. This and other trademarks which may appear in the
book are used in an editorial fashion only and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

Printing History

July 2004 First Edition

ISBN 0-9689553-3-9

Printed and bound in the United States of America

Editor: David Harms

David Harms is a long time Clarion developer, and the editor and publisher of Clarion
Magazine (www.clarionmag.com), which he founded in 1999. He is also co-author
with Ross Santos of Developing Clarion for Windows Applications, published by
SAMS (1995), and has written or co-written several books on Java.

Terms Of Use

All rights reserved. No part of this book may be reproduced

or transmitted in any form by any means, electronic,

mechanical, photocopying, recording, or otherwise, without

the prior written permission of the publisher.

As a licensed user of this e-book you may keep multiple

copies for your personal use only.

Copyright © 1999-2007 by CoveComm Inc.

Published by:

CoveComm Inc.

1036 McMillan Ave

Winnipeg, MB R3M 0V8

www.clarionmag.com

Clarion Databases & SQL

Table of Contents

Introduction to Databases
Designing Databases..1
Handling Many-To-Many Relationships ...9
Managing Complexity, Rule 1: Eliminate Repeating Fields ...21
Managing Complexity, Rule 2: Eliminate Redundant Data ..29
Managing Complexity, Rule 3: Eliminate Columns That Don’t Belong39
Managing Complexity, Rule 4: Isolate Independent Multiple Relationships..................45
Managing Complexity, Rule 5: Isolate Semantically Related Multiple Relationships ...49
Displaying Normalized Data ...55
Displaying Many-To-Many Relationships ..67
True Confessions: A Tale of Two Users ...85

Using Topspeed Files
Using Dynamic Indexes With TPS Files ...91
Using The TPS ODBC Driver ...97
Reading Tables With ADO..103
Accessing TPS Files Via ASP ...109
Using Example Files With TPSFix..117
Topspeed Driver Error Codes ..119
Troubleshooting TPS File Corruption ...125
Resolving Network And Other File Problems...129

General SQL
An Introduction To SQL..141
Getting Into SQL On The Cheap ...167
How To Convert Your Database To SQL ...175
Converting TPS To MS-SQL ..183
v

vi
Avoid My SQL Mistakes!..197
SQL Data Types Comparison ..201
The SQL Answer Cowboy...209

Open Source SQL
Using Clarion With MySQL..221
MySQL/MyODBC Notes ..241
MySQL: InnoDB Tables And Transactions ..247
Large Table Performance in MySQL ..265
Getting Started With PostgreSQL..273

Oracle
Referential Integrity In Oracle ...295
AutoNumbering In Oracle ...299
Transactions In Oracle ...305

MS SQL
Migrating The Inventory Application To SQL Server ..317
Using SQL Server’s Data Transformation Services ..341
Converting Data With Linked Servers...357
Converting The Inventory Example - Calling Stored Procedures371
SQL Identity: Another Approach ..399
Creating Utilities For MS SQL 2000...405
Generating MS SQL Server Side Triggers ..415
Date Filtering with MS SQL..429

Book Reviews
Book Review: PostgreSQL Developer’s Handbook..435
Book Review: SQL Tuning ...437
Book Review: SQL In A Nutshell ...441
Book Review: Managing & Using MySQL ..443

ABC Database Class Design Notes
Inside ABC: FieldPairsClass and BufferedPairsClass...447
Inside ABC: The FileManager...459
Inside ABC: The RelationManager ..483
Inside ABC: The ViewManager ..495

Database Tips & Techniques
Clarion File Access Basics ..507
Managing Table Opens In ABC ..517
Creating ODBC Data Sources At Runtime..527
Securing Remote Database Connections With SSH Tunneling535
Using Client-Side Triggers In Clarion 6..543
Working With Control Files ..547
Changing Dictionaries ...563
Alias - Who Was That Masked File?...567
Propitious Memory Corruption..577
Detecting Duplicate Records ...585
NAME() Comes Of Age ..591

Appendices
Appendix A: Getting Support ..601
Appendix B: Related Articles ..603
Author Index ..605
Index ..609
vii

viii

Introduction to Databases

DESIGNING DATABASES

by David Harms

Software development is a bit like building a house. Many traditional programming tools
correspond to hammers, nailers, saws, drills, and other power tools. In this analogy the
tools help you shape the raw material into a structure. Newer software development tools,
including Clarion, do the software equivalent of prefabricating large sections of a building.
And very sophisticated tools like the Wizards let you create the equivalent of an entire
building with a certain look and feel.

This sort of technology is a great boon to many developers. Still, even the Wizards can’t
(yet) read your mind and know what kind of an application you’ll want. They work on the
basis of the application style you choose (or create) and the data dictionary you create (or
use, if one already exists).

From the Wizard’s perspective, application creation seems quite simple. All the Wizard
needs to know is the expected appearance and behavior of the application and the data
structures. Simple, right? All the developer has to do is choose how the application should
look, how it should work, and what data it should store, and writing software becomes (in
theory) a license to print money.

This is, of course, the reason the world still needs software developers as much as it needs
software development tools. And as tempting as Wizzy technology is, there’s still a lot of
1

In t roduct ion to Databases

2

work for the developer to do before any given application development process hits its
automation phase.

Begin At The Beginning
If you’ve accepted the basic assumptions of the Clarion way of building applications (MDI
frame and windows, the browse/form paradigm), then you’re probably not going to quibble
with the fundamentals of your application’s appearance. You are going to be concerned
about the data dictionary (which in Clarion will determine a lot of the application’s
behavior). Therefore much depends on the quality of the database design.

But how do you arrive at your database design? You begin with some sort of requirement,
whether that’s a formal document or just some half-baked ideas rattling around in your
head. From this requirement you can begin to formulate some possible approaches. The
possibilities you come up with will depend a lot on your past experience with application
development, your familiarity with existing, similar applications, and your knowledge of
what options Clarion makes available.

Application design, which ultimately includes database design, is itself a rather large
subject, and there are any number of techniques you can use to try to flesh out what the
application will need to do. And you can be sure that whatever the initial requirement
describes, the final product will be something more complex.

A Student Tracking Application
Somewhat irresponsibly, I’m going to leave aside the principles and techniques of overall
application design and focus on the data dictionary. My assumption is that you’re
comfortable with the kinds of applications Clarion creates by default (MDI, browse/form),
and that the user’s requirements very conveniently do not deviate in any significant way
from the functionality provided by Clarion with the standard ABC templates.

Imagine an application which will be used to track university students and the courses for
which they register. The application should be able to generate reports showing students in
a given course and the courses taken by a given student, and should provide standard
student information such as address and phone number.

It’s vital in any development effort to determine how to store the data in the most efficient,
reliable, and useful way. As of this writing, for Clarion developers, this means using some
sort of relational database. (If you’re thinking about object-oriented databases, or object-
relational databases, that’s still in the future for us and for a lot of other developers too.)

Designing Databases
Relational Databases
Clarion is built around the concept of the relational database. As you might guess from the
name, a relational database deals with groups of information which are related in specific
ways. These groups are typically called tables if you’re dealing with an SQL database, or
files (at least in the Clarion world) if you’re using a non-SQL database. For the rest of this
chapter I’ll use the term file or data file to describe such a group, since I’ll be creating a
Topspeed database.

Each data file can contain zero to many records (rows in SQL parlance) of information. For
instance, a file of employee information would contain one record for each employee, and
within that record there will be individual fields, such as one for name, another for
telephone number, and so on.

One key rule of relational databases is that each record in a table must have a field which is
a unique identifier. In Clarion this value is usually defined as a LONG integer, and its value
is typically created automatically (by the ABC class library or by code generated by the
templates). This field should also not normally be available to the user to change.

Another of the rules which describe good relational database design says that data
duplication must be kept to an absolute minimum. This rule is closely related to the first
rule, as you will see.

Armed with these two rules you can avoid a lot of problems in your database design.

In the student tracking application you might begin with a table to hold student
information. Fields could include FirstName, MiddleName, LastName, as well
as fields for the address and telephone numbers.

Before your rush to the dictionary editor and begin creating the Student file (or any other
file) ask yourself if you really know the extent of the data. Will the fields you propose be
sufficient? Will each student, for instance, have only one address? University students are
notoriously mobile. My personal best was 13 addresses in three years (and no, I wasn’t
running from the law). Often students will have a permanent or home address and a
residence address, and perhaps a third address when away on a work term. If you don’t
have the familiarity with the data to know these sorts of things, then you must rely heavily
on those who do. This can be trickier than it sounds, because oftentimes people who are
familiar with the data will omit details that to them are second nature, but non-obvious to
anyone else.
3

In t roduct ion to Databases

4

Avoiding Data Duplication
Clearly, you’ll need to store more than one address per student. If you know the exact
number of addresses, you can simply add extra fields to the file. But if some students will
have one address, and then others two, then there will be a lot of wasted space in the
database. And if some students have more than two addresses you won’t be able to
accommodate the extra information.

Some developers use arrayed fields in these kinds of situations. Arrays are a convenient
solution from a coding perspective because you can use a consistent set of labels when
processing the data. All you need to do is change the subscript. But arrays don’t solve the
problem of wasted space, and they tend to introduce a lot of other problems when it comes
to sorting data or using the fields in list boxes. Arrays do have a place, but they should be
used only when they are the best solution.

In the case of student addresses, a better solution is to have a separate address file, and link
it to the Student record by using a unique identifier. The record structures I’ve designed
look like this:

Student FILE,DRIVER('TOPSPEED'),PRE(STU)
 ,CREATE,BINDABLE,THREAD
StudentIDKey KEY(STU:StudentID),NOCASE,OPT,PRIMARY
Record RECORD,PRE()
FirstName STRING(30)
MiddleName STRING(30)
LastName STRING(30)
StudentID LONG
 END
 END

Address FILE,DRIVER('TOPSPEED'),PRE(ADD)
 ,CREATE,BINDABLE,THREAD
AddressIDKey KEY(ADD:AddressID),NOCASE,OPT,PRIMARY
StudentIDKey KEY(ADD:StudentID),DUP,NOCASE,OPT
Record RECORD,PRE()
AddressID LONG
StudentID LONG
Address1 STRING(30)
Address2 STRING(30)
City STRING(30)
StateProv STRING(2)
 END
 END

You can see that both files have a field called StudentID which is a LONG. This field
serves two purposes. It uniquely identifies each student record, and it also provides a link
between the student record and one or more address records.

Designing Databases
For fields that you’ll be using in more than one file, create a file in the data dictionary of
type Pool and enter the base field types there. When you need a field of a type you’ve
defined, click on the button to the right of the Derived From field in the New Field
Properties window and choose from the Pool file. Do this before you enter a value in the
Field Name field or you’ll also have to reenter the Prompt Text and Column Heading
values.

Simply having a linking field isn’t sufficient. You also need to declare a key on the linking
field in each file so that the linked record can be quickly retrieved. (This is a Clarion
dictionary requirement, and also a requirement for non-SQL database drivers. If you’re
using an SQL database, you don’t actually need to create the key – or index, in SQL
parlance – in the database itself, but performance will suffer without it if you have large
data sets. See “An Introduction To SQL,” p. 141 for more information.) In the Student
file the StudentIDKey is a unique key (it lacks the DUP attribute). You set this option on
the Key Properties dialog, on the Attributes tab, as shown in Figure 1.

StudentIDKey in the Student file has several other attributes. It’s a primary key,
which means that the key is unique and contains a value for every record in the database.
You cannot have a null value in a field that is in a primary key. The primary key ensures
that there is always a way to retrieve a specific record in a file. This is essential in an SQL
environment where there is normally no equivalent to a record number as there is in a flat
file database.

This key also has the Auto Number box checked. Checking Auto Number won’t make any
difference to the way the file is declared, but it will cause code to be generated that creates
a unique sequential number for the key value for every record added to this table.

Note: QuickLoad now has an Auto-Increment Key option that will create an
appropriate autonumbering key.

Figure 1: The key properties Attribute tab for StudentIDKey in the Student file
5

In t roduct ion to Databases

6

StudentIDKey in the Address file is slightly different. Here the StudentID field
will contain a value obtained from the Student file, so rather than a primary key this is a
foreign key. The Address file does have its own primary key in AddressIDKey. In an
SQL database every file (table) should have a primary key.

Just as creating fields doesn’t automatically give you a key, creating keys doesn’t
automatically give you a link between files. This has to be defined in the data dictionary so
that the appropriate code can be generated to manage the relationship. In the case of an
SQL database, you have the option of also defining the relationships in the database itself,
in which case the database server can enforce any constraints. In either case, you should
have the relationship defined in the dictionary.

This particular link on StudentID is a one-to-many relationship between the student and
address records. Any one student can have one (or I suppose zero) or more addresses.

To define this relationship, highlight the Student file in the dictionary main window and
click on the Add Relation button. The Relationship properties window appears, and it has
one field filled in, Relationship to Student, which defaults to 1:Many. (The only other
option is Many:1 which you could choose if you wished to create or edit the relationship
from the perspective of the Addresses file.)

Choose StudentIDKey as the primary key, Address as the related file, and
StudentIDKey as the foreign key.

You’ll see the key fields listed under Field Mapping. You can choose to automatically map
the fields by name or order (either will work in this case), or you can double-click on the
individual fields to specify which field is the linking field. This is more of an issue when
creating relationships with multi-component keys.

All that’s left is to choose update and delete constraints, which determine whether certain
actions involving related files will be allowed. The options are No Action, Restrict,
Cascade, and Clear. The last three options are repeated with the annotation (Server)
meaning that the restrictions exist but will be managed by the SQL database server rather
than by Clarion code.

In a Restrict constraint you may not change or delete a primary key value if a related
record exists. In a Cascade constraint any change to the primary key value will result in
the change being made in any related records, and on a delete the related records will also
be deleted. A Clear constraint clears any foreign key values on a change or delete of the
primary.

In general you don’t want to give your users access to linking fields anyway, so Update
constraints shouldn’t be a major issue. Delete constraints require more thought, and usually
the choice is between Restrict and Cascade. If someone deletes a Student record you’re
probably going to want to delete all the Address records as well.

Designing Databases
Now that you’ve determined the relationship you can go ahead and generate an application
using the Application Wizard. Choose only the Student file when asked which files you
want to be able to browse. Figure 2 shows the resulting application tree.

Note that although you only specified that you wanted to browse the Student file Clarion
has created a an UpdateAddresses form, called from the UpdateStudent form. On
the UpdateAddresses form, on the second tab, you’ll see a browse for the
Addresses file, as shown in Figure 3.

The Addresses browse exists only because of the relationship defined in the data
dictionary between Student and Addresses. The Wizard simply populated a browse
control template on the tab and set it to show only those address records which are linked
by StudentID to the current student record.

Figure 2: An application which browses the Student file.

Figure 3: The Addresses tab on the UpdateStudent form.
7

In t roduct ion to Databases

8

Although Clarion by default puts the address browse on the student form, you can also
place an address form on the student browse window if you prefer. You’ll have to do this
manually as the templates don’t have this option.

A Course, Of Course
This application now has a minimal capability of handling student information. The other
main requirement is to track which courses students take.

It’s easy enough to define a record to represent a course. You might want fields such as
CourseName, StartDate, Instructor, Location, and so forth. But think
about the actual data. You have many students and many courses. In other words this is a
many-to-many relationship, not a one-to-many relationship. How can you represent this
information in the most compact way possible? And does the data dictionary support
many-to-many relationships? Read on.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v1n4novice3.zip

HANDLING MANY-TO-MANY RELATIONSHIPS

by David Harms

In the previous chapter I began developing a data dictionary and application to track
information about students attending a university or college. I began by defining a
Student file as well as an Address file, on the premise that students may have one or
more addresses. This dictionary design reflects a one-to-many relationship between
students and addresses, or, if you look at it from the other side, a many-to-one relationship
between addresses and students.

This example relationship is obvious and easy to understand. Real data, however, is often a
bit more complex. Sometimes any number of records from one file can be related to any
number of records from another file. These many-to-many relationships are quite common
in databases, and most likely you’ll have to know how to handle them. In this chapter I’ll
examine such a relationship and outline how it can be defined in the data dictionary.
9

In t roduct ion to Databases

10
Adding Courses
It’s now time to expand the demonstration application to handle not just students and
addresses, but the courses for which students can register. You can probably guess at some
of the fields required to describe courses:

• ID (keeping in mind the previous chapter’s discussion about unique IDs)

• course title

• start date

• end date

• number of registrants

• instructor (suggests a many-to-one link to an instructor file)

As you create the data file, keep in mind any fields which are defined in pool data, and
consider whether any other fields should be added to the pool. In the case of the Course
file the ID can come from the pool data (where it has the Do Not Populate flag set). There
are two date fields in the file and you will want them to have a standard date format, and
you may wish to make them spin boxes as well. In either case, a pool Date field is a good
idea. Figure 1 shows the Course fields in the data dictionary, and Figure 2 shows the
Course file’s keys.

Figure 1: Fields for the Course file.

Handl ing Many-To-Many Relat ionships
Linking Courses To Students
Now you have a way to store courses and a way to store students. How do you link students
to courses? The problem is that one student can take a number of courses, and any course
can be taken by a number of students. The relationship is many-to-many, diagramed in
Figure 3. The two triangles indicate the “many” aspect of the relationship.

If you examine the data dictionary’s relationship editor you won’t find any options for
creating a many-to-many relationship, because it’s almost impossible to create using just
two files.

The problem is that from a student perspective you need to store an unknown number of
course IDs, and from the course perspective you need to store an unknown number of
student IDs. Some developers approach this the same way they do many-to-one
relationships: they use arrays.

Figure 2: Keys for the Course file.

Figure 3: A many-to-many relationship.
11

In t roduct ion to Databases

12
As I indicated in the previous chapter, arrays are generally a bad idea for linking files, and
they’re even worse in a many-to-many situation. Arrays are, by definition, limited in size
(at least in Clarion), which means you have to make the array size as large as the highest
possible value, thereby wasting a lot of space. Furthermore you cannot use arrayed fields in
keys. That’s not a problem in a many-to-one where only one side needs to be keyed, but in
a many-to-many both sides need to be keyed. You need to see which courses a given
student takes, and which students are in a given course.

The answer is to use a file as an intermediary between Student and Course, as shown
in Figure 4.

In Figure 4 the single triangles indicate the “one” side of the relationship and the double
triangles indicate the “many” side. As this diagram shows, the many-to-many has been
broken down into two many-to-one relationships. This is the standard approach to handling
many-to-many situations.

The linking Registration file is simplicity itself – it needs to contain only three fields:
a unique autonumbered registration ID, a student ID and a course ID. (You might want to
add several additional fields, however, including the date the registration was taken.)

Note: In a TPS or other flat-file (i.e. non-SQL) database you can get away
without the unique autoincrement key for this record, but it’s a good idea to
have it anyway as you may wish to link other records to the registration record.

Figure 4: An intermediary for managing the many-to-many relationship.

Handl ing Many-To-Many Relat ionships
Figure 5 shows the fields used in the linking file, and Figure 6 shows the keys.

StudentCourseKey and CourseStudentKey both have the course and student IDs
as elements, and if you look at the data dictionary you’ll see that they have the UNIQUE
attribute as well. This prevents a student from being registered for the same course twice.

Now define the relationships in the dictionary editor. Although both the keys in
Registration have two elements, you only want to make the links on the first elements

Figure 5: The Registration file fields.

Figure 6: The Registration file keys.
13

In t roduct ion to Databases

14
in the key in each case. Figure 7 shows the relationship between Student and
Registration.

A similar relationship exists between Course and Registration, as shown in Figure
8.

Figure 7: The relationship between Student and Registration.

Figure 8: The relationship between Course and Registration

Handl ing Many-To-Many Relat ionships
If at this point you use the browse wizard to create a browse and update form for Course,
you’ll find a browse of Registration records on the Course update form. That may
not be the final place you’d like to have it, but it will show you how the link works.
(Another option is to populate a browse of Registration records below the Course
browse, and restrict its records based on the relationship with Course.)

You’ll want to display the student name on the Registration browse rather than just
the ID. Highlight Registration in the file schematic and click Insert. Select the
Student file from the related files list. This will ensure that the related Student record
is retrieved for each Registration record (see the example application).

Since the only fields in the Registration file are two LONG IDs, you’ll need to set
these values when you add a registration. Whether you’re updating Registration
records from a browse on the Course update, or from a child browse you’ve placed on the
Course browse, you know that the current Course record is in memory. Use Field
Priming on Insert on the Registration update form to preload REG:CourseID with
CRS:ID. Figure 9 shows the appropriate Field Priming on Insert setting.

Since you already have REG:CourseID there’s no need to display it on the window;
delete the entry field. Now all the user has to do is choose a student. You probably don’t
want the user entering in the student’s ID directly, so you should provide a lookup on a list
of students.

Figure 9: Priming REG:CourseID on insert.
15

In t roduct ion to Databases

16
One way to do this is to set up the REG:StudentID field’s actions to do a lookup, as
shown in Figure 10.

After entering the settings in Figure 10 and saving the changes, populate the
FieldLookupButton template on the window, and on its Actions tab select
?REG:StudentID. Now you have a button you can use to force a lookup on the
Student browse.

Next bring up the property window for REG:StudentID. Check the Hide box so the ID
won’t be visible. In the form’s file schematic, click on the Registration file and
choose Student from the Related Files tab. Populate two string fields on the form and
on the string properties window, Use field, enter REG:FirstName for one field and
REG:LastName for the other (or use the field lookup button to the right of the Use
prompt). The relation manager will take care of looking up the student record from the ID
and will display the name of the student associated with the registration.

Note: This is just one approach to selecting records. Another would be to use
the FileDrop template (though this code is due for major revision and may
not be a safe choice). You may also want to consider a third party solution like
ProDomus’ highly-regarded PDLookup Toolkit (available at
www.prodomus.com) which adds Quicken-style incremental lookups. Also
read Tom Ruby’s “Displaying Many-To-Many Relationships,” p. 67.

Figure 10: Lookup settings for REG:StudentID.

Handl ing Many-To-Many Relat ionships
Bending The Rules
If you look at the data dictionary for the example app you’ll see that the Registration
file has a Registrants field which is defined as a SHORT variable. Assuming that a
successful link is created between courses and students it should be possible to calculate
this value, so it isn’t strictly necessary to keep it on the course record.

In fact, good relational design suggests that this is unnecessarily duplicated data and should
not be stored. In reality there are often trade-offs involved in designing a database. Your
aim should be to avoid situations where conflicting data can exist, but sometimes
performance requirements must also be addressed. If one of the requirements is to display
the number of registrants on a browse of courses, and you don’t keep a total on the
Course record, then you’ll have to loop through the registrant information for each
record.

One easy way to do this is to use a hidden browse with the child records and a total (count)
field. If you take this approach make sure that you set the child browse’s
ActiveInvisible property to True as the default behavior for browse objects is to
become idle when hidden.

If there are a large number of child records or you frequently run reports or other processes
where the number of registrants is required then it may be to your advantage to count the
registrations whenever one is added or deleted and update a Registrants field with this
value.

You may think at first glance that a BYTE value would suffice for Registrants, but for
a particularly large lecture course there might be more than 255 students. Should that
happen with a BYTE variable the numbers would wrap around and the displayed count
would be incorrect. If there’s any possibility that you’ll overrun the variable’s capacity then
use the next larger variable. A SHORT has a maximum value of 32767, and while course
overcrowding is often a problem, its not likely to get that bad.

Many-To-Many Redux
In my initial design of the course file I made the assumption that there would be only one
instructor per course. This isn’t necessarily the case. There may be multiple instructors, or
an instructor and teaching/lab assistants who should also be associated with the course. A
simple many-to-one relationship would be too restrictive. To handle this I’ll need to create
a linking file just as I did for the course registrations. As with the Registration file,
this linking, at a minimum, would need only two IDs.
17

In t roduct ion to Databases

18
The only difference between this many-to-many and the Registration many-to-many
is that this one is a bit more difficult to recognize. In the software requirements (if a formal
document existed) you would probably come across the term “Course registration,” which
might have led you to think about storing this information in its own file.

What if a suitable term hasn’t been defined for the link between instructors and courses?
You can discover the need for such links by examining each file relationship carefully and
asking yourself if the relationship will satisfy all the needs of the application.

By now you should be starting to see some other possible links between data. If you’re
storing information about instructors, then perhaps there’s some possible duplication of the
kind of information you keep about students. Perhaps a generalized contacts file would be
better, with a Type field to differentiate between students and instructors (and perhaps
staff as well). This way you can use the same approach for instructor addresses as for
student addresses.

Telephone numbers (and email addresses and the like) are another potential area for
generalization. Rather than having two or three telephone number fields in the names file
you might want to go with a Phones or other kind of contacts file. Remember that you can
assign field pictures at runtime, so you could even use a simple string field and use various
pictures to format the string for phone numbers, email addresses, and so forth. You might
want to keep this kind of configuration information in an INI file (not a great idea) or a
single-record control file in your database. A control file is a better option as it allows for
encryption, and it’s much less likely someone will inadvertently edit a database file as
compared to an INI file. See “Working With Control Files,” p. 547 for more information.

Paranoid Anticipation
When I analyze or create a database design I’m constantly asking myself how the data will
be used, given the current requirements and what I anticipate the future requirements will
become. Few of us ever actually finish a software project. We may leave it or hand it off to
someone else, but there’s always work to be done.

I find that the better I am at anticipating what the user will want to do with the program, the
more robust my database design is likely to be.

Knowing your data is one important piece of the puzzle; knowing how to arrange the data
is the other. I’ve described a few basic principles, but there’s a lot more to this subject. In
the following chapters, Tom Ruby provides a Clarion perspective on the rules of database
normalization.

Handl ing Many-To-Many Relat ionships
Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v1n5novice4.zip
19

In t roduct ion to Databases

20

MANAGING COMPLEXITY, RULE 1: ELIMINATE
REPEATING FIELDS

by Thomas Ruby

Programs are very complex things because users demand that they solve complex
problems. You know to be wary when the customer says, “All it needs to do...” because
there is always more to it than that. Your task is to analyze that complexity and produce a
program that deals with it, leaving the user to think, “All I need to do is...”

This is a pretty tall order, and the last thing we need to do is add more complexity to the
problem ourselves. Within our programs, dictionaries, and embeds, we want our work to be
as simple and straight forward as we can make it so we can concentrate on the complexity
of the problem, not on the complexity of our solution.

So first, here is a guideline. It’s not a hard and fast rule you must follow, but an example of
a principle which can save you some hair.
21

In t roduct ion to Databases

22
Guideline 1
Don’t take shortcuts. They might save you a few minutes now, but they’ll cost
you days later.

Guideline 1 suggests a strategy, or overall guide, which might be, “Make up a set of rules
and stick to them.” Consider a rule I follow when making dictionaries, “Make field names
descriptive and don’t abbreviate them.” It is always a temptation to name a field something
like Date. Hmmmm. There already is a field in this table called Date, and it is the date
the record was entered. So I call the new field DateDue. But now I have an extra piece of
information to keep in my head, and this information is about the solution to the problem,
not about the problem, so it adds to the complexity of the task needlessly. This bit of
information is, “The date entered is Date, while the due date is DateDue.”

Keeping Guideline 1 in mind, I make the other date field more descriptive and change it to
EntDate. Oops. This is an abbreviation. Why is that bad? Because it adds another piece
of information to keep track of. I have to remember that I abbreviated Date Entered as
EntDate. So I fix it by making it EnteredDate.

Now I feel much better, but before long, I have an annoying compile error because I typed
DueDate instead of DateDue. Okay, so it isn’t a big mistake, but how many times
throughout the project do you want to get a compile error because of this mistake? So let’s
make an arbitrary rule, “The type of the field comes before the use of the field.” It could
easily be the other way around and it would work fine. In fact, my own convention for
naming fields is the opposite. It doesn’t matter - the purpose of the convention is just to
remove unnecessary complexity.

This convention also makes it clear that the tax amount field is AmountTax and the tax
percentage field is PercentTax. Already this convention has saved four scraps of
unneeded information about the solution, and will probably save more later on.

Yes, I know Clarion has that handy field box, plus Data Modeller and the View Dictionary
feature. I love them all and use them heavily, but which is better, looking up a field name or
just knowing it instinctively? There’s a lot these tools can help you with, but you don’t need
to be using them to solve problems you could have designed out at the start.

”Naw, let’s not change it ‘cause I’ll have to re-edit all the embeds in that procedure.”
Again, how many times throughout the project do you want to make the mistake and get an
annoying compile error? Change it now while the fix is easy to make. This brings up
Guideline 2, which is more of an observation than a rule:

Managing Complexi ty , Rule 1: E l iminate Repeat ing F ie lds
Guideline 2
It is a lot less painful to fix a painful mistake now than it will be later on.

As I explained to my son Ethan a few days ago, “It hurts to get a nasty splinter out, but it
will hurt more to get it out next week. Do you really want to put up with it till then?” He
opted to let me take the splinter out. So I’ll bite the bullet and edit the embeds in the
procedure. My, the Embeditor is handy for things like this.

Let’s talk about abbreviations a bit. Would you make a field name
AmountFederalInsuranceContributionsAct, or AmountFICA? FICA is
indeed an abbreviation for Federal Insurance Contributions Act, but FICA is also the name
of a fairly complex, not to mention wordy, concept. I’d consider FICA a name and call the
field AmountFICA, but I wouldn’t abbreviate it as FICAAmt.

I could go on with examples all day, but I won’t. Take it from twentymumble years of
sometimes frustrating experience: Stick to your rules!

To recap:

Guideline 1: Don’t take shortcuts. They might save you a few minutes now, but
they’ll cost you days later.

Guideline 2: It is a lot less painful to fix a painful mistake now than it will be
later on.

And now, without further ado, here is Rule Number 1:

Rule 1
Eliminate repeating fields.

People often paraphrase this rule by saying, “Arrays are bad,” but this tells only part of the
story. I have actually seen people eliminate the bad array by defining their data like this:

EmployeeRate1
EmployeeRate2
EmployeeRate3
EmpRate4 ! must have got tired of typing
EpmRate5 ! didn't proof read
EmpRt6

and so on.

And this changes fairly logical and easy to maintain code like this:
23

In t roduct ion to Databases

24
LOOP I = 1 TO 6 BY 1
 YadaYada
 EmployeeRate[I] Yada
 Yada
 Yada(EmployeeRate[I])
 Yada
END

Into a mess like:

Yada Yada
EmployeeRate1 Yada Yada
Yada Yada Yada Yada
Yada EmployeeRate1 Yada Yada Yada
Yada Yada
EmployeeRate2 Yada Yada Yada
Yada Yada
Yada EmployeeRate2 Yada Yada Yada
Yada Yada Yada
(lots more nonsense)
Yada
Yada EmpRate4 Yada
Yada Yada Yada Yada

So what’s so bad about this? You can easily build it using cut and paste or an editor macro,
right? Well, it turns out that the second Yada should be

Gobbledegook EmpPlanA
Gobbledegood EmployeePlaB

and so on for all umpteen bunches of code! Somebody has a long day of tedious editing to
do. Do you think they’re not going to goof somewhere? What if you code
EmployeePlanC where you should have put EmployeePlaB? Just try figuring that
bug out while the client is looking at screwed up calculations! Then you have to read
through that 24 page embed, line by line, looking at these field names which all look alike
but are subtly different. Are you sure you’re not going to flub up while fixing them?

So getting rid of the array by replacing it with bunches of fields is not a good idea, but
what’s wrong with the array concept itself? The array causes a big limitation in the
functionality of the program, and it adds a bit of complexity you can do without.

When you put an array in your data, you place a limitation on your program’s usefulness. I
call this “The Extension Cord Effect.” Ever notice how often an extension cord is just a
little too short? You could just always buy nine foot extension cords instead of six foot
cords, but you know, the longer cords somehow just need to be a couple inches longer. Of
course, you could always buy 100 ft. outdoor cords, but then you’d have all this orange
cord laying around, tripping up the kids and tangling the vacuum cleaner.

The same thing happens to an array in your data design: You’ve allowed for eight employee
deductions, but doggone it, you get a phone call interrupting your dinner because one of the
customers needs 24, so you have to dig out the source code, make a change and update their

Managing Complexi ty , Rule 1: E l iminate Repeat ing F ie lds
database replacing the eight element array with a larger one. Then everybody gets space for
24, while most use only three, and it works fine until somebody needs 25. Why in the world
would they need 25? I don’t know, but if the user thinks they need 25, the program
shouldn’t tell them they can’t have 25. And you did remember to make all occurrences of
LOOP I = 1 TO 24 BY 1 into LOOP I = 1 TO 25 BY 1, didn’t you?
Everywhere? Are you sure? How sure are you?

A repeating field, be it an array or multiple fields, adds another extra bit of complexity to
the project, and you certainly don’t want to be making it more complex than it needs to be.
You need a way to tell if the array element is used and skip over those that aren’t. You need
to put the code to do this everywhere you use the data out of the repeating fields, and you
have to remember, yet again, how you coded the unused fields. You probably also need to
move them around when the user deletes one because users always like the blanks at the
bottom.

What to do? Put the repeating fields in a separate table, one field, or set of fields, per
record, along with the employee’s identifier so you know which records belong to which
employee. For this example, the EmployeePlan table would contain three fields: the
employee identifier, the rate field and the plan field. Now the code looks like this:

PLA:Employee = employee identifier
SET(EmployeePlanKey,EmployeePlanKey)
LOOP
 IF Access:EmployeePlan.Next() <> LEVEL:Benign OR |
 PLA:Employee <> employeeidentifier THEN BREAK END
 Yada Yada Yada Yada Yada Yada
 PLA:EmployeeRate Yada Yada
 END
END

Oops, remember to change the second Yada to

Gobbledegook EMP:Plan

You don’t have to worry about skipping unused records, because there aren’t any unused
records and the simple loop works for as many plans as are or aren’t used. You also don’t
have to worry about how many records there are. The loop will just process all of them
whether you have 200,000 entries, one entry or zero entries.

”But my users will hate another browse and form,” you say. I don’t blame them. There are
better ways. The most obvious solution is Clarion’s Edit-In-Place feature. You put a browse
for the plan records on the employee form and range limit it to the employee identifier
field. Then you add the update buttons and check Use Edit-In-Place. In the example
application, I changed the class of the second column and added a single line of embed
code to make it a drop list.

If your users, or your clients, are really stuck on the idea that there are a certain number of
these repeating fields, you can fake them out on the form while still getting rid of the
25

In t roduct ion to Databases

26
repeating fields. Remember, user interface design is in large part psychology. The trick is to
make a set of fields on the form and write these to the child table. In the FRMFakeOut
procedure, I used an intermediate queue to allow the user to “roll” the list through the edit
fields. It acts like 10 fields and the users don’t realize that you made your life easier,
besides getting their program done faster and with less grief. Is the client going to freak out
over the scroll up and down buttons? Hide them, but leave some hidden configuration
parameter to unhide them with PROP:Hide, just in case.

Problems With Reports
Making the number of fields potentially unlimited can present reporting challenges. “But
only four columns fit across the paper.” Now that’s a problem. Paper is just 8.5 inches wide
in the US. The rest of you have it worse with 210 millimeter wide paper. With any report,
you have to ask, “What does the user want to know by looking at this report,” and secondly,
“What is the user going to do with this piece of paper after looking at it.”

When the computer was the great machine hidden away in a special room where only the
white coated priests could enter, reports were of extreme importance. That was the only
way information could get from the computer to the users. These days, we put computers
everywhere. The high school kid at Wal*Mart who makes minimum wage works in front of
a computer. We don’t mess with those thick books of 14 inch greenbar paper anymore
because it is much more convenient to put the information on a screen than to look it up in
that huge printout. Ask your users what they are going to do with that 248 page “Master
Inventory Report.” I once had a client demand this very important report, but it was never
used. You see, the Inventory browse was much more useful to his employees.

That aside, what do the users want the report for? I’m guessing the problem is a report that
shows a line for each employee and a column for each something else. It is more important
to find out what the user wants to know from the report than how they want the report
formatted. Perhaps only the four latest records for each employee are significant, or four
different totals of all the records for each employee would be more interesting. Perhaps the
only reason they want it is because they always had it. Are they looking for something
specific in the grid, like a number that is much greater than or less than the others? Or are
they looking for an unusually high column total?

I failed to ask the “purpose” question once and ran two mainframe jobs, each producing a
four inch thick stack of 14 inch greenbar paper, to satisfy a coworker’s request. Turns out
all she wanted to know was how many records there were. I could have told her that
immediately when she first asked for the report rather than four days and eight inches of
paper later!

Managing Complexi ty , Rule 1: E l iminate Repeat ing F ie lds
Say that after the analysis you’re still faced with a report with only four columns for each
employee. Do you need to restrict the data design for this report, or does the report itself
exhibit the “extension cord problem?” That is, what happens when, and not if, somebody
needs the seventh column? Rather than restricting your data design based on this report,
you need to design the report to deal with the inevitable.

What Good Are Arrays In Tables?
”How can it be so bad if Clarion allows it?” Clarion allows you to put arrays in data tables
because it has to. There are three reasons Clarion has to allow it.

The main reason is if they didn’t, some numskull will complain loudly in a public place that
Clarion is totally unusable because it lacks this important feature.

The most important reason is that we always have to deal with data from other programs.
That’s the whole reason we have drivers like dBase III. Is there an advantage in storing
some table in a dBaseIII file rather than a TPS, Btrieve or SQL table? No. The reason we
use the dBase driver is that some other program requires its input or output to be in
dBaseIII files. That’s why Clarion allows arrays in the data files, because the nit who wrote
the other program you have to interface with didn’t know any better.

I said there are three reasons, didn’t I? The third reason is they have to support people who
are too busy with problematic projects to read a chapter like this about how to design the
problems out of a project.

Sometimes you have what looks like a repeating field but isn’t. Consider a table which
represents 1099 forms. There are a lot of numbers on the 1099, and if you’re looking at an
old program somebody else wrote, they might have stored these in an array. To me, fields
named DollarsRents, DollarsRoyalties, DollarsOther and so on are more
meaningful than AMT[1], AMT[2] and suchlike. These 11 fields are not repeating fields,
so don’t feel bad about putting them in the 1099 table.

To recap, here are the two Guidelines and Rule Number 1:

Guideline 1 Don’t take shortcuts. They might save you a few minutes now, but
they’ll cost you days later.

Guideline 2 It is a lot less painful to fix a painful mistake now than it will be
later on.

Rule 1 Eliminate repeating fields.

In the next chapter I’ll introduce Rule Number 2 and some more guidelines.
27

In t roduct ion to Databases

28
Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v2n8complexity1.zip

MANAGING COMPLEXITY, RULE 2: ELIMINATE
REDUNDANT DATA

by Thomas Ruby

When you are designing the database, or the data dictionary, you are actually constructing
your program’s model of the universe. Since the entire universe is awfully big, you
concentrate just on the tiny part of the universe that your program deals with. The more
realistic your model of the universe is, the more able your program will be to do its job and
deal with things you didn’t think about at the start.

In the previous chapter, I introduced the idea of sticking to rules in order to reduce the
complexity of your application and to speed up development. I presented Rule Number 1
and two guidelines. To summarize:

Guideline 1: Don’t take shortcuts. They might save you a few minutes now, but
they’ll cost you days later.

Guideline 2: It is a lot less painful to fix a painful mistake now than it will be
later on.

Rule 1: Eliminate repeating fields.
29

In t roduct ion to Databases

30
In Parts 2 through 5, I’ll continue to introduce rules (five in all besides the guidelines),
show you why they are valuable, and explain how to apply them in your Clarion projects.

You can make up rules for all sorts of things. I’ve seen rules about how big buttons should
be and where they should be located. I’ve seen rules about how lists should be displayed
and about what fonts to use. Many of these serve to enforce a standard look and feel to the
application and to save the developer time in deciding how to arrange a window. One rule I
like to use is:

Guideline 3
A list is resizable, a form is not.

Now, this isn’t a hard and fast rule that says “never make a form procedure resizable,” but it
is a principle to guide me in deciding how or if to make a window resizable. You see, when
a user stretches a list, they obviously want to see more entries. But if they stretch a form
what do they want to see? Do they want to see more blank space? If the form is mostly a
list, then it’s obvious they want to see more entries in the list. The edit-in-place example
from the previous chapter contains a form that might be resized.

Anyway, enough procrastinating. Here’s Rule Number 2:

Rule 2
Eliminate redundant data

To explore this rule, I’ll concoct a ridiculous example. Herb is writing a program for a
garage. It is a really big garage with dozens of mechanics, and he would like to keep track
of who is skilled at what sort of job. Herb might think of a table like this:

Mechanic Table
NameMechanic
DateBirth
SocialSecurity
RateHourly
Skill

But, of course, a mechanic probably has more than one skill. A common solution is to just
list the mechanic multiple times in the table. But now Sue Pipebender is getting married.
She has 241 entries in this table, and somebody has to go through all those entries and
change her name. Oh well, what are secretaries for anyhow?

Herb might make his table like this:

Managing Complexi ty , Rule 2 : E l iminate Redundant Data
Mechanic Table
NameMechanic
DateBirth
SocialSecurity
RateHourly
Skill1
Level1
Skill2
Level2
Skill3
Level3
Skill4
Level4

But Rule Number 1 tells us to avoid this sort of thing, so Herb builds two tables:

So now each mechanic has a list of skills. This looks pretty good, except he wants to be
able to search by skill, and somebody will likely enter, “Wheel Alignment” for Crusty
McGinnes, “Alignment” for Joe Schmoe and “Align” for Guido. They could write the
“approved” skill names on a piece of paper and tape it to the monitor but hey, this is the
21st century. Use a Post-It instead!

Herb, you can do better than that. Make a table of skills so you can put a drop list to pick
the skill from. So now the tables look like this:

There’s nothing really wrong with this setup except when Herb changes a mechanic’s
name, he has to change the names of all the related records in the middle table. Using
referential integrity, Clarion will take care of this for you, except...

Clarion always edits a record in memory and writes the record to the table when the user
completes the form. If you put the list of skills on the mechanic form, when you go to
change Sue Pipebender’s name to Sue Arcwelder, her skills disappear! That’s because there
aren’t any records that say Sue Arcwelder in the MechanicSkill table. They come back
when you save the record and the record is actually changed causing the RI code to change

MechanicTable
NameMechanic
DateBirth
SocialSecurity
RateHourly

SkillTable
NameMechanic
Skill
Level

MechanicTable
NameMechanic
SocialSecurity
DateBirth
RateHourly

MechanicSkillTable
NameMechanic
Skill
Level

SkillTable
Skill
31

In t roduct ion to Databases

32
all the Sue Pipebender entries in the middle table to Sue Arcwelder. The users won’t like
this at all. What is Herb to do?

Look closely at Herb’s MechanicSkillTable. It lists the mechanic’s name and the
name of the skill, but it doesn’t really have to. The middle table’s job is just to say “this
mechanic has that skill,” and it doesn’t really care what the mechanic’s name is. So here is
where Rule Number 2 comes in. The purpose of Rule Number 2 is not really to reduce the
storage required, but to make updates happen efficiently without surprises. I’ll rearrange
Herb’s tables just a little.

I added a hidden field to the mechanic table and to the skill table which is used solely to
link (or relate) them to the MechanicSkillTable. Notice I said it’s a hidden field. I
never display this field! Why? The user doesn’t care what the SysIDMechanic is, so
why show it to her? Also, these hidden fields don’t mean anything so they never have to be
changed. It might be tempting to use the mechanic’s social security number for this linking
field, but social security numbers sometimes change, particularly when they were mistyped
in the first place. The Social Security Number might be an important key field for looking
up a mechanic’s record, but don’t use it as your primary key.

Sometimes, people suggest making the Social Security Number unique will fix the
problem, but what if you’re entering a new employee record and a previously entered
record has an incorrectly entered number and it’s causing the new record to be rejected?
Hey, I saw it happen, but it still didn’t convince the DP department to use a hidden key
field.

Sometimes this hidden field is called a “surrogate key.”

A field which is meaningless to the user never has to change. I’ll express this in Guideline
4:

Guideline 4
Link your tables by a hidden field that is completely meaningless outside the
system.

MechanicTable
SysIDMechanic
NameMechanic
SocialSecurity
DateBirth
RateHourly

MechanicSkillTable
SysIDMechanic
SysIDSkill
Level

SkillTable
SysIDSkill
NameSkill

Managing Complexi ty , Rule 2 : E l iminate Redundant Data
So what does this gain? For one thing, updating the mechanic’s name is now instantaneous.
No other records have to be updated. Sure, Herb could buy a power server to hold these
tables and run a fast data engine on it, but can even a power server update a bunch of
records faster than it can update no records?

I went ahead and used a hidden linking field for the skill. Why? For the same reason.
Supposing somebody mistyped “Water Pump.” To correct it, they just have to look up
“Water Pmup” in the skill browse and fix it. Immediately, everyone who was skilled in
“Water Pmup” becomes skilled in “Water Pump.” By the way, a form on this skill browse
listing all the mechanics who have a skill would be a really convenient place for the users
to ask, “Who can balance wheels?” When the garage wants to go to skill codes, all they
have to do is edit the skill names, and instantly, all the mechanics that know how to “Flush
Cooling System,” have skill code 2432. I don’t know why the garage would want to do this.
Perhaps a skill code sounds more computerish.

”But I want to show the name of the skill on the browse, not some stupid SysID.” Indeed!
I don’t want to show the SysID on the browse either, in fact, I never want to show the
SysID. When you build your tables in the dictionary editor or whatever your favorite tool
is, specify a key for each of your linking fields. Then specify a relation between the tables.

Always put your relation in the dictionary. “But there’s business reasons not to relate these
two tables.” Nonsense. The tables and relationships are describing the world to the
program. These business reasons sited are actually business rules that limit how you do
things and they are reflected in the program code, or in the procedures and triggers of your
SQL database.

Here is the guideline I use to make keys:

Guideline 5
Use keys to help the application identify records it is interested in.

There are two places where Guideline 5 applies. First, you make your linking fields, which
I usually call SysIDs, into keys. This lets the application quickly find all the
MechanicSkill records that apply to a mechanic, and the Skill record that applies to
a MechanicSkill record. Second, you make a key (or an index if you’re dealing with
SQL) to help a browse identify “the next eight records to show.”

Now that you have a relationship between the tables, it is trivially easy to make the browse
show the skill name instead of the skill SysID. You just add the Skill table under the
MechanicSkill table and pick the field that contains the skill name. The relationship
tells the templates how to connect the Skill with the MechanicSkill. The same thing
applies to reports. If you want to make a report showing all the skills each mechanic has,
33

In t roduct ion to Databases

34
just put the three tables in the file schematic. Somehow, looping through the child records
on a report just became pretty easy.

Sometimes, data is not redundant but looks like it is. Think about a sales and inventory
system. There might be three tables that look like this:

Obviously, the Sold table tracks who bought what and when, but what is that price field
doing there? Wouldn’t it be better to skip the price field in the Sold table and look instead
at the price field in the Inventory table? No, actually they are two different price fields
sloppily named the same thing. The tables should look like this:

You see, the Inventory record shows what the store is asking for the item now, but the
Sold record shows what the store was asking for the item when it was sold. Supposing the
storekeeper wanted to keep more information about the price history? You might build him
four tables like this:

Now ItemPrice contains a history of the price of each item, with starting and ending
date. I didn’t put the Price Sold in the Sold table because that can be found in the
ItemPrice record. This would work unless the store negotiates prices with the customer,
in which case PriceSold would have to be added back to the Sold record.

Customer
SysIDCustomer
NameCustomer

Sold
SysIDCustomer
SysIDInventory
DateSold
Price

Inventory
SysIDInventory
Description
Price

Customer
SysIDCustomer
NameCustomer

Sold
SysIDCustomer
SysIDInventory
DateSold
PriceSold

Inventory
SysIDInventory
Description
Price

Customer
SysIDCustomer
NameCustomer

Sold
SysIDCustomer
SysIDItemPrice
DateSold
Quantity

ItemPrice
SysIDItemPrice
SysIDInventory
DateStarting
DateEnding
Price

Inventory
SysIDInventory
Description

Managing Complexi ty , Rule 2 : E l iminate Redundant Data
To further illustrate, think about a company that ships things to its customers. Each
customer has an address, so you might think you could skip putting the address in the
shipment record like this:

Be careful. This can only record shipments shipped to the customer’s address. Perhaps the
customer wants the shipment shipped to his client or his mother. Maybe the client moved.
You probably want the data to look more like this:

Usually, the AddressShipped field is just copied from the Address field, but the
customer might want it shipped somewhere else. Do you want your users telling their
customers they can’t do that just because the program can’t accommodate it? This might
seem like a lot of redundant data, but actually it isn’t. Consider a customer that moves: you
change the address in the customer record, but as you deal with them, you have a record
that the TV they bought last year was shipped to 11535 IL HWY 9, while the monitor they
just bought was shipped to 19215 N 100th Rd. This can be valuable information if a
question comes up, and it’s really cheap to store this extra address. Remember, remove
redundant data to make updating it fast and reliable. Keep historic data when necessary.

Customer
SysIDCustomer
NameCustomer
CompanyCustomer
Address
City
State
Zip

Shipment
SysIDShipment
SysIDCustomer
DateShipped

ShipmentDetail
SysIDShipment
SysIDInventory
Quantity

Inventory
SysIDInventory
Description

Customer
SysIDCustomer
NameCustomer
CompanyCustomer
Address
City
State
Zip

Shipment
SysIDShipment
SysIDCustomer
DateShipped
AddressShipped
CityShipped
StateShipped
ZipShipped

ShipmentDetail
SysIDShipment
SysIDInventory
Quantity

Inventory
SysIDInventory
Description
35

In t roduct ion to Databases

36
You’ll want to automate the process so the computer is printing the shipping label from the
database. If a question comes up as to where the shipment went, you have the address it
was shipped to right here.

Just be sure to automatically get all the information from the database to the shipping label!
I’ll illustrate this with a true story. Most of the names have been omitted to protect... you
know the drill.

A client wanted to ship me a piece of equipment to test a new program on, so he went to the
manufacturer’s online ordering web site and entered the order. The order never came. The
manufacture’s customer service department had to go searching all over. My client had
entered the order as:

Name: Tom Ruby
Company: His Company Name
Address: 19215 N 100th Rd
City: Industry
State: IL

But the clerk looking at the screen, typed the order into their fulfillment system like this:

Company: His Company Name
Address: 129215 N 100th Rd
City: Industry
State: IL

Now, Industry is a small place, and the UPS driver knows me pretty well. If the equipment
had been shipped to Tom Ruby at the incorrectly entered address, the UPS driver would
have figured it out. Or, if it had been shipped to His Company Name at the right address,
the UPS driver would have figured it out. But with neither my name, nor my address, the
equipment wound up at the receiving department of a coal mine for several days while they
scratched their heads wondering who would have ordered something from His Company
Name.

The shipping department had confirmation that the item had been delivered to 129215 N
100th Rd and thought all was fine. The order entry system had recorded that the item was
shipped to 19215 N 100th Rd, and all was fine. Since everything was fine, the
manufacturer was at a loss to figure out why I didn’t have it. Had the shipping address been
automatically copied to the shipping label, there wouldn’t have been a problem.

Another example: you would think that the big credit-card issuing banks with their huge
DP departments would get their data design right, but alas. Have you ever lost a credit
card? They have to close the account and open another one just like it, and you’ll get two
bills, one showing charges and payments made on the old account, and the other showing
charges and payments made on the new account. Do you see what the problem is? (Yes,

Managing Complexi ty , Rule 2 : E l iminate Redundant Data
you in the back.) That’s right: the card number is the primary key and all the transaction
records use the card number to connect back to the account record. If they used a surrogate
key to relate everything back to the account record, all they would have to do is set the card
number field of the account record to the new card number. Probably they want to keep the
card numbers in a separate table so they can record that this card belonged to that account
but was stolen.

So to recap, here are the two new Guidelines and Rule 2:

Guideline 3: A list is resizable, a form is not.

Guideline 4: Link your tables by a hidden field that is completely meaningless
outside the system.

Guideline 5: Use keys to help the application identify records it is interested in.

Rule 2: Eliminate Redundant Data

In the next chapter I’ll discuss Rule 3.
37

In t roduct ion to Databases

38

MANAGING COMPLEXITY, RULE 3: ELIMINATE
COLUMNS THAT DON’T BELONG

by Thomas Ruby

In this series, I’ve introduced the idea of using rules to reduce the complexity of your work.
Software complexity is increasing because the users and clients expect your software to
solve increasingly complex problems for them, and if you don’t do it, your loyal customers
will beat a path to your competitor’s door. Face it, the days when the users were delighted
with a 2,000 line program with two tables, a browse and a report are far behind.

How do you handle this complexity? The first thing to do is avoid making it worse. Clarion
is a powerful tool for solving problems, but let’s apply its power to solving the user’s
problems, not to solving problems we add to them.

So I’ll recap Rules 1 and 2, along with the guidelines, and get on with Rule 3.

Guideline 1: Don’t take shortcuts. They might save you a few minutes now, but
they’ll cost you days later.

Guideline 2: It is a lot less painful to fix a painful mistake now than it will be
later on.
39

In t roduct ion to Databases

40
Rule 1: Eliminate repeating fields.

Guideline 3: A list is resizable, a form is not.

Guideline 4: Link your tables by a hidden field that is completely meaningless
outside the system.

Guideline 5: Use keys to help the application identify records it is interested in.

Rule 2: Eliminate redundant data

If you stick to Rules 1 and 2 when you lay out your data, you will find a lot of the
complicated code you’re used to writing disappears. There’s something else that will
disappear; bugs. I mean the type of bug where the users complain, “I changed this here and
something went wrong over there...” You like the idea of less headache, fewer bugs and
less tangled code? Then I’ll go on with Rule Number 3:

Rule 3
Eliminate columns that don’t belong

To explain Rule Number 3, I’ll talk a little about keys. In Clarion, we have the idea of a key
and an index rather mixed up, because you usually want an index on a key. A key is a
column (or field) in a table (or file) which is used to identify rows (or records), while an
index is a data structure used to impose an order on the rows without having to actually sort
them to make finding records faster. You usually want an index on a key, but you don’t
have to have one. A key is a logical construct, an index a physical construct.

Now, when I talk about “The Key,” or “The Primary Key,” what I mean is a column or
columns that uniquely identify each row in the table. Even more than that, I mean a column
or a value that represents the thing the row of the table records. The other columns of the
table describe the thing the KEY represents. Take a look at an example of a Student table:

StudentID Name Gender Teacher Grade Section

102 Caleb M Wilson 2 1

103 Cameron M Wilson 2 1

104 Anthony M Wilson 2 1

105 Angel F Wilson 2 1

106 Sarah F Wilson 2 1

107 Ethan M Harn 1 1

108 Mandy F Harn 1 1

Managing Complexi ty , Rule 3: E l iminate Columns That Don’ t Belong
Obviously, the StudentID is the primary key in the Student table. Remember, the
primary key represents the student. The other columns describe the student. The table also
contains the student’s name, gender, teacher, grade, and section The section must be which
class of the grade they go to. But wait! Three of these columns describe the class, not the
student, so they don’t belong here. They belong in a class table. So I’ll make two tables:

Why is this better? For one thing, moving a student from one class to another is a matter of
updating one field, not three. Also, you don’t have to worry about things getting out of
synch, or the users asking, “If Drew is in second grade, why does the database show his
teacher as Mrs. Harn, the first grade teacher? Uh oh, Mrs. Bricker will be teaching second
grade. With a single table, some user would have had to find and update seven records, or
you would have to write a change teacher process. With a separate class table, only one
record needs to be updated.

To clarify this, here’s Guideline 5:

Guideline 5
The primary key represents the “thing.” The rest of the columns describe the
thing the primary key represents.

You probably have more information you want to store about the teacher. Perhaps the
teacher’s phone number, address, or state certificate number. As long as one teacher only
teaches one class, you could probably put these in the Class table, which would change it
into a teacher table. If you’re talking about a bigger school or older kids where a teacher

109 Waylon M Wilson 2 1

110 Emily F Harn 1 1

111 Seth M Harn 1 1

112 Ashley F Hard 1 1

112 Drew M Wilson 2 1

StudentTable
StudentID
Name
Gender
ClassID

ClassTable
ClassID
Teacher
Grade
Section
41

In t roduct ion to Databases

42
might teach several classes, you would want to make separate teacher tables and class
tables. These tables might look like this:

So how do you record which class the student is in? It is pretty likely that a student is in
more than one class. A class also has more than one student. This is the dreaded Many-To-
Many problem. You can’t put a list of classes in the Student table because that would
violate Rule Number 1, and you can’t put a list of students in the class table because that
would also violate Rule Number 1. Fortunately, the conundrum is easily solved.

”You don’t mean another...” Yes. I mean another table.

Now you can record that Sasha is taking Biology, Algebra 1, Wood Shop, Art, English and
Civics. You also have a place to record what grade she got in each of these classes. Notice
that I gave the AttendsTable an AttendsID. This isn’t actually needed, because the
table’s primary key could be StudentID and ClassID. I gave it a single field primary
key for two reasons. First, force of habit. Second, if you discover later on you need a list of
something from AttendsTable, maybe an attendance or assignment history, you have a
single linking field to use, which is easier to use in a range limit than something like
HST:StudentID = ATT:StudentID AND HST:ClassID = ATT:ClassID.
When you’re building an application, you never know what is going to happen to the
requirements for the application, so while you’re at it, you might as well simplify the work
you’ll have to do later on. This is so important that I’ll make it a guideline:

Guideline 6
You never know what will happen to the specification later on, so you might as
well simplify your future work while you’re at it.

StudentTable ClassTable TeacherTable

StudentID
StudentName
StudentAddress
GradeLevel

ClassID TeacherID
RoomNumber Period
CourseName

TeacherID
TeacherName
CertificateNumber
TeacherPhoneNumber

AttendsTable

AttendsID
StudentID
ClassID
Grade

Managing Complexi ty , Rule 3: E l iminate Columns That Don’ t Belong
You might wonder how you’re going to show a student’s schedule, or a teacher’s class list,
with all the fields scattered all over the place. Whenever you make a report or even a
browse, the templates make a view structure for you, and a view serves to temporarily
present you with an un-normalized picture of your data, much like the original student
table.

So, to recap. Here are the first three rules of data normalization:

Rule 1: Eliminate repeating fields.

Rule 2: Eliminate redundant data

Rule 3: Eliminate Columns that don’t belong

And here are the guidelines:

Guideline 1: Don’t take shortcuts. They might save you a few minutes now, but
they’ll cost you days later.

Guideline 2: It is a lot less painful to fix a painful mistake now than it will be
later on.

Guideline 3: Link your tables by a hidden field that is completely meaningless
outside the system.

Guideline 4: Use keys to help the application identify records it is interested in.

Guideline 5: The primary key represents the “thing.” The rest of the record
describes the thing the primary key represents.

Guideline 6: You never know what will happen to the specification later on, so
you might as well simplify your future work while you’re at it.

For most situations, three rules, or “Third Normal Form” is considered “normal enough,”
but there are big advantages to understanding Rules 4 and 5. Next, Rule 4.
43

In t roduct ion to Databases

44

MANAGING COMPLEXITY, RULE 4: ISOLATE
INDEPENDENT MULTIPLE RELATIONSHIPS

by Thomas Ruby

”Rules! Rules! Rules! What ever do we need all these rules for? Creativity must not be
restricted!”

Bugs! Delays! Rewrites! Upset Clients! What do those do for your creativity?

By knowing your science, you’ll be released to pursue your art. I’ve given you the three
rules of normalization plus six guidelines to help you manage the complexity of your
application. This way you can keep your mind on the user’s problem you’re trying to solve
rather than keeping busy with problems you’ve created.

Rule 1: Eliminate repeating fields.

Rule 2: Eliminate redundant data

Rule 3: Eliminate Columns that don’t belong

Guideline 1: Don’t take shortcuts. They might save you a few minutes now, but
they’ll cost you days later.
45

In t roduct ion to Databases

46
Guideline 2: It is a lot less painful to fix a painful mistake now than it will be
later on.

Guideline 3: A list is resizable, a form is not.

Guideline 4: Link your tables by a hidden field that is completely meaningless
outside the system.

Guideline 5: Use keys to help the application identify records it is interested in.

Guideline 6: The primary key represents the “thing.” The rest of the record
describes the thing the primary key represents.

Guideline 7: You never know what will happen to the specification later on, so
you might as well simplify your future work while you’re at it.

At this point, you’re probably thinking either, “Give me more!” or “Oh no, not again.” To
tell you the truth, I’m procrastinating myself, and Dave is going to be wondering if I’m
ever going to finish the five chapters I promised him. Take charge! Grab the bull by the
horns! Carpe Diem! So, without further ado:

Rule 4
Isolate independent multiple relationships.

So what does this gobbledygook mean? It’s not as bad as it sounds; in fact, it’s almost a no-
brainer. It means if you have more than one multiple relationship, and they don’t have
anything to do with each other, put them in separate tables. The best way to understand this,
or perhaps the only way I can figure out to explain it, is with an example. Think about the
garage example of part two with these tables:

MechanicTable MechanicSkillTable SkillTable

SysIDMechanic
NameMechanic
SocialSecurity
DateBirth
RateHourly

SysIDMechanic
SysIDSkill
Level

SysIDSkill
NameSkill

Managing Complex i ty , Rule 4: Iso la te Independent Mul t ip le Rela t ionships
If Herb wanted to keep track of tools owned by each mechanic, rule four tells him not to do
it in the MechanicSkillTable, but to make a new ToolTable, which might look
like:

Now, this might seem like a no-brainer, but sometimes you can’t convince the client that
the two different “things” really have nothing to do with each other and they demand to see
them in one list. It is pretty obvious that tools and skills don’t look anything alike and so
should be in separate tables, but suppose the issue is “Tools” and “Uniforms,” both of
which the mechanic owns? Perhaps Herb has been lead astray by the garage’s vocabulary
where when they refer to “Tools and Uniforms,” they really mean “Property,” including
tools and uniforms.

Rule 4, in this case, doesn’t tell me how to organize the data like Rules 1 through 3 do.
Instead, Rule 4 tells me that Herb didn’t quite understand the requirements for the program.
Herb knocks himself in the noggin and goes off to make the changes, creating a separate
ToolTable. And I feel another guideline coming on:

Guideline 8
If it’s not making sense and it looks like you really have to break a rule, you
might not understand the problem fully.

In case you haven’t figured it out yet, the five rules are the Five Normal Forms. The whole
idea of “Data Normalization” is to construct a model of the world out of tables. The better
you construct this model, the better your program will be able to deal with the world and
the better your program will be able to adapt to changes in its environment.

Next time, Rule Number 5 and the dreaded one-to-one relationship.

ToolTable

SysIDMechanic
ToolDescription
47

In t roduct ion to Databases

48

MANAGING COMPLEXITY, RULE 5: ISOLATE
SEMANTICALLY RELATED MULTIPLE
RELATIONSHIPS

by Thomas Ruby

In the previous four chapters I explained four of the five rules of Data Normalization. I also
gave eight related guidelines, and showed how to apply them in your Clarion Programs.

Let me start this chapter by shocking you with Guideline 9:

Guideline 9
Consider one-to-one relationships harmful.

How does that go again? “Consider one-to-one relationships harmful.” A one-to-one
relationship means that every row in one table is paired with exactly one row in another
table. If the relationship is truly one-to-one, then why do you have two tables? They should
be combined into one.
49

In t roduct ion to Databases

50
Having said that and having tried to convince you that there is no place for a one-to-one
relationship, I’ll tell you why you might want to use a one-to-one relationship. Clarion, like
many other data management languages, edits a record in memory and saves it to the table
when the user presses the Ok button. As a nod toward multi-user activity, Clarion checks to
see that nobody else has updated that record before saving it and gives you the message,
“This record was changed by another station. Those changes will now be displayed.
Use the Ditto Button or Ctrl+” to recall your changes.”

In a lot of multi-user systems this is a quite adequate solution to the “last one who saves,
wins” problem because it is unlikely two users will be updating the same record at the same
time. But suppose you have an online inventory system with dozens of cash registers
ringing up tickets and “taking” things out of inventory, and a receiving department with
several employees unloading trucks and putting items in inventory. The
QuantityOnHand value is a very useful figure for store management, so operators
would probably like to see it on the Item form. If you put it in the item record, the chance is
pretty good that one of the cash registers or receiving clerks will change the number before
the store manager, who is just wanting to correct the description, can hit the Ok button. And
the chances are again pretty good that the record will change again before the manager can
make his change again, even using the history feature, and hit the Ok button. It could lead
to frustrated users.

A frequent solution is not to update the QuantityOnHand during the day and update it
during an end-of-day operation. But this is an online system, and the user doesn’t want to
know how many the store had yesterday, but how many it has now.

Do you throw up your hands and announce that Clarion is totally useless for intensive
multi-user applications? Some do. I don’t. Remember Guideline 8: “If it’s not making
sense and it looks like you really have to break a rule, you might not understand the
problem fully.” With this in mind, I realize that I just haven’t understood the problem fully.
You see, there is a field, QuantityOnHand, which is not updated on a form, but by some
other activity. The other activities happen to be cashiers selling items and receiving clerks
unloading trucks. In a sudden burst of insight, probably accompanied by a burned out light
bulb, Guideline 10 pops into mind:

Guideline 10
Separate automatically updated columns from manually updated columns.

Considering the new Guideline 10, there are likely several columns that are
“automatically” updated, and I realize why Guideline 9 doesn’t say “never use one-to-one
relationships.” So I’ll make a separate table and update it with a sequence like:

!Ainventory being the automagically updated part

Managing Complexi ty , Rule 5 : Iso la te Semant ica l ly Rela ted Mul t ip le
LOGOUT(10,Ainventory)
Access:Ainventory.Fetch()
AINV:QuantityOnHand -= QuantitySold
Access:Ainventory.Update()
COMMIT

Or in an SQL environment:

Ainventory{PROP:SQL} = 'UPDATE Ainventory WHERE
 ItemSysID = xxx SET QuantityOnHand =
QuantityOnHand - QuantitySold'

I could be extremely clever and put a timer on the form to retrieve the automagically
updated figure and redisplay it now and then so the user can “watch” his inventory go up
and down. Now the user knows exactly how many packages of “Screaming Yellow
Zonkers” she has on hand, except for the one a customer is pushing around in a shopping
cart.

The whole point of Guidelines 9 and 10 is to reserve one-To-one relationships to situations
where there’s a column that is being updated by something other than the form, and to
prevent me from having to update two records on the same form.

Rule Number 5, or Fifth Normal Form, is also related to updating the database. In fact all
the rules so far are related to updating the database.

Rule 5
Isolate Semantically Related Multiple Relationships.

It’s not my fault! Somebody at a university made this rule up. To illustrate Rule Number 5,
imagine you’re interested in tracking distributors and manufacturers of different parts.
Since the manufacturer doesn’t want to deal in the quantities you buy, you have to buy from
distributors. Each distributor sells the parts from several manufacturers, and the same part
may be available from different manufacturers. In a word, it’s a mess.

You might think of four tables that look somewhat like this:

Distributor Part

DistributorSysID
DistributorName
DistributorAddress
And all that rot

PartSysID
PartName
PartDescription
51

In t roduct ion to Databases

52
The fourth table, DistributorPartManufacturer tells you which distributors sell
which parts from which manufacturer. Rule Number 5 (or Fifth Normal Form) dictates
against this since there are two different relationships, even though they’re related. Instead,
you should separate this table into two like this:

So what does this gain you besides two more tables? Like the other rules, simplicity in
updating. Suppose Acme Widgits starts making three of those handy bolts with the threads
offset from the shafts for when the holes don’t line up. Since Acme is handled by four
distributors, with the un-normalized table, you need to add 12 records to the big cross
reference table to show that these parts now come from the four distributors where you get
Acme parts. You also have a fairly complex piece of logic to figure out from the
DistributorPartManufacturer table which distributors sell Acme so you can add
these records to the table. If nobody else makes these parts, you have to add the three new
part records.

With the normalized table, you need to add fewer records, and the code to add these records
is simpler. You only need to add three records to the PartManufacturer table to show
that Acme now makes the thread offset bolts. If you have lots of update activity, Rule
Number 5 can improve your efficiency quite a bit, not to mention reducing complex logic.

To wrap this up, I’ll enumerate the Five Rules and Ten Guidelines:

Rule 1: Eliminate repeating fields.

Rule 2: Eliminate redundant data

Rule 3: Eliminate Columns that don’t belong

Rule 4: Isolate independent multiple relationships.

Rule 5: Isolate Semantically Related Multiple Relationships.

Guideline 1: Don’t take shortcuts. They might save you a few minutes now, but
they’ll cost you days later.

Manufacturer DistributorPartManufacturer

ManufacturerSysID
ManufacturerName
ManufacturerAddress
Bla bla bla

DistributorSysID
PartSysID
ManufacturerSysID

DistributorManufacturer PartManufacturer

DistributorSysID
ManufacturerSysID

PartSysID
ManufacturerSysID

Managing Complexi ty , Rule 5 : Iso la te Semant ica l ly Rela ted Mul t ip le
Guideline 2: It is a lot less painful to fix a painful mistake now than it will be
later on.

Guideline 3: A list is resizable, a form is not.

Guideline 4: Link your tables by a hidden field that is completely meaningless
outside the system.

Guideline 5: Use keys to help the application identify records it is interested in.

Guideline 6: The primary key represents the “thing.” The rest of the record
describes the thing the primary key represents.

Guideline 7: You never know what will happen to the specification later on, so
you might as well simplify your future work while you’re at it.

Guideline 8: If it’s not making sense and it looks like you really have to break a
rule, you might not understand the problem fully.

Guideline 9: Consider one-to-one relationships harmful.

Guideline 10: Separate automatically updated columns from manually updated
columns.

One more point. You may have heard it said that Third Normal Form is usually considered
“normal enough.” Most say it’s because the situations in Fourth and Fifth Normal Forms
rarely crop up. Actually, these situations appear all over the place, but usually by the time
you’ve thought through the first three normal forms, you’ve already satisfied the Fourth
and Fifth forms.

Finally!
Do you have to follow these five rules of data normalization? No, you don’t. I have a hard
time understanding why you wouldn’t want to make your work easier. Indeed most
software is developed the hard way anyhow so just go along with the crowd and give
yourself ulcers.

Okay, I am being sarcastic. You don’t have to follow the rules of data normalization, but I
know that somehow, every time I’ve broken them, I’ve wound up wishing I hadn’t.
53

In t roduct ion to Databases

54

DISPLAYING NORMALIZED DATA

by Steven Parker

One of the basic concepts of normalization is that every record in a file, or row in a SQL
table, should be uniquely identified. The effort necessary to ensure unique identification
has practical and immediate benefits in some cases: browses on SQL tables without row
level unique identification can behave bizarrely in Clarion (for example, rows may show
up multiple times, or errors can be thrown on an attempted update).

Since I am still developing against flat files, unique identifiers preventing spurious
duplicate browse lines doesn’t motivate me a whole lot. To me, the real utility of unique
identification lies in the facilitation of relations and lookups. This is true for both flat files
and SQL.

I want to address two aspects of unique IDs: the generic motivation for using them, and the
difficulties they can present when displayed to the end user.

Typically, Clarion developers call this unique identifier SysID or something similar, and
create it by template-controlled autonumbering.
55

In t roduct ion to Databases

56
How does autonumbering work?
Imagine a human resources application. One of the files (or tables) will almost certainly
contain basic demographics on employees (possibly, this file will be called EMPLOYEES).
Another might contain employee reviews (I suppose it might be called REVIEWS).

If each employee has a SysID assigned (i.e. a primary key) then, if that number is also
contained in REVIEWS records (i.e. a foreign key), it is easy to create code to retrieve all
the reviews for a given employee (and only that employee) with a few mouse clicks.

The point is not that the same datum must be in both files/tables in order to link records;
that should be fairly obvious. The point is that this manner of linking makes it easy to do
things in our apps that make them appealing to users. For example, using this kind of link,
it is (even) possible to “pair” the parent record with the child records in a single browse, as
shown in Figure 1.

In the dictionary for the demo application, you will notice that I have both a SysID and an
EmployeeNumber field. This is because an employee number is not sufficiently reliable
as a linking datum. An employee number can change. Of course, I would never allow that
without adequate referential integrity constraints; I would configure things so that changes
would always cascade. Always.

But, suppose you write an application against these data files

Figure 1: Review table “follows” employee table

Displaying Normal ized Data
Now suppose a DBA changes a table layout. Suppose there is a data corruption. Suppose a
data entry clerk, in another application that does not check for duplicates, accidentally re-
uses an existing employee number.

So much data, so many sources of mashed links.

What I need is a datum that uniquely identifies a master (parent) record, is included in each
related record (RI constraints), and is not changeable by a user or, even a DBA (i.e., is
under no one’s control but mine).

An autonumbered key fits this bill to a “T.” Indeed, many developers use such a field and
never display it to the end user at all.

And that is why there is a SysID and an EmployeeNumber.

Okay, unless you’re completely new to data-driven applications, this is not news and it is
not rocket science. Neither is it news that if data is used in many places, it should
physically exist in only one place. From the one place where the data physically exists, it is
looked up everywhere else it is needed or is useful. And, in all such cases, the data is
identified by a SysID-type field. For example, an employee’s name, address and phone
number are in EMPLOYEES but anywhere else I need to see or print that data, I look it up
from the central location using EMP:SysID.

Now, consider the simple Employee-Review structure described above. But, consider it
from the point of view of the REVIEWS file (entry of performance reviews will not always
be through the employee master file, so access directly to REVIEWS is necessary).

A “Wizard-ed” browse would first appear empty, expecting an employee to be selected,
only then completing (as in Figure 2).

Figure 2: “Wizarded” child browse after parent selection
57

In t roduct ion to Databases

58
Not very user friendly. The typical update form (Figure 3) is no better:

It is no better because, while I may or may not know Seymour, the employee whose review
is shown in Figure 3, I have no idea what a “3” is (the data files are included in the demo
app so you can see that “3” is indeed Seymour Schmardfart1).

It is easy enough to create a browse of all employee reviews (i.e., without using the range
limits that the wizard defaults to) and, using the relationship between EMPLOYEES and
REVIEWS, display the employee name. Because related data is projected into the browse’s
view, the related file’s fields can be used just as if they were in the primary file, including
concatenating first and last name fields into a single name display. This makes a much
friendlier browse (Figure 4):

Figure 3: Child update form

1. Seymour Schmardfart, according to Jerome Singer, is the brunt of every weird example in Social
Psychology. He has served me faithfully through the years in a role expanding beyond the narrow confines
of mere inter-personal behavior studies

Displaying Normal ized Data
I can even use this in the update form to display the employee name (Figure 5).

Figure 4: Child browse with parent data

Figure 5: Name display added to SysID
59

In t roduct ion to Databases

60
A digression
By the way, I’ve discovered a marvelous little trick for creating and displaying the name
from the lookup into the EMPLOYEES file.

Previously, I would press the Field Priming on Insert button and prime FullName to ''
which forces it to be blank when inserting a new record.

After looking up the employee (in SysID, Accepted - see Figure 6), I let the templates
handle retrieval of the employee’s name for me. If I want a full name display, I concatenate
the data after the lookup.

To display the name when editing an existing record, I check whether the form is being
called to edit with ThisWindow.Request = ChangeRecord and, if so, I manually
do the lookup in INIT, after opening the files.

However, I have since found that the following code, after the files are open eliminates the
need to prime-on-insert to ensure a blank FullName:

EMP:SysID = REV:SysID
Access:Employees.Fetch(EMP:EmployeeSysIDKey)
FullName = Clip(EMP:FirstName) & ' ' & EMP:LastName

Because the FETCH method clears the buffer when it cannot find the record, which will
happen on an Insert because there is no value in REV:SysID, the two name fields are

Figure 6: Standard validation

Displaying Normal ized Data
blank and, therefore, the FullName will also be blank. But, if called to edit an existing
record, the FETCH will succeed.

Back to my story
The fact of the matter is that the update form, shown in Figure 5, is pretty clunky looking. It
is even clunkier to use.

In fact, it is unusable.

On its face, it looks like I am expecting the user to enter a SysID, not an employee name,
not an employee number - either of which I might reasonably expect an end user to know or
to have access to - but this utterly mysterious SysID thingee.

Furthermore, in the demo app, I’ve made the SysID field skip and read-only. How could
any one ever enter the required datum? What if I’d followed common practice of not
displaying it at all?

Even if I made it enterable, its virtue to me, as a designer, is that it is meaningless and this
very virtue now plays against me when the user needs to complete it. So, I have to ask the
user to enter a field that isn’t there, or a field that can’t be written to or a field that makes no
sense to the user.

Right.
61

In t roduct ion to Databases

62
What I want would look more like Figure 7:

This is easily achieved by changing the prompt, hiding the SysID field and moving the
name field to the left. But I still can’t enter a new record.

The conundrum is that I do not want the users touching (sometimes not even seeing) a
datum that I require them to enter. And the field that the user can see and make sense of
doesn’t really exist anywhere. Do I sense a consistency problem here?

The FieldLookupButton control template, of course, resolves all the problems (and
even makes the consistency issue moot). This template requires the label of a control with a
lookup (as in Figure 6, above). It does not require that the field be visible. So, if I have a
lookup on REV:SysID, even though I’ve hidden that control, the lookup button will still

Figure 7: Form without “SysID”

Displaying Normal ized Data
work. Figure 8 shows what happens when pressing the lookup button when the SysID
field is hidden.

Voila! I only need to embed this code:

FullName = Clip(EMP:FirstName) & ' ' & EMP:LastName

Figure 8: Pressing “...” with SysID field hidden
63

In t roduct ion to Databases

64
in the button’s Accepted embed to ensure that the form displays as I wish:

It is also possible to trick the users by having them look up the last name (there is a
procedure in the demo app constructed this way). In this case, the lookup button would
refer to the EMP:LastName field and the “Additional Assignments” button would assign:

REV:SysID = EMP:SysID

Either method will work. It’s a matter of taste.

Summary
Normalization is a two edged sword. It makes relations, relational views and lookups much
easier. It allows me to provide a lot of eye candy with a few mouse clicks. It allows me to
give a hierarchical file structure a flat (or flatter) appearance to the user (by simply adding
update buttons to a child browse.

On the other hand, normalization makes entering and displaying records in child files much
more of a challenge for the typical user. With a judicious use of the tools at your disposal,
however, you can lead the user down the primrose path to do what the file structure
requires without creating any great intellectual challenge... at least, not more than is
absolutely necessary.

Figure 9: A more user-friendly form

Displaying Normal ized Data
Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v3n9normal.zip
65

In t roduct ion to Databases

66

DISPLAYING MANY-TO-MANY
RELATIONSHIPS

by Thomas Ruby

If your users don’t understand your program, or don’t like how you’ve presented their data,
they’re not going to be as productive as they could be (and they may not be your users
much longer!) The more complex the data, the more careful you have to be about how you
present it to the user.

One area that causes developers problems is many-to-many relationships. The concept of
many-to-many has been previously covered in this book (“Handling Many-To-Many
Relationships,” p. 9); in this chapter I’ll cover three of the ways you can present this kind of
data to your users. I call these ways “Form and Lookup,” “Check List,” and “Selection
Pool.”

Many-To-Many Basics
A many-to-many relationship describes a link between two entities, one on the left, the
other on the right, where each item on the right may be matched to zero or more items on
67

In t roduct ion to Databases

68
the left, while each item on the left may be associated with zero or more items on the right.
Many-to-many relationships occur all the time. Some examples include:

• Which students are registered for which classes

• Which employees have which benefits options

• Which contractors have which skills

• Which facilities are reserved for which meeting

These are very easy to deal with using an intermediate cross reference table containing one
record for each link with the record containing the primary keys values of both the other
tables. This is easily demonstrated with a hokey example, and a very hokey example
follows.

Penelope Puppylove has a dog act in the circus (didn’t I warn you?). As part of her Dog Act
Management System and Electronic Listing (DAMSEL), she wants to keep track of which
puppies she has trained to do which tricks. Any puppy might be able to do several tricks,
and she naturally trains more than one puppy to do each trick just in case one puppy is out
of sorts for a show.

Immediately you can think of two tables, or files (I’ll use the term table in this discussion,
but for many flat-file database systems table and file mean the same thing). One table lists
puppies, and one lists tricks. To deal with the many to many relationship between puppies
and tricks you introduce a third table, often called a cross reference. I’ll call it DoesTrick
because it indicates which puppies do which tricks. Here are the three tables as I’ve set
them up. You can look at them in the DAMSEL dictionary.

Notice that I’ve given each table a SysID field. This extra field is sometimes called a
surrogate key, and its main purpose is to keep from having to put the PuppyName and
TrickName in the DoesTrick table. Most experienced developers structure the data
this way and make the SysID independent of any outside characteristic. If this was a
database of people in the USA, you might be tempted to use the Social Security number as
the primary key, but that isn’t a good idea since social security numbers sometimes have to
change and may be duplicated, often due to data entry errors.

I’ll use the SysID as a primary key, and I’ll set it as an autoincrementing key as well. The
PRIMARY attribute is important for SQL databases, and the autoincrement setting causes
Clarion code to be generated to do the autoincrementing.

Puppy DoesTrick Trick

PuppySysID LONG
PuppyName STRING(20)

DoesTrickSysID LONG
TrickSysID LONG
PuppySysID LONG

TrickSysID LONG
TrickName STRING(20)

Display ing Many-To-Many Relat ionships
The DoesTrick table could get away without a SysID since the two fields,
PuppySysID and TrickSysID could make up a primary key. However I always put a
separate field for each table’s primary key because it is less trouble to have one you don’t
need, than to need one you don’t have. SQL systems depend very heavily on the primary
key to recognize which record is being updated.

Each table gets a primary key on its own SysID, and the DoesTrick table gets a key on
the PuppySysID and TrickSysID fields. I also put a key on PuppyName and
TrickName for convenience. The DoesTrick table gets two more keys, one on
PuppySysID and TrickSysID, and the other on just TrickSysId. I marked the key
on PuppySysID and TrickSysID to require a unique value so a trick can only be listed
once for a puppy and vice versa. In some applications you might want to allow duplicates.

Two relations connect each Puppy record to many DoesTrick records by the
PuppySysID keys, and each Trick to many DoesTrick records by the
TrickSysID keys. The Clarion dictionary editor lets you define referential integrity to
tell what you want done to the child records (DoesTrick) when the parent records
(Puppy and Trick) are deleted or changed. Since I’ve used surrogate keys, there isn’t
any reason to change a SysID, so I have On Update set to No Action. I set On Delete to
Cascade, so the DoesTrick records will disappear if the Trick or Puppy record is
deleted. You could set the relationship between DoesTrick and Trick to Restrict on
delete if you wanted to be sure a trick is never deleted if there is a puppy connected to it,
which would be appropriate in many applications.

Notice that there are two ways of looking at the data. Penelope might want to look at all the
tricks a puppy can do, or she might want to look at all the puppies that can do a trick.

The User Interface
Now that the data for this hokey application is defined, it’s time to look at ways of
presenting the data relationship to the user. The three options I use are “Form and Lookup,”
“Check List,” and “Selection Pool.”

Form And Lookup

In most Clarion programs the user edits a many-to-many relationship on the form where
one of the tables is edited. A form and lookup interface is useful if there is extra
information that needs to be stored in the cross reference record like how well the puppy
does the trick.

Note: The example application contains completed procedures. If you want to
follow along with the example application, you can either create new
69

In t roduct ion to Databases

70
procedures with different names, or create a new example application and
import demo app procedures as required.

If you create the DAMSEL data dictionary as I’ve described it so far, and let the wizards go
at it, they will build you a Form and Lookup type interface. To show how such an interface
works, I built it using the application generator. I started with an MDI frame as the main
procedure with a menu option to call a browse of puppies and another to call a browse of
tricks, look closely at my DAMSEL.App. Each of these browses calls a form to update the
puppy or the trick. In the sample DAMSEL application, I named these:

LookupPuppyBrowse
 PuppyLookupForm
LookupTrickBrowse
 TrickLookupForm

These probably aren’t names you would use in a real application, but I used them here to
mean “The example that uses a lookup to edit a puppy,” and “The example that uses a
lookup to edit a trick.”

The main feature of PuppyLookupForm, in addition to the puppy name field, is a browse
listing tricks the puppy can do. To build this browse, populate a browse box template onto
the form. When the file schematic pops up, select the DoesTrick table, press the Edit
button, and select the PuppySysIDKey. Since you want to show the puppy name and not
anything out of the senseless DoesTrick table, hit Insert again, and select the Trick
table from the list. Now, select the TrickName field from the Trick table. Now our
browse box will show the names of the tricks rather than the SysIDs which Penelope
doesn’t know or care anything about.

Now go to the Actions tab for the browse. Select the PuppySysID for the range limit
field, set the Range Limit Type to File Relationship, and select Puppy for the related
table. Just for grins, fill in TRI:TrickName under Additional Sort Fields so the tricks
will be listed alphabetically. See Figures 1 and 2.

Display ing Many-To-Many Relat ionships
Figure 1: Actions tab for the trick browse on the puppy form.

Figure 2: File schematic for the puppy lookup form.
71

In t roduct ion to Databases

72
Now the form will show the list of tricks the puppy can do. More precisely, it shows the
trick names from trick table that match the DoesTrick records which contain the puppy’s
SysID. All that’s missing is a way to edit the list. Populate a set of browse update buttons,
and set the update procedure to SelectTrickLookup (Select Trick for the Lookup
Example). The working parts of this form are finished, so beautify it however you like and
back yourself out to the procedure tree. I usually press the Save button any time I get back
to the procedure tree, just for good luck.

There is now a SelectTrickLookup procedure labeled ToDo. Select this (or delete the
existing procedure first to get a ToDo), and make it a form. This will be a very strange
form since there won’t be any entry fields. Instead, put a button, and label it “Look up
Trick”. You’ll have this button call up a list of tricks to select from, so on its Actions tab set
When Pressed to Call a procedure. Fill in SelectTrickBrowse, for the procedure,
and set the Requested File Action to Select. (See Figure 3) The SelectTrickBrowse
will be a browse to select a trick. Now you need an embed to set the DOS:TrickSysID
when the user has selected a record, so press the Embed button to get the tree. Open
Control Events, Button3, and Accepted. Select Generated Code and press Insert to put
the embed after the generated code, that is, after the call to the browse procedure. Fill in the
embed to look like this:

DOS:TrickSysID = TRI:TrickSysID

You’re done inside this form, so back out to the procedure tree, and make the new
SelectTrickBrowse procedure a browse on tricks. Use the TrickName key so the
tricks will be listed alphabetically. If you didn’t use the browse procedure template, add the
select button template.

Figure 3: Actions tab for the Look Up Trip button.

Display ing Many-To-Many Relat ionships
So how does Penelope use this thing? If she’s looking at the sample DAMSEL application,
she’ll select Examples|Form & Lookup|Lookup Puppy. This gives her a list of her dogs
with the usual Insert, Change and Delete buttons. Add a dog called, say, Phyadoux. Just
hit the Insert button. The form pops up, and she puts the dog’s name in. There are no tricks
listed, so hit Insert to add one. The form with the Look Up Trick button pops up, and
pressing the button shows an empty list of tricks. Only the Insert, Change and Delete
buttons don’t work. There’s no trick editing form specified here and the program is
assuming the tricks are entered somewhere else.

To make the program more useful, go back to SelectTrickBrowse and look at the
Actions tab for the update buttons. Check Edit In Place. This will let you add a new trick to
the select list.

Now this application works, but to misquote Crocodile Dundee, “You can use it, but it
works like...” Let’s try making the Trick browse, form and lookup a little more graceful.

Select LookupTrick out of the procedure tree, and make it a browse procedure. In the
file schematic, select Trick for the file browsing list box, and use the Edit button to select
the TrickName key. Then go to the Actions tab of the update buttons and set the update
procedure to TrickLookup.

Make TrickLookup a form, and select Trick in the file schematic under Update
Record on Disk. Populate the trick name control. Then put a browse template to show the
puppies that do this trick. In the file schematic for the File Browsing List Box, select
DoesTrick, and use the Edit button to set the key to the TrickSysIDKey. Hit Insert
and add the puppy file under DoesTrick. In the list box formatter, put the puppy name.

On the Actions tab of the browse box, select the TrickSysID as the Range Limit Field,
and set the Range Limit Type to File Relationship, and set the related file to Trick. (See
73

In t roduct ion to Databases

74
Figure 4) In the Actions tab of the browse update buttons, put SelectPuppyLookup for
the update procedure.

When you make the SelectPuppyLookup form, use a file loaded drop box instead of a
lookup button and browse procedure. Okay, it stinks from a consistency aspect, but the idea
here is to demonstrate different ways of dealing with these many-to-many relations. Make
the SelectPuppyLookup a form, and select DoesTrick as the table being updated.
Put a File Loaded Drop Box template on the form. The File Schematic will pop up, but
select Local Data instead of selecting a file. Press the New button on the right side, and
add a LocalPuppyName variable that looks just like the PuppyName out of the Puppy
table. I made it STRING(20) just for simplicity’s sake. Select this new variable.

The file dialog will pop up again. Now it wants to know what to show in the list, so select
the Puppy table and use the Edit button to set the key to PuppyName. Then the list box
formatter will appear. Choose PuppyName as display field and close the formatter.

The clever part of a file loaded drop box template is all on the Actions tab. You will find
two important blanks on the Actions tab, Field to fill from, and Target field. Set the Field to
fill from to PUP:PuppySysID, and the Target field to DOS:PuppySysID. When the
user selects an entry from the drop list, the program will put the PuppySysID from the
selected puppy into the PuppySysID of the DoesTricks record. When it displays, it
will find the correct puppy by matching the PuppySysID from the DoesTrick record
and show the name. It actually does this lookup from the list box queue.

Figure 4: Actions tab for the puppy browse on TrickLookup.

Display ing Many-To-Many Relat ionships
When Penelope adds a puppy to a trick, this little form with a file drop box will show up,
and she can select a puppy from the drop list. If I had used a drop combo instead of a drop
list, using the same technique, I could have checked the Allow Updates box, and Penelope
could insert a new puppy right there.

Keep three things in mind when implementing many-to-many relationships using the Form
and Lookup technique:

• Browse the cross reference table, and show fields from the other related
table.

• Range limit the browse to show only cross reference records matching the
record being edited.

• Edit the cross reference table, selecting a record from the other related table.

Now I’ll show how to do this as a “Check List” and as a “Selection Pool.”

Note: The example application contains completed procedures. If you want to
follow along with the example application, you can either create new
procedures with different names, or create a new example application and
import demo app procedures as required.

Check List
A check box list presents a list of all the options available and indicates which are selected
(See figure 5). I use it when the user thinks of tagging which options apply or don’t apply.
This is useful when the list of options is fairly restricted, but would get unmanageable if the
list contained hundreds or thousands of items. To try this out, make a new menu option on
your frame to call a browse of puppies, and make a new form procedure for the browse
update buttons. On the new form, populate the puppy name field and a browse box.
75

In t roduct ion to Databases

76
In the file schematic for the browse box, select the Trick table and use the Edit button to
select the TrickName key so the tricks are listed alphabetically. In the list box formatter,
add the Trick Name field, and select Normal under icons on the appearance tab. You
won’t need a range limit here since you want to show all the tricks.

The browse box will need to pick which icon to show in its SetQueueRecord method,
and this information is in the DoesTrick table, so go to the procedure’s file schematic
and add the DoesTrick table under Other Files (See figure 6). You can have the
SetQueueRecord method look in the table to see if there is a DoesTrick record for
each trick, but in many database environments this would be inefficient. Granted, it

Figure 5: A check box list.

Display ing Many-To-Many Relat ionships
probably wouldn’t matter in this application, but go ahead and do it the hard way just for
fun.

Next make a queue to hold the TrickSysID of all the tricks this puppy knows how to do,
and refresh the queue when the browse is reset. I built the queue in the data area for the
procedure using the Data button and gave it a prefix of DQ. (See figure 7)

You will need some code to fill this queue. I put it in a routine:

Figure 6: File schematic for a check box list.

Figure 7: A queue in the procedure’s data.
77

In t roduct ion to Databases

78
LoadDoesQueue ROUTINE
 FREE(DoesQueue)
 Access:DoesTrick.ClearKey(DOS:PuppySysIDKey)
 DOS:PuppySysID = PUP:PuppySysID
 SET(DOS:PuppySysIDKey,DOS:PuppySysIDKey)
 LOOP
 IF Access:DoesTrick.Next() <> LEVEL:Benign OR !
 DOS:PuppySysID <> PUP:PuppySysID THEN BREAK .
 DQ:TrickSysID = DOS:TrickSysID
 ADD(DoesQueue)
 END
 SORT(DoesQueue, +DQ:TrickSysID)

Put a call to this routine in the Reset method of the window (See figure 8), and in the
ResetFromAsk method of the browse.

You will need to add a variable to the procedure. I called it BrowseIcon and made it a
byte. Go to the browse Actions tab, and slide the tabs along till you find the Icons tab.
Look at the properties for the TRI:TrickName icon. Press Insert to add a condition. The
condition will be BrowseIcon = 1, and the icon will be whatever icon you want
displayed for selected tricks. If you want to show an icon for unselected tricks, put that icon
in for Default icon. Back out to the window formatter.

Next, put some code in the SetQueueRecord embed. Double click the browse box in
the window formatter and find the Local Objects|BRW5|SetQueueRecord code embed,
and press Insert. Then select Source. The embed code will look like this:

DQ:TrickSysID = TRI:TrickSysID
 GET(DoesQueue, +DQ:TrickSysID)
 IF ERRORCODE() OR DQ:TrickSysID <> TRI:TrickSysID

Figure 8: The ThisWindow.Reset embed point.

Display ing Many-To-Many Relat ionships
 BrowseIcon = 0
 ELSE
 BrowseIcon = 1
 END

You want this code before the generated code so the BrowseIcon variable will be set
when the generated code looks at it to pick the icon. Otherwise, the icon will indicate
whether the trick above it is selected.

Penelope (remember Penelope?) will want to be able to turn the icons on and off, so put a
set of browse update buttons on the form, and fill in a new procedure name. I called it
CheckPuppyTrick. You don’t want to insert or delete tricks here, just insert or delete
DoesTrick records, so hide the insert and delete buttons. You will need to tell the browse
template that there aren’t any insert and delete buttons, so go to the embed editor and find
where the BRW5.InsertControl variable is set (about priority 8505). In the next
available embed, put:

BRW5.InsertControl = 0
BRW5.DeleteControl = 0

Now, make the form procedure. I used the form template and selected Trick as the file
being updated. List Puppy and DoesTrick under Other Files. You’ll need to press the
Window button to make a window so the template will be happy, but don’t worry about
what it looks like because the user will never see it.

Go to the embed tree for this “form;” look at the Local Objects|ThisWindow|Init embed
and find where the files are opened. Put an embed after the files are opened which looks
like this:

IF SELF.Request <> ChangeRecord
 SELF.Response = RequestCancelled
 RETURN LEVEL:Fatal
END
DOS:PuppySysID = PUP:PuppySysID
DOS:TrickSysID = TRI:TrickSysID
IF Access:DoesTrick.Fetch(DOS:PuppySysIDKey) |
 = LEVEL:Benign
 Relate:DoesTrick.Delete(0)
ELSE
 DOS:PuppySysID = PUP:PuppySysID
 DOS:TrickSysID = TRI:TrickSysID
 Access:DoesTrick.Insert()
END
SELF.Response = RequestCompleted
RETURN LEVEL:Fatal

This embed code does four things. First, it checks that it isn’t being asked to insert or delete
a record and sets SELF.Response to RequestCancelled so any calling browse will
think the user opted to cancel. Second, it checks to see if there is a DoesTrick record for
the Puppy and Trick. Third, if there is a DoesTrick record it deletes it, and if not, it
79

In t roduct ion to Databases

80
adds one. Fourth, it sets SELF.Response to RequestCompleted and returns
LEVEL:Fatal.

The RETURN Level:Fatal statement will cause the form to close without ever
displaying the window, and since SELF.Response has been set to
RequestCompleted, the browse box which called it will think the user changed the
record and do its ResetFromAsk method to refresh the display.

Notice that this form procedure doesn’t care if it is called from a puppy form or from a trick
form, so you can use the same procedure from a trick form.

To make check lists, remember to:

• Browse the other table and put an icon.

• Make the icon conditional on some local variable.

• Use the SetQueueRecord method to look in the cross reference table and
set the local variable.

• Make a form to add or delete the cross reference records but don’t let it open
its window.

Selection Pool
A selection pool is useful where a user thinks of picking an option to add. It shows two
browses. One browse shows the selected options and the other shows the available options.
This is useful when the user thinks about the relationship as “adding” one thing to the other.

Figure 9: A selection pool browse.

Display ing Many-To-Many Relat ionships
Make another option in your app frame menu to call up yet another browse, and make the
browse show tricks. Make yet another trick update form, and place a control to edit the
trick name. Make the form wide enough for two browses side by side with some space
between them for buttons.

On the left side of the form, put a browse to show the DoesTrick table using the
TrickSysIDKey key. Have it show the PuppyName out of the Puppy table. Range
limit the browse on TrickSysID file related to the Trick table. Set an additional sort
field to the puppy name so the puppies will be listed alphabetically.

Put another browse on the right side of the display to browse the puppy table. Yes, I know
this table is used in the other browse, but don’t worry, it will work fine (See Figure 10).
Have it use the name key so the puppies will be listed alphabetically. You’ll want to know
the class names for these two browses, so look them up on their actions tabs and write them
down or make them something meaningful. Mine are BRW5 and BRW6.

Now, look at the procedure’s embed tree and go to Procedure Routines. Build yourself
two routines. I usually put them in two different embeds so they both show in the embed
tree. They should look like this:

AddPuppy ROUTINE
 IF CHOICE(BRW6.ListControl)
 BRW6.UpdateBuffer()
 DOS:PuppySysID = PUP:PuppySysID
 DOS:TrickSysID = TRI:TrickSysID
 Access:DoesTrick.TryInsert()
 ThisWindow.Reset(1)
 END

Figure 10: File schematic for a double browse form.
81

In t roduct ion to Databases

82
RemovePuppy ROUTINE
 BRW5.UpdateBuffer()
 IF Access:DoesTrick.Fetch(DOS:DoesSysIDKey) |
 = LEVEL:Benign
 Relate:DoesTrick.Delete(0)
 ThisWindow.Reset(1)
 END

Take a close look at these two routines because they do the work.

AddPuppy first checks to see if a puppy is selected in BRW6. Second, it calls
BRW6.UpdateBuffer so the puppy record will contain the selected puppy. Third, it
builds a DoesTrick record and inserts it. The routine uses TryInsert instead of
Insert so if the user mistakenly adds a puppy twice, the program will appear to do
nothing rather than showing a strange looking error message. Fourth, it resets the window.

RemovePuppy does an UpdateBuffer on BRW5 so it knows which puppy it is
removing. The browse is listing DoesTrick records, so BRW5.UpdateBuffer() will
get the DoesTrickSysID into the DoesTrick record. It then fetches the DoesTrick
record by the SysIDKey. Then it deletes the record and resets the window.

Now that you have these two routines, put DO AddPuppy in the embeds for the Add
button (Control Events|?Button3|Accepted). Put DO RemovePuppy in the embeds for
the Remove button.

Penelope can now add and remove puppies to her heart’s content using these buttons. Since
she’s “moving” records from one list to another, this would be a natural place to use Drag
and Drop, so go ahead and add drag and drop IDs to the list boxes. On the left side, the drag
ID will be RemovePuppy and the drop ID will be AddPuppy. On the right side, do just
the opposite and make the drag ID AddPuppy and the drop ID RemovePuppy. Double
Click the browse on the left to get the embed tree and go to Control Events|?List|Drop, and
add DO AddPuppy there. Double click the browse on the right and go to Control
Events|?List2|Drop, and add DO RemovePuppy there.

You may want to restrict the right side browse to show only the puppies that are absent
from the left side browse. I haven’t figured out how to filter a view based on records that
aren’t there, so I built a queue in the procedure data to store the SysID’s of puppies that do
the trick and used the browse’s verify record embed to check it. Performance shouldn’t be
too terrible unless there are 200,000 puppies and only two are included in the list. I gave the
queue a prefix of PQ. An embed in ThisWindow.Reset() method fills this queue:

FREE(PuppyQueue)
 Access:DoesTrick.ClearKey(DOS:TrickSysIDKey)
 DOS:TrickSysID = TRI:TrickSysID
 SET(DOS:TrickSysIDKey,DOS:TrickSysIDKey)
 LOOP
 IF Access:DoesTrick.Next() <> LEVEL:Benign THEN BREAK .

Display ing Many-To-Many Relat ionships
 IF DOS:TrickSysID <> TRI:TrickSysID THEN BREAK .
 PQ:SysID = DOS:PuppySysID
 ADD(PuppyQueue)
 END
 SORT(PuppyQueue,+PQ:SysID)

The embed to filter the browse looks like this:

PQ:SysID = PUP:PuppySysID
 GET(PuppyQueue,+PQ:SysID)
 IF ERRORCODE() OR PQ:SysID <> PUP:PuppySysID |
 THEN RETURN 0 .
 RETURN 2

The code returns 0 if the puppy SysID is not in the queue, and a 2 if it is. Be careful! If you
return a 1, the browse class will decide this record is out of range and will not look any
farther.

To show a selection pool, remember to:

• Browse the cross reference table displaying identifying fields from the other
table.

• Browse the other table.

• Make Add and Remove routines to build and remove the cross reference
records. These should reset the window when they’re done.

• Make controls and/or drag & drop to call the Add and Remove routines.

Summary
There are many ways to present many-to-many relationships to the user, and if you’re
clever you can hide the cross reference from the user. The trick is to figure out how the user
envisions the task, and make an interface accordingly. I hope you find these three
approaches useful.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v1n10damsel.zip
83

In t roduct ion to Databases

84

TRUE CONFESSIONS: A TALE OF TWO USERS

by Thomas Ruby

The cost of knowing what you are doing is having learned the hard way. Somehow, it
doesn’t matter how many books, manuals, articles or true confessions you read, you never
really learn until you’ve made the painful mistake yourself. I confess here in the hope that
you’ll recognize the mistake when you make it and know the cure. In the spirit of
anonymity and protecting the innocent, I will tell the stories of “User 1” and “User B.”

The Tale Of User 1
I helped build a large system with many tables and display screens. Many of these tables
had a field to store the initials of the employee who had created or updated the record, sent
a letter, called the client, or performed some other activity. Many tables had several of these
fields. These were all three character strings. Later, I was in charge of making the second
version (actually, the third), and we had a user table and surrogate keys, which we called
Sequence Keys. These keys linked the users to their records by means of an arbitrary ID
rather than the employee initials. I was, however, convinced by a co-worker to store the
initials of the user everywhere for convenience of reporting. The reasoning went something
85

In t roduct ion to Databases

86
like this: “You don’t always want to be looking up the initials in the user table; it’s a lot of
extra work.”

This system was in place, and working quite well. As time went on and the system evolved,
we had lots of information linked together by these three-letter initial fields.

Then, it happened. User 1 got married. We all went to the wedding, and she was a beautiful
bride. I don’t know where they went on their honeymoon because I didn’t want to seem
nosey, but she was back at work about a week later. And her initials now were different.

To change her initials in the database we would have had to find the hundreds of places the
three-letter field appeared in dozens and dozens of tables. If we just changed her initials in
the user table, we would have lost the connection between her and all her work. She had
two options: live with her old initials, or suffer a split personality. She decided keeping her
old name was better than dealing with multiple personalities. If we had stored the Sequence
Keys instead of the user’s initials, we could have just updated her record in the user table
and her initials would have magically updated themselves everywhere they appeared.

• Painful Lesson #1: Always link your tables together by the surrogate keys.

• Corollary to Painful Lesson #1: The purpose of normalization is to make
sure updates happen properly and with reasonable IO demands, not to reduce
storage space.

Now there are certain situations where you might “over normalize” your data, and you
need to be careful of this. Consider a sales tracking system. You probably have an item
table of some sort with a price field. You might also have a sales record table, and you
might be tempted to leave the price out of this sales record because you already have the
item price in the item table. Don’t do it! These are actually two different price fields, the
normal price for the item, and the price you sold the item for. If you change the price of an
item from $2.98 to $2.35, you probably don’t mean to forget you sold it at $2.98 to
everybody you sold it to before the change.

The Saga Of User B
As the system evolved over time, I kept the painful lesson of User 1 in mind, and new
development religiously followed the rule of Painful Lesson #1. Guess what? It wasn’t a lot
of extra work or a nuisance, always having to look up the initials in the user table. Along
the line, we implemented a “file cabinet” feature in which the users could store all sorts of
information related to the customers they dealt with. There was an elaborate security
system whereby users could grant access to certain records in the file cabinet to other users.

True Confessions: A Ta le of Two Users
Now User B was the kind of user you always like to have. He understood the system, made
full use of the features, enjoyed discovering ways the computer could make him more
efficient, and abused his trusted position to personal gain at the expense of the company.
Okay, so he wasn’t quite the kind of user you like to have. His activities were discovered
and his employment at the company was abruptly terminated. The owner of the company
called up User B’s record on the user browse and pressed Delete.

Now, I can’t blame the owner of the company for wanting to eliminate all memory of this
villainous fellow, but what he really wanted to do was call up the user record and set the
status to Terminated.

It was a few days before the magnitude of the owner’s mistake was fully understood.
Remember, User B had made effective use of the system, including the “file cabinet”
feature which he used to record miscellaneous information and make it available to his co-
workers. The system had very happily deleted all the file cabinet contents related to his
user record.

• Painful Lesson #2: You usually don’t want users deleting data from your
database.

• Painful Lesson #2b: The owner of the company is a user.

• Painful Lesson #2c: The user-friendly “Are you sure you want to delete User
B” message wasn’t any help. Of course, the owner was sure he wanted to
delete User B. The trouble was, he didn’t know why he did not want to delete
User B.

• Painful Lesson #2d: A comprehensive security system cannot keep users
from misusing information you have entrusted them with. If you told the
computer the person is trustworthy it has no choice but to believe you.

So here you have some lessons learned at my expense. Experience is a wonderful thing
since it lets you recognize a mistake when you make it again.
87

In t roduct ion to Databases

88

Using Topspeed Files

USING DYNAMIC INDEXES WITH TPS FILES

by Bill Florek

Dynamic indexes are often overlooked as a way to efficiently access data from TopSpeed
(TPS) files, especially if you are dealing with files that hold large numbers of records and a
custom sort order and filtered subset is required. By using a dynamic index, you can
eliminate the need to create additional file keys.

You can retrieve data from a TopSpeed file by either sequential or random access.
However, to access records in some specified sort order, you are limited in the options that
are available to you. You can use keys, views, or dynamic indexes.

Keys may be used to read data in a predefined sequence. This methodology is very fast,
regardless of the number of records in the file. However, if you need to filter the data on
fields other than the key elements, you must read all records from the file to determine
which records do not belong to the filtered data subset.

Views may be used to create a user-defined sort sequence. Also, if a filter is applied to a
view, only the records that match the filter criteria are returned. The problem with this
methodology is speed. If a data file contains a few hundred to a few thousand records, this
is a viable option. However, when dealing with tens or hundreds of thousands of records,
views give the illusion that the application is “locked-up”.
91

Using Topspeed F i les

92
It should be noted that generated browse, report and process procedures use views to
access data. Views, when coupled with a key from the primary file, produce acceptable
results, as long as record filtering on fields other than the key elements is not used.

Keys and views are not the only options available to you. Dynamic Indexes, or “static
keys”, incorporate the features of keys and views into a single structure.

Dynamic index basics
Before you can use a dynamic index with a TPS file, you must declare the index as part of
the file structure. This is accomplished by creating a file key and selecting Runtime Index
as its type.

Before using a dynamic index, you need to build the index. . The following defines the
Clarion language BUILD statement as it pertains to creating a dynamic index:

BUILD (index , components , [filter]) where:

index is the label of the dynamic index.

components is a comma-delimited list of fields to sort on

filter is an optional expression to filter the records

See the Clarion language reference for a complete description of the BUILD statement.

Dynamic indexes create a temporary file that is exclusive to the user who built it (when the
file is closed, the temporary file is deleted). This allows multiple users to create indexes
specific to their needs without affecting anyone else. However, because an index is a static
structure, updates to the file are not reflected in the index after it is built.

After the index is built, you may use it to access records in a sequential or random access
manner. The RECORDS() function will return the actual number of records in the index,
which is very useful when creating a process procedure that uses a progress bar.

Note: When using Clarion versions after 5501, the RECORDS() function
returns the total number of records in the index plus the records in the file.

If an application is using the legacy templates, dynamic indexes may be used as the key on
generated procedures such as browses and reports. However, if an index is used on a
browse, the locator must be set to NONE. If a locator is required, you must handle it
manually (that is, hand-code it).

In the ABC templates, generated procedures will not use a dynamic index. If you specify an
index as the key, no sort order will be used. The reason ABC template procedures do not

Using Dynamic Indexes Wi th TPS F i les
directly support runtime indexes lies in the FileManager class. When a file is
“registered” with the FileManager, the file’s keys and associated key fields are saved
using the FileManager.AddKey method. This method retrieves a key’s component
fields using the key property PROP:Components. Since a dynamic index has no fields
defined until the index is built, the FileManager has no components to register. The key
definition stored by the FileManager is used when setting sort orders, range limiting
files or processing locators. Therefore, since no component fields are initially defined for a
dynamic index, the FileManager does not know what indexed fields it is dealing with.
This would be similar to creating a generated browse procedure where the primary file for
the browse does not use a key but has “additional sort fields” defined. The view engine has
to handle the record sorting internally.

Why use a dynamic index?
If the generated procedures using the ABC templates do not allow the use of developer-
defined runtime indexes, what possible use could there be for them?

The volume of data stored in today’s business applications continues to grow, and files with
hundreds of thousands to millions of records are becoming very common. When an
application is first designed, it is almost impossible, and definitely impractical, to
incorporate every conceivable sort order that may ever be required by the application into a
file definition. However, by adding a dynamic index to the file definition, you essentially
eliminate this problem. Remember that this discussion on dynamic indexes applies to TPS
files and not SQL databases, although indexes are vital there as well.

As I stated earlier, views suffer from a speed problem in situations that require record
filtering. The following example illustrates this fact:

Test file two fields defined as string(10)
with 262,000 records and no keys

Test Criteria sort on field1 and filter on field2
by using SUB(field2,1,1) = ‘M’,
resulting in 468 selected records

Results: Dynamic Index 1.08 seconds

Results: File using Sequential
Access

4:06 minutes

Results: View using Order and
Filter

9.09 seconds
93

Using Topspeed F i les

94
This simple test shows that a dynamic index is much faster than a view, and processing a
file sequentially should not even be considered unless the order is unimportant and few
records will be filtered out. Although this is a very simple test, the same type of result holds
true when very complex file structures are used.

Therefore, if you are presented with a situation that requires sorting and filtering a file’s
records so that they can be processed in some manner, and the file has a large number of
records, a dynamic index may very well be the perfect solution.

Typical use
Dynamic indexes can be substituted for keys or views in almost any situation. One of the
deciding factors in whether or not an index should be used is the number of records in the
file, although performance will generally be better using a runtime index. As I mentioned
earlier, the ABC template generated procedures do not directly support dynamic indexes,
so the developer (i.e. the programmer) will need to do something that is becoming more
foreign every day: write code.

To illustrate a simple, yet powerful use of runtime indexes, look at the following pseudo-
code, which uses a BUILD statement to determine exactly which records a report will
process, and in what order:

Access:file.open
Access:file.usefile
Open(ProgressWindow)
Display
Open(Report)
Build(DynNdx,sortorder,filter)
ProgressBar{PROP:rangehigh} = |
 records(DynNdx) - records(File)
Set(DynNdx)
Loop
 If Access:file.next() then break.
 ProgressBar{PROP:progress} = |
 ProgressBar{PROP:progress} + 1
 Print(ReportDetailBand)
End
Close(Report)
Access:file.close

In this example, a report may be printed in any sort order and filtered on any fields. Simply
set the sortorder and filter parameters of the BUILD statement to whatever is
required to generate the report. Also, as a side benefit, the progress bar is truly accurate.
(Note: when calculating the records contained in the dynamic index, remember to subtract
the file record count when using Clarion versions after 5501, as shown in the listing)
Although you could use a view with order and filter properties, the report would take much

Using Dynamic Indexes Wi th TPS F i les
longer to generate and the end-user would not be informed as to the true progress of the
report.

By simply replacing the “report specific” code (such as the print statement) with some
other type of processing code, you can accomplish any record-specific task.

As is evident in the example, no range or filter checking exists in the main processing loop.
Since all filtering, which is synonymous with range checking, is done in the BUILD
statement, none of this code needs to be written. On this premise, multi-file filtering
becomes a simple task with very little additional coding required. For example, the
following code will process file1 in some key order and only include records on the
report if a related record exists in the filtered subset of records in file2:

Access:file1.open
Access:file1.usefile
Access:file2.open
Access:file2.usefile
Open(ProgressWindow)
Display
Open(Report)
Build(File2DynNdx,sortorder,filter)
ProgressBar{PROP:rangehigh} |
 = records(DynNdx) - records(File)
Set(File1Key)
Loop
 If Access:file1.next() then break.
 ProgressBar{PROP:progress} = |
 ProgressBar{PROP:progress} + 1
 File2.DynNdxSortField = File1.RelatedField
 Set(File2DynNdx, File2DynNdx)
 If ~Access:file2.next() AND |
 File2.DynNdxSortField = File1.RelatedField
 Print(ReportDetailBand)
 End
End
Close(Report)
Access:file1.close
Access:file2.close

The statement

If ~Access:file2.next() AND |
 File2.DynNdxSortField = File1.RelatedField

takes into account that there may be multiple file2 records that match the file1 related
field. The purpose of this type of coding technique is not to process (or in this case, print)
file2 records, but to include file1 records in the result set if any related record exists
in the filtered subset of file2.

By replacing this statement with

If ~Access:file2.fetch(File2DynNdx)
95

Using Topspeed F i les

96
and removing the SET(File2DynNdx, File2DynNdx) statement, a unique
relationship between file1 and file2 is accomplished. The following example
illustrates this technique:

• file1 is an invoice header file that contains a customer code that relates to
a customer file

• file2 is a customer file that contains various customer information

• a dynamic index is built on the customer file in customer code order and only
includes records that have a specific zip code

• When processing through file1, records (invoices) may be included or
omitted from processing based on whether or not the
file1.fetch(DynNdx) is successful.

The methodology presented in this example may be easily adapted to ABC generated
procedures. To do this, place the file with the dynamic index into the procedure’s file
schematic under Other Files. Do not place it under the primary file as a related file (it
would become part of the generated view and the purpose of the dynamic index would be
defeated). In the embeds for the procedure, place the build index statement(s) after the files
have been opened in INIT. The record checking code that uses the index could be placed
into a variety of places, such as the ValidateRecord or TakeRecord embeds.

Summary
Dynamic indexes, also known as runtime indexes, can be a useful tool when dealing with
TPS files that hold a large number of records. When you need a custom sort order and/or
filtered subset of records for a processing task, a dynamic index will generally produce
much faster results than a view. However, to be able to realize these benefits, you must first
overcome the fear of hand coding a procedure.

USING THE TPS ODBC DRIVER

by Vince Du Beau

In this chapter I will explore the possibilities of using the TPS ODBC driver with other
applications. You might be asking yourself, “Why do I need this?” Imagine the following
scenario:

Your client is about to sign an agreement for you to build a killer application. Then you’re
asked, “Will I be able to use the data in Excel or Word?” You can of course explain that you
need to rewrite the quote to add export capability, or you can point out the TPS ODBC
driver, and show the client how to use it (billable time, of course).

The ODBC driver I’m discussing here is the developer version that comes with Clarion. It
will display a notice every time you access it. Do not distribute this driver to clients. Your
clients will need to purchase their own licenses.
97

Using Topspeed F i les

98
Setting up the ODBC driver
In this example I will use the invoice database provided with the Clarion examples. You
first need to go into the ODBC Administrator. This is usually found in the either the
Control Panel or the Administrative Tools, depending on your version of Windows.

On the User DSN tab, click on Add and you and you will be presented with the Create
New Data Source dialog. Scroll down until you find the Topspeed drivers. You will find

Figure 1: The ODBC Data Source Administrator, User DSN tab

Using The TPS ODBC Dr iver
the normal driver and a read-only version. Setting this up for a client, you might want to
choose the read-only version, as shown in Figure 2.

Click the Finish button and you will the see Topspeed Data Source Name Configuration.
Fill the dialog in as in Figure 3, replacing the data directory with the location of your
example files.

At the bottom of the configuration dialog, you will notice fields for Date and Time. If you
specify fields from your table here, the driver will convert them to ODBC compliant dates
or times. You can specify single fields, multiple fields or use wildcards for field names. The

Figure 2: Creating a new data source

Figure 3: Configuring the TPS data source
99

Using Topspeed F i les

100
online help gives more detail and also provides some hints to converting Clarion LONG
dates to other applications.

Making the connection
A good way to demo the ODBC capabilities to a client is by using Excel. Here’s how to set
up a simple spreadsheet using fields from the Products table. After opening Excel, you
have to use the Data|Get|External Data|New Database Query menu. This will bring up
the Choose Data Source dialog. Scroll down to the Invoice data source, highlight, and
click OK as in Figure 4.

You will then have to choose the table and fields that you want to use for your query. For
the demo, I’ve chosen fields as shown in Figure 5.

Figure 4: Choosing an ODBC data source in Excel

Figure 5: Selecting fields to import

Using The TPS ODBC Dr iver
The next two screens allow you to set filters and sort order. Click Next, Next, and Finish to
skip through these and finish the process. The query will show a Returning Data to
Microsoft Excel dialog. This dialog will let specify where you want the data returned in the
spreadsheet. The properties button is what you will select. This brings up the External
Data Range Properties dialog. You can play around with the options, but for now I’ll set it
up as in Figure 6.

Click OK, OK and you will see the Product data in the spreadsheet. Having checked the
“Refresh data on file open” box, the spreadsheet will reflect any changes made to the data
when it is open.

Summary
This was a very simple demonstration of using the TPS ODBC driver. I think this driver
offers a lot of potential for promoting good will with clients by showing that their data is
not isolated because of this strange thing called Clarion.

Figure 6: External Data Range Properties dialog
101

Using Topspeed F i les

102

READING TABLES WITH ADO

by David Harms and Brian Staff

Have you ever wanted to write a generalized utility to handle a data file which may exist on
more than one back end database? Do you need a utility to handle a file when you don’t
have (or want) a DCT layout? Have you ever wanted to use ADO (ActiveX Data Objects)
in Clarion as a standard way of managing your data?

Clarion 6 does come with ADO support, but if you’re using Clarion 5.x you can still do
ADO by using Jim Kane’s COM code, which included in the source zip, and which Jim
described in more detail in his Clarion Magazine articles (www.clarionmag.com - search
for author:Kane).

The RecordSet object
To use ADO, you create a RecordSet object which you use to retrieve data from one or
more data files. A RecordSet object contains all the selected data as well as information
about the data (metadata), such as field names, data types, and so on. RecordSets are a
bit like ViewManager objects, except that you have to tell a ViewManager explicitly
which fields you’re working with, whereas you can tell a RecordSet to get, say, all the
103

Using Topspeed F i les

104
fields in a file, and then you can ask the RecordSet what those fields are before you
attempt to retrieve the data.

The RecordSet’s Open method takes five parameters, all of which are optional:

Source - a variant data type which can be one of many things: a SQL
statement, a table name, a stored procedure, a URL, an ADO Command object,
or a file or Stream object containing a persisted record set.

ActiveConnection - a variant data type holding a Connection object, or a
connection string identifying the data source

CursorType - a cursor type enum (see below)

LockType - a lock type enum (see below)

Options - information on how the source should be handled (see below)

The sample application
The sample code (160 or so lines) we describe in this chapter will allow you to use an ADO
RecordSet object to read a TopSpeed file - although this can be any data file if you have
an ODBC driver for it - and place the data in a standard Clarion LIST control. You can
download the code at the end of this chapter.

Here’s how the application works. To begin with, you need to know some standard ADO
equates.

The cursor location equates refer to the cursor, or marker, used to keep track of your current
position in the record set. Client cursors seem to work much better than server cursors,
especially in a multi-user environment.

!---- CursorLocationEnum Values ----
adUseServer EQUATE(2)
adUseClient EQUATE(3)

Besides cursor location, you also need to choose a cursor type. Cursors not only manage
your current position, they may also need to manage changes to the database (deletes,
inserts) and possibly communicate information about those changes to other users. You
pass the cursor type to the RecordSet object’s Open method.

The adOpenDynamic equate indicates a dynamic cursor. With this cursor you can
navigate backwards and forwards through a RecordSet, and you can see any changes
made by other users.

Reading Tables Wi th ADO
The adOpenKeyset equate indicates a cursor like a dynamic cursor, with the following
differences: you can’t access records others delete; you can’t see records others add; you
can see data others change.

The adOpenStatic equate indicates a static cursor. This cursor keeps its own copy of
the records you manipulate, so you can’t see any changes others make.

The default cursor type is adOpenForwardOnly, which is the same as a static cursor but
only lets you scroll forward through the data set. Generally speaking,
adOpenForwardOnly will result in faster operation than adOpenStatic, though at
the obvious expense of functionality.

!---- CursorTypeEnum Values ----
adOpenForwardOnly EQUATE(0)
adOpenKeyset EQUATE(1)
adOpenDynamic EQUATE(2)
adOpenStatic EQUATE(3)

The LockTypeEnum values indicate how ADO handles concurrency, and you pass this
value to the RecordSet’s Open method. If you use adLockReadOnly, you can’t alter
data at all; adLockPessimistic indicates that the data source will lock records as you
retrieve the data to begin your edit; adLockOptimistic indicates that the data source
will lock records only when you issue an update; and adLockBatchOptimistic, as
you might guess, applies optimistic locking to batch updates.

!---- LockTypeEnum Values ----
adLockReadOnly EQUATE(1)
adLockPessimistic EQUATE(2)
adLockOptimistic EQUATE(3)
adLockBatchOptimistic EQUATE(4)

The CommandTypeEnum values indicate the type of command used to query a database
and return data in a RecordSet object. Like cursor type and lock type, the command type
is passed to the RecordSet’s Open method.

The adCmdText equate indicates that the command passed to Open as the Source
parameter is to be evaluated as a command. For instance, if you wish to execute a SELECT
* FROM MyTable, you pass this string to Open as the Source, with an Options
parameter of adCmdText. The adCmdTable equate indicates that the Source is a table
name, and all fields in the table should be returned in the RecordSet. The
adCmdStoredProc equate, as you’d expect, indicates that the Source is a stored
procedure that should be executed. The default is adCmdUnknown.

!---- CommandTypeEnum Values ----
adCmdUnknown EQUATE(0008h)
adCmdText EQUATE(0001h)
adCmdTable EQUATE(0002h)
adCmdStoredProc EQUATE(0004h)
105

Using Topspeed F i les

106
The sample application includes a few more equates and variables, most of which are
straightforward. Note that the ADO RecordSet is called oFileX, and is declared as an
OLE object using Jim Kane’s oleTclType base class.

oFileX &oleTClType

The purpose of the sample application is to connect to a data source using ADO and
retrieve the records into a queue for display in a window. The first step is to set the name of
the database, and the value of the connect string. The sample application uses the developer
version of the TPS ODBC driver, but you can change this to any data source you like. Note
that although the TPS file is actually called cust.tps, it’s only necessary to supply the table
name, not the physical file name (that is defined in the ODBC data source definition – see
“Using The TPS ODBC Driver,” p. 97) :

ThisFileName = 'cust'
strConnect = 'DRIVER={{Topspeed Developer version};DBQ=C:\data\'

Now it’s time to create the ADO RecordSet object:

oFileX &= NEW oleTClType
oFileX.init('ADODB.RecordSet',0)

Next, create the SQL statement, and pass it to the RecordSet object with the appropriate
equates:

sql = 'SELECT * FROM ' & ThisFileName
oFileX.CallMethod('Open("'&sql&'", "'&strConnect&'",

 "'&adOpenForwardOnly&'", "'&adLockReadOnly&'",

 "'&adCmdText&'")')

You don’t need to know anything about the data source in advance - the application will
examine the resulting data and retrieve the column (field) names and other data. This code
returns the number of columns in the table:

Cols = oFileX.GetProp('Fields.Count')

The sample code loops through the available columns and retrieves the column names (up
to the maximum supported by the display queue), using them to format the queue’s
columns:

LOOP j = 1 TO CLIP(Cols)
 s1 = |
 oFileX.GetProp('Fields('& j-1 &').Name')
 ?p1{PROP:Text}= CLIP(s1)
 ?List{PROPList:Format,j} = |
 (?p1{PROP:Width} + 4) |
 & 'L(2)M|~Hdr~(2)@s30@'
 ?List{PROPList:Header,j} = s1
 IF j >= max THEN BREAK.
END

Reading Tables Wi th ADO
The following loop retrieves the record data from RecordSet and adds it to the display
queue:

LOOP
 MyEOF = oFileX.GetProp('EOF')
 IF MyEOF <> 0 THEN BREAK.
 LOOP j = 1 TO CLIP(Cols)
 qs.colx[j] = |
 oFileX.GetProp('Fields('& j-1 & ').Value')
 IF j >= max THEN BREAK.
 END
 ADD(qs)
 oFileX.CallMethod('MoveNext()')
END

Now just close, kill, and dispose of the RecordSet:

oFileX.CallMethod('Close()')
oFileX.Kill()
DISPOSE(oFileX)

That’s how easy it is to use ADO with Clarion 5.x. The SoftVelocity ADO templates, in
Clarion 6, make it even easier. But if you’re not on C6 yet you may want to use some of this
code for your own ADO explorations.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v3n5ado.zip
107

Using Topspeed F i les

108

ACCESSING TPS FILES VIA ASP

by Brian Staff

I’m guessing that most of you have spent years developing Clarion applications for your
clients, where their data is stored in TopSpeed (TPS) files. I’ll also wager that you’ve been
asked more than once to explore the possibility of displaying some of that data on an
Internet/intranet web page.

This chapter is designed to introduce you to a new development environment: Active
Server Pages, or ASP. With ASP you can use the TopSpeed ODBC driver to display a TPS
file (or any ODBC compliant data) in a browser, for your client.

ASP files typically contain VBScript, which is really easy to read if you can read Clarion
and HTML. The VBScript I’ll describe will use ADO methods/properties and an SQL
statement to read the data from the TPS file(s). You could also use JavaScript or PerlScript,
but VBScript is easier to learn, although it’s not as rich as JavaScript.

Firstly a word about the contents of ASP files. You do not need any special third party
software to generate ASP pages - they are pure text. All you need is an editor. I use my C55
editor (I like CTRL-2 and CTRL-Y). These ASP files are not that different in their function
from Clarion’s own template (TPL/TPW) files. TPL/TPW files have a mix of template
language statements and Clarion language statements. In ASP files, VBScript and HTML
are intermixed too. In TP? files, you can identify template language by the # character on
109

Using Topspeed F i les

110
the front of each statement. In ASP files, server side VBScript code (that is, code that
executes on the server before the page is sent to the client) is inside a <%...%> structure.
The code outside of those structures is pure HTML tags, and is simply passed through to
the client.

To test ASP on your own machine you’ll need to install IIS (Internet Information Services)
or PWS (Personal Web Service, included with MS FrontPage). You will need to set up a
root virtual directory, which by default is \inetpub\wwwroot.

Your machine can now be both the client and the server. Launch ASP files in your browser
by typing in a URL in this format:

localhost/listcust.asp

The localhost identifier is a special server name identifying your own (local) machine,
and it resolves to an IP address of 127.0.0.1. Do not use a syntax of
c:/yourDirectory/listcust.asp - that will merely try to copy the contents of
the ASP page to the client and it will not invoke the IIS process. You’ll get a similar
symptom if you double-click an ASP page in Explorer.

When you enter the correct URL, your browser sends that URL from the client to the server
using the HTTP protocol. IIS (or PWS) on the server receives that request and loads the
requested ASP pages and any INCLUDEd files (I’ll talk about these a little later). Once the
file(s) have been loaded on the server, IIS then executes the server-side script to generate an
HTML page, which is usually a combination of the HTML in the ASP page and any HTML
which is generated by the server-side VBScript code. This page is then sent back to the
client to display in the browser. Server-side scripts are never sent to the client, however
client side scripts are sent to the client. More on those later too.

It is beyond the scope of this chapter to explain every piece of VBScript, however I do
want to identify one line that will allow you to access your TopSpeed data: the connection
string assignment. I will not be showing how to use data sources as defined in the ODBC
administrator, but rather a direct connection string.

All ODBC drivers have their very own connection parameters. The TopSpeed version in its
simplest form is like this:

strConnect = "DRIVER={Topspeed ODBC Driver};" |
 & "DBQ=c:\yourDirectory\;PWD=;"

I was unable to use the developer version of the TopSpeed ODBC driver in an ASP page. I
suspect the cause is the driver splash window. Maybe SoftVelocity could fix that problem
for all of the developers wishing to experiment with ASP.

Accessing TPS F i les Via ASP
Carl Prothman, a Microsoft Visual Basic MVP has compiled a list of ODBC connection
strings (http://www.able-consulting.com/ADO_Conn.htm) for a number of applications
and databases, including Access, Excel, MySQL, SQL Server, Sybase, and many more.

Here’s an example of real-world TopSpeed ODBC driver connection string:

strConnect = "DRIVER={Topspeed ODBC Driver};DBQ=" |
 & Server.MapPath("./") & "\;PWD=;"

ASP will convert the root virtual directory to a real directory string using
Server.MapPath and then add a “\” on the end. The first step is to make a connection
to the TPS directory

Set objConn = Server.CreateObject
("ADODB.Connection")objconn.CursorLocation = adUseClientobjconn.Mode
= adModeReadobjConn.Open (strConnect)

The connection string using the DBQ value points to the data directory containing your TPS
files, and the PWD value identifies a null password. You do not have to point to a specific
TPS file with a TPS connection string. You merely point to a directory which contains one
or more TPS files. The specific file you wish to read is identified in your SQL statements,
i.e.:

sql = "SELECT * FROM customer"

In the above statement customer.tps is the TopSpeed data file. You could also use the
following syntax:

sql = "SELECT * FROM ""customer.tps"" "

Next, use an ADO connection method to get a recordset, which is all the rows and columns
of data specified by the SELECT statement:

set oCust = objConn.execute(sql)

Once you’ve retrieved the recordset from the TPS file, it’s fairly simple to iterate through
the individual records using the following syntax:

While Not oCust.EOF
 ...
 oCust.MoveNext
Wend

Then it’s a matter of writing the HTML tags so that the data is formatted appropriately for
the web page, which is then sent to the client. Be sure to use the View|Source option in IE
or Netscape to see exactly what was sent to the client browser.
111

Using Topspeed F i les

112
ASP objects
ASP, which is an environment, not a language, offers just six built-in objects, which the
server-side scripts can use:

The most frequently used statement (response.write) is used to send text directly to
the generated HTML file.

Included in the downloadable source for this chapter is the LISTCUST.ASP file, which you
can see in action on the web by submitting the following URL in your browser:

http://www.scoreboard.to/listcust.asp

The file contains about 70 lines of code which is fairly easy to read. It uses the samples
above to output a simple HTML table from a TopSpeed file.

It is important to note that whenever a VBScript variable is primed with an object, usually
using the SET statement as in the following syntax:

set oCust = objConn.execute(sql)

That variable must be cleared after you have finished with it. This is to avoid memory
leaks, and it is done with the following statement:

set oCust = nothing

Object Description

Request Gets information from the user
(client) that’s passed in an HTTP
request.

Response Used to send information back to
the client.

Server Controls server-side activity, like
creating component objects.

Session Stores information about the
current user session.

Application Stores information for the entire
lifetime of the application.

ObjectContext Used to access the Microsoft
Transaction Server system.

Accessing TPS F i les Via ASP
LISTCUST.ASP
Here are the basic building blocks for inside the LISTCUST.ASP file. The actual file does
contain some more padding, like comments and error checking. This first part describes the
language to be used for the server-side scripts, and I will not allow implicitly declared
variables.

<%@ language="VBScript" %>
<%
 Option Explicit
%>

Here is where I include any other files I will be needing, the first one being an equates-type
file for ADO.

<!-- #INCLUDE FILE="adovbs.inc" //-->
<!-- #INCLUDE FILE="stt.inc" //-->

Here I declare the beginning of the HTML file to be sent back to the client.

<html>
<head>
</head>
<body style="text-align: center; background-color: silver;">

Now, I revert to server-side scripting and declare some VBScript variables, define the
connection string and open an ADO connection object:

<%a
 dim objConn
 dim oCust
 dim sql
 dim strConnect
 strConnect = "DRIVER={Topspeed ODBC Driver};DBQ="
 & Server.MapPath("./") & "\;PWD=;"
 Set objConn = Server.CreateObject ("ADODB.Connection")
 objconn.CursorLocation = adUseClient
 objconn.Mode = adModeRead
 objConn.Open (strConnect)

Here is the SQL statement to be used inside the execute method of the connection object
which will return a recordset object.

sql = "SELECT " &_
 " sysid," &_
 " company," &_
 " city," &_
 " country " &_
 "FROM " &_
 " customer " &_
 "WHERE " &_
 " sysid = sysid " &_
 "ORDER BY " &_
 " country, " &_
113

Using Topspeed F i les

114
 " city, " &_
 " company " &_
 " "
 set oCust = objConn.execute(sql)

Next, I define the HTML table and specify the table headers.

response.Write "<table border='2' cellspacing='0' cellpadding='3'
 width='auto' style='background-color: #eeeeee;'>" &
 vbCRLFresponse.Write "<caption>List of Customer Records</caption>"
 & vbCRLFresponse.Write "<tr style='background-color: gray; color:
 white;'>" & vbCRLFresponse.Write
 "<th>Company</th><th>City</th><th>Country</th>" response.Write
 "</tr>" & vbCRLF

I now iterate through the recordset rows, and create the HTML for each row in the HTML
table:

While Not oCust.EOF
 response.Write "<tr>" response.Write "<td>" &
 oCust("company").Value & " </td>" response.Write "<td>" &
 oCust("city").Value & " </td>" response.Write "<td>" &
 oCust("country").Value & " </td>" response.Write "</tr>" &
 vbCRLF oCust.MoveNextWend

At the end of the recordset, the HTML table must be closed, and the objects cleaned up:

 response.Write "</table>" & vbCRLF
 oCust.Close
 objConn.Close
 clearDims()
 sub clearDims()
 Set oCust = Nothing
 Set objConn = Nothing
 end sub
%>

Lastly, I must declare the end tags for the HTML file:

</body>
</html>

That’s it! It’s really quite simple. The vbCRLF is added to some of the generated code so
that the resultant HTML code that gets sent to the client is nicely formatted.

The actual LISTCUST.ASP file contains just enough clues to make anyone familiar with
Clarion dangerous on the internet. Be my guest, and modify it for your own purposes. The
most common coding mistakes you will likely make are using the wrong quotes character
to identify a string, and omitting the word THEN at the end of an IF statement line.

In the downloadable source at the end of this chapter I have included a GLOBAL.ASA file
which contains some optional event handlers for the application, and ADOVBS.INC,
which is an equates-type file for ADO. Both of these need to be in the virtual root directory.
I have also included an empty STT.INC file. Ordinarily, multiple client requests to the same

Accessing TPS F i les Via ASP
ASP page at the same time is not a problem, but the TopSpeed driver seems to have a
weakness with windows threading. STT.INC will make it possible to throttle the requests to
a single user at any one time.

If you happen to get the dreaded ASP 0115 (table not found) error displayed in your
browser window, you will have to restart IIS or, if you’re using PWS, reboot your
machine...sorry about that! It appears to be a TS ODBC driver problem. This is almost
certainly caused by the connection string not pointing to the correct directory containing
your TPS file.

I encourage you to learn HTML thoroughly. The specifications can be found at
http://www.w3.org/TR/html401 and there is an on-line validator available at
http://validator.w3.org which will check for well-formed HTML. You can either submit
your URL or upload an HTML file that site.

Finally, here are some further resources for ASP:

• http://www.w3schools.com

• http://www.aspfaq.com

• http://www.infinitemonkeys.ws/infinitemonkeys

• http://www.15seconds.com

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v4n05asp.zip
115

Using Topspeed F i les

116

USING EXAMPLE FILES WITH TPSFIX

by John Heck

I had been working with an application and the Employee file became corrupt. So I did
the normal run of TPSFix and selected the corrupt Employee file to fix. After TPSFix
completed I deleted the corrupt file and renamed the Employee.TPR file to Employee.TPS.
The file worked fine for a while and then it became corrupted again. After a point in time it
became so corrupted that I could not even view it through the TPS scanner.

I found that there is a way to resolve this kind of problem when using TPSFix. The first
step is to create an empty TPS file via the application dictionary. So for this example you
would create an empty Employee.TPS file. Now rename the file to Employee.TPE; this file
will be used on the second screen of the TPSFix process.
117

Using Topspeed F i les

118
Start TPSFix and complete the first screen with the name and location of the corrupt data
file (see Figure 1). Accept the default ‘Destination (result file)’ and press the Next button.

The second screen allows the user to enter an example file. This file is the empty
Employee.TPS file that was renamed to Employee.TPE, as in Figure 2.

When you use the Browse button to select the example file, the file dialog uses the default
extension .TPE. This example file is nothing more than a file with a good header definition
record. TPSFix then uses this file to rewrite the header and data from the corrupt file, rather
than using the header from the corrupt file, which could be causing the problem.

Press the Start button to start the fix process. The corrupt file should not be a problem any
more after this process is complete.

Figure 1: Specifying the source and destination files

Figure 2: Setting the example file

TOPSPEED DRIVER ERROR CODES

Many Clarion developers use the TPS file format for small-to-medium sized databases, and
with good success. Through Clarion release 4A, however, some users reported regular data
corruption problems.

With driver fixes in 4B these problems seem to have largely gone away, but some forms of
corruption are still outside the control of the driver, and network installations can be a
particular problem. Anyone storing TPS files on an NT server with Windows ‘95
workstations should be sure to install Microsoft’s redirector patch. You can download it
from Microsoft:

http://support.microsoft.com/support/kb/articles/q148/3/67.asp

Thanks to Steve Mull for providing the link.

The following table lists the possible Topspeed error codes (thank you to Nigel Hicks for
providing this).
119

Using Topspeed F i les

120
Error Description

112 Not a TPS error, this is an OS
error meaning out of disk space.

231 Trying to append a record when
the Btree is marked read-only

232 Cannot get btree header when
trying to append a record

256 Cannot get btree header when
trying to get a record;

300 Btree structure corrupt
(discovered when deleting a
record)

327 Btree structure corrupt
(discovered when putting a
record)

337 Trying to put a record when the
btree is marked read-only

522 Invalid data size found while
unpacking record (from disk)

530 Invalid repeat count found while
unpacking record (from disk)

706 Btree structure corrupt
(discovered when inserting a
record)

780 Btree structure corrupt
(discovered when removing a
record)

824 Btree record size to big (on
allocation)

1013 Cannot get btree header (while
loading root page)

1043 Cannot get btree header (while
packing a record to disk)

Topspeed Dr iver Error Codes
1163 Trying to create new record ID
when the btree is marked read-
only

1164 Cannot get btree header (while
allocating new record ID)

1173 Maximum record ID reached on
allocation (probably indicating
file corruption)

1194 Trying to insert record when the
btree is marked read-only

1203 Trying to remove record when the
btree is marked read-only

1258 Btree structure corrupt (obsolete
in C5

1364 Btree structure corrupt
(discovered while splitting a
page)

1477 Btree page size (from header)
does not match size stored on
disk, could result in a truncated
file, run tpsfix

1602 Btree unpacked page size (from
header) does not match size
loaded from disk

1659 Btree page size increased after
packing

1678 Btree page size larger than
maximum allowed

1735 Btree header corrupt (discovered
when trying to calculate disk file
size)

1781 Btree structure corrupt
(discovered while shifting btree
pages up)
121

Using Topspeed F i les

122
1891 Btree structure corrupt
(discovered while moving btree
pages)

1894 Btree structure corrupt - invalid
page parent level (discovered
while moving btree pages)

2172 Reading of btree page from disk
failed

2183 Too many files logged out

2272 Encryption block invalid size
(discovered when reading page
from disk 32-bit)

2277 ReadFile Win32 API function
failed (when reading page from
disk)

2286 Encryption block invalid size
(discovered when writing a page
to disk)

2328 Invalid internal btree locking
mode (on lock (32 bit))

2352 Invalid internal btree locking
mode (on unlock (32 bit))

2341 SetFilePointer Win32 API
function failed (when reading
page from disk)

2361 UnlockFile Win32 API function
failed (obsolete on C5)

2447 16 bit close file failed

2458 16 bit handle duplicate failed
(during commit)

2460 16 bit close file failed (during
commit)

2476 Invalid internal btree locking
mode (on lock (16 bit))

2519 Invalid internal btree locking
mode (on unlock (16 bit))

Topspeed Dr iver Error Codes
2528 Unlock DOS function failed
(obsolete on C5)

2572 Encryption block invalid size
(discovered when reading page
from disk 16-bit)

2582 Encryption block invalid size
(discovered when writing a page
to disk 16-bit)
123

Using Topspeed F i les

124

TROUBLESHOOTING TPS FILE CORRUPTION

by Eric Vail

Although TPS files are generally quite reliable, every once in a while someone posts an
urgent message in the SoftVelocity newsgroups about TPS file corruption on a network.
Eric Vail recently posted the following list of questions and answers, reprinted here with
Eric’s permission. For additional resources, see Mark Riffey’s “Resolving Network And
Other File Problems,” p. 129.

Questions to ask yourself
• Is your program the only application sharing data over the LAN?

• When did data corruption begin?

• What changed in the LAN at that point?

• Was there a new program loaded or some new hardware introduced?

• Is there enough open space on the server where the data is stored?

• When is the last time the cooling fans were checked on the processors in the
server and/or the case for that matter? When you are running a database the
125

Using Topspeed F i les

126
server processors run hotter than usual so if the fans are failing it can cause
the server to mess up.

• Does the server ever lock up? What about the workstations? This could be
caused by a flaky power supply and/or RAM.

• When was the last time the server or workstation disks were defragged? (NT
does not defrag on the fly like Novell.) There are some utilities out there, but
usually we partition the drives C and D and put the boot and system stuff on
C and all programs and data on D. This way when we do maintenance we
can just copy away the D data somewhere, then reformat the drive and do a
scandisk before copying back the programs and data. On W2k you can
defrag the partitions in the computer manager.

Verifying network integrity
If none of the above solves the problem, then I would start looking at network hardware,
specifically the network card and cables for the server. Here is an easy way to verify
network integrity.

Get a block of data that you can verify size and number of files on. I usually use the I386
directory from an NT CD. It is large and has lots of big and little files in it so you get a
good sampling of all data types and sizes.

Now put that directory onto the server somewhere and then copy it from the drive on the
server in the following sequence.

1) Copy from the server to each station. Time it and see how long it takes, then
make sure that all the data makes it. Right-click on the folder and choose
Properties: make sure the number of files matches the server. Also make
sure the total size of the files matches - not the space the files take up on
disk, but the total file size, which is the number above the total disk space.
That is the true size of the files.

2) Next do the same from station to station.

If you find that one station-to-station copy is slower than another, or some files were
dropped, move the cable in the hub first and make sure that the hub is okay. I have seen
where one port in a hub will go bad and cause all kinds of flaky problems. The problem
could also be a loose cable or a bad network card.

If all server-to-workstation and workstation-to-workstation copies are the same then you
need to go back to the server and check the following:

Troubleshoot ing TPS F i le Corrupt ion
1) How much RAM is in the server and what type. The problem may be
memory going bad.

2) What type of hard drives are in the server and what configuration. If they are
mirrored are they healthy? If RAID 5, are they optimal?

3) Is the swap file size adequate? It should be twice the size of the physical
RAM if you are sharing data files on it. That is not the default setting by the
way. So if they have 256 meg of RAM, then it should be 512 meg minimum,
with a 768 meg ceiling.
127

Using Topspeed F i les

128

RESOLVING NETWORK AND OTHER FILE
PROBLEMS

by Mark Riffey

Problems with TPS files on a network, such as those with symptoms like error 1477 and
2172, can take many forms. They can be caused by one or more of the following:

• Kinked or damaged cable. Just because it looks okay doesn't mean it is - test
it or swap it out for another one you may have.

• Cable running close to a fluorescent light ballast (fixture)

• Loose connector/plug on cable

• Old, worn out cables, particularly coax cables that have been around for
years

• Out-of-date drivers

• Bad hub, or a bad port on a hub

• Failed/failing network card
129

Using Topspeed F i les

130
• Power problems. Please protect your systems with a UPS. Yes, a UPS might
cost $79 to $450 depending on how big a unit you buy, but how much is your
computer and a day's worth of business worth? Consider it much less than
the time to fix a power-caused mess.

• Network setup and/or configuration problems.

• Inadvertent shutdowns

• Shutting down servers while workstations are still in the program

• Out-of-date network drivers (even those right out of the box are sometimes a
problem)

• Improper or less than desirable network bindings/settings

Note: Remember that having backups is a saving grace in the face of
file/network problems. Network problems can corrupt your files in a heartbeat.
If you have no backups, you are in big trouble. Having backups is a
responsibility you must take very seriously.

Drivers up to date?

Windows networking is subject to a number of problems, many of which can be solved
simply by installing updated driver software from the manufacturer or (more often)
Microsoft. The link below will go to a web page that describes just one of the problems in
Windows peer-to-peer networking, yet there are several other problems referenced at the
bottom of that page. In particular, anyone on Windows 95 needs to get their network
drivers and requestor updated.

http://support.microsoft.com/support/kb/articles/q174/3/71.asp

http://support.microsoft.com/support/kb/articles/q148/3/67.asp

Windows NT users

Are you on service pack 6 instead of service pack 6a or another service pack? If so, expect
lots of problems. Microsoft has acknowledged that service pack 6 broke a lot of things
network-wise. You can get service pack 6a at the MS site, or you can go back to service
pack 5, either of which is stable. In addition, do not mix service packs on different NT
machines on your network. In other words, run all your NT machines on service pack 5 or
on service pack 6a, but not a mix of both service packs.

Resolv ing Network And Other F i le Problems
Is your network slow when using a mapped drive letter?

The reason is this: The computer has both TCP/IP and NetBEUI protocols, TCP/IP for the
Internet and NetBEUI for the local network. TCP/IP is the default protocol. When
connecting to a mapped drive after some idle time, the computer tries to connect first over
TCP/IP and times out. Then, and only then, it tries the NetBEUI connection. Go to the
Control Panel, and choose Networks|Bindings. Make NetBEUI the default protocol.

Is your network slow when using a mapped drive letter? (Part 2)

Is the drive mapped to the main computer's drive, or to a folder? If it is mapped to a folder,
you will likely see a decrease in performance, often a quite noticeable decrease. I am not
sure why this happens, but mapping directly to the drive has been proven time and time
again to be faster.

Windows 98 networking

Here is Microsoft's “best place to start” page for dealing with Windows98 issues, including
networking issues.

http://support.microsoft.com/highlights/w98.asp

Windows ME (Millennium) networking

Here is Microsoft's “best place to start” page for dealing with Windows ME/Millennium
issues, including networking issues:

http://support.microsoft.com/highlights/winme.asp

Windows 2000 networking

Here is Microsoft's “best place to start” page for dealing with Windows 2000 issues,
including networking issues:

http://support.microsoft.com/highlights/Win2000.asp

Windows XP networking

Here is Microsoft's “best place to start” page for dealing with Windows XP issues,
including networking issues:

http://support.microsoft.com/highlights/winxp.asp
131

Using Topspeed F i les

132
Need Netbeui on your XP systems and can't find it?

Here’s how to install Netbeui:

http://support.microsoft.com/search/preview.aspx?scid=kb;en-us;Q301041

Workstation drive letters “getting the red X” (disconnecting from
the main computer)

You can disable this by issuing this command from the DOS command line:

net config server /autodisconnect:-1

Before using this command, read the Microsoft article that discusses autodisconnect:

http://support.microsoft.com/default.aspx?scid=kb;en-us;138365.

Windows 2000 or Windows XP mapped drives disconnecting for
no apparent reason? (showing the red X over the drive in
explorer)

For further information:

http://support.microsoft.com/default.aspx?scid=kb;en-us;138365

Novell Netware problems?

The problem could be your Novell Opportunistic Locking setting. Contact your network
person for further details. How to turn it off? Go to Control Panel -> Networks -> Novell
Client Properties -> Advanced Settings Tab -> Opportunistic Locking and make sure this
is switched off on all client Machines. Also make sure True Commit is ON at each client
PC (this should help stop data corruption).

Performance issues are often caused by network protocol “bindings”

Check the following Network protocols basics:

• Make sure that your default network protocol has no bindings to a virtual
device (dialup.....).

• If you are using TCP/IP and you have dialup on this workstation, try
NetBEUI.

Resolv ing Network And Other F i le Problems
• Try to avoid using IPX and NetBEUI together. IPX gets confused when you
have a “chatty” NetBEUI. Removing IPX (if you can) is strongly advised.

• If you need to examine the network further, check out
http://www.sysinternals.com/tdimon.htm to get a bird's eye view of what's
going on.

Does the system work on some machines, but seems to think
about it and then do nothing on others?

Sometimes your network times out when loading a large application across a network.Try
installing the application locally.

Sometimes your Windows doesn't have enough files set in your config.sys. Try 100 or 125.
Sometimes having full-time virus scanning turned on does this. Ask your virus software
vendor how to work around this or exclude the application from your scanner if you can.

Power management

Do you have Energy Star features on your computers? Probably so. Power management
and networking do not mix. You can have your power management features turn off and/or
dim the monitor, but do not have them turn off the hard drive, network cards, etc. This will
definitely cause you grief, and grief = lost data

Database corruptions, timeouts and other troubles

Another issue is the various ways that Windows9x and NT try to improve performance,
often at the price of stability. Sometimes these things work, other times they cause network
timeouts because they force additional file operations behind the scenes, and those file
operations time out. One way to improve things is to turn off synchronous buffer commits.
To do this, click Control Panel, System, Performance, File System, Troubleshooting
and check the Disable synchronous buffer commits checkbox.

Database corruptions, timeouts and other troubles,
Part 2

Windows NT users face issues caused by some performance improvements that NT tries to
implement with network applications by “faking” multiple use of files. Unfortunately,
some users experience file corruption because of this. Take a look at the following article if
you are seeing Access denied errors on network files when the network permissions are set
properly:
133

Using Topspeed F i les

134
http://support.microsoft.com/support/kb/articles/Q129/2/02.asp

The subject of this article can also be the cause of database corruption and network
timeouts (drive not available messages and the like).

Win9x/Me users - Turn off write caching

You need to disable the write-behind cache. When the program ask to save the data, the
data is kept in cache on the local machine until the cache is flushed, instead of being on the
server. Click on:

• START > SETTINGS > CONTROL PANEL

• System

• Performance tab

• Troubleshooting

• Performance

• Disable the write-behind cache

• Restart the computer

Windows 2000 and Windows XP users - Turn off write caching

You need to disable the write-behind cache. When the program ask to save the data, the
data is kept in cache on the local machine until the cache is flushed, instead of being on the
server.

• Right-click My Computer > Properties > Hardware > Device Manager

• Right-click Disk Drive > Properties

• Disable: Write Cache Enabled

• Restart the computer

Opportunistic locking (oplocks) and performance

This white paper discusses issues related to opportunistic locking, something that can
seriously impact performance on ISAM databases:

http://www.dataaccess.com/whitepapers/opportunlockingreadcaching.html

Also see the following Microsoft articles:

Resolv ing Network And Other F i le Problems
• Some Client Applications Fail when writing to Windows NT
http://support.microsoft.com/default.aspx?scid=kb;en-us;q124916

• PC EXT: Explanation of Opportunistic locking in Windows NT
http://support.microsoft.com/default.aspx?scid=kb;en-us;q129202

• Event error 2022: Server unable to find a free connection
http://support.microsoft.com/default.aspx?scid=kb;en-us;q130922

• How the autodisconnect works in Windows NT
http://support.microsoft.com/default.aspx?scid=kb;en-us;q138365

• Locking error or Computer hangs Accessing network database files
http://support.microsoft.com/default.aspx?scid=kb;en-us;q142803

• Possible network file damage with redirector caching
http://support.microsoft.com/default.aspx?scid=kb;en-us;q148367

• Possible network data corruption if locking not used
http://support.microsoft.com/default.aspx?scid=kb;en-us;q152186

• How to disable network redirector file caching
http://support.microsoft.com/default.aspx?scid=kb;en-us;q163401

• Possible database file damage when data is appended
http://support.microsoft.com/default.aspx?scid=kb;en-us;q174371

• Improving performance of MS-DOS database applications
http://support.microsoft.com/default.aspx?scid=kb;en-us;q219022

• Configuring opportunistic locking in Windows 2000
http://support.microsoft.com/default.aspx?scid=kb;en-us;q296264

• Write caching settings for hard disk may not persist after you restart
your computer
http://support.microsoft.com/default.aspx?scid=kb;en-us;q290757

Tune up your network

Many of the aforementioned settings are automatically checked/corrected via a utility
program called Network Tune Up, available at:

http://www.studiomarketing.com/downloads/networktuneup.exe

This program is free. Note that it does change internal network settings and requires a
reboot afterwards. The settings changed include oplocks (on Windows NT and Windows
135

Using Topspeed F i les

136
2000) and the Windows9x/WindowsMe buffering settings noted above. It also checks
Windows9x/WindowsMe machines to be sure they don’t have a buggy version of the
Microsoft network driver installed.

Another NT issue

Re slow network performance with Service Pack 4, 5, 6, or 6a (Q249799):

http://www.microsoft.com/technet/support/kb.asp?ID=249799

Fix that leaky hose

While it is certainly possible that the problem is with an application, don't automatically
assume network errors are a program problem. Do other multi-user applications work
okay? Can you save a text file into the application's directory using Windows Notepad? If
not, the problem is more than likely with the network setup. Just one little thing related to
sharing or permissions can mess things up. Like a leaky hose where you don’t see the leaks
till lots of water is going through the hose under pressure, a network can exhibit similar
behavior and not fail until it is under a heavy load.

Getting a TPSBT 1477 and/or 2172?

The Topspeed driver 1477 and 2172 errors are caused by improperly closed files. Improper
closing can be caused by rebooting the server while the workstation is in the program,
rebooting a workstation while it is in the program, logging out while you are in the
program, having a power outage or even a burp in the power, and so on. The items noted
above can help this situation as well.

The following link will download a program from GraniteBear that will detect which
version of the Windows network redirector you have:

http://www.studiomarketing.com/downloads/redirve4.exe

Just run the application – there is no install. It may or may not point out a problem, and it is
of no use if your server isn’t Windows NT or Windows 2000. If you don’t have the current
network client/redirector, you are asking for trouble.

Just one more

Here’s one more nice network troubleshooting resource:

http://farreachtech.com/network_troubleshooting.htm

Resolv ing Network And Other F i le Problems
137

Using Topspeed F i les

138

General SQL

AN INTRODUCTION TO SQL

by David Harms

In a recent Clarion Magazine poll I asked developers how much of their development
effort was directed at SQL databases. Out of 193 responses, 46% did no SQL development,
20% did half or less development for SQL, and 34% did most of their development for
SQL.

Interest in SQL is at an all-time high in the Clarion development community, but many are
still uncertain about whether to go to SQL, or how to make the switch. In this chapter I’ll
compare SQL databases to TPS databases, and suggest some reasons and strategies for
moving to SQL.

What is SQL?
SQL stands for Structured Query Language, and can be pronounced either “sequel” or “ess-
queue-ell” depending on which side of the religious war you prefer. SQL was originally
developed by IBM, and inspired by IBM researcher E.F. Codd. As the name suggests, SQL
is an English-like language that lets you selectively retrieve data from a database. For
instance, the statement:
141

Genera l SQL

142
SELECT FirstName, LastName FROM Names WHERE Country= 'Canada'

will retrieve the first and last names of all the Canadians from a table called Names. It
could be that your application created that SELECT statement, or perhaps you typed it in
yourself using a special database client. In the former case, your application will then
display the names (perhaps in a browse); in the latter, the database client will display a list
of names.

Actually SQL can do a whole lot more than just retrieve data. You can use SQL to create
and modify databases, tables, and keys as well as update, insert, and delete data. You can
also use SQL to enforce relationships between tables, creating what’s called a relational
database. (For more on relational databases, see Tom Ruby’s series of chapters on database
normalization, beginning with “Managing Complexity, Rule 1: Eliminate Repeating
Fields,” p. 21). A relational database doesn’t have to be a SQL database, but in most cases
you’ll find that relational and SQL go hand in hand. That’s because SQL isn’t just a
standard query language, it’s also a standard language for defining tables and their
relationships.

SQL is a bit like the standard Clarion language grammar for accessing databases. The
Clarion language has CREATE, SET, NEXT, PREVIOUS, ADD, and DELETE
statements which you can use on a variety of different file formats; all you need is a file
driver appropriate for the data files you’re accessing. SQL has CREATE, SELECT,
INSERT, DELETE, and UPDATE statements which will work on any SQL database; all
you need is a way of presenting those statements to the database.

If SQL and Clarion take similar approaches to handling data, why would you bother with
SQL? Part of the answer lies in the differences between relational and flat file databases.

Relational vs. flat file databases
A lot of people think of Clarion as a relational database development tool. In fact, Clarion
is really a database-agnostic fourth generation language, or 4GL. You can use Clarion with
flat file and relational databases. And for those of you who think of TPS files as a relational
database, nope, that isn’t the case. TPS files are flat files.

A flat file database simply contains data files; there is no code involved in processing the
data, rather, the application does all the work. If, for instance, you have an order entry
application, you’ll probably have something like an Order header table, which contains
one record for each order, and an OrderDetail table, which contains one record for
each item purchased as part of a given order. If you delete an Order record, and there are
related OrderDetail records, you could leave behind orphaned records. To prevent this
you’ll want to either delete those related records, or prevent the deletion of the Order

An Int roduct ion To SQL
record. In a flat file database your application has to manage the relationships between
tables; in a relational database, this is the server’s job.

Note: The term database server has two common meanings: one is the software
that manages the database, and the other is the physical computer that holds the
database and the database server software. In most cases, database server
software is installed on a dedicated machine, so that other processes don’t slow
database handling.

Clarion is quite good at handling relationships between tables in a flat file database. You
can define those relationships in the data dictionary, and by clicking a few options you can
tell Clarion to generate appropriate code to cascade or restrict deletes, and so forth. What
Clarion can’t do, however, is stop any other program from violating the rules you’ve so
carefully defined in the dictionary. Your data is just sitting out there in a no-brain TPS file,
waiting to be trashed by any program that can read the file.

Client/server and relational databases
Another term frequently used in database application development is client/server. If
you’re using a flat file (i.e. TPS database) on local computer, you’re not doing client/server.
If you place that flat file database on a server, so more than one program can work with the
data at a time, you’re still not doing client/server. In a client/server environment, both the
client and the server have some intelligence. Relational SQL databases are a common
example of client/server processing.

The database server’s intelligence provides a number of key advantages over flat file
databases, including speed, data integrity, compatibility with other products, ease of
administration, and scalability.

The need for speed
A SQL database can provide dramatic speed improvements over flat file databases in a
network environment (from this point on, I’ll use the term “SQL database” to mean
“relational SQL database,” but keep in mind that not all SQL databases are fully relational).
If you’re using flat files such as TPS files, every time you request a record from a table, all
of the fields in that record have to travel across the network. If your table has fifteen fields
with a total of 500 bytes per row, and you only want to retrieve one 25 byte field, then
you’re moving 20 times more data across the network than you need! In most cases you’ll
want more than just five percent of the row’s data, but if you even use only half of the
available data, you’ve doubled your bandwidth requirements by using a flat file.
143

Genera l SQL

144
And since the flat file database contains no intelligence, it doesn’t know anything about
how tables are related. If your browse makes use of multiple tables, your application will
have to retrieve full rows of data from the related tables as well, and match those results
with the first table.

If you’re using a SQL database, your application sends a SELECT statement to the
database server, which sends only the requested fields across the network. Your application
can also tell the database server to return fields in related tables; it’s up to the server to
decide how it locates this related data, and it only sends the requested fields back to the
application. This also means the client computer doesn’t have to expend processor cycles
matching the related records.

Note: Reducing the client computer’s processing load may or may not speed
the application. Much will depend on the speed of the network, and the load on
the database server.

Data integrity
I’ve already mentioned data integrity in the case of orphaned records. Although you can
easily create a Clarion application that manages related table data, this puts the burden
entirely on the application. In a shared database environment you often have multiple
applications working with the same data. Even if you’ve created all these applications with
Clarion, you’ll need to ensure that you use the same dictionary, or maintain the same
relationship settings across multiple dictionaries. And if someone wants to work with the
database using, say, Excel, or a Visual Basic application, all bets are off.

In a heterogeneous environment, you’re far better off putting core database integrity rules
in the database itself. These rules can embody the sort of basic referential integrity (RI)
options you see in the Clarion data dictionary (restrict or cascade changes and deletes), and
they can specify default and allowed values for individual fields. In most SQL databases
you can also create triggers, which execute SQL code when a certain action (like a delete or
insert) happens. Triggers can call stored procedures, which are functions written in SQL
and stored on the server.

You can build a SQL database with sufficient RI and other rules so that it’s virtually
impossible for any application (or any individual executing SQL statements by hand) to
corrupt that database.

An Int roduct ion To SQL
Compatibility
Although the major database vendors each have their own flavor of SQL, there is enough
adherence to the 1992 ANSI SQL standard that you can readily port most applications from
one server to the next. And because SQL is a relatively standardized language, there are
many tools and utilities available, for everything from database design to syntax checking
to reporting. One place to look for SQL tools is the CNet www.download.com site.

Ease of administration
As I indicated earlier, SQL isn’t just for querying data. You also use SQL to create and alter
databases, tables, and indexes. It’s easy to add a field to or remove a field from an existing
table, or to change a field’s data type or default value. In a TPS file, changing the table
definition doesn’t change the physical data; you still have to create a conversion program,
or use the data dictionary’s table conversion feature.

You can also easily do mass updates in SQL by applying UPDATE or DELETE statements
to a selected set of records. While mass updates are inherently dangerous (you can easily
wipe out an entire table), they’re also amazingly useful.

Scalability
Applications are not only a lot bigger than they used to be, but they typically deal with a lot
more data. TPS files can store a lot more data than the old Clarion DAT files, but in general
flat file databases hit storage limits and performance walls a lot sooner than SQL databases.
The history of each kind of database suggests this is likely to happen: Flat file databases
derive from small, single user systems, and SQL databases started out on the big iron. You
wouldn’t want to store a terabyte of data in a TPS file, even if it were possible (it isn’t - the
maximum size of a TPS file is two gigabytes).

SQL databases are designed to hold massive amounts of data, and to work with that data
efficiently. SQL server performance scales with the hardware, while the same isn’t
generally true of flat file databases. At the same time, SQL servers are invading the
personal computer data space, and some of the more popular SQL databases are even
available for handheld computers.
145

Genera l SQL

146
Clarion and SQL
Clarion’s support for SQL databases has improved considerably in recent years. Prior to
ABC, your only real option was the Cowboy Computing Solutions SQL templates
(http://www.ccscowboy.com/products.htm) . ABC provides acceptable SQL features and
performance, although for serious work you should still take a look at the CCS SQL
templates at www.icetips.com. (Clarion 6.x also has ADO templates although these do not
appear to be in wide use among Clarion developers just yet.)

If you already have an SQL database, and you have a suitable SQL or ODBC driver for that
database, all you probably need to do is import the tables into a dictionary and you can start
creating your application in the usual manner.

If you’re porting a TPS database to SQL, I strongly suggest you read “How To Convert
Your Database To SQL,” p. 175, and “Converting TPS To MS-SQL,” p. 183. There are a
number of important data type and table design requirements in SQL that don’t exist in
TPS files, and there’s a good chance that you’ll need to make at least a few minor changes.
If you don’t yet have a SQL database to play with, take a look at Tom Hebenstreit’s
suggestions for getting into SQL on the cheap in “Getting Into SQL On The Cheap,” p.
167. One free SQL database increasingly popular with Clarion developers is MySQL
(http://www.mysql.com), and you can read more about this database in the “Open Source
SQL” section of this book, page 219.

Choosing a driver
To use Clarion and SQL, you need two things: a SQL database, and a driver that lets
Clarion talk to that database.

Clarion 5.x Professional ships with the ODBC and MS SQL drivers; Clarion 5.x Enterprise
adds the SQL Anywhere (a.k.a. Sybase) and Oracle Accelerator drivers. If you only have
the Professional version you can still use Oracle, SQL Anywhere, and many other SQL
databases using the ODBC driver.

What you won’t get with ODBC in Clarion 5.x is the ability to do multi-file imports from
the SQL database, and you won’t be able to use the Clarion Database Synchronizer to
transfer changes from the database to your dictionary and vice versa. For now, I’ll assume
that you’re using the ODBC driver (which is still a fine solution) to talk to your SQL
database.

An Int roduct ion To SQL
Choosing a SQL database
It’s possible that your choice of SQL database has already been made for you. If this is the
case, chances are you’re looking at one of the commercial SQL servers, such as Microsoft
SQL Server, Oracle, or SQL Anywhere (Sybase). There are also an increasing number of
good, free, open source servers available, including MySQL, PostgresSQL, and
Interbase/Firebird.

Each SQL server has its own strengths and weaknesses. For many developers, commercial
database licensing costs are a serious drawback, but commercial products may have
features not available elsewhere. And although all SQL servers share a common core of
SQL statements, most vendors have enhanced SQL with database-specific commands. If
your applications begin to make significant use of server-specific functionality, you may
find it difficult or even impossible to port your application to another server.

For example, I use MySQL as the core database behind Clarion Magazine, in large part
because of MySQL’s reputation for speed and reliability. But MySQL’s support for
transactions is relatively new. If I needed transactions I might think seriously about
PostgreSQL (a.k.a. Postgres). Postgres is considered fairly reliable, but doesn’t deliver data
as fast as MySQL does, even if you disable immediate flushing of data to disk. On the other
hand, Postgres has sub-selects (you can use one SELECT statement as part of another
SELECT statement) which I’d dearly love to have in MySQL. I can work around the
missing sub-select capability with temporary tables, but that’s a bit awkward. On the
whole, I think MySQL is a better choice for this particular application, although I’ve read
that Postgres may actually scale better...

You get the idea. Throw in a few more key features like triggers, stored procedures, the
ability to store programming objects in the database, and you have a whole lot to consider
when choosing a SQL server. Fortunately, there’s a lot of competition for SQL customers,
so you can usually get a low-cost or free trial version of just about any database server you
want to take a look at.

Installing the server
Whichever server you decide on, your next job is to install the server software. In a
production environment you’ll almost always install the database server software on a
dedicated computer (also referred to as a database server). But for development work you
can often install a personal version of the server on your own computer. Although you
won’t get a realistic assessment of the performance your application can expect in a
networked installation (depending on the computing and network hardware involved, an
application may run faster or slower using a personal server installation than using a
networked database server), you’ll still be able to test all of your application’s functionality.
147

Genera l SQL

148
Creating a database
You might think that one of the advantages of running a personal SQL server on your own
machine is that you won’t mess up somebody else’s database. In fact, SQL servers let you
create multiple databases for various purposes, so it’s easy to isolate your test or
development data from other data on the server.

A SQL database is a bit like a directory of TPS files. Just as you can have same-named TPS
files in different directories, so you can have same-named tables in different databases.
How the SQL server actually stores the databases is entirely dependent on the server
implementation, but that’s a detail you don’t need to concern yourself with. In SQL, you
deal with table definitions and data; you let the server worry about where and how it
actually stores that data.

A SQL server can contain a large number of databases, and many tables within each
database. The SQL server can also actively manage all of this data to ensure efficiency and
integrity. Larger organizations, with large databases, typically employ one or more
Database Administrators (DBAs) to ensure that nothing bad happens to all that important
data. To make the DBA’s job a little easier, most SQL servers allow the DBA to set various
permissions on different table operations. At the lowest level, a particular user may only be
allowed to view a particular column of data in a particular table in a particular database. At
the highest level, a user (really now a DBA) can create and delete entire databases.

If you’re working in a larger organization, and the departmental SQL server is your only
option, the best you can hope for is that the DBA will give you your own database in which
you can create and delete tables to your heart’s content. If you have your own SQL server,
then you can do anything you want, can’t you? Ah, the power.

There are two ways to create a database. One is to execute a CREATE DATABASE
statement. The other is to use a database administrator utility which provides a somewhat
friendlier interface, but which will ultimately execute that same CREATE DATABASE
statement.

Creating a database with SQL
To create a database called Test, you use a SQL statement like the following:

CREATE DATABASE Test;

Notice that the statement ends with a semicolon, which in SQL is the line terminator. You
can spread a SQL statement over multiple lines by pressing the Enter key, which in the case
of longer SQL statements often greatly improves readability. The SQL server won’t
attempt to execute the statement until it encounters the terminating semicolon.

An Int roduct ion To SQL
Creating a database is simple, isn’t it? But where do you type this command? SQL servers
generally come with a number of bundled utilities, one of which will be a SQL interpreter,
sometimes called a SQL query tool, or SQL query analyzer. You can use this tool to
execute any valid SQL statement (at least one you have permission to execute). For
example, I have MySQL running on a Linux box on my office network. To interactively
execute SQL statements on that server, I telnet to the Linux box and type mysql at the shell
prompt to run the mysql client program. Figure 1 shows how I use that program to create a
database called APlaceForMyStuff.

Figure 1: Creating a database with a direct SQL statement
149

Genera l SQL

150
Creating a database with a database
administration utility
It’s probably more likely that you’ll create your databases using an administration utility.
Figure 2 shows Sybase Central, the database administration program that ships with the
SQL Anywhere database.

As you can see from Figure 2, Sybase Central gives you an easier way to perform common
database administration tasks. If, for instance, you choose the Create Database utility
from the right-hand pane, you’ll get a Create Database wizard. And the Sybase Central
Create Database wizard presents a lot of options, such as transaction logging, encryption,
page sizes, case sensitivity, and much more. But all of these options are just another way of
creating a single SQL statement. Listing 1 is the full syntax for SQL Anywhere’s CREATE
DATABASE command:

Listing 1. The CREATE DATABASE command in SQL Anywhere v.6

CREATE DATABASE db-file-name
... [
... [[TRANSACTION] LOG OFF |
 [TRANSACTION] LOG ON [log-file-name]
 [MIRROR mirror-file-name]
]
... [CASE { RESPECT | IGNORE }]
... [PAGE SIZE page-size]
... [COLLATION collation-label]

Figure 2: The Sybase Central database administrator

An Int roduct ion To SQL
... [ENCRYPTED { ON | OFF }]

... [BLANK PADDING { ON | OFF }]

... [ASE [COMPATIBLE]]

... [JAVA { ON | OFF }]

... [JCONNECT { ON | OFF }]
]

Each step in the Sybase Create Database wizard corresponds (more or less) to an option on
the CREATE DATABASE statement.

By comparison, the full syntax for MySQL’s CREATE DATABASE command is
considerably less complicated:

CREATE DATABASE [IF NOT EXISTS] db_name

Modifying database space
If you locate the actual physical file or files that hold your SQL data, you may be surprised
to see that there’s no correlation between the SQL data file and the tables your database
contains. (One notable exception is MySQL, which by default stores each database in its
own directory, and each table as a file in that directory.) Since SQL servers are responding
to SQL requests, and do not allow the application to read/write the data directly, the server
can store the data on disk in whatever way is most convenient.

If your database is small, there’s a good chance your SQL server will store the entire
database as a single physical file. Larger databases may be spread over several physical
files, which can even be located on other computers. One of the DBA’s many
responsibilities is to manage these different files (often called dataspaces or tablespaces) to
ensure that there’s enough space available, and that performance remains good. In most
cases a SQL server can be set to grow its data files as needed, but there may be predefined
limits on how large a given file can get, or you may need to pre-allocate new dataspaces to
accommodate anticipated growth.

Database log files
SQL databases typically let you create log files which record all changes to the database.
This can be particularly useful in a development environment, when you want to keep track
of everything your application actually does with the data. You may also be able to use the
log file to re-apply changes to a database which you’ve had to restore from a backup.
151

Genera l SQL

152
Backing up a database
Just as is the case with TPS files, when backing up a live SQL database you run the risk of
creating an inconsistent data copy. It’s best to use the backup utility that comes with your
database, as this program (hopefully) knows how to get a clean copy of the data. For
instance, the backup program may wait for all transactions currently in process to commit
before taking a snapshot of the database.

Database replication
I regularly see messages in the SV newsgroups from developers who need to manage one
database across multiple physical locations, such as branch offices. This is a common
enough requirement in the business world that most SQL servers offer some form of
replication.

In a database replication scheme, one SQL server manages the central database, and
additional SQL servers manage local copies of that database (or portions thereof). These
servers communicate with the central SQL server on a regular basis, exchanging
information as necessary.

There are various scenarios for database replication, from simple duplication of data to
read-only clients to allowing all servers to fully participate in updating data. As you can
imagine, database replication can introduce a whole new set of design problems. Still, it’s
better to let the server manage this kind of problem than to embody the necessary logic in
the user’s application.

Choosing a server

The single most important choice you’ll make in going to SQL is your choice of SQL
server. Although all SQL servers share a common set of SQL statements, vendors typically
add their own proprietary enhancements. You should look at a variety of SQL servers
before making your choice.

Once you’ve decided on, obtained, and installed a SQL server, your next task is to create at
least one database. You can do this with a simple SQL statement, and you’ll probably also
have the option of using a utility to create the database.

An Int roduct ion To SQL
Creating tables
As you’ll recall from earlier in this chapter, the SQL language isn’t just for retrieving and
updating data; you also use SQL to create databases, tables and indexes. Here’s a simple
SQL statement that creates a table with a few fields:

CREATE TABLE ArticleGroups
(
 ArticleGroupID INT AUTO_INCREMENT NOT NULL,
 Title VARCHAR(255),
 PublicationDate DATE,
 Value TINYINT,
 LastModified TIMESTAMP
);

For the sake of readability, I’ve put each field (or to use the SQL term, column) definition
on its own line. This is common practice as it makes the statement more readable.

You will have to get used to some different data types when you switch to SQL. For a
complete listing of available data types, start with the ODBC driver help, ODBC Data
Types section in the Clarion online help. You’ll see a chart mapping ODBC data types to
Clarion data types. Some of the most common type comparisons are as follows:

Conversion between data types isn’t always straightforward, and there are often
alternatives. For instance, you can represent an ODBC fixed length CHAR string with either
a Clarion STRING or a CSTRING, but if you use a CSTRING you won’t be able to use
Clarion to create that table. Or perhaps your design calls for a BYTE field but your SQL

ODBC Data Type Clarion Data Type

CHAR (fixed length string) STRING

VARCHAR (variable length string) CSTRING

DECIMAL PDECIMAL

TINYINT BYTE

SMALLINT SHORT

INTEGER LONG

DATE DATE

TIME TIME

DATETIME GROUP (see below)

TIMESTAMP GROUP (see below)
153

Genera l SQL

154
database doesn’t have a TINYINT type. In that case you’ll need to use a SMALLINT or
other data type. You can also represent many SQL data types as a Clarion STRING.

Dates and times
One of the more significant differences in data types between TPS and SQL tables has to
do with date and time handling. If you’re a long-time Clarion developer, then you’re
familiar with storing dates and times as LONG values, and displaying these values with
pictures. A Clarion standard date is the number of days since December 28, 1800, so March
13, 2001 is 73124.

If you’re viewing a TPS (or DAT) file with a Clarion program or utility, you can specify an
appropriate date picture to translate the date number into something meaningful. But if
you’re using a program that doesn’t understand a Clarion standard date (say you’re
browsing a TPS table in Excel, using the ODBC driver), then you’re just going to have a
bunch of numbers to look at. Quick, what day is 73087? And Clarion standard time is no
better, since it’s stored as the number of hundredths of a second since midnight, plus one.

In a mixed environment, you need to store dates and times in a format non-Clarion
programs can understand. That’s the reason for the DATE and TIME types. Both of these
are four byte variables. DATE uses two bytes to store the year (1-9999), one byte for the
month (1-12), and one byte for the day of the month (1-31). Similarly, TIME uses one byte
each for the hour (0-23), minute (0-59), second (0-59), and hundredths of a second (0-99).
You don’t have to do anything special in your code to use a DATE or TIME instead of a
LONG; in fact, if you’re working with TPS tables you can change all of your LONG fields to
DATE or TIME fields, and just convert the files in the dictionary browser. Now you’re one
step closer to being able to switch over from TPS to SQL.

Not all SQL databases support individual DATE and TIME data types, but most have a
DATETIME or TIMESTAMP data type, which is a combination of a DATE and a TIME.
These two data types have different purposes. A DATETIME is usually set to a previously
known value, while a TIMESTAMP is automatically set to the date/time the record was last
modified. In some (but not all) SQL databases TIMESTAMP is guaranteed to be a unique
identifier, although this requirement is not part of the ANSI SQL specification.

Clarion doesn’t have a data type to correspond to the combination of date and time, but it’s
easy to fake. When you import a SQL table definition which contains such a field, you’ll
see a group structure in the table definition that looks something like this:

TimeStampField STRING(8),NAME('TimeStampField')
TimeStampGroup GROUP,OVER(TimeStampField)
TimeStampDate DATE
TimeStampTime TIME
 END

An Int roduct ion To SQL
In this example the date/time field in the SQL table is called TimeStampField, and it’s
declared as a STRING(8). The fact that TimeStampField is a STRING isn’t
important. What is critical is that this field be eight bytes long, because that’s the length of
a date/time field in SQL. The second part of the declaration is a GROUP with an OVER
attribute. OVER lets you assign one variable to the memory space occupied by another
variable. When you request data from this table, and the driver returns the contents of
TimeStampField, you can refer to those contents eight bytes at a time using the
TimeStampField label or the TimeStampGroup label. In either case you’ll get
gibberish. But if you use TimeStampDate or TimeStampTime, you’ll be working
with just the four bytes corresponding to that half of the variable. The OVERed GROUP is
just a trick to extract the individual DATE and TIME values.

If your SQL server doesn’t support individual DATE or TIME data types, and all you need
is one or the other, you’ll have to use a DATETIME (which, confusingly, is sometimes just
called DATE) and resign yourself to wasting the four unused bytes.

Primary keys
Take another look at that CREATE TABLE statement from the beginning of the chapter:

CREATE TABLE ArticleGroups
(
 ArticleGroupID INT AUTO_INCREMENT NOT NULL,
 Title VARCHAR(255),
 PublicationDate DATE,
 Value TINYINT,
 LastModified TIMESTAMP
);

Do you notice anything missing? There are no keys in this table definition. And this is a
critical omission, because every table should have at least one key, called a primary key.

Any database system needs a way of uniquely identifying individual records within the
database. In a flat file database, this record pointer is often the byte offset in the physical
data file of the start of that record. That’s the case with TPS tables; with Clarion DAT files
the pointer (as returned by the POINTER() function) is the actual record number, which is
why in DAT files you can use code like GET(Control,2) to get the second record in a
file.

SQL databases don’t necessarily have a built-in record identifier, which is why you have to
be sure to provide a way of uniquely identifying each record. Here I’ve modified the
ArticleGroups table create script to include a primary key on the ArticleGroupID
field.

CREATE TABLE ArticleGroups
155

Genera l SQL

156
(
 ArticleGroupID INT AUTO_INCREMENT NOT NULL,
 Title VARCHAR(255),
 PublicationDate DATE,
 Value TINYINT,
 LastModified TIMESTAMP,
 PRIMARY KEY (ArticleGroupID)
);

Also note that in this definition (which is from a MySQL database) I’ve added an
AUTO_INCREMENT attribute and a NOT NULL attribute. Every time I add a record to
ArticleGroups, the server will assign a unique, automatically incremented value to
ArticleGroupID. The NOT NULL attribute means that ArticleGroupID must have
a value; if I didn’t use the AUTO_INCREMENT feature, I’d have to supply my own value
for ArticleGroupID.

Keys and indexes
Clarion developers have had to deal with some confusing terminology in recent years. Is
that an object or a class? A table or a file? And now, is that a key or an index?

In SQL parlance, a key is a logical definition, not a physical thing. Keys are how you relate
two tables. In the Clarion Magazine database I have a table for groups of articles
(ArticleGroups), a table for articles (Articles), and a linking table that manages
the many-to-many relationship between ArticleGroups and Articles. This table is
called ArtGrpLink, and its create statement looks like this:

CREATE TABLE ArtGrpLink
(
 ArtGrpLinkID INT AUTO_INCREMENT NOT NULL,
 ArticleGroupID INT NOT NULL,
 ArticleID INT NOT NULL,
 LastModified TIMESTAMP,
 PRIMARY KEY (ArtGrpLinkID)
);

In ArtGrpLink, the ArticleGroupID field’s only purpose is to link a record in that
table back to the Articles table. ArticleGroupID is what’s called a foreign key - it’s
a key because it is used to link to another table, and it’s foreign because the information it
links to exists outside the current table. But there is no separate physical structure that
defines the key, as there is in a TPS table.

When you create a TPS table, and you want to sort that file in a particular way, you
define...a key. There is something comparable to a TPS key in SQL databases but a) it’s
called an index, not a key, and b) it’s optional.

An Int roduct ion To SQL
This may take a bit of thought. A key, in SQL, is just one or more fields that link to another
table. When you define a key (I’ll give an example shortly) you tell the server that a
relationship exists between two tables. Optionally you may also tell the server that there are
certain constraints on this relationship. Perhaps when the parent record is deleted you want
to delete all the child records automatically, or you want to prevent the parent from being
deleted if child records exist.

Is this starting to sound familiar? In SQL, defining keys is akin to defining relationships in
the dictionary editor. On one side of a relationship you have a foreign key, and on the other
side you have a primary key. Here’s an example of an employee table with a foreign key
(dept_id) that references the department table’s primary key (also labeled
dept_id).

create table employee
(
 emp_id integer not null,
 manager_id integer ,
 emp_fname char(20) not null,
 emp_lname char(20) not null,
 dept_id integer not null,
 primary key (emp_id),
 foreign key ky_dept_id (dept_id)
 references department (dept_id)
 on update restrict
 on delete restrict
);

This foreign key declaration says that employee.dept_id matches
department.dept_id, and that the server should not allow anyone to delete a
department record or change the department record’s primary key (dept_id) if
there’s a related employee record.

This particular foreign key example only restricts updates and deletes, but you can also
have foreign keys with no constraint, a cascade constraint (delete or update all records with
a matching foreign key), or a constraint that doesn’t change the related record but clears the
foreign key or resets it to a default value if the primary key record is deleted.

SQL indexes
Just as SQL keys correspond to Clarion data dictionary relationships, so do SQL indexes
correspond to TPS keys. In a TPS table a key is a physical construct that makes it possible
to sort records by field contents. In a SQL server, an index is a physical construct that lets
the server sort records efficiently.

Technically, TPS keys and SQL indexes are both optional, since Clarion applications use
the View engine to collect data, and the View engine lets you sort on arbitrarily chosen
157

Genera l SQL

158
fields. If you don’t have a key/index defined, performance will suffer to some degree,
probably more with the TPS table than with the SQL table. And most of us who use TPS
files wouldn’t think of creating a TPS file without at least a few keys.

When it comes to SQL, however, the whole subject of creating indexes (which, of course,
correspond to TPS keys) becomes a little more nebulous. That’s because an application that
wants to retrieve some data from a SQL database simply sends SQL statements like:

SELECT Name,Address,City,State FROM Names
 ORDER BY State;

The ORDER BY clause tells the server what order to use when sorting the resulting data,
but there is no instruction on which index, if any, the server should examine for that order.
Now, with some SQL databases you can give the server hints in situations where several
indexes could be used, and you know one to be more efficient than another, but that’s
beyond the scope of this chapter. For the most part, how the server does its job is up to the
server.

This abstraction of the query language from the server implementation has important
consequences for the developer. With TPS files, the Clarion runtime library ensures that the
definition you have for your file exactly matches the file itself; in SQL, all that matters is
that the fields you have defined in the table have corresponding fields in the table on the
server. Your definition may have only one field, while the actual table may have dozens.

You also don’t need to define any indexes for your SQL tables in the data dictionary (okay,
the dictionary editor calls these keys - life can be confusing). You can create a browse that
displays in record order and add whatever additional sort fields you like, and if the server
has corresponding indexes, you’ll get good performance.

You probably will want to include index (key) definitions in your SQL tables in the
dictionary, however. For one thing, you’ll need indexes/keys to define relationships
between tables, and for another it’s a good thing if your data dictionary fairly closely
models the actual database. But there’s no requirement for your indexes to match the back
end’s indexes; you’ll never get an invalid record declaration because of an index mismatch.
You might get some abysmal performance because your code assumes an index that
doesn’t exist, but that’s another story.

Keys and indexes
If you’ve never worked with SQL tables before, you’ll first encounter some unfamiliar data
types. Most of these have close Clarion equivalents, the exception being date/time
combinations, which require a special GROUP structure. You’ll also need to ensure that all

An Int roduct ion To SQL
your tables have a primary key, which is a field or combination of fields guaranteed to be
unique for each record.

For the most part, SQL tables aren’t that different from TPS tables, at least until you come
to the subject of keys and indexes. It can be tricky at first remembering that a foreign key
defines a relationship between SQL tables, and an index is a physical construct which helps
the server locate records more quickly. As well, because your SQL application works with
data by using SQL statements, not by directly accessing data files, there can be significant
discrepancies between the table and index definitions in your applications and those on the
server, and your application can still work successfully.

I don’t care if it’s SQL
I’ve been asked on a few occasions just how SQL development differs from non-SQL
(typically TPS) development. The answer to this question is “it depends.” You can choose a
development style anywhere on the continuum from “almost identical to TPS” to “radically
different from TPS.”

It’s quite possible to create a Clarion application that can run on either a TPS database or a
SQL database, and the only thing you have to change is the driver. You will need to stick
with data types common to all the drivers you plan to use, but other than that you don’t
need to make any special accommodation. You don’t need to think about your development
in a different way, except to the extent that you need to learn how to create or maintain a
SQL database. And you need to make sure that each of your tables has a primary key.

I suspect that a lot of Clarion developers who do SQL start off with this approach. Perhaps
they’re looking for better network performance, or maybe SQL is one of the client’s
requirements. In any case, the point is that you can treat SQL tables the same way you treat
TPS tables (or files, if you prefer that terminology). In this situation your application
assumes no intelligence other than its own is at work manipulating the database, and the
SQL server functions simply as a repository for data. You ask for data, you get it. You
update data, it’s updated. You delete, it’s gone. A SQL server used this way doesn’t take
any additional action based on what you ask it to do.

Your application will automatically take some minimal advantage of any SQL database
server’s special capabilities, primarily when you’re dealing with a browse that uses related
tables. In older versions of Clarion browses read files directly, using the file driver; in
Clarion ABC all such file access is handled by a Clarion VIEW structure, which is a sort of
logical table which can contain related tables. Here’s an example of a VIEW structure that
combines three tables using a JOIN to display authors and their articles:

BRW1::View:Browse VIEW(Names)
 PROJECT(nam:LastName)
159

Genera l SQL

160
 PROJECT(nam:FirstName)
 PROJECT(nam:NameID)
 JOIN(aat:AuthorID,nam:NameID)
 PROJECT(aat:ArticleID)
 JOIN(Art:PRIMARY,aat:ArticleID)
 PROJECT(Art:Title)
 PROJECT(Art:ArticleID)
 END
 END
 END

The primary table in this Clarion VIEW is the Names table. In the file schematic, this is the
first table listed in the browse control, as shown in Figure 1. There are two additional tables
in the VIEW: AuthorArticle is a linking table which manages a many-to-many
relationship between Names and Articles.

If you use this VIEW with a flat-file database, Clarion will retrieve all of fields in each table
record, even though only a few of these fields are actually listed in the VIEW. That means
you get a lot more network traffic than you really need, and performance will suffer. If you
use a SQL database, Clarion will generate a SELECT statement instead, and that statement
will only retrieve the required fields. Here’s a SELECT statement that corresponds to the
above VIEW structure (I created this using the \c55\bin\trace.exe utility):

SELECT A.NameID, A.FirstName, A.LastName,
 A.Company, A.Country, A.Email, A.UserID,
 B.AuthorArticleID, B.ArticleID,
 C.ArticleID, C.Title
 FROM Names A
 LEFT OUTER JOIN AuthorArticle B
 ON A.NameID= B.AuthorID

Figure 3: The browse file schematic

An Int roduct ion To SQL
 LEFT OUTER JOIN Articles C
 ON B.ArticleID= C.ArticleID
 ORDER BY B.AuthorID ASC, B.ArticleID ASC,
 C.ArticleID ASC

Although there are numerous fields in the Names table, only seven of these fields are
named in the SELECT statement. You’re probably wondering why seven, since just three
are listed in the VIEW. As near as I can tell, ABC adds these fields automatically because
they’re key components. At least seven is better than 38, which is how many fields there
really are in Names. Of course, when you bring up an update form, ABC will retrieve all of
the fields in that row.

Note: In my tests with MySQL, ABC reports and processes, unlike browses,
automatically retrieved all fields in the table(s), thereby removing the network
performance benefit enjoyed by ABC browses running on SQL data.

In SQL, tables can be associated with a JOIN statement, such as this:

Names A LEFT OUTER JOIN AuthorArticle B
 ON A.NameID= B.AuthorID

There are several different kinds of joins. In a LEFT OUTER JOIN the SQL server will
look for records for the left-side table, and find matching records on the right side table. If
there are no matching records on the right side, the server supplies NULL values for the
right side fields. This is the kind of join most Clarion programmers use, whether they
realize it or not.

Notice that the Names table is defined in the SELECT statement as Names A, not just
Names. The A is an alias for the Names table. Since you can have identical field names in
different tables, you often need to prefix the field with the table name, as in
Names.NameID. But that can leads to a lot of typing, so SQL allows the use of an alias.
In this case, A.NameID is the same as Names.NameID. The Clarion view engine assigns
these aliases alphabetically, beginning with A.

Finally, the JOIN has to specify which are the linking fields. The Clarion view engine uses
the ON syntax:

ON A.NameID= B.AuthorID

All of the above code comes from a straight ABC application that would work with SQL or
TPS tables. The only difference is the file driver. So even though you don’t make any
special allowances for SQL, you can still get some of the speed and performance benefits
of SQL.
161

Genera l SQL

162
Tuning for SQL
Although stock ABC SQL applications work, there’s a whole world of functionality out
there for SQL developers. Typical server features include:

• Mass updates - why write a process to do something, when a single SQL
statement will accomplish the same result?

• Server-side autoincrementing of keys

• Enforcing referential integrity

• Stored procedures - SQL code which can be called at any time

• Triggers - ability to execute a stored procedure when a particular event
happens

I’ll take a brief look at each of these areas, and point out some of the issues for Clarion
developers.

Mass updates
Clarion developers are used to applying updates to one record at a time. With SQL, you can
update large numbers of records with a single statement. For instance, let’s say I’ve been
inconsistent in storing country information in my Names table. In some cases, the country
value for the United States of America is ‘USA’, in others ‘US’. To change all instances of
‘US’ to ‘USA’ I can execute the following statement using PROP:SQL:

UPDATE Names SET Country='USA' WHERE Country='US';

This kind of capability doesn’t necessarily have a bearing on how you design your
applications, except that you can probably dispense with some of your own client-side
code. Of course, you’d never allow this kind of inconsistency to appear in your data in the
first place, right?

Server-side autoincrementing
Good database design requires you to have a unique identifier for each row in a table, and
in most cases you’ll accomplish this using an autoincrement key. Traditionally, Clarion
applications autoincrement by retrieving the record in the table with the highest key value,
incrementing that value by one, inserting a record with the new value (to reserve that auto-
incremented number), and changing the current action from an insert to a change (even

An Int roduct ion To SQL
though the form still appears to be inserting a new record). With a SQL database, you have
the option of letting the server do the auto-incrementing, which is generally faster and more
reliable. But this is not as straightforward as it may seem.

When you’re doing a simple insert into a table, everything is fine - you may need to supply
a NULL value for the primary key field, but the server will take care of the rest. The
difficulty arises when you try to add related (child) records using the parent’s update form.
If you’ve just inserted the parent record, you won’t have a value for the primary key field.
That value exists, but your form has only inserted the record; it hasn’t retrieved that record
to find out the field value.

There are various ways around this problem. For MS SQL Server, Jim Kane has written
some code to retrieve the @@identity variable, which contains the value of the last
autoincrement identifier for the current connection. This way you can assign the correct
parent id to the child record.

Enforcing referential integrity
I can’t claim much experience with server-side referential integrity (RI), because most of
my SQL work is with MySQL, which doesn’t provide this capability. Most databases do let
you set various update and delete check constraints in much the same way as you’re
probably accustomed to setting these constraints in the Clarion dictionary editor. If you
decide to handle RI on the server, you should select the appropriate server side constraint in
the Clarion dictionary editor, as shown in Figure 4.

Figure 4: Choosing a server-side RI constraint
163

Genera l SQL

164
Setting server-side constraints in the dictionary doesn’t create any server-side code; this is
just a way of documenting that the server will handle the RI issues.

Stored procedures and triggers
Closely related to RI issues is the use of stored procedures and triggers. SQL is a query
language, but it’s also a data definition language, and in many ways a full-fledged
programming language. With most SQL servers you can store SQL code on the server, as a
procedure, and call that code from your Clarion applications with PROP:SQL.

A trigger is similar to an RI constraint in that a particular event (such as an update or
delete) triggers an action. In fact, you can implement RI constraints as triggers, if you like.
The trigger can contain all the necessary SQL code, or it can call stored procedures instead
of, or in addition to, its own SQL code.

Stored procedures and triggers have the most potential to radically alter your approach to
database development. Much of the code in your application represents business rules, or
standard approaches to handling certain kinds of data. The more of those business rules you
move to the server, the simpler the client program becomes, and the safer it is to let other
applications work with the data, since the server enforces the business rules no matter
which client updates the database. You can make the database itself relatively bulletproof,
with enough effort.

Moving all this code to the server can present disadvantages as well as advantages. You’ll
need to learn how to express your Clarion code as SQL code, and that takes some effort. If
you move your application to another SQL platform, chances are you’ll also have to
rewrite some of your SQL code since, as Mike Gorman points out, there really is no firm
and fast SQL standard. And you’ll be creating a much more complex database which
requires a greater level of understanding and, perhaps, administration.

Which way do I go?
The benefit you get from moving from a flat file database (like TPS files) to a SQL
database is proportional to the degree to which you use the SQL server’s capabilities. If you
simply change drivers (assuming your datatypes are compatible with the SQL server), and
your browses typically do not retrieve most or all of the fields in a table, then you should
see better network performance. You may see better raw data access speed on the server as
well, but I’ve never benchmarked raw TPS speed against any SQL server, so I can only
guess that there will be some wide variation, depending on which SQL server you use.

An Int roduct ion To SQL
Server-side processing, like check constraints for referential integrity and
autoincrementing, further reduces network traffic, although auto-incrementing can cause
some additional headaches, as I described earlier.

If you go all out and implement triggers and stored procedures, you can reduce network
traffic by another notch or two. Although minimizing network traffic is an important goal
for most developers, do keep in mind that you won’t improve performance if the server
doesn’t have the processor speed and/or bandwidth to keep up with requests. You need to
strike a balance between what the client computers are capable of, what the server can do,
and how fast you can get data between the two. All other things being equal, however, there
are significant benefits to moving business logic from the client machines to the SQL
server.

Resources
• Whitemarsh SQL papers (http://www.wiscorp.com/SQLStandards.html)

• SQL.ORG tutorials (http://www.sql.org/online_resources.html)

• CCS SQL templates (http://www.ccscowboy.com/)
165

Genera l SQL

166

GETTING INTO SQL ON THE CHEAP

by Tom Hebenstreit

Editor’s Note: Prices and availability of the products described here may have
changed.

Data grows. And grows.

And then it grows some more.

Sooner or later, your programs will outgrow the capabilities of the flat-file database drivers.
When that happens, the solution is normally a move up to a full-fledged SQL-based
Relational Database Management System (RDBMS).

Most RDBMS provide powerful features that your programs can take advantage of to both
ensure greater data integrity and enhanced performance. Just as importantly, a well-
designed SQL based application can keep scaling upwards with little or no further effort on
your part (just throw some more hardware at it, or maybe add a parallel processing or
clustering option to the RDBMS).

Even if you don’t have a need yet and simply want to prepare yourself for future growth,
SQL and RDBMS are the two terms you will want to keep in mind.
167

Genera l SQL

168
The problem is, Relational Database Management Systems are not only powerful, they can
be expensive. Make that very expensive.

So how do you start getting your feet wet with SQL and RDBMS without spending a
fortune?

Glad you asked.

That will be the focus of today’s column - how to acquire a SQL based RDBMS at prices
ranging from free (my perennial favorite) to a few hundred dollars (which is low cost in
RDBMS terms).

Please note that the list is not totally inclusive, and I apologize if I’ve forgotten anyone’s
favorite RDBMS. Also, don’t take the prices mentioned here as gospel; use them as the
starting point for your own explorations. Prices and packages change rapidly in the
software world, and who knows, you could easily find an even better deal with a bit of
research.

Microsoft SQL Server 7
SQL Server 7 is Microsoft’s current flagship RDBMS. A huge improvement over 6.5, it
has won over a lot of Clarion developers with new features and enhanced reliability. More
importantly, it has won over quite a few IT departments, so whether you like it or not, you
will quite likely be faced at some point with either the desire or the need to get familiar
with it.

Paradoxically, the cheapest and most expensive way to get SQL Server 7 is via a Microsoft
Developers Network (MSDN) Universal subscription (about US$2000 annually). If your
company has one of these, just grab the SQL Server 7 disks and you are good to go. You
can also get some good deals on it as part of the Back Office or Back Office Small Business
Server packages.

On a less harrowing level, you can download a fully functional evaluation copy from
Microsoft for absolutely free. This, of course, assumes that you have a big pipe and some
time on your hands, as there are twenty-two separate files totaling 217 megabytes that need
to be downloaded. Oh, yeah - you’ll need about a gigabyte of free space for the process of
recombining the files into the installable package, etc.

A more practical alternative is to order the evaluation CD for US$9.95. Last time I got one,
it was a kit with four CDs including SQL Server 7, some info and training CDs and a bonus
trial copy of Windows NT Server. No guarantee that they still give you all of that stuff, but
I was impressed with the package back then.

Gett ing Into SQL On The Cheap
By the way, unlike most companies that have 30-day limits on evaluation copies, Microsoft
gives you a full 120 days so that you can really delve into the product.

If you own Visual Studio, the best deal is to get what used to be called the Visual Studio
Plus Pack – it includes both a test SQL Server 7 license (not time limited) and MSDE (see
the next section), along with the Windows 2000 Developers Readiness Kit and some other
goodies. It may be hard to track this down now, as they rename it quite often as various bits
are added and removed. When I got it, I think it was around US$15.

Resources
• MSDN: http://msdn.microsoft.com

• SQL Server Home Page: http://www.microsoft.com/sql

Microsoft Data Engine (MSDE)
What is MSDE? In a nutshell, it is SQL Server 7 without the administration tools. Designed
for use in less demanding applications, it has a 2 gigabyte limit on database size and is not,
according to Microsoft, quite as capable in a multi-user environment (after all, they don’t
want to cannibalize SQL Server sales.)

The bottom line, though, is that with MSDE installed on your machine you can develop
fully SQL 7 compatible applications on a single machine under Windows 9x. Since it really
is SQL 7, everything (including RI, triggers, stored procedures, etc.) scales right over to a
full-blown SQL Server system.

How do you get it? Well, if you have Office 2000, look in the \Sql\x86\Setup folder
on the first disk. Note that MSDE is not installed by default - the Jet engine is (yuk!).

If you own any Visual Studio 6 component (Visual C++, Visual Basic, Visual Interdev,
etc.), you can download MSDE for free from the MSDN site listed below, or order a CD for
a minimal shipping and handling charge. Please be aware that this offer is available only for
owners of at least one Visual Studio component. If you get the CD, you also get the full-
blown SQL 7 itself along with a developer license for it.

Editors’ note: In 2005 MSDE will be replaced by SQL Server Express Edition

Resources
• MDSE Home page: http://msdn.microsoft.com/vstudio/msde/default.asp
169

Genera l SQL

170
Sybase SQL (SQL Anywhere Studio and
Adaptive Server)
SQL Anywhere is one of the most popular RDBMS systems among Clarion developers,
and with good reason. Reasonably priced, robust and filled with features that even some of
the big boys don’t have (or don’t have working quite right), it has a vocal group of
supporters on the Clarion newsgroups.

When I talk about SQL Anywhere Studio, you should know that what you actually get is a
whole suite of programs and tools including the server itself, Sybase Central (a
management tool), SQL Modeler (database design tool), Infomaker (a report writer),
PowerDynamo (a web application server) and lot more.

A 60-day evaluation copy can be downloaded free or ordered on CD for a shipping and
handling charge. Weighing in at a relatively slim 78 megabytes, I’d say the download
version is still a bit big for most modems.

If you think you might actually use SQL Anywhere Studio, by far the better deal is to join
their free Sybase Developer’s Network (SDN). Once you are a member, you can order the
SBN Subscription Package. This special deal for developers includes a developer license
for all versions of SQL Anywhere Studio (and CD’s for Windows and Unix in English,
plus Japanese, French and German versions). Covering one year, it also includes a year of
free updates, access to developer information, more tool downloads and other goodies. And
yes, Linux is included as well.

The price? US$99 plus some shipping and handling.

I joined SBN, ordered the package and had the CDs in my hot little hands within two days.
Pretty awesome, I’d say. As an aside, I thought it was pretty cool that it even came with a
230 page book - until I looked at the book and found out that it was just the license
agreement (in 35 variations and over 20 languages!)

By the way, although you don’t hear about it much on the Clarion Newsgroups, you can
also get evaluation copies of Sybase’s flagship product, Adaptive Server Enterprise, at the
Sybase product evaluation site.

Resources
• SQL Anywhere Studio info: http://www.sybase.com/products/anywhere/

• SDN SQL Anywhere home: http://sdn.sybase.com/sdn/mec/mec_home.stm

Gett ing Into SQL On The Cheap
Oracle
Ah, yes - Oracle. The eight hundred pound gorilla of databases (and of downloads, as
you’ll see).

Oracle provides massively powerful databases (sometimes at a massively powerful price).
It is their benchmarks and feature set that everyone is always trying to top, and their market
share that everyone is always trying to grab.

For evaluation copies, you could try downloading the free 30-day trials they offer, but let
me warn you that they are BIG. For example, Oracle 8i Standard is 450 megs plus. We
aren’t talking a big pipe here; we’re talking the Channel Tunnel. And that is for just one
product (or more accurately, one version of the product).

The more reasonable deal is to order one of their CD packs that contain all of the related
Oracle products for a single operating system. For example, their CD pack for Windows
NT includes the Enterprise, Standard and Personal editions of Oracle 8i, along with just
about every possible option you can order for them. Thus, you have 30 days to try out the
exact combination of options that you need, rather than just trying the database and hoping
that add-on X will solve a problem.

CD-Packs are US$39.95 plus shipping and handling, and are offered for seven different
operating systems (including Linux). Apart from the current 8i version of Oracle, they also
have packs for 8.0 and 7.3. A nice touch, if you have to develop for an older version.

Stepping up, Oracle also has (surprise, surprise) a developer network that has a better deal
if you need more than a trial version, but less than a mega license. Called the Oracle
Technology Network (OTN), one of the benefits is the ability to purchase one-year
subscriptions to what they call “Technology Tracks.” Each track is geared to one operating
system and group of related products.

The one of most interest to Clarion developers would probably be the Internet Servers track
for the Windows NT Platform. It includes developer licenses for Oracle 8i Enterprise,
Standard, Personal and Lite, as well as WebDB and the Oracle Application Server. Other
tracks are available for Linux, Unix, Sun Solaris, Netware and so forth. Each track must be
purchased individually.

Like the Sybase subscription offering, Oracle tracks also include free updates for the year.

The price? US$200 per track, plus some shipping and handling. Not bad for US$5000
dollars worth of licenses.

Side note: With Clarion 5.5 Enterprise now including a developer license for the Oracle
Connect driver, it is getting easier and easier to play around in the Oracle end of the pool
without your wallet getting soaked (sorry, couldn’t resist that one...)
171

Genera l SQL

172
Resources
• Oracle Databases main page: http://www.oracle.com/database/

• CD-Packs (’Trials’ for info or Database->CD-Packs): http://store.oracle.com

• Oracle Technology Network home: http://otn.oracle.com/index.html

IBM DB2 Universal Database
Not an RDBMS you hear about a lot on the newsgroups, DB2 is nevertheless a force to be
reckoned with. If you venture into an IBM shop, chances are very good that you’ll need to
deal with DB2 at some point.

I couldn’t find any free time-limited evaluation versions, but that doesn’t mean they aren’t
out there (I have one for the previous DB2 version on my desk right now). What I did find
during my current search is that you can download an actual developers edition (i.e., not
time limited) for free or obtain it on CD for a nominal charge.

Ummm, did I happen to mention that the Oracle download was a bit on the large side?
Well, hold onto to your modems, because the full download for the free DB2 Personal
Developer’s Edition is a whopping 542 Megs spread across eight files.

If you don’t feel like spending the next year downloading DB2, you can also purchase the
DB2 Personal Developer’s Edition at the IBM online store for US$39 plus the ever-present
shipping and handling charges.

Note: If you decide to order DB2 on CD, just follow the various links to the
DB2 product list and then choose the DB2 Personal Developer’s Edition.
Ignore the “specials” link on the main page that leads to the DB2 Universal
Developer’s Edition (unless, of course, you want to spend US$500.)

Resources
• DB2 home page: http://www-4.ibm.com/software/data/db2/udb/

Pervasive SQL
Another database that has its share of vocal Clarion users, Pervasive SQL is somewhat of
an odd child. Based on a hybrid system, it allows you to access data both directly (via
Btrieve) and through the Pervasive.SQL engine (most RDBMS only allow access to the
data through the SQL engine.)

Gett ing Into SQL On The Cheap
Pervasive offers 30-day trial downloads of Pervasive.SQL 2000, and you can also order the
trial versions on CD. Note that the Pervasive.SQL Server engine will not run under
Windows 9x - it requires NT, Netware, Linux or a similar server OS. There is a Workgroup
version, though, that should run under Win 9x.

For downloaders, Pervasive.SQL 2000 is the smallest of the bunch, weighing in at a mere
45 Megs or so.

In checking out how much it cost to order through their online store, I found out that the
CD was free, but shipping and handling was US$10. As a bonus for ordering trial software,
there was a notice that I would also get $10 off my order.

Well, after clicking “next” to get to what I figured would be some kind of order
confirmation screen, all I got was a Thank You notice (uh, you mean I actually ordered it?).
So, I can only report that there is now a totally free Pervasive.SQL CD wending its way to
my door. Not bad, not bad at all.

By the way, even though a P.SQL developer license was included in the box with Clarion 5,
I’ve included Pervasive.SQL here because the version on that CD is now obsolete. I don’t
know if Pervasive.SQL will still be on the 5.5 CD (or what version it will be) but, as you
can see, it is very easy to get.

And yes, there is a Developer Zone, although I didn’t see any special deals there (that
doesn’t mean that there aren’t any, just that I didn’t find them).

Links to downloads, ordering and more information are all accessible on the
Pervasive.SQL 2000 home page.

Resources
• P.SQL 2000 home page: http://www.pervasive.com/psql/

Last Words On Licenses, Memberships, etc.
This may seem a bit redundant, but I should point out again that virtually every license
obtained via any of these developer network packages is for development only - you cannot
distribute it, use it in a production environment or install it for use at your clients.

In other words, they are giving it to you on the cheap so that people who want to use your
fabulous program will also need to buy their database. The only exception is MSDE, which
you can redistribute freely as long as you have a Visual Studio or Office Developer license
(be sure to read the fine print, though). Even then, their ultimate aim is to have your users
scale up to SQL Server.
173

Genera l SQL

174
Also, be aware that in most cases you will be required to join that particular vendor’s
version of a developer network. Nobody will let you grab these RDBMS systems without
extracting at least some information from you.

The good news is that the basic memberships are free in all cases. You’ll also find them
invaluable once you start digging into the products, as they give you access to special
developer oriented sites chock full of information, tips, tricks, other downloads and a
whole lot more.

On the documentation side, very few of these trial offerings come with any kind of paper
documentation. PDF and help files are the norm here, folks.

One final point: Be sure and check the operating system requirements for the versions you
download or want to install. Some RDBMS require Windows NT/2000, while others have
versions that will run happily under Windows 9x as well as other operating systems.

Happy SQLing!

HOW TO CONVERT YOUR DATABASE TO SQL

by Scott Ferrett

This document is based on the talk given by Scott Ferrett at Euro Devcon ‘99 in
Amsterdam on 22 April 99. It is based on the facilities available in Clarion 5a
Enterprise Edition. Later versions of Clarion may require different (hopefully
less) work. However, the information on file structure changes will probably
still apply.

Reprinted with permission.

Throughout this chapter I will refer to TPS files. However, this chapter applies equally to
any ISAM file format (Clarion, dBase, or Btrieve). I will refer to SQLAnywhere as the
SQL driver. However, this can be replaced with Oracle, MS SQL, Scalable, AS400, ODBC
or any other SQL file driver.

There are two things to do when creating an SQL database based on an existing set of TPS
files: convert the data definitions and convert the data.
175

Genera l SQL

176
Converting the Data Definitions (Creating a new
DCT)
The first thing to do is create a new DCT.

You then need to move the existing TPS tables into the new DCT and convert them to SQL
tables. This can be done in two ways: copy the old DCT to the new DCT then change each
table one at a time, or export the old DCT to TXD, edit the TXD and import the TXD into
the new DCT.

I will use the second technique as it allows for bulk changes. However, this system is much
more dangerous as you have no tools to assist you in making certain that everything you do
is consistent and correct.

Driver Name

This is the most obvious change. You need to change TopSpeed to SQLAnywhere. Do not
do this yet.

OWNER

All SQL tables require an OWNER attribute that indicates how to connect to the database
where the tables live. This should always be a variable.

If you have any tables that already have an OWNER attribute, remove these.

Once you have no tables with OWNER attributes you can replace 'TopSpeed') with
'SQLAnywhere'),OWNER(GLO:Owner)

Key Component STRING => CSTRING

In most SQL databases trailing spaces are important when testing if a field is equal. So
'Smith' ~= 'Smith '. This is normally only important on key components as they
are used in relational links and filters. If you use CSTRINGs instead of STRINGs, then
Clarion treats trailing spaces in the same manner as the SQL system.

MEMO => STRING

SQL drivers do not support MEMO fields. These can be represented as very large strings. As
you will be developing 32bit applications you do not have a 64K record limit to worry
about.

How To Conver t Your Database To SQL
LONG => DATE and TIME (sometimes)

In older systems date and time data is stored as a LONG. These should be converted to
DATE and TIME fields so your data will be easily accessible from non-Clarion programs
such as third party report writers.

No RECLAIM attribute

SQL drivers do not support this attribute.

Remove NOCASE

Every SQL system (except P.SQL) only supports the concept of case sensitive or case
insensitive keys across the entire database. You cannot specify one key as case sensitive
and another one as case insensitive.

Because of this global setting, SQL systems do not require the NOCASE attribute. In fact,
specifying it can significantly impact on performance.

Change Referential Integrity to Server based

This is something you get for free. You do not have to learn any SQL to get the advantage
of having the server do your referential integrity. To do this you need to change all your
relational constraints to the equivalent server based relational constraints. If you are editing
the TXD you do this by changing;

• CASCADE to CASCADE_SERVER;

• RESTRICT to RESTRICT_SERVER;

• and CLEAR to CLEAR_SERVER

You have now done all the quick TXD based changes. You can do the following changes in
the TXD or after importing the TXD. I recommend the latter.

Make Sure All Files Have A Unique Key

There is no hidden record number in SQL. So for the driver to be able to update a record
you must tell the driver how to uniquely identify a record. To do this you must have at least
one unique key defined for a file. Even one record control files. The driver does not know
that there is only one record.
177

Genera l SQL

178
Do Not Use GROUP IDs In Keys

It is fine to use fields that are within a group as components of a key. But you cannot use
the GROUP field in a key. If you have keys that use a GROUP field, you will need to
change the key to use each field within the key.

Converting The Data Definitions (Create an SQL Script)

To create an SQL Script you will need two dictionaries. One is the one you created in the
earlier steps. The other is an SQL dictionary. You get an SQL dictionary by either creating
a new SQL database or using an existing one.

Run The Dictionary Synchronizer To Create An SQL Script

Run the synchronizer. Select your other dictionary to be the SQL database you want to
create the SQL tables in.

Set the Source DCT as the Clarion DCT you created in the previous section and the
destination DCT as your SQL database.

Once you get to the synchronizer screen you need to copy all the files to your SQL
database. The easiest way to do this is to highlight the top line. Press the right mouse button
and select Add.

Run the script

To run the script you need to run your SQL’s SQL executor. Load the script and run it.

Converting The Data
Having converted the data definitions, you now need to convert the data.

Create the Conversion Program

To create a conversion program you select Create Conversion Program from the File
menu whilst you are in the dictionary editor.

You then end up back in the synchroniser. Don’t panic. This is where you are meant to be.
The synchroniser has many faces. One of these is to allow conversion programs to be
created.

How To Conver t Your Database To SQL
Choosing your dictionaries

To create a conversion program you need two DCTs. The original DCT that contains all the
TPS files and the new DCT that contains the SQL table definitions.

The most confusing part of creating a conversion program is the screen that asks you which
DCT is the source and which is the destination.

The Source DCT is the one with your SQL tables in it

Your Destination DCT is the one with the TPS tables in it

Once you get to the synchroniser screen you need to copy all the files. The easiest way to
do this is to highlight the top line. Press the right mouse button and select Copy.

Press OK.

You now get the next confusing part of the conversion program creator. You find yourself
back in the dictionary editor.

The system has actually done what you wanted. It just didn’t tell you.

Edit the Conversion Program

A project convert.prj was created in the previous step.

Load this as the current project.

The first thing to do is change the properties of the project to create a 32bit program.

You will then need to edit the conversion program. The program is an object-oriented
program designed to convert an existing set of ISAM tables to a new version of those
tables. As such, it does not handle converting ISAM to SQL without a few modifications.
Being an object-oriented program it allows you to make these modifications without
having to hack the base code.

The file that needs to be edited is C5CVT__1.CLW.

Standard SQL Code Additions To Conversion Program

There are a few standard settings that need to be overwritten for all SQL tables. So the
easiest way to do this is to create an SQLDestTable class derived from DestTable.
You then change all your DestTable derived classes to be SQLDestTable derived
classes.

SQLDestTable CLASS(DestTable)
CreateTable PROCEDURE (),RCCODE,DERIVED
AskName PROCEDURE (BOOL _MustExist, <string FileLabel>)
179

Genera l SQL

180
 ,BYTE,PROC,DERIVED
BuildKeys PROCEDURE (),RCCODE,DERIVED
 END
SQLDestTable.CreateTable PROCEDURE()
 CODE
 RETURN RC:Ok

SQLDestTable.AskName PROCEDURE (BOOL _MustExist, *lt;string
FileLabel>)
 CODE
 SELF.FileName = SELF.Label
 RETURN RC:OK

SQLDestTable.BuildKeys PROCEDURE ()
 CODE
 RETURN RC:Ok

Setting the OWNER

The conversion program creates an owner variable for every table. This is a pain. You need
to change every OWNER() attribute to refer to just one string. You can then either add code
to get a user ID and password from the user, or hard code it.

Set Tasks

The conversion program generator does not set the right tasks to be performed when doing
this conversion. So you need to edit the SELF.Task = line to be:

SELF.Task = TASK:DefaultSQL + TASK:OpenSrc - |
 TASK:Backup + TASK:UpdateDest

There is one of these lines for each file being converted.

Convert Does Not Handle MEMO=>STRING

There is a bug in the conversion generator where it does not generate the necessary code to
convert memos to strings. So in each table that had a memo you will need to edit the Assign
procedure and add the line

NewFile.StrField = OldFile.MemoField

Modifying Your Applications

The only thing you will need to do is add a logon screen to the start of your program. You
will need to ask the user for a User ID and Password.

You can hide this from the user by having a hard coded User ID and Password. Even in this
case you will want to add a dialog indicating the program is connecting to the server as this
can take some time (up to 20 seconds is not unusual).

How To Conver t Your Database To SQL
The connection to the server is done when you first open a file. So you need to either open
a file in your Logon screen, or on the frame. You can close the file immediately. The
connection will be kept open until the application terminates or PROP:Disconnect is
called.

Doing This For Client Data

This chapter has been written from the viewpoint of the developer having access to the
database. If you want to convert an existing customer’s data to an SQL system you will
need to:

• Get the SQL system installed.

• Either copy over an empty database that already contains the table
definitions, or create a new DCT and run the creation script.

• Run the conversion program
181

Genera l SQL

182

CONVERTING TPS TO MS-SQL

by Stephen Mull

This document relates my experiences and findings while performing a conversion of a
large C5b Legacy app from TPS to Microsoft SQL Server. This document is based on
Clarion 5b Enterprise Edition and MS-SQL Version 7.0. Using different versions of
Clarion or MS-SQL Server may require different approaches, but information relating to
file structures should still apply. I do not cover the details associated with MS-SQL 7.0
setup in this document, except where it relates to my Clarion application.

I have been using Clarion for Windows since the first release, and feel it is the finest RAD
tool available anywhere! This was my first application involving the usage of a SQL based
back end. While the initial learning curve has taken some time, I would certainly
recommend the usage of SQL whenever possible.

My initial learning experiences began with reading the Clarion documentation, searching
the newsgroups, and reading two really good articles relating to using Clarion with SQL.
One is Rick Hoffman’s “MS-SQL Tips and Tricks and C5” (Rick’s original site is no
longer up, but you can still get this article via the Wayback Machine:
http://web.archive.org/web/20020816013033/http://home.tampabay.rr.com/rhoffman/MSS
QL-C5.document.htm)”, and the other is a summary of the presentation by Scott Ferrett’s
presentation at Euro Devcon ‘99 in Amsterdam (see “How To Convert Your Database To
183

Genera l SQL

184
SQL,” p. 175). While all of the available information was indeed helpful, there was no
single source covering the details of my specific needs. I felt my experiences might be of
some assistance to other developers, thus this document.

It is important to understand that you, the developer, must use your best judgment
regarding the usage of this information. While I feel I am relating accurate information
based on my experiences, your situation may be different, thus requiring different
approaches. On we go!

Which MS-SQL?
What works and what to use? There are a variety of choices. After investigating the options
available, I chose to use the Clarion MS-SQL Accelerator instead of ODBC. I also decided
that MS-SQL Server 7.0 was the best choice. I would not recommend you use prior
versions as Version 7.0 is far superior and free from headaches for the most part. The
finished application will also work fine with MS-SQL Server 7.0 Desktop Edition.

Other approaches, including using the MSDE or ODBC, probably work fine, but my
choices seemed to be the most reliable and straightforward approach for my project.
Whatever choices you make, if you use Windows 95 as your platform you will need to
install the DCOM updates first, and then the new MS-SQL ODBC driver (3.7x). The new
ODBC driver is recommended with MS-SQL 7.0. These are all included with the MS-SQL
7.0 CD.

Changes To The Dictionary
The first thing to do is create a backup of everything! I suggest you start with a new
directory for the SQL app, and copy your existing APP, DCT, etc. to the new directory. You
do not need to move the existing TPS tables into the new directory. You may use them later
to copy the data to the SQL server, should you wish to do so. This will be discussed later in
this chapter.

The first thing I had to do was make changes to the existing field definitions. Refer to the
following table, which worked perfectly for me, excluding dates (to be discussed shortly).

This table of field type equates is excerpted from Rick Hoffman’s paper. Some changes and
additions have been made to the original content.

Convert ing TPS To MS-SQL
SQL Field Type Clarion Field Type

CHAR(20) STRING(20)

VARCHAR(20) CSTRING(21)

INT LONG

BIT BYTE

DATETIME STRING(8)
GROUP(Over String(8))
 DATE ! you modify these
fields
 TIME ! you modify these
fields
END
or Date or Time

SMALLDATETIME STRING(8)
GROUP(Over String(8))
 DATE ! you modify these
fields
 TIME ! you modify these
fields
END

DECIMAL(18,4) DECIMAL(18,4)

FLOAT REAL

IMAGE STRING(2048)

MONEY DECIMAL(19,4)

NUMERIC DECIMAL(18,4)

REAL SREAL

SMALLINT SHORT

SMALLMONEY DECIMAL(10,4)

SYSNAME CSTRING(31)

TEXT STRING(2048)

TIMESTAMP STRING(8)

TINYINT BYTE

VARBINARY STRING(255)

STRING MEMO *see note below
185

Genera l SQL

186
Global And Local Data Definitions

Don’t forget to update all of your global and local definitions as well – they are easily
overlooked! You will also need to add something along the lines of GLO:Owner for the
owner name of each table (discussed below).

STRING To CSTRING

Look at the following string comparison: 'Dog' ~= 'Dog '. With MS-SQL 7 tables,
the trailing spaces become an issue when comparing field values. In most cases, this is only
an issue of importance with key components as they are used with relational links and
filters. I still recommend you change all of them accordingly. If you use CSTRINGs instead
of STRINGs (highly recommended), then Clarion treats the trailing spaces in the same
manner as the SQL 7 system. I encountered no problems doing this. Just remember that
STRING(20) = CSTRING(21) in Clarion, so add the extra length in your field
definitions or you may end up with truncated data!

MEMO To STRING

The MS-SQL driver does not support MEMO. Instead, you may create your memo fields as a
very large string. As your SQL app is 32bit, you do not have a 64K record limit to be
concerned with. After you make this change, you will find that you will no longer be able
to display and update the “memo” contents in the form you used with MEMO. What you
need to do to correct this is go to the DCT, go to that field’s Display Properties tab and
change the control type from Entry to Text. Then go to the form, repopulate the field onto
the form, and it will work properly once again.

DATE - TIME To DATETIME

My DCT contains fields which store both date and time as Date and Time. I left these “as
is”, and upon sync with SQL 7.0 server, they were automatically converted to DATETIME
and continued to function perfectly. Do not confuse DATETIME with DATETIMESTAMP
on the SQL 7 server; they are different. I store my date values from within the app. This
was appropriate for my application, but leaves the possibility of the data being incorrect if
the workstation’s date and time are not correct. Having SQL 7 insert date values is also
possible, and will insure the correct date and time are used. If you do this, the SQL 7 Server
will try to populate a DATETIME field with the date and time. It is possible to get around
this, but I avoided it completely.

As I mentioned above, I store my dates and times separately. Clarion supports the
DATETIME via a Group, as illustrated in the chart above, but reporting and filtering with
it is a hassle I chose to avoid. Avoid storing various date and time data as a LONG. If you

Convert ing TPS To MS-SQL
store as a DATETIME, your data will be usable with third party products such as Crystal
Reports, Access, Excel, etc.

Field Names And Definitions
I left my field names and key names the same, and all worked perfectly. There is a
maximum field name length on MS-SQL tables, so be aware if you have excessively long
field or key names. Regarding the use of external names, try to maintain identical field
names. If for any reason the Clarion dictionary and the MS-SQL field names differ, you
should set the External Name in the Clarion dictionary to the MS-SQL field name. Since
you will sync from the DCT to the SQL 7 server, you should not encounter any issues in
this area. Remember to update all field definitions to match the above list. One note about
initial values and case: initial values will be set correctly using legacy code, even using
recursive entries, but will not be set correctly using ABC, except on an initial insert. As far
as case goes, it works fine, but keep in mind how this will relate to keys and NOCASE
support, as mentioned below.

Of Keys And Indexes
Make sure all tables have a unique key. This is very important! Also realize that unlike
Topspeed files, there is not a hidden record number in SQL 7 tables. You must inform the
driver how to uniquely identify a record. To accomplish this, at least one unique key must
be defined for each and every MS-SQL table. Do not use indexes with the MS-SQL driver,
as they will not work properly.

Be sure to set all keys to either case sensitive or case insensitive. You must not attempt to
use a mixture of both with your keys. The MS-SQL server’s performance will suffer
greatly if you do so. I learned this first hand! You must also not use GROUP fields as part
of your keys. To restate this, fields within a group may be used as part of a key, but do not
use any GROUP field in your key. I did not have any keys of this type, so I encountered no
problems.

For files that required a unique record number or ID, I created a field called RecordID
(@s18) for the file, and supplied its value from the app rather than the server. You may
use the server to auto-populate this with an incremented number. To do this with MS-SQL,
use an appropriate data type, most likely integer, and make it part of a unique key. Then
mark the key as auto incrementing, exactly like you would in a Topspeed file. NOTE:
Topspeed and others claim this works, but I was never successful in getting this to work
properly. My method was to use Date() & Clock() on INSERT. Please don’t call me
187

Genera l SQL

188
crazy; it works fine with over 100 users adding records every moment of the day, there has
never been a duplication error, and it requires no interaction from the server!

Referential Integrity
MS-SQL 7 does not have a cascade delete declarative referential integrity feature. I
understand this is planned for the next version of MS-SQL Server. Thus, SQL 7 will not
enforce RI except when you ADD a record. To use the server to update and delete child
records, you will have to create triggers and/or stored procedures to handle the process. I
found this to be quite a pain with SQL 7. With all of this given, I would recommend you do
not change RI to Server based! I left the dictionary “as-is” here, and all works perfectly!
Additionally, this allows easier data manipulation via third party tools on the SQL 7 Server,
but remember you can just as easily mess up your data using third party tools to manipulate
data, so be careful!

File Relationships
None of the documentation has properly addressed file relationships, in my opinion. I
initially used the sync tool in Clarion, created a SQL script, executed on my new database
on the SQL 7 server, and voila, everything was created properly including relationships. I
encountered all types of erratic problems with my app with the relationships defined both
in my DCT and on the SQL 7 Server. Even with newsgroup and Topspeed tech support, all
of these issues could not be resolved. Others may argue my final solution, but it is working
perfectly. What I did was to leave the relationships intact in my Clarion DCT, and did not
create the relationships on the MS-SQL server. Everything works perfectly, combined with
leaving the referential integrity as stated above. Additionally, this allows easier data
manipulation via third party tools on the SQL 7 Server, with the same caveat mentioned
above.

Here is a helpful hint: before you sync you DCT with the SQL Server, save your DCT, then
Save As a new DCT name, then remove file relationships from the new DCT, save, then
use the Synchronizer to create the SQL script (covered below). Be sure to use your original
DCT with your app, and not this new one without the relationships!

MS-SQL Driver Properties and Settings
Here are a few tips I learned from Rick Hoffmann’s paper and the newsgroups. See the
Clarion docs for more information.

Convert ing TPS To MS-SQL
/SAVESTOREDPROC = FALSE

Note: sometimes the driver setting works backwards, so try both. You will
notice the performance difference! What you want to do is not have the server
save the temporary stored procedures that your app will create on the SQL 7
server.

1) /TRUSTEDCONNECTION = your choice, based on your situation. I did not
use NT security, instead opting for SQL Server security.

2) /LOGONSCREEN = your choice, based on your situation. See OWNER
Attribute.

3) /GATHERATOPEN – Not used with MS-SQL Accelerator. This is for ODBC
use only.

Driver Options

Change “Topspeed” to “MS-SQL Accelerator”. Do this after all other changes are
complete.

RECLAIM attribute

The MS-SQL Accelerator driver does not support this attribute.

Enable Field Binding Option

I enabled field binding in my DCT, and would recommend this to be enabled in most cases.

Enable File Creation Option

This does work properly with MS-SQL 7. I would still recommend the use of a SQL script
instead.

OWNER Attribute

SQL 7 tables require an OWNER attribute. This indicates how to connect to the database
where the tables are located. Use a variable whenever possible. If you have tables which
already have an OWNER attribute, change them to something resembling !GLO:Owner.
What do you do with this you might ask? See the Changes to the Application section below
for information on how I handled this one!
189

Genera l SQL

190
Create a SQL Script Using The Synchronizer
To create a SQL Script you will need to first save your dictionary. Make sure you have
completed all of the above actions before creating the SQL script, or you will have to do it
again. You will probably not get it 100% right the first time, so don’t worry! You will need
your DCT file and an MS-SQL database. You get an MS-SQL database by either creating a
new MS-SQL database or using an existing one. Make sure you have your MS-SQL server
setup and running, and make sure you have installed the appropriate client software on
your workstation. You may also use MS-SQL Server Desktop Edition if you do not have a
separate server; it works fine.

I recommend you create a new database, using all defaults in Enterprise Manager. Also,
save yourself some trouble and change the default sa database on the MS-SQL server login
to your new database for the time being, or create a new login and give full rights to the
new database to the new login.

Should you decide to follow my advice on not creating the file relationships on the SQL
Server be sure to use a temporary DCT without the relationships before creating the tables,
as mentioned above.

You run the Dictionary Synchronizer to create a SQL script, so first open your DCT, save,
then run the Synchronizer. Select your other dictionary to be MS-SQL, and then select the
database you want to create the SQL tables in. You will have to log in. Once you get to the
Synchronizer screen you need to copy all the files to your SQL database. The easiest way
to do this is to highlight the top line. Press the right mouse button and select Add. Click
OK, then click Finish when offered. You will be prompted for a script name and location,
so answer accordingly. That’s it! Run the script from Enterprise Manager’s Query
Analyzer, found on the tools menu of Enterprise Manager’s menu bar. Either load the
script, or copy and paste from your script, select the database to run the script against in
Query Manager and run it. You should be notified that the command(s) completed
successfully in short time, and you’re done! Now migrate your data if you wish.

How To Migrate Existing Data
I decided not to create a conversion program for my data dictionary. I used MS-Access and
the Topspeed ODBC driver, along with the MS-SQL ODBC driver from Microsoft to
migrate all data, using append queries. It is quick and easy! Your existing data might
require some massaging before appending to your new SQL 7 tables, so you could import
the data into new Access tables, perform your data manipulation, then append the data to
the SQL 7 tables.

Convert ing TPS To MS-SQL
Views
Please note my initial app did not utilize views, but they are easy to use in your app.
Assuming you know how to create a view, do so on the SQL server, give it a name like
v.myfile. In your dictionary go to the Synchronizer and import the view(s). Make sure you
create a primary key, because when you import views a key is not created. Make the key
look identical to the primary key of the view’s main table. Make sure the following
attributes of the key are set:

• Require Unique Key = On

• PrimaryKey = On

• Case Sensitive = On

• Exclude Empty Keys = Off

You may now use your view in your app!

PROP:SQL And Stored Procedures
Please note my conversion did not involve using any stored procedures. It is my
understanding that working with stored procedures and other cool advanced functionality
available from the MS-SQL server is best utilized via the CCS Client Server SQL Template
Sets, available from Icetips (http://www.icetips.com/) . I intend to purchase and add to my
app very soon!

Team Topspeed recommends that when possible you should write your own PROP:SQL
statements to process data. Please note I did not do this for my initial conversion, and all
works perfectly, so I may decide to leave everything as-is. The Process templates do work!
The MS-SQL driver creates stored procedures in the TEMP DB for all SELECTs and for all
inserts, deletes and changes. PROP:SQL eliminates the stored procedures for INSERT,
DELETE and UPDATE.

The following are some performance and usage hints for working with PROP:SQL,
excerpted from Rick Hoffman’s paper. Some changes and additions have been made to the
original content.

Use performance hints such as NOLOCK, FASTFIRSTROW and INDEX = when using
PROP:SQL.

1) NOLOCK – Please read MS-SQL online documentation for description.

2) FASTFIRSTROW – Please read MS SQL online documentation for
description.
191

Genera l SQL

192
3) INDEX – Sometimes MS SQL will not pick the correct Unique Constraint or
primary key. Hinting will force MS SQL to use the specified PK or UC.

4) Don’t use the RECORDS(TableName) on large tables to find the record
count. Use a PROP:SQL with a SELECT Count(1) FROM TableName
(NOLOCK). Since the select statement returns only one value you need to
create a new file in the dictionary with a single field typed as a LONG.

5) For batch processes you may use BEGIN TRAN and COMMIT. Works like a
charm, but monitor the transaction log for sizing (this is not a big issue with
SQL 7).

6) NORESULTCALL – If the stored procedure is not going to return a result set
then use the prefix NORESULTCALL. For example:
MyTable{PROP:SQL} = 'NOTRESULTCALL
SP_UpdateWhatEver (1234)'.

7) CALL – If the stored procedure is going to return a result set via a SELECT
statement then use CALL. Prefix is used. For example:
MyTable{PROP:SQL} = Call('SP_SecuritySelectMembers
(''FL0021002'')').

8) The data returned via a SELECT within the stored procedure needs to match
the structure of MyTable. C5 only supports returning information via a
SELECT. There are two ways to return things from a stored procedure. One
is via an embedded SELECT and the other is RETURN (or similar
command). The MS-SQL driver does not support returning information via
RETURN, only SELECT.

Special Notes on PROP:SQL
The following special notes are excerpted from Rick Hoffman’s paper. Some changes and
additions have been made to the original content.

When issuing a PROP:SQL, issue a BUFFER(TableName, 0) before the PROP:SQL.
This will tell the Cursor Fetch to retrieve one record at a time. Example:

BUFFER(TableName, 0)
TableName{PROP:SQL} = 'SELECT Field1, Field2, FROM TableName'
NEXT(TableName)

You can also issue a BUFFER(TableName, 20) and then push the PROP:SQL twice.
This will tell the Cursor Fetch to retrieve 20 records at a time. Example:

BUFFER(TableName, 20)
TableName{PROP:SQL} = 'SELECT Field1, Field2, FROM TableName'

Convert ing TPS To MS-SQL
TableName{PROP:SQL} = 'SELECT Field1, Field2, FROM TableName'
NEXT(TableName)

Issue a BUFFER(TableName, #) before the PROP:SQL.

When writing PROP:SQL statements its very easy to make syntactical errors. Team
Topspeed recommended creating a debug procedure that’s passed the SQL statement and
displays it in a window. If you use a text field as the displayed field then you can cut and
paste the SQL statement between your application and MS-SQL ISQLW or Query
Analyzer. Example: SQLDebugWindow(TableName{PROP:SQL}).

Changes To The Application

In most cases very little change is required to an application for it to work with MS-SQL.
Despite Topspeed claims that ABC is better than Legacy for SQL apps, I have found that
Legacy offers excellent performance with MS-SQL 7.0. Additionally, due to MS-SQL’s
ability to self-tune, you will find performance will increase with each usage! I actually
converted my app to ABC from Legacy, and have yet to eradicate all the minor bugs. I have
decided to stay with Legacy for now.

As far as third party templates go, I use several third party template sets without issue.
These templates include the following: CPCS Reporting Tools 5.1x (www.cpcs-inc.com),
many templates from Sterling Data (www.sterlingdata.co.uk), some from Boxsoft
Development (www.boxsoft.net), LSPack from Linder Software (www.lindersoft.com),
Princen-IT Sendmail, and several other templates. I also use some custom templates that
some very talented third party developers have written specifically for me, and yes, they all
work fine with MS-SQL! Be sure to read all Clarion docs referring to using MS-SQL
Accelerator and the SQL accelerators in general. Also read any sections on Browses,
Processes, Reports, etc. where SQL is referenced. Although the docs are geared towards
ABC, most information still applies in Legacy as well. You should actually do this before
taking any of the steps described in this document.

Moving on to the app, one thing you will need to do is add a logon procedure at the
beginning of the application. You will need to collect the SQL user id and password as a
minimum. You could hard code this, hiding it from the user. If you decide to do this,
remember to add some sort of message window telling the user to wait while the app
connects to the server, as this could take a short bit of time.

Sample logon source is available in the Clarion docs, or you may create a Wizard app
against any SQL database and the Wizards will automatically create the appropriate source
code . Just cut and paste into your existing app. You may feel free to use the source in my
sample app if you wish. An initial connection to the server is completed when any data file
is opened, so open a file with your initial start. After opening any file, feel free to close it if
you wish, as your connection to the server would remain until your app closes.
193

Genera l SQL

194
As mentioned earlier, MS-SQL 7 tables require an OWNER attribute. This indicates how to
connect to the database where the tables are located. I created GLO:Owner as Global,
CSTRING(255), and use an INI file to save and or retrieve and supply this string at
runtime. I created a Clarion procedure that offers default SQL login definition, and store in
the app’s .ini file (this information could be stored in the registry for security or a TPS file
with encryption if you wish). You must prompt your user to define the default login info
using proper syntax. Refer to the Clarion docs for the Owner string format.

Embed source to retrieve the .ini entry and initialize GLO:Owner with this info in your
main procedure before opening your SQL 7 tables. This way, if the string is empty, you will
get the MS-SQL login. If it is populated correctly, the MS-SQL login will be skipped and
login will occur automatically!

Another thing you will need to do is make sure that on any browse or process you set the
Quick-Scan Records (Buffer Reads) option on. This will result in great performance
increases! Any place you are prompted for an approximate record count, enter a number
much greater than you actually ever expect to see with regards to records retrieved. If you
leave this blank or zero, the process will first attempt to get a record count from the MS-
SQL Server, which usually means a big performance hit!

Changing all browses to fixed thumb appears to enhance performance a bit, but records
displayed in a browse sometimes disappear or appear twice. Your call on this one, as the
book also said to do this. I did, but finally changed back. Also, make sure for any and all
browses you have selected a key for the main file in the file schematic. This also applies to
reports and processes.

If you find in a report or process that fields are coming up blank where you know data
exists, check that all fields have the BIND attribute. This one tripped me up bad a few
times! Be sure to check your embedded source or hand coded procedures if they involve
data access, as these may require modification.

The browse and process templates access data through a Clarion view. This is why any
field needed within a browse or process must have the BIND attribute. The easiest way to
check things after making your changes is to run the app and see how it performs. Don’t
forget to address any auto-increment issues (mentioned above); these may throw you off as
well! Also don’t forget to bind any field used as part of a filter in your procedures.

Third Party Books And Reference For MS-SQL
7.0

• Clarion Magazine (http://www.clarionmag.com/) published by Dave Harms.
Fantastic Clarion resource!

Convert ing TPS To MS-SQL
• SQL Server Magazine (http://www.sqlmag.com/) published by Duke Press.
This too is a great new resource.

• Using Microsoft SQL Server 7.0 by Que (http://www.quecorp.com/) . This
book is very complete.

Summation
These are the main things I had to address with my conversion. I did not have any other
significant issues. I did have a bit of trial and error, and you probably will too! Hopefully
this chapter will help you avoid most of my trial and error process! Remember that I am not
an SQL expert by any means! My methods were the result of reading everything I could
find, asking lots of questions, and the trial and error process. If you are unsure about
anything, post your questions to the newsgroups. Everyone is very helpful, and you will
probably get the answers you need. I will make available for download a sample APP,
DCT, and SQL script, along with a copy of this chapter in RTF format on my web site at:

• http://www.mullusa.com/demo/sqldemo.zip
195

Genera l SQL

196

AVOID MY SQL MISTAKES!

by Mauricio Nicastro

The aim of this chapter is to show all the problems that I had to go through when I began to
work with SQL. I’m hopeful that this could be helpful to those who, like me, are still not
experts at working with this kind of database. Many of the things that I describe here may
seem obvious, but the fact is that after being in a fix over and over you realize that they are
not so obvious. The difficulties I encountered were the following:

Slow browses
All SQL tables must have at least one unique index. Whenever it is possible, I define
autonumber fields that will be part of the principal key. At one time, I had a table with this
field in two different keys: Code and Description.

• KeyCode = Code + AutonumberField

• KeyDesc = Description + AutonumberField

I assured my client that the execution of the program would be faster with SQL! The
browse had two tabs and when I changed from a tab to the other, I had to wait 20 seconds in
197

Genera l SQL

198
order for the browse to show me something. It wasn’t a big table (approx. 20000 records),
and as you can imagine, my client wanted to make a programmer martyr of me; I didn’t
want to be Saint Programmer, not at so young an age!

I revised everything, worked with SQL Query Analyzer, looked for some problematic
embedded code, but I couldn’t find any anomalies. Just by chance, I found a manual in my
bookshelves which contained the solution: all Clarion’s indexes must be defined with the
Case Sensitive field checked. If you don’t do this, the operation is slow because the view
engine will turn all the fields into uppercase while it is collecting the data.

Sending commands to the server
I had a requirement to do some mass updates to the data. The selective replacement of
prices in a products table, for example, can be done in two different ways. One way is to
make a loop using an index that matches, as much as possible, the selective criteria (this is
the usual way when working with TPS tables). The other is to let the SQL server do the
work. For example, in a general price list, I might need to increase by 10% the prices of
those products bought from provider X. Here’s how I would write this code in SQL:

Products{ PROP:SQL } = |
 'update products set price = price * 1.10 ' |
 & 'where ProviderCode = ' & Pro:Code

Now, is that right? It seems so; however, there is a small mistake: If Pro:Code is a
CSTRING field, like any string it must be in single quotes. Thus the query, in this case,
must be:

Products{ PROP:SQL } = |
 'update products set price = price * 1.10 ' |
 & 'where ProviderCode = ' & ''' Pro:Code & '''

Remember that it is necessary to write three single quotes, one to open, the real quote, and
the last to close.

Date Fields
The Clarion dictionary editor is not able to recognize a SQL date-time field. Instead, you
will see a STRING(8) field, followed by a group declared OVER the STRING(8). This
group has TIME and DATE fields. Let’s say you have to order the browse by date with the
use of a locator.

The point here is this: how is this index created? What are the key components? As a way
of trying to figure all this out, I used the trial and error method, and then came to learn that

Avoid My SQL Mistakes!
it is necessary to use the Field_DATE in the index key, because the name of this field will
be used in the ORDER BY statement sent to the database server. Date ordering won’t work
if you use the string or the group field.

Filtered locators
Filtered locators are very useful, because while you are typing the browse is filtering.
Besides, if the “Find Anywhere” field is checked it is possible to find the string the user
types if it matches anywhere in the corresponding table field, not just when the start of the
locator value matches the start of the table field. In my case, I don’t know if it was my
mistake, a Clarion problem or what, but I couldn’t get Find Anywhere working. In my
browse I had to filter a hot field and when I typed in the locator, the same letters appeared
in the field and never worked. I tried with a variable as locator, then with the field, and it
was impossible. As a result, I decided that the engine would do the work for me. I created a
variable where I typed the string I was looking for, and in the accepted embedded point, I
wrote:

IF Loc:Description <> ''
 BRW1::View:Browse{ PROP:SqlFilter } =|
 'Description LIKE ''%' |
 & clip(Loc:Descripcion) & '%'''
ELSE
 BRW1::View:Browse{ PROP:SqlFilter } = ''
END !IF
BRW1.ResetQueue(Reset:Queue)
BRW1.ResetFromFile()

This code works, and very well, but of course only with SQL databases, as these normally
support the LIKE matching function. You can add another variable and make it work as the
“Find Anywhere” check.

Refresh the window
Sometimes you will encounter the typical invoice browse: header and detail. You want to
add a new invoice, so you open the form, accept the entries and when you go back to the
header browse ... the invoice you have just added is not there! You can do this:

BRW1.ResetQueue(Reset:Queue)
BRW1.ResetFromFile()

In this way, you refresh the queue and force the program to retrieve the data from the table.
199

Genera l SQL

200
Process
When you work with SQL you have to tell the engine which fields you need, by listing
those fields in the browse’s Hot Fields tab. With TPS files the entire record is always
available; with SQL only those fields the browse/procedure/report knows about, because
they’re listed in the file schematic or in the hot fields, will be used in the corresponding
SQL statement.

Parent-child relationships
Parent-child relationships can also be a problem. Take the invoice case as an example once
more. Sometimes you use an autonumber field that is in charge of maintaining this
relationship. In this case the question is: which program will autonumber this field? Your
Clarion application, or the database server? I have read that I should leave this work to the
engine. The problem is that the engine does this job in the same moment it is adding the
record; consequently, all the children do not have a number which enables them to keep the
relationship. If you want this working properly, you may add some code to retrieve the
number of the field, then put this value to each child record and, finally, save everything.
But if you have read Stephen Mull’s “Converting TPS To MS-SQL,” p. 183, you may note
that it is better to use a CSTRING(18) field to keep this relationship. In the Field Priming
on inset button, you can do the following:

RecordID = today() & clock()

That does work, though many of you might argue that there is a risk of getting duplicate
keys when working with a large number of clients simultaneously. My counter-argument to
this point is that I have worked with more than 150 terminals at the same time and that has
never happened. I cannot say that it is not possible, however, it is not likely to happen.

These are all the interesting setbacks I had to sort out so far. If you’re just getting started
with SQL, I hope you find this discussion useful.

SQL DATA TYPES COMPARISON

by David Harms

The following table summarizes data type differences between three popular open source
databases – Firebird (http://firebird.sourceforge.net/), MySQL (http://www.mysql.com),
and PostgreSQL (http://www.postgresql.org) – and Microsoft’s SQL Server
(http://www.microsoft.com/sql/default.asp). Please note that is a guideline rather than a
definitive reference – I don’t have personal experience with all of these databases.

As you can see from the table, there is really very little standardization on either type
names or specifications. In fact, there is only one data type you can use identically across
all four servers, and that is the BIGINT type. INT or INTEGER types come a close
second, but MySQL allows you to use an unsigned form which changes the range of
values.

In many cases similar data types are available, but have different names. If you’re storing a
BLOB, depending on the size of the BLOB and the server, you might call that data type
BLOB, BYTEA, BINARY, TINYBLOB, MEDIUMBLOB, LONGBLOB, or IMAGE. String data
doesn’t fare that much better. Although all four servers have a CHAR data type, each has a
different size limit. In MySQL, it’s 255 characters; MS SQL, 8000 characters; Firebird,
32767 characters; PostgreSQL, approximately 1 gigabyte. Variable length strings
(VARCHARs) have the same limits in each database as CHAR.
201

Genera l SQL

202
Each server also has its own implementation for autoincrementing unique values; for
instance, MySQL’s AUTO_INCREMENT attribute on keys won’t do you any good in
PostgreSQL, where you need to make use of a Generator object.

Things get really hairy when you start dealing with fields that are a combination of a date
and a time. You’ll want either a DATETIME field or a TIMESTAMP field. But be careful!
MySQL and SQL Server have DATETIME types which fit this description. In Firebird and
PostgreSQL you have to use a TIMESTAMP. PostgreSQL’s TIMESTAMP, however, can
include a GMT offset, something not available in any of the other TIMESTAMP or
DATETIME types. And don’t think you can use the TIMESTAMP field in MySQL or SQL
Server the same way as in Firebird or PostgreSQL. A MySQL TIMESTAMP field is set to
the current date/time whenever you update the record, so you can’t use it to store an
arbitrary value; SQL Server is similar, although its value is also guaranteed to be unique
across the entire database. And if you’re converting between databases, keep in mind that
there may be incompatibilities between the default date/time formatting.

Even simple DATE or TIME fields can present problems. Again, PostgreSQL TIME fields
can store time zone offsets from GMT, which no other TIME type listed here supports. And
SQL Server doesn’t have DATE or TIME types, just DATETIME.

The moral of the story? As Mike Gorman has said, there really is no such thing as an SQL
standard. Unless you know you’ll never have to support more than one SQL server, try to
stick with the more commonly supported data types. Be wary of arrays, boolean and bit
fields, MySQL’s ENUMs, and Postgress’s specialized and user-defined data types.

Type Firebird MySQL PostgreSQL MS SQL
Server

BIGINT -
922337203685
4775808 to
922337203685
4775807

-
922337203685
4775808 to
922337203685
4775807

-
922337203685
4775808 to
922337203685
4775807

-
922337203685
4775808 to
922337203685
4775807

BIGSERIAL use a
GENERATOR
object

use
AUTO_INCRE
MENT on
primary key

auto-
incrementing
integer, 1 to
922337203685
4775807

use
IDENTITY

BINARY see BLOB see BLOB,
TINYBLOB,
MEDIUMBLOB,
LONGBLOB

see BYTEA Binary data,
max 8000
bytes,

SQL Data Types Compar ison
BIT n/a see TINYINT Bit masks 0 or 1

BIT
VARYING

n/a n/a Variable length
bit masks

n/a

BLOB Segment size
limited to 64K,
no limit on
BLOB size

BLOB or Text
up to 65535
bytes

see BYTEA see IMAGE,
TEXT, NTEXT

BOOLEAN n/a (BOOL) see
TINYINT

True values
include:
TRUE, ‘t’,
‘true’, ‘y’,
‘yes’, ‘1’ -
false values
include
FALSE, ‘f’,
‘false’, ‘n’,
‘no’, ‘0’

see BIT

BYTEA see BLOB see BLOB Binary string,
no specific
limit on size

see BLOB

CHAR(n) 1 to 32767
characters

0to 255
characters

approx 1 GB
limit

1 to 8000
characters

DATE 8 bytes, 1 Jan
100 to 29 Feb
32768

1000-01-01 to
9999-12-31

4713 BC to AD
1465001

see
DATETIME

DATETIME see
TIMESTAMP

1000-01-01
00:00:00 to
9999-12-31
23:59:59

see
TIMESTAMP

January 1,
1753, to
December 31,
9999, accuracy
3.33
milliseconds
203

Genera l SQL

204
DECIMAL
(precision,scale
)

2, 4 or 8 bytes,
precision=1-
18, scale-0-18.
Scale is the
decimal places,
must be <=
precision.

-
1.79769313486
23157E+308 to
-
2.22507385850
72014E-308, 0,
and
2.22507385850
72014E-308 to
1.79769313486
23157E+30

user-specified
precision,
exact, no limit

-10^38 +1 to
10^38 -1

DOUBLE
PRECISION

8 bytes, range
2.225 x 10-308
to 1.797 x
10308

-
1.79769313486
23157E+308 to
-
2.22507385850
72014E-308, 0,
and
2.22507385850
72014E-308 to
1.79769313486
23157E+30

8 bytes, up to
15 decimal
places
precision

see MONEY

ENUM n/a An
enumeration of
allowed values
(similar to a
CHECK
constraint)

n/a n/a

FLOAT 4 bytes, range
1.175 x 10-38
to 3.402 x 1038

-
3.402823466E
+38 to -
1.175494351E-
38, 0, and
1.175494351E-
38 to
3.402823466E
+38

see DOUBLE
PRECISION

-1.79E + 308 to
-2.23E to 308,
0 and 2.23E +
308 to 1.79E +
308

IMAGE see BLOB see BLOB see BLOB Variable length
binary data,
max 2GB

SQL Data Types Compar ison
INT

INTEGER

4 bytes, range -
2,147,483,648
to
2,147,483,647

-2147483648
to 2147483647
or 0 to
4294967295

-2147483648
to
+2147483647

-2,147,483,648
to
2,147,483,647

INTERVAL
(between two
TIME or
TIMESTAMP
values)

n/a n/a 12 bytes,
resolution one
microsecond, -
178000000 to
178000000
years

n/a

LONGBLOB
LONGTEXT

see BLOB BLOB or Text
up to 4 GB

see BLOB see BLOB

MEDIUMBLOB
MEDIUMTEXT

see BLOB BLOB or Text
up to 16777215
bytes

see BLOB see BLOB

MONEY see DECIMAL see DECIMAL Fixed precision
(two decimal
places), range -
21474836.48 to
+21474836.47

-
922,337,203,68
5,477.5808) to
+922,337,203,
685,477.5807

NCHAR see CHAR see CHAR see CHAR Unicode string,
max 4000
characters

NTEXT see BLOB see BLOB see TEXT Unicode text,
max 1 GB

NVARCHAR see VARCHAR see VARCHAR see VARCHAR Unicode string,
max 4000
characters
205

Genera l SQL

206
NUMERIC
(precision,scale
) (usually
eqiuivalent to
decimal type)

2, 4 or 8 bytes,
precision=1-
18, scale-0-18.
Scale is the
decimal places,
must be <=
precision.

-
1.79769313486
23157E+308 to
-
2.22507385850
72014E-308, 0,
and
2.22507385850
72014E-308 to
1.79769313486
23157E+30

user-specified
precision,
exact, no limit

-10^38 +1 to
10^38 -1

REAL see FLOAT -
1.79769313486
23157E+308 to
-
2.22507385850
72014E-308, 0,
and
2.22507385850
72014E-308 to
1.79769313486
23157E+30

4 bytes, up to 6
decimal places
precision,
floating point

-3.40E+38 to -
1.18E-38, 0
and 1.18E-38
to 3.40E + 38

SERIAL use a
GENERATOR
object

use
AUTOINCREM
ENT primary
key

Auto-
incrementing
integer, 1 to
2147483647

use
IDENTITY

SET n/a A string that
can have zero
or more values
from the
allowed list.

n/a n/a

SMALLDATET
IME

see
TIMESTAMP

see
DATETIME

see
TIMESTAMP

January 1,
1900, to June 6,
2079, accuracy
1 minute

SMALLINT -32,768 to
32,767

-32768 to
32767 or 0 to
65535

-32768 to
+32767

-32,768 to
32,767

SQL Data Types Compar ison
SMALLMONEY n/a n/a n/a -214,748.3648
to
+214,748.3647

TEXT n/a n/a Approx 1 GB
limit

2 GB limit

TIME 8 bytes, 0:00
AM-
23:59.9999 PM

-838:59:59 to
838:59:59

range
00:00:00.00+1
2 to
23:59:59.99-12
(shown with
optional
timezone
notation)

see
DATETIME

TIMESTAMP Combination of
date and time

1970-01-01
00:00:00 to
sometime in
the year 2037,
automatically
set to the
date/time of the
most recent
update of the
row

8 bytes, can
include time
zone, range
4713 BC to AD
1465001

A database-
wide unique
number that
gets updated
every time a
row gets
updated

TINYBLOB
TINYTEXT

see BLOB Text or BLOB
up to 255 bytes

see BLOB see BLOB

TINYINT see
SMALLINT

-128-127, or 0-
255

see
SMALLINT

0-255

UNIQUEIDEN
TIFIER

n/a n/a n/a Globally
unique
identifier
(GUID)

VARBINARY see
MEDIUMBLOB

see BLOB see BLOB Max 8000
bytes

VARCHAR(n) 1 to 32,765
bytes

0 to 255 bytes Approx 1 GB
limit

1 to 8000
characters

YEAR n/a A year in 2- or
4-digit format

n/a n/a
207

Genera l SQL

208
Arrays All datatypes
except BLOBs

n/a All built-in or
user-defined
data types

n/a

Geometric
types

n/a n/a PostgreSQL
includes a
number of
geometric data
types such as
line, point,
lseg, box, path,
polygon, and
circle.

n/a

Network
address types

n/a n/a PostgreSQL
includes the
following
network
address data
types: cidr,
inet, and
macaddr

n/a

User defined
types

n/a n/a You can create
additional
types with the
CREATE
TYPE
command

n/a

THE SQL ANSWER COWBOY

by Andy Stapleton

Question: AS-400
Can AS-400 files be accessed from a Clarion 5 Professional application, with the only
addition being the AS-400 drivers?

Ken Castleberry

Answer
From everything I gather this is true, as long as you have the interface from the PC to
AS400. This used to be PC-Talk and was quite slow. Now a more native form of
communication is available and speed has increased dramatically.

Before jumping into any client/Server arena check the communication layer associated
with the systems. This includes any non-NT to NT/Windows platform. Some will perform
quite well (usually those on TCPIP), others will run badly.
209

Genera l SQL

210
Question: Capitalization
How do I force a field in the table to uppercase or capitalize a word? Declaring an attribute
in the data dictionary does not seem to have any effect. I am using MS SQL 7

Scott Jordan

Answer
After searching everywhere, I finally asked a good friend Ben Williams, since he has been
saddled with MS SQL for quite a while. He confirmed my suspicions. In MS SQL 6.5 or
7.0 field attributes are unavailable, and the only method to force upper case or
capitalization is via a trigger or your program. This is a major shortcoming in MS SQL in
my opinion.

Here is a trigger that will force uppercase on a
Name/Address/City/State:

CREATE TRIGGER UppercaseAddress
ON Names
FOR INSERT, UPDATE
AS
If Update(Fname) or Update(Lname) or update(Address)
 or Update(State) or Update(City)
 update Names
 set LName = UPPER(Lname),
 Fname = UPPER(Fname),
 Address = Upper(Address),
 City = Upper(City),
 State = Upper(State)
Where Namsysid = any(select Namesysid from Inserted)
GO

Now you should also use UPPER on all your Clarion screens...

Question: Sybase, MS SQL, Oracle & Informix
I was interested to read your comparison of Sybase and MS SQL, especially as I believe that
the latter is derived from Version 3 of the former. My question follows on from this. In your
informed view, how do Oracle and Informix fit into the picture? How would you rank these
in terms of effectiveness? Especially in terms of ease of use with Clarion? I’m assuming that
the back end platform is NT. But what about scalability? Is it still true that MS SQL will only
work on NT whereas Oracle will work on anything including Linux? What about the others?

James Fortune

The SQL Answer Cowboy
Answer
Yes, MS SQL does require NT. Another reason to prefer Sybase over each of these is that
Sybase is scalable and also has versions for Unix and Linux. I can speak more on Oracle
rather than Informix so here is my best answer.

Oracle and Informix are more of a mainframe type technology. Both are platform
independent and expensive in cost and maintenance. Oracle can be difficult to say the least;
a lot of the convenience we enjoy is lost in Oracle. At the moment the reference manuals
that I have had to purchase to know the changes for Oracle 8.0 are somewhere around 30lbs
in four books.

One of the pros of Oracle is it’s quite scalable. You can continue with Oracle throughout
terabytes of data with quite excellent performance. If you are going into an Oracle shop and
working with Oracle, here is a list of books that I find essential:

• Oracle 8 Tuning ISBN:1-57610-217-3

• Oracle8 The Complete Reference (Oracle Press) ISBN: 0-07-8822406-0

• Oracle8 DBA handbook ISBN: 0-07-882396-x

Question: Browse Speed
We use your templates for some of our browses but in other places it just isn’t practical
(switching DCT properties from TPS to SQL, etc. where your browses wouldn’t work with
TPS). Lately we tried having Clarion generate a browse pointing at an SQL file and it
worked fine, except the browse takes forever to switch between tabs (primary key is a
single long and unique (takes 30 seconds), where others can take up to 160 seconds). Is
there some simple PROP or switch we could use to speed these browses up even just a
little? Your template browses, when browsing the same file, take less than a second
switching from any sort order we have tried!

Ivan Faulkner

Answer:
Using PROP:SQLFILTER or PROP:ORDER you can reset the ORDER BY. Here is some
testing you can do: Turn on the driver trace program (drvtrace.exe) so you can monitor the
SQL statements that Clarion is generating during the execution of the program. You will
more than likely find that several fields are in the ORDER BY that you don’t wish to have.
211

Genera l SQL

212
Using the PROP:ORDER or the PROP:SQLFilter to modify the statement that is
generated will alleviate some of your problems. Under certain circumstances, Clarion will
generate an ORDER BY clause that has every field in the primary key, and also every field
in the browse. Hence your delay.

Question
Can a Clarion application using Microsoft Data Engine (MSDE) be run successfully on a
Macintosh network using SoftWindows 95? There won’t be more than two or three
concurrent users. (You didn’t say they had to be easy questions, did you?)

Patrick O’Brien

Answer
The questions you have to answer first are:

1) Does any Clarion program run on SoftWindows 95?

2) Can I load and operate MSDE on the same platform?

What I would do is use a standalone Clarion program and try to run it under SoftWindows.
If that runs then you have answered the first question.

Now run MSDE on the Mac and see if you can access the data in Northwind or Public. The
last thing on your To Do list is to run a small standalone Clarion program that accesses one
of the databases.

Question: MS SQL on Windows 95
Contrary to your [recent] column, MS SQL 7.0 does run on Windows 95. I have it installed
on my notebook. I can connect other Windows 95 or NT clients to my notebook and
frequently do for load testing.

Jim Kane

The SQL Answer Cowboy
Answer
I appreciate your feedback, and you are correct, at least under these conditions: MS-SQL
7.0 will run on Windows 95 if DCOM is loaded or you have the patch that upgrades the
Internet Explorer to 4.01. Without those, MS-SQL will not run on Windows 95. In effect
you are upgrading to Windows 98 components. I have also loaded MS-SQL 7.0 to my 95
machine by doing the same thing.

Question: PROP:SQL
I understand that TS no longer recommends the use of {PROP:SQL}. What is the
replacement and can you explain the rationale?

Answer
To my knowledge {PROP:SQL} is not going away but you have to be careful using it,
which is why they don’t recommend it. If you use {PROP:SQL} and NEXT() with a
PUT() you must insure that you have the primary key fields in the SELECT statement.

The reason is that PUT and NEXT use the primary fields to insure the update of the record is
accurate. If you don’t provide this in the SELECT Statement both the PUT and NEXT will
not be aware of the record position and subsequently give errant results or none at all. You
can get around not using the primary in the SELECT, but you will have to create your own
Update Statements.

TS is redeveloping the file drivers for additional functionality, but I cannot discuss this yet.

Question: Devcon 98 Examples
I have read your seminar materials for Devcon 98 where a sample file was downloadable.
In that particular file called ‘Devcon.doc’, all the examples of stored procedures and
triggers are shown using SQL Anywhere. Do you have an equivalent in MS-SQL?

Yeoh Eng Loke
213

Genera l SQL

214
Answer
The syntax of MS-SQL is different from the syntax of Sybase, but there are similarities.
Here is an example of MS-SQL trigger:

[Trigger Definition]
Trigger checks the format type in the setup table to see
if the user wants First then Last or Last then First,
Updates the FULLNAME field to match.

CREATE TRIGGER Names_FullName ON Names
FOR INSERT, UPDATE
AS
DECLARE @NameFormat varchar(10);
SELECT @NameFormat = NameFormat
 FROM SETUP WHERE setupsysid = 1;
IF UPDATE(Fname) OR UPDATE(Lname)
 IF @NameFormat = 'FirstLast'
 UPDATE NAMES SET FullName = Fname + ' ' + Lname
 WHERE Names.NameSysID =
 ANY(SELECT NameSysID FROM INSERTED)
 AND Fname IS NOT NULL AND Lname IS NOT NULL
 AND Fname <> ' ' AND Lname <> ' '
 ELSE
 UPDATE Names SET FullName = Lname + ', ' + Fname
 WHERE Names.NameSysID =
 ANY(SELECT NameSysID FROM INSERTED)
 AND Fname IS NOT NULL AND Lname IS NOT NULL
 AND Fname <> ' ' AND Lname <> ' '

The same trigger in Sybase is:

CREATE TRIGGER Names_FullName BEFORE INSERT UPDATE
 Order 1 ON Names
 REFERENCING OLD AS OLDSTUFF
 NEW AS NEWSTUFF;
BEGIN
DECLARE pNameFormat VARCHAR(10);
SELECT NameFormat INTO pNameFormat FROM SETUP WHERE SetupSysID = 1;
IF OldStuff.Fname <> NewStuff.Fname OR OldStuff.Lname <>
NewStuff.Lname
 IF pNameFormat = 'FirstLast' THEN
 SET NewStuff.FullName = NewStuff.Fname||' '||NewStuff.Lname;
 ELSE
 SET NewStuff.FullName = NewStuff.Lname||' '||NewStuff.Fname;
 END IF;
 END IF;
END

Personally I think the Sybase code is cleaner and more readable than the MS-SQL version.
Also with Sybase you have the option in the trigger to allow a WHEN condition which will
eliminate two lines of code within the trigger and will also stop the execution if the WHEN
condition is not met.

The SQL Answer Cowboy
CREATE TRIGGER Names_FullName BEFORE INSERT, UPDATE
 ORDER 1 ON NAMES
 REFERENCING OLD AS oldStuff NEW AS newStuff
 FOR EACH ROW
 WHEN(OldStuff.Fname <> NewStuff.Fname
 OR OldStuff.Lname <> NewStuff.Lname)
 BEGIN
 DECLARE pNameFormat VARCHAR(10);
 SELECT NameFormat INTO pNameFormat
 FROM SETUP WHERE setupsysid = 1;
 IF pNameFormat = 'FirstLast' THEN
 SET NewStuff.FullName = NewStuff.Fname||' '||NewStuff.Lname;
 ELSE
 SET NewStuff.FullName = NewStuff.Lname||' '||NewStuff.Fname;
 END IF;
 END

All I did was move one line of code from the IF clause to the WHEN condition of the
trigger.

All I can promise you at this time is the more I work with MS-SQL 7.0 the better it feels
even with the changes, so there will be more to come...

Question: SQL Anywhere vs. MS SQL
I have been using SQL Anywhere 5.5. I now see that version 6 has been released. Also, I
hear a lot of talk about MS SQL. What are your thoughts and experiences and would you
recommend one above the other?

Austin Drum

Answer
The newer versions of Sybase (6.0 and better) use symmetrical multiprocessing now. This
means that each query or stored procedure will use all of the processors in your server. For
the most part the individual would not necessarily know the difference, but in a larger
environment you can see a significant increase in speed.

MS-SQL has definitely came a long way since 6.5, but I still think the language needs to
mature a bit more. The documentation of methods and examples is not very instructive. I
recommend you read The SQL Server 7 Developers Guide (ISBN 0-07-882548-2).

Both databases are quite capable of doing an excellent job, both for the Enterprise and
personal user. MS-SQL is more expensive per seat and from a Clarion standpoint it’s a bit
215

Genera l SQL

216
harder to grasp the nuances. On the other hand the Sybase language is more like Clarion
and easier to understand.

Question: PROP:SQL on Reports and Lookups
How do you get PROP:SQL to work on a lookup and report? I want to do a lookup from a
SQL database so that only a subset of records is returned. I understand it will dramatically
reduce network traffic.

Yeoh Eng Loke

Answer
If you are using the standard templates, the best method is using the PROP:SQLFILTER
on the Lookup form. You can change the PROP:SQLFilter at a whim by using the
browse with a passed parameter. To do this open your browse and insert (STRING) into the
Prototype field, and (pfilter) in the Parameters field. Now when calling the lookup
you do it like this:

MyLookup('FieldA like <39>TEXAS%<39>')

In the Lookup procedure you will in an appropriate embed point have the following code.

MyView{PROP:sqlFilter}=pfilter

Remember that MyView is the Clarion-created view in the lookup and pfilter is the
passed filter you sent. This will add your filter onto the Clarion-generated SQL statement
and reduce your record set as desired.

Also be sure to upgrade to C5 if you haven’t already. C4A and C4B both return the entire
record on a file select, and while this may not be an entirely bad thing it does cause
unnecessary traffic.

Question: Views
Is a VIEW structure generally an efficient approach for accessing a SQL back end? I have
manually coded a view, including ORDER and FILTER options, and I am simply going
through the view, forwards, only once, reading the values and using them. The records
themselves are not displayed, and the user cannot scroll backwards through the list or
anything like that. (This isn’t a browse - more something like a report). Sort of like a SQL

The SQL Answer Cowboy
SELECT - I want to get a reasonably generic method (which a view is) but which is also
reasonably efficient.

Bruce Johnson

Answer
The view structure is for more complicated items the best method to use, as it allows you to
skip fields in the dictionary structure and also join additional tables together.

For example, think of Names and Address tables. The address table is a child table to
names, and what you want to do is get the billing address on screen.

 Create view NameAddr view(NAMES)
 Project(NAM:Namesysid)
 Project(NAM:Fname)
 Project(NAM:Lname)
 Join(Addr:NameKey,NAM:Namesysid)
 Project(Addr:Address1)
 Project(Addr:Address2)
 Project(Addr:CITY)
 Project(Addr:STATE)
 Project(Addr:Zip)
 END

 open(NameAddr)
 IF Errorcode();Stop(Error()).

 NAMEADDR{PROP:SQL}=|
 'Select NAM.Namesysid,NAM.Fname,NAM.Lname,'&|
 'Addr.Address1,Addr.Address2,Addr,CITY,Addr,'&|
 'STATE,Addr:Zip'&|
 ' from '&NAME(NAMES)&' nam,'&NAME(ADDRESS)&'addr '&
 ' where Addr.Namesysid = NAm.Namesysid'
 If Errorcode();Stop(FileError()).
 Next(NameAddr)

Now you can be flexible; the only item you have to remember is the fields still have to be in
file/field order for the Clarion record buffer to be accurate.

Question: SELECT
Andy, how do I count the number of records returned by a SELECT statement?

Perplexed in Peoria
217

Genera l SQL

218
Answer
You can return the number of records easily by using a dummy file. Create a dummy file in
your database:

Create table dummy (
 dummycounter integer
);

Create the same in your dictionary. Now when you wish the correct number of records you
return it into the dummy file. For example, I might want to return the number of addresses
in Texas for Zipcode 78833.

 Dummy{PROP:Sql}='Select Count(*) '&|
 'from '&NAME(AddressTable) &|
 ' where State = <39>TX<39>' &|
 ' and zipcode = '&78833
 If Errorcode();Stop(FileError()).
 Next(dummy)
 ScreenCounter = Dum:DummyCounter
 Display

The NAME(ADDRESSTABLE) is a Clarion function that returns the external name of the
dictionary; this is needed if you use multiple accounts on the database for login. The <39>
is the ASCII equivalent to a single quote. You can use the dummy table for more than one
thing; it can also return any other integer you need back to the Clarion program.

Open Source SQL

USING CLARION WITH MYSQL

by David Harms

There’s a lot of interest in Linux these days among Clarion programmers. Some are even
asking for a Linux version of Clarion, and while that’s not likely to happen any time soon,
there may still be a place for Linux in your Clarion toolset as a database or file server.

In this chapter I’ll look at the popular MySQL (http://www.mysql.com/) database and how
you can use MySQL on Linux from your Clarion application. Although MySQL is
available for Windows, I’ll only look at the Linux version. There is a license fee for the
Windows version, but not for commercial use of the Linux version unless, and I’m
paraphrasing here, you make money from the sale or service of the MySQL server.

My exposure to MySQL on Linux came about because of Clarion Magazine, which has
always been served by a Linux box. For the first couple of years I used the Apache web
server, and I relied on Apache’s directory-based authentication to handle subscriber-only
access. In this scheme, each directory is assigned an authentication group, and users
(subscribers) are added to one or more groups. It’s possible to use text files for the
authorization lists, but once you get over a certain size of list these become quite slow as
they aren’t indexed. At first I used a flat file (DBM) database, but there were some
problems with DBM files on RedHat Linux, and I wasn’t happy with the results. It all came
to a head when the user file reached 64k and the authorization database maintenance
221

Open Source SQL

222
program (a Perl script) refused to add further records! I had one very intense afternoon
installing MySQL and rebuilding Apache to use the MySQL database for authentication.

Moving to MySQL solved the database reliability problems, but the Perl script was still
quite slow - it could take 20 seconds to update a single user’s access. Since the rest of the
magazine subscriber administration is handled by a Clarion application, it made sense to
update the MySQL database the same way. All of the authentication database updating is
now handled by a Clarion application, and I’ve been very happy with the results.

Clarion applications talk to MySQL databases on Linux using the MyODBC
(http://www.mysql.com/products/connector/odbc/) driver. The basic steps to getting this
working are: install Linux; install MySQL on the Linux box; set up the MyODBC driver on
your Windows machine; configure a data source, and then specify that data source in your
dictionary; and configure MySQL on the Linux box to allow your Windows computer to
connect. Provided you have a LAN/WAN or even an Internet connection to the Linux box,
you’re ready to use MyODBC tables in your application!

First I’ll cover the Linux installation and setup, and MySQL installation, and then I’ll look
at using MySQL with Clarion.

Installing Linux
When I first set up a Linux box in late 1998 I didn’t find it a particularly straightforward
process. I muddled through the install without major problems, but in the finest *nix
tradition, I had to recompile the kernel to add support for some of the features I needed.

Happily, Linux installations have come a long way since then. I recently set up a machine
using RedHat Linux 6.1, and it was pretty easy. There are, however, a few concepts you
should know.

Partitions, Directories And Mount Points
Linux file systems are set up a bit differently from Windows file systems. In Windows, you
have a drive letter for each partition. In Linux you have directories instead of drive letters.
But it’s not quite that simple.

In the simplest Linux configuration you will need to create two partitions on your hard
disk, typically during the installation process. One is a swap partition, which doesn’t have a
directory associated with it, and the other is the root partition, which is the top level
directory. When creating this partition in the installation process you label it with a / (notice
the forward slash rather than the Windows style backslash).

Using Clar ion Wi th MySQL
In most cases, however, you’ll want at least one more partition, of no more than 16 MB,
which will contain the operating system kernel and other boot files. This partition has the
mount point /boot.

If you have a 500 MB drive, and a 100 MB swap partition, and a 16 MB /boot partition,
that leaves 384 MB for the / or root partition. Both /boot and / are mount points, meaning
when you switch to either of those directories (using cd / or cd /boot) you’re switching to
the corresponding partition.

But isn’t /boot under the root directory? Logically, yes. But as soon as you drill down to
/boot you’re on a different partition because of the mount point. Any other directories
under / which don’t have a mount point specified will be on the root partition. Many Linux
systems will have other partitions such as /usr, /usr/src, /tmp, /var, and so on. I use the
following partitions on a 10 gig drive on the Clarion Magazine backup server:

By using partitions and mount points you can restrict the amount of disk space available to
any part of the directory tree. On a single user system that usually isn’t a huge issue,
however, so Linux installations for the desktop seem to be trending toward the single root
partition (plus swap partition). Having a /boot partition is still a good idea when dealing
with a very large root partition in the event that the BIOS is unable to handle the large
partition size directly.

Window Managers
Another big difference between Windows and Linux is in the implementation of the GUI.
In Windows the GUI is part of the OS; in Linux, and other *nix systems, the GUI is a
separate system. The Linux GUI is itself layered. First there is the X Window windowing
system, currently in version 11, which handles GUI basics. Then you have a window
manager, and over that a desktop environment. There are a number of window managers

Mount point Size

/ 1 Gig

/boot 16 Meg

/home 2 Gig

/tmp 1 Gig

/usr 3 Gig

/usr/src 1.2 Gig

/var 500 Meg
223

Open Source SQL

224
available, such as FVWM, AfterStep, and Enlightenment, and the two most popular
desktop environments for RedHat Linux are Gnome and KDE. See
http://www.plig.org/xwinman for more information on window managers and desktops.

RedHat 6.1 gives you the option of installing a Gnome Workstation, KDE Workstation,
Server, or Custom configuration. I went through the process a few times, just for kicks, and
in the end I settled on the Gnome Workstation install. You might think the Server install
would be the logical choice, but that’s intended more for a machine that’s to be a
mail/web/news server. If you want all those things, go ahead and use the Server
configuration. Just remember that the more services you have running, the more potential
security holes you have to deal with.

By installing the Gnome Workstation I avoided installing a lot of unneeded services, and I
also got a GUI. That was a help as I needed to download the MySQL software, and while I
could have used the text-mode Lynx browser, I find Netscape just a bit more user-friendly.

Security Issues
Now that I’ve admitted to hooking my Linux box up to the Internet, I suppose a few words
about security are in order.

It’s very easy to use a MySQL database across the Internet. By default, the MySQL server
listens for connections on port 3306, and if you have MyODBC installed on your Windows
machine and you know the name or IP address of the MySQL server, you can in theory
access your data from anywhere. And because of this MySQL has a fairly robust
access/privilege system to control who gets in.

If you are going to expose your MySQL connection to the world, however, you need to
think about more than just MySQL’s own security system. You really need to install, or get
behind, a firewall.

Even though the MySQL server has an access control system, you may want to limit
attempts to connect to that port to only certain trusted machines. As well, almost any Linux
box will, by default, have other services which are listening on other ports. These can
include telnet, ftp, http, news, mail, finger, name services, and more. You can strip out all
the services which you don’t want, but often a firewall is a better and simpler option.

The traditional way to create a firewall on Linux is with ipchains (or ipfwadm, in earlier
versions). ipchains is a packet filter, which means it can inspect all packets which travel
through any of your network adapters. You don’t necessarily have to have a separate
machine; you can run ipchains directly on the machine you’re protecting.

Using Clar ion Wi th MySQL
Packet filters aren’t the be all and end all of firewalling. All they do is inspect each ethernet
packet and accept or reject it based on the rules you set up. These rules don’t apply to the
data in the packet, just to the packet header, in particular the packet type, the source, and
the destination. You can use packet filters to allow/disallow packets from certain sources,
or which are destined for particular ports.

The two common strategies are to allow all packets by default, and block packets on
problem ports, or to deny all packets by default, and allow only the packets you know you
want in. I recommend the latter approach. For more information on Linux firewalling see
http://linux-firewall-tools.com.

Getting To Know The Penguin
There are a lot of little differences between Windows and Linux that will probably drive
you crazy for a while, if like me you have little if any *nix background. Using forward
slashes instead of backslashes when specifying directories was easy to get used to, but
going back to Windows was maddening. Whose brilliant idea was it to use that pinkie-
wrenching backslash anyway? The ls command, equivalent (loosely) to dir, isn’t all that
descriptive when used without any options. And the text mode vi (or vim) editor is a bit of
a throwback. Get yourself a good Linux book and be prepared for a learning curve.

Installing MySQL
Once Linux is running and you’re moderately comfortable with its use, you’re ready to
install MySQL. The easiest way to do this, assuming you have your Internet connection
established, is to log in as root, run the window manager (startx) and load up NetScape. Go
to www.mysql.com and, to be nice to the MySQL folks, click on the Mirrors link and go to
a mirrored site close to you. (But be warned - not all mirror sites carry all files!)

From the mirrored site go to the Downloads page. You’ll need to follow two links from
here; one for MySQL, and the other for MyODBC. First, look for the Unix Platforms link
225

Open Source SQL

226
and click on the “recommended” release. As of this writing, it’s 3.22.32 (Editor’s note: the
current version is now 4.0.20). A portion of that download page is shown in Figure 1.

Figure 1 shows links to various MySQL RPM install files (RPM stands for RedHat
Package Manager). You’ll need to download “The server for i386 systems (RedHat)” and
“Client programs for i386 systems (RedHat)” (http://dev.mysql.com/downloads/) and then
run

 rpm -i package-name

Install the server first, then the client. If you’ve been successful, you should be able to type

 mysql

at the prompt and see something like Figure 2. Spend a bit of time with the MySQL
documentation before you go any further.

Figure 1: Download options for MySQL on Linux

Figure 2: The MySQL command-line client

Using Clar ion Wi th MySQL
Last Resorts
If you have an older version of RedHat, or a non-RedHat Linux, you can look on the
downloads page for a binary distribution or RPM. If that fails, you’ll need to download the
source code and compile MySQL yourself. It may sound a bit ridiculous to have to compile
Linux programs before you use them, but in fact it’s commonly done. Most Linux
installations include a basic set of compile and make tools, and usually all you do is change
to the directory where you installed the source, and type:

 ./configure
 make
 make install

Always check the README to be sure you’re doing it right, however.

You have Linux and MySQL installed, and that’s half the battle.

Administering MySQL
If you’ve installed MySQL from the binary RPMs, then the MySQL utilities will be on the
path, probably in /usr/bin. These utilities include mysql, which is the Linux MySQL
client, and mysqladmin, which as you might expect is used for a variety of
administrative purposes. These are both text mode applications, and although there are
some graphical MySQL client and utility programs available for Linux (one of the most
popular is MySQL Manager from ems-hitech.com), you should familiarize yourself with
mysql and mysqladmin.

Getting Started
Your first step to Clarion/MySQL success is to make sure the MySQL server is running. At
the command prompt type

ps x | grep mysql

The ps (process status) command tells you what processes are active, and the pipe
character runs the output through grep which only returns the lines containing the
“mysql” string. You should see something like this:

404 ? S 0:00 (safe_mysqld)
439 ? S N 0:05 /usr/local/mysql/

 libexec/mysqld
489 ? S N 0:08 /usr/local/mysql/
227

Open Source SQL

228
 libexec/mysqld

If MySQL isn’t running, type

safe_mysqld &

at the prompt to start the server. (Actually you shouldn’t run this command as root, for
security reasons.)

TIP: If you can’t find a file you’re looking for, try the locate command, as in
locate safe_mysqld. If that doesn’t work, run updatedb and try again.
locate uses a database that typically is updated automatically once per day
(via a cron job), so if you’ve just installed some software and you don’t know
where it went, you may need to run updatedb manually.

To see what databases are currently available, type:

mysqlshow

You should see a listing similar to this one:

+----------------+
| Databases |
+----------------+
| mysql |
+----------------+

The mysql database is the administrative database. This can get a bit confusing, so pay
attention to the case. When I write MySQL I’m referring to the product as a whole. When I
write about the mysql database, I’m referring to one particular database (collection of
tables) which has the special purpose of controlling access to all databases available to
MySQL on that server. Type:

mysqlshow mysql

and you’ll see the tables in the mysql database:

+--------------+
| Tables |
+--------------+
| columns_priv |
| db |
| func |
| host |
| tables_priv |
| user |
+--------------+

As you can guess from the table names, the mysql database contains information on
which users are allowed to access which databases, tables, and columns. All user data will
be contained in other databases which you will need to create. You should not add tables to
the mysql database.

Using Clar ion Wi th MySQL
Controlling Access
The key to using MySQL is understanding its access control system. The three main tables
involved are user, db, and host. All are contained in the mysql database. These tables
represent a hierarchy of access control. In most cases you’ll probably only need to work
with the user and db tables.

Here is the structure of the user table.

Field Name Sample Data Purpose

Host localhost computer the user is
connecting from

User root User ID

Password Password (usually
encrypted)

Select_priv Y Select records

Insert_priv Y Add records

Update_priv Y Update records

Delete_priv Y Delete records

Create_priv Y Create tables and
databases

Drop_priv Y Drop tables and
databases

Reload_priv Y Execute
mysqladmin
reload, refresh,
flush-
privileges,
flush-hosts,
flush-logs,
flush-tables

Shutdown_priv Y Execute
mysqladmin
shutdown

Process_priv Y Execute
mysqladmin,
229

Open Source SQL

230
Any connection to the MySQL server involves at a minimum a host name (the computer
from which you’re connecting) and a user id. If you’re connecting from the Linux box, then
these will default to localhost and whatever user you’re logged in as.

The root User
By default no password is set for the root user, as shown above. This means anyone who
logs in as root on the MySQL machine has complete control over the MySQL database.
Your first step in configuring MySQL permissions should really be to set the root
password. Assuming you’re logged in as root, use the command:

mysqladmin password mynewpassword

This will update the password field in the user table entry for root/localhost. You’d
better write that password down in a safe place, because without it you’ll have to reinstall
the mysql database to get access!

Once you set the root password you’ll need to specify it whenever you connect to MySQL.
You do this with the -p option. For instance, if your password is “mypassword” then you’ll
need to call mysqlshow this way:

mysqlshow -p

and type the password when prompted, or type

mysqlshow -pmypassword

or

mysqlshow -password=mypassword

The last two options will display your password on screen, of course. Perhaps no one is
looking over your physical shoulder. Even so, someone could be looking over your virtual

File_priv Y Read/write files on
the server!

Grant_priv Y Give others same
privileges as self

References_pri
v

Y Not implemented?

Index_priv Y Create/drop indexes

Alter_priv Y Execute
alter_table

Using Clar ion Wi th MySQL
shoulder. The ps command lists any currently executing processes along with their
command line parameters, so in theory someone could telnet in, run ps, and see your
password.

The rest of the columns in the user table control what kind of access this user has to the
database.

The db And hosts Tables
Privileges granted in the user table are effectively super-user privileges and apply to all
databases. That means if you grant Update rights to a user, that user can now update all
tables in all databases, including the mysql database. Such a user is effectively a MySQL
administrator and can change any and all information including root passwords etc. So be
very careful about which user records have database privileges. You wouldn’t normally
have an application logging in as the root user, for instance.

In most cases users other than the root user will have all their privileges at the user level set
to N. When MySQL receives an SQL statement and can’t find a suitable permission at the
user level, it next looks for permission in the db table.

The db table specifies privileges for a specific database. It’s field structure is as follows:

Field Name Sample Data Purpose

Host 192.168.100.1 Computer the user is
connecting from

Db testdb Database

User rocky User

Select_priv Y Select records

Insert_priv Y Add records

Update_priv Y Update records

Delete_priv Y Delete records

Create_priv Y Create tables

Drop_priv Y Drop tables

Grant_priv Y Give others same
privileges as self

References_pri
v

Y Not implemented?
231

Open Source SQL

232
As you can see db is similar to user except that it stores a database name instead of a user
password, and it lacks the administrative privilege fields.

Messing With The Data
As installed, MySQL is accessible from the machine on which it is installed. To access it
from another machine (i.e. one running a Clarion app) you need to set up some
permissions. You can do this with the mysql client.

On the Linux box log in as root and type

mysql

or

mysql -p

if you’ve assigned a root password.

You’ll want to create a database:

create database testdb;

You’ll get a response something like:

Query OK, 1 row affected (0.01 sec)

When you start the MySQL client no database is selected. At the mysql> prompt type:

use mysql;

Actually the ; isn’t necessary for this command but as you’ll generally need the trailing ;
for SQL statements it’s a good habit to get into. MySQL will tell you the database has
changed. You can now update mysql and create the necessary records for your Windows
machine to connect to the database you just created.

Let’s say your Linux box and your Windows box are both on a local network, and the
Windows box’s IP address is 192.168.100.9. First, create a user record:

insert into user (host,user,password)
 values('192.168.100.9','rocky',
 password('squirrel'));

Index_priv Y Create/drop indexes

Alter_priv Y Execute
alter_table

Using Clar ion Wi th MySQL
This insert statement specifies only three fields in the user file. All the remaining fields
default to N, which again is a good idea unless you want to give this user administrative
privileges. Note the use of the password function to do the encryption.

To add a db record:

insert into db (host,db,user,Select_priv,Insert_priv,
 Update_priv,Delete_priv, Create_priv,Drop_priv)
 values ('192.168.100.9,'testdb','rocky',
 'Y','Y','Y','Y','Y','Y');

This record will allow the user rocky access to testdb when connecting from the specified
host IP address (you can also use a host name). MySQL keeps the privilege settings in
memory, so you have to tell it to reload this information from the database. In later releases
you can use the FLUSH PRIVILEGES command, or you can use the quit command to
exit mysql, then run:

mysqladmin reload

The following tables show the mysqladmin syntax:

Option Description

-#, --debug=... Output debug log. Often this is
‘d:t:o,filename’

-f, --force Don’t ask for confirmation on
drop database; with multiple
commands, continue even if an
error occurs

-?, --help Display this help and exit

-C, --compress Use compression in server/client
protocol

-h, --host=# Connect to host

-p, --password[=...] Password to use when connecting
to server If password is not given
it’s asked from the tty

-P --port=... Port number to use for connection

-i, --sleep=sec Execute commands again and
again with a sleep between
233

Open Source SQL

234
-r, --relative Show difference between current
and previous values when used
with -i. Currently works only with
extended-status

-s, --silent Silently exit if one can’t connect
to server

-S, --socket=... Socket file to use for connection

-t, --timeout=... Timeout for connection to the
mysqld server

-u, --user=# User for login if not current user

-V, --version Output version information and
exit

-w, --wait[=retries] Wait and retry if connection is
down

Command Description

create databasename Create a new database

drop databasename Delete a database and all its tables

extended-status Gives an extended status message
from the server

flush-hosts Flush all cached hosts

flush-logs Flush all logs

flush-status Clear status variables

flush-tables Flush all tables

flush-privileges Reload grant tables (same as
reload)

kill id,id,... Kill mysql threads

password new-password Change old password to new-
password

ping Check if mysqld is alive

processlist Show list of active threads in
server

Using Clar ion Wi th MySQL
MySQL should now be fully operational and ready to accept a connection from your
Clarion app on a Windows machine.

Using ODBC
Your Clarion application will use the TopSpeed ODBC driver to communicate with the
ODBC layer, which will connect to the MyODBC driver, which will talk to the MySQL
server on your Linux box, over TCP/IP.

From the MySQL downloads page (www.mysql.com/downloads), or one of its mirrors,
click on Downloads for MyODBC. Choose the full setup install for the version of Windows
you are running. Unzip the archive to a temp directory and run setup.exe. You’ll see the
window shown in Figure 3.

reload Reload grant tables

refresh Flush all tables and close and
open logfiles

shutdown Take server down

status Gives a short status message from
the server

variables Prints variables available

version Get version info from server

Figure 3: The ODBC setup program
235

Open Source SQL

236
Click on Continue and you’ll be presented with a list of ODBC drivers to install, which in
this case is just MySQL (see Figure 4). Select the driver and continue.

The ODBC setup program will add the MyODBC drivers to your system and register them
with the ODBC administrator (see Figure 5). Finally, the setup program will display the
administrator. You can set up a MySQL data source here, or you can do it later by choosing
ODBC Data Sources from the Control Panel.

See the next chapter (“MySQL/MyODBC Notes,” p. 241) for more on setting up
MyODBC, including some important information on driver strings.

Figure 4: Select the MySQL driver

Figure 5: The ODBC Administrator

Using Clar ion Wi th MySQL
Data Sources
You’ll need to set up at least one MySQL data source. Earlier I created a database called
testdb. Figure 6 shows the configuration options for the MySQL ODBC driver.

Most of the fields are self-explanatory. The DSN name is the name you will need to enter in
the Owner field of the Clarion file definition, and the MySQL host is the machine running
the MySQL server. I’ve used an IP address here, but you can also enter the machine name if
your DNS is able to resolve it. To find out if the name is recognized, you can try to ping the
host, or you can try:

nslookup hostname

from the DOS prompt.

Enter the name of the database you're going to be working with, the user you will log in as,
and the password. And then you're probably done. MySQL communicates with outside
clients via port 3306 unless the server has been told otherwise, so presumably you'll know
if that’s the case.

Figure 6: Configuring a MySQL ODBC connection
237

Open Source SQL

238
Importing Tables
If you have existing tables in your MySQL database, you can import them into your
dictionary. Open the dictionary, choose File|Import File. Choose the ODBC driver, and
when you get the Data Sources window, click on the 32 bit tab and choose the MySQL
source you just created. You should see a list of tables on the MySQL server.

It's possible that you'll be unable to connect to the MySQL data source. Most likely this
will be because you don't have sufficient permission to access the MySQL server.
Remember that you need a valid user record as well as a valid db record in the mysql
administration database. Also be sure you issue a mysqladmin reload command to
make changes to the administration database take effect.

If you still can’t connect, verify that you’re using the correct user ID and password. If all
your data looks right, then it may be that you have a firewall between you and the server
which is blocking port 3306, or there’s some problem with TCP/IP.

Assuming you have succeeded in connecting, you can choose a table to import.
Unfortunately you can’t do a multi-file import as this requires the synchronizer, which
doesn’t work with the ODBC driver.

Figure 7 shows the properties for a table imported from a MySQL server. The owner is set
to the ODBC DSN, and the pathname is the name of the table.

Figure 7: File properties for a MySQL table

Using Clar ion Wi th MySQL
Creating Tables
If you don’t have an existing MySQL database to work with, you’ll need to create some
tables in your own database. You can do this with SQL statements from the mysql client
program on the Linux box (remember to issue a use command from within mysql before
issuing table creation/modification commands). If you have C5 Enterprise Edition you can
use Data Modeler to create SQL scripts for you, but these will need some massaging before
they can be used in MySQL. And I suspect there are some SQL utility templates out there
that will do the job also, with minor changes.

Another, often easier, approach is to create your tables using one of the commercial
MySQL administration tools, such as my personal favorite, MySQL Manager, from EMS
(http://ems-hitech.com/mymanager). EMS also sells database managers for MS SQL,
PostgreSQL, and Interbase, as well as a number of useful utilities. A free trial version of
MySQL Manager is available for download.

Some Basics
Each of your MySQL tables should have a primary key on a field of type INT. Just create a
new field in the file, call it ID or something suitable, and check the Primary Key and
Autoincrement options.

MySQL will take care of the autoincrementing for you if you choose that option, in which
case you must not set the autoincrement option for this key in your Clarion dictionary. One
important difference between MySQL and Clarion autoincrementing is that in Clarion the
autoinc value is known while you’re adding the record, but if it’s done on the server it isn’t.
This will cause problems if you have an update form where you can add child records while
adding a parent record.

If you’re changing MySQL and dictionary definitions in parallel and you get invalid record
declaration errors when you try to run your app, import the table(s) into a different
dictionary, verify that everything works with a quickie wizarded application, and compare
definitions.

Summary
In my experience the biggest obstacles to using MySQL are getting the permissions right
and finding a working version of the driver.
239

Open Source SQL

240
With those problems solved I’ve found MySQL to be as fast and reliable as its reputation
suggests it should be.

• Download MyODBC (http://www.mysql.com/download_myodbc.html)

MYSQL/MYODBC NOTES

by David Harms

Since I wrote the previous chapter on MySQL a few things have changed, and I’ve had
some additional feedback from other Clarion developers using MySQL. I also need to
make a few corrections to the comments I made about MySQL during my presentation at
ETC 2000.

Errata
As I recall, I mentioned at ETC that the maximum database size in MySQL is two or four
gigabytes, depending on the operating system. This is incorrect. The maximum table (not
database) size defaults to four gigabytes, and there is no internal limit on the number of
tables you can have in a database (although you can expect some performance degradation
if you have thousands and thousands of tables in one directory).

The maximum table size is actually dependent on two things: the underlying MySQL file
library system, and the operating system’s file system. With the most recent builds (3.23 or
later) MySQL has introduced the option of using the new MyISAM file system, which is
based on the ISAM library which is at the core of MySQL. Yes, this is an SQL system, but
241

Open Source SQL

242
even SQL databases need to use some sort of lower level file library to actually store the
data on disk.

In general, table size is limited by the operating system. On Linux-Intel, you’re looking at
two gigabytes per table, or four if you use Reiserfs (http://devlinux.com/projects/reiserfs/).
On Linux-Alpha, however, you can have tables of up to eight million terabytes! That’s
8,000,000,000,000,000,000 bytes, or four hundred million 20 gig drives. Big enough for
ya?

If you’re stuck at that two gig limit, you can use the merge library to treat multiple,
identical tables as one table, but indexing support for merged tables has not yet been
implemented.

Comparisons
If you’d like to compare MySQL features with other databases, have a look at
http://dev.mysql.com/tech-resources/crash-me.php. This URL generates comparisons of
MySQL (current alpha), MySQL (latest stable build), Access 2000, Adabas, IBM DB2,
EMPRESS, Informix, Interbase, MS SQL, MIMER, mSQL, Oracle, PostreSQL, SOLID
Server, and Sybase. Areas tested include crashability, ANSI SQL 92 types and functions,
ODBC 3.0 types and functions, other types and functions, constraints and type modifiers,
order by, group by, join types, string handling, various kinds of limits, and more.

Miscellaneous
MySQL now supports transactions and replication, although this code is still in beta form
(as of June 2000). Transactions can be enabled on a per table basis, which means that
there’s no speed penalty for tables that don’t need transactions. Replication is of a fairly
rudimentary sort. One server is a master, and one more other servers are slaves. All updates
to the master server are propagated to the slaves automatically. You’ll need MySQL
version 3.23.15 or higher. You can also set up two servers such that both are master and
slave, and writes to either are replicated. So far this can only be done with two servers.

Fast gets faster: you can now create in-memory temporary tables. These are useful for
things like lookups where the content of the table seldom changes.

I’m not sure if anyone asked me this, but I’ve recently learned that there are about a million
MySQL server installations worldwide.

MySQL/MyODBC Notes
MyODBC
To use MySQL with Clarion you need the MyODBC driver, although the June 2000
SoftVelocity newsletter indicates that native support for some Linux databases is being
considered, and I would hope that includes MySQL. There is a problem with the current
releases of MyODBC involving the sequence of SQL statements. Normally, the Clarion
ODBC driver issues the following sequence of statements:

SQLPrepare
SetStmtOptions
SQLBindCol
SQLBindparameters
SQLExecute

MySQL, however, expects the following:

SQLPrepare
SetStmtOptions
SQLBindparameters
SQLExecute
SQLBindCol

In the alpha builds following the release of C5.5 B2, the ODBC driver can be set to a
modified statement order with the following driver strings:

The /BINDCOLORDER=2 setting creates the statement order expected by MySQL. This
may or may not still be required by later releases of the driver.

Other Driver Strings
If your browse involves more than one level of child records you’ll most likely get an SQL
error on the JOIN statement, because MySQL only has limited support for ODBC-style
JOINs. The solution is to use the driver string:

Driver String Statements
/BINDCOLORDER=1 SQLPrepare

SetStmtOptions
SQLBindparameters
SQLBindCol
SQLExecute

/BINDCOLORDER=2 SQLPrepare
SetStmtOptions
SQLBindparameters
SQLExecute
SQLBindCol
243

Open Source SQL

244
/JOINTYPE=DB2

 to force a style of JOIN that MySQL can cope with. You may also need to use the driver
string

/USEINNERJOIN=FALSE

Thanks to Jim Gambon for pointing this out. Again, there have been some changes to inner
join support in recent releases of MySQL so it’s possible you won’t need this.

With newer releases of MySQL and MyODBC, you may need to use the
VERIFYVIASELECT driver string; without it some tables may be inaccessible:

/VERIFYVIASELECT=TRUE

Other Resources
You may also want to look at the following Icetips document on connecting to MySQL
with Clarion, from a remote machine:

http://www.icetips.com/files/connecting_to_sql_databases_online.pdf

Summary
And the last word goes to Jim Gambon, who writes:

MySQL, as it is today, and for the foreseeable future, is not a Relational
Database Management System. It is simply an ISAM file Database with table
and key files similar to Clarion DAT files. Driving these tables is streamlined
SQL engine for “atomic” database actions like “SELECT” UPDATE”, etc. The
tables in a MySQL Database do not know how they relate to each other. Foreign
Keys are not supported to restrict or cascade changes. Changes do not “trigger”
any other action within the Database to keep things like
“Inventory:Quantity_on_Hand” fields correct.

”Put it on the shelf.” That is what Andy Stapleton said at the ETC 2000
conference when I told him that MySQL did not currently have “triggers” or
“stored procedures”. I understand exactly why he would say that. Having the
back end database as robust as possible before the teams of programmers and
web developers start beating on it saves him (and any other Database
Administrator) headaches and sleepless nights.

MySQL/MyODBC Notes
So why use MySQL? (And don’t say “because it’s free.”) MySQL has no RI on
the server, but it is a very fast ISAM file system. That means that the RI will
have to be on the client. But the client program is our Clarion created app, and
we are blessed with an abundance of data integrity tools to use in development:

Foreign Key Constraints? Tell the dictionary about the restrictions and the
templates take care of the rest. Stored Procedures? No, not in the server
database (yet), but the ABC classes provide fine places to embed code that
needs to know about the structure of a table (Filemanager) and its relations
(RelationManager).

Clarion 5.5 now has File System CallBacks to be used as a sort of “client side
trigger”. Right before, and right after, a call to the file drivers (on ADD, PUT,
SET, etc.) a procedure you define can be called. Do what you need in the
Callback, and no matter where in the program the ADD or PUT happens, the
proper “Quantity on Hand” update will happen. A future MySQL version will
have simple stored procedures, but no triggers. You should still be able to use
the Clarion CallBack (on the client) to run the MySQL stored procedure (on the
server).

So this means that the same Template created RI code that works in our
programs with TPS files will (or should) work when we switch to MySQL.
MySQL, therefore, becomes the perfect first step away from shared ISAM files
(like Clarion DAT or TPS files) in the small development shops where Clarion
is often used.

So, if you have to share database maintenance chores with other groups of
programmers, then definitely “put it on the shelf.” You need something with
more built-in data integrity. But, if you are in charge of the programming AND
the database, MySQL seems to be a fine replacement for shared-file databases
like TPS.
245

Open Source SQL

246

MYSQL: INNODB TABLES AND
TRANSACTIONS

by David Harms

MySQL is a fast, reliable, multi-platform, and free (under the GNU General Public
License) SQL server. Developed specifically for speed and reliability, MySQL is missing
some of the common SQL server features such as sub-selects, stored procedures, and
triggers/server-side referential integrity. That may seem like a pretty long laundry list. But
as Jim Gambon pointed out in the conclusion to “MySQL/MyODBC Notes,” p. 241,
MySQL makes a more than adequate replacement for TPS files, as you can easily get
Clarion to handle the critical RI issues.

Note: Sub-selects are slated for MySQL release 4.1.

Atomic operations
Among the missing features, the lack of transaction support was a more serious problem.
MySQL in its native state uses atomic operations instead of transactions. An atomic
247

Open Source SQL

248
operation is any single table update. It’s a bit like a mini-transaction: either the table update
happens or it doesn’t.

According to the MySQL documentation, atomic operations can be three to five times
faster than transactions. Atomic operations also guarantee that you won’t get any dirty
reads (a read of data in the process of being changed). The downsides are

• updates are on a per-table basis, so you can’t group a bunch of updates
together under one atomic operation,

• there’s no way to explicitly roll back an atomic operation (although you
could manually undo whatever you just did), and

• because atomic operations prevent dirty reads, a table update will block a
SELECT on the same table, which can have performance implications.

If this is how MySQL handles updates, then how do you get it to do transactions? Easy -
just don’t use MySQL tables.

Let me explain that. MySQL is a SQL DBMS, or database management system. Your
application will (most likely) talk to MySQL using the MyODBC driver. However your
app communicates with the server, MySQL receives those SQL statements, queries or
updates data accordingly, and returns data if necessary. By default, MySQL calls its own
low-level data access library to get at the data. But that isn’t your only option.

Table types
Just as one Clarion application can use multiple file/table types via different file drivers, so
a MySQL server can work with multiple table types by plugging in the appropriate back-
end library. As of MySQL 3.23, there are seven table types (that I know of) available:
MyISAM, MERGE, ISAM, HEAP, BDB, InnoDB, and Gemini. Each of these table types
has its own advantages and disadvantages, and several originate with companies other than
MySQL AB.

MyISAM tables

If you issue a CREATE TABLE statement in MySQL, without a TYPE attribute, MySQL
will create a MyISAM table. MyISAM is an update to the original MySQL ISAM table
type. MyISAM is, if you like, MySQL’s native table type. Big (63 bit) files are supported
on 64 bit operating systems, and all data is stored low byte first, which makes the data
machine-independent.

MySQL: InnoDB Tables And Transact ions
ISAM tables

ISAM tables are the original MySQL “native” B-tree ISAM format tables. Data is stored in
machine-dependent format. This table type is deprecated (replaced by MyISAM) and is
expected to disappear entirely before much longer.

MERGE tables

New in MySQL 3.23.25, MERGE tables (also known as MRG_MyISAM tables) are
collections of identical MyISAM tables which you can use as a single table. Keys and
columns must match among the merged tables. Why would you want to do this? Perhaps
for a log file, where you can split the data by month and get better performance when
looking at just one table, yet still search all tables as one if you need to. You can also
selectively create merged tables without altering the source table definitions. If you have
very large tables, you can locate different tables on different disks, and treat them as a
single table. As well, a merged table over a single table is effectively an alias. I haven’t
tested MERGE yet, but I’m considering implementing the ClarionMag server log as a set
of merged tables.

HEAP tables

HEAP tables are very fast tables created in memory. That means if you lose power, you
lose the data, but you get terrific speed. HEAP tables are commonly used for temporary
tables.

Gemini tables

The Gemini table types are available in NuSphere’s release
(http://www.nusphere.com/products/mysqladv.htm) of MySQL. Its worth noting that there
have been legal disputes (http://www.mysql.com/news-and-events/news/article_75.html)
between NuSphere and MySQL AB. I don’t have a lot to say about Gemini because I don’t
own a copy - NuSphere’s release of MySQL with Gemini is a commercial product.

BDB tables

The BDB, or BerkeleyDB table type is another of the MySQL table types which do not
originate with MySQL AB. The Berkeley database system was created by Dr. Margo
Seltzer and Keith Bostic in the early 90s; Selzter and Bostic later founded SleepyCat
(http://www.sleepycat.com) Software.

A patched version of BDB ships with the MySQL source distribution; you can’t use the
non-patched BDB with MySQL. Among other things, BDB tables provide transaction
support, and are slightly larger and slower than MyISAM tables.
249

Open Source SQL

250
InnoDB tables

As with the BDB table type, the InnoDB table type does not originate with MySQL AB.
InnoDB (http://www.innodb.com) is the brainchild of Heikki Tuuri, a Finnish developer
who holds a PhD in mathematical logic from the University of Helsinki. Tuuri began
development of InnoDB in 1994, and created the MySQL interface in collaboration with
MySQL AB, between September 2000 and March 2001.

A relatively new table type for MySQL, InnoDB has been generating a fair bit of
excitement among MySQL users. It offers a number of important enhancements, such as
transactions, row level locking (as opposed to MyISAM table locking/atomic operations),
and high performance on large volumes of data. InnoDB tables are kept in a tablespace,
rather than in individual files for each table. InnoDB tables do take up quite a bit more
space than MyISAM tables.

Choosing a table type
Although I’ve been relatively happy with MySQL’s speed (I use MySQL primarily as the
database underpinning Clarion Magazine), I have noticed occasional performance
problems which I suspected were caused by updates blocking SELECT statements. This is
a predictable situation given MySQL’s use of atomic operations to maintain data integrity.
InnoDB tables, on the other hand, lock at the row level, not the table level, and provide
Oracle-style consistent reads. The InnoDB manual puts it this way:

A consistent read means that InnoDB uses its multiversioning to present to a
query a snapshot of the database at a point in time. The query will see the
changes made by exactly those transactions that committed before that point of
time, and no changes made by later or uncommitted transactions. The exception
to this rule is that the query will see the changes made by the transaction itself
which issues the query.

(The manual also points out that consistent reads aren’t always desirable; if your query
needs to be absolutely sure that the records it sees have not been removed or altered since
the query began, you can do a locking read by appending the phrase LOCK IN SHARE
MODE to the SELECT statement.)

Consistent reads and row level locks certainly looked like useful improvements to my
server installation, so I decided to go ahead and give InnoDB tables a try.

MySQL: InnoDB Tables And Transact ions
Installing an InnoDB-capable MySQL
My first step was to upgrade my existing MySQL server to a binary version (as opposed to
getting, and building, the source) that supports InnoDB tables. This version is called
MySQL-Max, and like “regular” MySQL, is freely available under the GPL. Just go to
www.mysql.com (http://www.mysql.com/) and look for the Versions box on the home
page. You’ll see a link to the current releases of key MySQL products, including MySQL-
Max. The version I used for this article is 3.23.42.

Upgrading my MySQL installation proved quite simple. First, I unpacked the MySQL-Max
distribution under the /usr/local directory. In my case, the command was:

tar -zxvf /tmp/mysql-max*

I used the wildcard in the gzipped tar filename to save myself some typing. The full
command would be

tar -zxvf /tmp/mysql-max-3.23.42-pc -linux-gnu-i686.tar.gz

assuming the gzipped tar is in the /tmp directory and you’re already in the /usr/local
directory. This command unpacked all of the mysql-max binary distribution files into the
/usr/local/mysql-max-3.23.42-pc-linux-gnu-i686 directory.

The next step was to shut down the currently running MySQL server and switch everything
to the new version. I executed this command:

mysqladmin shutdown -u root -p

Because I’d previously set a root password for mysql (always a good idea), I had to supply
the root user id and the -p parameter. I could have supplied the actual password after the -
parameter, but it’s better to let mysqladmin (and any other utilities) prompt you, as this is
more secure.

With the MySQL server shut down I was now in a position to switch servers. When I first
installed MySQL on this particular server, the files all went in the /usr/local/mysql-
3.23.35-pc-linux-gnu-1686 directory. In keeping with the install instructions, I
created a symbolic link to that directory, called mysql. That meant I could refer to the
/usr/local/mysql-3.23.35-pc-linux-gnu-1686 directory as simply
/usr/local/mysql. So the first step to the migration was to delete the old link:

cd /usr/local
rm mysql

and add a new one:

ln -s /usr/local/mysql-max-3.23.42 -pc-linux-gnu-i686 mysql
251

Open Source SQL

252
If this was a new installation, I’d next run the mysql_install_db script to create the
default mysql and test databases, but because I already have a database set up this isn’t
necessary, or desirable. Instead, I simply copied all the database files to their new location:

cp /usr/local/mysql-3.23.35-pc-linux-gnu-1686/data/*
/usr/local/mysql/data -Rvf

The -Rvf options, respectively, tell cp to copy recursively, display file names, and force
the copy where necessary. Actually I could also have moved the database to the new
location, but I wanted to keep a backup copy in case something went wrong.

I started up mysqld with this command:

/usr/local/bin/safe_mysqld -- user=mysql &

And mysql loaded up, and everything worked! Wonderful. Just to make sure everything
was copacetic, I rebooted the server. Unfortunately, the MySQL server did not start up on
the reboot. After a little investigation I discovered that I’d started up the server with code in
my /etc/rc.d/rc.local file, as follows:

/usr/local/mysql/support-files/mysql.server start

A quick check of that particular file confirmed what I suspected: it wasn’t marked as
executable, as it was part of the new install. So I ran this command:

chmod +x mysql.server

from the /usr/local/mysql/support-files directory, and tried again. This time
when the server rebooted, the MySQL server ran automatically. To confirm that I had the
right version of MySQL running, I started the command line interface (CLI), and executed
this command:

mysql> select version();
+-------------+
| version() |
+-------------+
| 3.23.42-max |
+-------------+
1 row in set (0.00 sec)

The next step was to create an InnoDB database. Like Oracle tables, InnoDB tables live
inside a tablespace, which is one or more physical files. To create the tablespace you add
some appropriate settings to the my.cnf configuration file, and then you start the MySQL
server. I’m running this particular server on a RedHat 7.0 Linux box, and I used the
following settings in my /etc/my.cnf file:

[mysqld]
innodb_data_file_path = ibdata/ibdata1:1G
innodb_data_home_dir = /
set-variable = innodb_mirrored_log_groups=1

MySQL: InnoDB Tables And Transact ions
innodb_log_group_home_dir = /iblogs
set-variable = innodb_log_files_in_group=3
set-variable = innodb_log_file_size=50M
set-variable = innodb_log_buffer_size=8M
innodb_flush_log_at_trx_commit=1
innodb_log_arch_dir = /iblogs
innodb_log_archive=0
set-variable = innodb_buffer_pool_size=400M
set-variable = innodb_additional_mem_pool_size=20M
set-variable = innodb_file_io_threads=4
set-variable = innodb_lock_wait_timeout=50

I simply copied these settings from the MySQL online documentation, with a few
exceptions. My innodb_data_file_path setting only specifies a single file for the
tablespace, one gigabyte in size, while the example showed two tablespaces. I also changed
the innodb_log_group_home_dir and innodb_log_arch_dir settings to suit
my system, but I made the mistake of making these different directories. When I fired up
MySQL, I saw the following in my error log (in /usr/local/mysql/data):

011004 12:54:43 mysqld started
InnoDB: Error: you must set the log group

 home dir in my.cnf the InnoDB: same as log arch dir.
011004 12:54:44 Can't init databases
011004 12:54:44 mysqld ended

As it turns out, in this release of MySQL you have to specify the same directory for the log
and log archive files. I corrected this problem, deleted the /ibdata/ibdata1 file (per
the instructions regarding failed InnoDB initialization) and tried again. No joy - shortly
after beginning to write the data file, InnoDB bailed on an operating system error.

011004 13:11:43 mysqld started
InnoDB: The first specified data file

 /ibdata/ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file /ibdata/ibdata1

 size to 1073741824
InnoDB: Database physically writes the

 file full: wait...
InnoDB: operating system error number

 22 in a file operation.
InnoDB: Cannot continue operation.
011004 13:11:54 mysqld ended

I couldn’t find any documentation explaining the nature of the error, so I deleted the one
data file again, and this time rebooted. When MySQL came up on the reboot, it printed the
following information to the log:

011004 13:17:53 mysqld started
InnoDB: The first specified data file
253

Open Source SQL

254
 /ibdata/ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file /ibdata/ibdata1

 size to 1073741824
InnoDB: Database physically writes the

 file full: wait...
InnoDB: Log file /iblogs/ib_logfile0 did

 not exist: new to be created
InnoDB: Setting log file /iblogs/ib_logfile0

 size to 52428800
InnoDB: Log file /iblogs/ib_logfile1 did not

 exist: new to be created
InnoDB: Setting log file /iblogs/ib_logfile1

 size to 52428800
InnoDB: Log file /iblogs/ib_logfile2 did not

 exist: new to be created
InnoDB: Setting log file /iblogs/ib_logfile2

 size to 52428800
InnoDB: Doublewrite buffer not found:

 creating new
InnoDB: Doublewrite buffer created
011004 13:19:58 InnoDB: Started
/usr/local/mysql/bin/mysqld: ready for connections

Success! I had an InnoDB database running under MySQL, and I could begin creating
InnoDB tables.

Creating the tables
For some time I’ve been using the 2.50.33 release of the MyODBC driver. I decided it was
time to get current, and so I went to the MySQL home page (http://www.mysql.com) where
I discovered that I was six revs behind the times! In fact, support for transactions was only
added to MyODBC in release 2.50.37, so I didn’t have a choice - I needed the updated
driver to use InnoDB transactions. As I already had gone through the full MyODBC install
in the past, I downloaded the “DLL only” install.

Note: If you’re running Clarion 5.0 or earlier, you may not be able to use the
current releases of the MyODBC driver (and therefore you cannot use
transactions with InnoDB tables). The problem is that the Clarion ODBC driver
uses a different sequence of ODBC statements than that expected by MyODBC.

MySQL: InnoDB Tables And Transact ions
In Clarion 5.5x, you can tell the driver to use a MyODBC-compatible sequence
by specifying the /BINDCOLORDER=2 driver string.

To install just the new MyODBC DLL I extracted the zip contents to a temp directory, and
then ran INSTALL.BAT. Actually I thought it a bit odd that the batch file was able to copy
the files over, as I’d been using the MyODBC driver just prior to the update and expected
the DLL would be marked as still in use. I checked the ODBC administrator and it reported
that the DLL was still the old version. So I did what I usually have to do in a situation like
this: I rebooted and tried again. The batch file ran again with no errors and still the ODBC
administrator reported the old version.

At that point I checked the batch file and found it was copying files into the Windows
system directory; I’m running NT, and those files needed to go into the system32
directory. A quick search and replace on the batch file, one more attempt, and MyODBC
was finally updated.

If you haven’t used MyODBC before then you will want to download the full install - this
will set up MyODBC in the ODBC administrator; as far as I know, that install doesn’t
suffer from the same problem as the DLL update batch file.

Creating tables
Once you have MyODBC installed, you’re ready to create the tables. There are a number of
ways you can go about this, including using Roberto Artigas’ templates for converting
from TPS to MySQL (Roberto regularly posts releases to the SoftVelocity
topic.thirdparty newsgroup).

In this chapter I’ll show how to create a few simple tables from scratch. These tables, called
Parents and Children, will rather obviously contain parent and child records, in a one
to many relationship. You’ll also need a third table to support server-side autoincrementing
(more on that later). Listing 1 shows the SQL code used to create a new database called
transact and populate it with the three tables:

CREATE DATABASE transact;
USE transact;

CREATE TABLE Parents(
ParentID INT NOT NULL AUTO_INCREMENT,
LastModified TIMESTAMP,
PRIMARY KEY (ParentID))
TYPE=INNODB;

CREATE TABLE Children(
ChildID INT NOT NULL AUTO_INCREMENT,
ParentID INT NOT NULL,
SomeWeirdField INT DEFAULT 0,
255

Open Source SQL

256
LastModified TIMESTAMP,
PRIMARY KEY (ChildID),
INDEX ChildrenIdx_ParentID (ParentID))
TYPE=INNODB;

CREATE TABLE lastinsert(ID INT) TYPE=INNODB;

After you create the tables, you need to tell MySQL to allow your application to access the
database. Assuming the server and the application are running on the same machine (called
localhost), and the user id and password are both transtest, the following code
will do the trick :

GRANT ALL ON transact.* TO transtest@localhost
 IDENTIFIED BY 'transtest';
FLUSH PRIVILEGES;

The GRANT statement will create entries in the user and db tables in the mysql
database; MySQL uses these tables (and optionally several others) to control who do what
to which tables and columns. By issuing a GRANT ALL you are allowing this user full
control over the transact database; in reality you’d probably want to restrict rights a bit,
particularly since GRANT ALL allows the user to read physical, non-MySQL files on the
server!

Setting up a data source
Let’s say you have MyODBC installed, and you now have some tables. The easiest way to
build an application around those tables is to just import them into your application, and to

MySQL: InnoDB Tables And Transact ions
do that you need to define a data source. Go to the Control Panel and open the ODBC
Administrator. On the User DSN tab (shown in Figure 1) click on Add.

From the New Data Source window (Figure 2) select the MySQL driver. As you can see, I
have two entries. I don’t know why - maybe it was that botched installation attempt.

Figure 1: The ODBC Administrator User DSN tab

Figure 2: Selecting the MySQL driver
257

Open Source SQL

258
Figure 3 shows the configuration settings for the MySQL driver. The Windows DSN name
is the name your application will use to access the database. The host is the name or IP
address of the computer that is running the MySQL server.

Importing the table definitions
Now you’re ready to import the table definitions into your Clarion application. Create a
new dictionary, and with that dictionary open select File|Import Table. Choose the ODBC
driver, and when you’re presented with a list of data source names, choose the one you
created for your MySQL database (in this example, it’s the DSN called transact). Click
on Next and you should see the list of available tables. Go through the import procedure
three times until you have all three of the transact tables in your dictionary.

I have noticed occasional problems with importing MySQL tables, and the Children
table is a typical example. When you import this table you have to examine the list of field
names to make sure that all have imported correctly. On my system, the ParentID field
does not. I have to correct the field name (its an unprintable character after import), and I
have to go to the Attributes tab and set the External name to ParentID as well. If the
external name of each field doesn’t match the name of the corresponding table column,

Figure 3: MySQL configuration settings

MySQL: InnoDB Tables And Transact ions
you’ll get an invalid record declaration error when you attempt to open the table with your
Clarion app.

There’s one other dictionary change to make. For at least one of the tables set the following
in the Driver Options field:

/BINDCOLORDER=2

This statement tells the Clarion ODBC driver to use a sequence of ODBC commands that is
compatible with the MyODBC driver.

Now you can wizard up an application based on the dictionary and start playing with the
data. (Or you can just download the example app at the end of this chapter.)

Using transactions
Figure 4 shows the example application I used to test transactions with MySQL. Keep in
mind that this application just demonstrates that transactions work. I’m not making any
pretense of benchmarking here, although I have added some very rudimentary timings of
basic operations.
259

Open Source SQL

260
The example application lets you create some parent and child data inside a transaction. It
also lets you decide whether you want to place that data creation inside a transaction, and if
so, whether you want the transaction to complete successfully, or to be rolled back. Here’s
the data creation code:

starttime = clock()
if UseTransaction then logout(1,Parents,Children).
setcursor(cursor:wait)
setnull(Par:ParentID)
if access:Parents.insert() = level:benign
 lastinsert{PROP:sql} |
 = 'delete from lastinsert'
 lastinsert{PROP:sql} |
 = 'insert into lastinsert (id) ' |
 & 'values (last_insert_id())'
 lastinsert{PROP:sql} = 'select * from lastinsert'
 access:lastinsert.next()
 ParentID = las:ID

Figure 4: The transaction test application

MySQL: InnoDB Tables And Transact ions
 y = random(1,100)
 loop x = 1 to maxRecs
 !access:Children.PrimeAutoInc()
 Chi:ParentID = ParentID
 Chi:SomeWeirdField = y
 setnull(Chi:ChildID)
 !0{PROP:text} |
 = 'creating entry ' & x & ' of ' & maxRecs
 access:Children.Insert()
 end
end
if useTransaction
 if AbortTransaction
 rollback()
 else
 commit()
 end
end
endtime = clock()
setcursor()
0{PROP:text} = 'processed ' & maxRecs |
 & ' records in ' & (endtime - starttime)/100 |
 & ' seconds'
ThisWindow.Reset(true)

And here’s the data modification code:

starttime = clock()
if UseTransaction then logout(1,Children).
setcursor(cursor:wait)
y = random(1,100)
Children{PROP:sql} |
 = 'update Children set SomeWeirdField=' & y |
 & ' where ParentID = ' & Par:ParentID
if useTransaction
 if AbortTransaction
 rollback()
 else
 commit()
 end
end
endtime = clock()
setcursor()
0{PROP:text} = 'updated ' & maxKids |
 & ' records in ' & (endtime - starttime)/100 |
 & ' seconds'
BRW5.ResetFromFile()

There are several points of interest in both blocks of code. First, although I’m calling
LOGOUT on two tables, only one is necessary, in my experience; this triggers the call to the
ODBC SQLTransact function.

Second, the data creation code relies on server-side autoincrementing of the primary key
values, which speeds up inserts considerably, as the Clarion application doesn’t have to
issue a SELECT before each insert to get the highest used key value. Server-side
autoincrementing introduces a new problem, however. If you insert a parent record, you
261

Open Source SQL

262
don’t immediately know what its primary key is, because that’s assigned by the server. You
need that value for the foreign key in the child record, but it isn’t yet in the parent record
buffer. In MySQL, the last_insert_id() function will return the most recently-
created autonumber primary key for the current connection.

It would be nice if you could return the value of a MySQL function directly using
PROP:SQL, but instead you have to store that value in another table, and then retrieve it
like any other data. That’s what the LastInsert table is for. The following code uses
PROP:SQL to remove any existing record from that table, adds a new record with the just-
assigned autoincrement id, and returns that value with a NEXT() on the LastInsert
table. Of course, it’s still possible this code could fail in a multi-user situation, since others
could be trying to change the data in the LastInsert table at the same time. You could
add a UserID field to the LastInsert table, and keep one record per user instead of
just one record.

if access:Parents.insert() = level:benign
 lastinsert{PROP:sql} |
 = 'delete from lastinsert'
 lastinsert{PROP:sql} |
 = 'insert into lastinsert (id) ' |
 & 'values (last_insert_id())'
 lastinsert{PROP:sql} |
 = 'select * from lastinsert'
 access:lastinsert.next()
 ParentID = las:ID

So much for the code; how does the application run?

Testing transactions
In my test installation, with MySQL Max v. 3.23.42 and MyODBC 2.50.39, transactions
work just fine. The database server is a Celeron 400 running RedHat 7.1 with two IBM 20
GB drives mirrored on a 3Ware Escalade controller; my test application is running on an
NT box on a 100BaseT network.

A test insert of 500 records, with transactions enabled, takes almost exactly one second
(including creating the parent record and getting the autoincrement ID). The time is the
same whether you commit or rollback the transaction - this is, I assume, because the server
caches the writes. If, however, you turn off transactions, InnoDB inserts take quite a bit
longer, as the server flushes each write. Instead of one second, the operation takes almost
eight seconds!

Mass updates (changing one field in all 500 child records to a new value) is speedy, as
you’d expect. On my installation this operation takes about .04 seconds.

MySQL: InnoDB Tables And Transact ions
You can easily compare InnoDB tables to MyISAM tables: just run the following script
against your transact database:

DROP TABLE Parents;
DROP TABLE Children;

CREATE TABLE Parents(
ParentID INT NOT NULL AUTO_INCREMENT,
LastModified TIMESTAMP,
PRIMARY KEY (ParentID))
TYPE=MYISAM;

CREATE TABLE Children(
ChildID INT NOT NULL AUTO_INCREMENT,
ParentID INT NOT NULL,
SomeWeirdField INT DEFAULT 0,
LastModified TIMESTAMP,
PRIMARY KEY (ChildID),
INDEX ChildrenIdx_ParentID (ParentID))
TYPE=MYISAM;

These definitions are identical to the original definitions except the table type is MYISAM
instead of INNODB. Now it won’t make any difference whether you enable or disable
transactions, since MYISAM tables don’t support transactions. MYISAM mass insert
speed in the test application is comparable to INNODB with transactions enabled. Mass
updates are several times faster than INNODB mass updates (on the order of .01 second to
update all 500 records with one new field value instead of .04 seconds).

Michael “Monty” Widenius recently indicated on the MySQL mailing list that there is a
benchmark page forthcoming (on the MySQL site) which will compare the MyISAM,
InnoDB, and HEAP table types, and will interpret the results. He also indicated that if you
have a lot of possible conflicts between writes/updates/selects, i.e. where any one statement
could take a lot of time, InnoDB should be faster than MyISAM.

If you’re doing just a lot of data retrieval, however, MyISAM should be faster. Each
MyISAM table is stored in two physical files, one for the table’s indexes, and another for
the table’s data. To retrieve a record, the library code looks at an index and then gets a
record by data offset. In an InnoDB database the primary key and row are stored together,
and additional keys are stored as that key plus the primary key. The result is that a fetch on
just the primary key is probably faster with InnoDB, but slower for fetches on secondary
keys since they require an additional lookup on the primary key. “Big rows” are also
expected to give poorer performance than on MyISAM tables.

Which do I choose?
It seems clear that for business software development, InnoDB tables, with row-level
locking and transactions, are a better choice than MyISAM tables. Although I haven’t yet
263

Open Source SQL

264
done any real-world comparisons, I would also expect comparable or better performance
out of InnoDB tables with the kinds of applications most Clarion developers create.

InnoDB tables are also growing foreign key support, which should be ready for prime time
shortly. As of InnoDB version 3.23.43b you define foreign keys in the CREATE TABLE
statement as follows:

CREATE TABLE parent(
id INT NOT NULL,
PRIMARY KEY (id))
TYPE=INNODB;

CREATE TABLE child(
id INT,
parent_id INT,
INDEX par_ind (parent_id),
FOREIGN KEY (parent_id) REFERENCES parent(id))
TYPE=INNODB;

There are no delete cascades at this time, so I assume that these definitions represent a
restrict constraint, but I haven’t tested any of this yet. See the InnoDB manual
(http://www.innodb.com/ibman.html) for more information.

The downside to InnoDB is its relative youth within the MySQL environment. Although
Heikki Tuuri began developing InnoDB in 1994, the MySQL integration only began about
six years after that. Despite this, InnoDB has an excellent reputation, and is used live by a
number of prominent sites, most noticeably Slashdot (http://slashdot.org/) . You also don’t
need to convert your whole database - you can easily mix InnoDB tables with MyISAM
tables in the same database.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v3n10inno.zip

LARGE TABLE PERFORMANCE IN MYSQL

by David Harms

Recently there’s been some discussion of MySQL/MyODBC performance with large
tables. As most of the work I do is with tables of less than 10,000 records, I haven’t really
noticed the problems others have reported. But I decided it was time to do some testing
with large data sets.

As it happens I do have one fairly large table, a web server log with over five million
records. In order to test this table, however, I first wanted to move it to a test server.

Moving tables around
There are several ways to move MySQL tables from one server to another. If you’re
dealing with ISAM or MyISAM tables (these are the MySQL default table types for older
and current versions) then you can simply shut down the MySQL server and copy the data
files to a new location. On my Linux server, each MySQL database is stored in its own
directory under the /var/lib/mysql directory. After copying the data files across I simply
restarted MySQL, added permissions as necessary (using the GRANT statement), and
started working with the tables.
265

Open Source SQL

266
There is one caveat to copying MySQL tables: if you’re using a version of MySQL older
than 3.23 then chances are your tables are the older ISAM rather than MyISAM tables.
ISAM tables are only portable within platforms, i.e. you can copy MySQL ISAM tables
from one SPARC machine to another, or one Intel machine to another, but not from a
SPARC to an Intel machine (because of byte ordering differences). MyISAM tables,
however, which appeared as of MySQL 3.23, are binary compatible between platforms. If
you’re using a more recent version of MySQL but began with a pre-MyISAM version then
you may need (or want) to convert your tables to MyISAM format. You can do this with the
ALTER TABLE statement:

ALTER TABLE tablename TYPE=MYISAM;

Note: In “MySQL: InnoDB Tables And Transactions,” p. 247 I discussed the
InnoDB table type, which supports transactions and row level locking; you
cannot physically copy InnoDB tables around, or at least I wouldn’t advise
trying it!

If you’re not sure what type your tables are now, you can issue the SHOW TABLE
STATUS command. This will give you many columns of information including the average
row length, data size, last autoincrement primary key value and more, but I’ve truncated
the results here to just the first four columns:

mysql> show table status;
+----------------+--------+------------+---------+
| Name | Type | Row_format | Rows |
+----------------+--------+------------+---------+
| AccessHistory | ISAM | Dynamic | 1152525 |
| AccessLog | ISAM | Dynamic | 14063 |
+----------------+--------+------------+---------+

TIP: When I get a really wide result back from the mysql client, the lines wrap
making it difficult to read. I usually paste such results into Windows Notepad
and turn off word wrap. The Clarion editor also works fine. I can easily copy
and paste because I use a Windows terminal program (such as CRT
(http://www.vandyke.com/)) to telnet or SSH to the Linux server.

If you get a syntax error trying to execute SHOW TABLE STATUS then you’re using an
older version of MySQL and you have ISAM tables.

If copying tables across whole isn’t an option you can always use the mysqldump
command line utility. Well, mostly always. I found I ran out of memory when I tried this on
my five million record table, but I might have had better success with the -q (do not
buffer) option. The mysqldump utility creates standard output that includes a table
creation statement and INSERT statements for all of the table’s data. You can tell

Large Table Per formance in MySQL
mysqldump to dump one table, selected tables, or one or more entire databases. Here are
some of the more useful mysqldump options:

Option Description

--add-drop-table Add a drop table before each
create statement.

-A, --all-databases Dump all the databases.

-a, --all Include all MySQL-specific
create options (see CREATE
TABLE syntax).

--allow-keywords Prefix each column name with the
table name to allow keywords as
column names.

-c, --complete-insert Use complete insert statements
(with column names) - handy if
you are using MySQL dump to
move data to a table which has
added columns.

--delayed Insert rows with the INSERT
DELAYED command - this assigns
a lower priority to the insert so it
doesn’t interfere with other
operations.

-e, --extended-insert Use the new multiline INSERT
syntax. (Gives more compact and
faster inserts statements.)

--help Display a help message and exit.

-F, --flush-logs Flush the MySQL log file before
starting the dump.

-f, --force, Continue even if a SQL error
occurs during a table dump.

-h, --host=.. Specify the server host name. The
default host is localhost.
267

Open Source SQL

268
Whether you’re moving data between servers, doing backups, or just need to export/import
data, mysqldump is a most useful program. Get familiar with it.

-l, --lock-tables. Lock all tables before starting the
dump. The tables are locked with
READ LOCAL to allow
concurrent inserts in the case of
MyISAM tables.

-t, --no-create-info Don’t write table creation
information (the CREATE
TABLE statement).

-d, --no-data Just dump the table structure, not
the data.

--opt Same as --quick --add-
drop-table --add-locks
--extended-insert --
lock-tables. Should give you
the fastest possible dump for
reading into a MySQL server.

-pyour_pass, --
password[=your_pass]

Password to use when connecting
- if password is omitted you will
be prompted.

-q, --quick Don’t buffer query, dump directly
to stdout.

-u user_name, --
user=user_name

The MySQL user name to use
when connecting to the server.
The default value is your Unix
login name.

-v, --verbose Verbose mode. Print out more
information on what the program
does.

-w, --where='where-
condition'

Dump only selected records.
Quotes are mandatory, i.e.: "--
where=user='jimf'" "-
wuserid>1" "-
wuserid<1"

Large Table Per formance in MySQL
The test table
For test purposes, I used a modified version of my DetailHistory table, a log file that
records every request made to the server, whether for an article, an image, or any other file.
Here’s the relevant table status information for DetailHistory:

Because this table gets a lot of inserts and has a lot of records, I didn’t originally have any
indexes declared at all. Actually I didn’t even have a primary key declared - this isn’t an
absolute requirement in MySQL, apparently. The more indexes a table has (or the larger the
fields being indexed), the slower inserts will be, since each insert has to also update the
indexes. If you’re doing a big (I mean really big) batch insert of data into a table you may
find it faster to drop all the indexes, add the data, and then recreate the indexes after all the
inserts are done.

In any case, I decided that a primary key would be a good idea, so I added one:

mysql> alter table DetailHistory add index
 > DetailHistoryIdx_ReqDateTime(ReqDateTime);
Query OK, 5441439 rows affected (4 min 19.69 sec)
Records: 5441439 Duplicates: 0 Warnings: 0

As you can see it took this server (a Celeron 400 running RedHat 7.1 with two IBM 20 GB
drives mirrored on a 3Ware Escalade controller) just over four minutes to add an

Name DetailHistory

Type MyISAM

Row Format Dynamic

Rows 5441439

Average Row Length 54

Data Length 295372180

Maximum Data Length 4294967295

Index Length 62568448

Data Free 0

Auto Increment No 5441440

Create Time 2001-10-25 19:25:15

Update Time 2001-10-25 19:28:34

Check Time 2001-10-25 19:29:41

Create Options pack_keys=1
269

Open Source SQL

270
autoincremented primary key value to a table with 5.5 million rows and almost 300 megs
of data.

Judicious use of indexes becomes critical on large data sets. For instance, the DetailHistory
had a user field which I suspected was unused, since the code that inserts these log files is
completely separate from the authentication system. I decided to have a look:

mysql> select user from DetailHistory
 > where user <> '';
+----------+
| user |
+----------+
| testname |
| testname |
| testname |
| testname |
+----------+
4 rows in set (11 min 15.87 sec)

Because there was no index on the user field, the server had to look through all five and a
half million records, and the query took a substantial length of time. To compare times, I
created an index on the user field:

mysql> alter table DetailHistory add index
 > DetailHistoryIdx_User(user);

I then ran the query again:

mysql> select user from DetailHistory
 > where user <> '';
+----------+
| user |
+----------+
| testname |
| testname |
| testname |
| testname |
+----------+
4 rows in set (24.71 sec)

Not that speedy, but better. Of course, looking for a specific user value is quite fast:

mysql> select user from DetailHistory
 > where user ='testname';
+----------+
| user |
+----------+
| testname |
| testname |
| testname |
| testname |
+----------+
4 rows in set (0.00 sec)

A limited select in user order is similarly fast:

Large Table Per formance in MySQL
mysql> select user from DetailHistory
 > order by user desc limit 4;
+----------+
| user |
+----------+
| testname |
| testname |
| testname |
| testname |
+----------+
4 rows in set (0.01 sec)

So much for testing. I don’t actually need that user field, so I dropped it from the table.

mysql> ALTER TABLE DetailHistory drop column user;
Query OK, 5441439 rows affected (4 min 26.71 sec)
Records: 5441439 Duplicates: 0 Warnings: 0

I do want at least one other index on IP address, so I have something other than the primary
key for browse testing:

mysql> ALTER TABLE DetailHistory
 > ADD INDEX DetailHistoryIdx_IP(IP);
Query OK, 5441439 rows affected (6 min 30.36 sec)
Records: 5441439 Duplicates: 0 Warnings: 0

Again, it’s a few minutes to complete the change. Finally, it’s time to do some testing!

Testing a large MySQL table
When it comes to really large MySQL tables and the MyODBC driver, I have bad news, a
workaround, and a ray of hope. The bad news is that you really can’t use large MySQL
tables with Clarion/ABC at present (at least as of 5.5E), because the ODBC driver isn’t
setting the LIMIT clause on the SELECT statement. That means that if, for instance, you
have over five million records in the table, the server will have to retrieve all of those
records before your browse can begin to display! That is, of course, unworkable; I have
filed a bug report.

The workaround is to use PROP:SQL to specify the SELECT statement, with LIMIT
clause. When you explicitly set the SQL statement and issue a NEXT(), you can use
LIMIT with MySQL tables. I would expect the CCS templates (www.icetips.com) would
work fine with MySQL. Unfortunately, I haven’t found an easy way to circumvent the
ABC classes’ communication with the driver.

The ray of hope is a bug fix - bug fixes spring eternal!

Another point worth noting is that if you have a filter on your huge file, and that filter uses
keys and is therefore reasonably speedy, you can probably still use an ABC browse with
MySQL. You’ll be retrieving more records than you need to see, but if you have a
271

Open Source SQL

272
reasonably fast server and network, you might be able to temporarily get away with a select
that returns a few hundred or a few thousand records, even though you only view 20 or so
at a time. Yes, you’ll be putting the server to way too much work, but if you have some
capacity to spare this may get you by.

Summary
The MySQL server is quite capable of handling large files; unfortunately, Clarion ABC
applications, at present, don’t pass LIMIT clauses through to the back end, so if you don’t
have a filter on your data, any page browse will cause the server to retrieve all the records
in the table. If that’s your situation, you can use PROP:SQL in hand code, or you can use a
commercial product that uses PROP:SQL, or you can wait for a bug fix.

GETTING STARTED WITH POSTGRESQL

by David Harms

In the world of open source databases, there are two long-standing rivals, MySQL and
PostgreSQL, and one new contender, Firebird, which is the open source version of
Interbase. In this chapter I’ll be talking about PostgreSQL, and providing a diary of sorts of
my attempt to migrate one database from MySQL to PostgreSQL.

PostgreSQL has its roots firmly in the University of California at Berkeley. Its ancestor is
Postgres, an object-relational database developed at the university in the late 80s and early
90s. Postgres used a query language called POSTQUEL; in 1994-5, Jolly Chen and
Andrew Yu, graduate students at Berkeley, added SQL capabilities and called the database
Postgres95. In 1996, Marc Fournier volunteered to host the server for the source tree and
the mailing list, and Postgres95 became PostgreSQL. Since that time, the PostgreSQL open
source community has clearly flourished, and PostgreSQL has become quite popular.

But not as popular as MySQL, it would seem. MySQL has, for some time, been a darling of
the computer press, an up-and-comer threatening the big database vendors. And this has
gotten up the noses of some PostgreSQL supporters. Why, they ask, does everyone talk
about MySQL, when PostgreSQL has more “real” SQL database features, like views, sub-
selects, transactions (okay, MySQL has those now) and so forth?
273

Open Source SQL

274
Part of the answer, I think, is that MySQL has, for years, had a native Windows version, in
addition to versions that run on the many Unix/Linux platforms. With PostgreSQL, you
could run on just about any hardware, but if you wanted to run on Windows, you had to do
so inside the Cygwin Unix environment (http://www.cygwin.com/) for Windows. Ugh. Can
you say “emulation?”

I’m happy to report that a native Windows version of PostgreSQL has now arrived. Well, at
least you can get a beta at ftp://209.61.187.152/postgres/postgres_beta4.zip. This version
was developed by PeerDirect (http://www.peerdirect.com/), and will reportedly be
contributed to the PostgreSQL project in December 2002. Interestingly, the beta is on a
NuSphere server, and NuSphere (a subsidiary of Progress Software, as is PeerDirect)
recently settled a lawsuit launched by MySQL AB involving NuSphere’s creation of a
mysql.org web site, its use of trademarks, and its alleged failure to release the Gemini
database handler under the GPL.

Open source database internecine warfare aside, the PostgreSQL folks say on their
advocacy site (http://advocacy.postgresql.org/advantages/) that the Windows version will
be part of the official distribution as of version 7.4. The current release is 7.2.3, and 7.3 is
in beta.

Editors note: More recent information on the PostgreSQL Windows beta can
be found at http://techdocs.postgresql.org/guides/Windows

Installing the PostgreSQL Windows beta
The beta is quite easy to install - just unzip everything into a directory, and then modify the
setenv.bat file (which you’ll find in that directory) accordingly. My setenv.bat looks like
this:

set PGHOME=d:\postgres_beta4
set PGDATA=%PGHOME%\data
set PGLIB=%PGHOME%\lib
set PGHOST=localhost
set PATH=%PGHOME%\bin;%PATH%

Run the batch file from a command prompt, not from Windows, because after you set the
environment variables you’ll need to initialize the database by running the initdb utility.
Here’s the output on my machine:

D:\postgres_beta4>initdb
The files belonging to this database system will be owned by user
"dharms".
This user must also own the server process.

creating directory d:\postgres_beta4\data...ok
creating directory d:\postgres_beta4\data\base...ok

Gett ing Star ted Wi th PostgreSQL
creating directory d:\postgres_beta4\data\global...ok
creating directory d:\postgres_beta4\data\pg_xlog...ok
creating directory d:\postgres_beta4\data\pg_clog...ok
creating template1 database in d:\postgres_beta4\data\base\1
 ...creating configuration files...ok
initializing pg_shadow...ok
enabling unlimited row size for system tables...ok
creating system views...ok
loading pg_description...ok
Installing PeerDirect UltraSQL Replication Adapter Support
vacuuming database template1...ok
copying template1 to template0...ok

Success. I could now start the database server using:
d:\postgres_beta4\bin\postmaster -D d:/postgres_beta4/data

or

d:\postgres_beta4\bin\pg_ctl -D d:/postgres_beta4/data
 -l logfile start

I put the start command into start.bat and gave it a whirl.

d:\postgres_beta4\bin\postmaster -D d:/postgres_beta4/data

Here’s the output from the command:

DEBUG: database system was shut down at 2002-11-22 15:33:53 Central
Stan
DEBUG: checkpoint record is in pg_xlog/0000000000000000 at offset
2184988
DEBUG: redo record is at 0/21571C; undo record is at 0/0; shutdown
TRUE
DEBUG: next transaction id: 541; next oid: 16557
DEBUG: database system is ready

At this point the server is running. To shut it down, I issued a Ctrl-C in the command
window. The server responded with a “fast” shutdown:

DEBUG: fast shutdown request
DEBUG: shutting down
DEBUG: database system is shut down

I could also have used pg_ctl with the stop parameter. Okay, after running start.bat again, I
was ready to start mucking about with the database! From my minimal previous experience
with PostgreSQL on Linux, I knew that I could use the psql client to get access. And sure
enough, in the bin subdirectory, there was psql.exe and a bunch of other utilities. I tried

psql

and was rewarded with

psql: FATAL 1: Database "dharms" does not exist in the system
catalog.
275

Open Source SQL

276
I was reminded that psql defaults to the current user, and a database with the same name as
the current user. This makes multiple user administration much easier, particularly if you
change permissions so that users can only access their own databases. But I digress. There
was no dharms database, so I tried to create one.

createdb dharms

and got

D:\POSTGR~1\bin>createdb dharms
psql: FATAL 1: user "dharms" does not
createdb: database creation failed

As Jerry Pournelle would say, “Alas.” Time to refresh my memory on PostgreSQL security
procedures. Clearly I needed to add myself to the user list, and to do that I needed to know
the default superuser id. I tried postgresql, I tried root, I tried a lot of things, including
pulling my hair out and emailing Val Raemaekers, who I knew had run the beta
successfully. Then I ran psql on a Linux box on which someone else had installed
PostgreSQL, and listed the databases. The owner of the default databases? It was
postgres – not postgresql, which I’d tried, but postgres. Now I could create my
dharms user:

D:\POSTGR~1\bin>createuser -U postgres -e dharms
Shall the new user be allowed to create databases? (y/n) y
Shall the new user be allowed to create more new users? (y/n) y
CREATE USER "dharms" CREATEDB CREATEUSER
CREATE USER

I did hear back from Val, who said “I installed pgadminII which I was using to administer
PostgreSQL on FreeBSD, just pointed it to localhost with my Windows 2000 username and
password, and it connected with no problems at all.” So you may not encounter the same
problem I did.

With the dharms user in place I was able to run psql without any parameters, and have it
default to my user id as the user and database name:

D:\POSTGR~1\bin>psql
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

Take careful note of this first message. One, it tells you how to get out of psql - by using the
\q command. And two, it tells you that there are a bunch of internal, non-SQL commands
you can run, and you can find out about those with the \? command:

Gett ing Star ted Wi th PostgreSQL
dharms=# \?
 \a toggle between unaligned and aligned output mode
 \c[onnect] [DBNAME|- [USER]]
 connect to new database (currently "dharms")
 \C TITLE set table title
 \cd [DIRNAME] change the current working directory
 \copy ... perform SQL COPY with data stream to the client host
 \copyright show PostgreSQL usage and distribution terms
 \d TABLE describe table (or view, index, sequence)
 \d{t|i|s|v}... list tables/indexes/sequences/views
 \d{p|S|l} list access privileges, system tables, or large
objects
 \da list aggregate functions
 \dd NAME show comment for table, type, function, or operator
 \df list functions
 \do list operators
 \dT list data types
 \e FILENAME edit the current query buffer or file with external
editor
 \echo TEXT write text to standard output
 \encoding ENCODING set client encoding
 \f STRING set field separator
 \g FILENAME send SQL command to server (and write results to
file or |pipe)
 \h NAME help on syntax of SQL commands, * for all commands
 \H toggle HTML output mode (currently off)
 \i FILENAME execute commands from file
 \l list all databases
 \lo_export, \lo_import, \lo_list, \lo_unlink
 large object operations
 \o FILENAME send all query results to file or |pipe
 \p show the content of the current query buffer
 \pset VAR set table output option (VAR :=
{format|border|expanded|

fieldsep|null|recordsep|tuples_only|title|tableattr|pager})
 \q quit psql
 \qecho TEXT write text to query output stream (see \o)
 \r reset (clear) the query buffer
 \s FILENAME print history or save it to file
 \set NAME VALUE set internal variable
 \t show only rows (currently off)
 \T TEXT set HTML table tag attributes
 \unset NAME unset (delete) internal variable
 \w FILENAME write current query buffer to file
 \x toggle expanded output (currently off)
 \z list table access privileges
 \! [COMMAND] execute command in shell or start interactive shell

You won’t use most of these commands on a day to day basis, but a few are particularly
useful. One is the list databases command, \l:

dharms=# \l
 List of databases
 Name | Owner
-----------+----------
 admin | admin
 template0 | postgres
277

Open Source SQL

278
 template1 | postgres
(5 rows)

To connect to a database, use the \c command. And once you’re connected, you can use \d
to list or describe the available tables, indexes, sequences, and views. There are also
commands to modify the output of SELECT statements, write results to files, work with
large objects, set variables, and more.

With the pending release of a native Windows version of Postgresql, and the immediate
availability of a beta, one of the biggest obstacles to Windows developers using this
popular and robust SQL database has been (or, if you’re more cautious, will soon be)
removed.

Setting up the database
As I said earlier, I ran into a bunch of trouble getting a working user name and password for
the Windows version of psql, the command line interface to PostgreSQL (although not
everyone who’s run the beta has had the same difficulty). On Linux, if you’re administering
the server, you can log in as root and assume the postgres user’s identity with the su
command:

[root@ns root]# su postgres
bash-2.05$ createuser demo
Shall the new user be allowed to create databases? (y/n) n
Shall the new user be allowed to create more new users? (y/n) n
CREATE USER
bash-2.05$ createdb demo
CREATE DATABASE
bash-2.05$

If you don’t have root access, then whoever does have root access can set up your database
access for you.

Notice that in my example above the user and the database have the same name. This isn’t
absolutely necessary, but psql will default to the currently logged in user name for both the
psql user and the database name. This makes for easy management where you want to give
each logged in user their own PostgreSQL database.

Connecting
Now that I have created a demo database, and a demo PostgreSQL user, I can either log in
to Linux as user demo and execute

psql

Gett ing Star ted Wi th PostgreSQL
or as another user I can enter:

psql -U demo -d demo

In either case I’ll get the following greeting:

Welcome to psql, the PostgreSQL interactive terminal.
Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

demo=>

You can quickly check the version of PostgreSQL you’re running by calling the
version() function:

demo=> select version();
 version

 PostgreSQL 7.2.1 on i686-pc-linux-gnu, compiled by GCC 2.96
(1 row)

As you can see I’m one dot release behind the times. You can also check the psql client
version with either the --version or the -V option:

psql --version
psql (PostgreSQL) 7.2.1
contains support for: readline, history, multibyte
Portions Copyright (c) 1996-2001, PostgreSQL Global Development
Group
Portions Copyright (c) 1996, Regents of the University of California
Read the file COPYRIGHT or use the command \copyright to see the
usage and distribution terms.
[root@ns admin]#
279

Open Source SQL

280
Creating tables
Figure 1 shows the database I’ll be creating in this installment. These are the tables that I
currently use to store Survey data for Clarion Magazine, using MySQL. The titles are fairly
self-explanatory.

Here’s a CREATE TABLE statement for Surveys:

CREATE TABLE Surveys(
SurveyID serial NOT NULL PRIMARY KEY,
Question varchar(255),
StartDate date,
EndDate date,
LastModified timestamp,
Active bool DEFAULT False);

When I paste this statement into psql and execute it, I get the following result:

NOTICE: CREATE TABLE will create implicit sequence
 'surveys_surveyid_seq' for SERIAL column 'surveys.surveyid'
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit
 index 'surveys_pkey' for table 'surveys'

Two additional structures have been automatically created, both because of this line in the
declaration:

SurveyID serial NOT NULL PRIMARY KEY,

The second item is the index for the primary key, which is no surprise. But SurveyID also
is my autoincrementing unique identifier for each row, as indicated by the SERIAL data
type. SERIAL values are stored in eight byte integers, with a maximum value of
9223372036854775807 (big enough for ya?) unless the platform compiler doesn’t support
eight byte integers, in which case the maximum value is the same as a Clarion LONG. A
SERIAL column causes PostgreSQL to create a sequence number generator, called simply
a sequence, which is used to automatically increment that value. Here’s the description of
the table as shown by psql after I issued the CREATE:

demo=> \d surveys;

Figure 1: The Surveys database diagram

Gett ing Star ted Wi th PostgreSQL
 Table "surveys"
 Column | Type |Modifiers
--------------+--------------------------+--------------------------

 surveyid | integer | not null default nextval(

'"surveys_surveyid_seq"'::text)
 question | character varying(255) |
 startdate | date |
 enddate | date |
 lastmodified | timestamp with time zone |
 active | boolean | default 'f'::bool
Primary key: surveys_pkey

As you can see the default value for surveyid references surveys_surveyid_seq.
Sequences are actually single-row tables (think control files) with special associated
functions: setval(), which lets you change the current value in the row; nextval(),
which increments the current value (and first adds the row if the sequence has never been
used before) and returns that value; and currval(), which returns the value last set by
nextval() or setval() for the current process. This last point is an important one. If,
for instance, I add the very first surveys record,
currval('surveys_surveyid_seq') will return 1 even if another process
(typically another user) inserts a surveys record after I inserted the first one, and before I
called currval().

The fact that sequences are actually tables gives you some flexibility in autoincrementing.
You can create them separately from your tables and with specialized attributes, including
reverse order, increment steps other than 1, and wrap-around. Here’s a sequence that starts
at 4, decrements by two, and when it hits zero starts over at 10 again.

CREATE TEMPORARY SEQUENCE increment_test
 INCREMENT -2 MINVALUE 0 MAXVALUE 10
 START 4 CYCLE;

Repeatedly calling SELECT nextval('increment_test') on this sequence yields
the following numbers:

4 2 0 10 8 6 4 2 0 10 8

... and so on. Also note that I’ve used the TEMPORARY qualifier on this sequence - once the
session is closed this sequence will be deleted. You can specify the name of an existing
sequence when creating a temporary sequence. In that case the temporary sequence will
replace the permanent sequence for the duration of the session. You would, of course, want
to use something like this very carefully.

Why would you want a sequence to cycle? As Carl Barnes pointed out to me after reading
the draft of this chapter, one application would be a Job/Order number that you don’t want
to exceed, say, five digits. Of course that would assume that you’re archiving/deleting old
orders so they can’t cause duplicate key errors.
281

Open Source SQL

282
Because sequences are separate entities from tables, there is one side effect you might not
expect. If you subsequently issue a DROP TABLE command, as in:

DROP TABLE Surveys;

the table and any indexes will be deleted, but the sequence will not be deleted. If you
reissue the CREATE TABLE command, you’ll get an error like this one:

ERROR: Relation 'surveys_surveyid_seq' already exists

So what do you do? Issue a DROP SEQUENCE:

demo=> DROP SEQUENCE surveys_surveyid_seq;

Now you can create the table, and its associated sequence will also be created.

Going back to the table description reported by PostgreSQL, you’ll notice a :: operator
used in two places. This is the cast operator, and it first shows up in the primary key
column that uses the sequence:

surveyid | integer | not null default
 nextval('"surveys_surveyid_seq"'::text)

Since PostgreSQL supports function overloading, it’s conceivable that there could be
versions of the nextval() function which take parameters of data type other than text.
The ::text operator ensures that the parameter to nextval() is interpreted as text. Seems
a bit paranoid, but there you are.

There is also a cast on the boolean field named active, which is cast to a boolean value
('f'::bool). In PostgreSQL, the possible true values for a boolean are TRUE, 't',
'true', 'y', ' yes', and '1', while possible false values are FALSE, 'f',
'false', 'n', 'no', and '0'. The cast 'f'::bool ensures that the default value is
in fact boolean.

Because sequences are independent of the table they don’t necessarily function the same
way as a client-side autonumber, where the code looks at the highest value in the primary
key, increments, and tries to add the placeholder record. For instance, imagine a sequence
that’s been used just once. You can see the sequence data with a SELECT statement like
this:

demo=> select * from surveys_surveyid_seq;
 sequence_name | last_value | increment_by | max_value
----------------------+------------+--------------+-----------------

 surveys_surveyid_seq | 1 | 1 |
9223372036854775807

| min_value | cache_value | log_cnt | is_cycled | is_called
+-----------+-------------+---------+-----------+-----------
| 1 | 1 | 32 | f | t

Gett ing Star ted Wi th PostgreSQL
The sequence has a last_value of 1 because I’ve already added a record in the surveys
table, without specifying a value for the surveyid column. Here’s the resulting data:

demo=> select * from Surveys;
 surveyid | question | startdate | enddate | lastmodified |
active
----------+--------------+------------+------------+--------------+-

 1 | First survey | 2003-02-03 | 2003-03-05 | |
f

Now I add a record specifying a primary key value of 4:

INSERT INTO surveys (surveyid,question,startdate,enddate)
values(4,'Fourth survey',now(),now()+30);

There are now two records in the table:

demo=> select * from surveys;
 surveyid | question | startdate | enddate | lastmodified |
active
----------+---------------+------------+------------+--------------
+--------
 1 | First survey | 2003-02-03 | 2003-03-05 | |
f
 4 | Fourth survey | 2003-02-03 | 2003-03-05 | |
f
(2 rows)

The sequence, however, remains unchanged because a value was supplied for the surveyid
field:

demo=> select * from surveys_surveyid_seq;
 sequence_name | last_value | increment_by | max_value
----------------------+------------+--------------+-----------------

 surveys_surveyid_seq | 1 | 1 |
9223372036854775807

 | min_value | cache_value | log_cnt | is_cycled | is_called
 +-----------+-------------+---------+-----------+-----------
 | 1 | 1 | 0 | f | t

So what happens now? If I continue adding records, I’ll end up with a duplicate key error
when I hit surveyid 4:

demo=> INSERT INTO surveys (question,startdate,enddate)
values('Second survey',now(),now()+30);
INSERT 506966 1
demo=> INSERT INTO surveys (question,startdate,enddate)
values('Third survey',now(),now()+30);
INSERT 506967 1
demo=> INSERT INTO surveys (question,startdate,enddate)
values('Fourth survey',now(),now()+30);
ERROR: Cannot insert a duplicate key into
 unique index surveys_pkey
283

Open Source SQL

284
demo=> INSERT INTO surveys (question,startdate,enddate)
values('Fifth survey',now(),now()+30);
INSERT 506969 1

Although the attempt to insert the record with surveyid 4 failed, the sequence did
increment, so subsequent inserts will again work. The moral of the story, however, is that
you really have to be careful if you import a bunch of records with existing primary key
values. You might want to set the sequence number to a value higher than any of the
primary key values you’re importing, leaving a window for the existing values. All
subsequent calls to nextval() will start at that number plus one. You do this with the
setval() function:

demo=> select setval('surveys_surveyid_seq',1000);
 setval

 1000
(1 row)

And the result:

demo=> select * from surveys_surveyid_seq;
 sequence_name | last_value | increment_by | max_value
----------------------+------------+--------------+-----------------

 surveys_surveyid_seq | 1000 | 1 |
9223372036854775807

 | min_value | cache_value | log_cnt | is_cycled | is_called
 +-----------+-------------+---------+-----------+-----------
 | 1 | 1 | 0 | f | t

One curiosity of sequences is that the minimum value of any sequence is 1, so you can’t
issue a setval('sequencename',0); if you set the current value to 1, then the next
available value for any serial data type is 2. That means you can’t reset an existing
sequence so it will start at 1 - you have to drop the sequence and recreate it. At least that’s
been my experience.

The SurveyChoices table
As shown in Figure 1. the Surveys database includes a table for survey choices:

CREATE TABLE SurveyChoices(
SurveyChoiceID serial NOT NULL PRIMARY KEY,
SurveyID int NOT NULL,
Sequence decimal(5,2) DEFAULT 1,
Value varchar(100),
FOREIGN KEY (SurveyID) REFERENCES Surveys (SurveyID)
ON DELETE CASCADE
ON UPDATE CASCADE);

Gett ing Star ted Wi th PostgreSQL
And just to speed things up, here are a couple of indexes:

CREATE INDEX SurveyChoices_Idx_ID
 ON SurveyChoices (SurveyID);
CREATE INDEX SurveyChoices_Idx_ID_Seq
 ON SurveyChoices (SurveyID,Sequence);

SurveyChoices is linked to the Surveys table via the SurveyID column. Here’s the
output from the CREATE statement:

NOTICE: CREATE TABLE will create implicit sequence
 'surveychoices_surveychoicei_seq' for SERIAL
 column 'surveychoices.surveychoiceid'
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit
 index 'surveychoices_pkey' for table 'surveychoices'
NOTICE: CREATE TABLE will create implicit trigger(s)
 for FOREIGN KEY check(s)

As before, the CREATE statement has resulted in the creation of an implicit sequence for
the SurveyChoiceID column, as well indexes for the primary key and for the foreign
key. The CREATE statement also results in the creation of two triggers for the specified ON
DELETE CASCADE and ON UPDATE CASCADE foreign key checks. These mean that if
you attempt to delete a Surveys record, and there are related child SurveyChoices
records, those child records will be deleted. Similarly if the parent primary key value
changes, these changes will be rippled down to the child records (but that’s irrelevant,
because you always use values for primary keys that will never need to be changed, right?
Right!).

So how do you find out what triggers are in place for an existing table? The answer lies in
the system tables, and to get a listing of those you type \dS:

demo=> \dS
 List of relations
 Name | Type | Owner
--------------------------+----------+----------
 pg_aggregate | table | postgres
 pg_am | table | postgres
 pg_amop | table | postgres
 pg_amproc | table | postgres
 pg_attrdef | table | postgres
 ... Approx. 40 tables omitted for brevity

These system tables store everything from databases to tables to functions, check
constraints, data types, and yes, triggers. It would’ve taken me forever to find out how to
get a trigger listing from this database, but happily I found one on the web, posted by
Michael Fork in the comp.databases.postgresql.general newsgroup on January 17, 2001:

SELECT pg_trigger.tgargs, pg_trigger.tgnargs,
pg_trigger.tgdeferrable, pg_trigger.tginitdeferred,
pg_proc.proname, pg_proc_1.proname FROM pg_class pg_class,
pg_class pg_class_1, pg_class pg_class_2, pg_proc pg_proc,
pg_proc pg_proc_1, pg_trigger pg_trigger, pg_trigger
285

Open Source SQL

286
pg_trigger_1, pg_trigger pg_trigger_2
WHERE pg_trigger.tgconstrrelid = pg_class.oid
AND pg_trigger.tgrelid = pg_class_1.oid
AND pg_trigger_1.tgfoid = pg_proc_1.oid
AND pg_trigger_1.tgconstrrelid = pg_class_1.oid
AND pg_trigger_2.tgconstrrelid = pg_class_2.oid
AND pg_trigger_2.tgfoid = pg_proc.oid
AND pg_class_2.oid = pg_trigger.tgrelid
AND ((pg_class.relname='<<PRIMARY KEY TABLE>>')

Find <<PRIMARY KEY TABLE>> in that listing and replace it with the name of your
table. For the Surveys table, the output looks like this:

tgargs
--

<unnamed>\000surveychoices\000surveys\000UNSPECIFIED\000surveyid\000
surveyid\000

| tgdeferrable | tginitdeferred | proname |
proname
+--------------+----------------+---------------------+-------------

| f | f | RI_FKey_cascade_upd |
RI_FKey_cascade_del

Fortunately there are tools available to make this kind of database administration easier. I
use PostgreSQL Manager (http://ems-hitech.com/pgmanager/) from EMS (the same
company that produces MySQL Manager (http://ems-hitech.com/mymanager/), and IB
Manager (http://ems-hitech.com/ibmanager/) for Interbase/Firebird).

The SurveyData table
Finally, here’s the table creation script for the SurveyData table, which holds the survey
responses:

CREATE TABLE SurveyData(
SurveyDataID serial NOT NULL PRIMARY KEY,
SurveyID int NOT NULL,
Value varchar(100) NOT NULL,
Source varchar(30),
DateTime timestamp,
FOREIGN KEY (SurveyID) REFERENCES Surveys (SurveyID)
 ON DELETE CASCADE ON UPDATE CASCADE);

And here’s the result:

NOTICE: CREATE TABLE will create implicit sequence
 'surveydata_surveydataid_seq' for SERIAL column
 'surveydata.surveydataid'
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit
 index 'surveydata_pkey' for table 'surveydata'

Gett ing Star ted Wi th PostgreSQL
NOTICE: CREATE TABLE / UNIQUE will create implicit index
 'surveydata_surveydataid_key' for table 'surveydata'
NOTICE: CREATE TABLE will create implicit trigger(s)
 for FOREIGN KEY check(s)

Add one index to make retrieving the survey data a bit more orderly:

CREATE INDEX IDX_SurveyData_Survey_Value ON
SurveyData(SurveyID,Value);

Table creation isn’t that much different in PostgreSQL as compared to other SQL
databases, although its use of sequences to handle autonumbered columns is worth some
special attention.

Security basics
I said at the start of this chapter that this would be a sort of diary of my experiences. And
this week I was reminded again that I find PostgreSQL’s security measures a bit obtuse at
times.

One caveat: I’m still using PostgreSQL 7.2, and there have been some security
improvements in 7.3. I’ll do my best to touch on those as I go.

Earlier, I described some of the troubles I had connecting with the native Windows beta on
my development machine. I then briefly showed how to set up a user and database on a
Linux box, and connect using the psql utility running in a terminal window, on that Linux
box. This time around, however, I’ll be using PostgreSQL on a Linux box over a LAN,
eventually via the psqlODBC driver.

This shift from connecting via a local application to a network connection is important,
because PostgreSQL is, by default, set to only accept local connections. For instance, the
Linux server I have running on my LAN is sporting a brand new RedHat
(http://www.redhat.com) 8 install, including PostgreSQL. If I telnet (secure shell, actually)
to the Linux box (which doesn’t have its own monitor at the moment) and run psql, that
application talks to the PostgreSQL postmaster program using a socket connection. It does
not, however, use TCP/IP, and is not, in fact, configured to do so. That’s important because
any Clarion application will be using TCP/IP rather than a socket.

You can verify that PostgreSQL is not listening on the TCP/IP port (by default port 5432)
by executing the following on the Linux server:

telnet localhost 5432
Trying 127.0.0.1...
telnet: connect to address 127.0.0.1: Connection refused
287

Open Source SQL

288
If you see that message, then the first thing you’ll need to do is tell PostgreSQL to start
listening on the TCP/IP port. Locate the file postgres.conf on your system; on my
Linux box it’s in the /var/lib/pgsql/data/ directory. Here’s a partial listing of that
file:

PostgreSQL configuration file

#
This file consists of lines of the form
#
name = value
#
(The '=' is optional.) White space is collapsed, comments are
introduced by '#' anywhere on a line. The complete list of option
names and allowed values can be found in the PostgreSQL
documentation. The commented-out settings shown in this file
represent the default values.
Any option can also be given as a command line switch to the
postmaster, e.g., 'postmaster -c log_connections=on'. Some options
can be changed at run-time with the 'SET' SQL command.
#===
#
Connection Parameters
##tcpip_socket = false

As noted in the header, the commented out lines represent the default values, and
tcpip_socket is set to false. Uncomment that line and change it to true (my thanks
to Jeff Slarve for pointing this out):

tcpip_socket = true

Save and close the file. You will need to restart PostgreSQL to make the change take effect
- on my Linux box I use this command:

/etc/rc.d/init.d/postgresql restart

Try the telnet test again. It still doesn’t work? Ah, it turns out there’s one other thing you
need to do, and that’s set the appropriate permissions. Locate the pg_hba.conf file, in the
same directory as postgres.conf. At the end of that file you will see something like the
following:

Put your actual configuration here
==================================
#
This default configuration allows any local user to connect with any
PostgreSQL username, over either UNIX domain sockets or IP.
#
If you want to allow non-local connections, you will need to add more
"host" records. Also, remember IP connections are only enabled if you
start the postmaster with the -i option.
#
CAUTION: if you are on a multiple-user machine, the default
configuration is probably too liberal for you. Change it to use

Gett ing Star ted Wi th PostgreSQL
something other than "trust" authentication.
#
TYPE DATABASE IP_ADDRESS MASK AUTH_TYPE AUTH_ARGUMENT

#local all trust
#host all 127.0.0.1 255.255.255.255 trust

Using sockets credentials for improved security. Not available
everywhere,
but works on Linux, *BSD (and probably some others)

local all ident sameuser

These are all comments except for the last line, which basically says that anyone logged on
to the machine as a local user can access any database. Oh, and this document does also
point out that you can use the -i option when starting the postmaster to enable TCP/IP
connections, but it’s more likely that you will have a startup script for PostgreSQL, in
which case you should use postgres.conf setting. There’s a lot more to pg_hba.conf than
I’ve shown here - it really does give a lot of useful (if a bit cryptic) information on security
settings.

In order to connect to PostgreSQL via TCP/IP, you must add something like the following
to pg_hba.conf:

#TYPE DATABASE IP_ADDRESS MASK AUTH_TYPE AUTH_ARGUMENT
host all 127.0.0.1 255.255.255.255 trust

This line specifies the host access that is allowed. As written, it permits connection to all
databases from the localhost IP address only, and does not require any authentication. If
you can connect from localhost, you’re good to go. In a way this is a fairly secure
approach, assuming you have complete control over all applications executing on that
machine. It does not allow an application to connect to the database from any other
machine. Well, sort of.

In “Securing Remote Database Connections With SSH Tunneling,” p. 535, I describe one
way to encrypt remote database connections. You could set up an SSH tunnel from a
Windows box to the Linux server and connect to the PostgreSQL database using the above
configuration. The SSH server is a local application, so it can talk to PostgreSQL, and your
SSH client (on, say, a Windows machine) talks to the SSH server.

In any case, you’ll probably want at least some level of authentication. In order to use
authentication you’ll need to set passwords for your users. Earlier I showed how to use
createuser to create PostgreSQL users. With the -P parameter, you can get createuser
to prompt for a password:

$ createuser -P cmag
Enter password for user "cmag":
Enter it again:
Shall the new user be allowed to create databases? (y/n) n
Shall the new user be allowed to create more new users? (y/n) n
289

Open Source SQL

290
CREATE USER

You can also create and modify users from within the psql utility. Typically you’ll need to
sign on as the postgres superuser. The easiest way is to log in to the Linux box as root
and then su to the postgres user:

$su root
Password:
su postgres
$ psql template1
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

template1=#

Note that you must supply a database name when connecting, as psql defaults the
database name to the user name and there is (probably) no database with the name
postgres. There is always a template1 database, although it’s not likely you’ll ever
modify it since it is, as the name indicates, a template for databases you create. Once
logged in you can use the CREATE USER and ALTER USER statements to modify user
settings.

WARNING: The CREATE USER statement, by default, creates a superuser,
that is someone who can create databases and other users. So unless you’re
prepared to use the full syntax of CREATE USER you’re probably better off
with the command line createuser utility.

Now that you have a user with a password, you’ll probably want a database with a
matching name (or vice versa). On the face of it this seems like an odd requirement, and in
fact there are ways around it. But one of the authentication options in the pg_hba.conf file
is sameuser, which tells PostgreSQL to give access to a database only when the user
name and the database name match. Here’s a line for pg_hba.conf that restricts users to
same-named databases on the local 192.168 network:

host sameuser 192.168.0.0 255.255.0.0 password

Creating a database for the cmag user is easy:

$ createdb cmag
CREATE DATABASE

It is possible to specify a list of users for a given database by setting up a separate file with
user names and, optionally, passwords. But PostgreSQL is not nearly as configurable for
security as its rival MySQL, where all permissions are table-based. Fortunately,
PostgreSQL 7.3 adds some improvements - you can specify multiple databases on one line

Gett ing Star ted Wi th PostgreSQL
in pg_hba.conf, and you can also specify multiple users or user groups at the end of the
line as AUTH_ARGUMENT data, or so I’ve read.

If you’re stuck with 7.2, then have a look in the PostgreSQL docs for the pg_passwd
utility, which you can use to maintain password files for individual databases.

Summary
PostgreSQL’s authentication system can be a bit quirky, and you can easily run afoul of the
default settings when you’re trying to configure the database for ODBC access. You need
to ensure that PostgreSQL is set up to listen on its TCP/IP port (by default 5432) and you
also have to configure the pg_hba.conf file to allow specific remote connections. Once
you have those two things sorted out you’re ready to start playing with data using Clarion.
291

Open Source SQL

292

Oracle

REFERENTIAL INTEGRITY IN ORACLE

by Jon Waterhouse

When you move an application from flat ISAM files to a client-server architecture using a
database like Oracle as a back end, it is not just a matter of setting up the Oracle tables and
pointing your dictionary at them. One concern is making sure that what you want to be
treated as atomic transactions are actually treated that way. Another is making sure that
your referential integrity (RI) is enforced in the best way possible. This chapter will look at
two aspects of migration that you will have to deal with in short order: referential integrity
constraints and autonumbering.

Referential integrity
The referential integrity constraints imposed by the ABC templates boil down to the
following:

• When you delete a parent record: the delete is disallowed (RESTRICT) or
child records are either deleted (CASCADE) or have their parent link fields
set to NULL (CLEAR)
295

Oracle

296
• When you change the primary key on a parent record (which is referenced by
foreign keys on the child records); the change is disallowed (RESTRICT),
changed in child records (and possibly child relatives too) (CASCADE) or set
to NULL (CLEAR).

When working with a back end database, such as Oracle, rather than flat files, you have the
option to have the database server enforce these restrictions, rather than have the Clarion
application enforce them. When working with Oracle, I prefer to let the server enforce
these restrictions. One major advantage is that if there are other applications, developed in
either Clarion or some other language, that access the same data, the RI rules will be
applied consistently by the database, regardless of the application actually changing the
data.

When you set up a relationship between files in the Clarion dictionary, the drop-down list
has the options above, plus the same options with (Server) added. When you choose the
Server options for looking after RI, your Clarion application backs off. It tries to save the
current record that it has been asked to save, and if that works, it is done. Your program
expects any other RI activity to be handled by the server. If you choose to enforce RI
locally, then after successfully saving the current record the application will go on to try
and make the required changes to all of the related child records. A failure in any one of
these child files will lead to a rollback.

So, if you choose to enforce RI in Oracle, how do you go about it? There are two things
necessary. The first is setting up a foreign key constraint on the child table in Oracle. For
example, say you have a table ORDER_LINE and a table ORDERS, where the order_no
field in order_line has to match ORDER.ID. You would implement the constraint as:

ALTER TABLE order_line
ADD CONSTRAINT order_fk
FOREIGN KEY (order_no)
REFERENCES order (id).

This will ensure that when someone enters an order line it has an order_no that can be
found in the ORDER table. It will also prevent anyone deleting (or changing the key value
of) rows in ORDER that are referenced in ORDER_LINE. This is the same as the “on delete
restrict” setting in the Clarion dictionary. For the restriction on order_line to work
consistently it is also necessary to put a NOT NULL constraint on the order_no column. If
this constraint is not present, and you enter a NULL value, Oracle won’t try to enforce the
constraint, since it knows it cannot find a value that matches – in Oracle, NULL is not equal
to NULL.

You can also add to the foreign key constraint one of these two options: ON DELETE
CASCADE or ON DELETE SET NULL. These take care of the two other possible options
for RI on deletes (Cascade and Clear) in addition to the RESTRICT option for both updates
and deletes.

Referent ia l In tegr i ty In Oracle
Oracle, in its wisdom, does not provide a built-in method for cascading changes on update.
The theory is that a primary key should not change, so there should never really be any
need for cascading updates, unlike cascading deletes, which you might need when, say, you
are archiving records. You can achieve cascading updates in Oracle, but it’s a bit tricky.
There are basically two methods, both of which involve triggers.

Triggers are SQL functions that can be set up to carry out one or more other activities when
a certain event happens. In particular, they can be set up to do extra things before or after
inserts, changes and deletes. They can also be used to carry out something instead of a
particular action. For example, a before delete trigger could be set up to mark a record as
deleted (using a column in the data) rather than actually deleting it. One of the things that is
not possible in a trigger is a commit, or any Data Definition Language (DDL) statement
that would cause a commit. Thus anything that is carried out by the trigger is logically part
of the same transaction. A CLEAR constraint on update can be accomplished very easily
using a trigger. Here’s an example:

CREATE TRIGGER clear_on_id_change
BEFORE UPDATE OF id ON order
FOR EACH ROW
BEGIN
 Update order_line SET order_no=NULL where order_no=:old.id;
END;

This trigger will only fire when ORDER.ID is changed. For all the rows where it is
changed, the child rows that reference that parent row will have their order_no column
updated to NULL. Obviously for this to work the order_no column should not have the
not null attribute.

Following on from the approach above, it seems like a similar trigger could be written to
accomplish cascaded updates:

CREATE TRIGGER cascade_id_change
BEFORE UPDATE OF id ON order
FOR EACH ROW
BEGIN
 Update order_line SET order_no=:new.id where order_no=:old.id;
END;

Unfortunately, cascading updates are not quite that simple. The :old and :new refer to
the values before and after in the row you are changing in the ORDER table. However, this
trigger will only work if you do something else first. By default the Oracle database
enforces constraints immediately. The trigger as written will fire before (it’s a before
update trigger) the initial change is made. However, under normal circumstances it will fail
because it is not possible to change the children’s link (foreign key) field to a parent ID that
does not yet exist since this violates the foreign key constraint. The trigger would also fail
if it was declared as an after update trigger, because as soon as the update changed the
parent value, the children (in order_line) would become orphaned, causing a rollback.
297

Oracle

298
The way to get around this is to make the foreign key constraint DEFERRABLE, and to set
the constraint to DEFERRED for this transaction (SET CONSTRAINT order_fk
DEFERRED). This tells Oracle not to enforce the constraint until the commit happens, by
which time you expect to have everything sorted out. Deferred constraints have been
available since Oracle 8 (Current version of Oracle is 9.2). Before then a trickier method
had to be used.

Oracle wrote a little package (http://asktom.oracle.com/~tkyte/update_cascade/) to make
this slightly tricky logic easy. The package uses a series of triggers and procedures so that
the initial change (of the parent id) does not really happen. What happens instead is that a
new row (with the new id) is inserted into the parent table. The child rows are all updated to
become children of this new row, and then the old row (which no longer has any children)
is deleted. This only works if you are updating the parent to a primary key value that does
not yet exist in the table. In my experience about the only reason you would ever have to
change a primary key is when you want to change it to a value that already exists (e.g.
when one real customer has two data rows with slightly different names and you want to
consolidate the two customers into the one they should have been). This is not something
that can be accommodated by this package. However, changes of this sort can still be
accomplished using the deferred constraint method (assuming you are working with Oracle
8 and up).

In summary, the equivalent in Oracle of a RESTRICT RI constraint is accomplished by
setting up a foreign key using a NOT NULL column. The Cascade and Clear
constraints for deletes can also be built into the foreign key constraint. Update constraints,
if you really need them, require triggers.

Next, I’ll continue this discussion with a look at autonumbering.

AUTONUMBERING IN ORACLE

by Jon Waterhouse

In the previous chapter I began a discussion of Oracle’s Referential Integrity (RI)
capabilities. Now I’ll continue that discussion with a look at autonumbering.

There are two benefits of having the database enforce the RI constraints. The first is that
your data is protected from some other application (or user armed with SQL*Plus) making
changes that are inconsistent with referential integrity. Secondly, Oracle can carry out the
required operations many times faster than a Clarion program can. For cascaded deletes,
for example, a Clarion program will retrieve each of the child records one by one and then
ask Oracle to delete each one. Oracle will get rid of all the unwanted records at the same
time.

The downloadable example at the end of this chapter demonstrates the advantage of using
Oracle constraints rather than relying on Clarion to enforce RI. The program first sets up a
PARENT table by selecting 100 rows from the ALL_OBJECTS view. The table has a
primary key of OBJECT_ID, which is numeric. It then creates a CHILD file by inserting
50 records for each key value in the PARENT table. The constraints on the tables are
created by an alter table command. The program presents three methods of deleting
all of the rows:
299

Oracle

300
• A Clarion process using a Clarion “On delete cascade” constraint loops
through the file deleting the parent records and their related children (the
Oracle constraint is disabled)

• A Clarion process loops through the file deleting the parent records; the child
records are deleted by the enabled Oracle foreign key constraint

• The records are deleted by a call to a single small SQL statement

Just to add a slightly more real-world dimension to the process the deletes take place based
on the modulus of the Object_ID: first all IDs ending in zero are deleted, then those
ending in 1, etc.

On my system the process using Oracle RI delete took about 8.26 seconds per 100 parent
records (5000 child records). The single SQL statement with Oracle handling the RI took
5.7 seconds per 100 parent records. The Clarion method did not work at all. The child
records related to the first parent ID were deleted fine, then Clarion got confused about
which ID it was working with and failed with a “Record Not Found” error.

Autonumbering
Creating primary keys using autonumbering is something that Clarion programmers have
become very comfortable with over the years. Many Clarion developers may not even
realize that there are many SQL databases where primary keys are not autonumbered
arbitrary values, but consist of one or several entered fields. Partly, Clarion’s
autonumbering was a response to the quirkiness and poor performance experienced when
dealing with multi-part keys in Clarion data files. In the SQL world autonumbering to
produce the primary key by which a record is linked to other data is frowned upon by
relational purists, but tolerated. The theory is that each table is an entity, and there should
be attributes of each instance of the entity that make it distinct. Autonumbering is viewed
as a bit of a cop-out. Still, most databases provide you with methods for autonumbering. In
Microsoft’s SQLServer there is an IDENTITY column attribute that handles
autonumbering. In Oracle autonumbering is implemented using a sequence.

What happens if you use Clarion to autonumber the column you use as the primary key of a
table? The ABC PrimeAutoIncServer method (which is called when you enter a form
in insert mode, or when you choose Insert on a browse) does the following: queries the
database to find the highest existing key value, increments it by one and inserts a record
with the new ID number and all the other fields “blank” or with default values.

There are two major problems with carrying out this process in Oracle. The first is that
“blank” records often cause problems. If you design your database properly many fields in
your tables will not allow NULLs. For example, your order table should always require a

AutoNumber ing In Oracle
customer; your order item should always have a price, etc. You can get around these
constraints when you add your “blank” record by making up default values, but the price
will be shoddy, error-prone data. You can save records with nonsense values for fields that
should always have real values, but there is always the possibility that some of these crud-
filled records will take up permanent residence in your table. The second problem with this
technique is poor performance with a large number of users. If there are a lot of people
inserting into a table, there are going to be a lot of requests to read one thing: the last value
in the index. This is also an area of the disk that is going to be written to a lot: each time a
new record is added there will be changes made specifically to that part of the index.
Grabbing the next value from a sequence is, by comparison, very fast.

The Clarion method also has another built-in problem that will slow it down on busy
systems. The insert is carried out in two separate operations: first the maximum value is
retrieved from the table, then a record is added using the incremented maximum value. The
possibility exists that another user can retrieve the same maximum value from the table
before the first user gets around to inserting and committing its new record. This second
user will then try to insert a record with the same key value as the first user has already
added. This insert will be rejected. The PrimeAutoIncServer method gets around this
problem by carrying out the whole process again if it fails the first time. By default it
allows three tries. This is not just a theoretical problem: it happens in practice. In the
example application I have the number of attempts allowed set at 6: try reducing that to 1
and see how many records fail to get added. On my system it was close to three percent.
Although this scheme manages to get records numbered and added, in the real world, if you
have an application that responds to heavy usage by increasing the work the database is
asked to do, you are asking for trouble.

Theory therefore says that using the Clarion method of autonumbering will slow down
your application rapidly as the number of users increases. The source that accompanies this
chapter tests out this theory. Just for fun it also looks at what happens if you use Topspeed
files for the same sort of load.

Before describing what the program does, I’ll explain how you should do autonumbering in
Oracle.

The way to handle autonumbering in Oracle is, as I said, to use a sequence. The sequence
exists completely separate from your table. Its only function is to provide the Nextval in
the sequence when it is asked. It may occasionally skip numbers, but it will never provide a
duplicate value. When you want to insert a record you ask the sequence for the next value
and put this value in the appropriate column. There are two ways of accomplishing this in
Clarion. The first method is the one described in the Clarion help file. First your program
asks for the Nextval in the sequence. When you save the record you use this value as the
ID. This requires setting up a dummy table in Clarion with one field (a ULONG) to receive
the value from the sequence. Your program gets the value passed to it using PROP:SQL,
for example:
301

Oracle

302
Dummy_table{PROP:SQL}='SELECT order_seq.nextval from dual;'

The second method is to set a trigger up in Oracle, for example:

CREATE OR REPLACE TRIGGER AUTONUM_ORDER
BEFORE INSERT ON ORDER FOR EACH ROW
BEGIN
 SELECT order_seq.nextval into :new.id from dual;
END;

If you have more esoteric autonumbering needs (incrementing numbers for the second or
third parts of keys), the Clarion method may start to look more attractive. However, the
“add an empty record” Clarion method still has problems, as I noted earlier. The pure
Oracle alternative would be to maintain a sequence for each of the numbering subsets. My
guess is that any numbering scheme involving more than one field will cause more
problems than it’s worth.

Testing the theory
The theory suggests that the larger the number of contending users, the worse the
performance of the Clarion scheme will be compared to the Oracle sequence scheme. The
example program is set up to test this by taking a fixed number of records to add and
looping through a series of “users”. Each user gets to add their segment of the records. For
example, if the number of records to add is 1000, the program first spawns one “user” to
add 1000 records, then two users to add 500 records each, then three to add 333 records
each, and so on.

The actual inserts into the database are carried out by addrecords.exe. This is a little
project-generated executable that is passed the number of records to insert, and the scheme
for generating the id number. The records are added in a tight loop with a YIELD
statement. The main program calls RUN addrecords for each user. A statement in a
timer checks to see if all of the (1000) records have been added for that round of the loop. If
so it goes on to the next round of the loop (with an increased number of users). To be more
precise the check is to see if at least 97% of the records having been added: the number that
are actually inserted can be less than the full amount both because of integer division (three
users would add only 999 records) and because you may have some records not added
because of the duplicate value problem (in the Clarion scheme). In pseudo-code what
happens is this:

Tot_recs_to_add=1000
Num_users=1
:start
User_recs_to_add=Tot_recs_to_add/num_users
Loop k=1 to numusers
 Run addrecords(user_recs_to_add)

AutoNumber ing In Oracle
End !loop
Check 5 times a second
 If at least 970 new records have been added
 Num_users=Num_users+1
If Num_users > 10 then finish else go back to :start
 End if

The slightly complicated structure is required because while you want some of the actions
to run concurrently (e.g. four versions of addrecords running to simulate four users), you
don’t want to start the five user scenario until the four user scenario has terminated.

Times can either be checked by calls to clock() at the beginning and end of the outer
loop, or by looking at the times of the records added (one of the columns stored in the test
table is the add time). I have used the first method.

On my machine, the practical results are as follows:

• Using the Clarion autonumbering: 1 user takes 5.69 seconds to add 1000
records; 10 users take 9.34 seconds

• Using an Oracle sequence to handle the numbering: 1 user takes 5.58
seconds; 10 users take 8.33 seconds

The practical test does therefore validate the theory: while the sequence method is only 0.1
second faster for a single user, the advantage rises to 1.0 second when you reach ten users
(which is a greater than 10% speed advantage). The tests were run on an HP clunker
running NT4. Times are not that precise since the main timer only checks for completion
five times per second.

Just for fun I set up a similar test to work with Topspeed files. If you need an example of
how badly Topspeed files perform relative to a real database under multi-user access, this
will do it for you. While using stream and flush is significantly faster than can be achieved
using Oracle (about 1 second for 1 user), using LOGOUT and COMMIT around each
transaction will kill performance when you add just the second user.

And not coincidentally, transactions are the subject of the next chapter.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v5n11oracle.zip
303

Oracle

304

TRANSACTIONS IN ORACLE

by Jon Waterhouse

In the previous chapter I discussed autonumbering in Oracle. Now it’s time to look at
another important issue in Oracle (and other) databases: transactions.

Transactions are units of work that take a database from one consistent state to another.
Whether your back end is an Oracle database or Clarion TPS files, one thing you want to
prevent happening is having a database end up with half a transaction in it. The classic
example is a transfer between two bank accounts. One part of the transaction is to subtract
the money from the first account; the second part is to add it to the second account. Either
both these actions should take place, or neither of them. The second thing that is important
in transactions is how they incorporate changes made concurrently by other users. For
example, if you are trying to calculate and store bank balances, and there are transactions
happening at the same time at banks and ATMs across the country, which information is
incorporated and which is discarded?

Clarion has three commands that are designed to set up transactions, which are translated
into different commands for each back end. The Clarion commands are LOGOUT, COMMIT
and ROLLBACK. In Clarion the set of actions carried out between the LOGOUT and the
COMMIT is the transaction.
305

Oracle

306
In Oracle, everything between one commit and the next commit is a transaction; there is no
equivalent of a LOGOUT statement (this is not true in several other SQL databases). There
are also some activities (e.g. involving the DDL, such as creating tables and altering table
structures) that implicitly force a commit. Rollbacks occur either when errors are
encountered or a ROLL BACK statement is encountered.

There are two other statements that control transactions in Oracle; SAVEPOINT allows you
to break a transaction into parts so that if a rollback happens it the database is rolled back
only to the savepoint (rather than the last commit), and PRAGMA
AUTONOMOUS_TRANSACTION is a stored procedure directive that allows transactions
within transactions. One use of this is to allow a logging procedure to document what
someone attempted to do even if the attempt ultimately failed and was rolled back.

The points in a Clarion program when transactions are most important are when inserting,
deleting and modifying data in the database. Client side autonumbering on insert is a
potential additional source of data modification, separate from the “real” insert.
Autonumbering managed by Clarion is not a good idea in Oracle databases, as I explained
in the last chapter. In the browse-form paradigm inserts, changes and deletes mostly happen
when a form is completed.

The other major place where data modification takes place is in batch transactions carried
out in process procedures. If you are writing with an Oracle back end in mind you will
likely never use process procedures: most processes will translate into a single SQL
statement. In those instances where row-by-row processing is still required you will likely
set up a cursor in a stored procedure to handle this rather than use a process in Clarion.

If the batch process is translated into a single SQL statement the transaction will include (at
least) the entire batch process; if an error is encountered in one row, none of the changes
will take place. The concept of putting a LOGOUT/COMMIT around an entire process is a
bit of a foreign concept to a pure Clarion programmer. LOGOUT/COMMITs are sometimes
inserted within process procedures to process (say) 100 records at a time, but this is
normally done to improve performance. In Oracle, the rationale is mainly that it is a lot
easier to deal with a transaction that fails entirely, than with one that alters half (or some of)
the rows, and ignores others, leaving you to figure out into which category a particular row
falls.

A second method of implementing the functionality of a batch procedure is to use a cursor.
If you use a cursor you have a choice of whether to commit each row as it is processed, or
to treat the entire batch as a transaction. There are still some difficult questions to work out.
For example, suppose you are adding a new employee to your HR database. He has
qualifications from some foreign university that you have to add to an existing list. When it
finally comes time to save your new employee record in the database, you find you can’t do
it because you don’t have his social insurance number (which is not allowed to be NULL).
Should the qualifications you entered be considered part of the whole transaction and rolled

Transact ions In Oracle
back, or should the addition to the qualifications list be considered a completely separate
transaction? By default, in Clarion it would be a separate transaction; in this case, this is
probably not a bad thing, in other cases, you may want to consider some of these ancillary
changes as part of one multi-faceted transaction.

The ABC templates that ship with Clarion try to deal with two transaction-related issues:
concurrency control and referential integrity. I began a discussion of referential integrity
earlier; the following section will discuss concurrency issues.

Understanding how Clarion deals with basic concurrency issues will help you understand
how more complex transactions can be managed.

Concurrency control
Concurrency control has to deal with two users making changes to the same record. Oracle
will happily give any number of users a copy of a particular table row to look at. If more
than one of those concurrent users decides she wants to make changes to the record and
save those changes back to the database, you have a problem. There are two ways to deal
with this. One is for the program to lock rows where it is likely that the user will update it
(e.g. when the user opens a form) so that someone else who comes along is told the record
is in use if they also try to update the same row. The second is to check just before changes
are saved to make sure that someone else has not changed the row while we have been
preparing our changes. I guess there is also a third way, which is let people save whatever
they want without any checks, but users don’t react very well to finding things unchanged
that they know they have changed (but someone else wrote over their changes afterwards in
changing something else in the row at the same time).

The two solutions described above are known as pessimistic and optimistic locking
respectively. Pessimistic concurrency says it’s fairly likely someone else will muck with
my data before I’m ready to save, so I should lock it now; optimistic concurrency says it’s
unlikely anyone else will have done anything to my record, but I’ll check just to make sure,
and will accept the risk that I’ll have to re-enter my changes if that happens.

The first method (pessimistic) is accomplished in Oracle by requesting data with a FOR
UPDATE clause. Other people can still read the data, but they can’t acquire the row FOR
UPDATE themselves, nor can they update or delete the row without locking it first (which
would be denied). In Clarion, to implement pessimistic locking, when the form opens the
SELECT statement would have to select the row with the FOR UPDATE clause. You
could accomplish this by using the Clarion SQLCallback feature, but that isn’t
something I’ve tried.
307

Oracle

308
To implement optimistic locking, just before saving changes, the application should re-read
the data, check to see that the row still looks like it did when it was originally grabbed
(giving you an error message if not), then save the changed row. Ideally, it should do this all
in one operation so that there is no chance of a change happening in between. In SQL this
can be accomplished by a statement like:

UPDATE mytable SET changedfields=:newvalues
WHERE changedfields=:oldvalues and allotherfields=originalvalues

This is what a standard Clarion application will do. Slightly less reliable, because there is
the chance that a change will be made in between the check and making your change, is to
carry out the check to make sure the row still looks the same first, and if that’s okay, then
make the change.

Up to this point I have been a bit slack in my use of the word save. Using flat files you
think about things the following way: you grab the record off the disk into the record buffer
in memory; you make the changes in memory; you save the changed buffer back to the
disk. Game over. Anyone else comes along afterwards and reads from the disk, they see the
changed record.

With Oracle, that is not true. If I (User1) grab (SELECT) a record for update and make a
change using the UPDATE command (e.g. UPDATE Customer set
firstname='Jon' where lastname='Waterhouse' and
firstname='John') and you (User2) now come along and query the database to fill
your browse with Select id, firstname, lastname from customer
where lastname like 'W%' you will still see the John Waterhouse row. You will
continue to see the John Waterhouse row, and not the Jon Waterhouse row until I (User1)
COMMIT my change (and maybe not even then – see below). I on the other hand, filling my
browse with the same query before I commit will see the row as Jon Waterhouse and not
John Waterhouse. I made the change; I get to see the change. But no one else gets to see the
change until I decide I’m happy with it (and any other changes I might have made), and
COMMIT So, when I have used the word save in the previous discussion on locking, what I
meant was update and commit.

With this extra bit of knowledge, let’s revisit the discussion on locking. If my Clarion
application does not use the FOR UPDATE clause to implement locking, and there is a
large delay between UPDATE and COMMIT carried out by User2, then a simple re-query
before the UPDATE accomplishes virtually nothing; I would only see the record had
changed if my own session had changed it, or (possibly) if user 2 had got around to
committing her work.

Twice now I have mentioned that even if another user commits, my session might not see
those changes. Why is this? In some really complicated transactions (say the calculation of
accounting balances based on all entries in an accounting system) you may try to read the
same data twice. If the second time you read the data you get back different information

Transact ions In Oracle
than the first time this may make it impossible for your calculations to produce a result that
adds up. This sort of transaction needs to be protected from reads that are “non-repeatable”
(i.e. because someone else has changed the data meantime) or “phantom” (someone has
added a record that didn’t exist the first time we read the data). There is a third sort of read,
called “dirty”, which allows you to see uncommitted data, but Oracle does not allow this
under any circumstances. The Transaction Isolation Level determines what sorts of reads
are allowed. The two choices in Oracle are Read Committed, which allows both non-
repeatable and phantom reads, and Serializable, which allows neither.

That said, what does Clarion actually do? Does it issue FOR UPDATE selects? Is data
committed immediately after any and all SQL statements that update data? What
transaction isolation level is used?

In the standard browse-form application, when you select a record for update, the
TakeEvent method of the BrowseManager first calls the Window.Update method,
and then the Ask method calls the update form procedure. It is the Windows.Update
method that makes sure that all of the buffers for the browses on the window are refreshed
from the underlying views. This translates into a straight SELECT * (all columns)
statement. The process is summarized in the following table:

In the browse, when you select Change on
the browse>

BrowseManager.TakeEvent Chooses what to do based on
which control has been accepted.
In the case of the Change button,
does the below:

Window.Update Calls UpdateViewRecord for
all the browses on the window,
which GETs the current record

BrowseManager.Ask Opens the form defined as the
update procedure

In the form, when you click the OK
button (for an update)

Window.TakeCompleted() Calls different routines depending
on whether the form was called to
insert, change or delete
309

Oracle

310
In the form procedure, when you press the OK button, a complicated sequence of Window
methods is called. For purposes of this discussion, it’s sufficient to note that if everything
goes according to plan the TakeCompleted method calls a routine based on whether the
form was called to update, insert or delete. In the case of an update, the method checks to
see if any changes have been made, and if so it calls the SELF.Primary.Update()
method, i.e. the RelationManager method for the primary file. This method in turn
uses the UpdateServer method of the underlying FileManager. At the beginning of
the RelationManager method, a LOGOUT is performed (what happens here is
explained below), and in the FileManager method an SQL UPDATE statement is
prepared as a result of the PUT() statement of the form:

Update mytable set changedfields=:newvalues
 where changedfields=:oldvalues
 and allotherfields=originalvalues,

That is, Clarion implements an optimistic concurrency check. If this statement succeeds the
RelationManager method goes on to make changes to child files (if the RI
enforcement is local and not on the server). Finally, at the end of the
RelationManager.Update method, assuming that no errors have been encountered
at any stage, the Clarion COMMIT statement changes the isolation level back to Read
Committed and turns auto-commit back on, which effectively commits the transaction.

If that description was a bit much, then here is just the bottom line. Clarion uses optimistic
concurrency checking. The scope of a transaction is from the beginning to the end of the
RelationManager method; in the middle of the process a call to the FileManager

RelationManager.Update Initiates the logout (translates into
setting the transaction isolation
level to Serializable, and turns off
auto-commit)

FileManager.TryUpdate/
UpdateServer

Tries to save the primary record
using PUT. This translates into an
UPDATE statement in SQL;
passes errors, concurrency errors
in particular, back to the caller

RelationManager.Update
(continued)

If saving the main record
succeeded, and RI is to be handled
locally, calls the
SecondaryUpdate method
(which may be called recursively)
to update the child records if the
linking value has changed.

Transact ions In Oracle
method actually writes the changes. Changes are committed at the end of the
RelationManager method. The transaction isolation level is serializable.

One of the advantages of Clarion is that you can use the same syntax and have the database
drivers convert your Clarion statements into statements appropriate for the particular file
driver. And even with Oracle as the back end, you have (with the Enterprise edition) a
choice of file drivers to talk to Oracle, the generic ODBC driver and the Oracle
Accelerator.

ODBC, by default, sets auto-commit on. This means that every statement sent to Oracle is
implicitly followed by a commit. With auto-commit on there is no way that you could
implement a consistent multi-statement transaction. Thus, one of the most important things
that the LOGOUT statement does is to change the ODBC Connect environment setting to
turn auto-commit off. This is important to know. If, for example, you wanted a statement to
be part of the same transaction as the main statement, and you placed it before the
RelationManager.Update procedure, since auto-commit is, by default, turned on,
this statement would auto-commit. If the main statement later rolled back because of errors,
your initial, pre-logout change would still be stored in the database.

The second ODBC operation carried out by the LOGOUT is to set the transaction isolation
level to SERIALIZABLE. By default, Oracle works with an isolation level of READ
COMMITTED. In most cases the change in isolation level won’t make any difference to
you, as changes to the one record you are working with are dealt with by the concurrency
check; it is only if your transaction includes reading other data that this will affect you.

Oracle aficionados will tell you that the reason ODBC defaults to auto-committing every
update is that it’s a Microsoft design, and that Microsoft’s SQLServer quickly falls to its
knees when transactions remain uncommitted because it can’t handle large numbers of
unreleased locks. They also maintain that pessimistic concurrency checking (which entails
locks being held for longer) is a more sensible approach than optimistic checks, but again
that optimistic checking is chosen because of the locking problems of non-Oracle
databases.

When you are using Oracle Accelerator the only real difference in the processing of
transactions compared to the ODBC method is that the transaction isolation level stays at
read committed.

Similar events take place for inserts and deletes.

The important thing to understand about the way that inserts, changes and deletes are
accomplished in Clarion is that if you want to make other changes as part of the same
transaction, it has to be between the LOGOUT and COMMIT statements, and this means your
code has to happen in the middle of the existing ABC RelationManager (RM)
methods. The obvious place to add code is after the FileManager (FM) method that is
called by the RelationManager method. The relevant methods are the TryUpdate,
311

Oracle

312
TryInsert and DeleteRecord methods. Your additional code would first check to
make sure the main action happened, then make additional changes.

It is quite possible that you want to add different things into the transaction depending on
the context. For example, if the application maintains a transaction journal file, which is the
main file that is updated by a few screens for varied purposes, the context somehow has to
be communicated to the method. This might involve adding a parameter to the
FileManager methods and the methods that call them.

I should note that the above approach is based on the C5.5 templates, which make the basic
change (additions to all transactions on a file irrespective of context) relatively easy to
accomplish. In the C5 templates things are not quite as easy. This is because the insert and
delete methods call the FileManager UpdateServer and InsertServer methods,
which are private, and the RM.Delete method issues its own DELETE command, while
in C5.5 the new FM.DeleteRecord method is called.

Getting more complex
At the beginning of this chapter I brought up the classic transaction of the transfer of
money between two bank accounts. I still haven’t got beyond the simple transactions that
Clarion manages itself, plus some alternatives in getting Oracle to manage some of the RI.
Before going on to discuss multi-element transactions, I’d just like to mention one other
Oracle feature that may help you avoid entering this realm. Clarion, in its documentation of
views, says:

PUT only writes to the primary file in the VIEW because the VIEW structure
performs both relational Project and Join operations at the same time.
Therefore, it is possible to create a VIEW structure that, if all its component
files were updated, would violate the Referential Integrity rules set for the
database. The common solution to this problem in SQL-based database
products is to write only to the Primary file. Therefore, Clarion has adopted this
same industry standard solution.

However, if your view is declared in Oracle, you will find that you can directly update most
of the columns in the view, whether they are in the primary file or not. There are some
exceptions. For example, if your view contains a “virtual column” calculated from one or
more table columns (for example, the view contains a NAME column that is based on
concatenating the FIRSTNAME and LASTNAME columns in a table), you cannot directly
update it. With an Oracle view set up, you can use the view as the “file” for a form, and
Oracle can update the view fields you change on the form regardless of the underlying table
they come from. In some cases this can dispense with the need to set up multiple data
update statements in a transaction.

Transact ions In Oracle
Here’s an example. You have three tables: MACHINES, PARTS_LIST and PARTS. You
could set up a view in Oracle like this:

CREATE VIEW v_machine_cost AS
SELECT m.machine_name, p.part_name,
l.num_parts,p.unit_cost,
p.unit_cost*l.num_past extended_cost
FROM machines m,parts_list l,parts p
WHERE m.id=l.machine and l.part=p.id
and m.id=:machine_of_interest

A form based on this view would allow you to change how many of a particular part is
required for the machine and the unit cost of the part. Oracle is smart enough to translate
this into a change in the PARTS_LIST table for the first and change in the PARTS table
for the second. This gets rid of the need to write two update statements arising from the
changes on one window.

Summary
In these chapters I’ve covered some of the issues involved in moving an application from
flat ISAM files to a client-server architecture using a database like Oracle as a back end. As
should be clear by now, it is not just a matter of setting up the Oracle tables and pointing
your dictionary at them. Both referential integrity and autonumbering are essential aspects
of migration.
313

Oracle

314

MS SQL

MIGRATING THE INVENTORY APPLICATION
TO SQL SERVER

by Ayo Ogundahunsi

The amount of data being processed in corporate databases and over the Internet has
created a demand for more powerful engines for data storage, access, and processing.
While Clarion is a powerful RAD tool, a necessary complement is an excellent back end
SQL Database.

In this chapter I will attempt to reinforce information contained in earlier chapters. The
emphasis of this series is on portability, business rules, referential integrity (RI), and
Clarion as an interface tool. More specifically:

• If you are the designer of the overall application, i.e. you are responsible for
creating the original tables, the business rules and logic of the application
must be moved to the back end so that a non-Clarion application will be able
to use your logic. I call this approach non-isolationist in the sense that
components, for instance your data types, will be directly accessible to other
systems. For example, you do not use a LONG instead of a DATE data type
317

MS SQL

318
so that updates from within Clarion will not differ from updates outside of
Clarion.

• If your application will be accessing an existing database, then you will still
try to put most of your business logic/rules at the back end, i.e. in stored
procedures.

• When RI is enforced at the back end, you greatly minimize the risk of bad
data entering into your database. This becomes more evident where other
applications input data to be used by your system.

• Clarion moves away from its role as the complete database application and
into a role as an interface tool. Extensive data manipulation is done at the
server using stored procedures called from within Clarion.

Some may argue that the points mentioned above reduce control you have over the
customer, especially in the case of contractors. Nevertheless, it is a matter of how you view
the services you are offering. Do you want to deploy a system where all the components
can only run with Clarion? Or, you want to deploy a system for which someone can easily
code a Visual Basic interface? It is a business decision. Note however that times are
changing, and customers are starting to look at more portable systems, so you may not want
to be overly proprietary in your design.

On the marketing side, the more you emphasize on the fact that the logic of your
application resides in SQL, the easier it becomes for you to enter into the arena controlled
by other languages like Visual Basic, PowerBuilder, etc.

Existing resources
There are many articles in Clarion Magazine, including several published in this book, that
have treated similar conversions extensively; please make sure you refer to them since I’ll
assume some prior knowledge. In particular you should be familiar with the following
material:

• Scott Ferret’s “How To Convert Your Database To SQL,” p. 175.

• Stephen Mull’s “Converting TPS To MS-SQL,” p. 183

• Rick Hoffman’s MS-SQL Tips and Tricks and C5 (Rick’s original
site is no longer up, but you can still get this article via the
Wayback Machine:
http://web.archive.org/web/20020816013033/http://home.tampabay.rr.com/r
hoffman/MSSQL-C5.document.htm

Migrat ing The Inventory Appl icat ion To SQL Server
Stephen Mull’s chapter (a must read) covers a lot about conversion and contains most of
the tips and tricks explained Rick Hoffman’s article.

See the end of this chapter for some non-Clarion resources.

Getting Started
There is an Inventory example that comes with Clarion. It is located in:

C:\Clarion5\Examples\INVNTORY

for Clarion 5, or in

C:\C55\Examples\INVNTORY

for Clarion55. To follow along with this chapter, make a copy of this directory to
C:\INVNTORY. All the examples will be based on this directory.

I will be using the terms Columns and Fields interchangeably, also Rows and Records.
Columns and Rows are SQL terms; Fields and Records are the Clarion equivalents.

The conversion steps on the Clarion side are as follows:

1) Dictionary/Application Changes

2) Create a copy of INVNTORY.DCT, INVNTORY.APP.

3) Change the Table driver, properties.

4) Add Identity fields.

5) Change Data types (if needed. E.g. LONG to DATE).

6) Remove Initial Values from Clarion dictionary. If TODAY() is used and is
needed, remember to define a DEFAULT in SQL Server as explained under
the DEFAULT section in this chapter.

7) Remove GROUPs if used (in SQL tables you will only use GROUPs to
translate the SQL DATE/DATETIME/TIMESTAMP data types to their
Clarion equivalents).

8) You will also need to change STRINGs and MEMOs to CSTRINGs.
Remember to add 1 to the size of your field when using CSTRINGs. Do not
use the LONG data type for date fields; use DATE instead.

9) Delete procedures in APP file.

10)Template/Classes

11)Auto Incrementing - The Jim Kane Solution
319

MS SQL

320
12)Connections

13)Connection String

14)Database Creation

15)RI in Clarion Dictionary Fields

16)Default values in Fields

17)Script generation (Synchronizer)

Step 1 - Dictionary /application changes
You have to load the Inventory dictionary located in C:\INVNTORY and save it as a new
dictionary under the name INV_SQL.DCT. Repeat this step for the application file:
INVNTORY.APP saving it as INV_SQL.APP. One thing you shouldn’t forget to do is to
change the dictionary in INV_SQL.APP to INV_SQL.DCT.

The next thing is to modify the table properties by changing the Driver to MS SQL Server,
Specifying an Owner, and the way the table is named on the back end. Figure 1 shows what
the InvHist Table looks like after this step is complete.

The fields that have changed are the driver, the owner, the full pathname, and the Enable
Table Creation checkbox.

Owner Name: (!GLO:ConnectionString)

Figure 1: Changing the InvHist table settings

Migrat ing The Inventory Appl icat ion To SQL Server
The owner name is the label of the connection string (see explanation on Connection
String below). You will have to define this as a Global variable either in the Dictionary or
in the application. The ! prefix tells Clarion this is a field and not a string literal.

Full Pathname: DBO.InvHist

The MS SQL back end recognizes the pathname like this. DBO stands for Database Owner,
and InvHist is the name of the table. For now, I will stick to this simple approach to
ownership. A complete understanding of database ownership and roles is beyond the scope
of this chapter.

Enable Table Creation: Unchecked

Enable table creation is unchecked deliberately. It is better you create the tables with the
back end than through Clarion.

System IDs and identity columns
Properly designed tables usually have fields (columns) designated for storing the identity
values of rows. The identity value is unique for each row in a table, and can be used to link
child records in other tables. This subject has been already covered by Dave Harms in
“Designing Databases,” p. 1) .

If you load the Inventory dictionary into the Data Modeller, you can see that there are no
identity fields defined. Products does have a ProductNumber, and Vendors has a
VendorNumber, which are presumably unique in each table, but these data could also
321

MS SQL

322
change. It’s better to have a unique, autoincremented number which will never need to be
changed.

Figure 2: The Inventory tables without identity fields

Migrat ing The Inventory Appl icat ion To SQL Server
After adding the identity fields, I have something like this:

A couple of things to note here about naming and key attributes. The naming convention is
up to you. Some people use SysID, some NameOfTable_ID. I prefer using
ID_NameOfTable for the simple fact that in a very big database, you can immediately
see the linked tables, sort the IDs and put them together in a big table, etc. Also, if you are
using the MS SQL Server View Designer (more about this later), once you populate the
screen with tables, the designer automatically connects the tables together for you. This is
quite helpful and makes your work a lot easier. I use Crystal Reports to print out my
database structure, and I have the field names sorted, so I have all the link fields (those
starting with ID_) all together.

I used the prefix “PK” to indicate Primary keys, and “FK” to indicate Foreign Keys. It is
always better to use a naming convention like this because when you synchronize with the
MS SQL Server, you will find the Table design interface in the Enterprise manager easier
to use.

I can also go further and rename the other keys like SK_VendorNumber where “SK”
means sort key, or UQ_VendorNumber where “UQ” means unique key. It is good to

Figure 3: The Inventory fields with identity fields added
323

MS SQL

324
distinguish these keys in a way you can easily recognize because it quickly gives you an
idea about how the key was created.

In setting the attributes of the keys make sure that all your keys are case-sensitive. If you
don’t do this, performance will probably suffer significantly.

Deleting the application procedures
All procedures in the application file INV_SQL.APP except the MainFrame procedure
are to be deleted. Yes, deleted. Once you are done with initial stages of conversion, you can
import the same procedures from the original application file (INVNTORY.APP). This
makes conversion faster.

Auto Incrementing
In short, the problem with SQL auto-incrementing is that while it’s safe and efficient to
have the server create the auto-incremented ID for a new record, you won’t have that ID
available to you when you want to add child records to the record you’ve just created. Read
the chapter “An Introduction To SQL,” p. 141 for background on the auto-incrementing
problem.

Figure 4: Deleted procedures

Migrat ing The Inventory Appl icat ion To SQL Server
There are different ways to solve the auto-incrementing problem; I will use the solution
provided by Jim Kane (which is an adaptation of an initial solution by Scott Ferret). You
can download Jim’s code here:

http://www.icetips.com/ftp/old_stuff/sqlan55.zip

From the downloaded file, follow these steps (culled from the readme.txt file) to install the
code:

1) Copy SQLAN.TPL to the template directory and register SQLAN.TPL

2) Copy SQLAN.CLW and SQLAN.INC into the Clarion Libsrc directory

3) In ABFile.inc add two methods:
SetAutoIncDone Procedure(BYTE pAutoIncDone)
GetAutoIncDone Procedure(),BYTE

4) In ABFile.CLW, add the code for the two methods mentioned in 3 above.
The source code is in ABFix.CLW.

5) Add the Global Extension to your application.

6) You are to create a table called ‘dummy’ in SQL Server. (The script to do
this has been added to the example SQL Script.)
CREATE TABLE DBO."Dummy" ("dummy_col" INT)

Connection String
The Connection String is a string sent to a database server that allows your client machine
to access the database. This is separate from the normal network rights given to you to
connect to the Server. In order to understand how the connection string is used, it is
important to understand the security features in SQL Server.

Security in SQL Server can be implemented using Windows Authentication Mode, or
Mixed Security Mode.

• Windows Authentication works only on operating systems that use Windows
NT authentication; you cannot use this with Windows 9x or Millennium
servers. As clients, these operating systems must have a trusted connection
to the Windows NT/2000 Server. This is because SQL Server allows
connections based on the user account name or group membership available
in the Windows domain by mapping logins from a trusted NT Domain into
SQL Server.
325

MS SQL

326
• Mixed Security Mode: In mixed security mode, a user is given access by
Windows Authentication or SQL Server authentication. If SQL Server
authentication is used, then the password and username is maintained by
SQL Server.

Remember when you are installing SQL Server to choose Mixed Mode (not Windows
Authentication Mode). As you do this, you will be required to enter a password; this
password should be sa.

The connection string is made up of the server name, the database you are connecting to,
your username, and password. It is in the form:

'AYO2000-OFF,INV_SQL,sa,sa'

where AYO2000-OFF is the name of the Server, INV_SQL is the Database name, sa is
the username, and sa is the password.

If SQL Server is running on your local machine, you can use this connection string:

'(LOCAL),INV_SQL,sa,sa'

SQL Server 2000 was released with support for multiple instances. This means you can run
multiple copies/different versions of SQL Server 2000 on the same machine at the same
time. If you install SQL Server using the instance feature you have to qualify the server
name. So, assuming you created an instance called AYO_NV01 during setup, and your
machine/server name is AYODAHUNSI, then your connection string will look like this:

'AYODAHUNSI\AYO_NV01,INV_SQL,sa,sa'

From way the username and password is passed with the connection string, you can see
that there are obvious security issues. For now, I will stick with this approach.

Migrat ing The Inventory Appl icat ion To SQL Server
Create a global variable called GLO:ConnectionString to store the login information.
Make it a CSTRING(128). Assign a value to this variable before the Open Files embed
in the Main frame, as in Figure 5.

This connection string is hard-coded in this example, but in a real-life situation, you can
read this from an INI file, or, use a more secure means of building the connection string.

Figure 5: Embed point for connection string

Resources

Professional SQL Server 7 Robert Viera

SQL Server 2000 Developers Guide Micheal Otey, Paul Conte

The Guru’s Guide to Transact-SQL Ken Henderson

SQL Server 7.0 Administrator’s Pocket
Consultant

SQL Team http://www.sqlteam.com

Microsoft SQL Server Home page http://www.microsoft.com/sql/default.asp

Help, articles, and scripts for SQL Server http://www.swynk.com/sql/
327

MS SQL

328
You’ve learned how to set table properties, create identity fields, install the auto-
incrementing code, and create a connection string. Now it’s time to create the database and
generate the table definitions.

SQL scripts
SQL Scripts are text statements that you execute on the back end to perform certain
functions. These include creation of databases, tables, stored procedures; execution of
scheduled tasks, and so many other operations that are normally done manually.

Clarion Enterprise Edition, version 5 and later, comes with a tool called the Synchronizer.
This tool generates an SQL script from your Clarion dictionary, and stores that script in a
text file. You then have to run this script on your back end in order to generate the database
that matches your dictionary.

If you don’t have Clarion Enterprise Edition, the alternative is to use third party, solutions
most of which are free. Here are some programs you can use to generate SQL scripts:

• DumbDict (Developed by Tom Ruby). Can be downloaded at:
http://www.tomruby.com/dumbdict.zip

• Geoff Bomford’s Templates. Can be downloaded at:
http://www.comformark.com.au/gwbsql.zip

DumbDict generates SQL Anywhere code, so the script needs some modification before
you can run it on SQL Server. However, Dumbdict comes with the APP file so you can
make modifications in the source. On the other hand, Geoff Bomford’s templates generates
pure SQL Server code as well as Pervasive.SQL code; this utility is indispensable if you do
not have the Clarion Synchronizer.

Generating scripts with Geoff’s templates
After you’ve downloaded and installed Geoff’s templates, open up the inventory
application and choose Application|Template Utility from the main menu. Select

Interactive Product Guide http://www.winntmag.com/Techware
/InteractiveProduct/SQL2000/

SQL Server Magazine http://www.sqlmag.com

Migrat ing The Inventory Appl icat ion To SQL Server
GWBSQL-Step_3 (see Figure 6) to generate the SQL Script. Remember, you need to
create a sub-directory called scripts under the directory that contains the template.

Generating scripts with the clarion synchronizer
Synchronization in Clarion Enterprise terms means ensuring that the structure of the
Clarion dictionary matches the database structure at the back end. This implies that if you
make a change at the back end, the synchronizer can modify the dictionary to match back
end, or vice-versa (referred to as two-way synchronization). Though this is a desirable
feature, it does not work well all the time, so what I recommend is one-way
synchronization, i.e. from the back end to the Clarion dictionary. More about that later.

Creating a blank database
Before synchronizing the Clarion Dictionary, you have to create a blank database. You can
do this by running a script or SQL Statement in the Query Analyzer, or by using SQL
Server’s command line utilities like OSQL.EXE, ISQL.EXE.

The command line utilities are the only way to run scripts if you are deploying Microsoft
SQL Server Desktop Engine (MSDE). MSDE is a trimmed down version of SQL Server
optimized for not more than five users, and does not come with any of the tools mentioned
under “Tools of the trade,” p. 332.

Figure 6: Generating scripts with the utility template
329

MS SQL

330
The ISQL utility is an old command line utility based on SQL Server’s DB-Library API.
This has been replaced by OSQL which is based on the ODBC API.

To create a database from the command line, enter the following command:

OSQL -SAYODAHUNSI\AYO_NV01 -Usa -Psa
 -Q"CREATE DATABASE INV_SQL"

OSQL will respond with messages like the following:

The CREATE DATABASE process is allocating
 0.63 MB on disk 'INV_SQL'.
The CREATE DATABASE process is allocating
 0.49 MB on disk 'INV_SQL_log'.

To get a list of more options available using OSQL, type OSQL /?.

If you want to create the database using the Query Analyzer, the statement to run is:
CREATE DATABASE INV_SQL, as shown in Figure 7.

Different settings can be specified when creating a database for the first time. As you get
more familiar with SQL Server, and you gain more experience, you can explore these
options. For now, let the default values take effect.

Figure 7: Creating the inventory database using Query Analyzer

Migrat ing The Inventory Appl icat ion To SQL Server
RI in Clarion dictionary fields
It is common for some people to attempt enforcing some level of Referential Integrity in
fields using the Must be in Table option under the Validity Checks tab. The validity check
settings in the VENDOR table is a classic example (see Figure 8). If you leave these settings
unchanged, you will not be able to use the Clarion Synchronizer to create your SQL script.
You must remove any Must be in Table requirements from your table field edits. This
validity check will also cause a GPF when you run the Clarion Synchronizer

Default value in fields
You also have to be careful about how you set default values in your Clarion dictionary. For
example, when you set defaults based on other fields, the Synchronizer will generate your
SQL Script with these defaults, and SQL Server does not understand this. For example, the
Default value for the Cost field in InvHist is PRO:COST, and the column is defined
this way in the SQL script:

”Cost” DECIMAL(7,2), DEFAULT(PRO:COST),

Unfortunately, MS SQL does not know what PRO:COST means, so when you try to run a
script created by the synchronizer you get a syntax error like this:

Line 46: Incorrect syntax near ‘PRO:’.

Figure 8: Clarion RI enforcement in the VENDOR table
331

MS SQL

332
When you use the Clarion Synchronizer to create your script, it is smart enough to use the
equivalent SQL function for the Clarion TODAY() function as a default in the INVHIST
table. The function is GETDATE(), and the definition for the Date column becomes this:

”Date” INT NOT NULL DEFAULT (getdate()),

But there is another caveat here. You can see that the data type used is INT, which is
equivalent to LONG in Clarion! I’ll cover this in more detail later. A reminder: do not use
LONG for date types; use DATE instead.

Script generation
Assuming you’ve followed all suggested changes, you can now run the synchronizer and
have it generate a script.

Tools of the trade
There are a couple of tools that come with SQL Server that have had a great impact in the
way people work with SQL Databases. These tools make it quite easy maintain, test, and
even deploy applications using SQL Server while the developer is still in the process of
acquiring SQL skills. Though there are a lot of books available that describe how to
effectively use of these tools, you can quickly find your way because of the intuitive
interfaces.

• Enterprise Manager (EM) - As the name indicates, this tool manages
everything from databases to stored procedures, Alerts, Jobs, replication, etc.

• Query Analyzer (QA) - The Query Analyzer is used to run scripts or SQL
commands. Commands can also be parsed (i.e. checked for accuracy) before
they are executed. Press F5 to run either the highlighted query, or every
command in the QA window. Press Ctrl-F5 to parse the highlighted query, or
every command in the QA window. Almost all the tasks performed by
pointing and clicking within the Enterprise Manager can be done within the
Query Analyzer. The developer new to SQL Server should stick to the
Enterprise Manager in order to get familiar with SQL.

• View Designer (VD) - The View Designer is seldom known to new users of
SQL Server, and as a result these users may spend too much time figuring
out how a complex SELECT statement should be written. When I am
creating SELECT statements whereby I join many tables, I usually use the

Migrat ing The Inventory Appl icat ion To SQL Server
View Designer to graphically build up the kind of join I want. Now, if your
identity fields were defined as I suggested earlier, once you populate the
View Designer the correct links/joins to your database are automatically
created and scripted.

• Database Designer - The database designer shows you how tables are
related/linked in your database. This tool can also be used in creating new
tables, and modifying the properties of existing ones. Note that the relations
in the tables (as shown in Figure 9) are not generated automatically when
you synchronize with a Clarion Dictionary; you will have to add these
yourself.

However, if you followed the suggestions in creating ID fields and their corresponding
keys as described under Step 1 - Table Changes, the links are generated automatically
based on fields with similar names.

• DTS (Data Transformation Services) Designer - This is probably one of the
most effective tools in SQL Server for data conversion, and beats anything
I’ve seen on other database back ends. The DTS Designer can be used for
converting data from one file format to another with a high degree of
automation and sophistication. As an example, think of a scenario where you
have to download customer invoices from an AS/400 mini computer with
some massaging of the data required before it can be used; you can do this

Figure 9: The Database Designer
333

MS SQL

334
with DTS. Or perhaps you want to do a parallel run between an old system
and a new one, and data is still being entered through the old system; you can
set up DTS to synchronize the two systems.

• Books Online (BOL) - This is the SQL Server help system. It is quite
versatile and indispensable, especially for a starter.

I have showed how default values can be made an integral part of your tables at creation.
You can also add default values later. Used carefully, defaults can help standardize
constants especially when maintaining the bridge between Clarion and MS SQL.

Date discrepancies
A common example is the use of defaults in preventing the “Record has been changed by
another station” error that occurs even on a single machine sometimes, and has been
frustrating to a lot of users that have posted questions on the SoftVelocity newsgroups.

In the earlier discussion about default values I mentioned that even though the Clarion
Synchronizer is smart enough to convert the TODAY() function to its SQL equivalent
GETDATE(), this causes problems later. This is what happens:

There are two Date data types in SQL Server, namely SMALLDATETIME and DATETIME.
SMALLDATETIME has accuracy up to one minute. e.g. 2001-05-03 03:57:00.000, while
DATETIME has accuracy up to 3.33 milliseconds, e.g. 2001-05-03 03:57:26.480.

The problem with a GETDATE() default value is that if for any reason rows are added to
your database outside Clarion, for example from a stored procedure, the column will be
updated with a value of a higher precision (as indicated above) because GETDATE()
returns the current date and time as a DATETIME data type. So, later, when a user tries to
edit that row from a Clarion Update Form, she gets this message:

”This record was changed by another station. Those changes will now be
displayed. Use the Ditto button or Ctrl+ to recall your changes”

The error occurs because Clarion is unable to handle the precision of milliseconds. In order
to resolve this, you can change the data type on the back end from DATETIME to
SMALLDATETIME if you do no need to deal with seconds. In most cases, this is
unacceptable. The other option is to create a kind of global default in SQL Server that
controls the precision of date values whenever updated . Fortunately, it is possible to
populate a database with default values by the back end, no matter where the update is
coming from, i.e. from within Clarion, or from a stored procedure. To do this, I will be
making use of the following Transact-SQL functions:

Migrat ing The Inventory Appl icat ion To SQL Server
DATEPART() - Return an integer value which represents the part used.

CAST() - Convert data from one data type to another.

CONVERT() - Similar to CAST() except with additional date formatting.

You can find a detailed explanation of these functions in the SQL Server’s Books online.

What I want to do is to split the value returned by GETDATE() into parts, and rebuild the
date, but this time with zeroes as milliseconds. Any default values will then be Clarion-
compatible. Here’s the code:

SELECT CONVERT(datetime,
(
CAST(DATEPART(yyyy, GETDATE()) AS varchar) + '-' +
CAST(DATEPART(mm, GETDATE()) AS varchar) + '-' +
CAST(DATEPART(dd, GETDATE()) AS varchar) + ' ' +
CAST(DATEPART(hh, GETDATE()) AS varchar) + ':' +
CAST(DATEPART(mi, GETDATE()) AS varchar) + ':' +
CAST(DATEPART(ss, GETDATE()) AS varchar)
)
,120)

Notice that I put a SELECT before the actual conversion. Get used to this; it’s a commonly
used way to get the result of expressions in SQL.

Now, copy this and run in the Query Analyzer, and you will get something like:

2001-05-03 03:57:26.000

depending on your time.

The Transact-SQL script to create a user defined Default called TODAY that I can use
globally to populate any column is this:

CREATE DEFAULT [TODAY] AS
CONVERT(datetime,
(
CAST(DATEPART(yyyy, GETDATE()) AS varchar) + '-' +
CAST(DATEPART(mm, GETDATE()) AS varchar) + '-' +
CAST(DATEPART(dd, GETDATE()) AS varchar) + ' ' +
CAST(DATEPART(hh, GETDATE()) AS varchar) + ':' +
CAST(DATEPART(mi, GETDATE()) AS varchar) + ':' +
CAST(DATEPART(ss, GETDATE()) AS varchar)
),120)
GO

Cut, paste, and execute this snippet in your Query analyzer, and your default will be
created. Note that the default can also be created from the Enterprise manager. However, it
is better you use a script to create this since it is more difficult to enter a formula in a one
line prompt. Later, you will see how to use this DEFAULT in your tables.
335

MS SQL

336
Running scripts
The synchronizer generates the SQL table creation script from the definitions in your
dictionary. You should load this script into your Query Analyzer. As you do this, you have
to remember to change your active database from “master” to INV_SQL or else the tables
will be created inside the master database. You really don’t want to do that.

Now you can run the script. After the script has generated the necessary tables and indexes,
constraints, etc., you need to change the default value of GETDATE() to dbo.TODAY

Figure 10: Running script to create tables

Migrat ing The Inventory Appl icat ion To SQL Server
using the global default called TODAY you just created. This will help prevent precision
errors discussed earlier.

You get to the window shown in Figure 11 by right-clicking on the table and selecting
Design Table from the context menu.

Data conversion and the role of constraints
If you take a look at the script created with the synchronizer, you will see some
CONSTRAINT statements towards the end of the script. This book contains a number of
references to constraints and referential integrity, which you can find in the index.
Nevertheless, as a recap, a primary key constraint will ensure that all rows (records) in a

Figure 11: Setting Date defaults as dbo.TODAY
337

MS SQL

338
table will have a unique key, and a foreign key constraint will ensure that a relationship
exists between two tables.

For example, you cannot have a record inserted into the VENDORS tables without an ID
from the Zip Code table. Now this presents a problem considering the way Clarion inserts a
blank record when it tries to auto-increment; when you try to insert a record into the
VENDORS table, Clarion will actually try to add a blank record first. Unfortunately, when
foreign key constraints are used, SQL Server will not allow this since the column -
ID_ZIPCODES in the VENDORS table has not yet been filled with any value.

According to the Clarion help on Relationship Properties in the Dictionary, setting the
Referential Integrity Constraints to Restrict, Restrict (Server), Clear (Server) are
supposed to generate different kinds of code within the SQL script. However, from what I
have seen so far, whatever setting you use will still generate these Foreign Key constraints.

For now, you can remove these foreign constraints. You can do this through the Enterprise
Manager or by running the code script show below:

ALTER TABLE DBO."InvHist"
 DROP CONSTRAINT "FK_PRODUCTS_INVHIST"
ALTER TABLE DBO."InvHist"
 DROP CONSTRAINT "FK_VENDORS_INVHIST"
ALTER TABLE DBO."Vendors"
 DROP CONSTRAINT "FK_ZIPCODES_VENDORS"

Figure 12: Constraint statements in SQL script

Migrat ing The Inventory Appl icat ion To SQL Server
The application
Remember that you deleted all the procedures in the application; you now have to import
the procedures again from the original example application - INVNTORY.APP. When you
do this Clarion will bring up an error about the dictionaries being different. This is no cause
for concern since you didn’t change any fields, rather, you only added some new ones.
Make sure you import all the procedures except the MainFrame because you have already
added the assignment to the connection string in a MainFrame embed point.

The application should compile fine without any errors. However, If you attempt to run the
converted application, you are likely to get this error message:

File (DBO.Vendors) could not be opened. Error: ODBC.DLL Could Not Be
Loaded (1). Press OK to end this application.

This happens when you compile your EXE as a 16 bit application, which is the default
mode for the shipped Inventory Application in versions prior to 5.5. Change your
application to 32 bit and this is resolved.

When working with SQL-based systems, you need to start thinking of the files (tables),
stored procedures, and views as one single unit called the database. So, it is better to open
all the files (tables) at the start of the application, and close them when exiting. Of course,
in applications that have a lot of tables, this can take a long time, but once the tables are
opened, whatever procedure needs to use these tables will not have to reopen them again.
Note also that an attempt to open the first table establishes a connection (using your
connection string) with the database.

After you have made the changes to the example application, running the application and
exiting will give you the GPF shown in Figure 13:

You can resolve this GPF by adding the INVHIST, PRODUCTS, VENDORS, and
ZIPCODES tables to the Other Tables section of the File Schematic in the MainFrame
procedure. By doing this, the tables are opened as the MainFrame is opened and closed
properly when the frame closes.

Figure 13: A breakpoint exception exiting the SQL application
339

MS SQL

340
Which way to go
Having gone through the basic conversion of a Topspeed file system to a SQL Server
system, you need to ask yourself if you want to stop here and deploy the application to your
customers in the present state. Or do you want to move out the underlying business logic to
the server as stored procedures and database constraints? For instance, it would be nice to
have a trigger that generates an email message when the stock quantity of any product falls
below the re-order level.

As I said before, how much code to move to the server is a business decision. One thing is
certain: SQL systems are rapidly replacing flat-file systems, and programming
languages/interfaces are increasingly transferring business logic to the back end.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v3n8sql.zip

USING SQL SERVER’S DATA
TRANSFORMATION SERVICES

by Ayo Ogundahunsi

In “Migrating The Inventory Application To SQL Server,” p. 317, I demonstrated how to
convert the Inventory application from TopSpeed file format to a more powerful database
engine - Microsoft SQL Server. In converting an application, changing database drivers is
not the only requirement. You also have to provide a way to convert existing data. In most
cases, existing clients are probably running applications using the TopSpeed database
driver, and transition to the upgrade should be easy and accurate.

One way to convert data is to use Microsoft’s Data Transformation Services (DTS). As the
name indicates, DTS transforms data from one form to the other. DTS is a very powerful
and effective tool, and comes bundled with SQL Server versions 7 and 2000. In this chapter
I will demonstrate how to use DTS to move data from the Inventory example to the
converted SQL Server application.
341

MS SQL

342
Using DTS
You can use DTS to move data from Data/ODBC Sources to SQL Server and vice versa.
For example, you can move data from an Oracle Database to a Sybase Database without
going through SQL Server at all.

One of the strengths of DTS is its ability to assemble tasks or functions and connections to
heterogeneous systems, and synchronize all these together into what is called a package.
The tasks can be importing or exporting data, or sending an email as soon as a particular
task is completed. The actions, processes, and settings created for transforming data can be
saved in SQL Server as a package, or externally as a Visual Basic Script (VB Script) that
can be run from a Visual Basic Application.

Improving the database
It’s quite simple to set up DTS to transform the data contained in the four files of the
Inventory application (INVHIST.TPS, PRODUCTS.TPS, VENDORS.TPS, and
ZIPCODES.TPS). As usual, I will be using the terms “files” and “tables” interchangeably,
however I will specifically use “files” when I am talking about TopSpeed data, and “tables”
when I am referring to SQL Server data. I will also introduce some additional tables that
will make the Inventory Application’s database design more practical.

The VENDORS file contains City, State and ZipCode fields. It also contains a field
called ID_ZIPCODES that is to be the linking field with the ZIPCODES files. To follow
normalization rules, and achieve better performance, I will remove the City, State, and
ZipCode fields from the VENDORS files. I’ll also create separate City and State tables
to replace the fields in Vendors, but this data will also be linked to Vendors via
ZipCode. While this is a good idea, understand that if you have to enter data into another
table, say a Customer table you must know the zip code for the customer or you will not
be able to add the record.

The interrelation will now be:

STATE <—>> CITY <—>> ZIPCODES <—>> VENDORS

Every zip code belongs to some city, and each city is in a state, so as long as you have the
zip code stored in the Vendor table you can easily get the rest of the information. The idea
is to try to eliminate redundant or repeated data as much as possible. This is called Data
Normalization. For more information please read Tom Ruby’s five chapters on the subject,
beginning with “Managing Complexity, Rule 1: Eliminate Repeating Fields,” p. 21.

Using SQL Server ’s Data Transformat ion Services
Updating the ZipCodes file
The ZIPCODES file in the original Inventory application contains about 3,924 zip codes.
This is not even half of the zip codes in the United States, but it is possible to add data from
an external table with enough zip codes that gives a realistic figure. You can download a
more accurate zip code file (http://www.par2.com/getit/zipcodes.zip) from Steve Parker’s
web site. This file contains about 48,254 records.

A little later I’ll show how to import a text file containing the 50 US states as well as their
abbreviations into a SQL Server database, with the CITY table filled accordingly, and the
linking IDs appropriately inserted. For now, I am going to do a straight import of the four
files directly into the SQL Server back end.

Connecting to data sources
When connecting to a Data source, what readily comes to my mind is Open Data Base
Connectivity (ODBC). I can use ODBC with DTS, but I can also connect to a data source
by using OLE DB Drivers.

Microsoft made some improvements to ODBC by creating what is know as OLE DB which
is a way of providing data access at a component level with an interface that is not
restricted to relational data only (as implemented in ODBC), but any other kind of non-
structured data that can include spreadsheets, email, etc. The driver for OLE DB is know as
an OLE DB Provider.

Microsoft ships an OLE DB Provider (Microsoft OLE DB Provider for ODBC) with SQL
Server.

See the following sites for more information on ODBC and OLE DB:

• http://www.microsoft.com/data/oledb/default.htm

• http://www.oledb.com/ole-db/guide.html

Data conversion options
There are two popular ways to convert data from the TopSpeed files to SQL Server tables.
One is by using Data Transformation Services (DTS), and the other is by adding TopSpeed
Data Source as a Linked Server to the SQL Server Environment using OLE DB. With a
linked server, you can send SQL to the database on the linked server and it will behave as if
it were an SQL Server database. However, the response to SQL requests is not as fast as if
343

MS SQL

344
an SQL Server database is being accessed directly. In this chapter, I will limit my
explanation to DTS.

TopSpeed ODBC Driver
When you install the Enterprise Edition of Clarion, you automatically install the TopSpeed
ODBC Driver (developer version) as well. The developer version of the driver cannot be
deployed with any application; if you want your customers to use it you need to contact
Soft Velocity Sales for ODBC license requirements.

Nevertheless, the developer version is appropriate for the purposes of this chapter. Since
this is an ODBC driver, the first step is to create a Data Source Name (DSN).

WARNING: It is important to mention here that any attempt to do anything too
complicated with this TopSpeed ODBC Driver freezes my system. For example
when I tried to create a linked server to TopSpeed, the process froze my SQL
Server, and nothing worked until I rebooted the PC. Probably this is a security
feature by SoftVelocity, but it is strange that I was unable to run my Enterprise
Manager after this. Shutting down the SQL Server service and restarting it did
not make any difference either. I had to restart my PC.

You can add a DSN by using the ODBC Data Source Administrator as shown in Figure 1.

Figure 1: Adding a DSN, step 1

Using SQL Server ’s Data Transformat ion Services
Two kinds of the TopSpeed ODBC Driver are usually installed. One is Read-Only. Either
will work for this purpose (See Figure 2).

You then specify the physical location of the TPS data file, as shown in Figure 3.

In Figure 3, the %DATE% shown in the Date Fields allows you to automatically convert a
Clarion Date field which is defined as a LONG data type to an ODBC date data type. The
same applies to TIME fields.

Figure 2: Adding a DSN, step 2

Figure 3: Adding a DSN, step 3
345

MS SQL

346
Understanding DTS
A DTS package contains all the rules required to automate the process of transforming data
from one storage format to another. Note that I didn’t say “from one SQL back end to
another.” You can use DTS to transform data from an Excel spreadsheet to SQL Server or
another back end (e.g. Oracle, Sybase, DB2, etc.), or, to a flat file system like TopSpeed,
dBase, or an ASCII file, and vice versa.

In order to transform data, you need a data connection to the source where data is coming
from as well as the destination where the data is to be converted. Default connections are
available for Microsoft Access, Excel, Paradox, Oracle (using an ODBC driver for Oracle
installed with SQL Server), Text Files, and HTML. Also available is connection to any
ODBC Driver as well as the OLE DB Provider for SQL Server.

DTS works in the form of a process-flow, and you create this visually. To build this
process-flow diagram, you drop tasks into the designer and connect them together, as
shown in Figure 4.

Different tasks can be linked together as a chain of events to be executed one after the
other. Some of these tasks are:

• Connecting to an FTP site and transferring files

• Automatically sending an email once a task has been completed

• Running a Microsoft Message Queue Task
(http://www.microsoft.com/msmq/default.htm)

Figure 4: The DTS Designer

Using SQL Server ’s Data Transformat ion Services
• Calling a stored procedure,

• Executing an SQL task,

• Copying a database

A very useful white paper on DTS is available at the MDSN web site:
http://msdn.microsoft.com/library/default.asp?URL=/library/techart/dts_overview.htm.

Another site dedicated solely to DTS is http://www.sqldts.com

Creating a package
Within the Microsoft SQL Server Program menu, there is a sub-menu - “Import and Export
Data”. This brings up an easy-to-understand wizard that takes you through the process of
setting up the package.

In setting up the package, for the Data Source select “TopSpeed Developer Version,” and
the DSN you just created (see Figure 5).

After selecting a Data Source Name (DSN), proceed by clicking the Next button. You do
not need to fill the other fields like Username and Password since you didn’t fill these
while creating the data source.

Figure 5: Choosing a Data Source
347

MS SQL

348
In configuring the destination, select the “Microsoft OLE DB Provider for SQL Server”.
Remember not to choose an ODBC connection as this requires creating a DSN entry for
SQL Server, which is unnecessary since the OLE DB driver is adequate, and more
efficient.

In choosing a destination, you have to fill in the Username and Password fields. The
database to be selected is the one I described earlier.

The next form on the wizard (see Figure 7) shows how to do a straight copy by selecting
the default radio button – Copy table(s) and view(s) from the source database – or by

Figure 6: Choosing a Destination

Using SQL Server ’s Data Transformat ion Services
writing a SELECT statement to retrieve a specific record set to be transformed – Use a
query to specify the data to transfer.

The next step is to map fields in the TopSpeed files to tables in SQL Server, as in Figure 8.

Figure 7: Specifying Data selection method

Figure 8: Mapping tables
349

MS SQL

350
When you click on the ellipsis button in the Transform column as shown in Figure 8, you
can specify how the destination table is used. This means the destination table(s) can be
deleted (DROP in SQL terms) and recreated before fields (called columns in SQL) and the
records (called rows in SQL) are updated sequentially with data from the TopSpeed files
(see Figure 9).

Figure 9: Pre-update Actions

Using SQL Server ’s Data Transformat ion Services
There are different ways a DTS package can be saved. The most ideal way is to save it in
SQL Server, so you can run it at any time via a stored procedure, as in Figure 10.

Click on Next to start the transformation process. If all goes smoothly, then a screen similar
to Figure 11 appears.

Figure 10: Save and Run

Figure 11: DTS Completed
351

MS SQL

352
We know all does not go smoothly most of the time. When an error happens you can
modify the transformation script to suit your environment. In the example the tasks
executed are in this sequence:

1) Save Package (The package is saved in your SQL database) - This is always
executed except when disk space is insufficient, or if you do not have the
required database permission to save DTS packages.

2) Drop Table [Table Name]

3) Create Table [Table Name] - This task might not execute if you do
not have the permission to CREATE tables, or if you have run out of disk
space.

4) Copy Data

Note that tasks in 2, 3, and 4 are repetitive for all tables.

Whenever the execution of a task is unsuccessful, you will see a red “x” instead of the
green check mark indicated in the first column. The severity of the failure is dependent on
the kind of task being performed. For example, if (2) is unsuccessful but (3) and (4)
succeed, this could be due to the fact that you checked Drop and recreate destination
table as indicated in Figure 9 when the table is non-existent in the database. It could also be
that you do not have the database permission to DROP tables, in which case you could end
up with duplicated data if you really wanted to start with a blank table before your data is
transformed. This applies to (3) as well.

Figure 12: DROP Error in DTS Package

Using SQL Server ’s Data Transformat ion Services
On the other hand, if (4) does not succeed, then no transformation has been done; this can
happen with data type conversions. See the next section for more on how to resolve this.
Another notable cause of failure can come from a column with a unique index being
populated with a duplicate values.

Whenever the status of a task indicates an error, double-clicking on the task will display the
reason for the error.

A VB Script example
When you are transforming data from, for example, a Btrieve file to a SQL Server table,
you are likely to run into Date field conversion problems, in which case DTS will not
transform the data. When this happens, you have to modify the Transformation script as
shown in Figure 13. (Note that this figure is similar to Figure 9; you get to it by clicking the
Transformations tab.). Your language of choice for editing can either be VB Script, or
JavaScript.

If you are converting a file with a structure where date and time information is stored in
two separate fields, it makes sense to merge the fields together and update the
corresponding SQL Server DateTime column.

Figure 13: Modifying column mappings, step 1
353

MS SQL

354
For example, assume there is another time field called TIME in the INVHIST file; the line
containing the selected text as shown in Figure 13 is:

DTSDestination("Date") = DTSSource("Date")

Modifying the script, you will now have:

DTSDestination("Date") = CStr(DTSSource("Date")) +"
"CStr(FormatDateTime(DTSSource("Time"),vbShortTime))

I’ve used some VB Script functions (in bold) in order to achieve a SQL DateTime field
format picture. VbShortTime is a Visual Basic constant which allows you to display
time using the 24-hour format (HH:MM).

If you are thinking of doing a lot of your work in DTS, it is a good idea to start getting
familiar with VB Script or JavaScript. You can download the VB Script HTML Help file
from the Microsoft Script Technologies web site:
http://www.microsoft.com/msdownload/vbscript/scripting.asp

Summary
Converting the Inventory application’s TPS data to a SQL database is quite simple.
Nevertheless, for practical purposes, say deploying an upgrade to an existing site currently

Figure 14: Modifying column mappings step 2

Using SQL Server ’s Data Transformat ion Services
running on TopSpeed files might require some level of automation. For Visual Basic (VB)
applications, a DTS can be saved as a Visual Basic Script (VB Script). This can be
compiled as part of Visual Basic. As usual, the Clarion Language does not enjoy this
luxury, so there is the need to provide a Clarion Application with an automation feature that
can also be integrated into the upgrade.
355

MS SQL

356

CONVERTING DATA WITH LINKED SERVERS

by Ayo Ogundahunsi

In all the examples I have presented in previous chapters, I didn’t alter any of the data.
However, when migrating from a flat-file system to an SQL environment, you can never
have an efficient SQL application if you are only comfortable with a straight conversion,
where data access and updates still follow the logic of a flat-file system. On the other hand,
if you intend to make the application more SQL-like, you might have to do some data
manipulation, column filling and table splitting to guarantee a more efficient system.

Now I will show you a different method of moving data into SQL Server. I will also
demonstrate how the data can be manipulated and converted to a more efficient relational
database model.
357

MS SQL

358
A new database schema
Figure 1 shows how these changes will be reflected in the database structure:

Notice dbo.CITY and dbo.STATES have been added, but for now the columns
dbo.ZIPCODES.CITY and dbo.ZIPCODES.STATE still exist in dbo.ZIPCODES.
The dbo prefix specifies the database owner. I will be qualifying tables in SQL Server
occasionally this way in order to differentiate them from Topspeed files.

When converting a flat file system to SQL, most developers start the design of the database
from the Clarion Dictionary and then export to SQL. For database maintenance, most
developers will make changes in Clarion and then try to use the synchronizer to push the
updates to SQL Server. I prefer to make the changes in SQL Server and then use the
synchronizer to push the updates to Clarion. (Actually, I make the changes in the Clarion
Dictionary manually most of the time.)

Figure 1: New Schema for Normalization (1st Stage)

Conver t ing Data Wi th L inked Servers
You can get the script State_City.sql that creates the STATE and CITY tables as part
of the downloadable source at the end of this chapter. It is important you run this script
before you start any conversion.

Zipcodes
If you take a look at the Topspeed ZIPCODES file, C:\INVNTORY\ZIPCODES.TPS, you
will notice that the State field data is abbreviated, for example ‘FL’ for Florida, as shown
in Figure 2. However, I need to be able to get the full name of a state.

Also, this zipcodes file contains about 3,924 records, whereas you can get a file containing
about 48,254 records from Steve Parker’s site (http://www.par2.com/getit/zipcodes.zip) . In
order to avoid confusion with the original zip code file shipped with Clarion, I will rename
the downloaded file to ZIPS.TPS.

Figure 2: Original Zip Code file
359

MS SQL

360
A close look at the contents of this downloaded file shows that it also contains only the
abbreviation of states. While this is okay for something like a mailing label e.g. MA 01001,
it is inadequate for proper report generation.

Note that ZIPCODES.TPS also contains some non-US Postal/Zip codes, and I have to
retain these when I attempt to merge ZIPCODES.TPS and ZIPS,TPS.

I have itemized a list of operations needed to reconstruct this schema:

• Merge ZIPS.TPS (48,254 records) into ZIPCODES.TPS (3,924 records)
while retaining non-US zip codes.

• Where zip codes match, use City field from ZIPS.TPS.

• Auto-increment ID_ZIPCODES in dbo.ZIPCODES. This will now be the
primary key of this table and SQL Server will set the value automatically on
inserts, since this column was declared with an IDENTITY property.
Whatever value is updated will have a relationship with the VENDOR table as
explained in the next point.

• The column ID_ZIPCODES in dbo.VENDORS will be updated with the
corresponding ID_ZIPCODES from dbo.ZIPCODES.

Figure 3: Downloaded Zip Code file

Conver t ing Data Wi th L inked Servers
The last item does not have to be done at this part of the conversion.

Linked servers
Earlier, I briefly mentioned linked servers. A linked sever is virtual server created by a link
from an SQL Server environment to an OLE DB data source. This link can be a relational
database or columnar data in a flat file. It can even be an Excel spread sheet as you will
soon see. See MSDN (http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/acdata/ac_8_qd_12_5vvp.asp) for more details on linked servers.

Included in the source download at the end of this chapter is the Excel spreadsheet State.xls
containing all the states in the US. Note that there are other ways of importing the data
contained in Excel file into SQL Server. You can export the spreadsheet to a text file and
subsequently import it to SQL Server by using the BULK INSERT command in Transact
SQL (Transact SQL is the dialect of SQL specific to SQL Server), or, you can use the BCP
command. BCP is a command line utility for importing data into a SQL Server Table, or
exporting the rows from a SQL Server table to a text file. You can also use Data
Transformation Services (DTS) to import the Excel file as I demonstrated in “Using SQL
Server’s Data Transformation Services,” p. 341.

But the most exciting way is to make the Excel file a linked server. This allows you to
manipulate the Excel file like relational data, and even create a join (a JOIN helps you to
return a result set whose columns can be a combination of two or more tables) or a View
that includes the Excel data. After downloading STATE.XLS, copy it to C:\INVNTORY, or
whichever directory you have been using for data conversion.

The Excel spreadsheet
STATE.XLS contains the names of the 50 United States together with their two-character
codes. In order for me to be able to access the cells in the Excel spread sheet, it is
mandatory that I define a range of the data to be used in whatever query is required. This I
have labeled US_STATES, and is from A1:B52. The first row contains the field names,
361

MS SQL

362
since any query sent from SQL Server needs to understand what column is to be returned.
Note that the first row is always returned as the column name.

Creating the Linked Server
Creating a linked server is quite simple. You can do this from SQL Server’s Enterprise
Manager, or you can execute SQL to create it. I will use SQL rather than the easy way of
using the Enterprise Manager. Below is the SQL code to create a linked server, add a login
to the linked server, and then use SELECT to list the rows in the STATE.XLS. Copy this
code to the Query Analyzer, and execute it.

sp_addlinkedserver N'ExcelZ', N'Jet 4.0',
 N'Microsoft.Jet.OLEDB.4.0',
 N'C:\INVNTORY\state.xls', NULL, N'Excel 5.0'
GO
sp_addlinkedsrvlogin N'ExcelZ', false, sa, N'ADMIN', NULL
GO
select * from EXCELZ...US_STATES
GO

In this SQL code, you will notice I preceded the string parameters with the N character.
This means I am passing Unicode constants, and the parameters are interpreted within the
SQL engine as Unicode data. On the other hand, I can remove the Ns and the code will still

Figure 4: Excel Spreadsheet

Conver t ing Data Wi th L inked Servers
work fine, but I will be passing string constants which are going to be evaluated with the
engine using a code page. Unicode is necessary for internalization of applications

Figure 5 shows what the output will look like. Because there are state codes, you can create
a JOIN/VIEW on the codes to ZIPCODE.TPS.

Figure 5: Creating a Linked Server
363

MS SQL

364
After you have created the Excel Linked server, you will see it appear under the Security
section of the SQL Server Group (See Figure 6).

I have used two stored procedures, sp_addlinkedserver, and
sp_addlinkedserverlogin. The first one creates the linked server, and the second
one helps to ensure that your local instance of SQL Server can have access to the linked
server.

Updating the STATE table
The first step in table updates for database restructuring has to do with dbo.STATES.
Since I already have direct access to the Excel file, I can use an INSERT command to fill
this table. What I want to do is to retrieve data from the Excel file and insert into
dbo.STATES all in one go; this is what SQL is good at, working in a set-oriented way.
The conventional (flat file) method is to loop through the data one row at a time. This
supports my earlier comment about the need to restructure updates in a legacy system if
you want to reap the benefits of migrating to SQL.

Figure 6: Created Linked Server in Enterprise Manager

Conver t ing Data Wi th L inked Servers
The script below will fill dbo.STATES with data from STATE.XLS. Remember to run the
script state_city.sql first so that dbo.STATE exists.

INSERT dbo.STATE (STATE,STATE_CODE)
SELECT STATE, CODE FROM EXCELZ...US_STATES

Note that the second line returns a result set in the order of the columns being inserted into
the first line.

Moving zipcode data to SQL Server
The list of cities and the zip codes is in ZIPCODES.TPS and ZIPS.TPS (this is the
downloaded file). It might have been better to create another linked server to ZIPS.TPS,
but as I mentioned earlier, the Topspeed ODBC driver always hung my system whenever I
tried doing anything complicated. For all I know, this might be a restriction on the read-
only version I am using. So, I will use DTS and move the data in ZIPS.TPS into a staging
area where I can then manipulate it.

Following the steps outlined in “Using SQL Server’s Data Transformation Services,” p.
341, I will move the contents of ZIPS.TPS into dbo.ZIPS. As dbo.ZIPS is non-existent
in the database, I have to ensure that DTS is able to create it prior to data import.

As shown in Figure 7, I named the destination table ZIPS. After I execute the DTS
package, ZIPS contains a total of 48, 253 records.

Figure 7: Naming destination table
365

MS SQL

366
Updating the CITY table
I need to perform a series of SQL tasks before I can populate dbo.CITY. The first thing I
need to do is to logically combine the two zipcode tables, dbo.ZIPCODES and
dbo.ZIPS, in a VIEW and then extract city information from here. At this stage, I need to
create a logical, rather than a physical combination due to the fact that I have to populate
the foreign key dbo.ZIPCODES.ID_CITY with the matching IDs expected to be in
dbo.CITY. Unfortunately, I cannot do this now because I intend to populate the CITY
table from the zipcodes tables. My planned stages of conversion are:

1) Create a VIEW that combines dbo.ZIPCODES and dbo.ZIPS into one
result set. This view will contain the same rows expected to be in the final
version of dbo.ZIPCODES. Below is the script that creates the view. The
UNION keyword combines the output of two result sets into one single result
set.

CREATE VIEW ALLZIP AS
 /*
 Rows in dbo.ZIPCODES that do not have duplicates in
 dbo.ZIPS retrieved
 */
 SELECT ZIP, CITY, STATE
 FROM ZIPCODES
 WHERE ZIP NOT IN
 (SELECT ZIPCODE FROM ZIPS)
 UNION
 /*
 Rows in dbo.ZIPS that do not have duplicates in
 dbo.ZIPCODES retrieved
 */
 SELECT ZIPCODE, CITY, STATE
 FROM ZIPS
 WHERE ZIPCODE NOT IN
 (
-- Query to return all rows dbo.ZIPCODES.ZIP
 SELECT ZIP FROM ZIPCODES

)
2) Create a JOIN combining the ALLZIP view with dbo.STATE. This will

be used for populating dbo.CITY. Cut and paste the code below into Query
Analyzer, and run to update the CITY table.

INSERT dbo.CITY (ID_STATE,CITY_NAME)
SELECT dbo.STATE.ID_STATE, dbo.ALLZIP.CITY
FROM dbo.ALLZIP LEFT OUTER JOIN
 dbo.STATE ON dbo.ALLZIP.STATE = dbo.STATE.STATE_CODE

3) Export the contents of ALLZIP to a temporary file. This is necessary
because the ALLZIP view is built by combining two tables in a non-efficient
way, and moreover, the ZIPS table does not have a primary key or any
indexes, so performance is poor. At the same time, the data returned by this

Conver t ing Data Wi th L inked Servers
view is not static and is dependent on what is in dbo.ZIPCODES and
dbo.ZIPS, so any updates to dbo.ZIPCODES will affect what is in the
view. Here is the code to copy the contents of the view to a temporary file

SELECT * INTO #temp_zip FROM allzip

The SELECT INTO command will create a new table having the same
structure as the FROM table, and fill it up with each row of the FROM table.
Starting a table name with a single hash “#” indicates the table is created as a
local temporary table. This table exists during the life of a connection. Once
a connection is terminated, SQL Server automatically deletes the table. Also
the table cannot be seen from another connection. This is different from a
global temporary table, which starts with two hash signs (e.g.
##temp_zip) and is visible to other connections, but is deleted once all
connections referencing the table have been disconnected.

4) The next thing to do is to delete all records from dbo.ZIPCODES, and fill it
with rows from #temp_zip. I also need to correct the length of one of the
columns in dbo.ZIPCODES.

The column dbo.ZIPCODES.CITY is 25 characters in length whereas, the
corresponding field dbo.ZIPS.CITY is 28 characters. This I need to take care of before I
start transferring any data from #temp_zip since this temporary file is created from the
ALLZIP view, which is created from a combination of dbo.ZIPS and dbo.ZIPCODES.

The script below is in four parts (separated by the GO keyword). The first part checks for
and removes the Foreign key constraint dbo.ZIPCODES has with dbo.VENDORS (this is
added back in the last part of the script). The second section DROPs the table; this
effectively removes all the rows, as intended. The third section recreates the table only, but
this time the size of the STATE column is increased to 30.

if exists
(
select * from dbo.sysobjects
 where id = object_id(N'[dbo].[FK_ZIPCODES_VENDORS]')
 and OBJECTPROPERTY(id, N'IsForeignKey') = 1
)
ALTER TABLE [dbo].[Vendors] DROP CONSTRAINT
 FK_ZIPCODES_VENDORS
GO
if exists
(select * from dbo.sysobjects
where id = object_id(N'[dbo].[ZipCodes]') and
OBJECTPROPERTY(id, N'IsUserTable') = 1
)
DROP TABLE [dbo].[ZipCodes]
GO
CREATE TABLE [dbo].[ZipCodes]
(

367

MS SQL

368
 [ID_ZIPCODES] [int] IDENTITY (1, 1) NOT NULL,
 [ID_CITY] [int] NULL,
 [ZIP] [varchar] (10) NULL,
 [CITY] [varchar] (30) NULL,
 [STATE] [varchar] (2) NULL
)
ON [PRIMARY]
GO
ALTER TABLE [dbo].[ZipCodes] WITH NOCHECK ADD
 CONSTRAINT [PK_ZIPCODES] PRIMARY KEY CLUSTERED
 (
 [ID_ZIPCODES]
) ON [PRIMARY]
GO

5) After dbo.ZIPCODES has been modified, the next thing to do is import
rows from #temp_zip .

INSERT dbo.ZIPCODES (ZIP,CITY,STATE) -- Fill from #temp_zip
 SELECT ZIP, CITY, STATE
 FROM dbo.#temp_zip

6) After this I need to map the IDs in dbo.CITY to dbo.ZIPCODES and
update dbo.ZIPCODES accordingly. If you are coming from a procedural
programming background, what readily comes to mind as a solution is
LOOPing through all the rows (records), of which there are about 44,000 in
the table. Processing many records this way is rather inefficient, which is
why the Clarion Process template is not suitable for record processing when
using a SQL Driver - every single record is processed one at a time. The
script below is a faster way of updating all the rows in the table.

UPDATE ZIPCODES
 SET ID_CITY = c.ID_CITY FROM dbo.CITY c
 WHERE c.CITY_NAME = CITY
GO

You can get the script containing all these steps from the downloadable zip.

Clarion dictionary changes
It is necessary to make a corresponding change to the CITY field in the Clarion dictionary
(INV_SQL.DCT). You have to change the size from 26 characters to 31 characters; if you
don’t do this, you will get an error when you attempt to open the ZIPCODES table. Later, I
will eliminate fields like dbo.ZIPCODES.CITY, dbo.ZIPCODES.STATE and correct
references to them in the application.

Conver t ing Data Wi th L inked Servers
Summary
In this chapter, you will notice that all conversions and data manipulation have been done
in SQL, because SQL is more efficient in manipulating large data sets than standard
Clarion code. You may want to stick to your traditional way of data conversion, that is,
using the Clarion language. However, getting comfortable with SQL will greatly improve
your efficiency and give you a greater edge. I remember a poll taken a while ago by
ClarionMag on developers who intend to convert their applications to SQL. I believe
figures from those results would have doubled by now. It is nice having Clarion do the
work of interfacing and data manipulation, but to get the most out of SQL databases you
need to go beyond Clarion code and improve your SQL skills.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v4n02listbox.zip
369

MS SQL

370

CONVERTING THE INVENTORY EXAMPLE -
CALLING STORED PROCEDURES

by Ayo Ogundahunsi

In the previous chapters I showed how to connect to SQL Server, import data, and
generally run a Clarion application with a SQL Server back end. In this chapter, I will show
you how to call a stored procedure, pass a parameter, and (hopefully) get results from the
stored procedure. I will also provide a template to make this easy to do.

The first step is to split the inventory application to an EXE and DLL(s). While this is not a
specific requirement, it is better to organize your applications this way (see “Splitting Your
App Into DLLs” on page 581 of the Clarion Tips & Techniques book, available from
www.clarionmag.com). Depending on how big an application is, you may wish put all your
reporting procedures in one DLL, all your browses and forms in another DLL, etc. A
common practice is to have a DLL just for data elements, i.e. file declarations and other
global data. The EXE and other DLLs still have those declarations, but everywhere except
in the data DLL they are declared as EXTERNAL - the memory is only allocated in the data
DLL.
371

MS SQL

372
For the inventory application, I will be calling the data DLL INV_SQL_DATA.DLL. For
the most part, this chapter will focus on the process of splitting the inventory app into
DLLs.

Data access and update layers
One good reason to have a data DLL is that I want to have only one access point for all
calls I make to SQL Server. In other words, I don’t want to have embedded SQL all over
my applications; I only want one point of maintenance, and the less embedded SQL code I
have in my application, the easier it is to have the business logic external and available for
non-Clarion use. Figure 1 demonstrates the data access logic.

Application Layer - This layer will contain the call to the procedure (located in
INV_SQL_DATA.DLL) that interacts with SQL Server. For example, the procedure
ProcessPrices uses the Process template to change the prices for all the products in

Figure 1: Data Access Logic

Conver t ing The Inventory Example - Ca l l ing Stored Procedures
the Inventory. To make the application more SQL-like, I will replace this process with a
stored procedure. Therefore, instead of making the call to the stored procedure inside
INV_SQL.APP, I will make the call inside INV_SQL_DATA.APP.

Data Layer - This layer will contain the table definitions, all calls to stored procedures, all
SQL statements that will be executed, and a connector procedure which replaces the
connection string initialization (e.g. GLO:ConnectionString = '(LOCAL),
inv_sql,sa,sa') which you would otherwise put in an embed point.

Step 1: Create a new application as a DLL, as shown in Figure 2.

Step 2: Project Settings. Make sure the project settings are correct, as shown in Figure 3.

Figure 2: Creating a DLL - Application Properties

Figure 3: Creating a DLL - Global Options
373

MS SQL

374
Step 3: Set Global Properties. On the General tab, uncheck the Generate template
globals and ABC’s as EXTERNAL option. See the Clarion Help for more explanation on
this.

Figure 4: Setting Global Properties - General

Conver t ing The Inventory Example - Ca l l ing Stored Procedures
Step 4: Set Global Properties - File Control. Check Generate all file declarations, change
the File Attributes (External) to None External, and check Export all file declarations, and
uncheck Defer opening files until accessed.

Once you have done this, compile your application and you will have
INV_SQL_DATA.DLL. .

Modifying your EXE
Now you need to connect INV_SQL_DATA.DLL to INV_SQL.EXE, and in doing so you
must remove the data component in INV_SQL.APP. Close the INV_SQL_DATA.APP
application and open INV_SQL.APP.

Step 1: Choose Application|Insert Module.

Figure 5: Setting Global Properties - File Control
375

MS SQL

376
Step 2: Select a Module Type of ExternalDLL.

Step 3: Name the module library, in this case INV_SQL_DATA.LIB.

Once you are done, you will have to modify the Global Properties.

Step 4: Global Properties - General. Check Generate template globals and ABC’s as
EXTERNAL. This doesn’t remove the data declarations; instead, it declares them as

Figure 6: Selecting Module Type

Figure 7: Module Name

Conver t ing The Inventory Example - Ca l l ing Stored Procedures
EXTERNAL, which means they won’t be allocated memory. The app must reference a LIB
for a DLL that exports these declarations, which is what the data DLL does.

Step 5: Global Properties - File Control. Uncheck Generate all file declarations, which
means that this app will only declare the file declarations it actually uses. Also uncheck

Figure 8: Global Properties - General (EXE)
377

MS SQL

378
Enclose RI code in transaction frame - I always uncheck this since I enforce RI at the
server

While compiling, it is possible you will get an “Unresolved External MS SQL in
inv_sql.obj” error, as shown in Figure 10.

Figure 9: Global Properties - File Control (EXE)

Figure 10: Unresolved external symbol compile error

Conver t ing The Inventory Example - Ca l l ing Stored Procedures
It seems whenever you uncheck Generate all file declarations, the IDE removes the
Database Driver Library for MS SQL Server. If this happens, just go to your Project Editor
and add the driver, as shown in Figure 11.

Now compile again - the error should go away.

Now it’s time to begin implementing stored procedures. As part of the download, I have
included a template to make integration to SQL Server a lot easier, and that’s the subject of
the next section.

The AyoMSSQL Template
Before you can use the AyoMSSQL template you need to register AyoMSSQL.tpl (see
the link at the end of this chapter). I will not go into full details about the inner working of
this template, rather, I will describe how to use it.

The key features of this template are as follows:

1) It allows you to choose the method of data access from Clarion to SQL
Server. (See Step 3).

2) It generates the connection string. You can define the variables without
embedding any code.

3) It generates SQL code for creating a “Dummy” table.

4) It generates code to save your connection string settings in an INI file.

The first place to integrate the template is at the data layer.

Figure 11: Adding MS SQL Driver
379

MS SQL

380
Step 1: Add the global extension to INV_SQL_DATA.APP.

Step 2: Set the global properties. The first tab under the Global Extension template allows
you to set Connection Properties, Connection Values, etc.

Connection Variables: These contain template created/generated variables that are used to
form the connection string. Though you have to ability to change the name of the variables,
it isn’t necessary to do so. Note that all global variables, including those defined in the
dictionary, are available in the drop list. However, since my connection string variable is
now going to change from GLO:ConnectionString (as I defined it when I started this

Figure 12: Global Extension

Figure 13: Global Extension - Properties

Conver t ing The Inventory Example - Ca l l ing Stored Procedures
series) to MSSQL:ConnectionString, I need to reflect this change in the Owner
Name field for table properties of every MS SQL table defined in the dictionary. Figure 14
shows the required change for the INVHIST table.

Connection Values: The values entered here (see Figure 13) will probably serve well
during testing. However, for deployment, you would need to make these values updateable.
That is why the connection variable described above becomes useful - you can write your
own code to prime the variables.

Trusted Connection: As a recap, a trusted connection simply means that SQL Server will
trust Windows NT/2000 to verify the user’s password. Therefore on a Windows 98
machine this will not work. When Trusted Connection is checked, the Username and
Password fields become disabled. This could be useful if you use Windows Authentication
Mode in setting up your SQL Server (see “Migrating The Inventory Application To SQL
Server,” p. 317 for information on authentication modes).

Default Script Location: Some scripts will be generated in the course of using this
template. They will be output in the location defined here.

Default Embedded SQL: The procedure selected here contains code that calls the
PROP:SQL statement. PROP:SQL is never called anywhere else in this application. The
main advantage is that you can isolate all your calls to SQL Server. There are two extension
templates that generate this procedure, and which I’ll explain a little later.

Figure 14: Table Properties
381

MS SQL

382
Step 3: Global Extension - Database. The second tab contains database related settings.
These settings affect how data is returned (when stored procedures are called), and how
tables are accessed during startup.

Open all Tables after connecting: In Relational Database Management Systems
(RDBMS), all tables are treated as one single unit - the database. What this means is that
you don’t really have CLOSEing and OPENing of tables during the life of an application
like you see in flat file systems. Clarion gives you the option of opening your tables when
they are first accessed. If you decided to set up your system this way, a browse that displays
information from a very big table (that is, many fields/columns) will take some time to
load. This setting forces all the tables to be opened during startup. Psychologically, a user
can bear with an application taking some time to load, rather than a browse loading very
slowly when the application has been in use for some hours. This setting will display the
table name in the title bar as every table is being opened. You can also decide to not force
all tables to be opened during startup.

How will Results be returned: When returning results from SQL, you need an
intermediate structure to catch the result. This can be a VIEW, or a TABLE. I will not get
into details of what the code looks like, however, I will mention the logic behind this.

Stupid Temp Table Theory
Several years ago Troy Sorzano publicized what he called the Stupid Temp Table Theory
(Editor’s note: you can still read Troy’s description via the Wayback Machine at
http://web.archive.org/web/19980527022855/www.cwsuperpage.com/Articles/SQLFAQ/S

Figure 15: Global Extension - Database

Conver t ing The Inventory Example - Ca l l ing Stored Procedures
TTT2.htm). This theory simply means you use a physical table to capture the results from a
SQL back end. The Stupid Temp Table approach in this article has been revised. Though
my approach still requires a table on the server, I use a VIEW structure to display the
results. Also, the column’s data type is CSTRING. Clarion’s automatic type conversion
makes it easy to retrieve numeric data into a string data type, and the NAME attribute is not
used in any column. In order to make this work, you will have to create a table (for the
returned result set) on SQL Server. In my template, this VIEW structure is passed as a
parameter to a common procedure that is created by a procedure template.

During compilation, a script file is generated and saved in the directory you specified under
Default Script Location (Step 2 above). It is the “Stupid” or Dummy table structure located
in SQL Server. You will have to run this script via the Enterprise Manager or OSQL.EXE
before you run your application in order to create the table in SQL Server.

The generated script looks like this:

if exists (select * from dbo.sysobjects
where id = object_id(N'[dbo].[SQLRESULT]')
and OBJECTPROPERTY(id, N'IsUserTable') = 1)
drop table [dbo].[SQLRESULT]
GO
CREATE TABLE [dbo].[SQLRESULT] (
 [Column1] [varchar] (21) NULL,
 [Column2] [varchar] (21) NULL,
 [Column3] [varchar] (21) NULL,
 [Column4] [varchar] (21) NULL,
 [Column5] [varchar] (21) NULL,
 [Column6] [varchar] (21) NULL,
 [Column7] [varchar] (21) NULL,
 [Column8] [varchar] (21) NULL,
 [Column9] [varchar] (21) NULL,
 [Column10] [varchar] (21) NULL,
 [ID_SQLRESULT] [int] IDENTITY (1, 1) NOT NULL
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[SQLRESULT] WITH NOCHECK ADD
 CONSTRAINT [PK_RESULT] PRIMARY KEY CLUSTERED
 (
 [ID_SQLRESULT]
) ON [PRIMARY]
GO

Smart NAMEd Table Theory
The Smart NAMEd Table Theory borrows some concepts from Troy’s method in the use of
the NAME attribute. However, no physical file has to exist in order for this approach to
work. The basic concept is to fool the Clarion SQL driver into thinking that a table exists.
The driver always compares table definitions in the dictionary with what exists on SQL
Server, so if you give tables and fields external names that match names existing in your
383

MS SQL

384
SQL Server, the driver will think the table actually exists. (See Clarion help for explanation
on using the NAME attribute). In the template, a table (*FILE) structure is passed as a
parameter to a common procedure created by a procedure template.

The remainder of the settings from Figure 15 are as follows:

Number of Columns: This controls the number of columns being returned by
your SQL query. If you want to execute a stored procedure that will return 15
rows of data, then you have to increase this to 15.

Width Of Columns: If you are going to be returning text that will be more than
21 characters in length, then you have to increase this size.

NAMEd Table: This is the name of any existing table. Note that a table
structure will be created that will be NAMEd based on what you type here.
However, the table will not be physically created on the SQL Server.

NAMEd Column: This is any column that belongs to the table defined in the
previous field.

Step 4: Extension Template - initialization code. The code that establishes a connection to
SQL Server is automatically generated by this template. The variables used to create the
connection string come from steps 2 and 3.

Figure 16: Extension Template - Initialization Code

Conver t ing The Inventory Example - Ca l l ing Stored Procedures
The best approach in using this template is to create a source procedure, and then add this
template as an extension to the source template. In this example, I will call this source
procedure MSSQLConnector.

This procedure will be called in the Main frame of INV_SQL.APP.

Step 5: Procedure Template - ExecuteSQL. As I mentioned in Step 2, the code that calls
PROP:SQL has been isolated to one single procedure. This procedure can be created from
a procedure template supplied with this SQL integration template.

These two procedure templates basically do the same thing. The only difference is that one
makes a call to the server using the Stupid Temp Table Theory, while the other uses the
NAMEd Table theory. I have named the procedures I created using these templates
SendSQLString1 and SendSQLString2

So far, everything that has do with a connection or any call to SQL Server has been
restricted to INV_SQL_DATA.APP, which is the initial idea of grouping such functionality
under the Data Access Layer.

I can now go ahead and compile INV_SQL_DATA.APP.

Figure 17: Extension Template - Connector

Figure 18: ExecuteSQL - PROP:SQL encoding
385

MS SQL

386
Step 1: Adding External Procedure(s). The first thing I need to do here is add the
MSSQLConnector procedure as an External Procedure.

Step 2: Removing Tables from File Schematic. In “Migrating The Inventory Application
To SQL Server,” p. 317, I added the tables INVHIST, PRODUCTS, VENDORS, and
ZIPCODE to the table schematic of the main frame. These have to be removed since the
external procedure MSSQLConnector handles this functionality.

Figure 19: Removing Tables from File Schematic

Conver t ing The Inventory Example - Ca l l ing Stored Procedures
Step 3: Adding the procedure. Comment out or delete the embedded code where a value
is assigned to GLO:ConnectionString, and then add MSSQLConnector to an
embed point immediately after Open the Window.

Now that you know how to use the supplied template, it’s time to learn how to call a stored
procedure. But first, it is important that I mention some tools that will help you
troubleshoot activity between your Client application and SQL Server. For someone new to
SQL, it can be a daunting task when your application fails and you have no idea about what
is going on. Two useful programs that can help you to debug SQL activity are Clarion’s
TRACE.EXE and the MS SQL Profiler.

TRACE.EXE
TRACE.EXE is a Clarion program that allows you to trace input/output from any Clarion
file driver. It is located in your Clarion installation’s bin subdirectory. The shortcut to this

Figure 20: Adding MSSQLConnector to embed
387

MS SQL

388
program is usually added to your Clarion menu under the Tools submenu. When you run
TRACE.EXE you’ll see the window shown in Figure 21.

Remember to stop the trace once you are done using it, because this file can really grow big
and will slow down your application considerably.

The trace is in text form and can look cryptic sometimes, but with a little effort you
shouldn’t find it too difficult to read.

MS SQL Profiler
Profiler is a utility in SQL Server. Using this program you can log the actual SQL
commands that are executed by your client application. If you use the Enterprise manager a
lot, you might want to capture SQL code. Also, any SQL code executed after the profiler
starts (that could be as a result of the PROP:SQL command, or any stored procedure) is
captured by the profiler.The profiler is very useful in this regard.

Figure 21: Setting Trace Properties

Conver t ing The Inventory Example - Ca l l ing Stored Procedures
You can run the profiler from the Enterprise manager, as shown in Figure 22.

Or, from the SQL Server menu, as in Figure 23.

Figure 22: Calling Profiler from Enterprise Manager

Figure 23: Calling Profiler from Program Menu
389

MS SQL

390
When you execute the stored procedure example in this chapter, the Profiler will capture an
output as shown in Figure 24.

The profiler is not available with Microsoft Desktop Engine (MSDE), a trimmed down
version of SQL Server.

Why stored procedures?
One of the strengths of Clarion lies in the fact that you can roll out applications easily and
quickly. From standard report/browse/form handling to automatic data type conversion to
threading (this will probably change with the upcoming version 5.6), a lot is done behind
the scenes. As a result, there is always the tendency to want to write as much as you can in
Clarion. Unfortunately, this might not be the best approach when you are using Clarion
with a Relational Database Management System (RDBMS).

The first step in migrating an application to SQL Server is to get the application to run.
After conversion, you need to examine parts of your code that result in frequent trips to the
server, and then try to optimize by moving some processing to the server.

A stored procedure in simple terms is your code written in SQL syntax and stored at the
server, where they become part of the database just as tables are part of the database.

There are a many books on SQL that explain more about stored procedures so I won’t go
into a lot of detail here.

Figure 24: Viewing Trace from Profiler

Conver t ing The Inventory Example - Ca l l ing Stored Procedures
The ProcessPrices procedure
In INV_SQL.APP, there is the ProcessPrices procedure that is used to do a batch
update on all product prices based on a specified percentage. If, after compiling the
application, you try to run this procedure you get a Record Not Available error as shown in
Figure 25.

One lesson to learn here is that straight conversion will not always guarantee your
application will work out of the box. A lot of tasks handled by the template when you are
using a flat file system might not work when you convert to SQL. I don’t want to get into
too many details about this particular error, but, if you uncheck Use RI constraints on
Action and recompile, the error disappears and the update is done.

Take a look at the cost in bandwidth of doing the update the traditional (flat file) way. If
you look at the Clarion Trace program, you will see that the SQL UPDATE command was
called repeatedly, once for each record in the PRODUCTS table.

NEXT(VIEW:416AA4:DBO.Products 2) Time Taken: 0.00 secs

Figure 25: Error after conversion

Figure 26: Process Template - Properties
391

MS SQL

392
POSITIONfile(VIEW:416AA4:DBO.Products 2) Time Taken: 0.00 secs
Closing Statement 1104f08 Time Taken:0.00 secs
Resetting Parameters Statement 1104f08 Time Taken:0.00 secs
Preparing Statement 1104f08 : UPDATE DBO.Products SET "PRICE" = ?

 WHERE "ID_PRODUCTS" = ? Time Taken:0.00 secs
Binding ? 1 for input with C type CHAR as 3 for Statement

 1104f08 Time Taken:0.00 secs
Binding ? 2 for input with C type SLONG as 4 for Statement

 1104f08 Time Taken:0.00 secs
Executing prepared Statement 1104f08 Time Taken:0.00 secs
PUT(VIEW:416AA4:DBO.Products 2) Time Taken: 0.01 secs

This code (extracted from the Trace file), is executed 32 times (there are 32 records in the
PRODUCTS table), which means the client machine was the one initiating and executing
the update logic. Even though this might not seem quite a problem, imagine what happens
when you try to update about 200,000 records. This means this command will be called
200,000 times!

This kind of repetitive client/server interaction negates the purpose of developing an
application to run in a SQL environment. Assuming I want to increase all prices by 5%, the
best thing would have been to send a SQL command like this:

UPDATE PRODUCTS
SET PRICE = (1.05 * PRICE)

However, if I embed this code in my Clarion application, and call it via PROP:SQL, no
other application will be able to use it.

A better approach is to create a stored procedure that receives a parameter for the price
factor (i.e. 1.05). In that way any other program, such as one written in Visual Basic, or
perhaps an ASP web application, can also call this update.

In short, one very big advantage of using stored procedures is that you can remove most of
your business logic from your Clarion application and make it part of your database.

That’s the theory; now it’s time to replace the ProcessPrices procedure with a stored
procedure.

The ProcessPrices stored procedure
The code to create the stored procedure to update the product prices is as follows:

CREATE PROCEDURE dbo.INV_ProcessPrices
(
 @PercentageIncrease decimal(7, 2)
)

Conver t ing The Inventory Example - Ca l l ing Stored Procedures
/*
Object: INV_ProcessPrices
Description: Allows you to increase the prices of all
 items in inventory
Usage: INV_ProcessPrices @PercentageIncrease=1.5
 -- 5% increase
Returns: (None)
Author: Ayodele Ogundahunsi Email: ayodele@dolasoft.com
Revision: 1
Example: INV_ProcessPrices @PercentageIncrease=1.5
Created: 2002-09-30.
*/
AS
SET NOCOUNT ON
BEGIN
 UPDATE PRODUCTS
 SET COST = (COST*@PercentageIncrease)
END
RETURN 0

Note that it is not a very good idea to name your stored procedure starting with sp_. While
sp_ is not a reserved word, it means “special” within the context of SQL Server. There are
a lot of special system stored procedures shipped with SQL Server, and you don’t want to
confuse them with your stored procedures.

Linking INV_ProcessPrices to Clarion
Now that I have created the stored procedure INV_ProcessPrices, I will need to link
it with Clarion. I have included an extension template in the downloadable source that
makes this easy. This extension template has been designed to create a procedure that
wraps all calls and interfacing with SQL Server in one single place. This approach makes it
possible to create an external procedure in another EXE or DLL that calls a procedure
393

MS SQL

394
created here. As a standard, I will call my procedure the name of the stored procedure I am
calling, in this case, INV_ProcessPrices.

This extension allows you to call and execute a stored procedure. In the full template
version (which is not supplied here - email me at ayodele@dolasoft.com for information on
availability), you can also pass a SQL statement to SQL Server or even run a script file.

LinkStoredProcOrSQL Extension Template
The template prompts, as shown in Figure 28, are quite easy to follow.

Prototype: The prototype prompt follows the same standard as we are all used to except
that you can enter the data type only. What this means is that a prototype like this is illegal:

(*DECIMAL pIncrease)

Rather, you have to enter:

(*DECIMAL)

Figure 27: Adding Stored Procedure Template

Conver t ing The Inventory Example - Ca l l ing Stored Procedures
The complete template set (not included as part of this chapter) allows you to return results
from a stored procedure or SQL query into a Queue. This is how it works; if you want to
return a result set from the called stored procedure or query, you have to pass a TYPEd
Queue or Group as the last parameter in the prototype. For example, within an include
file, or in your data section, you can define a TYPEd Queue this way:

myQueue_TYPE QUEUE, TYPE
Field1 CSTRING(10)
Field2 CSTRING(20)
Field3 LONG
Field4 LONG
Field5 LONG
Field6 LONG
Field7 LONG
Field8 LONG
Field9 LONG
Field10 LONG
 END

In the case of the inventory example, I have to define this in INV_APP_DATA.APP.

Figure 28: Stored procedure extension template
395

MS SQL

396
My prototype then becomes:

(*DECIMAL, myQueue_TYPE)

I now define the actual queue inside INV_SQL.APP:

myQueue LIKE(myQueue_TYPE)

When this procedure is called from INV_SQL.APP, it will be called this way:

INV_ProcessPrices(PriceIncrease, myQueue)

After execution, myQueue will automatically get filled with the returned result set.

Parameters: The name of the parameter passed is entered here.

Entry Point: Normally, this contains two radio buttons. You can contact me if you want to
purchase the template. The other one (not shown) allows you to type SQL query directly
into the template, or even execute queries from query stored in an external file.

Stored Procedure Name: The default value generated here is the name of the procedure. If
your procedure name matches the name of your stored procedure (as I suggested earlier),
then you don’t need to make any changes.

Return Value(s): Within the context of this chapter, you can leave the Single Value radio
button selected as it is by default. The other selections Queue, Group are only useful if you
are passing either a Queue or Group as the last parameter because you want values
returned into them.

Approx. No. of Columns: This is an approximate number of columns to be returned by the
stored procedure (just make sure you don’t specify fewer columns than the stored
procedure returns). Note that the number of fields described in your TYPEd definition for a
Queue or Group should match the number indicated here.

Embedded SQL Caller: By default, the selection you made in the Global Template (see
Step 5) will appear. To recap, the procedure(s) that appear here determine how the data
access you are using is implemented. You can use the StupidTempTable Theory, or Smart
Named Table.

After you have filled all the prompts, you can compile. The stored procedure is executed by
code generated from the template.

Conver t ing The Inventory Example - Ca l l ing Stored Procedures
Adding INV_ProcessPrices to (INV_SQL.APP)
Now that INV_SQL_DATA.DLL contains the call to the stored procedure, I need to create
an external procedure that will allow me to call INV_ProcessPrices from
INV_SQL.APP.

Now that I have added INV_ProcessPrices procedure to the application, I need to
replace the ProcessPricess process procedure.

Figure 29: Adding INV_ProcessPrices

Figure 30: Calling New Price Increase Procedure
397

MS SQL

398
I’m now ready to save and compile the application. When I execute the Price Increase
function from the menu, it will call the stored procedure.

Summary
I have shown you how to call a stored procedure using the supplied template. While this
template has been crippled (contact me at ayo@dolasoft.com if you will like to have the
full version) it still allows you to execute a stored procedure. I also mentioned two
powerful tools that can aid you in debugging your SQL queries.

From this chapter, you can see that I have been able to isolate all my SQL coding to
INV_SQL_DATA.APP. In fact, there isn’t any embedded SQL code. I don’t dispute the
fact that sometimes this is not possible, especially when you want to be able to manipulate
browses. However, coding your applications with external access and reuse of business
logic in mind will save you a lot of maintenance headaches in the future.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v4n10conv2.zip

SQL IDENTITY: ANOTHER APPROACH

by John Griffiths

Having researched Identity field management from the Client-Side (in Clarion) and the
Server-Side (in MS-SQL 2000) I determined that neither worked adequately in a project I
was working on. The specifications called for inserting a series of child records at the same
time as the parent record was inserted, i.e. multiple task records for each job record (JOB
<—>> TASKS). There was also another need to set each sysID into a certain range
depending on something called the branchID. In that project each sysID was set as a
DECIMAL(12,0) and held the three digit branch number in the billions area. Thus for a
branch numbered 333, IDs would range 333,000,000,001 through 333,999,999,999. The
long term plan was to move data from all branches into one database and continue to be
able to do inserts which retained the numbering sequences.

From that project came the method I describe here for managing the sysIDs of each table
within the SQL database. The method described here is simplified by ignoring the
BranchID feature and uses integer fields for the sysIDs. The sysID fields in the database
tables do not have the IDENTITY property.
399

MS SQL

400
Creating the sysIDs
Basically, the SQL database manages the supply of the sysIDs. The program simply says
“Give me the next number for this table”.

The system uses a table, called nextNumTbl, with two fields, nextnum and tblname.

When the Clarion program needs to do an insert, it calls a stored procedure in the database
that supplies the next ID number for the table specified in the call. Each call to the stored
procedure will return a unique unused ID for the table specified. A return of zero will
signify an error.

The stored procedure works by selecting the appropriate nextnum field from the
NextNumTbl, increments the ID and tries to update the NextNumTbl. If it succeeds, it
returns the ID and the NextNumTbl will now hold the next available number.

This process makes it easy to manage inserts of child records without having to rely on the
SQL IDENTITY processes; @@IDENTITY, IDENT_CURRENT() or
SCOPE_IDENTITY(). Your program then has the parent ID and any child IDs needed for
data integrity.

In my SQL tables, each table that needs managing this way has a field named sysID of
type int.

The NextNumTbl has a row for each table. Here is the CREATE statement for
NextNumTbl:

create table dbo.nextnumtbl (
 nextnum int null,
 tbl varchar(20) not null) --adjust:widen to suit

Data in the table may look like this:

The stored procedure call
I need to call the stored procedure anytime I insert a record. Here is a call from within
Clarion to fetch and prime the next sysID for the acnote table:

2091 ACNOTE

7123 JOB

59003 TASK

1873 CLIENT

SQL Ident i ty : Another Approach
tblName = 'ACNOTE'
tblName = UPPER(tblName)
SQLcallString = 'CALL jgNextID (' & TblName & ')'
 TempF1{PROP:sql} = SQLcallString
NEXT(TempF1)
GotSysid = TempF1.F1
IF GotSysid > 0
 ACN:Sysid = GotSysid
ELSE
 ACN:Sysid = 0
 ! Handle error here
END

Note: TempF1 is a dummy table with one column of type CSTRING, and
TblName, SQLcallString and GotSysid are local variables.

The jgNextID Stored Procedure
The jgNextID stored procedure is called with the name of the table as a parameter. It
looks up the next number and returns the number via the dummy table buffer.

Here is the CREATE statement for this stored procedure, with notes below describing
significant lines:

1 CREATE PROCEDURE jgNextid (@tblName varchar(20))
2 AS
3 DECLARE @nextid int ,
4 @maxtimes int
5 set nocount on
6 set @maxtimes =10
7 while (@maxtimes > 0)
8 begin
9 SET TRANSACTION ISOLATION LEVEL REPEATABLE READ10 begin
transaction11 -- get the next number to use

Line 6: Set the number of tries the procedure will use to get a valid number. With a site
having twenty users inserting data and a value here of 5, I have not seen any collisions

Line 9: Set isolation level to protect the transaction

Lines 12,13: The select statement to fetch the next available number

Lines 15-18: Attempt to update the table where the nextnum matches the value just
fetched. This ensures a good number held by no one else.

Lines 19-23: If the update was successful, break from the while loop.

Lines 24-29: The update failed, so continue loop.

Lines 31-32: If the loop counter hit zero, set @nextID to 0
401

MS SQL

402
Line 33: Select the value in @nextID for collection by the Clarion program.

Management stored procedure
What if you want to reset the starting number for the next sysID? To manage the
NextNumTbl another stored procedure was developed. This one is called for each table
and sets/resets the nextnum field as required. Again, see the notes below for what is
happening.

1 CREATE PROC jgSetNextNumFor(@tblName varchar(20))
2 AS
3 DECLARE @nextInt integer ,
4 @gotMax integer ,
5 @selStr varchar(201) ,
6 @currentNextInt integer
7
8 SET @selStr='SELECT n1 = MAX(sysid)INTO ##JJ8 FROM '
9 + @tblName
10 BEGIN
11 EXEC (@selStr)
12 SELECT @gotMax = n1 FROM ##JJ8
13 DROP TABLE ##JJ8
14 END
15 IF @gotMax = 0 OR @gotMax is NULL
16 SET @nextInt = 1
17 ELSE
18 SET @nextInt = @gotMax + 1
19
20 SELECT @currentNextInt = nextnum FROM NextNumTbl
21 WHERE tbl = @tblName
22 IF @currentNextInt is NULL OR @currentNextInt=0
23 BEGIN
24 INSERT INTO NextNumTbl VALUES (
25 @nextInt ,
26 @tblName)
27 RETURN
28 END
29 IF @currentNextInt < @nextInt
30 UPDATE NextNumTbl
31 SET nextnum = @nextInt WHERE tbl = @tblName

Lines 8-9: Build a string needed for the select statement at line 11. As that EXEC call will
be in a separate scope, the local variables are not visible so their values need to be put into
the select string. Table ##JJ8 is created as a global temporary table.

Line 11: This will execute the select string and places the result into a field named N1 in
the global temporary table named ##JJ8 (These temporary table names are not significant
– use whatever you like)

Line 12: Collect the table’s maximum value here and place it into the local variable.

SQL Ident i ty : Another Approach
Line 13: Drop the temporary table.

Lines 15-16: If the result is a 0 or null value, it shows that there were no records for that
table, so set the next number to 1

Line 18: Bump the max value by 1

Lines 20-21: See what value exists in the NextNumTbl for the table specified.

Lines 22-28: If there is no valid number there, go ahead and insert one.

Lines 29-31: If the number available in the NextNumTbl is less that the MAX (+1)
value in the table, then update NextNumTbl with the next valid number.

Extension Template
Here is an extension template for adding to standard forms. It will do the necessary field
priming for the table inserts. This is my first foray into template programming, but it
works!

#TEMPLATE (JGsql4, 'SQL Table Identity Aid by JLG')
#Extension(JGAutoIncSysid, 'For insert priming from StoredProc
jgNextNum')
#boxed('SQL JG SP_ AutoInc')
#DISPLAY('Enter the table Clarion prefix:-')
#PROMPT(' Table Prefix Code:',@S3),%TablePre
#DISPLAY('Next name the SQL table:-')
#Prompt(' Table for Insert ' ,@s20),%JGFile
#DISPLAY('')
#endboxed
#at(%DataSectionbEFOREwINDOW)
tblName CSTRING(21)
GotSysid LONG,auto
SQLCallString cstring(401),auto
#endat
#AT(%PrimeFields,'Prime record fields on
Insert'),WHERE(%InsertAllowed)

#DECLARE(%JLGTblSysid)
 tblName = '%JGFile'
 tblName = upper(tblName)
 SQLcallString = 'call jgNextID (' & TblName & ')'
 Open(tempF1)
 TempF1{PROP:sql} = SQLcallString
 next(TempF1)
 GotSysid = TempF1.F1
 #set(%JLGTblSysid,%TablePre & ':' & 'Sysid')
 if GotSysid > 1
 %JLGTblSysid = GotSysid
 else
 %JLGTblSysid = 0 !and insert should fail
 end
403

MS SQL

404
 Close(TempF1)
#EndAT

Summary
This method of handling identity values for child inserts from within a parent record has
worked well in a large multi-DLL app which was moved several years ago from Clarion
DAT files to MS-SQL2000. While it takes a little extra setup work, it simplifies sysID
management for child inserts. Thanks go to George Hale for insight on how this could be
achieved.

CREATING UTILITIES FOR MS SQL 2000

by Bernard Grosperrin

Quite often it happens that Clarion programmers see only limitations when using SQL from
within Clarion, as compared to other tools. In fact, this limit is mostly in our heads.
Clarion’s PROP:SQL makes it easy to execute arbitrary SQL statements in Clarion, and a
few tricks simplify the task of getting information back from these SQL statements.

In this chapter I will show how you can create utilities for an SQL database with
PROP:SQL, using the example of MS SQL 2000. If you are familiar with the Clarion
community’s most popular Internet sites, you may have noticed an excellent set of articles
by Dan Pressnell on SQL, published on Icetips
(http://www.icetips.com/showarticle.php?articleid=1) . I will build on Dan’s ideas to create
a little utility for creating a Microsoft SQL 2000 database, including several tables, entirely
from scratch.

Note: I have not tested the code with SQL server 7.0, but I can see no reason
why it shouldn’t work there, or with MSDE. In fact with some modifications
you should be able to use this approach with just about any SQL database, as
long as there are system tables.
405

MS SQL

406
How it works
The basic idea behind this utility is that all that Clarion needs to send commands/requests
to the server is a “dumb” file in the dictionary with a number of fields large enough to
contain the result of the biggest request you think you may have to execute. There is
absolutely no need for this file to match anything actually existing in the database, except
for the name of an existing table. As long as you have this file declared, (some developers
called it this the “stupid temp table trick”) you can execute SQL statements on the server
and get data back.

In order to achieve this goal as simply as possible, I will use two tools extensively. One, as
I mentioned before, is Clarion’s PROP:SQL, which allows me to send commands directly
to the server; the other is what I would name the “Queue from Queue”, or maybe more
precisely the “Query from Queue” mechanism, which is a great idea from Dan Pressnell.

I will explain what this tool does in detail later on, but basically the Query from Queue
mechanism does this:

1) It frees me from having to manually type (sometimes very lengthy) SELECT
statements.

2) It returns the results of a query directly into a Clarion Queue, so that I can
check this result set more than once, sort it different ways, check directly for
a given value with a get, in other words all things not possible with the
classic Clarion result set, which I can only read sequentially, and will lose on
my next query.

3) It lets me use a column name in my code, as if I was using PROP:SQL on
my dumb file. Ordinarily I would have to write something like
name=dumbfile.f1 somewhere, then later phone=dumbfile.f1,
which does not help much making my code readable. With the Query from
Queue technique, I can write name = QueryQueue.name, which makes
a little more sense.

But first, I need to back up just a little. I said I am going to write a utility to initialize a
database from scratch. But how do I connect to a nonexistent database?

Fortunately, even without any operational database on the MS SQL server, a
model/template for all other databases already exists, containing a certain number of
system tables, plus many other things needed for the database engine to work properly,
such as views, stored procedures, etc. This MS SQL database is named master.

So I want to connect to an MS SQL 2000 server, to the master database. I obviously need
to know a user name and password with an administrator level to be able to create a
database, whether I’m using Clarion or not. This being done, I want to create a database

Creat ing Ut i l i t ies For MS SQL 2000
(without, if possible, overwriting an existing one with the same name), create a user who
will be the owner of this base, create the tables I need, and check that I have done what I
believed I was doing.

I must also say that I want this to be a simple process. I do not want to have to distribute an
SQL script to my users which they need to run through some other utility; my users may
have only MS Client installed on their computers, and nothing else.

The dictionary
To simplify my life a little, in this first version, I created a dictionary by importing a few
tables from the master database (although it’s possible to do without these tables). Figure 1
shows the dictionary.

You can see that there are not so many tables needed:

Sysdatabases
Syslogins
Sysusers

Sysdatabases contains the list of databases, Syslogins the list of roles (a role is a
set of access rights grouped under a name), and Sysusers is the list of users, who can be
associated with multiple roles.

Figure 1: The necessary tables
407

MS SQL

408
The more interesting table is the one called SqlFile. Figure 2 shows the layout.

SQLFile may look a little weird to you, even more so because the full path name for this
table is sysdatabases, again! Clarion’s “magic” data type conversion will allow me to use
this table in a generic way, as a recipient for a result set (i.e. a set of records, using the
specified columns) of an SQL request. There are only ten fields here, meaning any SQL
statement cannot return more than ten columns of data, but nothing restrains you from
creating more fields to accept result sets with as many fields as you like.

As this utility targets end-users, I have no idea what their server name could be, as well as
their user name or password (if they had the good idea to change the default user name of
sa to something a little less known and a bit more sophisticated), so there is no owner name
specified anywhere in the dictionary. As a result, the application automatically opens the
connection dialog box while you try to open any of the SQL tables.

Figure 2: The SqlFile structure

Figure 3: The login dialog box

Creat ing Ut i l i t ies For MS SQL 2000
And that is a ready-made dialog I don’t have to do anything about – it’s all handled by the
driver.

Send_Query
One of the requirements of this application is the ability to send an SQL command to the
server. So that I don’t have to write the same code over and over again, here’s a function
that sends the query and reports any error:

Send_Query PROCEDURE (string pQuery)
! Start of "Data Section"
! [Priority 5000]
! End of "Data Section"
 CODE
! Start of "Processed Code"
! [Priority 5000]
 open(sqlfile)
 sqlfile{PROP:sql} = pQuery
 if errorCODE()
 Message('Error:' & ErrorCode() & '-' & error() |
 & '<13,10,13,10>' & fileerror() & '<13,10,13,10>' & pQuery)
 Return 1
 end
 return 0
! End of "Processed Code"

I simply pass as parameters the SQL request I want to execute, do a
SqlFile{PROP:Sql}, and test if I get an error. As a result, I now have a single line in
the code to test for error, instead of six, and I am going to execute quite a few requests.

Query_from_Queue
Okay, it’s time for a bit more serious stuff. Here, my goal is to have a request generated
from a queue, and to have its result returned into the same queue. No no, don’t start running
away, it’s not black magic and sorcery, even if it is very cool. All the credit goes to Dan
Pressnell; I am just using the code and trying to explain. Here’s the code for the
Query_From_Queue procedure:

Query_From_Queue PROCEDURE (*Queue pQueue, string pExtra, |
 byte pDebug=0, long pLimit=0) ! Declare Procedure
! Start of "Data Section"
! [Priority 1000]
i long
r1 any
r2 any
dstr &idynstr
! End of "Data Section"
409

MS SQL

410
 CODE
! Start of "Processed Code"
! [Priority 5000]
 dstr &= newdynstr()
 dstr.cat('select ')
 if pLimit <> 0
 dstr.cat('top ' & pLimit & ' ')
 end
 loop i=1 to 100000
 r1 &= what(pqueue,i)
 if r1 &= null
 break
 end
 if i > 1
 dstr.cat(', ')
 end
 dstr.cat(who(pqueue, i))
 end
 dstr.cat(' ' & pextra)
 X#=send_query(dstr.str())
 IF pDebug
 Message('QUERY='& dstr.str())
 END
 dstr.release()
 free(pqueue)
 loop
 next(sqlfile)
 if error() then break.
 loop i=1 to 100000
 r1 &= what(pqueue, i)
 r2 &= what(sqlfile.record, i)
 if r2 &= null
 IF pDebug
 stop('Not enough fields in sqlfile to hold intended
number of columns!')
 halt
 ELSE
 break
 End
 end
 if r1 &= null or r2 &= null
 break
 end
 r1 = r2
 end
 add(pqueue)
 end

Query_from_Queue receives a Queue as parameter, pQueue, a String, pextra, a
flag to debug (which is an omittable parameter), and a limit indicator, omittable also.
Here’s the declaration for the queue:

DB_Q Queue
DbID like(databases:dbid),name('sysdatabases.dbid')
FileName Like(databases:filename), name('sysdatabases.filename')
DB_NAME Like(databases:name), name('DB_NAME(sysdatabases.dbid)
AS DB_NAME')
 End

Creat ing Ut i l i t ies For MS SQL 2000
I’ll explain the name('DB_NAME(sysdatabases.dbid) AS DB_NAME') syntax in
a bit.

In MS SQL, the sysdatabases table is structured as follows:

CREATE TABLE [dbo].[sysdatabases] (
 [name] [sysname] NOT NULL ,
 [dbid] [smallint] NOT NULL ,
 [sid] [varbinary] (85) NULL ,
 [mode] [smallint] NOT NULL ,
 [status] [int] NOT NULL ,
 [status2] [int] NOT NULL ,
 [crdate] [datetime] NOT NULL ,
 [reserved] [datetime] NOT NULL ,
 [category] [int] NOT NULL ,
 [cmptlevel] [tinyint] NOT NULL ,
 [filename] [nvarchar] (260) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL ,
 [version] AS
(convert(smallint,databaseproperty([name],'version')))
) ON [PRIMARY]

And here is the SELECT statement I want Query_from_Queue to build:

SELECT sysdatabases.dbid, sysdatabases.filename,
 DB_NAME(sysdatabases.dbid) AS DB_NAME

As you can see, the SELECT statement fields are the same as the fields declared in DB_Q.
Let’s see how Query_From_Queue builds the SELECT statement directly from this
queue structure.

First, the code begins by initializing a dynamic string (the Dynstr interface) which will
hold the SELECT statement. This is a string you can add to incrementally using its cat()
(for concatenate) method. The first string added is 'select'. If a limit on the number of
records to return is specified, the next string added is 'top ' & pLimit & ' '. Then
comes the loop to construct the list of fields to return, using WHAT:

R1 &= what(pqueue,i)

The WHAT function returns a reference to the specified field number of a group, a queue or
a record. Note r1 is declared as ANY, so that it can receive a reference to any data simple
type. To say it differently, at the first loop iteration within the queue, R1 will receive the
value DB_Q.DbID. If “what” returns nothing (null), the loop immediately breaks, as I
reached the queue end. Using WHAT, here, has no other goal than letting the loop know
when to break.

Note this code: If i > 1 ; dstr.cat(ë, ë) ;End. In other words, the comma is
only added after the second iteration, since SELECT ,field1,field2 would result in a
syntax error.
411

MS SQL

412
Next is the code dstr.cat(who(pqueue,i)). WHO returns a group’s field name,
from the position indicated by the second parameter. In the first iteration, i value is 1, and
field’s name is sysdatabases.dbid, so now the string contains the value SELECT
sysdatabases.dbid.

In the second iteration i > 1, so the code adds a comma and second field’s name; the
value is now SELECT sysdatabases.dbid, sysdatabases.filename, and so
on.

The loop exits after the third iteration (for this table), and pextra is appended. From the
Load_DBQ routine in the main procedure you can see that pextra contains FROM
dbo.sysdatabases (result of Name(sysdatabase)) ORDER BY dbid.
Now the string’s value is SELECT sysdatabases.dbid,
sysdatabases.filename, DB_NAME(sysdatabases.dbid) AS DB_NAME
FROM dbo.sysdatabases ORDER BY dbid.

Run this request in SQL Query Analyzer; you’ll see something like the following:

By the way, DB_NAME is an MS SQL function which returns the database name from the
database ID passed as parameter. In this case I really don’t need to do that, as a field in
sysdatabases contain this data, but it makes the data more readable.

Next, the code reads the “dumb” SqlFile table in a loop, and it starts again in a new loop
very similar to the first one. Only this time, it copies the label from the Queue to r1, and
the label from sqlfile to r2. It then tests for an error to exit the loop, and if there is no
error it ends up with r1 = r2, or DB_Q.DbID = Sqlfile:f1, for the first queue
field. After the break, the code does an add(pqueue). Et voila!. This code is actually
filling in the queue with the results matching the request generated by this very queue.

1 C:\Program Files\Microsoft SQL
Server\MSSQL\data\master.mdf

master

2 C:\Program Files\Microsoft SQL
Server\MSSQL\data\tempdb.mdf

tempdb

3 C:\Program Files\Microsoft SQL Server\MSSQL\data\model.mdf model

4 C:\Program Files\Microsoft SQL
Server\MSSQL\data\msdbdata.mdf

msdb

5 C:\Program Files\Microsoft SQL Server\MSSQL\data\pubs.mdf pubs

6 C:\Program Files\Microsoft SQL
Server\MSSQL\data\northwnd.mdf

Northwind

Creat ing Ut i l i t ies For MS SQL 2000
This explanation was a bit lengthy, but it’s not very often that you see a queue used to
generate an SQL request and containing the result of the request.

Now I have the tools for the job, and a pretty good idea on how to use them, it’s time to do
some real work.

Main procedure
To be certain that the database I am going to create does not exist already on the server, the
first thing to do is to load a queue with all existing databases on this particular server. MS
SQL has a table, Sysdatabase, with this information Load_DbQ routine is doing that
job.

Next, the code finds the default path to create the database “physical files”. In order to
achieve this, it will simply look where the master database is installed, and filter the result
to keep only the directory name.

The code then checks that the current user has the proper rights required to create a
database on the server. The simple SQL SELECT
IS_SRVROLEMEMBER('sysadmin') AS Value does all the work!
IS_SRVROLEMEMBER is one of the very numerous stored procedures already in MS SQL
(to get ideas about how to use these stored procedures, read the online books). The result of
this request is 1 or 0, true or false, and is stored in a local variable. If the current user
does not have the required rights, she is politely told so when the window opens.

The next test is to verify that the database does not exist already. This is very simple to
implement, as the queue of the existing databases is already there. A simple GET on the
queue determines if the database exists. If no error, there’s a problem!

Now it’s time to create the new database, using an SQL command built up from variables.
In this example there are a certain number of parameters hard coded, but everything could
be a variable as well. Read Microsoft documentation on the possible variants for CREATE
DATABASE. Just remember that in my specifications, I wanted something simple for the
end user.

It’s always good to check that the database has actually been created. The code again loads
the database list with, but this time, there should not be an error on the GET!

Now it’s time to connect to the newly created database (USE database). The code
creates a special user who owns the tables, and gives that user a certain number of
privileges. Here again, the best thing is to dig into Microsoft documentation, as your needs
might be very different than the one taken into account for this example. Since this user
will have CREATE privileges, the code can now create every table, eventually with indexes
413

MS SQL

414
and keys. As in this example, it might be a good idea to use an ASCII File to log what
happens, and display this log to the user.

Summary
With Clarion’s PROP:SQL it’s easy to execute SQL statements on MS SQL Server, or just
about any other SQL server. And Dan Pressnell’s Query_from_Queue procedure is a
great tool for building SQL statements and retrieving the results of those statements into a
queue.

This paper’s goal is really not to explain Microsoft’s own version of SQL syntax, but
simply to show that it is totally possible to use all these commands from Clarion. And
remember that with PROP:SQL you are not limited to existing tables, it’s even possible to
use dynamics result sets (not existing statically in tables, but dynamically calculated at
request’s time).

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v5n12sqlutilities.zip

GENERATING MS SQL SERVER SIDE
TRIGGERS

by Ayo Ogundahunsi

Clarion 6 comes with a lot of new features, amongst which is the capability to integrate
client-side triggers as part of the design of the database (see “Using Client-Side Triggers In
Clarion 6,” p. 543).

I must say this new feature is quite ingenious, and it is a very bold step. Nevertheless,
without downplaying its usefulness, I have always preferred the traditional way of using
server-side triggers, because of their inherent advantages. These include:

1) Ability to monitor and audit updates no matter how the database is modified.
This means even if a table is updated outside of your Clarion application,
you can still audit who made this change. In today’s world, scalability and
interoperability among diverse components is usually preferred, hence, if
you wrap your audit logic within Clarion, you will have to maintain at least a
second code base if an external system is going to be updating your database.

2) Centralized management of data integrity, and in some cases referential
integrity.
415

MS SQL

416
What are Triggers?
The purpose of this article is not to give a detailed exposition on triggers, but rather to
present a useful template that can help automate auditing of user updates to your database.
Auditing means creating a log of who made what change to a table, and when the change
happened. This template automates the process of creating both the audit table(s), and the
triggers which create the audit data.

Since there is extensive documentation in books, or on the internet on Triggers, I will not
explain in great detail what triggers are or the kind of triggers available for use.

If you’re unfamiliar with triggers, here is a definition from SQL Server’s Books Online:

Microsoft SQL Server 2000 triggers are a special class of stored procedures
defined to execute automatically when an UPDATE, INSERT, or DELETE
statement is issued against a table or view.

Triggers are powerful tools that sites can use to enforce their business rules
automatically when data is modified. Triggers can extend the integrity checking
logic of SQL Server constraints, defaults, and rules, although constraints and
defaults should be used instead whenever they provide all the needed
functionality.

Tables can have multiple triggers. The CREATE TRIGGER statement can be
defined with the FOR UPDATE, FOR INSERT, or FOR DELETE clauses to
target a trigger to a specific class of data modification actions. When FOR
UPDATE is specified, the IF UPDATE (column_name) clause can be used
to target a trigger to updates affecting a particular column.

For further reading on Triggers, you can check the following resources:

• MSDN:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tsqlref/ts_create2_7eeq.asp

• Microsoft Support site:
http://support.microsoft.com/default.aspx?scid=%2Fservicedesks%2Fwebca
sts%2Fen%2Fwc011601%2Fwct011601.asp

• DevBuilder:
http://www.devbuilder.org/asp/dev_article.asp?aspid=16

Generat ing MS SQL Server S ide Tr iggers
The Template
This template, which was inspired by ideas on auditing with triggers in one of Ken
Henderson’s books, will take tables defined in a Clarion Dictionary and generate matching
trigger scripts.

The template file is cmag_SQLTRG.tpl. You have to register it the same way you register
all other templates. Since the template code is contained in a single file, you do not need to
update paths in your .RED file if you choose to put the template somewhere other than the
templates directory.

The template is a Utility template and to use it, you need to have an application loaded.
Then choose Application|Template Utility from the Clarion main menu, or press Ctrl-U.
Choose the sqlServer_AuditTrigger template, as shown in Figure 1.

Figure 1: Selecting the template
417

MS SQL

418
Once you select the template, you will be presented with a wizard, as shown in Figure 2.
The tables contained in the dictionary for the application are automatically made available
for selection.

Tables to Audit

This form on the wizard allows you to select the table(s) to create audit triggers for. You
can generate all the trigger code into a single file, or individual files that reflect the name of
the tables.

Drop/Re-Create Audit Objects

The Drop/Re-create checkboxes simply allows you generate SQL code that will always
DROP and CREATE the trigger whenever you run the generated script.

Figure 2: Selecting Tables to Audit

Generat ing MS SQL Server S ide Tr iggers
Audit Labels

The Audit label fields allow you to define what entry is recorded in the audit table:

As shown in Figure 4, whatever text is typed for the label will be stored accordingly under
the ActionSequence column.

Audit Fields

The concept of the template is based on the fact that you should be able to take a snapshot
of a record buffer (or row) before an update, or save a record buffer (or row) that was used
to add a new record (row) to your table.

As a result of this you need to have an audit table with a structure similar to the table you
are auditing, however, with three extra fields. These fields are:

Figure 3: Audit Labels & Fields

Figure 4: Representation of Audit Labels
419

MS SQL

420
1) Audit Identifier – Here you store a text that describes the update action you
just performed which you are auditing.

2) Timestamp – Records the date and time the update action was performed.
This is updated with the Transact-SQL GETDATE() function.

3) Login Identifier – Records the user that performed the update action. This is
updated by the Transact-SQL SUSER_SNAME() function.

Depending on whether you enable any of these fields (using the Enable checkbox), the
script generated may or may not provide code to add them to the audit table.

For example, if you want the Timestamp field to be added to your audit table, this is the
kind of code the template generates:

-- Add 'Audit_Date' column to structure if it doesn't exist already
IF NOT EXISTS
 (SELECT COLUMN_NAME FROM #TEMP_AUDIT WHERE COLUMN_NAME =
'Audit_Date'
 AND TABLE_NAME = 'JOBS')
BEGIN
 ALTER TABLE dbo.JOBS_AUDIT ADD Audit_Date DATETIME
END
GO

#TEMP_AUDIT table is a table containing a list of fields that belong to an audit table.

You can also change the column names to whatever you desire. For example, you can
choose to change 'AuditSequence' to 'UpdateAction'.

Generat ing MS SQL Server S ide Tr iggers
Script Destination

You can define where the generated script is output to. If you want you can also generate
code for multiple tables into a single file, this way it is easier to apply the script once.

Figure 5: Script Destination
421

MS SQL

422
Running the script
It is easy to run the created script. From your Query Analyzer, select the database that
contains your tables, and run the script from there.

Figure 6: Executing the generated script

Generat ing MS SQL Server S ide Tr iggers
Once you do this you will see the Audit table created as shown in Figure 7.
ActionSequence, Audit_Date, and Audit_User are the three extra fields added
to the audit table for JOBS (i.e. JOBS_AUDIT which has a similar structure).

Figure 7: Audit fields in audit table
423

MS SQL

424
Figure 8 shows the created triggers.JOBS_INSERT, JOBS_UPDATE, JOBS_DELETE are
the three triggers added to the JOBS table.

Figure 8: Generated Triggers

Generat ing MS SQL Server S ide Tr iggers
How it works
To demonstrate how the applied script works, I’ve imported the PUBS database, that comes
with SQL Server, into Clarion and I’ve generated an application. I will be using the JOBS
table.

Next I load the jobs browse and change the item in the list box with job_id = 5 from
'Publisher' to 'Publisher - ClarionMag'.

Figure 9: Jobs browse (before update)

Figure 10: Jobs browse (after update)
425

MS SQL

426
I open the table JOBS_AUDIT, and I can see the audit records that have been created as
shown in Figure 11.

The beauty about maintaining server side triggers is the fact that no matter the application
that updates the JOBS table, even if you make a change from the enterprise manager, it
logs the action.

In Figure 12, I change the value in the min_lvl column of the JOBS table for the
Marketing Manager from 120 to 125 from within the Enterprise Manager.

Figure 11: Audit table results (update from Clarion app)

Figure 12: Updating jobs table from Enterprise Manager

Generat ing MS SQL Server S ide Tr iggers
After doing this, inspection of the JOBS_AUDIT table shows the content of the row before
the update (UPDATE--BEFORE), and the new contents of the row (UPDATE-AFTER) as
show in Figure 13.

Summary
Although this template makes it easy to use triggers for an audit trail, you need to be aware
of potential performance issues. Triggers are actually stored procedures that execute
whenever an INSERT, UPDATE, or DELETE happens. If you are doing batch operations on
a file, the trigger will execute for each row that is changed, and that could slow down
processing. For example, if you have a table you import a large amount of data into, this
table should not have the audit trigger created for it.

Having said this, it is up to you to test and determine the effect of using the audit trigger
code generated by this template in your peculiar environment.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v6n04sstriggers.zip

Figure 13: Audit table results (update from Enterprise Manager)
427

MS SQL

428

DATE FILTERING WITH MS SQL

by John Griffiths

When writing business software I find I often need to mess with dates and date ranges in
my MS-SQL queries. Sometimes I need to use a temptable to grab some data from SQL on
a form or report, or I need to adjust the FILTER conditions for a browse.

Working within the Clarion source with Clarion language statements, and translating the
FILTER to that needed by the SQL engine, can become more complex than is really
necessary.

Here is an example of a WHERE clause I wrote about four years ago:

 sqlWHERE = ' WHERE (h.dtact_date >= '' ' & format(FromDate,@D02) &'
00:00:00'' ' &|
 ' AND h.dtact_date < ' '' & format((ToDate + 1),@D02) &'
00:00:00'' ' &|
 ' AND h.histype = ''V'' '

I know I could have used the SQL BETWEEN verb. I also know by looking at the execution
plan that MS-SQL simply converts the BETWEEN verb it to a >= AND <= construct. I am
trying to reduce the load at the server, and so I code using the expanded construct.
429

MS SQL

430
The above works great, but I figured MS-SQL is storing the DATETIME values as pure
numerics, and formats the output to a STRING date representation of that numeric or
formats an input STRING representation of a date to a numeric, depending on the request
you are sending.

I am expending programming effort and my Clarion program is using up clock cycles
converting numbers to strings, strings to numbers, and my SQL server is doing likewise.

About a year ago, I changed my approach and started adding an EQUATE into my Clarion
modules:

DATE1900 EQUATE(36163) ! the MS-SQL date num for Jan 1 1900 = 0

This equate allows me to easily communicate with MS-SQL simply using numerics. I now
build query strings equivalent to the SQL WHERE string above as follows:

sqlWHERE = ' WHERE (h.dtact_date >= '& (FromDate - DATE1900) &|
 ' AND h.dtact_date < ' & (ToDate-DATE1900+1) &|
 ' AND h.histype = ''V'' '

This works very well. Why? Look at your “SQL Server Books Online.” In the CAST
CONVERT page you will see a datatype-to-datatype conversion matrix. Note there the
implicit conversions that can take place between DATETIME and NUMERIC types.

In testing I found that I could scrip a field in a new table as:

DtBaseDate DateTime default 37000.9999999 ,

or:

DtBaseDate DateTime default CONVERT(INT,GetDate()) , -- 00:00 time
today

Here is a small example where I am running a query with a TEMPFILE.I am using a
TEMPFILE named tfile, with the first field named t1 and seeking the MAXimum date
in the dtAct_Date column:

1 OrigDate = 0 ! a Clarion LONG
2 open(tfile)
3 SQLstr2 = 'SELECT convert(int,MAX(h.dtdate)) from History AS h '
4 tfile{prop:sql}=SQLstr2
5 next(tfile)
6 if errorcode()
7 message(FileError())
8 else
9 OrigDate = tfile.f1 + Date1900 ! adjust to a ClarionDate
LONG
10 end
11 close(tfile)

At line 3) I need to tell SQL to send the data back as a numeric, or it will return a date string
formatted according to default settings.

Date F i l ter ing wi th MS SQL
Line (9) adjusts the integer field obtained from SQL by adding my EQUATE and then
assigns the result to my Clarion variable (a LONG).

Had I been getting back a DATETIME field as a string using a line (3) like this:

 SQLstr2 = 'SELECT CONVERT(DATETIME,MAX(h.dtact_date),112)
 from History AS h '

I would have received a STRING formatted as YYYYMMDD and then would need to convert
this to a numeric and store in my Clarion variable, something like:

 OrigDate = DEFORMAT(tfile.f1, @d12)

I hope this has given you the incentive to experiment with how you work between Clarion
and MS-SQL. As MS-SQL is the only SQL engine I have worked with, I cannot vouch that
this method will work with other SQL servers. You may have some testing to do.
431

MS SQL

432

Book Reviews

BOOK REVIEW: POSTGRESQL DEVELOPER’S
HANDBOOK

By Ewald Geschwinde and Hans-Jergen Schenig

Published by Sams, December 2001
ISBN: 0672322609
768 pages,

$44.99 US
$67.95 CA
£32.99 UK

Reviewed by David Harms

PostgreSQL Developer’s Handbook, at some 750 pages, is one of the longer and more
detailed books on PostgreSQL currently available. Not that there are a lot to choose from -
a search on Amazon for PostgreSQL books yielded 11 hits to arch rival MySQL’s 49.

The lesser part of this book is taken up with the nuts and bolts of common SQL operations
as defined by PostgreSQL. Chapter one covers basic concepts, and chapter two installation
on Unix/Linux and on Windows (the latter using CygWin - ugh! - happily a native
435

Book Reviews

436
Windows version is expected – see “Getting Started With PostgreSQL,” p. 273). Chapter
three is a longish one dealing with the basic SQL commands for creating databases, tables,
and other components, adding and modifying data, and retrieving data. There’s a lot of
fairly detailed information here, including topics such as self joins, casting data types, and
working with arrays, BLOBs, and other special data types. There’s even a section on
modeling databases.

After a very brief treatment of transactions, Handbook goes on to a topic that I’ve found of
considerable personal interest lately: the PL/PGSQL programming language.
Unfortunately this is also a short chapter - if you get into writing stored procedures in a big
way, you’ll probably spend more time with the standard docs. Database administration,
backup and recover, and performance tuning all get their own chapters, none extensive, but
generally sufficient. The performance tuning chapter deals mainly with database design
issues (when and how to create indexes, optimizing queries, using EXPLAIN and
VACUUM), and touches on system issues such as file systems and buffers.

There are some long, long chapters in this book. The granddaddy of them all is
Programming Interfaces, which spans almost 200 pages (a book in itself!) and provides an
overview of using PostgreSQL from a half-dozen or so languages, and with ODBC. Only
the latter is likely to be of interest to most Clarion developers, so there’s a good chunk of
this book you probably won’t care about. The last chapter in Part 1 summarizes software
add-ons for PostgreSQL, such as a cube datatype (you can, for instance, select the union of
two cubes), full text indexes, ISBN/ISSN numbers, a utility for dumping large objects, a
soundex module, and more.

If you’ve read this far through the book you’re about two-thirds done; the last third is
devoted to real-world examples. I won’t go into all the details, but the topics include:
working with EBCDIC data; multidimensional data structures; classifying and aggregating
data; generating Flash content with PHP and PostgreSQL; running the PostgreSQL
regression tests (mainly useful to the PostgreSQL developers, but you may want to do this
to ensure that the latest beta works on your system); extending PostgreSQL with C
functions; creating custom datatypes; creating operators (for instance, overloading the +
operator to allow for adding RGB color values to get a new color); writing new rules
(PostgreSQL is a highly configurable database); handling date and time calculations;
persistent database connections (using PHP); using ODBC; and finally, graphing
PostgreSQL data using gnuplot.

The PostgreSQL Developers Handbook is a heavy volume with a lot of information on an
incredible variety of subjects. It may not tell you everything you ever want to know about
the SQL in PostgreSQL (although it will come reasonably close), but it will open your eyes
to the great breadth of functionality available in this popular open source database.

BOOK REVIEW: SQL TUNING

By Dan Tow O’Reilly, November 2003

http://www.oreilly.com/catalog/sqltuning/index.html

ISBN: 0-596-00573-3
336 pages

$39.95 US
$61.95 CA
£28.50 UK

Reviewed by David Harms

The last time I polled ClarionMag readers about how much of their time was spent
developing for SQL databases, over half said 25% or more, and 18% said they developed
only for SQL. Now, developing applications that use SQL databases is one thing; making
sure those applications make efficient use of the SQL server is another.

Like many developers who use SQL, I started off simply by creating a Clarion application
that used an SQL database (MySQL, in my case). I let the ABC templates/classes create
and manage the underlying views, which through the ODBC driver created the SQL
statements. But soon enough I wanted to do some things with the data that ABC didn’t
437

Book Reviews

438
know how to do. So I started writing SQL statements, and executing them with
PROP:SQL, or via the MySQL client program. I soon had a library of SQL statements,
some of which worked well, and others which took horrendously long to complete. I’m not
a DBA, but clearly I’d learned enough about SQL to become dangerous. Eventually, by
trial and error (and by upgrading to a more recent version of MySQL), I solved most of
those problems, or at least made the execution of those queries tolerable. But I can’t say I
really learned how to optimize my SQL statements.

Optimizing SQL is really what this book is about. It is not about how to optimize an SQL
server. That is, it won’t tell you what settings the server needs to run any given SQL
statements as quickly as possible; instead it provides a methodology for optimizing those
statements so they load the server as little as possible. This is an important distinction ñ
server tuning is important, but it’s no substitute for SQL statement tuning. And although
the book focuses on DB2, Oracle, and SQL Server, the basic concepts, as well as the
methodology, described here can be applied to SQL servers in general.

The author, Dan Tow, describes three key aspects of SQL tuning. The first, is to find and
interpret the execution plan of the SQL statement. This is information, which the server
will provide on request, explaining how it processes a particular query. The execution plan
includes information such as which tables are processed in which order, and which keys (if
any) are used. The second is to modify the SQL statement so that it uses the best possible
execution plan. The third, and most important, aspect is knowing how to decide which is
the best execution plan. Many developers make this decision intuitively, or by trial and
error, using best guesses; Tow, however, provides a methodology, complete with
diagramming technique, for finding the best execution plan.

This is by no means a beginner SQL book, but Tow does spend a chapter on data access
basics, from a behind-the-scenes perspective. When he explains tables, for instance, he
points out the importance of knowing how the physical layout of the tables affects read
performance. When he discusses indexes, he explains how B-trees work, and looks at more
exotic solutions such as index-organized tables and bitmapped indexes. And of particular
interest, he describes how SQL servers go about processing JOIN statements.

This chapter is followed by the requisite two chapters covering the topics of obtaining and
understanding execution plans (with full examples for each of the three subject databases),
and of modifying SQL statements to achieve a different execution plan. These
modifications can force the server to use or ignore specific indexes, use or prevent join
orders, and control the order in which outer queries and subqueries are executed. Again,
there are specific examples for DB2, Oracle, and SQL Server.

Most of the rest of the book deals with Tow’s tuning methodology, which uses a
diagramming notation that focuses specifically on those parts of a query which really do
affect performance, including the proportion of records returned from any table in a join
(the filter ratio), and average number of records found on each side of the join (the join

Book Review: SQL Tuning
ratio). The diagram ignores those things which have little or no affect, or which cannot
effectively be optimized anyway (columns selected, ORDER BY and GROUP BY clauses,
table names, details of join conditions, absolute table size, etc.).

The diagramming notation itself is remarkably simple ñ the hardest part (which is not that
hard) is getting the data on join ratios and filter ratios. Once you have that you can lay out
the diagram, and once you’ve laid out the diagram you follow a few simple rules to deduce
the best execution plan. Tow’s examples range from simple two-table joins to monsters of
17 tables or more. And he does have experience with massive SQL statements ñ he writes
that he routinely tunes joins with more than 40 tables, and his personal record is 115 tables.

The chapter on tuning complex statements (and no, a 17 table join isn’t necessarily
complex, at least according to Tow) is also a lesson in database design. When a SQL
statement becomes too complex to diagram quickly, often the reason is a flaw in the
database itself, and usually in the design of the application that uses the database. Possible
flaws include cyclic joins, two disconnected queries combined in a single query, query
diagrams with multiple roots, joins with no primary key, and problematic one-to-one joins,
among others. There is also a brief chapter on why the diagramming method works, and
several final chapters on special cases and solutions to “unsolvable” problems.

As evidenced by other reviews I’ve read of this book, Dan Tow is clearly an individual with
a keen understanding of how SQL servers work, and how they can be made to work most
efficiently. His diagramming notation is simple and effective, and his methodology highly
effective. If you’ve been using SQL and you’re starting to bump up against performance
issues, or if you’d like to make your SQL applications more robust, or if you’re just curious
about how SQL servers handle multi-table queries, then you need to read this book.
439

Book Reviews

440

BOOK REVIEW: SQL IN A NUTSHELL

By Kevin Kline, with Daniel Kline, Ph.D.

Published by O’Reilly, December 2000

http://www.oreilly.com/catalog/sqlnut/

ISBN 1-56592-744-3
224 pages,

$29.95 US
$43.95 CA
£20.95 UK

Reviewed by David Harms

O’Reilly’s SQL In A Nutshell is a desktop reference for SQL as implemented in SQL
Server, MySQL, Oracle and PostgreSQL. This is a slightly older work, first published in
December 2000.

This comparison of four of the most popular SQL databases (notable exceptions being
Sybase, DB2, and Interbase/Firebird) is instructive in two ways. First, it points out the
startling lack of real standards in the SQL world, and second, it offers practical information
for anyone wishing to develop applications which can be easily ported to a variety of
441

Book Reviews

442
databases. This is not, however, a book for someone who doesn’t already know a bit about
SQL. It’s a reference, not a tutorial.

The touchstone for this book’s comparisons is the SQL99 standard. As the authors point
out, SQL database vendors typically have data types that correspond to most of the SQL99
data types, but often use different naming conventions. These data types are listed in tables
in the book; a cross reference showing each vendor’s version of a given SQL99 type would
be a useful addition.

The bulk of the book is taken up with an SQL command reference. Each of the SQL99
commands is discussed in detail, and here this is also a cross-reference table listing each
vendor’s implementation (or lack thereof). Most of this information is also available
online, but not in such an organized fashion. If your concern is database portability, then
you will want to compare statement syntax yourself, and not rely entirely on the descriptive
text.

For instance, all four databases support the syntax ALTER TABLE tablename ADD
[COLUMN] Oracle’s syntax for changing a column, however, is ALTER TABLE
tablename MODIFY [COLUMN] ... while for the other three it’s ALTER TABLE
tablename ALTER [COLUMN] PostgreSQL is the only one of the four databases
that doesn’t support ALTER TABLE tablename DROP [COLUMN] (as of the book’s
publication, that is - the ability to drop columns was added in PostgreSQL 7.3). None of
this is mentioned in the text, although to be fair if every difference between databases were
discussed in detail, this would be a book series, not a single volume. The point is that you’ll
still have to do some studying if you want to be able to seamlessly install and run your apps
on different SQL databases. The authors do point out many differences between vendors in
the text - just don’t expect these discussions to be exhaustive. There are also useful
descriptions of where the vendors depart from the SQL99 specification.

Some SQL commands get fairly length treatment, including CREATE TABLE, GRANT,
and SELECT. And keep an eye out everywhere for those owl and turkey images in the text
- these identify, respectively, helpful information and potential problems which deserve
your special attention.

The last two chapters cover SQL functions (built-in, not user-defined) and unimplemented
SQL99 commands. Again, what this book (perhaps unintentionally) points out is the
absolutely pitiful state of SQL standardization.

Although the information in this book is slightly dated, that may not be a bad thing for
anyone wishing to develop for multiple back ends, since it’s unlikely that all potential
clients will be running the latest version of their respective database of choice. Or it may
help you decide which database will best serve your needs, and save you the grief of trying
to satisfy the disparate requirements of each database vendor.

BOOK REVIEW: MANAGING & USING MYSQL

By George Reese, Randy Jay Yarger, Tim King With Hugh E. Williams

Published by O’Reilly, April 2002

http://www.oreilly.com/catalog/msql2/index.html

ISBN: 0-596-00211-4
424 pages

$39.95 US
$61.95 CA
£28.50 UK

Reviewed by David Harms

Managing & Using MySQL is a well-structured, well-written book that serves as a solid
introduction to both MySQL and SQL databases in general. It also provides an introduction
to some of the numerous development environments which work with MySQL, such as
PHP, Perl, and Java. Curiously absent is any significant information about Windows
development and ODBC, but Clarion developers, at least those new to SQL, will still find
much here of interest, as will Clarion developers who dabble in some of the other
languages the book discusses.
443

Book Reviews

444
Managing & Using MySQL is divided into four parts. The first part covers MySQL and
SQL basics, installation, and database administration. As with the rest of the book, this part
discusses MySQL really only in reference to itself. Absent (aside from a few brief
mentions in the opening chapter) are any comparisons between MySQL and, say, Oracle,
MS SQL, or PostgreSQL. The authors are also relatively uncritical of MySQL’s feature set
as compared to more “mainstream” SQL databases. For instance, foreign keys are
dismissed with the statement “Applications themselves should generally worry about
foreign key integrity.” Happily, that’s something Clarion is quite able to do; still, if you’re
looking for a book to help you choose between databases, this isn’t the one. What you will
get (at least to begin with) is a very solid introduction to SQL basics and good instructions
on MySQL installation and setup.

Part II has chapters on performance tuning, security, and database design. I particularly
appreciated the discussion of the EXPLAIN SELECT command, which you can use to find
out what steps the server is actually taking when it processes a SELECT. This information
can be critical to improving performance. I also was very impressed with the chapter on
relational database design; I found it a concise, readable introduction to the topic.

Part II ends at page 134 of some 400 pages. Part III, which is about as long as parts I and II
combined, is primarily made up of chapters introducing MySQL development with Perl,
Python, PHP, C, and Java. This is in keeping with the introductory nature of the book, and
some chapters will be of interest to some Clarion developers, but I couldn’t help but feel a
bit let down; I really wanted this book to continue on to some advanced topics. On to Part
IV.

The final part (a.k.a. the last third, by volume) of this book is reference material: SQL
syntax; MySQL data types; operators and functions; PHP API reference, C reference, and
the Python DB-API. There’s some value added here, but I think this part of the book is a bit
long for what is still mainly a regurgitation of information available online.

Note: This book covers MySQL 4.01; version 4.1, which adds some significant
features such as subselects, is now in alpha release.

If I sound a bit critical of this book, it’s only because it started so well, and I came to expect
so much. Although half the book may not be of interest to most Clarion developers, I think
it’s still worth the price of admission, particularly for those just starting out with SQL and
MySQL.

ABC Database Class Design Notes

INSIDE ABC: FIELDPAIRSCLASS AND
BUFFEREDPAIRSCLASS

by David Bayliss

When I sent around the initial design proposal for what later became the ABC system one
of the claimed benefits was a code reduction in user procedures of around half to two
thirds. At the time this was viewed with some skepticism and so we set 30 percent as a
reasonable goal. In the end we actually achieved around 92-94 percent, and the field class
was chiefly responsible for the extra 30 percent.

To appreciate why, you need to consider how certain parts of the ABC system would be
coded if the FieldPairsClass didn’t exist. For the sake of concreteness I am going to
use the example I used many moons ago when I was trying to persuade Tom Moseley that
OOP could work in the templates.

Example 1 : Updating a link field
One constant bugbear in CW2 was overflow of the appname_ru (referential integrity, or
RI) module (to >64K) on any sizeable or complex dictionary. One aim of OOP was to
447

ABC Database Class Design Notes

448
reduce this problem. Although there were other procedures the heart of the referential
integrity can be shown by pseudo-code for the RI update function.

Listing 1 assumes F1 and F2 are the related files (on the keys F1:K & F2:K with two and
three components respectively, KC1, KC2, KC3 etc).

Listing 1. Code to cascade RI updates.
CLEAR(F2:KC3,-1) ! Clear minor-most components
F2:KC2 = F1:KC2
F2:KC1 = F1:KC1
SET(F2:K,F2:K)
LOOP
 NEXT(F2)
 IF F2:KC1 <> F1:KC1 OR F2:KC2 <> F1:KC2 THEN
 BREAK ! No longer meeting range
 END
 F2:KC2 = New:F1:KC2
 F2:KC1 = New:F1:KC1
 Cascade_Updates
END

I have left out several vital details but this is enough to show the nature of the problem.
This code fragment (and every bit of file IO/error handling that goes with it) appears for
every relation with RI restrictions on it. If you have 100 files, 250 relations means 250
copies of the code. It’s not too surprising RI code frequently blows the segment limits in
the legacy templates.

The challenge is to “proceduralize” the above code.

When trying to abstract out an algorithm I like to go through the code coloring the lines. I
use three colors: blue for base classes; green for parameterized base classes; black for
instance specific code. In my first pass over the code I just pick out the blue stuff: those
lines of code which will always be the same no-matter which of the 250 copies of the code
I am looking at.

Listing 2. Code to cascade RI updates with common code in blue.
CLEAR(F2:KC3,-1) ! Clear minor-most components
F2:KC2 = F1:KC2
F2:KC1 = F1:KC1
SET(F2:K,F2:K)
LOOP
 NEXT(F2)
 IF F2:KC1 <> F1:KC1 OR F2:KC2 <> F1:KC2 THEN
 BREAK ! No longer meeting range
 END
 F2:KC2 = New:F1:KC2
 F2:KC1 = New:F1:KC1
 Cascade_Updates
END

Ins ide ABC: F ie ldPai rsClass and Buf feredPai rsClass
This ranks as grim. The vast bulk of the code is actually different between the 250 copies.
You could put the loop in the base class and call out for the header and loop body, but the
total lines of code (once you’ve allowed for two new procedures) actually goes up. Listing
3 shows five lines of code that replace the three blue lines.

Listing 3. Method to call RI virtuals.
RelationClass.UpdateSecondary PROCEDURE
CODE
! Virtual call- override for every relation
SELF.UpdateSecondaryInit LOOP
 IF SELF.UpdateSecondaryIterate THEN BREAK .
END

Perhaps the italic pen will yield better results. This time I can italicize lines with variables
provided I then add a parameter to the procedure prototype to allow the value to be
substituted.

Listing 4. Parameterized and base class code in green.
CLEAR(F2:KC3,-1) ! Clear minor-most components
F2:KC2 = F1:KC2
F2:KC1 = F1:KC1
SET(F2:K,F2:K)
LOOP
 NEXT(F2)
 IF F2:KC1 <> F1:KC1 OR F2:KC2 <> F1:KC2 THEN
 BREAK ! No longer meeting range
 END
 F2:KC2 = New:F1:KC2
 F2:KC1 = New:F1:KC1
 Cascade_Updates
END

There is a subtlety here. Why didn’t I italicize the CLEAR? Because the number of
components to be cleared is not a function of the relation, it is a function of the key used by
the secondary file. Thus you cannot readily parameterize it. So now you get the code shown
in Listing 5.

Listing 5. Parameterized method to handle RI update.
RelationClass.UpdateSecondary PROCEDURE(
 File F, Key K, *? F1Field1,*? F1Field2,
 *? F2Field1, *?F2Field2, ? New1, ?New2)
 CODE
 SELF.UpdateSecondaryClear ! Virtual call- override for every
relation
 F2Field1 = F1Field1
 F2Field2 = F1Field2
 LOOP
 NEXT(F)
 IF F2Field1 <> F1Field1 OR F2Field2<>F1Field1 THEN
 BREAK
449

ABC Database Class Design Notes

450
 END
 F2Field2 = New2
 F2Field1 = New1
 SELF.Cascade ! Virtual
 END

Now each of the 250 code lumps becomes two small virtual procedures and one base class
call (with eight parameters). This cuts down the line count although the actual amount of
code generated is still quite high. Each *? parameter costs 30+ bytes, so 6 of them is 180
bytes. I have also snuck a little bug past you. I have been assuming throughout that there
are two linking fields. There can (of course) be one, or three, or four etc. So you need
copies of the UpdateSecondary procedure (and the other four) for each possible
number of pairs of fields.

Now I have greatly shrunk the code (i.e. there will be no more 64K problems) and just
about everything has been abstracted. Every now and then someone will call to complain
that ABC doesn’t support 9 linking fields in a relation and we can simply write a new
UpdateSecondary9 (with 27 *? Parameters at 600+ bytes per call).

But code abstraction doesn’t have to end here. This design has UpdateSecondary1,
UpdateSecondary2 etc., and these procedures are really the same except in the number
of parameters passed in. You can write a generalized UpdateSecondary procedure
(except it won’t compile!) as shown in Listing 6.

Listing 6. A general UpdateSecondary procedure.
RelationClass.UpdateSecondaryN PROCEDURE(
 File F, Key K, (*? F1Field1, *? F2Field1, ? New1) * N)
 CODE
 SELF.UpdateSecondaryClear ! Virtual call- override for every
relation
 LOOP N Times
 F2FieldN = F1FieldN
 END
 LOOP
 NEXT(F)
 LOOP N Times
 IF F2FieldN <> F1FieldN THEN BREAK OuterLoop.
 END
 LOOP N Times
 F2FieldN = NewN
 END
 SELF.Cascade ! Virtual
 END

Listing 6 won’t compile because that isn’t a legal procedure prototype. But you can see the
idea – I want to be able to pass in any number of fields without having to define the fields
ahead of time.

Ins ide ABC: F ie ldPai rsClass and Buf feredPai rsClass
Example 2 : Formatting a browse line
Another place that presented problems was the browse code. Most of the engine can
disappear into a procedure (Bruce actually did this for CDD3.0). However there are three
very large routines you cannot take down: filling a browse queue from data; filling the
record buffer from the browse; and seeing if any data in the browse queue has changed.
These three routines essentially look like this :

BrowseQ:Field1 = File:Field1
BrowseQ:Field2 = File:Field2
BrowseQ:Field3 = OtherFile:Field7

where “fill buffer” goes the opposite way to “reset buffer.”

Easy you say, that’s the same as parameterizing. But think about it! Restricting the number
of linking fields to 9 is one thing, but the number of browse columns? We would have to go
up to 100 just to avoid getting shot by the alpha testers! On the other hand if only I could
get the LOOP N Times code from Listing 6 to compile then this really would be so easy.

(Some of you may think we could use the :=: syntax to move across the corresponding
fields. In general that doesn’t work because it doesn’t allow for browse columns defined by
local variables. It also suffers if you have two files in the browse with clashing field
names).

In my opinion it was this problem that killed the CDD browse engine. Because the engine
had to call back to the main code so frequently to do almost anything (and they didn’t have
the virtual mechanism to clean things up) the code because almost impenetrable. So the
engine died, the inline browse appeared, and the browse procedure became our main
bugbear for over five years

What’s the real requirement?
The job then becomes one of defining what it actually is about the LOOP N Times code
that will solve the problem. I think it comes down to the following :

I need to be able to pass around a list of one or more field pairs which can then be
manipulated as a single entity.

Think about those last two words; they are the key. If I can embody the LOOP N Times
into a single line of code then I have the problem cracked.

My expression field pairs also betrays another consideration. In the browse case there are
only ever two fields that are really interesting; for the RI code there are three interesting
values (child fields, parent fields, new parent fields). The prototype for the
451

ABC Database Class Design Notes

452
UpdateSecondary is also interesting. Note that the fields pertaining to the files are
prototyped as *?, meaning they can be assigned to and from. The new fields are only ever
used by value. It turns out that (in this example, at least) there are typically four different
cases :

1) Single field. This is a list of fields with no partner. In fact the components of
a key are stored this way which makes it possible to bring the
CLEAR(keycomponent) into the base class as well!

2) Single field, buffered. These are fields which have to have a snapshot of their
values taken without changing and “real” program variables so the
variables can be later compared to those values.

3) Two fields. Two sets of fields, either of which can be assigned to and from
the other.

4) Two fields, buffered. This is the most complex case of two sets of fields
where either one may need snap-shotting.

Because the fourth case is much heavier than the others (although related) we decided to
assign it to its own class which is derived from the field pairs class

The implementation - any ideas?
In order to understand how this class works you certainly need to understand queues but
you also need to understand the ANY datatype. This is given an excellent coverage in the
manuals which I shan’t repeat. However, the key here is this: an ANY can act like a *?
parameter OR a ? parameter dependant upon how you assign to it.

Specifically, if an ANY variable is NULL (has no value) then a straight value assignment to
it produces a value ANY, while a reference assignment to it produces a variant any. Listing 7
shows an example.

Listing 7. Using ANYs to store values and references.
MyAny &= NULL
Field = 22
MyAny = Field ! MyAny = 22
Field = 42 ! MyAny = 22
MyAny = 50 ! Field = 42, MyAny = 50
MyAny &= Field ! MyAny = 42
Field = 62 ! MyAny = 62
MyAny = 72 ! Field = 72

Warning: CLEAR(MyAny) is equivalent to MyAny = 0. It is not the same
as MyAny &= NULL.

Ins ide ABC: F ie ldPai rsClass and Buf feredPai rsClass
The Init procedure is simple enough to use. It creates the queue that forms the basis of
the class. A slight oddity is the call to Kill first. This is to allow a FieldPairsClass
to be used and reused within a procedure. (Effectively Init acts as a
Reset.)FieldPairsClass.AddItem PROCEDURE(*? Left)

There are two notional AddItem methods (the second called AddPair). This one is used
for cases oen and two. Note the ASSERT to insure Init has been called. The CLEAR is
dealing with some (rather nasty) memory management issues when dealing with ANY in
queues (see the manual). The incoming variable is &= into the left hand queue element. It is
then = into the right hand element. This distinction is crucial. It means that simply
AddIteming a field is enough to snap-shot it so that it can be reset (or tested for
difference) at a later stage. The parameter is called Left because you can think of it as
something you can assign into (and which therefore appears on the left hand side of an
assignment (=) operator.

FieldPairsClass.AddPair PROCEDURE(*? Left,*? Right)

This method is used for variant 3. Other comments are the same as AddItem. Note also
that in this case left & right do not have any real significance. it is just a non-suggestive
way of labeling the two entities.

FieldPairsClass.AssignLeftToRight PROCEDURE

This procedure is really meaningless in variant one (actually it converts a variant one into a
variant two). In variant two this can be seen as a way of snapshotting the current values of
all the variables. In variant three all the values from the variables passed in as ‘lefts’ will be
copied into the variables passed in as ‘rights’.

Warning: Note the PUT after the assignment. This is because an assignment to
an ANY variable can actually change the memory block allocated to the ANY.
Hence you have to store the queue after an assignment even if you know the is a
variant.

FieldPairsClass.AssignRightToLeft PROCEDURE

Again the use of this suggests you are not really in the variant 1 case. In variant two it has
the effect of restoring all the variables passed in as Lefts to the values they had when an
AssignLeftToRight was last done. (Which could be the implicit one at the Additem
point). In variant three this is an assignment from the variables passed as Rights to the
variables passed as Lefts.FieldPairsClass.ClearLeft PROCEDURE

This has the same effect for all three variants, it CLEARs the variables passed in as Lefts.
This is not the same as assigning to zero, because the left-hand side could be a string. It is
also not quite the same as assigning to a blank string (consider Cstrings & Pstrings).
Now you could argue that it is the same as assigning to a zero length string, which is true,
but only by coincidence. This illustrates one of the big pitfalls of having a language “guru”
453

ABC Database Class Design Notes

454
doing low-level classes. You can use your low-level knowledge to build assumptions into
the system that are not required. The fact that presently all Clarion data-types can be
CLEARed by assigning a zero length string is a very dangerous fact to build into a set of
base classes (consider what would happen if you could pass a mixed-type group as a *?).
The clearing mechanism is there to protect you from such assumptions, so the base classes
use the full language facility where they can.

Note further that CLEAR(SELF.List.Left) is very different from
SELF.List.Left &= NULL.

FieldPairsClass.ClearRight PROCEDURE

In variant two this clears the buffer values, in variant three it clears the variables passed in
as Rights. This method is subject to the same considerations as
ClearLeft.FieldPairsClass.

EqualLeftRight PROCEDURE

In variant two this compares the current values in each of the Lefts against the last snap-
shotted values. It returns a zero if any of the values differ. In variant 3 it compares each
Left/Right passed in and returns a zero if there are any differences.

Note that this procedure effectively does a short-circuit evaluation which means the
function returns as soon as a deviation is found. It demonstrates one of the reasons that I
believe certain programming mantras can and should be violated in a controlled
environment.

First the controlled environment. EqualLeftRight is 10 lines long, it fits on one screen
and (I claim) should be understandable in one bite by a half-way competent programmer.

Now for the mantra. Good structured programming will teach you that any given procedure
should have precisely one entry point and precisely one exit point. This procedure has two
exit points. Why? Certainly efficiency, and also (I claim) clarity. Consider the obvious
alternative in Listing 8.

Listing 8. A single exit point alternative to EqualLeftRight.
FieldPairsClass.EqualLeftRight PROCEDURE
I UNSIGNED,AUTO
B BYTE(1)
 CODE
 LOOP I = 1 TO RECORDS(SELF.List)
 GET(SELF.List,I)
 IF SELF.List.Left <> SELF.List.Right
 B = 0
 END
 END
 RETURN B

Ins ide ABC: F ie ldPai rsClass and Buf feredPai rsClass
Now the method has the required one exit point. However there is an extra line of code and
there are two extra assignments (BYTE(1) is an implicit assignment). But the real pain is
more subtle. Imagine a big field list (100 fields) in which you are checking for a difference
(say after an Edit-In-Place operation on a browse). This code will check all 100 fields even
if the first one sets B to zero!

So you end up having to put a BREAK into the IF condition or code an UNTIL at the tail of
the LOOP. The latter is less efficient still. The former is efficient but if you now draw a flow
diagram of your algorithm you will find exactly the same logical structure as coding a
RETURN but it took you 20% longer to say it!

This brings me to the Bayliss mantra: keep it short and to the point, but then don’t
compromise!

FieldPairsClass.Equal PROCEDURE

This is simply a logical short-hand for people using the FieldPairsClass as opposed
to the BufferedPairsClass (where the explicit LeftRight is helpful).

FieldPairsClass.Kill PROCEDURE

Check over this code. The destruction sequence of queues with ANYs needs careful work.
First you have to null out all of the any variables, then you can dispose of the list.

BufferedPairsClass
This class is really just an extension to the FieldPairsClass to handle case 4. Two
fields are paired and there is a shadow third value. In some ways this makes it easier to
understand than the FieldPairsClass. If ever Left or Right are assigned to/from then
it is the values in the underlying fields that are being used. Buffer means the shadow which
never effects any values in the “real” program.

Queue Derivation

The BufferedPairsClass is derived from the FieldPairsClass; that is to say
whenever a buffered field class is being used without reference to the shadow value you
can simply call the same functions as you would for a case three of the field class. The
buffered field class is an extension for the case when buffering is needed. Now we could
simply have implemented the BufferedPairsClass and used it for cases one through
three. The main reason we didn’t is one of efficiency. ANY variables work extremely slowly
compared to standard Clarion variables (about 30x slower, or similar to Visual Basic) and
therefore maintaining an extra one or two for the very common cases (one through three)
455

ABC Database Class Design Notes

456
was deemed unwise. The separation also enables the field class to have a relatively small,
clean interface.

BufferedPairsClass.Init PROCEDURE

This procedure demonstrates a simple problem, with a simple enough fix, but to the unwary
it can be very confusing. The FieldPairsClass contains a reference to a
FieldPairs queue (with Left & Right ANYs). This is NEW/DISPOSEd in the
FieldPairsClass Init and Kill methods. The BufferedPairs class has a
reference to a buffered queue with three fields. Now here is the problem: if the
FieldPairsClass and BufferedPairsClass both have Init and Kill called
then there will be two separate queues pointed to by two separate references. So the
BufferedPairsClass.Init method does not call its parent. As a result there is only
one copy of the queue.

But there is a subtler problem. Suppose the Equal method is called. This drills down to
FieldPairsClass.EqualLeftRight which expects the SELF.List reference to
be filled in, which it won’t be. Bang!

Here is the fix. The BufferedPairsQueue is (very deliberately) just the
FieldPairsQueue with extra fields added. The Init method &= the List in the
FieldPairsClass to the RealList in the derived class. Now the methods in
FieldPairsClass can access the same queue as those of the
BufferedPairsClass but via a different reference.

Tech note: A particularly nice feature of queue and class references is that they
contain type information. Thus CLEAR(MyQueueReference) will always
clear the whole queue buffer. Similarly ADD(Queue) works on the whole
queue.

BufferedPairsClass.AddPair PROCEDURE(*? Left,*? Right)

This method overrides the equivalent method in the base class. Later versions of it actually
contain some rather intricate code to fix a subtle bug that I missed on the first lap. All the
code is really trying to do is reference assign Left and Right (as per the parent function)
and then CLEAR the buffer value (because I don’t know whether to assign it to Left or
Right). But the question becomes, what does it mean to clear an any variable? (See
discussion on ClearLeft.) What I really want is to assign it to a value which will
compare equal to the Left or Right variables if they have been cleared. The only general
way I could think of doing this was to clear the Right variable and then assign it to the
buffer. Of course people might object to me doing that so I temp-store it first.

I think the other methods are fairly self-explanatory given the FieldPairsClass
explanations.

Ins ide ABC: F ie ldPai rsClass and Buf feredPai rsClass
Finally
ANY variables (and type polymorphism) are key strengths of the Clarion language that
make it possible to code complex database algorithms in a totally generic and safe way. The
two field classes extend this paradigm up to lists of field pairs. If you scan the ABC sources
you will find the field pairs classes are intrinsic to files, browses, drop combos and edit-in-
place. If you scan generated source you will find AddPairs popping up very frequently.
The combined effect of these facts is that most procedures can be generated without any
need to derive the browse or file objects. This simplifies and reduces the amount of code
required to use these classes and gives Clarion an implementation edge (from template or
hand-code) over C++, VB and Object Pascal.

I hope this FieldPairsClass design overview has given you an insight to one of the
fundamental building blocks of the ABC system.
457

ABC Database Class Design Notes

458

INSIDE ABC: THE FILEMANAGER

by David Bayliss

To understand the design strategy behind the FileManager you first need to understand
the name. Many of the ABC classes have names which end with “Class.” That is to
denote that they are logically complete entities in their own right. Clearly they are
implemented using features of the Clarion language, but it is the class itself that logically
provides the functionality.

When I came around to looking at the file part of the ABC structure I quickly realized that
here was a very different problem. The largest bulk of file functionality already existed in
the language in the form of the FILE structure support by the file drivers. In fact the file
drivers can be viewed as objects (especially as Scott was keen to extend the file property
syntax to expose some of the file driver data structures).

The file drivers have two major drawbacks when viewed from an ABC perspective:

1) They deal with files. At the template level Clarion files are uniquely gifted
with all sorts of useful information supplied by the dictionary (including
default values, validation, prompts, descriptions etc). The file drivers only
(or mostly) support the information that is actually provided “down at the
metal” of the file structure itself. Thus, if the whole of ABC were to use the
459

ABC Database Class Design Notes

460
file drivers directly, all of the value of having a data rich dictionary would be
lost to the class hierarchy.

2) They are a black box. A potential beauty of the Clarion language is the way
that the grunge of file access is hidden, thereby providing a nice clean
programmer interface. The problem is that the wrapper prevents the
underlying functionality from being readily extended or overridden.

From these problems arose the idea of a FileManager class. Essentially each file would
be owned by a FileManager. The manager would provide a wrapper around the file
entity, and the wrapper would embellish the functionality of the file by utilizing (and acting
as a repository for) the data about the file contained within the dictionary.

Future Proofing
The next aspect to consider is that the black box approach to file classes clearly cannot last
for ever. If the ABC system really is to become a fully integrated development solution
then, over time, it has to extend throughout the run-time system. The advantages to be
gained by having a consistent object-oriented library that allows modification and
expansion at all stages in the hierarchy are too compelling to be ignored. In fact, as Bruce
Barrington announced at DevCon ‘98, the FileClass (note the name switch) project is
under way and will be providing a major thrust (and raft of benefits) to our future products.

But this presents another problem. We have to be able to produce a FileManager
interface now that will still be valid and supportable when the file drivers have changed
completely. This is more challenging than the normal OOP problem. All classes need to
encapsulate themselves, but the FileManager has to provide encapsulation for the file
driver that is not in itself encapsulated. This is rather like the distinction between erecting a
fence that will remind you not to walk on a flower bed and erecting a fence that will
persuade an exuberant Labrador retriever not to walk on a flower bed. In particular it
means that the FileManager has a higher proportion of PRIVATE and non-virtual
methods than most of the other classes.

Static Usage
Another peculiarity of the FileManager (shared with the RelationManager) is that
the instances of the class to be created will (at least by default) be static. Remember that the
FileManager is really just the extension we would like to have made to the FILE itself
(but couldn’t). Thus it would have the same scope and persistence as a file buffer, i.e.
global. But it’s not quite global. Most files are actually threaded variables. This gives the
FileManager a bit of a headache since some of the data it stores is global (the file name,

Ins ide ABC: The F i leManager
for example, is the same for all threads), but some of it is threaded (the open state of a file
is thread specific). Therefore it was decided to build thread management into the
FileManager so that it could control inter-thread resources directly.

Aims & Issues
In tackling a class of the size and complexity of this one, it is worth splitting out and
enumerating some of the tasks and requirements it is to meet.

1) Structure Storage. To provide services to return the keys of a file, fields of a
file, number of components of a key etc.

2) File Snapshotting. A problem of having global buffers is that when some
other procedure wants to use a file buffer it tends to corrupt the buffer
contents. In the classic template chain, for example, the RI code actually
corrupts buffer contents. A requirement of the manager class was to allow
file buffers (and file state) to be snap-shotted and restored at a later date.

3) Auto-Increment. The manager is to provide support for automatically
incrementing key components.

4) Retrieval and Update of records. This is fairly obvious.

5) Initialization and validation. Whilst this is again fairly easy to specify it is
one of the key capabilities of the Clarion data dictionary. FileManager
must exploit these capabilities.

As well as providing some raw functionality there were some other issues and subtleties
that significantly extended the work of implementation.

Firstly, the FileManager was to be smart and reliable. If you told it to open a file then it
should go open the file, and do everything within its power to get the file open, including
retrying, creating, building keys etc. The reason is to simplify the usage from within hand-
code (or embed code). Because the methods will do all they possibly can to make the thing
happen you can code as if it has happened. This meant the FileManager needed a
tightly integrated ErrorClass . There was a problem, however, because sometimes you
don’t actually want the system to scream blue murder if it doesn’t succeed. The fact the
class failed is all the information you require. So most of the methods have “Try”
equivalents, i.e. the Open method has a corresponding TryOpen method. The Try means
that the method simply returns an error code rather than taking action on its own (such as
presenting an error message).

Another subtlety is aliases. In Clarion aliases are treated pretty much as separate files.
Whilst this is good from the IDE end of things it makes some of the object orientation
horrible if files are mapped one-to-one with FileManagers.
461

ABC Database Class Design Notes

462
Suppose the FileManager provided a virtual method to initialize a record into which
you drop some embed code. Then whenever you create a record your code gets executed,
unless of course you happen to be using an alias, which results in an integrity problem.
Now you need to embed the code for every alias as well. Bleh! So we decided to get
creative. The FileManager for an alias class contains a reference to the FileManager
for the “real” file. Then whenever the alias FileManager is called it simply recalls on to
the actual FileManager to do the work. Of course to do this we need to make frequent
use of the File snapshotting technology.

The final tweak, one which came up fairly late and which is a mixed blessing, is the notion
of LazyOpen. The idea here is that if you use a lot of files in a procedure it is better to
open them one by one when required than open them all in a burst at the head of the
procedure (which can cause a delay in SQL). This is no problem for people using ABC (as
the ABC classes always know if they are about to touch a file) but it causes a bit of a
headache for people doing hand-code as they need to warn the ABC system (using the
UseFile method) that they are about to drill underneath the ABC layer. (Incidentally, this
is one of the problems that will go away once the FileClass is implemented).

Initialization
Originally the initialization of the FileManager was very complex. The template
generated code called many Addxxxx routines building up within the FileManager a
replica of the data stored within the file driver itself. From beta three onwards the file
drivers were extended so that the information within them was more readily accessible. For
this reason the initialization interface withered down to two genuine methods, both used to
tie the FileManager into the outside world.

I have added two others, Kill and SetThread, as they are both tied to
FileManagerManagement rather than FileManagerment itself.

FileManager.Init PROCEDURE(File File,ErrorClass E)

There is a one-one correspondence between instances of the FileManager and files used
in the program. The File parameter sets up this mapping. The ErrorClass defaults to
the global error manager (when the template generated init code is called). The advantage
of having this reference as protected is that a given file (or batch of files) can have a
different error manager installed to allow (say) less extreme responses to a given set of files
being missing.

The coding is fairly straight forward, the usual array of queues being NEWed and class
variables being set.

Ins ide ABC: The F i leManager
The only real magic is in the AddFileMapping method. This is there to help with lazy
open, or more specifically, to help when a view is used. The view driver can return a list of
files that are used in a view, but this is not quite what we want. We want a list of
FileManagers. The mapping code is thus there to provide a mapping from file references to
FileManager references. The mapping takes advantage of the fact that both file
references and FileManager references can be used as LONGs. The Filemappings will
be able to die once the File class comes along, and are thus private. In fact they use
Clarion’s rather nice “in module” private technology to allow the private methods to be
completely removed from the .inc file.

FileManager.AddKey PROCEDURE(KEY k,STRING Desc,BYTE AutoInc)

This is the one remaining Add method. It is required because there are two pieces of
information stored within the dictionary and required by the FileManager that are not
available to the FILE driver. The first is the textual description of each key, and the second
is the auto-increment nature of the key. The AutoInc value specified is the component of
the key which is auto-increment. Within the templates this will always be defined as the
minor-most component of the key although this restriction is not imposed by the base
classes. (That said, non-minor-most component auto-incrementation is much less tested
than the more normal form!)

Whilst the method itself is of little strategic importance it does use a number of relatively
new or advanced coding techniques so it is worth a little further investigation.

The principle job of AddKey is to form a new record in the FileKeyQueue. This is a
private property. Because Clarion allows unresolved forward references (i.e. allows opaque
types) the queue structure is not defined within the .inc file, only within ABFILE.CLW.

Assigning the key reference and description is fairly straightforward. Use of the description
field as fixed length (rather than assigning a reference) is not as painful as you may think
because Clarion queue buffers are compressed when stored in memory so any trailing
spaces simply squash up.

The interesting code starts with this reference assignment:

self.keys.fields &= NEW KeyFieldQueue

This code is setting one of the fields of the FileKeyQueue to be a new instance of the
KeyFieldQueue. That means there will be a KeyFieldQueue for every record of the
FileKeyQueue. In other words this is a queue of queues. This is a very powerful
technique, but it is also something to be careful of. In the Kill method for the
FileManager we have to step through the FileKeyQueue freeing up each one of
these sub-queues.

Next note that SELF.HasAutoInc is set if AutoInc is true. HasAutoInc is set on a
per file basis, not per key. The information is really redundant since HasAutoInc could
463

ABC Database Class Design Notes

464
always be computed simply by stepping through the values in the key queue, but
HasAutoInc is hit sufficiently often it was deemed worth the extra cost (1 byte!) of
storing a copy. SELF.PrimaryKey is stored in the object for similar reasons.

Finally there is a loop filling in the nested queue with one entry for each key component.
This queue has two gotchas to watch for. The first is it contains an ANY. You must always
CLEAR a queue buffer containing ANYs before assigning to the fields (see the Language
Reference Manual). The file driver can return the field number of a key component, and the
FileManager has the record buffer in SELF.Buffer so we can use WHAT to return an
ANY referring to the field of the key component. This then gets stored in the queue.

The other required piece of information is the “bind” name of the key component. This
comes from PROP:Label, but the code does one more piece of pre-computation. If the
key is case insensitive and the field is not numeric then we store UPPER(FieldName)
rather than FieldName in the queue. This is neat as it means routines further down the
line can simply use the stored field name without regard to case sensitivity and the issues
are dealt with for them.

FileManager.Kill PROCEDURE

I suspect some would argue that Kill is not an initialization method, but I disagree. Kill
is really the mirror image of Init. I nearly always write them at the same time (literally a
line of Init, then a line of Kill). The job of Kill is to undo anything that has been
done during the Init, and sometimes it has to undo the work of later routines too, but
acting as an un-Init is a must.

Notionally this routine is very straightforward but there is some quite involved picking
apart of the queue of queues. The outer loop steps through each key and the inner loop
steps through each key component. Finally for each key component the name is disposed
and the ANY variable is freed up.

Failure to do any of these steps would result in a memory leak.

FileManager.SetThread PROCEDURE

As suggested in “Static Usage,” p. 460, one of the problems the FileManager has to
contend with is that a file effectively has a new instance on each thread. This needs
mirroring in the FileManager. Rather than clone the FileManager for each thread
(and support an inter-communication layer) it was decided to support a queue within the
FileManager where each thread was mirrored by a record in the queue. This may not
please the object purists but as the thread specific data totalled 10 bytes compared to >1K
for the whole object, the engineers will understand the logic.

The methodology is thus quite simple: each procedure starts by calling SetThread which
pages in the correct data for the current thread; the procedure can then simply access the
data using SELF.Info. There is a slight gotcha here. Because SELF.Info is a queue

Ins ide ABC: The F i leManager
buffer, any method altering a value in SELF.Info must then do a corresponding
PUT(SELF.Info) or the value altered will be lost upon the next call to SetThread.

The implementation is straightforward. If the file is threaded (early ABCs ignored this
condition!) then the current thread is read from the system. The current list of thread data is
looked up, and if it doesn’t exist then a new record is cleared and created.

The final line of this procedure is actually a cheat. It has nothing to do with setting the
thread; it simply takes advantage of the fact that all FileManager methods will call
SetThread before commencing execution. SetThread thus because a suitable
repository for always call items. In this case the error manager is being primed with the
current file name so that any errors within the methods themselves can simply Throw,
confident that pertinent details have been filled in ahead of time.

The FileManagers are coded in a fairly unusual context which has greatly influenced
some of the design decisions taken during their implementation. Whilst some of the aims of
the class can be gleaned simply from reading this chapter, most fruit is available to those
that actually settle down and read the ABC code along with the corresponding comments.
This is actually something I would always encourage you to do. The backbone of ABC
amounts to around 4,000 lines of code, so if you aim to master 100 lines a day you will
understand the basic ABC paradigm completely within eight weeks! The FileClass
amounts to 25% of that work.

Administration
This section details those methods provided almost entirely as wrappers upon internal
information for the benefit of higher level methods and/or methods outside of the
FileManager.

ClearKey PROCEDURE(KEY K,BYTE LowComp,BYTE HighComp|
 ,BYTE High)

This method is there to provide a shortcut for a piece of template code that occurred very
frequently. Essentially it handles the problem of a multi-component key where you wish to
perform a SET(KEY,KEY) but you only know the major components. In order to ensure
the SET(KEY,KEY) gets you to the start of all the records you require you need to clear
the low order key components. Clarion does not have a CLEAR(KEY) so the FileManager
provides one for you.

Rather than clear the whole key the routine allows you to specify the low (majormost) and
high (minormost) components you want cleared. This is to allow minor component
clearing to happen when the major components have already been filled in.
465

ABC Database Class Design Notes

466
The method works by first performing a SetKey so that the current record of the
FileKeyQueue holds information for the current key. Then the key components are
stepped through from low to high and the KeyFieldQueue is fetched to retrieve the
information for the current component (see the AddKey method). The GET is error trapped
with a simple return if the component doesn’t exist. This is to allow the HighComponent
to be specified as 255, meaning “to the end.”

The XOR logic illustrates a useful trick (and hides a complexity!). Remember that as you
are trying to get all the records in a SET(KEY,KEY), you might assume that means you
just CLEAR all the key values low. But wait a minute; suppose you are about to do a
PREVIOUS rather than a NEXT. Then you need to clear all the values high. This works in
the common case of ascending key components, but remember it is possible to have
descending key components. Worse yet you can mix ascending and descending in the same
key. If you sit down with pencil and paper (you may be able to do this in your head, but I
needed pencil and paper) you will find you need to clear a component low if it is ascending
and you are clearing low, or if it descending and you are clearing high. This can be
expressed using a disjunction (OR) of conjunctions (AND) but the XOR operator wraps it up
perfectly and goes down to one machine instruction. I could have coded this more tightly
still as:

CLEAR(SELF.Keys.Fields.Field,|
CHOOSE(~(SELF.Keys.Fields.Ascend XOR High)))

But I thought that might be just a little too scary.

GetComponents PROCEDURE(KEY K),BYTE

This simple little method simply returns the number of components in a key. It uses
SetKey and the fact that there is one KeyFieldQueue record for each component of the
key.

GetEOF PROCEDURE,BYTE

The FileManager has a very specific meaning for EndOfFile: it means the last attempt
to NEXT or PREVIOUS a record failed because the end of file has been reached.
Specifically, if you have a file with 10 records EOF is true after the 11th NEXT, not the
10th. As such GetEOF is really just a short hand to detect a specific error condition.

The functionality could almost certainly be achieved by looking at the return code from
NEXT/PREVIOUS and then delving to see what the error identifier was. Again this is a
situation where the FileManager does work simply to reduce the amount of coding required
by users of the object.

GetField PROCEDURE(KEY K,BYTE Component),*?

This method is used to return an ANY variable corresponding to a given component of a
key. I didn’t want to have to protect the rest of my code against GetField returning a null

Ins ide ABC: The F i leManager
so the procedure ASSERTs that the incoming component will be found. In other words,
GetField gracelessly handles out of range components.

This does illustrate another agenda within ABC: offensive programming
(http://www.users.globalnet.co.uk/~dabay/offensiv.htm) . Defensively I would have coded
so that an out of range value returned a null, which would take two lines of code. Then on
the receiving end nulls would have been handled, presumably in some “see if we can still
keep going” fashion.

There are four calls to GetField in abfile (i.e., this method is relatively underused). Each
would have had to temporarily store the GetField result, test for the null and do
something smart with it. This might have taken five lines of code each (one for the
declaration, one for the extra assign, two for the null test, one to handle the null case). In
total I would now need 22 lines of code to handle something that should never happen as
opposed to the one line of code used in ABC. Doing that throughout a heavily integrated
file like ABFILE could turn 2000 lines of code into 40,000 lines of code 95% of which
would be rarely executed and thus minimally tested. QED.

GetFieldName PROCEDURE(KEY K,BYTE Component),STRING

This is really there for the benefit of methods using the PROP:Filter technology on a
view. It provides the BIND name of a give key component.

GetName PROCEDURE,STRING

The FileManager has to cope with two possibilities for the name of a file. It may either
be a constant or a variable (the latter corresponds to the case where the NAME attribute on a
file contains a string variable). GetName is there to encapsulate this dilemma from the rest
of the class. If a variable file name has been assigned then it returns that, otherwise it
assigns the constant provided to it by the driver itself.

KeyToOrder PROCEDURE(KEY K,BYTE MajorComp),STRING

This method really takes GetFieldName one logical step further. Rather than just return
a field name corresponding to a key component, this method returns an ORDER clause (in
Clarion syntax) that is equivalent to this key starting at component MajorComp. A value
of one thus gives the whole key as an order clause, two skips the leading component etc.

Note that the null key case is defended against. This is because it is totally reasonable to
have a null key specified as the sort key of an object (corresponding to not specifying a key
in the file schematic).

The only real complexity is in the RetVal assignment. The first CHOOSE is there to
prepend the field name with a comma only if the string being built up is non-null. The
second CHOOSE is there to place a leading ‘-’ before a descending key component (the
467

ABC Database Class Design Notes

468
view driver treats ?string as a descending string, it does not convert it to a number as the
language would).

SetKey PROCEDURE(KEY K),PROTECTED

SetKey is used to fetch the correct record within the FileManager key queue for the
usage of a key passed in to it. You cannot sort a queue on a reference field so the method
has to loop through the queue finding a match. Files don’t have that many keys so this
should not be too onerous. I could start the method with a check to see if the current record
value already matches as a kind of first level cache, but the downside is that this would hide
a raft of bugs where people had not done a PUT after modifying the key information.

The loop illustrates an interesting and occasionally useful quirk of Clarion. You can have
loop head and loop tail conditions (WHILE and UNTIL) in the same loop. The conditions
are tested (and code body executed) in the order they appear lexically.

Again note the assert. A failure to set the key throws an error.

SetName PROCEDURE(STRING Text)

This method is a counterpart to GetName; it only allows the name to be assigned if there is
an underlying variable for the NAME attribute of the file. By having the GET/SET in the
FileManager the burden of tracking the global variable name disappears (it simply
becomes the province of the dictionary). This makes it far easier to have an automated path
assignment system built in.

Error Handling
Each FileManager re-vectors the error manager calls through its Errors property.
This serves one main purpose: it allows a global object to be referenced from within base
class code. The secondary purpose is to make the error handler used by the
FileManager re-assignable. This is useful as the file system is one of the major
generators of errors and the file calls are usually out of the direct control of the
programmer. The ability to intercept errors on a file by file basis allows fine grain recovery
mechanisms to be written. In addition to having a single vector point, the FileManager
has a small suite of routines through which all FileManager/ErrorClass interaction
is managed. Again the purpose is to make errors and recovery mechanisms overridable
with a minimum of effort.

GetError PROCEDURE,SIGNED

The FileManager stores the last file error thrown within it. The number is the
ErrorClass number, and it has nothing to do with ErrorCode or Error. It should be
noted that ErrorCode et al are not valid upon return from FileManager methods. In

Ins ide ABC: The F i leManager
particular it is quite probable that the FileClass (coming in a future major release) will
not utilize ErrorCode and Error in normal operation and thus the FileManager will
not even have error codes available. The error suite is one of the instances of the
FileManager trying to smother an encapsulation leakage coming from underneath.

SetError PROCEDURE(USHORT Number)

This method separates out the recording of an error condition from the Throw (or
exception) that the error could raise. Occasionally this is used to simplify internal coding,
but more usually it is used in the Try methods so that they can return an error signal and
leave the ErrorClass able to Throw the error if the caller requires.

Throw PROCEDURE(USHORT ErrorNumber),BYTE,PROC,VIRTUAL

This function is purely a syntactic convenience. It is equivalent to a SetError followed
by a Throw.

Throw PROCEDURE,BYTE,PROC,VIRTUAL

This routine takes the last error number (as recorded by SetError) and simply forwards
it to the ErrorClass stored in SELF.Errors. The main purpose of this routine is
simply to provide a common focus point (and thus override point) for the FileManager
error handling. The return value comes from the ErrorClass and denotes the severity
level as attached by the error class. This could be used to provide a sophisticated error
recovery mechanism, by default most Throws are considered fatal and this facility is not
used.

It is worth nothing that although Throw does not pass on the file label at this point, the
ErrorClass does have access to the file name as this has been set up by the
SetThread method as detailed earlier.

ThrowMessage PROCEDURE(USHORT ErrorNumber,|
STRING Text),BYTE,PROC,VIRTUAL

This is a simple extension to Throw to allow an extra message to be passed on to the
ErrorClass.

Snapshots
The snapshot interface’s purpose is to allow file state and buffer contents to be saved and
restored by anyone without them having to know the structure of the file. The routines all
use a handle to denote a particular state. This handle is undefined (presently it is an ID
number within a queue.) Eventually these routines will become vectors for fresh instances
of the file class to be created and destroyed.
469

ABC Database Class Design Notes

470
The words buffer and file have specific meanings. Buffer means the contents of the current
record; that is the record buffer but also the memo contents. Blob contents are not stored as
the overhead is potentially too onerous. File means buffer plus additional file state
information such as Held, Watched, auto-increment done etc. For this reason all of the
Buffer methods are fairly cheap involving only memory copies, while the File methods also
involve disk access.

EqualBuffer PROCEDURE(*USHORT Handle),BYTE,VIRTUAL

This method is used to check if the current record contents differ from those when the snap
shot (denoted by the parameter) was taken. For example, this might be used to see if a
cancel on a form should be allowed to happen without user intervention.

First the Handle is looked up in the buffer queue; this gives the previous contents of the
record buffer which can be compared byte for byte against the present values (this function
is boolean - it doesn’t say how the two buffers differ). If the two record buffers are the same
the routine steps through the memos of the file seeing if they differ. The stored memo
buffers are (by convention) stored consecutively in the queue following the record buffer.
The present contents of the memos are retrieved by using MyFile{PROP:Value,-
memonumber} (the negative number indicates this is a memo). This was necessary as it is
not possible to store ANY references to memos as memos are created on the heap at file
open time (on each thread) and are thus highly treacherous when involved with references.

RestoreBuffer PROCEDURE(*USHORT Handle,BYTE DoRestore=1)

This routine is used to restore the contents of the file buffer to the point they were when the
SaveBuffer was called. If you pass in a zero as the second parameter then no restoration
is done but the memory is freed. Commencing with C5EEA this routine actually becomes a
shell that calls into RestoreBuffer(handle,filemanager,byte).

RestoreBuffer PROCEDURE(*USHORT Handle,|
FileManager FM,BYTE DoRestore = 1),PRIVATE

This routine allows the contents of a buffer to be restored to the present file buffer from
contents snapshotted by the passed in FileManager. Now in general restoring to a file
other than your own is a dangerous, unmaintainable and generally very stupid thing to do
(this is why the only public interface to RestoreBuffer passes in SELF). However in
the particular case where the “other” file is absolutely identical structurally to your own,
and is guaranteed to be so, it does give an extra degree of flexibility. We use this facility
when dealing with aliases. However when reading this code you should generally assume
that Frm and SELF are the same thing (if you’re writing it, the distinction is vital of
course!) Other than that, this code is essentially analogous with EqualBuffer, the only
extra being KillBuffer which first frees them memory used for the buffer contents and
then kills the queue record.

Ins ide ABC: The F i leManager
RestoreFile PROCEDURE(*USHORT Handle)

This is used to restore a file to the state it was in when the snap shot was taken. The current
file position, sort sequence, held and watch state are all recorded along (since C5EEA) with
the auto-increment state. Note that additionally the record contents are restored after the
file position. This is to allow for instances where the current record had begun to be
modified at the point the snap-shot was taken.

As with RestoreBuffer, RestoreFile has been split out to aid the use of aliases, or
more specifically, to allow FileManagers of aliased files to re-vector their methods
through the Filemanager of the actual file without corrupting the current state of the
actual file.

RestoreFile PROCEDURE(*USHORT Handle,FileManager FM),PRIVATE

The file state (as opposed to record contents) is retrieved from the Saved queue. The
Saved.Key element is the key number of the key active when the snapshot was taken. If
this is non-zero then the key reference is found from the file driver and used in the RESET
(otherwise the File is used). Because Watched and Held are read-only properties in the
file driver they have to be restored by re-arming them and applying a NEXT. Having
performed the NEXT (and thus “corrupted” the buffers) the buffers are restored. The auto-
increment state is then put in place. Note the PUT on the SELF.Info to store that
information for the current thread.

Actually this raises a slight cheat. Many of the file methods need to start with a
SetThread for reasons previously described. Many then needed a UseFile to prime
the lazy open. UseFile also needed to do a SetThread, so SetThread was often
called twice. This is clearly inefficient so we cheated and allowed an information leakage
that stated that UseFile does, and will always, perform an implicit SetThread. Again
we find that ABC is not just about science, it is also about engineering. We allowed for one
assumption and removed 15 lines of code and an efficiency drag on most of our core
functions, and also lost some conceptual purity.

SaveBuffer PROCEDURE,USHORT

This code snapshots the current contents of the record buffer; most of the code is analogous
to EqualBuffer. The interesting piece is the allocation of the Id to act as a handle to the
outside world. At first sight you can simply get the number of records in the queue, add on
one and you have your new Id. Better yet, you don’t need to store the Id in the queue; you
simply use the Id as a record number.

Further, in just about all the testing you ever do, it will work beautifully. But sometimes,
somehow, it will corrupt when the users use it. The reason is that simply counting the
records only works if Save/Restore pairs are performed in a stack-wise manner. If a
deletion from the queue has happened in the middle then the next RECORDS will return a
471

ABC Database Class Design Notes

472
value lower than the current highest Id. Actually it will even work if the restores are not
done stack-wise provided the result has been stack-wise by the time you do the next Save.
If you do the Save/Restores in an unpaired way you will actually get the identifiers
duplicated in the queue and havoc ensues. The solution is that you get the final record in
sorted order and then add one on to whatever you receive back. DupString is a private
member function used to allocate heap for, and copy the value into, a temporary string (like
strdup in C++).

SaveFile PROCEDURE,USHORT

This method is the mirror of RestoreFile. Note that rather than replicating the buffer
storage code, SaveFile simply calls on to SaveBuffer and stores the result. It is
worth mentioning that the handles returned from SaveFile have no relation to those
returned by SaveBuffer. You cannot SaveFile / RestoreBuffer or vice versa.

One slight tweak is the storage of the current key. You cannot simply save a key reference
as that will not work when you are restoring to a different FileManager. Instead you
have to store an ordinal number corresponding to the declaration order of the key. That
number is computed using the loop. Note too the usage of a cast from CK (which is a long)
to a key reference:

K &= (CK)

The rule is that a numeric value can be assigned in place of a valid reference of the right
type. CK in itself is not a value (it is a variable) so the parenthesis is used to form a value.
This form of casting (which can be used in conjunction with ADDRESS and references)
allows all of the (horrible) type conversion common to C++. It should be used extremely
sparingly, but when needed it is brilliant.

A Thought
If you have been following this chapter in the source code, reading and understanding as
you went, it is quite probable that by this point you are thinking. Hey! This stuff is all
obvious; what is all the fuss about? If so, this chapter has worked. If not it may be worth
your while backtracking to see where the confusion enters. Object systems are hierarchical,
one layer builds upon another. Therefore, comprehension of object systems tends to be
hierarchical. If one layer doesn’t make sense it typically means you didn’t quite catch hold
of the layer underneath. Happy hunting...

Now it’s time to get down to the meat of the class; the dictionary interaction and the file
access itself.

Ins ide ABC: The F i leManager
Record Initialization and Validation
Whilst initialization and validation are logically distinct tasks they are grouped together
here because in the fullness of time they will form the basis of what is really one concept:
business rules. People can use business rules to mean just about anything they like. I use it
to mean information about the data that is not contained explicitly within the data.

Some of these rules are already handled by the file driver. For example the DUP attribute in
the Clarion language (upon a key) specifies something about the data you cannot get
directly from the data (although you may be able to intuit it). The Clarion dictionary gains
some of its power by specifying initialization values and validation values within a single
repository. In Clarion 2.003 this information was then scattered (at code generation time)
throughout the application. Any form upon a file would contain code to initialize and then
validate the record buffer. In ABC this code is contained in the (derived) FileManager
object.

One of the ABC aims is to keep the initialization and validation information in one place so
that if the rule is dynamic (i.e. has to be done with an embed point) then that embed only
needs to be placed once and all accesses to the data obey the new rule. This is particularly
important as ABC was to have edit-in-place browses and automatic updates from drop-
combos. In other words, we could no longer rely on forms being around to act as guardians
of the file.

A consequence of the heavy dictionary tie to these routines and the need to pander to
embed code is that a number of these methods are blank; they are placeholders for template
generated code. In these instances I will describe the code that I envisage will go into the
derived form of these methods (and which, purely coincidentally, the templates generate.)

CancelAutoInc PROCEDURE(<RelationManager RM>)|
,VIRTUAL,BYTE,PROC

Initializing a record with an autoincrement key results (in our implementation) in a record
being stored on disk to act as a placeholder for the autoincrement value. If you cancel the
operation then that record needs to be deleted. The CancelAutoInc is the clue to the
FileManager that the record that was initialized is about to be thrown away. The
RelationManager parameter is a solution to the problem often referred to as the
“orphaned children problem.” In a 2.003 application if you insert a record with an
autoincrement key, go to the child tab, insert some child records and then cancel the form,
the child records persist. Of course you can’t see them until you insert a new record and
find it automatically gains some children! This is really scary on forms with many children
where the child tabs may not even be perused during the insert. ABC gets around this
problem in that the form procedure passes the RelationManager in to the
CancelAutoInc and the CancelAutoInc undertakes to delete any children (or refuse
to cancel the autoincrement) as appropriate.
473

ABC Database Class Design Notes

474
The implementation is much simpler than the description: if an autoincrement has
happened then either DELETE or the RI DELETE are called. In the latter case the response
is noted, as an RI relation of restrict means that the autoincrement cannot be cancelled
whilst the children persist.

PrimeAutoIncServer PROCEDURE(BYTE HandleErrors),|
 BYTE,PROC,PRIVATE,

PrimeAutoInc and TryPrimeAutoInc are really just two virtual hooks on the
AutoIncServer. Non-zero for HandleErrors implies the server will take all
possible steps to ensure the autoincrement happens. The TryPrimeAutoInc only is
called when TryInsert has been called. This is never done with the shipping templates
but has been added at the request of a third party.

The routine starts by checking the guard variables. PrimeAutoInc can be called
multiple times to allow for the cases where priming is done in the browse or in the form. It
also allows for inserts to be done without pre-priming of the record. This is an instance of
what I call “objects with attitude.” Basically the FileManager knows that priming
should be done once, and only once, and thus it does it at the first opportunity it is asked, or
at the last minute if no-one asks it!

The algorithm for autoincrementing is essentially the one used to return a unique handle in
SaveBuffer, find the last element and add on one. However, as you shall see, some of
the little details make things a vast amount more complicated.

The first LOOP is a loop to allow for multiple reruns of the bulk of the procedure in the case
where an attempt to autoincrement failed. The failure is most likely to be because between
the reading (from disk) of the current highest element, adding on one, and then ADDing the
record, another station got there first and ADDed the record with that number! The simplest
solution to this failure is therefore to try again from the beginning, and the outer loop
encodes that logic. Of course you can’t keep doing that for ever because something may
really be wrong. If you go to the end of the outer loop, after the ADD(File) you will see
logic to trap the error.

If this is the third failure the error manager is invoked to see if the user wants to try again.
If he does you simply try again (three times), and if he doesn’t you break out with a failure.
If the add was successful the method simply notes the autoincrement has been done and
then returns Level:Benign (which is zero and means “okay”).

The second (or inner) loop introduces a new complexity. Since it is possible for there to be
multiple autoincrement keys in one file, this code has to find incremented values for each
of them. So it loops on each key, executing the body of the loop if it is autoincrement. The
SaveBuffer is important because PrimeAutoInc should only change those fields
which are tagged in the dictionary as autoincrement (or it won’t be possible to support
delaying the autoinc allocation until the insert point). The code then splits into two

Ins ide ABC: The F i leManager
branches, the relatively easy one where the key has one component, and the multi-
component case.

One component is handled by fetching the component any variable and assigning to
AutoIncField. The file is SET to key order and the final record (or first for a
descending key) is fetched. If no record is found (i.e. the file is empty) the new autoinc
value is one, else it is the highest value plus one. It’s necessary to use AutoIncField/
AutoValue rather than just using the underlying fields as the object will later restore the
buffer (which will corrupt the field values) and then perform the autoincrement assignment.

The multi-component case uses exactly the same algorithm. The complexity is in finding
the “final” record because you don’t want the final record, you want the final record that
matches the current record buffer in all components except the last.

ConcatGetComponents is a simple (and ugly) way of snapshotting the leading
components of a key to later see if they have changed. The method then clears the minor-
most (and thus autoincrement) key high and does a SET(K,K) followed by a Previous
or Next as before. In the NoErrorcase it has to check that the record fetched did match
in the leading components; if it did then it can use the AI value fetched and add on one,
otherwise it knows that no records currently match the major components and thus can use
one.

Having computed the new field value (using either method) it restores the buffer contents
and then assigns the new autoincrement field value into place. Once that is done that for all
autoincrement keys it can try ADDing the new record.

If this procedure looks long and horrible it is because it is. My general rule of thumb is that
any procedure more than a page long is a bug. Again you can see engineering and
efficiency overcoming science. I could remove the “OneComponent” arm of the IF, and
the only effect would be a few more string compares (no big deal), but this also changes
this code:

CLEAR(OnlyKeyComponent)
SET(K,K)
PREVIOUS(K)

into this:

SET(K)
PREVIOUS(K)

When you consider that the one component case is the standard third normal form case it
was considered that the code verbosity was worth it. That said, the file drivers now spot the
above optimization in most instances so we may be able to simplify this code soon.
475

ABC Database Class Design Notes

476
PrimeFields PROCEDURE,PROC,VIRTUAL

The default implementation of this method is blank; in the derived form the templates
insert an assignment for each field that has a non-blank initialization value in the
dictionary. The PrimeFields routine may not assume that autoincrement has been done.
Any required blanking will have been performed.

PrimeRecord PROCEDURE(BYTE SuppressClear = 0),|
 BYTE,PROC,VIRTUAL

This method is called to prime the record whatever that means. In the current
implementation that involves calling PrimeFields to prime the field values and then
forcing the autoincrement to prime. Note that this method overrides the attitude built into
PrimeAutoInc; when PrimeRecord is called a new autoincrement record will be
made. The method has the facility to clear out any fields it doesn’t explicitly prime or to
leave them alone. This functionality is required to allow the ViewManager to place extra
priming information into the record buffer (such as range-limited components of keys) and
is controlled by the SuppressClear flag.

The primary case (where AliasedFile &= NULL) is quite straightforward. The
interest comes when the file is an alias. Here you don’t want to call the priming functions of
the alias (because they don’t have the required embed code); you want to call them in the
“real” file. The code for this has changed in C5EEA; I am describing the new code.

First the “real” file has to be opened on this thread (it may not be), and then the file
contents/position have to be snapshotted so that eventually the file can be restored. Now in
the case where the clear is to be suppressed the code has to assume that the record (of the
alias) contains interesting information that may be required by the field priming or
autoincrement. So it has to get the information from the alias into the real file. This is done
by the devious device of snap-shotting the alias file buffer and the restoring from the alias
FileManager into the “real” file buffer. Having done this it can perform the
PrimeRecord on the “real” file; if this is successful it needs to copy the result back to the
alias file, done using the save/restore trick again. Finally the “real” file is restored to
normality and closed. This may look odd: why restore a file then close it? Simply because
Open/Close only increment/decrement counters. The Open only opens if this is the first
open, similarly the Close only closes if this is the last close.

ValidateField PROCEDURE(UNSIGNED Id),BYTE,PROC,VIRTUAL

This function returns Level:Benign if the field is okay, otherwise it returns an error
level. The default implementation only handles the alias case; the actual field validation is
handled in a derived method. The Id is the number that would come back from a WHERE
statement. The template code simply generates a CASE statement on the field number, it
would be possible to produce a more sophisticated version using WHAT. We went for
simplicity as this is a very common place to put embed code and also ValidateFieldis

Ins ide ABC: The F i leManager
hit quite frequently for control by control field validation and therefore performance was an
issue.

ValidateFields PROCEDURE(UNSIGNED Low,UNSIGNED High,
 <*UNSIGNED Failed>),BYTE,PROTECTED,PROC,VIRTUAL

This method is simply an encapsulated way of calling a range of ValidateField calls.
It simply spools over the field numbers contained within the (inclusive) range. If one fails
then the failure number is assigned to Failed. Again the alias case is handled by re-
vectoring through the “real” file. It should perhaps be noted that for efficiency the alias
code does a SaveBuffer, not SaveFile. This implicitly assumes that the field
validation code will not mess with the current file state (i.e. no file I/O will be done on the
primary file).

ValidateRecord PROCEDURE(<*UNSIGNED Failed>),BYTE,VIRTUAL

Another syntactic short-hand, this simply calls ValidateFields to ensure that every
field in the record is validated.

File Driver Replacements
These methods are direct replacements for the equivalents in the file driver. They are
generally there to perform advanced error handling or to ensure that other FileManager
routines are called at the appropriate moment.

BindFields PROCEDURE,VIRTUAL

This method is called at a suitable point to bind the fields. By default the code simply
performs a bind on the record buffer. The templates further override this to perform binds
on any memos that are available. The call can also be overridden by the user (in C5) to bind
logical names (as opposed to labels) as required.

Close PROCEDURE,BYTE,PROC,VIRTUAL

The close mechanism (tied to the open mechanism) is designed to avoid the needless
opening and closing of files upon a thread. The FileManager therefore maintains a
count of the number of times a file has been opened and closed. Upon a close it therefore
decrements the counter. If this close has closed the final remaining open then the close is
actually performed upon the file. The Used flag denotes if a file was really forced open (by
an implicit or explicit UseFile) as opposed to just logically opened. Errors are not
trapped by this routine as any real problem with a close will be picked up again when the
file comes to be re-opened. For this reason ABC also eschews the TryClose.
477

ABC Database Class Design Notes

478
Fetch PROCEDURE(KEY K),BYTE,PROC

The Fetch routine is really just a wrapper for a file GET. The error case results in the
buffer being cleared. Most of the work is done by re-vectoring through TryFetch, and
though this doesn’t save a great deal of code and is marginally less efficient than inline
coding it does result in greater code integrity. Put another way, the code for fetching is in
only one place so only has to be fixed in one place.

Insert PROCEDURE(BYTE HandleError),BYTE,PRIVATE

Insert and TryInsert are just interface maps of this procedure. InsertServer is a
fairly good illustration of the difference between the FileManager and the file driver
equivalents. It is only really trying to do an add; all of the other code is there either to
handle errors or to ensure other ABC methods get called as appropriate.

First UseFileis called. This registers that not only is this file logically open, it needs to be
actually open. Then comes a call to ValidateRecord. If the record is not valid then the
method returns. Note throughout ABC the fact that Level:Benign is zero is assumed to
aid readability and brevity. There are then three cases:

1) No autoincrement keys. In this instance the record will not already exist so a
new one can be added

2) There are autoincrement keys and the autoincrement has been pre-primed. In
this case the record does exist resulting in a PUT rather than ADD.

3) There are autoincrement keys but they have not been pre-primed. Call the
autoincrement logic to ADD the record (remember
PrimeAutoIncrementdoes not corrupt the record buffer other than the
autoinc components themselves).

There are then three error conditions to worry about:

1) NoError. In this case simply note that any previously primed
autoincrementing has now been used and return. (Note this code assumes
that PrimeAutoIncrementwill not have left a value in ErrorCode if it
was successful; I suspect that technically this is a bug.)

2) DupKey. This is the only error the method attempts to recover from
gracefully, stepping through the keys and alerting the end user of any
duplications that this record causes.

3) Everything else. Post a general (cryptic) error message to the user and return.

NextServer PROCEDURE(BYTE HandleError,BYTE Prev)|
 ,BYTE,PRIVATE

Again Next and TryNext are just interfaces to this method. Since C5EEA Previous
and TryPrevious have also become interfaces to this routine (the beauty of this method

Ins ide ABC: The F i leManager
being private!). The NextServer and PreviousServermethods of earlier versions
differed only in one line which has now been parameterized with the Prev byte.

There are only two real points of interest. Firstly the BadRecErr sets the EOF flag (see
GetEOF). Secondly ABC has a facility whereby a held record error can be treated simply
as a Skip rather than as an EOF (which it was in 2.003). You can argue back and forwards
for hours as to whether it is better to display a browse with information missing or to abort
the display. ABC takes the approach that that decision is best left in the hands of the
developer (as the real answer is probably dataset specific) and so provides a property for
her to register her decision.

Open PROCEDURE(BYTE HandleError,BYTE IncrementUsage=True,|
 BYTE ForceOpen=False),BYTE,PROC,PRIVATE

Open and TryOpen are interfaces to this method. The second and third parameters are
really for UseFile. They allow an actual open to be forced without a logical open
happening. Specifically, setting increment usage to false means that a corresponding close
is not required. ForceOpen is used to force the file open even when the LazyOpen
status would suggest the open can be deferred. Note that ForceOpen is quite safe as the
routine takes a failure to open because the file is already open as a success. Again most of
the work of the routine is in error handling, and in this case some moderately sophisticated
recovery is allowed for.

1) NoError or FileOpen. Both treated as a success, internal state variables
cleared (on this thread).

2) RecordLimitError. This code is just there for the evaluation edition. An
attempt has been made to open the file in read/write mode with greater than
the set number of records in the file. The code therefore sets the OpenMode
to read-only and cycles (the loop will then cause another open attempt).

3) NoAccessError. Read-write access could not be acquired so the system
tries to open the file in read-only mode (having first warned the end user)

4) NoFile. Provided the create mode has been set the routine will attempt to
create the file, if that fails a fatal error is thrown.

5) BadKeyErr. For those file drivers with independent key files (notably
Clarion) a corrupt key is non-fatal and the system will try to rebuild the keys
so that processing can continue.

The UNTIL 1at the end of the loop means that any code falling through to the end of the
loop will cause the loop to terminate. The LOOP is not a real loop; it is simply there to
allow some of the recovery routines to attempt to open the file again without a GOTO
statement. It should be noted that a CYCLE statement bypasses the loop tail termination
condition but not the loop top termination condition.
479

ABC Database Class Design Notes

480
Position PROCEDURE(),STRING

This method differs from the file driver equivalent in that it will issue a UseFile and if a
primary key is available it will use that to form the position, or if there is no primary key it
will use the file itself. In general (and increasingly) the ABC system assumes (and
functions most efficiently providing) that all files in the system have a primary key. Note
that this position string can only be used to perform a TryReget; it is not as general as the
Clarion language Position. Whilst this functionality restriction does not give us much
presently it will eventually allow extra efficiencies within the forthcoming FileClass.

TryFetch PROCEDURE(KEY K),BYTE,PROC

TryFetch only really does a UseFile before passing control to the file system, although
since C5EEA it has also performed a SetKey in debug mode purely to verify that the key
passed in is valid for this file. (The ? is one of my favorite C5 features; it allows you to
write code very cleanly which will not be executed when debug is turned off. This allows
you to put in quite a few safety checks with zero overhead in the final shipping code.)

TryGet PROCEDURE(STRING Position),BYTE,PROC

Perform a Reget from a string provided by Position. The Reget/Position pair
give the FileManager user one extra piece of encapsulation: independence from key
structure. Without them you need to know from outside the class how to uniquely identify a
record. This illustrates an important aim: localizing information to reduce maintenance.

UpdateServer PROCEDURE(BYTE HandleError),BYTE,PROC,PRIVATE

Update and TryUpdate are interfaces to this procedure. Clearly this is similar to
InsertServer. The main extra comes from concurrency issues. ABC implements a technique
called optimistic concurrency. Put simply, this means the algorithm assumes that no one
else will ever change the record being edited locally, and then panics if they did. It relies
upon a WATCH having been issued before the record (now being updated) was fetched. In
standard ABC usage the WATCH is issued before the view REGET in the browse
UpdateViewRecord method.

To handle this the code first takes the position of the current record, then it tries the PUT, if
this returns a RecordChangedErr then the user is notified. (To help the end-user the
form template passes in 2 as the HandleError value which prompts the use of a fairly
verbose error message which tells the user of such things as the history key). Then the
record saved by the other station is loaded (i.e. corrupting the local file buffer) and control
is handed back.

UseFile PROCEDURE(),BYTE,PROC

The UseFile method is there simply to perform a real open (using OpenServer) if
lazy open is currently on and the file is not open. This routine has one of the few bits of
defensive coding in the whole of ABC; it actually preserves the file buffers across the Open

Ins ide ABC: The F i leManager
call just in case the file driver (which could be supplied by a third party) corrupts the file
buffer upon the open.

Conclusion
I hope this chapter on the FileManager has helped you understand some of what we
were aiming for (and have achieved) when we coded this class. It is one of our largest and
most complex, and it also presently forms the base of what I call the spine of ABC:

FileManager -> RelationManager -> ViewManager -> BrowseClass

FileManager is also the class the developer most frequently needs to interact with (at least
as much as BrowseClass and WindowManager). As such I believe an understanding of the
principles involved will send you well on your way towards mastery of the ABC system.
481

ABC Database Class Design Notes

482

INSIDE ABC: THE RELATIONMANAGER

by David Bayliss

In the previous chapter I explained that the FileManager was logically there to
embellish the underlying file drivers with information from the Clarion dictionary. The
RelationManager class takes this dictionary embellishment one stage further to add
the notion of related files. Currently there are three features this brings to the table:

• Referential Integrity. It is quite possible for a file to be physically correct,
pass the file level validation constraints, and yet still not correctly relate to
the other files. The RelationManager therefore duplicates a number of
file access functions, and the use of the RelationManager versions of
these functions ensures that the file is correctly linked to other related files.

• File Unification. This allows primary files which are linked to secondary
children to be treated as a logical unity. This is a concept I occasionally refer
to as BILF management (BILF stands for Bloomin’ Irritating Little Files). A
primary file could contain 100 fields, 10 of which are linked to children. Yet
those child files don’t actually mean anything; they are just created as part of
the data normalization process. It is really ugly if every time you use a BILF
you have to go throughout your code opening it, preserving it, etc. The
483

ABC Database Class Design Notes

484
RelationManager therefore replicates some FileManager functions where
the only service it performs is to perform the action upon all the related files
in the tree.

• Information provision. Other parts of ABC sometimes need to know
information about relations (notably linking fields and keys). The
RelationManager provides a portable interface to this information.

Considerations
To some extent all the considerations mentioned in “Inside ABC: The FileManager,” p. 459
apply to the RelationManager, although less so. The RelationManager is built on
top of the FileManager; specifically there is a one-to-one instance link between
RelationManagersand FileManagers. As such the RelationManager always
tries to use a FileManager function for a given activity if it can. This is not sheer
laziness. By utilizing the FileManager, any overriding of the FileManager
automatically works for code using the RelationManager.

There were a couple of new issues too. One was sheer complexity (and thus the need for
safety). The legacy referential integrity (RI) code went through at least a couple of
iterations and to this day it still falls over some cases and corrupts file buffers at will. For
ABC we wanted an RI system that was rock solid, but also efficient. Legacy had another
problem that for large dictionaries (especially heavily related ones) the code bloated
horribly, and we wanted to reduce that drastically.

Further we wanted (in the future) to be able to extend the system to allow one-to-one and
many-to-many relationships. Finally we wanted the RI code to simply drop away if it is
handled by the back end (usually on an SQL database). That’s a pretty long shopping list!

As I head through the code overview I will warn you that the RI methods are by far the
most complex procedures in the whole of ABC. They are an interesting example of my
belief that you should isolate complexity. Don’t smear it throughout code (where everyone
can stumble over it) but focus it into a small space that you can approach with caution.
Well, here are six small procedures (the largest is 60 lines) that get the Bayliss
classification of ice pack jobs. It is my job to make them clear enough that everyone (at
least everyone who is prepared to try) can understand them. I hope I succeed. For the sake
of brevity I shall assume that you have read the FieldPairsClass design documents
(“Inside ABC: FieldPairsClass and BufferedPairsClass,” p. 447).

Coffee... Icepack Action (On the plus side, if you can handle this then you are over
the ABC learning curve. From here it is just more, not harder).

Ins ide ABC: The Relat ionManager
I strongly urge you to have the source code to hand whilst going through this chapter; it
really will make everything a bit clearer.

Initialization
The file drivers have no knowledge of the relationships provided in the dictionary; for this
reason all the relation information has to be provided by the templates to the base classes.
This is done by the templates overriding the .Init method and making a succession of
Addxxxxx calls.

AddRelation PROCEDURE(RelationManager RM),PROTECTED

A Clarion relation can be viewed from either end and it is not enforced that both directions
have a key (although you do need a key both ways for RI). This AddRelation method is
called when the file being initialized is related to the file being passed in but where there is
no linking key on the file being passed in. You may prefer to look at this as saying “he is
related to me.”

AddRelation PROCEDURE(RelationManager RM,BYTE UpdateMode,|
 BYTE DeleteMode, KEY His),PROTECTED

This method gives the ability to note a fully fledged relationship. The
RelationManager passed in denotes the related file, His is the key you fill to get at his
data. UpdateMode and DeleteMode specify the action to be taken upon a potential RI
violation.

This AddRelation method has an interesting side effect: it primes the object to start
accepting AddRelationLink method calls. There are OOP purists I know well (some I
work with) who frown upon this kind of state within an object (the problem for the purists
being that AddRelation must be called before AddRelationLink), but
pragmatically it is efficient and encourages the object user to write readable code. What is
actually happening is that this AddRelation creates a BufferedPairsClass which
will then be filled with the linking fields of the relation.

AddRelationLink PROCEDURE(*? Left,*? Right),PROTECTED

There are two other AddRelationLink functions besides this one, but the variations are
simply there to save code size. (A *? parameter takes about 50 bytes of code to pass,
*LONG parameters take four bytes, *STRING parameters take six. Given that LONG and
STRING cover 90% of all linking fields this efficiency is worth having.) What is going on
here is simple, but needs grasping. This method is called from the templates with
something like:
485

ABC Database Class Design Notes

486
Relate:File1.AddRelationLink(File1.KeyField1,|
 File2.KeyField1)

The *? parameter means the address of these fields is passed in and squirreled away for
future use. Once this has been done for all the linking fields it is possible to assign from one
set of linking fields to another using a single statement.

Init PROCEDURE(FileManager FM,BYTE UseLogout=0)

The base Init method simply ties in the FileManager this RelationManager is
based upon. It also creates a queue for the relations and sets an internal property to denote
whether transactions are to be framed within LOGOUT/COMMIT sections. Remember
however that in template usage the Init method will typically be derived (in generated
source) and the derived method will be full of calls to AddRelation to describe the
dictionary fully within ABC.

If used fully this approach gives tremendous flexibility. It is quite possible to add files into
the RI tree/or cut them out dependent upon system configuration. For example, you could
have a file that is only shipped to certain customers but which is in an RI chain if it is
shipped.

Kill PROCEDURE,VIRTUAL

This method simply steps through the relation queue, killing off any FieldPairs classes
that have been created (for the RelationLinks) and then disposing them.

SetAlias PROCEDURE(RelationManager RM)

This method is used to specify that the current RelationManager is managing an alias
(“Inside ABC: FieldPairsClass and BufferedPairsClass,” p. 447) of the passed in
RelationManager. This method doesn’t really do anything; it is simply there to enable
the AliasFile property to be private. I didn’t want the property public as I expect it to
die when the FileClass comes along.

FileManager Replacements
These are substitutes for the FileManager equivalents. As such their basic semantics are
the same. The difference is the related files are taken into account. For ease of explanation
I am not tackling these in alphabetical order.

CancelAutoInc PROCEDURE(),BYTE,PROC,VIRTUAL

This method enables the form to readily tackle the problem of orphaned child records. (See
“Inside ABC: The FileManager,” p. 459). The form can simply call the
RelationManager equivalent (you should always consider Relate:File.Thing

Ins ide ABC: The Relat ionManager
as "Access:File.Thing(Taking into account related files)"). The
RelationManager calls down into the FileManager (passing in itself) to ensure
children are taken care of.

Close PROCEDURE(BYTE Cascading=0),BYTE,PROC,VIRTUAL

This method simply issues a FileManager close on the current file, and all the child
files, grandchild files etc. You would think this is quite easy, and in principle it is, but there
is one little gotcha that makes the code quite complex. First consider the logical
implementation. To Relate-Open file Fred you first open Fred then you open all of Fred’s
children. Then somehow you need to get the children to open their children.... Hang on,
that’s easy. Instead of opening Fred’s children, you Relate-Open them and it all works. So a
simple recursive solution would be:

RelationManager.Close PROCEDURE
I BYTE,AUTO
 CODE
 ASSERT(NOT SELF.Relations &= NULL)
 SELF.Me.Close()
 LOOP I = 1 TO RECORDS(SELF.Relations)
 GET(SELF.Relations,I)
 SELF.Relations.File.Close(1)
 END

Beautiful, elegant, efficient and liable to lock your machine the first time you try it.
Imagine you have relationships A <—>> B <—>> C <—>>D and A <—>>D. Technically
this is illegal in the Clarion paradigm (you need an alias for the second usage of D) but in
practise you can usually get away with this (few procedures will have A, B, C and D all
populated) and peoples dictionaries are littered with cyclic dependancies.

Now the recursive solution dies horribly. Suppose you close A. This closes B which closes
C which closes D which closes A which closes B which closes.... You get the picture.

There are many sophisticated and elegant algorithms for detecting loops in graphs; we
opted for a simple one. The idea is roughly this: when you get the first (top-most) call to
close then you note the time. You then recurse as before but when you do the close you note
inside the RelationManager the time you did the close. Then when you call a
RelationManager to close it, you see if it has been closed since (or at) the top-most
call. If it has then you have already been here before so you exit without recursing. You can
actually implement this using CLOCK but there is one more little trick to spot. You don’t
have to use real time; any time will do. So for efficiency I made my own time stored in the
Epoc variable. This time only ticks when the top-most call is made.

Here’s a look at the code. First I check the cascading flag. This flag is purely there to
indicate whether this is the “top” of the tree. If it is the top of the tree (cascading false) then
I increment the epoc timer, if not then I check if for a touch in this “time-zone.” If there
has been a touch then the code returns; if not then I update the “last-touched” to prevent
487

ABC Database Class Design Notes

488
further recursion. Then it is just a case of closing this file, and then stepping through the
children closing them. One extra tweak is an early out mechanism. Essentially if any of the
FileManager.Close calls fail the tree walk stops. This is not particularly useful in the
Close case but in general a FileManager method returning an error could easily have
put up an error message to the user. If that has happened once the last thing the user wants
is to step through error messages for each of the 150 related files as well.

Open PROCEDURE(BYTE Cascading=0),BYTE,PROC,VIRTUAL

The Open code is actually very similar to Close. I’m surprised I didn’t use a
parameterized private method. Watch this space, as it is possible Open and Close will
both have become shells for an OpenCloseServer by the time you read this. As an
aside, I wonder if that seems unprofessional to you? Making mistakes, owning up to them
and go fixing them? I never cease to be amazed by the people who write their code badly
and then consider it inviolable. Encapsulation, a key feature of ABC, enables us to get the
code right. Not okay, not working but right.

The one tweak is the LazyOpen mechanism. The FileManager has an attitude that
says it won’t actually open a file just because you asked it to. However we felt is reasonable
that the primary file should be opened straight away so if this is the top of the open call tree
(and cascade is thus 0) we call UseFile to force the file open.

Delete PROCEDURE(BYTE Query=1),BYTE,VIRTUAL,PROC

This method is the first of the nasties. Delete is really just there to delete the primary
record. There are two main complications: the first is the need to check that you can delete
the primary record (i.e. there are no RI constraints), and the second is the need for
transaction framing (the ability to abort the delete process halfway through if something
goes wrong and you need to undo all the mess you made).

First is a fairly simply query as to whether or not the user actually wants this record
deleted. One little trick is the use of the guard flag on the left hand side of the AND and the
Throw on the right. This relies upon the fact that the compiler does short-circuit evaluation
of logical conditions. In other words the compiler guarantees that if it knows the result of a
logical expression simply by evaluating the left hand side then it will not evaluate the right.
So if query is zero the Throw will not be done.

Next is the LOOP that operates the “Retry the delete?” message if the first attempt at
deleting failed. Then the position of the record to be deleted is taken and is TryFetched.
This is because the record needs to be full and accurate to allow the child links to be found
and I cannot assume someone has made a record accurate just to delete it. Between the
position and TryFetch is a block inside an IF SELF.UseLogout. This code is a
horribly complex way of doing a simple thing. LogoutDelete (documented in part two
of this chapter) simply finds out which files may be altered by this delete and adds them to
the transaction frame.

Ins ide ABC: The Relat ionManager
Following this code is the main loop, which steps through all the relations calling
DeleteSecondary for all files which are related with some form of constraint on the
delete. (In C5 the LocalAction function filters out the RI done upon the server which
does not require assistance from ABC). Note that DeleteSecondary is a method in the
related RelationManager. This is a vital point! You do not go around deleting other
RelationManagers’ records; you ask them to do it for you. What gets passed in is the
key of the His that this RelationManager is related to, the FieldPairsClass
containing the list of linking fields, and the action mode to say whether restriction,
cascading or deleting is called for.

How does this function work? From the perspective of the current RelationManager,
the answer is “Don’t know, not my problem,” but it does matter that I know if it worked. If
it didn’t I must stop processing myself. Note the little CheckError routine calls are
pernicious: they can cause the whole method to be aborted. This code assumes the
DeleteSecondary will have issued the ROLLBACK if required.

Assuming the children were okay then the RelationManager deletes its own record
and handle any errors (including transaction rollbacks of child deletes if required).

Update PROCEDURE(BYTE FromForm=0),BYTE,VIRTUAL,PROC

The update code is very similar to the delete code so I’ll focus on the differences. There is
no need for the “Are you sure?” query. There’s also no need for the Position/Reget as
the code can assume someone doing an update has valid records in the buffer! Because
updates cannot be restricted it’s okay to update the primary record before cascading to the
children. Again any errors are handled.

NAME='Update'

The real interest (and new code) comes in the secondary loop. Note the call to
EqualLeftBuffer. When an update is commenced in a form the
RelationManager's Save method is called which snapshots all of the values of the
linking fields of the relations into the Buffer portion of the linking fields
BufferedPairsClass. Thus at the update it’s possible to compare the left (primary)
record with those stored values. If they haven’t changed (even if the record has) then there
isn’t anything to cascade.

Suppose the cascade fails. Now there’s a primary record (in memory, the disk image will
have been rolled-back) with linking fields that now don’t point to the children. Yuk! So
upon failure the code copies the linking fields from the child back into the parent to tie the
records together again.
489

ABC Database Class Design Notes

490
Services
ListLinkingFields PROCEDURE(RelationManager Him,|
 FieldPairsClass Trgt, BYTE RightFirst = 0)

This service routine provides the caller with a FieldPairsClass that has been filled
with the linking fields of the two RelationManagers (SELF and Him). If
RightFirst is zero then the Left of the FieldPairsClass will be filled with fields
from the RelationManager denoted by SELF.

In a nice world this code would simply step through the relations, find the relation to Him
and copy the Fields.List property into the target element by element (the inner loop).
That is almost what happens. The complexity is that only one side of the relation actually
stores the field list. So if the code finds that it has a suitable relation but doesn’t have the
field list it asks the related RelationManager to provide the list, but it has to switch the
RightFirst parameter so that the Left/Right fields are correctly oriented in the
result.

LogoutPrime PROCEDURE,BYTE,PRIVATE

This method is really just an error wrapper around a PROP:Logout assignment. This
property is used as an alternative to the older
LOGOUT(n,File1,File2,File3,File4...) procedure call. Using
PROP:Logout you simply set the property true on all the files you wish to logout before
issuing the LOGOUT statement. The advantage of this mechanism is that it removes the 52
file limit on the logout and also it means that the files to logout can be selected one by one
rather than all needing to appear in one place. This is vital if files are to be switched in and
out of the logout to support flexibility of referential integrity.

The code just checks that the file is open, then if logout is required the property assignment
is done. An error of 0 means all went okay. An error of 80 means logout is not supported, in
which case UseLogout is set to zero to prevent the error happening multiple times (this is
a programmer error; there is no advantage to informing the user). Any other error is treated
as ugly and the user is informed.

Save PROCEDURE,VIRTUAL

This method steps through all the relations and snap-shots the linking fields in the primary
into the buffer component of the linking fields buffered pairs class. This is latter used as a
sophisticated “record changed” tester for the Update Cascade code.

SetQuickScan PROCEDURE(BYTE On,|
 BYTE Propagate=Propagate:None),VIRTUAL

This interesting little method is a variation upon the open/close theme. Essentially it just
walks the relation chains using the Epoc to ensure it doesn’t hit a cycle. Bit 080H of the
propagate flag acts as the Cascading flag of Open/Close fame. The tweak is that this

Ins ide ABC: The Relat ionManager
time the caller can specify which type of relations are walked down: one-to-many, many-
to-one or all. The work is done inside the loop, and the code uses the fact that a relation is
considered many-to-one if this relation has a key to use for a lookup into the other
RelationManager.

The Plug-Uglies
These routines are all extremely similar. Essentially they all do the same thing: they walk
over the relation tree performing some action upon each RelationManager they
encounter. Before attempting these make sure you are happy with the Epoc idea
encountered in the Close method. These routines are also all private. They are just too
prone to change and re-adjustment to have people rely upon them.

Note that these routines have been simplified in C5EEA (LogoutDeleteClear has
been removed).

CascadeUpdates PROCEDURE,BYTE,PRIVATE

This is the simplest of the remaining routines so is probably a suitable juncture to explain
what all of these routines are doing. CascadeUpdate is called when one or more fields in
the record buffer for the current file have been changed. The cascading part of the job is to
see if any of those fields that are changed are also linking fields to a child file. If they are
then the corresponding fields have to be changed (or some other action) in the child file to
keep the database consistent.

The code steps through all of the related files checking if there is an RI Update constraint
(using LocalAction) and then checking to see if the linking fields of these two files
have changed since the last call to save. If they have changed then the secondary is told to
update itself. If the secondary is unable to do so (that is, an errorcode was returned) then the
primary is modified to unchange the fields that were causing the problem. Assuming all the
children were changed (if required) then the primary itself is modified to disk.

DeleteSecondary PROCEDURE(KEY MyKey,|
 BufferedPairsClass Links,BYTE Mode),BYTE,PRIVATE,VIRTUAL

DeleteSecondary starts by checking that the file is open, and then preserves the
contents using SaveFile. This is important, because the person doing the delete expects
the primary file to be touched, but may not even know about the secondary file(s) Those
files must have their current contents preserved as well (the legacy templates don’t bother
so be very careful doing RI with legacy templates).

After the file is cleared, the LeftToRight assignment then fills in the linking fields in
the child (i.e. this) file with the values from the parent file. Now usually the linking fields
will be the whole of the key but it needn’t be the case (you can have unassigned key
491

ABC Database Class Design Notes

492
components), so this method uses ClearKey to clear down the remaining key
components so that the following SET(MyKey,MyKey) picks up all matching records.
(The file clear is not enough, for a descending key clearing down means clearing high!)

Next is a standard ABC sequential processing loop. If the NEXT throws a fatal error (end-
of-file is only a notify) then it’s necessary to abort the processing, rollback the transaction
and get out fast. Well actually not that fast. The exit is always done via a standardized
routine that restores the child file to its original state. In less dire circumstances the code
checks for two things: hitting end-of-file; or reading a record that no longer matches the
parent. In either case all the children have been dealt with so it’s possible to return
gracefully.

If there is a child then the action depends upon the RI action that has been specified.

• Restrict: In this case the parent cannot be deleted (because there are children)
so the method throws an error, rolls back the transaction, and notifies the
parent to abort its processing too.

• Clear: This specifies that in the child the link to the parent is blanked out. A
simple ClearRight blanks the linking field. Now for the little twist. If you
think about it, the children aren’t being deleted; they’re being modified.
Instead of calling DeleteSecondary, the code calls
CascadeUpdates.

• Cascade : This is one for the power hungry. The code is very similar to
CascadeUpdates. It steps through the children telling them to apply the
DeleteSecondary criteria to themselves. Assuming they all manage
then it’s okay to can delete the parent record with suitable grizzling if
unsuccessful.

LogoutDelete PROCEDURE,BYTE,PRIVATE

This is a tree-walking algorithm in fairly pure form. Its function is to guess all of the files
that are likely to be touched by the delete process. It does this by logging out itself, then
stepping through each child with an RI Delete constraint. If the constraint is cascade then
LogoutDelete is called recursively on the child file (there’s no need to worry about
cycles as delete constraints only go from 1->Many). If the constraint is clear then the call
could be something else but this time it is the LogoutUpdate procedure.

LogoutUpdate PROCEDURE,BYTE,PRIVATE

This method is very similar to LogoutDelete except that it checks the RI Update fields
rather than RI Delete. Both cascading and clearing count as modifications so the job can be
done by recursing.

Ins ide ABC: The Relat ionManager
UpdateSecondary PROCEDURE(KEY MyKey,|
 BufferedPairsClass Links,BYTE Mode),BYTE,PRIVATE,VIRTUAL

And finally, the real nasty one. That said this code is very similar in principle to
DeleteSecondary (although I doubt I will ever common them up; the task would be
just a little too scary). The main changes are:

• The primary record will already have been modified when this routine is
called so it doesn’t work to call AssignLeftToRight to fill in the
linking fields. Instead the code uses AssignBufferToRight where the
buffer has been set up by the preceding Save call of the parent.

• If there is a child record then immediately issue a Save call on SELF (the
child). This is to preserve any linking fields to the children (the grand-
children of the original record)

• Restrict: As well as aborting if there is a restriction clause the parent record
must be modified so that it still points to the children.
(AssignBufferToLeft)

• Both Clear and Cascade cases fall down into CascadeUpdates which
then propagates the changes to the grandchildren.

Summary
So what have you learned? “Never try to read DAB’s code!” Well, possibly, but go and
have a look at the thousands and thousands of lines of RI code that a decent dictionary
generates in legacy templates. Then remember that ABC RI doesn’t corrupt your file
buffers, can be extended to many-to-many or one-to-one, can cut files in/out of the chain at
run time and provides strong BILF management for free!

In some ways the RelationManager heralds all that is good and bad about ABC. It is
highly functional, highly efficient, extremely concise, extremely flexible and entirely
impenetrable to the casual observer. This brings me to a phrase I used at the ‘97 DevCon
which Steve Parker likes to dispute at all reasonable opportunities: “Don’t Know, Don’t
Care.” One of the features of OOP is encapsulation, which means that all of this stuff is
safely under wraps. You don’t need to understand any of the above, just call the function
and have done with it. (You don’t even need to call the functions, the templates do this for
you.)

Specifically, if you are working at the app level then this is how you should work.
However, as my article “Clarion For Schizophrenics” (www.clarionmag.com/col/98-05-
schizo.html) suggests, all good OOP programmers have a dual nature: one side doesn’t
493

ABC Database Class Design Notes

494
know or care, and the other understands the object and can extend it. These design
documents are aimed squarely at this alter-ego. As such I trust I have provided it with some
food for thought.

INSIDE ABC: THE VIEWMANAGER

by David Bayliss

Having dealt with the FileManager and RelationManager classes the final part of
the file system I need to deal with is the ViewManager. It could be argued that having
three different objects dealing with files is a little excessive. In a sense this is true; logically
the ViewManager brings fairly little to the table over a RelationManager (it “just”
deals with a bunch of files). However, the ViewManager does handle the very important
special case where a bunch of files are being used to retrieve a series of records (including
child lookups) in a nominated sequence. This was so vital I felt it deserved a special object.
It turns out that the ViewManager is almost never used as a ViewManager, but it is the
base class used for many of the higher level data access objects.

Room With A View
The ViewManager is to a View structure what a FileManager is to a File structure.
Specifically, the ViewManager is there to act as an OOP front end to the view. It is also
there to provide some logical sophistication not present in the native view. The main logical
elements brought to the table are:
495

ABC Database Class Design Notes

496
1) Range Limits: The ABC and legacy template chains have the notion of a
range limit, which is the ability to restrict the records retrieved to those
matching one or more of the major-most elements of the key order. Tied in
with the notion of range limits is the notion of a free element (the major-most
element of a sort order that is not range limited).

2) Multiple Sort Orders: A Clarion view structure only supports a single sort
order (although the current sort order can be changed at will). The
ViewManager is to support multiple sort orders (simply).

3) Flexible filters: The Clarion view structure has one assignable filter. The
ViewManager provides for multiple filters active at once.

4) Attitude: A key requirement of ABC was that we wanted optimal (or near
optimal) browse performance. It was felt that an essential element of that
was ensuring that views were handled cleverly. Rather than us having to
build the cleverness into every object that used the view (browse, drop down
list, drop down combo, report, process etc) the ViewManager watches the
commands being sent to the view structure and translates these commands
(where required) into a more intelligent sequence.

Initialization
The initialization section of the ViewManager is quite large, and it also offends the OOP
purists as it contains state; the order in which the methods are called is significant. These
two are tied together. A significant procedure (say five browses and 15 drop combos) will
contain 20 view initialization sequences and possibly 100 sort order creation sequences.
We felt that having these sequences concise, readable and efficient was more important
than sheer hygiene.

The call sequence is:

Init
[Repeat 1 or more times
 AddSortOrder
 AppendOrder ! Optional
 AddRange ! Optional
]
UseView
 AddRange PROCEDURE(*? Field)
 AddRange PROCEDURE(*? Field,*? Limit)
 AddRange PROCEDURE(*? Field,*? Low,*? High)

The three AddRange methods set a range limit upon the current sort order (defined by the
preceding AddSortOrder or SetOrder). They correspond to Current Value, Single
Value and High/Low Value range limits respectively. The code for each is similar. The aim

Ins ide ABC: The ViewManager
of the code is to produce a RangeLimit queue with a queue record defined for each
element of the key that is range limited.

The first line of code sets the type of the range limit. The second calls
LimitMajorComponents. It is defined in ABC that if the range-limited field of a sort
order is not the most major component then all the more major components are implicitly
current-value limited irrespective of the limit-type of the more minor component. The call
to LimitMajorComponents implements this detail.

The field(s) passed in is then added to the range-limit queue. Finally SetFreeElement
is called to compute the free element of the sort order.

AddRange PROCEDURE(*? Field,RelationManager
 MyFile,RelationManager RelatedFile)

The purpose of this AddRange is the same as the other three, but the code is somewhat
different because the information required to construct the range limit is not publicly
available (it is hidden in the RelationManager). Essentially if two files are related by
keys with, say, three components, then a FileLimit range limit corresponds to a single-
value limit upon three different elements! The queue is thus filled in using the
ListLinkingFields capability of the RelationManager.

AddSortOrder PROCEDURE(<KEY K>),BYTE,PROC

The AddSortOrder method actually performs the action of creating a new logical sort
order. Each logical sort order can have a different range limit (and thus free element), and a
different filter. This is stored in a queue (or Order queue) with a record pertaining to each
sort order.

This method clears the queue record (it has to as it contains an ANY), stores the key, creates
a new range-limit list and uses the first component of the key as the free element.

The sort order itself is computed by passing the key (if present) as a comma delimited list
of components to the SetOrder method.

As it is impossible to remove sort orders it is okay to return the record number of the queue
record added as the “unique identifier” of the sort order within the queue (for later use by
SetOrder).

AppendOrder PROCEDURE(STRING Order)

Each time I look at the AddSortOrder/AppendOrder relationship I oscillate between
deciding it is a beautifully elegant engineering solution and fretting that it is a complete
hack. The issue is this: Proper database theory will tell you that sort orders should be
defined in terms of fields and ascending/descending flags so that the logic of the program is
nice and clean, and the ugliness of physical database design and actually getting
performance out of the system can be left to some other poor schmuck.
497

ABC Database Class Design Notes

498
The problem is that with many programmers coding furiously and requiring many different
sort orders, the “poor schmuck” (typically the DBA) actually may not be able to get the
system to perform at all! Worse yet he may be sufficiently senior that you can’t boss him
around to make sure your program runs okay.

Thus the programmers have to get pragmatic and they start building keys into their
program logic. Performance improves greatly; unfortunately applications have to use a
restricted set of sort sequences or the number of keys explodes.

So along comes ABC. What do we do, “restrictive” or “slow”? Legacy took the restrictive
approach, which I didn’t want, but the alternative wasn’t that nice either. What we settled
on in ABC was an interface that can be used in a fully, logically pure way but that
encourages the writing of efficient queries. It does this by defining a sort order in two parts.
The first (optional) part is a key which defines the main part of the sort sequence. The
second (also optional) part is the fields used to sort duplicates within the first key.
Combining this with some special technology within the view driver we have the panacea
of full flexibility that is usually fast.

To put some meat on the bones; assume you have an invoice file containing a customer id,
and an invoice date (amongst other things). There is a key on customerid. You want to
list invoices in customer order with invoices for a customer listed in date order. You do an
AddSortOrder(CustomerKey) and then an
AppendOrder('INV:Dateordered'). The view driver will then read in the records
for the first customer, sort them, then the second customer etc. Given that sorting is at least
an NlogN process this “bucket sorting” can produce a massive time savings.

An additional tweak that should be available by C6 is that AppendOrder may start with a
“*” character, meaning the specified order replaces the order specified by the key after and
including the free element. This is useful for specifying range-limit information using a key
but then ignoring any trailing key components.

Init PROCEDURE(VIEW V,RelationManager RM,<SortOrder SO>)

Much of the init code is straightforward; note though that the order property may be set up
in one of two ways. If passed in then that version is used, otherwise one is created. This
allows a derived class to construct a larger queue (more fields) than the ViewManager
requires while still having the ViewManager perform the administration required.

The order queue is central to the whole ViewManager operation and stores all the
information pertaining to a given sort order. When the ViewManager is derived by a
browse it stores all the information for one tab of the browse.

Note also the default values provided to the view driver to enable the SQL buffering
technology.

Ins ide ABC: The ViewManager
The Init method also ensures the UseView method is called, for reasons I’ll discuss under
that method name.

Kill PROCEDURE,VIRTUAL

This is one of those messy little procedures that only really exists to ensure that there aren’t
any memory leaks.

Essentially Kill just loops through the records of the order queue, and for each element of
that queue it cycles through each element of the filter queue freeing up each filter element.
Then it disposes of the filter and order-clause queue and nulls out the free element (which
is an any).

Finally if the order queue needs freeing (meaning it wasn’t passed in from outside) then it’s
disposed of. Finally the order queue is freed.

UseView PROCEDURE,PROTECTED

UseView has a simple task, to call UseFile on all the files a view references.
(UseFile technology is explained fully in “Inside ABC: The FileManager,” p. 459.) The
requirement of calling UseFile is a little subtle.

Logically when the template uses a view (or a browse) it only knows about the primary file:
the lookups are an implicit part of view functionality. But the implementation of the VIEW
(within the Clarion language) has one or two legacy throwbacks. One of these is that the
files have to be opened independently before the view will work. So the ViewManager
“dresses” the view structure to tidy this up, making sure all of the underlying files have
been used at an ABC level and are therefore likely to be open, thus satisfying the view.

A list of file references is available from the view driver itself. The FileManager
reference is obtained from the internal lists so that UseFile can be called.

Application and Attitude
The following three methods really embody the vast bulk of “the smarts” within the
ViewManager. Their job is to construct a filter and order clause to provide a record set
equal to the one currently requested. They also have an alternative agenda, which is to
avoid resetting the VIEW’s order and filter clause unless absolutely required. This avoids
busy work in the view driver.

ApplyFilter PROCEDURE,VIRTUAL

This function really does three separate jobs. Firstly it constructs a filter equivalent of any
range limits provided; then it concatenates any filters provided; finally, it applies the filter
to the view and monitors the error condition.
499

ABC Database Class Design Notes

500
The CASE statement is simply to branch between current, single and file range limits, all of
which result in a filter of the form “field1 = xxx AND field2 = yyy” and the
pair range limit which produces “field1 >= xxx and field1 <= yyy”.

For the common case the code sits in a loop for each element of the range limit queue. For
each element the field name is extracted from the file manager, then CasedValue is
called to compute the right hand side of the equals sign for the given condition.
CasedValue allows for the right hand side being a string (in which case quotes are used),
the key being case insensitive (in which case an UPPER will be present of the field name
and should be present on the constant name) and even the value containing quotes!

The range filter assignment line has an interesting tweak, which is the use of an inline
choose statement:

CHOOSE(I = 1,’’,’ AND ‘)

This solves the age old problem of having a list of items that you want separated (with an
AND in this case). The traditional solution (using an IF statement before the concatenation)
can make a simple loop look complex. The CHOOSE handles things in a very compact way.

The Pair code is a little more complex and illustrates nicely the treatment of key
components which come before the component being range limited. If you look at the case
within the loop the second branch is only taken for those major components. They are
simply “=” limited, exactly the same as for a current value range limit. In other words, the
standard ABC library deals with multi-component range limits without any clever tricks
being needed.

The RRL-1th element is the lower bound of the range leaving the upper bound to be
computed outside the loop.

The filters supplied by SetFilter are then appended in turn (there can be any number of
them, each with a different ID). Each supplied filter is placed inside parenthesis to avoid
any unexpected operation precedence problems.

Finally the filter is assigned and the error trapped.

ApplyOrder PROCEDURE,VIRTUAL

This method doesn’t have any complexity. It just assigns the order clause and traps any
errors.

ApplyRange PROCEDURE,VIRTUAL,BYTE,PROC

ApplyRange is where the system gets some attitude. The idea here is that sometimes the
window manager knows “things have changed” and wants to alert the ViewManager that
it needs to refresh itself. But the ViewManager shouldn’t refresh itself if nothing of
interest has actually changed. So ABC has the ApplyRange method.

Ins ide ABC: The ViewManager
For every range limit (other than current value) a mirror value is stored to reflect the state
of the range limit the last time the browse was refreshed. When ApplyRange is called it
checks the new values against those in the mirrors. If nothing has changed then
ApplyRange simply returns; otherwise ApplyFilter is called to handle the changes
in the data.

For the Pair case both the upper and lower bound have to be checked. This is done by
comparing the right (which acts as a buffer) with the left. If there is a difference then left is
assigned to right (for both bounds) and ApplyFilter is called.

There is a neat trick here: the Single clause is introduced by OROF not OF. This means that
the Pair case will also fall down into this code.

The File case looks a bit more complex but it isn’t. For the file range limit both left and
right values are used (the left is the file being limited, the right is the file doing the limiting)
so if the file doing the limiting has changed the new value is assigned to the buffer part of
the BufferedPairsClass before the ApplyFilter is done.

Lights, Cameras ... Action
The following methods are really the ones that are called to do things to the view during
normal operation of the ViewManager. They have names and semantics similar to
equivalents in the underlying file managers and relation managers.

PrimeRecord PROCEDURE(BYTE SuppressClear = 0),|
 BYTE,PROC,VIRTUAL

The purpose of this method is to allow a record to be cleared/prepared for sending to an
Update (or similar code) for insertion. This work is done in three stages,

1) Each file buffer connected to the view is cleared. his is done by quizzing the
view driver for what the files are and then simply calling Clear for each
record.

2) Next comes a bit of intelligence. Suppose you have a browse that is range-
limited to only display addresses in Florida. Then assume an insert button is
pressed: it is reasonable to assume the new blank record should comply with
the Florida range limit. So the range limit elements are stepped through and
the key components of the sort order are filled in with the corresponding
limiting value.

3) Finally any remaining “blank bits” from the primary record are filled in
(such as any auto-increment key components). This is done by a call down
into the PrimeRecord method of the underlying file manager.
501

ABC Database Class Design Notes

502
Close PROCEDURE,VIRTUAL Open PROCEDURE,VIRTUAL

These methods close and open the view respectively. They are extremely simple. The
Opened flag allow them to be called on a “check if it is open” and “check if it is shut” basis
without generating errors. The Open method also applies the presently active filters and
order so that the static filter/order of the view (usually declared in the generated CLW file)
doesn’t have a chance to load any records before they dynamic filter/order (which override
the static one) is applied.

SetSort PROCEDURE(BYTE OrderNumber),BYTE,VIRTUAL,PROC

This method switches the presently active sort order. After this call further calls to (for
example) SetFilter/Reset mean “perform this action on the present sort order.” This
is one of the main benefits of this manager, as I detailed earlier.

The value returned means “did anything happen.” This is part of the attitude mechanism: if
a zero is returned the caller knows it doesn’t have to progress with any code that would
been required for a new sort order. For example, the browse watches this to see if a reload
might be required.

Reset PROCEDURE(BYTE Locate),VIRTUAL
Reset PROCEDURE,VIRTUAL

Reset on a ViewManager (and on any ABC object for that matter) means “bring this
object up to speed with any external data it references.” In this context it means bring the
view up to date with any data on the disk and position it relative to data in the underlying
file record buffers. The Locate byte denotes how many leading components of the
presently active order are taken into account when performing the locate. In other words, if
Locate is zero (or you call the unparameterized form of Reset) no location is done and
the view is positioned at the beginning of the record set. If locate is (say) 2 then the first
two fields from the order clause are used to perform the position.

Next PROCEDURE,VIRTUAL,BYTE
Previous PROCEDURE,VIRTUAL,BYTE

Next and Previous read the next and previous records from the current data set. This is
pretty much just a call to the underlying view. Additionally the error conditions are
converted into ABC error levels.

If the record is valid according to the view criteria then the ValidateRecord method is
called. This can specify one of Ok, Filtered and OutOfRange. The OK from
ValidateRecord simply causes a return from the Next/Previous method with a
Level:Benign error rating. An OutOfRange return is converted into a
Level:Notify, which is interpreted by the rest of ABC as an “End Of File.” In other
words it stops all view processing until the next reset. The Filtered case is handled by
simple continuation. This causes the outer loop to cycle causing the next record to be read

Ins ide ABC: The ViewManager
from the view. In this way no “invalid” records will ever be returned from the
Next/Previous methods.

ValidateRecord PROCEDURE,BYTE,VIRTUAL

This method doesn’t really belong in this section but it is so closely related to
Next/Previous that I decided to cheat. The default implementation of
ValidateRecord is useless - it just returns Record:Ok. It is here so that people can
override it (by dropping embed code into the ValidateRecord embed point) and thus
define an additional programmatic filter for what does and doesn’t constitute a valid record.
ValideRecord should return Record:Ok, Record:Filtered or
Record:OutOfRange as defined above.

HouseKeeping
The remaining methods are really housekeeping and are designed to allow people to fiddle
with the internal state of the ViewManager object without having to know its structure.
As such they are generally simple to use and implement. They all require the previous use
of SetSort which sets the sort order to be acted upon.

GetFreeElementPosition PROCEDURE,BYTE,PROTECTED,VIRTUAL

This returns the position within the present sort order of the field which is the free element.
You can think of this as the “number you need to pass to Reset to get a search using fields
up to (and including) the free element.” For example, if you have a three component key,
and have range-limited the first element, this function will return 2. Now if you have values
in component one (the fixed element) and component two (the floating one) a Reset(2)
will locate to the first record matching both of those elements (but ignoring the third).

GetFreeElementName PROCEDURE,STRING,VIRTUAL

This method returns the bind name of the free element, which allows derived classes to
perform some kind of location/free element manipulation other than a simple reset. For
example the filtered locator class uses this function to construct a filter of the form
SUB(GetFreeElementName(),1,2) = 'FR' or similar resulting in
SUB(CUS:FirstName,1,2) = 'FR'.

SetOrder PROCEDURE(STRING Order),VIRTUAL

SetOrder is directly equivalent to setting the order clause of the present sort order for the
underlying ViewManager.
503

ABC Database Class Design Notes

504
SetFilter PROCEDURE(STRING Filter),VIRTUAL
SetFilter PROCEDURE(STRING Filter,STRING Id),VIRTUAL

These two methods manage the filtering system. What we were aiming for was to enable
people to write additions to (for example) a browse that enabled additional filterings. The
classic is a QBE filter or a multi-component locator. The traditional problem has been how
to set a new filter without clobbering the one provided by somebody else. Using the one
parameter SetFilter you can’t; whatever you set overrides the filter provided by the
filter prompt in the template. However the two parameter filter allows you to specify a
unique identifier for the filter being passed in. Provided that identifier does not clash with
anyone else’s (be inventive, this is a string) then all the set filters will be concatenated
before being sent to the view.

There is an implicit priority mechanism in that the strings are alpha-sorted before going to
the view driver. This may be important efficiency-wise as many expression evaluators
(including ours) perform left-to-right short-circuit evaluation of boolean conditions. (Put
another way, if your doing something slow, put it last filter as the system probably will
have thrown a record away before the code gets called).

Summary
Phew! We have finally gotten to the end of ABFILE.CLW. Kinda tiring, huh? Well yes,
although it should be remembered that ABFILE is by far the largest module in the ABC
system (45% bigger than ABBROWSE) and the relation manager is probably the most
complex part of the system.

I trust that the tour has provided you some insight into the operation of “the spine” and also
into the coding techniques, styles and methodologies employed.

That said, the number one lesson I hope you have gleaned is that all the code is there, it is
all fairly approachable and once you understand it, it really does begin to make sense.

Honest.

Database Tips & Techniques

CLARION FILE ACCESS BASICS

by David Harms

Almost all Clarion applications work with data files of one description or another. Most use
databases with numerous different tables and files, and perhaps even more than one
database or file system. And all of this is ultimately possible because of Clarion’s file
access grammar.

From the start Clarion has had a set of simple, elegant functions for accessing data files.
CDD introduced replaceable file drivers, which let developers switch from one file system
to another without necessarily changing any code. Clarion for Windows added VIEWs, or
logical files. Now in ABC there are a set of classes which wrap around the file access
grammar and handle error checking and file opening/closing, and which for the most part
obviate any need on the part of the developer to access the files directly.

Note that I said “for the most part.” There are still times in ABC when you’ll need to use a
non-ABC file access function, and if you’re a legacy code it’s your only option. So
although I’ll touch on some ABC functionality, I’ll mainly talk about the Clarion language
statements that work with data files.
507

Database T ips & Techniques

508
File Drivers And Caveats
Part of Clarion’s appeal for database development is its system of replaceable file drivers.
You can use one set of statements for file access, and just by switching the driver work with
a completely different system. An application that updates dBase files, for instance, could
also be made to work with a MS SQL database by changing drivers. But not all drivers
support the same data types or the same functionality, and often maximum performance
means using features specific to one driver. Even within a product like Clarion, code
portability exacts a price especially when using SQL (although ABC handles this much
better than legacy code does). Look in the Help for each database driver for the heading
Supported Commands and Attributes for driver-specific information on functionality and
datatypes.

Creating Files
Should you need to create data files, just make sure you check the Enable File Creation
checkbox in the file's dictionary properties. This will add the CREATE attribute to the file's
definition. CREATE causes the compiler/linker to store information such as the field and
key names in the application, rather than just basic symbolic information, which is more
compact.

For flat file systems such as the TopSpeed file format, you can usually just run your
application and any missing data files will be CREATEd. For SQL databases, you'll need to
do this through database's administrative facilities, or using an SQL script, or perhaps the
synchronizer (unless you're using ODBC, in which case the synchronizer isn't an option).
Generally speaking when working with SQL databases it's better to import into Clarion
than to try to use Clarion to create the database.

You can also use the CREATE function to explicitly create new files. The files must be not
be open, and CREATE will delete any existing file before creating a new one.

Opening And Closing Files
Before you can use a file (or table, if you prefer SQL syntax), you have to open it. In
Clarion, this is done with the OPEN function:

OPEN(file, access mode)

The file parameter is the label of the file, the name. When you define a file in your
dictionary, the first field you fill in is called Name. This is a bit misleading. The dictionary
name is actually the label and is what you'll refer to in your code when you want to do

Clar ion F i le Access Basics
something with the file. If you don't specify a particular name for the data file itself, the
label will be used. If you have a file called Names which uses the TopSpeed file driver, the
default name of the file will be Names.TPS. But you can also specify a different name for
the file. If you use a variable for the file name (in the dictionary, precede the variable name
with ! in the Full Pathname prompt) you can specify the file name, including the path if
you wish, at runtime. You might to this to create different datasets in different directories,
for instance.

The second parameter to OPEN is the file's access mode. There are two parts to this: the
current user's access, and others' access. The following table shows the possible values:

The access mode is a combination of rights for the current user and other users. Typically a
generated network (as opposed to single user) application will use a mode of 42h, or
ReadWrite+DenyNone. File operations which require exclusive access will typically
use 12h (ReadWrite+DenyAll) or 22h (ReadWrite+DenyWrite). The latter
allows others to at least read the data during the operation.

You close a file with the CLOSE function:

CLOSE(file)

It’s important to keep track of when a file is opened or closed. Consider a browse and form.
The browse opens a file, and calls the form for updates. Perhaps you can assume that the
form will always be called by this browse (a dangerous assumption). You have an
OPEN(file) statement when the browse starts, and a CLOSE(file) statement when it
ends. But what if that browse is called from another procedure that has a similar idea? The
first procedure opens the file. The second (browse) procedure also opens the file, which has

User Equate (from tplequ.clw)

Current User ReadOnly EQUATE (0H)

WriteOnly EQUATE (1H)

ReadWrite EQUATE (2H)

Other Users AnyAccess EQUATE (0H)

DenyAll EQUATE (10H)

DenyWrite EQUATE (20H)

DenyRead EQUATE (30H)

DenyNone EQUATE (40H)
509

Database T ips & Techniques

510
no effect, since the file is open. But when the browse ends it will close the file, causing
problems for the first procedure which still thinks it has an open file.

In legacy applications code is generated which keeps track of a global counter for the file.
The following shows example opening and closing code, with MyFile::Used as the
global counter:

IF MyFile::Used = 0
 CheckOpen(MyFile,1)
END
MyFile::Used += 1

! procedure code

MyFile::Used -= 1
IF MyFile::Used = 0 THEN CLOSE(MyFile).

The CheckOpen function, which is generated into the appname_SF.CLW file, does all
necessary error checking and will create files if necessary and permitted. As the code
shows, the file is only closed when the counter hits zero, which should mean that there are
no procedures still needing the use of the file.

In ABC, the Access:file object, an instance of the FileManager class, takes care of
the error handling, and you open a file using the class’s Open method, and close it with
Close. The Open method returns an error level, so you can do something like the
following:

IF Access:file.Open() <> LEVEL:Fatal
 ! do something
 Access:file.Close()

END

In general, you shouldn’t need to open or close files within a template-based application,
and wherever possible you should let the templates handle this for you.

Accessing Data
Once you have a file or table in hand, you’re ready to start reading data.

As the following table shows, just a few statements handle pretty much any kind of file
access:

Function Purpose

SET Set processing order

Clar ion F i le Access Basics
The SET command, when used with files, has the following formats, as taken from the C5
help file (my notes in regular type and parentheses):

NEXT Read the next record

PREVIOUS Read the previous record

GET Get a specific record

SET(file) Specifies physical record order
processing and positions to the
beginning (SET...NEXT) or end
(SET...PREVIOUS) of the file.

SET(file,key) Specifies physical record order
processing and positions to the
first record which contains values
matching (or nearest to) the
values in the component fields of
the key. NOTE: This form is rarely
used and is only useful if the file
has been physically sorted in the
key order. A common mistake is to
use this form when SET(key,key)
is the actual form desired. (This
usually happens when a
GET(file,key) is changed to a
SET, but which should be
SET(key,key).

SET(file,filepointer) Specifies physical record order
processing and positions to the
filepointer record within the file.

SET(key) Specifies keyed sequence
processing and positions to the
beginning (SET...NEXT) or end
(SET...PREVIOUS) of the file in
that sequence.
511

Database T ips & Techniques

512
A few forms of SET cover almost all situations. SET(key,key) is probably the most
common form, since it supplies the records in key order, beginning with a record matching
(or nearest to) a specified value in that key. That’s exactly what a browse needs. For
processing all records in a file, in key order, you probably want to use SET(key).

If you’re going to be updating records and these updates will change key values, you may
find that not all records are processed or some records are processed more than once. This
is because you’re changing the data used to determine the order of record retrieval. In such
a situation, you have several options. You can use a key you’re sure will not be affected;
you can use SET(file) and process in record order without regard to keys; or (related to
the first option) you can do a two-pass operation, store pointers to the affected records, and
then retrieve each one individually via a unique ID on the second pass and update the
values.

Retrieving Records With NEXT And PREVIOUS
It’s important to remember that SET by itself doesn’t retrieve any records; it simply
prepares the file driver for a subsequent NEXT or PREVIOUS call. A situation encountered
in countless browses is a user using a locator field.

SET(key,key) Specifies keyed sequence
processing and positions to the
first or last record which contains
values matching (or nearest to)
the values in the component fields
of the key. Both key parameters
must be the same.

SET(key,keypointer) Specifies keyed sequence
processing and positions to the
keypointer record within the key.

SET(key,key,filepointe
r)

Specifies keyed sequence
processing and positions to a
record which contains values
matching (or nearest to) the
values in the component fields of
the key at the exact record number
specified by filepointer. Both key
parameters must be the same.

Clar ion F i le Access Basics
The SET function works with whatever values are currently in the file buffer. In a list of
names, if a user is searching for the last name of “Smith” in a file called NAMES, with a key
on the LastName field, the file operations under the cover would go like this:

CLEAR(NAM:RECORD,-1)
NAM:LastName = 'SMITH'
SET(NAM:LastNameKey, NAM:LastNameKey)
LOOP
 NEXT(Names)
 ..

In reality this will be complicated a bit by some error checking code and the need to limit
the retrieved records to the number of lines showing in the browse, but that’s the general
idea. The first time NEXT is called it will retrieve the first record matching 'SMITH', or
the next record in the key if there is no 'SMITH'.

Note the use of the CLEAR statement before setting the key value. If you’re using a single
component key, you don’t need to do a CLEAR (which is the example uses a -1 parameter
to set all fields to their lowest possible values). If you don’t use CLEAR on a multi-
component key, you may find that you don’t get the records you expect to get.

A similar technique is used to accomplish autoincrementing of unique record IDs. In an
autoincrementing key each value must be unique. In legacy apps the template-generated
code to get looks something like this:

SET(myf:IDKey)
PREVIOUS(MyFile)
IF ERRORCODE()
 NewID = 1
ELSE
 NewID = myf:ID + 1
END

Here the SET(key) format is used to return the highest existing value in the key. If no
record is found, it’s the first and the value is 1. Otherwise the value is the highest existing
value plus one. Again, the actual code is a bit more complicated, as it needs to preserve any
primed fields, and also will try up to three times to get a new ID, just in case someone else
adds a record between the time the current user gets the highest ID and adds a placeholder
record.

In ABC the autoincrement code (hidden inside abfile.clw) uses the SET(key,key)
format to support multicomponent autoincrementing keys:

CLEAR(AutoIncField,1)
SET(SELF.Keys.Key,SELF.Keys.Key)
IF SELF.Keys.Fields.Ascend
 PREVIOUS(SELF.File)
ELSE
 NEXT(SELF.File)
END
513

Database T ips & Techniques

514
Here the CLEAR function sets the autoincrement field to its highest value via the 1
parameter (different data types will have different maximum values - let CLEAR sort it out)
and PREVIOUS/NEXT are called based on whether the key is ascending or descending.
The usual error checking and incrementing of the key value follows.

Using GET
The GET statement isn’t used nearly as much with files now as it was years ago (although it
is commonly used with QUEUEs, but that’s another topic), because the implementation of
GET, at least in the forms that use pointers, can vary widely from driver to driver. The
syntax for GET is as follows:

The GET(file, key) syntax is the safest of the three because it is applied consistently
among drivers that support this statement. The same cannot be said of the other two ways
of using GET.

For instance, one very common usage of GET, back when most Clarion developers used
Clarion DAT files, was with control files (see “Working With Control Files,” p. 547). You
could use the following syntax to retrieve the first record of a DAT file (called Control,
in this example):

GET(Control,1)
! Test for error

This form of GET relies on the driver assigning an index value of 1 to the first record in the
table. That is true of DAT files, but not of most other file types. You cannot use this exact

GET(file, key) Gets the first record from the file
(as listed in the key) which
contains values matching the
values in the component fields of
the key.

GET(file, filepointer,
[length])

Gets a record from the file based
on the filepointer relative position
within the file. If filepointer is
zero, the current record pointer is
cleared and no record is retrieved.

GET(key, keypointer) Gets a record from the file based
on the keypointer relative position
within the key.

Clar ion F i le Access Basics
same code with TPS files, since the expected value in TPS files is a byte offset, not a record
count. And the ODBC driver does not support this particular use of GET at all. In general,
the preferred way to handle this situation is to issue the following statements:

SET(file)
NEXT(file)

or, if you’re using ABC:

SET(file)
Access:file.Next()

POINTER vs. POSITION

GET, in its second and third forms, expects a numerical pointer to a position in a file or key.
If you don’t know that value ahead of time, as in the DAT example of GET(control,1),
you’ll need to obtain it with the POINTER function. But it’s generally recommended that
you use the newer POSITION function instead of POINTER. POSITION returns a
positioning string, and can be used on a FILE, KEY, INDEX, VIEW, or even a QUEUE.

REGET and RESET

Once you have the POSITION information, you’ll need some way to apply that to the
current file/table/view. The REGET function retrieves the record according to the position
data, and the RESET function sets file/table/view processing to that specified by the
position data. In particular, RESET lets you process a file/table/view in one sequence, then
interrupt processing to process in a different sequence, then restore the original sequence so
you can pick up where you left off:

! Currently processing in ID order
PositionString = POSITION(MyFile)
! Prime the key values
SET(MyFile, MY:NameKey)
! Do some processing in Name order
RESET(MyFile,PositionString)
! Continue processing in ID order

Summary
Clarion offers a number of powerful ways of manipulating files, tables and views, using
core language statements including OPEN, CLOSE, SET, GET, NEXT, PREVIOUS,
POINTER, POSITION, REGET, and RESET. Although the templates can handle many, if
not most, situations for you, and the ABC class library adds another useful layer in the
FileManager objects, there are still times when you need to get down to the metal and
work with the data in a more direct manner.
515

Database T ips & Techniques

516

MANAGING TABLE OPENS IN ABC

by Jim Morgan

Clarion applications have automatically managed opening and closing tables for years.
ABC applications continue this practice. The templates, under control of global template
options, handle this task using RelationManager objects. So you don’t have to worry
about how or when your tables are opened, right? Wrong.

Clarion makes management of table opens and closes easy, but it takes a very conservative
approach. In ABC applications, the templates generate Relate:.Open and
Relate:.Close (if this table is related to other tables) or Access:.UseTables (if
there are no related tables) for each table in your tables schematic for every procedure. This
means that a form in a browse/form pair will always attempt to open a table already opened
by the browse that called it.

A table open is one of the most expensive operations you can perform. Threaded tables
need to be opened only once per thread. Internally Clarion maintains a use count on each
table. The use count is increased with tablename.Open and decremented with
tablename.Close and their related operations. Clarion only attempts to physically
open a table when the use count is zero. However, the management of the use count
involves some overhead. This overhead is not significant when it involves a small number
of tables from a typical user event. However, repeated table opens inside a looping process
517

Database T ips & Techniques

518
make for extremely poor performance. This means that if you write intensive processes to
process data using structured procedure and functions calls, you need to optimize the file
openings for good performance.

The amount of time that is takes to execute a single RelationManager open call (look
for Relate:.open in the code) can vary greatly, and is usually in the range of .01 to 30
seconds. Table opening time depends on, but is not limited to, the following factors:

• the number of related tables as defined in the dictionary.

• whether the table is already open in the thread or in the application.

• whether lazy opens are turned on or off for the application. (This is seen as
‘Defer opening files until accessed’ in the application’s global file control
extensions.)

• the table driver being used.

• whether a connection to the database is already established.

Improper table management creates GPFs, especially with SQL. Different table drivers
behave differently on opens. With SQL-based tables you’re not physically opening the
table; instead you’re asking the SQL server for the data. The driver first checks to see if
there’s a connection to the server, and if there isn’t one, it establishes one. The first
connection to the table for the user typically takes 0.1 to 0.35 seconds per table. With lazy
opens turned off, 40+ tables could be opened on thread initiation without any visible
display to the user, resulting in delays of over 15 seconds. Therefore, you do not want to
reestablish a server connection every time a thread is launched.

Use an Access:tablename.Open call during startup to obtain the necessary
information like user rights and validate connections instead of a
Relate:tablename.Open. This allows the absolute minimum number of tables to be
open and the program loads quickly. Once the user signs in and the menu is displayed, open
the essential tables that are always accessed in the Frame’s thread. This allows subsequent
threads to start up quickly without reestablishing the connection.

Different table drivers have different tolerance for poorly managed table opens. Topspeed
tables can be opened once and closed a hundred times without problem. Topspeed tables
can also be opened on a thread and not closed. If the thread terminates and the table is
reopened, that’s no problem. With SQL tables, you will generally get a GPF in these
situations. The underlying classes don’t protect the application programmer with a
complete termination of the thread, so you have to be careful with the code you write. This
means that if you get sloppy and forget to close a SQL table and terminate a thread, the next
time you start the same thread ID and open the same table you will GPF.

Managing Table Opens In ABC
Note: At Mitten Software, we turn lazy opens off because of significant
problems that it created in earlier versions of Clarion. I would love to turn it on.
I have not tested this problem with C5.5g. However, I have spoken to others
who say the problems still exist, especially with SQL. If you are having success
with lazy opens, please post a reader comment below.

Reviewing the table open management can be helpful when you are tuning an application
or solving GPFs in SQL. There are four different types of information you should track:

1) How many times was the table opened in total?

2) Does the table show no use when the thread is closed?

3) What is the use count of the related tables?

4) What procedures were executed, and in what order?

Supplementing the base classes
You can track this information by changing the Clarion base classes as we have done at
Mitten. This will create future maintenance issues since your changes need to be
reintroduced when the class is updated by Clarion. The changes to ABFile.clw are
highlighted below. ABFile.clw has the source code to the FileManager and
RelationManager classes. The FileManager class has most of the single table
methods. The RelationManager class has most of the table methods involving related
tables. All of the changes have a signature of the developer’s initials and the date of the
change. If you follow this practice you can compare the source code and quickly apply any
future updates.

MEMBER
INCLUDE('TraceOpt.clw') !JM 6/21/01

The include statement controls the behavior of the table debug settings. When you want to
enable the debugging, just place a TraceOpt.clw file with TraceFiles, TraceCloses,
and TraceProcs switch settings in the application directory. The default TraceOpt.clw
without debug is stored in the \Libsrc folder. The redirection file will look at the current
folder before \libsrc for CLW files. The file contains the three trace switches and a
name for the open/close trace file, as follows:

!Traceopt.clw
TraceFiles EQUATE(0) !Standard Clarion switch,
 ! non-zero to trace tables
TraceCloses EQUATE(0) !Non-zero adds table opens
 ! information to the debug table
TraceProcs EQUATE(0) !A non-zero adds a procedure
 ! trace to the debug table.
e_iniName Equate('c:\temp\fileclos.txt')
519

Database T ips & Techniques

520
An additional variable is conditionally added to the FileThreadQueue in ABTable.clw,
but with the compile directive to eliminate all overhead in the final release.

FileThreadQueue QUEUE,TYPE ! QUEUE of status of
 ! all table buffers
Id SIGNED ! Thread number
Used BYTE ! Set True when table is
 ! actually opened
Opened USHORT ! Table opened counter
 COMPILE('xxx',TraceCloses) !jm 6/21/01
HardOpened USHORT ! This Table opened
 ! counter !jm 6/21/01
 xxx !jm 6/21/01
AtEOF BYTE ! End of Table flag
AutoIncDone BYTE ! Auto-increment done or not
flag
LastError USHORT ! Last error identifier
 END

The FileManager.Construct method deletes the debug file every time the program
loads. Treat the debug file as an INI file. This is easy to program and doesn’t hurt
performance too much, but you must be careful: if the debug file gets over 32K in size, the
file will not be properly maintained.

FilesManager.Construct PROCEDURE
 CODE
 COMPILE('xxx',TraceCloses)
 Remove(e_IniName)
 xxx

Next, change the FileManager.Close method to log soft and hard use counts.

FileManager.Close PROCEDURE
 CODE
 SELF.InClose += 1
 SELF.SetThread
 FilesManager.NoteClose(SELF)
 IF SELF.Info.Opened
 SELF.Info.Opened -= 1
 IF ~SELF.Info.Opened
 CLOSE(SELF.File)
 SELF.Info.Used=False
 END
 PUT(SELF.Info)
? ASSERT(~ERRORCODE(),

 'Unable to store thread specific file information.')
 COMPILE('xxx',TraceCloses) !jm 6/21/01
 If SELF.Info.Opened
 PUTINI('SoftCount', Thread() & NAME(SELF.File),

 SELF.Info.Opened, e_IniName)
 Else
 PUTINI('SoftCount', Thread() & NAME(SELF.File), ,

 e_IniName)

Managing Table Opens In ABC
 End
 Else
 PUTINI('SoftCount', Thread() & NAME(SELF.File),

 -1, e_IniName)
 xxx !jm 6/21/01
 END
 COMPILE('xxx',TraceCloses) !jm 6/21/01
 If SELF.Info.HardOpened
 PUTINI('HardCount', Thread() & NAME(SELF.File),

 SELF.Info.HardOpened, e_IniName)
 Else
 PUTINI('HardCount', Thread() & NAME(SELF.File),

 , e_IniName)
 End
 xxx !jm 6/21/01
 SELF.InClose -= 1
 RETURN Level:Benign

The FileManager.OpenServer handles the actual table opening; tweak it to log use
counts:

FileManager.OpenServer PROCEDURE(BYTE HandleError,

 BYTE ForceOpen)
RVal BYTE,AUTO
 CODE
 SELF.SetThread
 FilesManager.NoteOpen(SELF)
 COMPILE('***',Traces)
 IF TraceFiles
 FileTablesManager.Trace('Open'&CHOOSE(HandleError=1,

 '(Errors):',':')&SELF.GetName())
 END

 SELF.BindFields
 IF ForceOpen OR ~SELF.LazyOpen AND ~SELF.Info.Opened
 RVal = SELF.OpenFile(HandleError)
 IF RVal
 RETURN RVal
 END
 ELSIF SELF.Info.Opened
 COMPILE('xxx',TraceCloses) !jm 6/21/01
 PUTINI('HardOpen', Thread() ,

 SELF.Info.Opened, e_IniName)
 xxx !jm 6/21/01
 END
 SELF.Info.Opened += 1
 PUT(SELF.Info)
? ASSERT(~ERRORCODE(),

 'Unable to store thread specific file information.')
 COMPILE('xxx',TraceCloses) !jm 6/21/01
 If SELF.Info.HardOpened
521

Database T ips & Techniques

522
 PUTINI('HardCount', Thread() & NAME(SELF.File),

 SELF.Info.HardOpened, e_IniName)
 Else
 PUTINI('HardCount', Thread() & NAME(SELF.File),

 , e_IniName)
 End
 If SELF.Info.Opened
 PUTINI('SoftCount', Thread() & NAME(SELF.File),

 SELF.Info.Opened , e_IniName)
 Else
 PUTINI('SoftCount', Thread() & NAME(SELF.File),

 , e_IniName)
 End
 xxx !jm 6/21/01
 RETURN Level:Benign

The RelationManager.OpenCloseServer procedure is tweaked to track times
opened here and maintain the use count.

RelationManager.OpenCloseServer PROCEDURE(

 BYTE Cascading,BYTE Opening)
I BYTE(1)
Res BYTE,AUTO
 COMPILE('xxx',TraceCloses) !jm 6/21/01
MyCount Long !jm 6/21/01
 Xxx !jm 6/21/01
 CODE
 IF Cascading
 IF SELF.LastTouched = Epoc
 RETURN Level:Benign
 END
 ELSE
 Epoc += 1
 END
 SELF.LastTouched = Epoc
? ASSERT(NOT SELF.Relations &= NULL,

 'Relation manager incorrectly initialized.')
 IF Opening
 Res = SELF.Me.Open()
 COMPILE('xxx',TraceCloses) !jm 6/21/01
 IF Not Cascading
 Self.Me.SetThread
 Self.Me.Info.HardOpened += 1 ! File opened counter !jm
 PUT(SELF.Me.Info)
 MyCount = GETINI('TimesOpened', Thread()

 & NAME(SELF.Me.File), 0 , e_IniName) + 1
 PUTINI('TimesOpened', Thread() & NAME(SELF.Me.File)

 , MyCount, e_IniName)
 End
 Xxx !jm 6/21/01

Managing Table Opens In ABC
 IF ~Cascading THEN Res=SELF.Me.UseFile().
 ELSE
 Res = SELF.Me.Close()
 COMPILE('xxx',TraceCloses) !jm 6/21/01
 IF Not Cascading
 Self.Me.SetThread
 Self.Me.Info.HardOpened -= 1 !File opened counter !jm
 PUT(SELF.Me.Info)
 End
 Xxx !jm 6/21/01
 END
 LOOP UNTIL Res
 GET(SELF.Relations,I)
 IF ERRORCODE()
 BREAK
 END
 IF Opening
 Res = SELF.Relations.File.Open(1) ! Use

 'public' interface to pick up VIRTUAL ness
 ELSE
 Res = SELF.Relations.File.Close(1)
 END
 I += 1
 END
 RETURN Res

You’ll need to make some changes ABError.clw to trace the procedures. Add the include
statement to check the debug equate settings and a few variables.

 MEMBER
 INCLUDE('ABERROR.INC'),ONCE
 INCLUDE('ABERROR.TRN'),ONCE
 INCLUDE('TraceOpt.clw') !jm 6/21/01
 COMPILE('xxx',TraceProcs) !jm 6/21/01

MyProcedureName CString(51) !Temp Storage for the last
 !procedure recorded in ini file.
TraceNumber Short
 xxx

Enhance the SetProcedureName to log procedures. This method is called
automatically for most template-generated procedures. You can add the statement

GlobalErrors.SetProcedureName('ProcedureName')

in source procedure init and “GlobalErrors.SetProcedureName" in procedure
kill to clear it.

ErrorClass.SetProcedureName PROCEDURE(<STRING S>)
 CODE
 IF OMITTED(2)
 IF SELF.GetProcedureName()
 DELETE(SELF.ProcNames)
 END
 ELSE
 SELF.ProcNames.Name = CLIP(S)
523

Database T ips & Techniques

524
 SELF.Procnames.Thread = THREAD()
 COMPILE('xxx',TraceProcs) !jm 6/21/01
 IF SELF.ProcNames.Name
 MyProcedureName = GETINI('LastProc',

 SELF.Procnames.Thread, , e_IniName)
 IF MyProcedureName <> SELF.ProcNames.Name
 PUTINI('LastProc',SELF.Procnames.Thread,

 SELF.ProcNames.Name, e_IniName)
 TraceNumber = GETINI('TraceNumber',

 SELF.Procnames.Thread, , e_IniName) + 1
 PUTINI('TraceNumber',SELF.Procnames.Thread,

 TraceNumber, e_IniName)
 PUTINI(SELF.Procnames.Thread & 'Trace',TraceNumber,

 SELF.ProcNames.Name, e_IniName)
 End!IF MyProcedureName <> SELF.ProcNames.Name
 End!IF SELF.ProcNames.Name
 xxx !jm 6/21/01

Reviewing the debug file
The resulting debug file is shown below. It is divided into several sections depending on
use, and within each section are variables that show the thread number and table or
procedure name. [SoftCount] is the current use count and is incremented every time a
table is opened directly or indirectly through a relationship. [HardCount] is the current
use count showing direct opens only. [TimesOpened] counts every time a table is
opened directly. [LastProc] is the last procedure to register. [TraceNumber] is used
for internal counting. [nTrace] is the procedure trace by n Thread.

[SoftCount]
1N:\TenaSQL\SLConfig.Cfg=1 Current Use Count is 1 in Thread #1
1N:\TenaSQL\Machine.Cfg=1
1dbo.Contacts=1
1dbo.PSNote=1
2N:\TenaSQL\SLConfig.Cfg=1
2dbo.Cases=27 Current Use Count is 27 in Thread #2
2dbo.Followup=27
2dbo.Answers=27
[HardCount]
1N:\TenaSQL\Machine.Cfg=2 Hard Use Count is 2 in Thread #1
1SLMul_=1 Hard Use Count is 1 in Thread #1
2N:\TenaSQL\SLConfig.Cfg=2
2dbo.Status=1 This file was left open in Thread #2.
[TimesOpened]
1N:\TenaSQL\SSProg_.tps=1 One physical Open in Thread #1
1N:\TenaSQL\Machine.Cfg=6
2dbo.Tables=15 15 physical Opens in Thread #2
2dbo.TokenList=28

Managing Table Opens In ABC
2dbo.QNotes=35 35 physical Opens in Thread #2,
wasteful!
[LastProc]
1=Main Main is last proc called in Thread #1
2=LoadTokenList
[TraceNumber]
1=2 2 procedures traced in Thread #1
2=14

Analyzing the results
The [softcount] section is occasionally useful. If the numbers for a series of related
tables is not the same, it indicates that an Access:.Close was used instead of a
Relate:Tablename.Close. The [HardCount] section should be empty upon
thread closure. If any SQL table shows a use, you will get a GPF the next time that thread is
started and the table is opened. The [TimesOpened] counts should be modest. If a table
has a high count, the table should be opened at a higher level on the thread. [LastProc]
should tell you approximately, where a GPF occurred. [nTrace] will show you how you
got there.

Summary
Tracing your use of tables is extremely helpful for debugging and tuning performance.
Using the above techniques you can make your applications and threads load faster, your
processes run faster and your applications more stable.
525

Database T ips & Techniques

526

CREATING ODBC DATA SOURCES AT
RUNTIME

by Jon Waterhouse

One of the drivers that comes with Clarion is the ODBC driver. Although Clarion deals
with most of the problems of translating your file access code (e.g. OPEN, CLOSE, NEXT)
into calls to the particular ODBC driver that looks after your data file, there is one area
where Clarion ignores a potentially useful set of features of the ODBC design. These are
the administration functions, which are required before you can access any data source
through ODBC.

When you are using most of the file drivers, all you need to know is the file name. When
you use ODBC, however, you specify the “file” as a “Data Source Name” (DSN). The
DSN contains the information that points to a specific file or directory. In this chapter I’ll
show you how to use the administration functions to create an ODBC DSN at runtime.
527

Database T ips & Techniques

528
The problem
Imagine you have been sent one Access database for each of thirty towns, where all of the
databases have the same structure. Your job is to amalgamate all of the data into one big
file. If you were dealing with flat files you would probably just loop through all of the files
you had to deal with. With the ODBC connection you have to have a DSN set up for each
file you want to use. This means one of two things; either you manually set up (in ODBC
sources in the Control Panel) all of your DSNs before you start, or you create the DSNs
dynamically as you need them. As a long-term strategy, the second solution definitely
sounds better to me.

There are of course, several ways to skin this cat. In ODBC each driver presents a
standardized interface for a particular data source. The ODBC DLLs that come with
Windows deal with adding new ODBC drivers, and pass data requests to the relevant
driver. You therefore have the choice of talking to the Windows ODBC manager, or
directly to the ODBC driver for the file you are interested in (assuming you have
documentation for that driver). The Clarion ODBC interface approach is to talk to the
ODBC manager.

Note: There is an ODBC back-end driver for TopSpeed files, but that’s not
what I’m talking about here.

The main procedure in the ODBC admin DLL that deals with setting up DSNs is called
SQLConfigDataSource. This procedure calls a procedure in each particular ODBC
driver called ConfigDSN. I’ll look at calling SQLConfigDataSource, because it is
more general than ConfigDSN, and will work whether your data source is Access, SQL
Server or any other database with an ODBC interface.

The documentation for SQLConfigDataSource gives the prototype as:

BOOL SQLConfigDataSource(HWND hwndparent,WORD frequest
 ,LPCSTR lpszdriver ,LPCSTR lpszAttributes)

In Clarion this translates into:

SQLConfigDataSource PROCEDURE(ULONG ParentWindow,
 USHORT Request,*CSTRING DriverString,
 *CSTRING AttributeString),BYTE,RAW,PASCAL

In general, when using non-Clarion Windows DLLs, you can rely on the following general
rules:

• Handles are ULONGs

• A word is four bytes (a USHORT in Clarion), so a DWORD (double word) is
eight bytes, or a ULONG

Creat ing ODBC Data Sources At Runt ime
• LP as a prefix stands for long pointer. Pointers to various types of data in
procedure calls are indicated by asterisks (*) in Clarion

• The RAW attribute means that strings and groups are passed without length
information. In this example RAW is not strictly necessary, but it will most
often be required when using external DLLs, so you might as well get in the
habit of using it

• The PASCAL attribute means that procedure parameters are passed left to
right on the stack, compared to C which passes them right to left on the
stack, and the default calling convention used by Clarion, which is to pass
parameters using registers. The PASCAL convention is used for all Windows
API calls.

The first parameter to SQLConfigDataSource can either be NULL (in which case your
activity will happen in the background without displaying a screen to the user), or you can
pass it the handle of your procedure window (0{PROP:Handle}). The second
parameter indicates what you want to do - add, change or delete a DSN. The documentation
in the help file goes as far as telling you that valid values are ODBC_ADD_DSN,
ODBC_CONFIG_DSN etc. You will have to look at the C header files that come with the
Microsoft Data Access Components Software Developers KIT (MDAC SDK), available
free from http://www.microsoft.com/data/download_260SDK.htm, to find out that the
values corresponding to these equates (#defines in C) are 1, 2, etc.

The final two parameters are where you specify, respectively, the driver you want to add or
configure, and details of your request. These details include what file you want attached to
the DSN (for Access) and what DSN you want to give your data source . This attributes
string can take several instructions of the form Keyword=value. The documentation
suggests that each argument should be separated from the next by a NULL character, and
the string terminated with a double NULL. In practice semi-colons seem to work just as
well or better.

The basic steps to use this function in your application are:

1) Build a .lib file for the ODBCINST.DLL (which you will find in
Windows\system (or system32))

2) Use Application|Insert Module|External DLL to add the .lib file you just
created to your application

3) Add a Procedure to your application called SQLConfigDataSource.
Specify that it is an external procedure, and type in the prototype as given
above (starting with the first parenthesis)

4) In the procedure where you want to set up your new DSN create two local
data fields, say DriverString and AttribString, as CSTRINGs. The
529

Database T ips & Techniques

530
DriverString should be 33 characters, while the AttribString
should be 255 characters.

5) Write the values you desire into your two CSTRINGs. In the driver string
you should put the driver name exactly as it appears on the Drivers tab in the
ODBC data sources control panel application (e.g. Microsoft Access Driver
(*.mdb)). In the AttribString you need to put your keyword value pairs
as described in ODBCJET.HLP file (for Microsoft data sources). The ODBC
Setup Dialog Page is the most useful. For example, to set up a DSN for an
Access MDB database file, you could use something like:
AttribString = 'DSN=MyDataSource;' |

& 'DBQ=''C:\my data\AccessData.mdb'''
Don’t forget to double quotes where necessary.

6) Write a call in source, e.g.
retval =SQLConfigDataSource(0,1,DriverString,|

AttribString)

7) Open your file (which has the DSN and any other needed values in the
OWNER attribute) and use normally.

I suggested that you could use a scheme like this to process a whole bunch of similar files.
In theory you could create a single DSN (say, temp), use it, make another call to
SQLConfigDataSource to change the file the DSN points to (the DBQ= keyword
value) and then read in your next file. In practice this doesn’t work. If you reuse the DSN
you will keep on being connected to the first data source. Therefore, you have to create a
series of DSNs (temp1, temp2, etc.) and delete each (ODBC_DELETE_DSN=3) as you
finish with it.

That’s the basics. This scheme is demonstrated in the example program at the end of this
chapter, which simply creates several DSNs on the fly.

The next step is to make the whole process of integration a little easier. Step 1 is required,
because Clarion needs the .lib file in order to link in the ODBCINST.DLL. You can’t do
without Step 5, either; you have to specify the driver and the associated data source.
However, steps 2,3,4 and 6 are potential candidates for a template; actually two templates.
The first template is a global extension and declares the ODBC procedures in the global
map. The second is a CODE template which declares the two local variables and prompts
you for the driver and attribute strings. The templates can also wrap some extra code
around the plain vanilla call to SQLConfigDataSource to get it to provide better error
checking.

The SQLConfigDataSource procedure returns a 1 (success) or 0 (failure). There is
also a function called SQLInstallerError that can be called to give more information

Creat ing ODBC Data Sources At Runt ime
about errors. I’ve written a procedure called CDSWrapper that first calls
SQLConfigDataSource, and then reports the particular error type if the function fails.

The global extension part of the template does four things:

1) Adds the ODBC library to the project

2) Adds the prototypes for CDSWrapper and all of the ODBC procedures to
be used to the map

3) Declares a bunch of EQUATEs

4) Generates the code for the CDSWrapper procedure

From a template writing perspective, the first two items are very useful things to know how
to do. You can borrow from the techniques in this template to add outside libraries and
global procedures to your applications.

Adding the library to the project is accomplished by the #PROJECT statement. This
statement has the same effect as manually doing an Application|Insert module.

The %CustomGlobalDecalarations embed point is also the place to declare
the CDSwrapper procedure and its prototype. This requires three lines of code.

#ADD(%CustomGlobalMapModule,%Application & '.clw')
#ADD(%CustomGlobalMapProcedure,'CDSWrapper')
SET(%CustomGlobalMapProcedurePrototype,'
 (BYTE,BYTE,*CSTRING,*CSTRING),BYTE')

The first line says that the procedure is in is the %Application.clw file. The second
has the procedure’s name, and the third declares the prototype. This is all that is needed to
add the CDSWrapper procedure to the map, but the application will still need prototypes
for all of the required procedures in the ODBC DLL. I have been lazy and hard-coded the
name of the DLL(LIB) file. If I was a bit more professional about it I would extract the
DLL name from the name of the LIB file, which is stored in the %ODBClib token.

The EQUATEs are taken from the ODBC documentation that comes with the MDAC
software developers kit. They are used in the CDSWrapper procedure. A number of the
equates declare certain data types and handles to be equivalent to other data types. For
example, HENV (an environment handle) is actually stored in a Clarion ULONG.

The CDSWrapper procedure is placed in the %ProgramProcedures embed point and
will therefore show up at the end of your %Application.clw file. The procedure is a
bit more elaborate than it really needs to be, but this should give you a good start if you
decide you would like to use more of the administrative ODBC functions.

The first line of code:

whandle = CHOOSE(display,0{PROP:Handle},0)
531

Database T ips & Techniques

532
sets the window handle to be either 0 (if the code template specified no display), or to the
handle of the current window (0{PROP:handle}). The next section of code is not really
necessary. What it does is load the names of all of the available ODBC drivers on the
machine into a queue. For reasons I don’t claim to understand, this requires first setting up
an “environment”, which is what the calls to SQLAllocHandle and SQLSetEnvAttr
do. The driver names are then retrieved in a loop that looks like this:

Get first driver
Loop
 If error
 Report error
 Break
 End !if
 Add driver to queue
 Get next driver
End ! loop

I mention this explicitly, because this type of loop structure is not very common in Clarion.
This loop could be used to build a list of available drivers to be presented to the user.

The environment handle is then freed because it is not needed any more. The next section
requires that at least one driver was found in the first part of the procedure. The driver
name is checked against the list of drivers that are stored in the queue. If the driver is not
there you are not going to be very successful setting up a data source that relies on that
driver, so you get an error message and exit the procedure. If everything is still okay the
procedure makes the call to SQLConfigDataSource. If SQLConfigDataSource
returns an error, SQLInstallerError provides more information.
SQLInstallerError does display a reasonably informative error message if you call
SQLConfigDataSource with a non-existent driver name.

As I mentioned, the procedure is really more elaborate than it needs to be. The major value
of the first part is that the SQLDataSources procedure takes exactly the same arguments
as SQLDrivers. Thus if you want a list of all the currently available DSNs in a queue
that you can display, a very modest adjustment to the first part of this procedure will give it
to you. The CDSWrapper procedure returns either 0 (failure) or 1(success).

The second part of the template is a code template that can be easily added to a procedure
to set up a DSN. It translates into three lines of code: one to set up the driver string (based
on programmer input), one to set the attribute string, and a third to call CDSWrapper with
the appropriate parameters. The template also sets up three data fields each time you add
the template (a return value (CDSretvalue), a driver string and an attribute string).

The four parameters required are:

1) Display the dialog box or not

2) Type of action (add, delete, user DSN or system DSN)

Creat ing ODBC Data Sources At Runt ime
3) The driver string

4) The attribute string

The example application does very little; it simply sets up two data sources. One is an
Access data source (you will have to find an access (.mdb) file on your machine to
reference in the DBQ field, which is set up without a dialog displayed). The other is a
TopSpeed data source (for which you need the TopSpeed ODBC driver, included in
CW5.5, but a separate purchase for earlier versions). This is called with a dialog displayed,
mostly because it does not work otherwise. It returns a success code, but unfortunately does
not set up the data source. I have version 2 of the ODBC driver, and this may be fixed in
version 3.

Keep in mind that the template does not do the first step for you: you will need to make the
.LIB file from ODBCINST.DLL before you use it. Also, the template can only set up data
sources for drivers that are set up on the machine. If you don’t have the TPS driver (read
only) or the Microsoft Access driver on your machine, you’ll run into errors, or you’ll need
to modify the example to work with data sources you do have.

Summary
Learning how to use the ODBC administrative functions has certainly made my life easier.
The government department I work for has two applications that write to local databases;
one database for each regional office. Every six months or so I get two CD-ROMs
containing the data uploaded from each of the twenty or so offices. Previously I would have
to manually set up forty DSNs (twenty offices times two data files) to read in the data to
amalgamate into a single provincial data base. Now, I just have to provide my program
with the names of the main directory and the subdirectories in which the data sits, and the
program can create a temporary DSN for each office data base in turn.

Figure 1: The SetupDataSource prompts
533

Database T ips & Techniques

534
For me, being able to use ODBC administrator functions just saves time. However, it is not
hard to think of situations where you have to write a program that incorporates a legacy
data source. If you can incorporate this data without having to train users to set up DSNs on
their machines you will probably save yourself a lot of headaches.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v3n5odbcadmin.zip

SECURING REMOTE DATABASE CONNECTIONS
WITH SSH TUNNELING

by David Harms

I’ve mentioned several times on the newsgroups that I regularly access remote databases
across the Internet. When I only had to do this intermittently I just used a plain,
unencrypted connection, but now that I do so on a regular basis, I encrypt the connection
with Secure Shell (SSH) tunneling. SSH is basically a secure Telnet, and SSH Tunneling is
simply a way of piggybacking a database connection on that secure telnet connection. In
this chapter I’ll provide some background on the technique, and describe my
implementation.

First, a little background. The SSH protocol was created by Finland’s Tatu Ylonen as a safe
replacement for the “remote” Unix commands, such as rlogin and rsh, which used
unencrypted communication. There are both free and commercial implementations of SSH
- the free stuff tends to run on Linux/Unix (e.g. http://www.openssh.com) and the
commercial versions typically run on Windows or Linux/Unix (e.g. http://www.ssh.com).

To use SSH you need an SSH server program and an SSH client program, and of course
they communicate using the SSH protocol. If you’re connecting to a Linux server running
PostgreSQL or MySQL, then there’s a very good chance sshd, the SSH server, is already
535

Database T ips & Techniques

536
running. If you don’t have SSH on your server, then you’ll need to investigate the available
implementations for your server platform.

The protocol
The current SSH protocol is 2.0; the 1.x protocols are still supported by most servers and
clients, but for the best security you really should use the 2.0 protocol, and keep up with the
latest patches.

As SSH stands for Secure Shell, the first and most obvious use of SSH is to let you securely
run a command shell on a server, from a remote client, typically using port 22. Since I
administer my servers, I use the command shell to do routine maintenance, run a local (to
the server) database client for interactive queries, and so forth. It is also possible, however,
to tunnel connections between other ports across the SSH connection, whether or not you
use the shell capability.

Secur ing Remote Database Connect ions Wi th SSH Tunnel ing
Tunneling through SSH
If I want to connect to a MySQL server from a remote site, with or without SSH, I’ll use the
MyODBC (http://www.mysql.com/) driver. Figure 1 shows a typical MyODBC
configuration window.

Note that the port number defaults to 3306, the standard for MySQL servers. The
connection between client and server takes place, in this example, across the Internet,
between port 3306 on the server and whatever port happens to be handy on the client (but
typically one of the unprivileged ports, i.e. higher than 1024).

EnTunnel
To tunnel the MySQL connection through an SSH connection, I need to tell my SSH client
the port numbers to use for the client end and the server end of the tunnel. Just about any
SSH client has the ability to tunnel connections this way. For years I’ve used VanDyke’s
SecureCRT (http://www.vandyke.com/products/securecrt/index.html) SSH client to
administer my Linux servers, and I’ve also used it for tunneling database connections. But

Figure 1: The MyODBC configuration dialog
537

Database T ips & Techniques

538
VanDyke has another, less expensive product called EnTunnel
(http://www.vandyke.com/products/entunnel/index.html), which doesn’t give you the shell
capability but does handle the tunneling very nicely. This makes EnTunnel a good choice
for deployment to your clients’ machines - progressive discounts apply, so the more you
buy, the cheaper the per-license cost, and in most cases you don’t want to give your users
the opportunity to run a command shell on the server anyway. Even if you don’t use
Entunnel, the following description will give you an idea of just how easy it is to use
tunneling.

EnTunnel runs in the system tray - to configure it, double click on its system tray icon, or
right-click and choose Connections from the context menu. You’ll see a Connections
window similar to that shown in Figure 2.

Figure 2: The EnTunnel Connections window, with one connection listed

Secur ing Remote Database Connect ions Wi th SSH Tunnel ing
To create a new connection, click on the Create a New Session icon (third from left) or
right-click in the list box and choose New Session from the context menu. You’ll see the
dialog shown in Figure 3.

The session settings determine how you connect to the SSH server. You need to specify the
host name or IP address, the user name you use to connect, and an authentication method.
Note that authentication isn’t the same thing as encryption - whichever method you use to
authenticate yourself to the server, the connection is still encrypted.

If you choose password authentication, then all you need to connect is your username and
password (and, of course, the name of the server). This is the lowest level of authentication
- if someone can easily guess your username and password, then you don’t have much
security. Of course your SSH server has to be configured to allow password authentication,
which may not be the case.

Public Key authentication involves a public/private key combination. These are small text
files which, in combination, uniquely identify you. The idea is that you distribute a public
key to the world at large, but you keep the private key all to yourself. Any message
encrypted with the public key can only be decrypted by the private key. EnTunnel has a
public key assistant (just click on the Authentication Properties button) which will create
the key pair for you - you then upload the public key to the server. And as long as you carry
your private key and some sort of SSH client with you (I suppose one of those USB “key”
storage devices would be appropriate) you can connect to your server from anywhere.

Figure 3: The Create a New Session dialog
539

Database T ips & Techniques

540
Keyboard interactive authentication simply means that you have the option to respond
interactively to the server’s request for authentication, and gssapi is Kerberos
authentication, which I won’t go into because I don’t know anything about it!

Once you’ve established and saved your connection settings, you can click on the Connect
button from the Connections window and make sure that you are, in fact, able to establish
a session with the server. Of course you’re not doing anything on the server yet, because
you haven’t told EnTunnel to forward any ports.

Forwarding ports
To forward a port, right-click on the session in the Connections window and choose
Properties from the context menu. Select Port Forwarding in the Category tree, and click
on the Add button for the Local (not Remote) Port Forwarding list. You’ll see the dialog
shown in Figure 4.

Choose a name for the forwarding settings, and the local and remote ports. In Figure 3 I’ve
shown port 3306 (the MySQL default) as the port for the local and the remote sides of the

Figure 4: Forwarding a port

Secur ing Remote Database Connect ions Wi th SSH Tunnel ing
connection. The critical one here is the remote side - that must be the port the MySQL
server is listening on. The local port can be any valid number (although you may want to
avoid the privileged ports), as long as the MyODBC data source is configured to talk to that
port also. Figure 5 shows a MyODBC DSN configured to use the tunneled connection. In
this example, I’m using 3306 on the local side as well, so I can leave the port number blank
and use the default value.

Fire up your application, and it will connect to the SSH client on the specified port. The
client will encrypt the data and deliver it to the server, and vice versa. You’re in business!

Summary
All you need to securely tunnel a database connection across the Internet is an SSH server
(freely available on Linux machines), an SSH client, and an ODBC (or other) driver that
can connect to a specified port on a specified server. You set up your ODBC data source to
connect to a specified local port, and you tell your SSH client to forward that local port to a
specified port on the server. You can also use port forwarding to encrypt email protocols
and just about any other service with the (usual) exception of FTP.

Figure 5: Configuring a MyODBC DSN for tunneling
541

Database T ips & Techniques

542
Port forwarding is an easy and effective way to encrypt database connections, and in many
cases it’s also the cheapest option available, especially if you’re connecting to a database
server on a Linux/Unix box and you can use one of the free SSH servers. I can also
recommend EnTunnel as an effective and inexpensive tunneling client for Windows.

USING CLIENT-SIDE TRIGGERS IN CLARION 6

by Tom Giles

Client-side triggers are a new, very neat and useful feature that has been added to Clarion 6,
both Professional and Enterprise versions. In addition, it is very easy to use. I guess you
wouldn’t expect any less since it is in Clarion. Client-side triggers are rules, added to the
dictionary, expressed as Clarion code that is executed when a file (table) is accessed (unlike
server-side triggers, which are SQL statements that execute on the server – see “Generating
MS SQL Server Side Triggers,” p. 415). This code can run before and/or after the Add. You
enter the code, say for error checking, field validation, computed values etc., and then
specify when to invoke the code. At the specified time, your code will be automatically
called.

There is an example included with Clarion 6. Documentation is sparse, really non-existent,
but once you know the secret, client-side triggers are very easy to use. To use the demo,
start Clarion 6, then click on the Pick icon, select the Dictionary tab, click on the Open
button and navigate to the Examples folder. In the Triggers folder select and Open the
TrigExam.Dct.
543

Database T ips & Techniques

544
Highlight and double click on the Pub_info file in the Tables pane to bring up the
records. Note there is a new Triggers tab on the Column/Key Definition screen.

Click on the Triggers tab, then on one of the three folders shown. A Trigger Properties
form appears, as in Figure 2.

On the General tab specify the timing using the Type drop down list. In the box below
enter your code.

Figure 1: The Triggers tab

Figure 2: Trigger properties

Using Cl ient -Side Tr iggers In Clar ion 6
Click on the [...] button at the right to bring up the edit screen and enter any code desired,
just as you would in any code embed point. There is also a Data button that will let you
enter a new data field. The [...] button has the same function as in the procedure Data button
– it exposes the actual declaration.

The Data section is for variables for your trigger code. These are separate from your
normal Data fields in the Properties worksheet, which means you can use the same names.
This is probably not a good idea unless you use a prefix, since it may be confusing to you
later, but the compiler won’t complain. I use a TRI:(gger) prefix for these to distinguish
these variables from my LOC:(al), MOD:(ule) or GLO:(bal) variables. The TRI variables
will not show up in the normal Module/Source files but instead in the ????bc0.clw files.
This is because the triggers are generated as part of the file maintenance code, not the
procedure code.

Another way to access client-side triggers is from the main Dictionary screen. Highlight
the desired file, then click on menu item Edit, then Triggers, or highlight the file and press
Ctrl+Alt+T. Either of these will take you directly to the triggers entry screen.

The main point to remember is the triggers are “triggered” on an Insert, Update or Delete
file (table) action. Using triggers is similar to putting the code in the Init or Kill source
code locations. One of my programs requires that I increment unique record identifiers
manually, instead of using the Clarion autoincrement feature. Now I can add my
incrementing code to the dictionary using triggers instead of having to add the code as a
separate procedure routine. During certain operations I like to write what is happening to a
log file, so this is also a potential trigger point. You can use triggers to update other files
and do various calculations or other lookups. On an Invoice you might want a current
amount due that must be calculated after reading part of payment file and summing all
payments for that invoice. Certain referential integrity operations or complicated parent-
child relationships can also be coded here.

You will find it takes a certain imagination and a little learning time before the full power
of triggers will become apparent. Try them; they are quick, easy and powerful.
545

Database T ips & Techniques

546

WORKING WITH CONTROL FILES

by Steven Parker & Nik Johnson

(Steve begins)

My very deep appreciation to Nik Johnson who bailed me out of control file purgatory (but
you know what I really meant) when making the transition to ABC. The solution I’ll
demonstrate is his, as, of course, is his template which Nik explains in the second half of
this chapter.

I’ve been using control files since... I can’t remember when. When I began moving to
ABC, I was confident. My experiences with the app converter had been by and large quite
good. But the code that accessed and maintained my control files didn’t work after
conversion.

Consulting Richard Taylor’s superb “Making the Transition to ABC” in the online help, I
was able to make some adjustments to what the converter had done. Still, it didn’t work.

Control files, clearly, had become a different breed of cat in ABC.
547

Database T ips & Techniques

548
What Is A Control File? And Why Should I Use
One?
A control file has two unique characteristics. First, a control file has only one record.
Second, a control file has no keys (with only one record, a key is sort of pointless).

In many respects, control files duplicate the function of INI files. The important difference
is that a control file, unless you use the ASCII or Basic driver (bad move), cannot be read
with a text editor, is not so easily corrupted or manipulated as a text file and, should you so
wish, can be encrypted. All or part of a standard file, which is what a control file is, can be
made read-only.

The purposes for which you use or, indeed, whether you use a control file as opposed to an
INI file is, of course, entirely up to you. But if you decide use a control file, how you use it
is not.

The Issues
Just as with any file, there two kinds of things you will want to do. First, you’ll want to
write to the control file, adding and updating records... oops, the record. When adding, of
course, you’ll want to add only to an empty file. Adding a second record to a control file
defeats its purpose. So, adding is a “one time thing.”

Second, you’ll want access the record, i.e., read the file. Because a control file has only one
record, by definition, and no keys, none of the standard template methods of file handling
will work as expected. Indeed, they will not work at all.

Sequential processing is not possible (no “sequence,” you see). There is no key to prime.
Set(key) and Set(key,key) have nothing to operate on. A loop, of course, is
pointless. In plain English, the standard templates can do nothing for you except open and
close the file.

Similarly, you can’t simply add records to the file. A control file may have one and no more
than one record. The standard templates will try to add multiple records.

The problem is determining (1) whether or not the file exists at runtime, (2) whether or not
there is in fact a record in the file and (3) how to tell a file what you want to do (Add or
Put).

(1) is usually only a problem the first time the app is run.

To make matters more interesting, the database driver that you use makes a difference in
accessing single record files. TPS files, in particular, do not support the Pointer()

Working Wi th Contro l F i les
function for direct record retrieval while most other non-SQL databases do. Your choice of
file systems will make a difference in your handling of control files.

Accessing Control Files
For the moment, let’s assume that there is already a record in the control file.

If you want to display the user’s company name and address in the header of a report or
plug the city, state and postal code on data entry form, the data contained in a record must
have been successfully read first. If you haven’t first read the record:

CUS:City = CFG:City

isn’t likely to give the desired result, is it?

In Clarion 2.0, or even in DOS, you would done something like the following:

Open(file)
Get(file, 1)

Take a moment to look at this code.

First, the file is opened. This does nothing but create a record buffer in memory. Nothing
here prepares the file to be read. okay, it’s not “nothing.”

Second, normal file handling would follow with a Next() or Set()/Next(). But a
control file contains only one record. If the driver fully supports Pointer(), the record
can be accessed directly,

Get(file,1)

The lesson? (1) Open, (2) read. Read = retain for later use.

TPS files don’t fully support the Pointer() function (on a TPS file, Pointer()
returns a valid pointer which can be used for direct retrieval but “1” is not a valid pointer
with TPS files), so:

Open(Config,42h) !or Share()
Set(Config)
Next(Config)

is required for TPS files.

Legacy command such as Open() and Get() can in fact be used in these circumstances
even in ABC. Bad form, to be sure. But they will work. You must ensure that the file is
closed at the appropriate point, if you Open the file directly.
549

Database T ips & Techniques

550
In ABC, “good form” would be:

Access:Config.Open
Set(Config)
Access:Config.Next()

for TPS files.

Access:file.Open opens the file. Set() prepares the file for reading, as always. And
Access.Next() reads the first (and in this case only) record, if any.

You will notice there is no ABC analog for the Get() command. Therefore, for file
systems fully supporting Pointer(), you can continue using Get():

Access:Config.Open
Get(Config,1)

With these file systems, xBase, Clarion, etc., I have had the Set()/Next() strategy fail.
Thus, I continue using Get().

Maintaining Control Files
Since there is only one record, a browse is sort of... ah, pointless. Go directly to the form.

The problem is that a form needs to be told what to do. GlobalRequest is typically used
to tell the form whether it is being call to add, update or delete a record. Without a
legitimate value in GlobalRequest, the form won’t do anything.

Specifically, if called to add a new record, the form needs an empty buffer. If called to
change or delete, the form needs a buffer with the correct record.

So, GlobalRequest needs to be set; what’s the big deal? The big deal is that you need to
know whether or not the file has a record before you set GlobalRequest. If there is no
record, GlobalRequest must be InsertRecord and if there is a record
GlobalRequest must be ChangeRecord (you don’t ever want to delete a control
record, do you?).

As it turns out, this is easily determined. If Relate:.Open returns a non-zero value,
there was an error opening the file (e.g., the file does not exist and is not set up for create-
if-not-found). If Access:.Next() returns a value, there is no record in the file. So the
following code can be used to set up the call to a form:

! Listing 1
IF NOT Relate:Config.Open()
 SET(Config)
 IF Access:Config.Next()
 GlobalRequest = InsertRecord

Working Wi th Contro l F i les
 ELSE
 GlobalRequest = ChangeRecord
 END
 SetupForm
 Relate:Config.Close
Else
 !action if file create not allowed
END

This ensures that GlobalRequest is always set properly.

Trying to determine the appropriate value for GlobalRequest from inside the Form
procedure is a bit more difficult. It is more difficult because GlobalRequest is read
before the file is opened (see Figure 1), early in the INIT method.

Of course, the code in Listing 1 work perfectly well before “Snap-shot GlobalRequest”
(without the procedure call, of course) and not wreck havoc on the standard template code
(so long as you close the file first).

To ensure that the configuration file is properly opened and read when the program is
started, I use something like this:

! Listing 2
Loop
 Access:Config.Open
 Set(Config)
 If Access:Config.Next()
 SetupForm
 Else
 Break
 End

Figure 1: The Init method embed points
551

Database T ips & Techniques

552
End

in the main procedure’s INIT method. Notice that this code loops until there is no problem
opening and reading the file. Combined with the code in Listing 1, the form always knows
what is required of it.

Config files aren’t especially difficult. But they do prove just how spoiled we are.
Everywhere else, Clarion sets up the file buffer, accesses files and sets up forms. When
there’s only one record in the file, you’re on your own as far as these go.

On the other hand, if you can manipulate a configuration file, you know how to access a
file.

Nik and Steve’s correspondence
> I have a single record (configuration) file and, based on what
> I did in CW2003, I used:
>
> Access:Config.Open
> Set(Config)
> Access:Config.Next()
>
> to get that record, but it doesn't seem to be returning the
> correct >field values.Could it be that the error is in my file
> access in the update form:
>
> Access:Config.Next()
> If ErrorCode()
> If ErrorCode() = 35 then ThisWindow.Request = InsertRecord.
> Else
> ThisWindow.Request = ChangeRecord
> End
> ThisWindow.OriginalRequest = ThisWindow.Request
>
> because I noticed (finally) that I had 15 or 16 records in the
> file. Ok, where'd I foul up? (Please...)
>
> TIA
>
> Steve Parker

Nik Johnson's reply
I think you have to be careful about timing here. What I would do is have a source
procedure which sits between the menu (or whatever triggers the configuration file update
process) and the update form:

Working Wi th Contro l F i les
LinkUpdate PROCEDURE

 CODE
 IF NOT Relate:Config.Open
 SET(Config)
 IF Access:Config.Next()
 GlobalRequest = InsertRecord
 ELSE
 GlobalRequest = ChangeRecord
 END
 ConfigForm()
 Relate:Config.Close
 END
 RETURN

This makes sure that the file is open, the record is current or the buffer cleared) and
GlobalRequest is set -before- you ever get to the update form. In that way you don't have to
worry about little things like the fact that the update window will internalize GlobalRequest
before -it- opens the file. The update form at this point should see no difference between
this call for a singular record and a request from a browse of many records. Objects are
like people. They function best when given directions in a familiar context.

I (Nik) am an inveterate template tinkerer. It’s a mixed blessing. By the time I abandoned
my CPD 2.1 model file for the Logix Project Manager, there was more logic devoted to
branching conditionally around various options than to perform the actual task at hand. By
the time CDD 3007 rolled around, I had so much invested in modifying Todd Carlson’s
templates that I didn’t dare switch to newer Clarion templates. But while they lasted these
modified tools made me a lot more productive than I would otherwise have been.

I’m still tinkering, but the introduction of OOP and the ABC library has meant that I can
now work within the TopSpeed framework rather than around it. Steve Parker’s discussion
of control files in the first half of this chapter provides an opportune way to illustrate the
convenience and power of OOP/ABC while at the same time extending my toolkit.

Defining The Problem
What I want to build is a “set and forget” method of handling control files. As Steve points
out, some file structures require a SET/NEXT approach, others do better with
GET/POINTER. Still others may require other access methods. I want to spend an absolute
minimum of time and effort incorporating control files into future applications,
independent of the file system.

Steve has enumerated the things our tools need to be able to do:

• Open the file
553

Database T ips & Techniques

554
• If the file is missing, optionally create it

• Read the file’s only record in a way appropriate to the file structure

• If the file has no records, add one

• Update the record

• Close the file

The following narrative mimics the way I go about building tools for my own use. First, list
the things that have to be done; second, establish a general design; third, build a skeleton;
fourth, fill in the details. This works for a small shop, but if you’re building tools for sale or
working in a larger organization you may want to skew this pattern toward heavier
documentation of the design in advance of coding.

This Wheel Has Already Been Invented ...
Almost
The ABC FileManager class provides facilities to accomplish five of these six tasks, so
it makes sense to start with that as a basis. A class based on FileManager can inherit all
of its functionality and minimize the new work that needs to be done.

MyFileManager CLASS(FileManager)
Fetch PROCEDURE,BYTE,PROC
 END

The new method provides a place to add Steve’s access logic, but it doesn’t include
provision for specifying which version of that logic to use. ABC classes are insensitive to
driver, but in this case that luxury is not available.

Two possibilities come to mind. First, the fetch algorithm could accept a flag to designate
how access to the one and only record in the file is to be gained. A byte should be
sufficient, since more than 255 variations on the get-only-record theme are unlikely.
However, if the file driver changes, it could be inconvenient to chase down every Fetch
and alter it. The second approach, adding a property to the derived file manager, permits
the fetch algorithm to be specified once at the beginning of the program.

MyFileManager CLASS(FileManager)
FetchOnlyType BYTE
Fetch PROCEDURE,BYTE,PROC
 END

The compiler can distinguish between the new Fetch method and the one specified in the
standard ABC FileManager class because their prototypes can be differentiated by the
rules for procedure overloading. (See the Language Reference Manual.)

Working Wi th Contro l F i les
Building A Skeleton
A residence for record fetching logic having been established, the logic itself can be added.

First, set up an EQUATE for each value MyFileManger.FetchOnlyType can assume:

 ITEMIZE,PRE(FetchMethod)
GetByPosition EQUATE
GetNext EQUATE
 END

Although these are the only two options at the moment, setting up this structure provides a
clean way to add other options in the future.

The new Fetch method, by using the EQUATEs, becomes self-documenting.

MyFileManager.Fetch PROCEDURE
ReturnValue BYTE,AUTO
 CODE
 ASSERT(SELF.FetchOnlyType)
 SELF.Open
 SELF.UseFile
 CASE SELF.FetchOnlyType
 OF FetchMethod:GetByPosition
 ! "get by position" code here ...
 OF FetchMethod:GetNext
 ! "get by set/next" code here ...
 END
 IF ReturnValue
 CLEAR(SELF.File)
 ReturnValue = SELF.Insert()
 END
 SELF.Close
 RETURN ReturnValue

This “shell” contains everything except the actual logic to access the configuration record
if it exists. In adapting Steve’s logic, I’ve made a few assumptions based on my own
expected use of the method:

• I may want to access the configuration record in a context other than an
update form, so I’ve removed logic that refers to SetupForm from Steve’s
code.

• I should never call this method unless I’ve set the FetchOnlyType
property. The ASSERT protects against this. Since this would be a
programming error as opposed to a data-related condition, I don’t need user-
friendly error messages for this situation.

• If I ask for a record and can’t find one, I always want to add the record.

Your programming style may suggest a different set of design assumptions.
555

Database T ips & Techniques

556
Putting Meat On The Bones
The only thing left to do is add appropriate code for accessing the configuration record.
Whatever the method used, ReturnValue should be set to zero if the fetch is successful,
something else if not. The CASE structure is the only part of the shell which changes:

CASE SELF.FetchOnlyType
 OF FetchMethod:GetByPosition
 GET(SELF.File,1)
 IF ERRORCODE()
 ReturnValue = Level:Notify
 ELSE
 ReturnValue = Level:Benign
 END
 OF FetchMethod:GetNext
 SET(SELF.File)
 ReturnValue = SELF.Next()
END

The new method behaves very much like the standard ABC Fetch except that it doesn’t
require specification of a key, it expects one and only one record in the file, and, if the file
is empty, it adds a cleared record.

Adding The New Class To The ABC Library
A little plagiarism is a wonderful thing. All the information needed to make making the
new class look to Clarion like an ABC class is sitting in the \LIBSRC directory. First, set up
files for the new class prototypes and methods. Call them something like
MyClasses.inc and MyClasses.clw. Referring to similar files shipped with
Clarion, set up these two files to match their style.

Here’s the general setup of MyClasses.inc:

!ABCIncludeFile
 OMIT('__EndOfInclude__',_MyClassesPresent_)
MyClassesPresent EQUATE(1)
 INCLUDE('ABFILE.INC'),ONCE
 ! class prototypes here ...
__EndOfInclude__

The comment (!ABCIncludeFile) tells the IDE that this code follows the ABC pattern
and should be treated as any other ABC include file. The OMIT structure lets this file be
included anywhere the definitions are needed without fear of duplicating those definitions.
For example, the definitions of the ABC FileManager are included above so that they
can be used in the definition of the MyFileManager class.

The new ONCE attribute provides another mechanism for avoiding duplicate definitions,
but that protection depends on the ONCE attribute appearing in every INCLUDE. Older

Working Wi th Contro l F i les
code may still require the protection provided by the OMIT structure, so it’s a good idea to
leave it in place.

A little more creative plagiarism provides the general setup of MyClasses.clw:

MEMBER
ABCDllMode EQUATE(0)
ABCLinkMode EQUATE(1)
 MAP
 END
 INCLUDE('MyClasses.inc')

The MEMBER statement identifies this as a source module, something the compiler needs to
know. The MAP structure is required, since it causes the compiler to include prototypes for
Clarion language statements and functions. The INCLUDE of MyClasses.inc makes
the new class definitions available to code in this module and, if the nest is not too deep
(LRM page 95), also includes definitions from ABFILE.INC.

The two equates, for _ABCDllMode_ and _ABCLinkMode_, implement the ABC
library’s method of determining where and how these methods will be linked and
referenced. These definitions work with attributes in each CLASS statement which are
required and will be added next.

In the skeleton version of the CLASS prototype, some necessary attributes were ignored.
The full statement should have been:

MyFileManager CLASS(FileManager),|
 TYPE , |
 MODULE('MyClasses.clw'), |
 LINK('MyClasses.clw',_ABCLinkMode_), |
 DLL(_ABCDllMode)

The TYPE attribute identifies this class as a prototype only. Actual instances of the class
will be created (instantiated) when needed. The MODULE attribute tells the compiler where
to find the code for the class methods. The LINK attribute tells the compiler to compile and
link these methods if, and only if, _ABCLinkMode_ is True. The DLL attribute tells the
compiler to look for these methods in another DLL if, and only if, _ABCDllMode_ is
True.

Have Hammer, Need Nail
Having built a new class, the next challenge is to use it. There are at least two likely
situations:

• Access within the context of some other process

• Access in conjunction with an update form
557

Database T ips & Techniques

558
The first type of use is easy. Just use the Fetch method as you would the standard ABC
Fetch:

IF NOT Access:MyConfigFile.Fetch
 ! do something, possibly including ...
 Access:MyConfigFile.Update
END

(This code assumes that nothing goes wrong during the update. You are of course free to be
as conservative as the situation warrants.)

The second is even easier. In the ThisWindow.Init method of a form, before the code
stores GlobalRequest, insert:

IF Access:MyConfigFile.Fetch
 RETURN Level:Fatal
ELSE
 GlobalRequest = UpdateRecord
END

This allows the form to be called directly from a menu and, no matter how it is called,
causes it to update the one and only record in our configuration file.

To make this capability available for a particular file, set
Access:MyConfigFile.FetchOnlyType to a value indicating how the single
record should be accessed. This can be done anytime after the FileManager instances
are initialized and before the Fetch is called.

Building A Wrapper
It would be nice if all of the necessary housekeeping could be wrapped up in a simple
package so that implementing a configuration file would require nothing more than, say,
adding a word to the user options of that file in the dictionary. Making things that simple is
probably overkill, though, since most projects will have only one file of this type.

An application level extension template can do the same thing cleanly and without the extra
processing needed to check every file in the dictionary for a user option. Given the name of
a file, the template can initialize the corresponding file manager’s FetchOnlyType
property and add setup code to any form procedure which uses the file.

This is as good a time as any to set up a file for home grown templates. Call it
MyTemps.tpl. A single line identifies the template chain:

#TEMPLATE(MyTemps,'Homegrown Templates'),FAMILY('ABC')

Another line establishes the extension template:

Working Wi th Contro l F i les
#EXTENSION(ConfigFile,'Implement Configuration
 File'),APPLICATION,MULTI

The APPLICATION attribute tells the generator that this extension is applied at the
application level rather than the procedure level. The MULTI attribute permits more than
one instance of the extension in a single application.

A couple of lines of documentation describing what this template is supposed to do are in
order:

#DISPLAY('This extension adds code to handle a specified file')
#DISPLAY('as a configuration file containing one and only one')
#DISPLAY('record. Forms for which this file is the primary file')
#DISPLAY('can be called directly without an intervening browse.')
#DISPLAY(' ')

A prompt allows specification of the file:

#PROMPT('Configuration File:',FILE),%MyConfigFile,REQ

There are at least two ways to specify the access method. The easiest is to add a second
prompt (or more accurately, prompt structure):

#PROMPT('Choose Access Method:',OPTION),%MyAccessMethod
#PROMPT('Get by position',RADIO)
#PROMPT('Get next',RADIO)

Another alternative is to have the template select the access method based on driver. This
has the advantage of hiding the access method from the programmer, thereby reducing the
number of things that have to be remembered when using the template. A good place to put
this selection logic is in an #ATSTART section:

#ATSTART
 #FIX(%File,%MyConfigFile)
 #CASE(UPPER(%FileDriver))
 #OF('CLARION')
 #OROF('DBASE3')
 #OROF('DBASE4')
 #SET(%MyAccessMethod,'Get by position')
 #OF('TOPSPEED')
 #SET(%MyAccessMethod,'Get next')
 #ELSE
 #ERROR('File driver not recognized by ConfigFile extension')
 #ENDCASE
#ENDAT

At this point everything necessary to generate code is in place. First, provide for
initialization of Access:MyConfigFile.FetchOnlyType:

#AT(%ProgramSetup)
 #CASE(%MyAccessMethod)
 #OF('Get by position')
Access:%MyConfigFile.FetchOnlyType = FetchMethod:GetByPosition
559

Database T ips & Techniques

560
 #OF('Get next')
Access:%MyConfigFile.FetchOnlyType = FetchMethod:GetNext
 #ENDCASE
#ENDAT

Adding code to the input form is a little trickier. The basic structure is easy:

#AT(%WindowManagerMethodCodeSection,'Init','(),BYTE'),PRIORITY(0)
IF Access:MyConfigFile.Fetch
 RETURN Level:Fatal
ELSE
 GlobalRequest = UpdateRecord
END
#ENDAT

Specifying PRIORITY(0) puts the code at the very beginning of the method, which is
necessary because GlobalRequest is internalized very early in the initialization
process.

This code should only be generated if the window is an update form for MyConfigFile.
The template language provides a WHERE attribute to allow this kind of selection. With that
attribute in place, the #AT statement becomes:

#AT(%WindowManagerMethodCodeSection,'Init','(),BYTE'), %|
 PRIORITY(0), %|
 WHERE(%ProcedureCategory = 'Form' %|
 AND %Primary = %MyConfigFile)

One of the benefits of writing about programming is that you learn things in the process.
Until I had to split a template instruction to fit the printed page I was unaware that the
template language has a line continuation symbol and that it differs slightly from the
continuation symbol used in Clarion code. You’ll find it documented on page 503 of the
Programmer’s Guide.

Unfortunately, when I tried to use this syntax in an example, the registry rejected the
template. You’ll find a note which suggests that this might happen on page 525 of the
Programmer’s Guide. So the continuation symbols (%|) in the above example are there for
readablity only and should not be used in actual code.

The point here is not that the documentation is bad. In fact, it’s very good. But the template
language has always had more little vagaries and nuances than the Clarion language itself,
which makes documentation a daunting task. With both template and Clarion code, I read
the documentation, code accordingly, test, and modify until it works. But with templates I
don’t worry too much if I can’t explain in detail why what works, works.

Testing also reveals that %Primary, a built-in symbol which the documentation suggests
should contain the label of the procedure’s primary file, is blank when the WHERE clause is
evaluated. Why? I don’t know. But replacing %Primary with %File, a multi-valued
built-in symbol, works. Why? I don’t know.

Working Wi th Contro l F i les
Applying The Tool
The three files which define the MyFileManager class and the ConfigFile extension
are included in the downloadable ZIP file. Using them is very simple:

• Place MyClasses.inc and MycClasses.clw in your Clarion LIBSRC
subdirectory.

• Place MyTemps.tpl in your Clarion TEMPLATE subdirectory

• Register the ConfigFile extension.

• For any file that you want to handle as a configuration file, add an instance
of the extension to your application’s GLOBAL properties.

You will also need to tell the generator to use MyFileManager instead of
FileManager for any configuration files. You can do this either on the Individual File
Overrides tab or the Classes tab. The difference will be whether all files use
MyFileManager (Classes tab) or just the ones you want handled as configuration files
(Individual File Overrides tab).

I usually choose the more general case, expecting to add other functionality to the derived
file manager.

In summary, once you have found a solution to a particular coding problem, it makes sense
to take the extra step and build tools which implement that solution. Clarion’s tool-building
facilities are within the abilities of the average programmer, and skill in using those
facilities improves rapidly with practice. I hope this example not only proves useful to you,
but tempts you to build other tools on your own. You have nothing to lose and a world of
productivity to gain.

A Correction
After this article first appeared, I received an email from Jan Jacob de Maa. He had
downloaded the associated ZIP file and was trying to use it. Unfortunately, he was
encountering compile errors.

Jan Jacob’s experience led to the discovery of three errors in the article, which errors are
repeated in the ZIP file:

• In the header for the MyFileManager class, an underscore is missing in
the DLL attribute. It should read DLL(_ABCDllMode_) rather than
DLL(_ABCDllMode). The missing underscore causes the DLL attribute to
561

Database T ips & Techniques

562
remain off when it should be on, wreaking havoc when compiling and
running in 32-bit mode.

• In the wrapper template, the line IF Access:MyConfigFile.Fetch
is missing the parentheses necessary to tell the compiler that this is a
function rather than a variable. It should read IF
Access:MyConfigFile.Fetch().

• Also in the wrapper, the priority of zero which was given for code to be
inserted in ThisWindow.Init causes the wrapper to execute its Fetch
operation before the file is open. Changing the priority to 8000 places the
code correctly. Also, because at this new position GlobalRequest has
already been internalized, GlobalRequest = ChangeRecord has
been changed to SELF.Request = ChangeRecord.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v1n7control2b.zip

CHANGING DICTIONARIES

by Michael Pickus

Have you ever wanted to import a procedure from another application and found it was
created with a different dictionary? It happened to me recently, only I needed integrate six
applications into an EXE with DLLs and each application had a slightly different
dictionary. When I tried to change the first application’s dictionary, I saw the following
warning:

”This is only guaranteed to work if the dictionaries are the same. It is not sufficient to have
the same files and fields.”

Sounds ominous. Why isn’t it sufficient to have the same files and fields? Because every
file, key, and field in a Clarion application uses a pointer (a unique identifier called an
IDENT) to a corresponding file, key, or field in the dictionary. That’s why when you
change the name of a field in your dictionary, your application still works.

When you change the dictionary of an application the IDENTs won’t match unless the
dictionary is the same. The trick is to remove the IDENTs so that matching is done by
file/field/key names. The following steps and program should enable you to change to a
dictionary that has all of the same files, keys, and fields, but different IDENTs.
563

Database T ips & Techniques

564
1) Ensure that all of the files, keys, fields, and relationships in the application
are also in the target dictionary. If the differences are minor, you can open
both dictionaries and copy (Ctrl-C) and paste (Ctrl-V) the files from a source
dictionary to target dictionary. If they are substantially different, you may
want to export the source dictionary to a .TXD file (File|Export Text) and
import the .TXD file into the target dictionary (File|Import Text). If you have
the Enterprise Edition, you also have the option to use the synchronizer. Save
the dictionaries.

2) Open the application and export it to a text file. File|Export Text creates a
AppName.TXA file.

3) Compile the DeleteIDENTS program, shown below (which you can also
obtain from the source zip). If you create your own project to go along with
Listing 1 make sure you include the ASCII file driver). Run
DeleteIDENTs to convert the AppName.TXA file into a new file,
AppName_NoIdents.TXA, with the IDENTs removed.

4) Create a new application. Select the target dictionary (Dictionary File) and
delete the MAIN (first procedure).

5) Import the new .TXA file. (File|Import Text) the AppName_NoIdents.TXA.
When the IDENTs are missing, the import uses the file, field, and key names
to match the same names in the dictionary. You now have a new application
with a new dictionary.

Here’s the source for the DeleteIDENTS program.

 PROGRAM

 MAP
 END

IDENT UNSIGNED, AUTO ! INSTRING returns an UNSIGNED
CloseP UNSIGNED, AUTO

eIDENT EQUATE('IDENT(')
eCloseP EQUATE(')')
eNoIDENTs EQUATE('_NoIDENTs.TXA')
eDict EQUATE('DICTIONARY')
! eMax varies with the # of relationships
eMax EQUATE(6144)

OldFileName CSTRING(129), AUTO ! TXA in
NewFileName CSTRING(129), AUTO ! TXA out

OldFile FILE, DRIVER('ASCII'),NAME(OldFileName)
RECORD RECORD
aLine STRING(eMax)
 ..
NewFile FILE, DRIVER('ASCII'),NAME(NewFileName),CREATE
RECORD RECORD

Changing Dict ionar ies
aLine STRING(eMax)
 ..
 CODE
 LOOP WHILE FILEDIALOG('Choose TXA to Convert', |
 OldFileName, 'TXA|*.TXA')
 NewFileName = OldFileName [1 : LEN(OldFileName)-4] |
 & eNoIDENTs
 CREATE(NewFile)
 OPEN (NewFile)
 OPEN (OldFile)
 SET (OldFile)
 LOOP
 NEXT(OldFile)
 IF ERRORCODE(); BREAK.

 ! Don't use the old dictionary
 IF OldFile.aLine [1 : 10] = eDict; CYCLE.

 ! Is IDENT on this line?
 IDENT = INSTRING(eIDENT, OldFile.aLine, 1, 1)
 IF IDENT

 ! Find closing parenthesis
 CloseP = INSTRING(eCloseP, OldFile.aLine, |
 1, IDENT+6)

 ! String slice the offending IDENT
 NewFile.aLine = OldFile.aLine [1 : IDENT-1] & |
 OldFile.aLine [CloseP+2 : eMax]

 ! If there is nothing to save then cycle
 IF LEN(CLIP(NewFile.aLine)) < 5; CYCLE.
 ELSE

 ! If there is no IDENT, save the whole line
 NewFile.aLine = OldFile.aLine
 END
 APPEND(NewFile)
 END
 CLOSE (NewFile)
 CLOSE (OldFile)
 MESSAGE('Done')
 END

Editing exported dictionary and application text files is a powerful option. For instance,
you can globally change all date formats from @d1 to @d2b or even change from the
Clarion template class to the ABC template class. But always remember to create new
dictionaries and applications rather than overwriting your old ones.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.
565

Database T ips & Techniques

566
• v1n7idents-1.zip (original source)

• v1n7idents-2.zip (updated app)

ALIAS - WHO WAS THAT MASKED FILE?

by Steven Parker

”File alias” is one of those concepts that is at once extremely difficult and extremely
simple. On the one hand, the documentation is quite sparse. Alias is not part of the
language, not a Clarion statement (at least in the context of files - there is an ALIAS
statement which changes keycodes, but that’s not what I’m referring to). The one reference
in the online help is to a FileManager method. Little information and, therefore,
guidance, is available. On the other, the notion of referring to something by a different
name (which after all is what an alias is) is really quite simple: two names, one object.

The behavior of file aliases is entirely a consequence of some Clarion fundamentals: label,
RECORD and NAME. When you understand these concepts, it is almost easy to use aliases to
solve real world problems.

Why Aliases?
Aliases were introduced to allow multiple relations between files, a feature not supported
by the Dictionary Editor1. Aliases, therefore, provide a second record buffer on a thread for
567

Database T ips & Techniques

568
a file. This second buffer also allows looking up recursively within a single file. Aliases are
powerful stuff.

Aliases, therefore, are the answer to the question “How can I be in two different places in
one file at one time?” Other ways of saying this include: “How can I do a lookup from a file
into itself?” “How can I have two different relations between the same two files?” and
“How can I relate one record in a file to other records in the same file?”

Recursive lookups and relations are not easily visualized. Perhaps an example or two will
clarify the matter.

A fairly clear example is an employee file in which you want to display the employee’s
supervisor (a job title file displaying the supervisor’s title is much the same thing and can
serve as the basis for this sort of lookup). Since a supervisor is also an employee (okay, I
know that many oughtn’t be), there is an interesting and thoroughly unattractive choice:
either you can have two files (two copies of the employee or job title file) or you can have
one file. Maintaining only one copy of the file means that you have to look up within the
current file.

A recursive lookup like this will not work without a major finagle2 and that assumes that
you can describe it well enough to create a specification (it’s not that easy; try it). Two
copies of the same file simply for the purpose of a lookup seems...well, stupid, frankly.

In an inventory module, a bill of materials or kit presents a very similar situation. When
displaying a BOM or kit, there will typically be a browse of the items comprising the kit.
This is a parent-child relationship. The parent inventory item is the kit but the child items
are (or were) also inventory items. Even if the component items are stored in a separate file,
they start out in the inventory file. When displaying the components, you need to relate one
record in a file to other records in the same file (either directly or indirectly) or keep two
copies of the inventory file. When creating the kit, you will need to select items from the
inventory file which you are already accessing to insert the kit record. Again, the choices
are less than palatable.

My own introduction to aliased files occurred while updating my Go To Lunch batch
compiler, available at the CWICWEB (http://www.cwicweb.com) download site.

I needed two different browses of the same file on two tabs. On the first tab is a simple
browse of the app list. On the second tab, the app list is displayed filtered (actually, range
limited). Sounds like pretty standard stuff, right? On the second tab, however, the file is

1. The Relational Model also frowns on this practice. But, in the words of Randy Goodhew, the nice thing
about the Relational Model is that applications following it rigorously are unusable. Reality often conflicts
with theory and, in such cases, the nod tends to go with reality (at least among Topspeeders).

2. If you are not familiar with this term from the pre-PC era, it refers to a programmer’s ability to
successfully merge geometrically divergent shapes and/or expeditiously scale vertically enhanced edifices
(putting square pegs into round holes and leaping tall buildings in a single bound, doof).

Al ias - Who Was That Masked F i le?
used as a child of another file (Projects) and the second tab shows a list box from the parent
file. The app list is filtered on the currently selected parent record (see Figure 1).

What is not standard is using a single file standalone and as a child in the same procedure.
The standalone instance will set the buffer to the last accessed record. The second instance
will always range limit the file on the relating key values. Mashed buffers are a certainty:
the file will always end up range limited on the linking field value from the second tab.
Even though the first browse appears normal, you will only be able to access the record that
is active on the link as currently set on the second tab (opened last, the parent file
“touched” the target file last and so gets its way).

Creating An Alias
Before continuing I need to describe how to create a file alias. It’s a bit “cart before the
horse,” but this is the easiest way to present the information.

Figure 1: The Go To Lunch Batch Compiler showing an aliased browse (”member” apps)
569

Database T ips & Techniques

570
The Dictionary Editor makes creation of aliases simplicity itself: just press the Add Alias
button (see Figure 2).

This will call the File Alias worksheet, shown in Figure 3.

If you are not already using the NAME attribute on the file to be aliased, you will be notified
that this is required.

Figure 2: Creating an alias in the dictionary editor

Figure 3: The File Alias worksheet

Al ias - Who Was That Masked F i le?
There is no particular reason to use a variable for the NAME, unless you wish to (see
“NAME() Comes Of Age,” p. 591); you can just specify a DOS file name:

When you complete all the prompts, your dictionary will look like Figure 5:

It is extremely important to note that if you do not complete the NAME attribute of the base
file, your dictionary will still look like Figure 6. However, when you run the app, a file will
be created on disk for the “alias” (if you have file create turned off, you will get an error

Figure 4: Completing the NAME() attribute for the file being aliased

Figure 5: The completed dictionary worksheet
571

Database T ips & Techniques

572
message). Of course, this defeats the purpose: file aliasing is supposed to work with a
single disk file.

Note: While the environment will let you complete the worksheet without
specifying a NAME, don’t.

Finally, given the original purpose of aliases, you will find that the alias inherits the base
file’s fields and keys but not its relations. You may create any new relations needed,
including relations to files already related to the base file. The idea is to use different keys
to create new relations.

What Is An Alias?
With the dictionary complete, if you wizard up an application you will notice something
quite remarkable. When you examine the application tree, you will see procedures
generated for both the base file and its alias. It is as if the Application Generator is treating
the alias as an entirely separate file. Think about this; of course it should!

If you compile and run the application, you will be able to call both browses and their
update forms without incident. Well, of course you should!

NOTE: Do consider checking the Do Not Populate box for any aliases in your
dictionary.

If you examine the generated source for the attached sample application, the impression
that there are two entirely different files will be further reinforced. Both files are declared
separately and without apparent cross-reference in the main source module. There is a
FileManager and a RelationManager for each. What you will not find is any

Figure 6: Automatically generated procedures both “files.”

Al ias - Who Was That Masked F i le?
obvious connection between the base file and its alias, no reference to the fact that one is
the “real” file and one (a sort) of pseudonym. Alias is not a Clarion statement, neither is it
an attribute like NAME or CREATE.

If you search all the source files generated (or read the on-line help on the AliasedFile
FileManager method), you will find (bc0.clw) a single reference to the alias:

SELF.AliasedFile &= Access:People

in the Hide:Access:PEOPLEAlias.Init method. By referring the alias’
FileManager to the base file’s FileManager, the ABC classes “know” which is the
“real” FileManager (that is, it does not instantiate a FileManager for the alias but
uses the base file’s FileManager). But you do have to dig to find this.

What is less difficult to miss (though it does not jump out and bite your...nose) is that both
file declarations have identical NAME attributes. And this is the key to comprehending what
an alias is, how it works and what it does.

Built On The Basics
If you examine the code in the main source module, there are three Clarion key words to
consider. Combined, they make file aliases work.

First, you will find a label for each of the files. In the sample application, for example, you
will find both PEOPLE and PEOPLEALIAS. Different labels allow you to refer to each of
them separately (that’s what labels do).

Next, you will find matching and identical RECORD structures. According to the Language
Reference Manual, a RECORD structure is what creates the memory buffer (per thread, if
you select the THREAD attribute for the file). And, since there are two RECORD structures,
with unique prefixes, there will be two buffers. This is what will allow two different
records to be in memory simultaneously.

Finally, the same NAME attribute is used for both file declarations. Therefore, both RECORD
structures/buffers refer to the same physical file on disk. And that is what makes an alias
work (well, that and the use of the same FileManager3).

3. Of course, you can cut and paste a file declaration, changing the PREFIX, but use the same NAME. You
will be able to access the single file from two browses and do so simultaneously. You will be able to
update the file from multiple browses simultaneously. You will be able to use one as a lookup file for the
other. okay, so you instantiate a second FileManager. But other than that, what’s the big deal?-Clever, eh?
Open two browses on a single file created in this way. Change an existing record in one of the browses.
Now, highlight the “same” record in the second browse and press the Change button. It isn’t updated and,
in fact, it won’t until you save your edits. So, the big deal is that cleverness can result in lost concurrency
checking.
573

Database T ips & Techniques

574
To reiterate, declaring a file alias creates both a second label and a second RECORD
structure.

Buffers
”Buffer” is an extremely important concept in Clarion. A Record buffer is a memory
structure which contains values from the currently accessed file record. Think of it as
paralleling the file’s Record structure.

A Record buffer is created for each file in a procedure when the file is opened. Thus,
record (file) buffers are thread specific.

Further, the buffer only contains “fields” for those fields actually referenced in the
procedure. In a Form or Process procedure, this is all of the fields. In a browse, it is not.
The buffer in a browse contains only those fields populated in the View. Thus, fields in the
list box and fields added to the “hot” list contain current data. Any other file field is
unreliable.

These are logical entities: like an old-fashioned line number, a label identifies a location in
the code and a RECORD is a (dynamic) location memory.

If you run the sample application, you will see that is entirely possible to populate two
browses of the same file on a single window without using aliases. It is possible to do this
using different keys for each list (select Browse|Browse Both -- Without Alias from the
main menu of the example application).

However, no matter what you do, only one record will be in memory. If you run the sample
lookup procedure and select a record, you will overwrite the values in the initial record to
those of the one selected in the look up. There is no way to look up a supervisor from
employee data entry or to select kit items here. Try it, you won’t like it.

On the other hand, if you populate a browse from the primary file and a browse from an
alias of it, you can have two different records in memory at the same time. Having two
records in memory is, of course, not especially noteworthy. What is noteworthy is that both
are from the same file, at the same time, on the same thread.

In the sample app, select Browse|Browse Both from the main menu. For each browse box
there is a hot field indicating the record in memory for each list. Notice that they are only
the same if you intentionally select the same record from each list. Run the matching
lookup demo and you will see that it operates just as you expect, just as if there really were
two copies of the file.

Al ias - Who Was That Masked F i le?
Using An Alias
An aliased file, of course, can be populated and used in exactly same way as any other file.
After all, it has a FileManager (a reference to the FileManager for the base file) and
NAMEs a disk file. Thus, the “real” file will be affected by adds, changes and deletes. Even
the Wizards know this.

But that is not what aliases are about.

The special need addressed by the second buffer that an alias provides is when you need to
access the same data set twice on a single thread (since buffers are allocated on the thread;
again, see the lookup examples in the demo application).

Say, for example, you have an inventory item that is a kit/bill of materials. On its update
form you would like a tab with a browse box listing the component items. These
component items may well be stored in a child file but their descriptions will most likely be
in the inventory file. So, you need to be in the inventory file twice. The first access gets the
data for the record being updated and the second gets the descriptions for the component
items.

The browse box descriptions for the kit components would be populated from the aliased
file (the alias being related to the child as a second parent). The primary record buffer will
still contain the data from the inventory record being updated. Neat. No mashed buffers
(which is exactly what happens if you use the inventory file directly for both purposes).

Similarly, if you have an employee record in access, a lookup procedure for the supervisor
would be created from an alias for the employee file. Again, two different records from the
same file in memory simultaneously with no cross talk on the thread.

Caveats
In reviewing an early draft of this chapter, David Bayliss pointed out that what I discuss
here is the “proper” use of file aliases.

Prior to C5B, an alias is always required if you access a file twice on the same thread (not
simply in the same procedure) for any reason. He provided the following illustration:

An Employee form has a lookup to Department. The browse on Department
also looks up the supervisor name (an employee). There are two accesses to
Employee here. They are in different procedures but on the same thread.
Because they are on the same thread, they use the same buffer. Prior to C5B,
either template set would have problems with this scenario. You could not reuse
an existing Department browse.
575

Database T ips & Techniques

576
Since then, intelligence has been added in C5B to try to detect this. Buffers are
automatically saved and restored in many cases like this. Specifically, file usage in
procedures is monitored (based upon the UseFile method). If a child procedure re-uses a
file used by a parent and if the child doesn’t explicitly say it wants to overwrite the parent
record, Save/Restore file is placed around the child usage. David Bayliss has written a
chapter on this subject (“Propitious Memory Corruption,” p. 577).

Summary
If you need to access a file twice on a single thread and those accesses may involve
different records, the conventional wisdom is to create and use an alias.

Recursive lookups are the obvious example of needing to access two different records in a
single file simultaneously. The other “standard” case is when you need two different
relations between the same two files. In these cases, an alias is appropriate and will always
work and failing to use one will cause your app to fail.

If you absolutely insist on not using aliases, again see David Bayliss’s “Propitious Memory
Corruption,” p. 577, which describes the enhancements to USEFILE.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v1n7aliases.zip

PROPITIOUS MEMORY CORRUPTION

by David Bayliss

I clearly remember my first introduction to the Clarion application paradigm. It was during
the attempted closedown of the CFD 3 beta: the Florida R&D department was having
trouble tracking down some problems with the templates and they sent them over to see if I
had any ideas. They sent over a note: “Any ideas why this doesn’t quite work?” I
responded: “I have loads of ideas why it doesn’t quite work, what I don’t get is how it
works at all....”

To understand my response you need to understand my training. I came to computer
science from pure mathematics, where my primary interest was computer languages. As
such I had studied many of them, the distinctions between them, their strengths and
weaknesses.

One of the main issues that we studied was minimization of scope. The logic is extremely
simple. Programs work best when all the variables have the values they are supposed to
have. Thus good program design maximizes the chance of each variable having the right
value. You maximize the chance of a variable having the right value by minimizing the
chance that someone gives it the wrong value. You do that by stopping them touching it,
and you stop them touching it by making sure it isn’t declared where they can see it.
577

Database T ips & Techniques

578
The simple rule to implement the above is avoid global variables. The more modern and
OOPy way is to use the PRIVATE attribute as often as possible. In a language such as C++
you can go further and declare variables halfway through a procedure to stop people further
up the procedure touching it. You can even define nested scopes so that a given variable is
only visible over (say) three lines of a procedure.

Another key feature of safe languages is the ability to clearly define an interface, especially
between procedures. In particular you minimize the number of procedures with side
effects. Ideally you use functions that return results and if you want the result again you re-
call it. The ultimate is the “provable” language where you define what a procedure does
purely by the incoming parameters.

Of course all of these heuristics are made to be broken, and where required one would slip
in a global variable, or allow some procedure to have an external side effect. But each time
I did so I was mindful that I was reducing the maintainability of the app, reducing my
ability to scale the app and ultimately reducing my productivity.

Now the Clarion system has a proven ability to produce massive, maintainable apps,
astonishingly quickly. Studying the legacy application paradigm was something I looked
forward to.

Clarion Legacy Application Paradigm
What I saw took my breath away. The Clarion application paradigm is simple, audacious
and astonishingly effective. Everyone just shoves values into global variables (usually file
buffers), assumes everyone else has put just the right value into just the right variable at just
the right time and carries on regardless. And it works, very very well.

In a browse a given variable could easily be used for six or seven different logical things. It
could be the use variable of a hot field, a range-limit field in a filter, a locator field, the use
variable for the locator entry control, a parent range-limit of a child browse, the selection
field for a vertical thumb, the source for computed fields and the scratchpad I use to load
the data before copying it into the queue.

Most germane to this chapter is the behavior across a procedure call. When a browse calls
an update it just reloads the present record and calls the update form. When the update form
returns it just assumes the record coming back is a good one, repositions itself and keeps
going.

The “current value” range limit works similarly; it locks the browse to be range limited by
whatever happens to be in the record buffer when the procedure is entered.

Propi t ious Memory Corrupt ion
Selection from a browse again works simply. The browse just “leaves the record buffer” on
the current record (every time you change the selected item the record buffer changes) and
the update form uses any field it feels like.

So why didn’t the templates quite work? Well the first problem is the “six or seven logical
things” I mentioned above. I suspect that as you read them you thought, “they’re all the
same!” And they are usually, but not all of them all the time.

Consider the locator field when you have type in “fred” and the selected record is “gerry”
(fred not existing), what should the locator field show? What should the attached entry
read? What is the value of that field if it is also used as a hot field? As a range limit on a
child browse?

Suppose I enter a filter that renders the browse empty. Is the field now blank? Even if it is a
range limit field?

How about when I am loading in data to fill the browse; do I reset the field used as the
range-limit for the child browse? Or do I wait to the end?

The Cost
Over many legacy template releases these questions were all answered to the point where
buffer variables generally had what most people wanted in them most of the time, but there
was a cost. Every time a logical part of the browse used a global variable it also had to post
a message to the browse to refresh itself so that the expected logical value was in the
corresponding global variable. The affect was that legacy browses always loaded the file
data at least three times, and you could concoct examples (using child browses, locators
etc) where it would re-load eight times for one notional “refresh”.

Another cost is that all the components felt they had to keep the buffers fully loaded. So a
browse loaded a whole record for every new selection. A select browse did a full re-load
(including child files) upon returning.

So Clarion had successfully married together productivity and functionality by applying a
huge dollop of pragmatism.

The Kids
In many happy marriages there comes a point where the normal peace and harmony is
shattered by the arrival of children, and nothing is ever quite the same again. This was true
for the Clarion marriage too. CFD made a gigantic leap forward by the introduction of
579

Database T ips & Techniques

580
referential integrity (RI) checking. You could now add and delete records from your data
and your data would remain consistent, and it happened automatically. The dictionary
editor/appgen were extended to understand the idea of relationships, especially the one-to-
many relationship.

This technology was vital to the long term survival of the product: relational database
programming had now arrived in a totally safe and automated way.

Usually.

The problem with adding RI to the templates (and other things such as “must be in file”
validation) is that suddenly an innocent action upon one file didn’t simply change the fields
in that file: it could change the fields in any related file too!

Try the following with the legacy templates. Give yourself a many-to-one relationship
between two files with cascade on updates and clear on delete. On the update for the
“many” file give yourself a field lookup button to a browse on the “one” file with a select
button. Enter some “many” records each with “one” lookups (you will need to enter some
values to look up). Now edit a “many” record (note the form contents), call up the lookup
browse with the field lookup button and instead of selecting a record, delete one. Then
cancel the select. You will find the “many” record has magically changed values! If you
then press OK (not advised) your data is corrupted.

You can get similar effects with “must be in file” validation upon a form.

The simplest way to avoid most of these problems is to prevent insert/change/delete on
select browses (the legacy wizards do this). The legacy RI can still scramble your data
other ways but it is far rarer.

The Rope
With Clarion 1.5 we added another vital piece of technology that extended the relational
nature of the Clarion language: the VIEW. The VIEW is brilliant. You simply declare the
primary file, the fields you want from the secondary files and it handles all the rest for you.
I genuinely believe the VIEW makes Clarion one of the simplest DBMS systems to use in
existence.

Regrettably it makes it a little too easy to use. Whereas before people were quite content to
have a few foreign ID fields floating around in their browses there was now no excuse.
Simply populate the field from the child file and the VIEW handled the rest. The problem
is that whereas a “book browse” would typically alter the “book” file it could now be
loading values into subject, author, and publisher files without a moment’s thought on the
part of the programmer.

Propi t ious Memory Corrupt ion
Consider a book file related to subject (many-to-one). The subject form would thus have a
child tab listing all the books on a particular subject. Now the book browse (on the child
tab) would typically have a SubjectId field. This you remove and populate the subject
name instead. Seems reasonable and looks reasonable and under legacy it will work...often.
There are a few interesting quirks. Firstly, if you go to the child browse and delete all the
children when you come back to the General tab (with the form information) all the fields
will be blank. If you press OK you lose your parent data. The deadlier one is that if you edit
one of the child records and on the child record alter the parent (i.e. you are moving it from
one parent to another) when you come back to the form the data you are looking at will be
correct but the record under the form will have switched to the new parent! Thus any edits
you make to the parent record you can see will actually happen to the new parent of your
ex-child!

The Call Tree
A subtler side effect of the rope given in 1.5 is that grandchildren started to become
treacherous. Imagine I am editing a patient file. I have a lookup to the doctor browse, and
from the doctor browse I call up the doctor update form to see if a given doctor can do such
and such. The doctor update has a child tab of patients which upon loading writes changes
all over the patient file. I cancel out of the doctor update, select the suitable doctor and keep
going. When I press the OK button I either corrupt my data (legacy) or get an assertion
(ABC).

Most people are aware that if they see the ***Recursive call message on the procedure call
tree then they have a potential problem. Fewer people are aware that if ever any file
appears twice in a procedure call tree (other than by design) then mayhem may ensue. The
recursive warning is just a guarantee things are going to go wrong.

Then ABC Came Along And It All Stopped
Working!
At least that is what I have been told by many people, at great volume. ABC did make some
fundamental changes but I believe they are justifiable. I’ll go through the four cases in
sequence:

1) Inefficiency due to multiple usages of a variable within a procedure,
especially the browse. This has been tackled in ABC by teasing out some of
these logical uses, so locators have their own shadow, range-limits are stored
by value, etc. By doing this ABC only ever loads data once, it avoids painful
581

Database T ips & Techniques

582
REGETs, and generally is more efficient under client server and especially
SQL. The down side is that hot fields have to be defined as hot fields and
reset fields as reset fields (previously you could forget to fill them in and
generally got lucky). Further, from a select browse you can only actually
guarantee the linking field will be filled in (although C5 has a
SelectWholeRecord property to force a full record reload upon
selection).

2) Unexpected record corruption due to automatic file validation and RI. ABC
has eliminated these problems using save/restore file technology. There
usually isn’t a down-side unless someone was using one of these corruptions
to good effect.

3) Use of a file twice within a procedure. This is the one people don’t like. In
legacy this will usually appear to work, even when it doesn’t work the form
looks okay, it is just the data on disk that gets corrupted. ABC is rather
different. In this situation it will Assert, throw up garbage screen displays (if
the assertions are ignored), and generally make it clear something is horribly
wrong. I have had many people ask “Why can’t you get it to work like it did
in legacy?” They never believe that legacy doesn’t work until I take them
through the steps. So what is better? A system that works 99% of the time
and just subtly corrupts your customers data or a system that downs tools and
refuses to budge until it is fixed? See some of my “offensive programming
articles (http://www.users.globalnet.co.uk/~dabay/#Documents) ” for the
line I take.

4) Up until C5B ABC treated case 4 much like case 3. If the user dug far
enough down the procedure tree to cause an unintended corruption then upon
returning to the grandparent procedure it Asserts. Again I claim this is better
than the “corrupt and continue” approach. However, it isn’t quite as nice as
case 3 because there is nothing to guarantee that the procedure tree will be
fully “drilled down” during testing.

The only real solution to 3 and 4 is what I call “structural” aliases. Steve Parker’s chapter,
“Alias - Who Was That Masked File?,” p. 567, deals with the use of aliases when there is a
logical reason for them. Cases 3 and 4 require that sometimes you need to use aliases even
when they are representing the same logical entity.

Automatic Aliases
C5B makes a slightly radical but very strategic step towards solving case 4. Essentially the
idea is this each procedure declares which files it is using, then if it calls a procedure that
uses the same file the child will save the contents on entry and restore them upon exit so

Propi t ious Memory Corrupt ion
that the parent procedure has the record buffer it was expecting. This is managed by a
global “FilesManager,” so if a great-great grandchild starts using a file it is again
saved/restored as required. You can even go in and out of recursive procedures and
everything still works. Note that the child does not get a cleared record buffer, so data
transmission from parent to child still happens as before.

Of course this is not quite enough. Sometimes a child wants to change the data so that a
parent can use the result. To enable this to be specified (and for the procedure to register the
files it uses) the UseFile method was adapted to take a UseType. These are as follows:

• Corrupts – This file will be altered by this procedure but the procedure is
not bothered about the contents of the buffer across procedure calls.

• Uses – This file is altered by this procedure but expects its children not to
corrupt the buffer across procedure calls.

• Returns – This file will be altered by the procedure and the alterations
should be transmitted back to the parent (note this overrides the Uses
declaration in the parent).

The ABC templates have also been adapted so that the various control templates know the
action they are supposed to have upon a file and make the UseFile calls accordingly.
ABC template applications thus work unchanged from C5A to C5B. However hand-code
(or non-TopSpeed templates) may need altering to register that a given child wishes to
change a file buffer used by a parent.

In Conclusion
There is no such thing as a free lunch. The Clarion application paradigm has essentially
bucked the trend for many years to deliver productivity and functionality. ABC has
eliminated two of the compromises made by the legacy templates to achieve this. The
fourth has now largely been tackled by C5B at the cost of some code compatibility. ABC is
presently unable to tackle the third issue although it does flag the error enabling the user to
take action.
583

Database T ips & Techniques

584

DETECTING DUPLICATE RECORDS

by Gordon Smith

Recently on the newsgroups someone mentioned that TopScan didn’t identify duplicate
record errors while building the keys. After digging around in the source code I confirmed
this to be indeed true and set about writing a “duplicate record” detector (DRD) which was
file neutral. This chapter will take a look at the resulting class.

The Requirement
The DRD would have to perform the following functions:

• Locate all duplicate errors, for each key.

• For each duplicate error, locate all clashing records (remember each
duplicate error can have more than two associated records)
585

Database T ips & Techniques

586
The Solution Overview
The solution ended up being quite a bit simpler than I had originally envisaged, although
on the down side it involves a brute force approach where every record in the file will need
to be tested. The logical flow goes something like this:

1) Rebuild all keys (this is essential, as keys must be up to date to enable
location of clashing records).

2) Loop through each record in file sequence.

3) For each record use the DUPLICATE(FILE) function to see if it is a
duplicate.

4) For each duplicate record, loop through all the keys to find which ones are
reporting clashes (remembering that it can be more than one key causing the
error).

5) For each duplicate key, find the one valid record and associate the current
(error) record with it.

It is important to note that when duplicate records exist in a given key there will always be
one valid record, while the rest of the duplicates will simply not exist for that key.

There are several ways a duplicate record can be created, the following are probably the
most popular:

1) APPEND: Since APPEND doesn’t update any keys it is probably the easiest
way to create duplicate records.

2) File conversion (common type A): If the conversion utility simply creates a
new empty file and appends all the records from the “before” file, then this
will be the same as 1.

3) File conversion (Common type B): It is possible in some file drivers to
modify a key structure (remove a DUP attribute for example) and then
simply delete the key (somefile.k01 for example) from the hard drive,
allowing Clarion to rebuild it afterwards.

The Solution
The solution has been presented in the form of a class. (The attached source code also has a
small example PRJ and CLW file). The definition looks something like this:

FindDupClass class, type
init procedure(file f)
kill procedure

Detect ing Dupl icate Records
buildKeys procedure
findDup procedure
display procedure
 end

The class would typically be used as follows (and since it is a class, the actual code is
appropriately simple):

TestFileForDup procedure(FILE TestFile)

cFind FindDupClass

 code
 cFind.Init(TestFile)
 cFind.BuildKeys()
 cFind.FindDup()
 cFind.Display()
 cFind.Kill()

The code “notables” now follow:

BuildKeys method
Rather than calling BUILD(FILE), this method builds each key individually by using the
PROP:Keys and PROP:Key file properties. The main reason for this is to avoid a nasty
side effect of BUILD(FILE) where it aborts BUILDing all keys when an error is
encountered (in this case a duplicate record error!). A nice addition to this method would
be to actually check if any errors occurred during this operation, if not then there will be no
need to check for duplicates. Another useful addition would be to use the
PROP:Completed and PROP:ProgressEvents properties to display a nice progress
window, with the option to gracefully cancel.

FindDupClass.BuildKeys procedure

i unsigned, auto
k &key

 code
 loop i = 1 to self.f{PROP:Keys}
 k &= self.f{PROP:Key, i}
 build(k)
 end

The FindDup method
The FindDup method is the brute force part of the solution (it loops through the entire
file, record by record). Since files can be large it uses the EVENT:Timer event on a
587

Database T ips & Techniques

588
simple status window. When a duplicate is found, a private method is called
(CalcDupInfo) to analyse the duplicate.

FindDupClass.findDup procedure

Prog long(0)
Found long(0)

Window WINDOW('Caption'),AT(,,200,44)
 ,FONT('MS Sans Serif',8,,FONT:regular)
 ,TIMER(1),SYSTEM,GRAY,DOUBLE
 PROGRESS,USE(Prog),AT(5,10,190,10),RANGE(0,100)
 PROMPT('Duplicates:'),AT(5,27)
 BUTTON('&Cancel'),AT(150,25,45,14),USE(?ButtCancel)
 STRING(@s64),AT(50,27),USE(Found)
 END

i unsigned, auto
FinFlag byte(FALSE)

 code
 open(self.f)
 assert(~errorcode())
 stream(self.f)
 assert(~errorcode())
 set(self.f)

 open(window)
 window{PROP:Text} = self.f{PROP:Name}
 ?Prog{PROP:RangeHigh} = records(self.f)
 accept
 case event()
 of EVENT:Timer
 if ~FinFlag
 loop 100 times
 next(self.f)
 if errorcode()
 FinFlag = TRUE
 post(EVENT:CloseWindow)
 break
 end
 Prog += 1; display(?Prog)
 if duplicate(self.f)
 Found += 1; display(?Found)
 self.CalcDupInfo()
 end
 end
 end
 end
 end
 close(window)

 close(self.f)
 return FinFlag

Detect ing Dupl icate Records
The calcDupInfo method
This method goes through the following steps to find duplicates.

1) Save the current pointer and position for the current record.

2) Check each key to find the ones reporting the error.

3) For each duplicate record there will be one valid entry. This is located using
GET(SELF.F,K) procedure. Since the current record buffer for the “error”
record “matches” the one valid record, when the GET is called it will return
the one valid record!

4) For each duplicate AddResult is called twice (Note: AddResult will
only add records to the result queue if they haven’t already been added):

5) To add the valid record to the result.

6) To append the duplicate record to its associated valid record.

The original record is then restored with the RESET, NEXT combination (you must use the
RESET(FILE) form of RESET, for obvious reasons).

FindDupClass.calcDupInfo procedure

j unsigned, auto
k &key
tmpPos like(ResultQueue.Pos)
tmpPoint long, auto

 code
 tmpPos = position(self.f)
 tmpPoint = pointer(self.f)
 loop j = 1 to self.f{PROP:Keys}
 k &= self.f{PROP:Key, j}
 if duplicate(k)
 get(self.f, k)
 assert(~errorcode())
 self.AddResult(pointer(self.f), k)
 self.AddResult(tmpPoint, k, TRUE)
 reset(self.f, tmpPos)
 next(self.f)
 assert(~errorcode())
 end
 end

AddResult Method
This method adds the duplicate record information to the result queue for displaying later
(in the display method). It checks that this particular duplicate record hasn’t been added
589

Database T ips & Techniques

590
already (based on the key name and its POSITION information), and if it has it will
append the current record number to it.

FindDupClass.addResult procedure(string pnt, key k, |
byte AppendPos = FALSE)

 code
 clear(self.qResult)
 self.qResult.Rec = pnt
 self.qResult.Key = k{PROP:Label}
 self.qResult.Pos = position(k)
 get(self.qResult, +self.qResult.Key, +self.qResult.Pos)
 if errorcode()
 add(self.qResult, self.qResult.Rec)
 elsif AppendPos
 self.qResult.Rec = clip(self.qResult.Rec) & ', ' & pnt
 put(self.qResult)
 end

Summary
All in all it was quite pleasing that the solution ended up being so straightforward.
Something similar will undoubtedly find its way into TopScan. One more point: to verify
the sample program, try using TopScan to view the created file.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v1n9dupkeys.zip

NAME() COMES OF AGE

by Steven Parker

Various kinds of files, such as calendars, schedules, ASCII files, accounts, or files on other
drives or other machines share the characteristic that multiple physical disk files can have
the same structure. It is often desirable to have a single dictionary specification to declare
that structure so that a single procedure set (application) can operate on them.

Clarion builds in this capability with the Name attribute but provides no management
capabilities. It is up to the developer to manage which file is in process at any given time.

Of Syntax and Semantics
In Clarion, there are two concepts you must not confuse, label and Name.

Variables and data structures (which include windows, queues, views and files) are referred
to by their label. Clarion code always uses the label.

Name is an attribute. Variables and structures may or may not have a Name; in fact, they
usually do not. The contents of the Name attribute, if any, are for use of an external object.
591

Database T ips & Techniques

592
This could be another program, like a database engine or the operating system, or a Clarion
DLL, like a file driver.

In the case of data files, the Name attribute contains the fully qualified directory entry for
the file. For example, a file declared as:

Customer File,Driver('Topspeed'),Name('foobar')

will look for or create a disk file called foobar.tps in the current directory. Your code
will never contain this, only “Customer.”

Multiple Files, One Declaration
To handle multiple physical files from a single logical declaration use a variable in the
Name attribute:

Customer File,Driver('Topspeed'),Name(GLO:FileName)

You create this in the Dictionary Editor by completing the Full Pathname field on the
Edit File Properties worksheet (Figure 1) and pre-pending an exclamation point.

This is where the fun starts.

If you declare a file like that in Figure 1, your app will not compile. The compiler error
makes the reason clear: the variable was not declared. Not only must you declare the
variable, you must do so before the file declaration. That means that you have to use the

Figure 1: Global Data Properties

NAME() Comes Of Age
Before File Declarations source embed because the Global Data button places variable
declarations after the file declarations.

Thus, global files (files in the dictionary) require a global variable. Files declared at the
module or procedure level, in hand code, require only that the variable have the STATIC
attribute (though it can be at a higher scoping level).

Next, having added the STATIC attribute, if you try to run the app, it will crash and burn.
The variable is empty and the app does not know the DOS name of the file it is supposed to
open:

File() could not be opened. Error: Invalid Filename(45)

You may initialize the variable any time you wish but obviously not later than the first
attempt to open the file.

SetName
The ABC FileManager class also provides the SetName method to set the value of the
Name attribute. This method allows you to set the variable directly, without an assignment.
Moreover, you can call this method in a procedure which does not actually use the file(s) in
question (it’s a property of the FileManager, hence available any time after the
FileManager has been instantiated). The app frame comes to mind, as does the global
Procedure Setup embed.

Citing advantages of SetName, Pierre Tremblay observes (in the OOP newsgoup):

The variable in the name attribute for the file structure doesn’t need to be
exported [from the data app]. The FileManager class is holding a reference for
that var.

So, to initilialize this variable without having it exported from the DLL, the SetName
method is the only way to go.

Note what Pierre says: the variable “doesn’t need to be exported.” Yes, this means that you
do not need to declare the variable in the non-data app(s).

Rules for Name-ing
1) Always use the file Label as declared on the Edit File Properties

worksheet in Clarion language statements;
593

Database T ips & Techniques

594
2) When using a variable in the Name attribute, initialize it before any attempt
to open the file;

3) A variable used as a file Name may contain any O/S-valid string;

4) To use a variable, prepend the Full Pathname entry on the File
Properties worksheet with an exclamation point;

5) The variable name must be unique (of course);

6) Declare the variable in your data application, before the file declaration.

Super Files
Topspeed files support a special syntax to allow multiple tables to be stored in a single file.

By using the special escape sequence ‘\!’ in the NAME() attribute of a TopSpeed file
declaration, you can specify that a single .TPS file will store more than one table. (C4
LRM)

When using the TopSpeed driver, if you wish to store multiple tables in a single physical
file, separate the file and table names with \!, as in 'TUTORIAL\!ORDERS'. This refers
to the ORDERS table in the TUTORIAL.TPS file. (C5 On-line Help)

The format of the Name entry is file_name\!table_name which appears to preclude
using a variable in the Name attribute of a TopSpeed file.

Appearances can be deceiving, for this is not the case. Designate your variable on the File
Properties worksheet and initialize it in exactly the same way as any other Name, but use
the special syntax:

Authors_ = 'cwjfil\!Authors'

to initialize the variable. In this case, Authors_ refers to the Authors table in
CWJFIL.TPS.

NAME() Comes Of Age
Multiple Locations
The executable resides in one place but you need the ability to address files anywhere. The
file might be in the current directory or in another directory. The files might be on a
network drive. You can even map an IP address to a drive letter and use the Internet.

Here, there is one file (set) but multiple possible paths. In these cases, the path tends to be
variable while the actual name of the file tends to be a constant. If so, it makes sense to give
the Name variable an initial value when it is declared (Figure 2). If you can get the path
information separately, from an INI or configuration file or from FileDialog, just
concatenate the two.

FilePath = GetIni('JtMatch','FilePath',,'.\JOBTRAK.INI')
Contacts_ = Clip(FilePath) & Clip(Contacts_)

Multiple Files
You want to work on one company’s accounts then another’s. Or you need to update
Alice’s calendar then Bill’s.

You do not have to leave the browse, if you do not wish to (though, obviously, you can and
this would be easier to program). All you need to remember is that you must close the
current file before selecting the new file. Select the new file, prime the Name variable and
refresh the browse.

Figure 2: Setting an initial value for a file name variable
595

Database T ips & Techniques

596
If you have multiple tabs and it is your intention that each Ttb show a different file in the
same browse, you must close, prime and reopen in ThisWindow.TakeNewSelection
(ABC) or the ?CurrentTab, New Selection (Clarion) embed.

Multiple DLLs
Now multiple DLLs are really fun if you use variables.

Each variable must be declared in each of the project’s apps.

If you’re new to multiple DLLs, you should check the documentation. The important thing
is that each app in the project needs to reference the files. But only one should allocate
memory for them. This means that in all apps but one the files are declared and the
EXTERNAL attribute added. The one app without the EXTERNAL attribute is usually
referred to as the “global data DLL” and usually contains only the file declarations.

In the global data DLL, you simply declare the variable and, if desired, give it an initial
value.

In every other app, you must also declare each of the variables. Each variable must also
have the EXTERNAL and DLL attributes, similar to:

Contacts_ String(64),External,DLL(dll_mode)

to avoid compiler warnings (lots). (You do not need to do this if you use SetName).

Until C5, the method of choice was to create a text file with the necessary declarations and
Include it in each application. The required file is usually created by requisitioning and
modifying the data declarations from the main source file of the data DLL.

NAME() Comes Of Age
A major enhancement in the C5 Dictionary Editor makes this a thing of the past, totally
automating the process.

Using the new Global option in the Dictionary Editor (see Figure 3) creates a file-like
structure accessible in your applications as global data. That is, after you declare, say,
GlobalData, you insert each variable in the same way you would add file fields. So,
from the point of view of the Dictionary Editor this is a file but when accessed within an
application, it is handled like global data, as intended.

The only restriction is that if you add several variables to this “file,” grouping your name
variables, they will share a common prefix.

However, all of your declarations will be included and included correctly in each and every
application. That is, your global application settings for dictionary handling (viz., the
external flag) will be picked up and applied correctly without further intervention. (You
still have to initialize variables, so you still have to do something.)

Note: As of C5EE SR1, Arnor Baldvinsson has discovered, this works correctly
only with the ABC templates. The requisite template code was not retro-fit in
the Clarion template chain. These lines are found in ABProgram.tpw, 218-37
and should be compared to Program.tpw, 90-99. He states that the new lines can
be successfully substituted for the old. A copy of the modified template is
available at http://www.cwicweb.com/apps/cwlaunch.dll/download.exe.0

Figure 3: Dictionary Editor Global Data settings.
597

Database T ips & Techniques

598
Summary
The Clarion language has supported variable file names since its very beginning. In CDD,
support was added to the Dictionary Editor and, partially, to the AppGen. But, until
Clarion5, we had to hand code many, if not most, of the required declarations.

”When it rains, it pours.” Now you have two methods that are about as automated as you
can get. How do you choose? This is the most difficult possible choice: two solid, reliable
and easy to use techniques.

Source code
See “Appendix A: Getting Support,” p. 601, for information on how to get the source
accompanying this book.

• v1n2name_app.zip

Appendices

601

APPENDIX A: GETTING SUPPORT

Getting the source code

Source code is available for download at:

http://archive.clarionmag.com/books/dbsql/index.html

If you do not have access to the Internet, please contact the publisher at the following
address:

CoveComm Inc.
1036 McMillan Ave
Winnipeg, MB
R3M 0V8

Tel: 204-943-5165

Errata

Corrections to the book are listed at:

http://archive.clarionmag.com/books/dbsql/index.html

If you find an error in the text, please report it via the above web page.

602

APPENDIX B: RELATED ARTICLES

A number of database-related articles have been published in
the book Clarion Tips & Techniques. For more information
on obtaining this book please visit:

http://www.clarionmag.com/books

Database Tips & Techniques
A Class Wrapper For Files...145
Fast ASCII Files...157
How To Convert Your Database To SQL ...159
Locating Records With PROP:SQLFilter..167
Recovering Deleted Records ...169
A FileManager For Marked Deleted Records..175
Implementing SELECT DISTINCT in a TPS Database..................................181
A Class For The ASCIIng..189
Parsing Strings In ASCII Files...195
CLASSy ASCII File Importing ...203
ASCIIng For More...211
603

604

AUTHOR INDEX

B
Bayliss, David

Inside ABC, FieldPairsClass and BufferedPairsClass 447
Inside ABC, The FileManager 459
Inside ABC, The RelationManager 483
Inside ABC, The ViewManager 495
Propitious Memory Corruption 577

D
Du Beau, Vince

Using The TPS ODBC Driver 97

F
Ferrett, Scott

How To Convert Your Database To SQL 175
Florek, Bill

Using Dynamic Indexes With TPS Files 91

G
Giles, Tom

Using Client-Side Triggers In Clarion 6 543
Griffiths, John

Date Filtering with MSSQL 429
SQL Identity, Another Approach 399

Grosperrin, Bernard
Creating Utilities For MS SQL 2000 405

H
Harms, David

An Introduction To SQL 141
Designing Databases 1
Getting Started With PostgreSQL 273
Handling Many-To-Many Relationships 9
Large Table Performance in MySQL 265
605

606
MySQL InnoDB Tables And Transactions 247
MySQL/MyODBC Notes 241
Reading Tables With ADO 103
Securing Remote Database Connections With SSH Tunneling 535
SQL Data Types Comparison 201
Using Clarion With MySQL 221

Hebenstreit. Tom
Getting Into SQL On The Cheap 167

Heck, John
Using Example Files With TPSFix 117

J
Johnson, Nik

Working With Control Files 547

M
Morgan, Jim

Managing Table Opens In ABC 517
Mull, Stephen

Converting TPS To MS-SQL 183

N
Nicastro, Mauricio

Avoid My SQL Mistakes! 197

O
Ogundahunsi, Ayo

Converting Data With Linked Servers 357
Converting The Inventory Example - Calling Stored Procedures 371
Migrating The Inventory Application To SQL Server 317
Using SQL Server’s Data Transformation Services 341

P
Parker, Steven

Alias - Who Was That Masked File? 567
Displaying Normalized Data 55
Name Comes Of Age 591
Working With Control Files 547

Pickus, Michael
Changing Dictionaries 563

R
Ruby, Thomas

Managing Complexity, Rule 1, Eliminate Repeating Fields 21

Managing Complexity, Rule 2, Eliminate Redundant Data 29
Managing Complexity, Rule 3, Eliminate Columns That Don’t Belong 39
Managing Complexity, Rule 4, Isolate Independent Multiple Relationships 45
Managing Complexity, Rule 5, Isolate Semantically Related Multiple Relationships 49
True Confessions, A Tale of Two Users 85

S
Smith, Gordon

Detecting Duplicate Records 585
Staff, Brian

Accessing TPS Files Via ASP 109
Reading Tables With ADO 103

Stapleton, Andy
The SQL Answer Cowboy 209

V
Vail, Eric

Troubleshooting TPS File Corruption 125

W
Waterhouse, Jon

AutoNumbering In Oracle 299
Creating ODBC Data Sources At Runtime 527
Referential Integrity In Oracle 295
Transactions In Oracle 305
607

608

INDEX

Symbols

#PROJECT 531

ABCDllMode 557

ABCLinkMode 557

Numerics
64k limit

and OOP 448

A
ABC

BrowseClass
ResetFromAsk 78, 80
SelectWholeRecord 582
SetQueueRecord 76, 78
TakeRecord 96
UpdateBuffer 82
ValidateRecord 96

BrowseManager
Ask 309
TakeEvent 309

BufferedPairsClass 455–457, 501
AddPair 456
AssignBufferToLeft 493
AssignBufferToRight 493
EqualLeftBuffer 489
Init 456

BufferedPairsQueue 456
ErrorClass 461, 469

SetProcedureName
modified 523

FieldPairsClass 447–455, 489, 490
 455
AssignLeftToRight 493
AssignRightToLeft 453
ClearRight 454, 492
Equal 455
EqualLeftRight 454
Kill 455

FieldPairsQueue 456
FileClass 460
FileManager 484, 495

AddFileMapping 463
AddKey 463
and dynamic indexes 93
BindFields 477
Buffer 464
CancelAutoInc 473
ClearKey 465
Close 477, 510

modified 520
Construct

modified 520
Delete 474
DeleteRecord 312
EqualBuffer 470
Errors 468
Fetch 60, 96, 478
FileKeyQueue 463
GetEOF 466
GetError 468
GetField 466
GetFieldName 467
GetName 467
HasAutoInc 464
Info 465
Init 462, 464
Insert 478
InsertServer 312
KeyToOrder 467
609

610
Kill 462, 464
LazyOpen 462
Next 478
NextServer 478
Open 479, 510
OpenServer

Modified 521
Position 480
PrimeAutoInc 474
PrimeAutoIncServer 300, 474
PrimeFields 476
PrimeRecord 476, 501
RestoreBuffer 470
RestoreFile 471
SaveBuffer 471
SaveFile 472
SetError 469
SetKey 468
SetName 468, 593
SetThread 462, 464
theory of operation 459–??
Throw 469
ThrowMessage 469
transactions 312
TryFetch 480
TryGet 480
TryNext 478
TryOpen 461, 479
TryPrimeAutoInc 474
TryUpdate 310, 480
Update 480
UpdateServer 310, 312, 480
UseFile 480, 488, 499, 583
ValidateField 476
ValidateFields 477
ValidateRecord 477

FileManager theory of operation ??–481
FileManger

debugging 519
modified 519

RelationManager 16, 495

AddRelation 485
AddRelationLink 485
CancelAutoInc 486
CascadeUpdates 491, 492
Close 487
debugging 519
Delete 312, 474, 488
DeleteSecondary 489, 491
Init 486
Kill 486
ListLinkingFields 490, 497
LogoutDelete 492
LogoutDeleteClear 491
LogoutPrime 490
LogoutUpdate 492
modified 519
Open 488
OpenCloseServer

modified 522
referential integrity 483
Save 490
SetAlias 486
SetQuickScan 490
theory of operation 483–494
Update 310, 489
UpdateSecondary 493
UseLogout 488

ViewManager
AddRange 497
AddSortOrder 497, 498
AppendOrder 497, 498
ApplyFilter 499, 501
ApplyOrder 500
ApplyRange 500
Close 502
filters 496
GetFreeElementName 503
GetFreeElementPosition 503
Init 498
Kill 499
LimitMajorComponents 497

Next 502
Previous 502
PrimeRecord 501
range limits 496
Reset 502, 503
SetFilter 500, 504
SetFreeElement 497
SetOrder 497, 503
SetSort 502, 503
sort orders 496
theory of operation 495–504
UseView 499
ValidateRecord 503

WindowManager
Init 79, 96, 558, 562
Reset 78, 82
TakeCompleted 309
Update 309

Access 187, 533

ADO
cursor types 105
RecordSet 104

Open 104
ALIAS 567–576

see also file, alias
ALTER TABLE

see SQL, ALTER TABLE
ANY 452

and CLEAR 454
memory use 453
performance 456
variant 452

APPEND 586

application
design 577
legacy 578
splitting into DLLs 371

array
and many-to-many relationship 12

and one-to-many relationship 23
and relationships, one-to-many 4
reasons for in files 27
vs multiple fields 24

Artigas, Roberto
SQL templates 255

AS-400 209

ASP
standard objects 112

authentication
public key 539

AUTO_INCREMENT 202, 206

autoincrement key
see key, autoincrement

autonumbering
see key, autoincrement 12
server-side vs client-side 303
trigger 302

AyoMSSQL template 379

B
BETWEEN

see SQL, BETWEEN
BILF 484

BIND 194

BINDCOLORDER driver string 255, 259

Bomford, Geoff
templates 328

browse
see also ABC, BrowseClass 76
child 581
hidden 17
range limit 579
update

calling 578
BrowseClass

see ABC, BrowseClass
BUFFER 192
611

612
BUILD 92, 94, 587

business logic
and stored procedures 392

business rules 33, 317

C
CDD

browse engine 451
CDSWrapper 531

CheckOpen 510

child record
entering 64

CHOOSE 468, 500

Clarion
standard date

converting to SQL 154
standard time

converting to SQL 154
Clarion standard date

converting to SQL 430
CLASS 557

class
creating

ABC compatible 556
design 578
TYPE 557

CLEAR
and autoincrement 514
key 513
vs &= NULL 454

Client/server 143

CLOCK 303

CLOSE
file 509

code abstraction 450

COMMIT 303, 305

ConcatGetComponents 475

concurrency

pessimistic
in Oracle 307

constraints 299
see referential integrity 6
server-side vs client-side 296, 299

control file 18, 514, 547–562
and FileManager 554
GET vs SET 549
maintaining 550
vs INI 548

CREATE 508

CREATE DATABASE
see SQL, CREATE DATABASE

CREATE INDEX
see SQL, CREATE INDEX

CREATE TABLE
see SQL, CREATE TABLE

CREATE VIEW
see SQL, CREATE VIEW

Crystal Reports 187

cursor 307

D
data

converting
with DTS 341–355
with linked server 357–369

normalizing
see normal form

database
audit trigger 417
design 1–8
relational 3
secure access 535–542

database synchronizer 358

DB2
see also SQL
trial edition 172

DCOM
and Windows 95 184

debugging
table opening/closing 517–525

deep assignment 451

dictionary
changing 563–565
IDENT 563
synchronizer 178, 329

dictionary synchronizer 188, 190–??

dirty read 309

DLL
calling non-Clarion 528
data 371
data and SQL 371
sharing variables 596

DLLs
splitting application into 371

driver name 176

driver string
BINDCOLORDER 243, 255, 259
GATHERATOPEN 189
JOINTYPE 243
LOGONSCREEN 189
SAVEDSTOREDPROC 189
TRUSTEDCONNECTION 189
USERINNERJOIN 244
VERIFYVIASELECT 244

drop box
file loaded 74

DROP TABLE
see SQL, DROP TABLE

DTS
package 342

as stored procedure 351
creating 347

process flow 346
see MS SQL

DTS

VBScript example 353
DumbDict 328

dummy table
see also temp table 383

DUP 5

DUPLICATE 586

duplicate record detection
see record, detecting duplicates

dynamic index
see index, dynamic

E
Entunnel 535–542

EVENT
Timer 588

Excel 187
converting to SQL 364
reading TPS files with 100

EXPLAIN
see SQL, EXPLAIN

F
Ferrett, Scott 184

field
default values in SQL 331
eliminate repeating 23
hiding on form 16
initial value 319
linking 5, 32
naming convention 22
priming on insert 15

fields
linking

with keys 33
fifth normal form

see normal form, fifth
file

alias 567–576
613

614
and FileManager 573
and NAME 572
and RelationManager 573
automatic 583
buffer 574
creating 569
potential problems 575
using 575

create 508
multiple copies 592
open 508
pathname 321

file loaded drop box
see drop box, file loaded

FileManager
AddKey 93
see ABC, FileManager

filter
using dynamic index 95

Firebird 147
see also SQL
data types 201

first normal form
see normal form, first

foreign key 6, 156
see also SQL, foreign key 156
see key, primary

form
on browse window 8

fourth normal form
see normal form, fourth

G
GATHERATOPEN driver string 189

GET 155, 511, 589
and control file 514
syntax 514

GlobalRequest 560

GROUP

and date/time 155

H
Hoffman, Rick 184

I
IDENT

see dictionary, IDENT
IIS 110

index
dynamic 91–96

declaring 92
filtering records 95
multiple users 92
speed 93
use in ABC templates 93

vs key 40
Interbase 147

Inventory application 319

ISAM
converting to SQL

see SQL
converting to

J
jgNextID stored procedure 401

JOIN 159

JOINTYPE driver string 243

K
key

see also ee also primary key 187
autoincrement 12, 68, 162, 163, 165, 200,

202, 239, 266, 270, 280, 281, 287,
321, 322, 473–478

and templates 55–57
client-side vs server-side 282
in Oracle 299–303
server-side 163, 255, 262

case sensitivity 324
clearing 513
foreign 6, 56
primary 5, 40, 56, 68

in SQL databases 69
surrogate 32, 86
unique 5

using DATE() and CLOCK() 188
vs index 40
when to use 91

keys
linking 33

L
labels 567, 591

lazy open 518
problems with 519

LazyOpen 488

linked server
converting data 357–??

linking field
see field, linking

Linux
firewalls 224
installing 222
MySQL 221
window managers 223

LOGONSCREEN driver string 189

LOGOUT 303, 305

M
many-to-many

displaying 67–83
many-to-many relationships

see relationship, many-to-many
many-to-one relationship

see relationship, one-to-many
MAP 557

MDAC 531

MEMBER 557

memo
converting to SQL 180

Microsoft SQL Server
see MS SQL

MS Excel 362
linked server 362

MS SQL 147, 183, 317–340, 341–355, 357–369,
371–398, 399–404, 405–414, 415–427, 441

see also SQL
and Windows 95 213
autonumbering

via stored procedure 400
autonumbering code 325
Books Online 334
cascade delete 188
CAST() 335
connection string 325, 379
constraints 338

problems in Clarion 338
CONVERT() 335
converting to 317–340, 341–355, 357–369
CREATE DATABASE 329, 413
CREATE PROCEDURE 392
CREATE TRIGGER 416
CREATE VIEW 366
Data Transformation Services

see MS SQL, DTS
data types 201
database

create programmatically 406
Database Designer 333
date

parsing 335
problems with 334

date filtering 429
DATEPART() 335
DTS 341

converting Oracle to Sybase 342
615

616
DTS Designer 334
Enterprise Manager 332
GETDDATE() 334
IDENTITY 399–404
OLE DB provider 343
OSSQL 330
Profiler 388
Query Analyzer 332
security

Mixed Security Mode 325
Windows Authentication Mode 325

stored procedures 371–398
trigger 214
trusted connection 381
View Designer 333
vs Sybase 210

MS SQL Server
trial edition 168

MSDE 212
trial edition 169

MyFileManager 556

MyODBC 222, 235, 243, 541
BINDCOLORDER driver string 243
data source 257
installing 235
installing update 255

MySQL 147, 221–239, 241–??, 243, ??–245, 247–
264, 265–272, 441, 443

see also MyODBC
see also see also MySQL, privileges 224
see also SQL
administering 227
atomic operations 248
AUTO_INCREMENT 156, 202, 206
BDB (BerkeleyDB) tables 249
benchmarks 263
browse speed 271
building from source 227
comparison with other databases 242
connection problems 238, 244

constraints 264
database

copying to another server 265
create 232
InnoDB 252
select 232

db table 231
foreign keys 264
Gemini tables 249
GRANT 256
HEAP tables 249
hosts table 231
importing tables into Clarion 238
InnoDB tables 250
installing 225
ISAM tables 249
large tables 265–272
last_insert_id() 262
LIMIT (on select) 271
Max

installing 251
MERGE tables 249
MyISAM tables 248
mysql_install_db 252
mysqladmin 227, 251

syntax 233
mysqld process 252
mysqldump 267
mysqlshow 228
ODBC

see MyODBC
on Linux 221
performance 263
privileges 231, 256
rc.local configuration file 252
remote access 232
replication 242
root user 230

password 230
SHOW TABLE STATUS 266
starting 228

subselects 247
table

copying to another server 265
importing, problems with 258
maximum size 241

table types 248
transactions 242, 247–??, 260, ??–264
user table 229
USERINNERJOIN driver string 244
VERIFYVIASELECT driver string 244
vs “real” SQL servers 244
vs PostgreSQL 273
vs TPS 244

MysQL
data types 201

MySQL Manager 239

N
NAME 567, 591–598

and file alias 572
naming convention 323

MS SQL stored procedures 393
network traffic

minimizing 165
NEXT 511, 512

NOCASE 177

normal form
fifth 49–53
first 21–27
fourth 45–47
second 29–37
third 39–43

normalization 342
see also normal form
overdoing 86

normalized data
displaying 55

O
ODBC

Administrator 98
autocommit 311
ConfigDSN 528
connection strings 111
creating data sources at runtime 527–534
ODBCINST.DLL 529
SQLConfigDataSource 528, 532
SQLDataSources 532
SQLDrivers 532
SQLInstallerError 532
TPS driver 97–101, 110

DATE and TIME conversions 100
developer version problems with ASP

110
OLE DB providers 343

oleTclType 106

ONCE 557

one-to-many relationship
see relationship, one-to-many

one-to-one relationship
see relationship, one-to-one

OPEN
access mode 509
file 508

Oracle 147, 295–298, 299–303, 305–313, 441
see also SQL
ADD CONSTRAINT 296
concurrency

optimistic 307
pessimistic 307

concurrency control 307
converting data with DTS 342
CREATE TRIGGER 297
FOR UPDATE 307
IDENTITY 300
referential integrity 295–298
scalability 211
617

618
transaction
read committed 309
roll back 306
SAVEPOINT 306
serializable 309, 311

transactions 305–313
trial edition 171
update cascade workaround 297–298
view 312
viewing changed records 308

ORDER BY
see SQL, ORDER BY

OROF
vs OF 501

OVER 155

OWNER 176, 180, 189, 194, 320, 530

P
performance

and table opening 518
keeping tables open 518

Pervasive
autonumbering code 328
trial edition 172

phantom read 309

POINTER 155
vs POSITION 515

pool data 5, 10

port forwarding 540

POSITION 590
vs POINTER 515

PostgreSQL 147, 273–291, 441
see also SQL
administering 286
ALTER USER 290
and Windows 274
authentication 289
book review 435
cast operator 282

connecting remotely 287
CREATE USER 290
createuser script 289
customizing 436
data types 201
database

connecting to 278
creating 278

DROP SEQUENCE 282
function overloading 282
generator 202
initdb 274
nextval 281
pg_ctl 275
pg_hba.conf 288
postgres.conf 288
postmaster 275
psql 275

commands 276
restarting 288
root user 278
security 287
sequence number generator 280

vs client-side autonumber 282
setval() 284
SSH tunneling 289
starting 275
stopping 275
TCP/IP 287

tcpip_socket 288
triggers 285
VACUUM 436
version 279
vs MySQL 273

POSTQUEL 273

Pressnell, Dan
SQL utility 405

PREVIOUS 511, 512

PRIMARY 68

primary key 5, 239

see also key, unique 187
see also SQL, primary key 155
see key, primary

process
alternatives in SQL 306

PROP
Completed 587
Components 93
Disconnect 181
Filter 467
Handle 529, 532
Key 587
Keys 587
Label 464
ORDER 212
ProgressEvents 587
SQL 164, 191, 213, 262, 271, 301, 381, 385,

388, 405
and reports/lookups 216
procedure wrapper 409

SQLFILTER 212, 216
Value 470

R
range limit

file relationship 71, 74
RECLAIM 189

and SQL 177
RECORD 567

record
changed by another station 50
deleting, consequences of 87
detecting duplicates 585–590
identifying user 86

record initialization 473

RECORDS 92

referential integrity 6, 177, 295–??, 298–??, 317,
331

see also relationship 157

and templates 580
Cascade constraint 6
constraints

see constraints 295
Delete constraint 6
MS SQL and cascades 188
RelationManager 483
Restrict constraint 6
Update constraint 6

REGET 515

RelationManager
see ABC

RelationManager
relationship 67–83

see also referential integrity 157
constraints 69
defining in dictionary 14
diagramming 11
many-to-many 9–18, 42

creating in dictionary 11
described 68
displaying with check box list 75–80
displaying with form and lookup 69–75
displaying with selection pool 80–83
linking table 12

one-to-many 6, 23–??, 23, ??–27, 581
displaying 25

one-to-one 49–53
harmful 49

repeating fields 23

RequestCancelled 80

RequestCompleted 80

RESET 515, 589

ROLLBACK 305

Ruby, Tom
DumbDict 328

S
SAVESTOREDPROC driver string 189
619

620
second normal form
see normal form, second

Secure Shell
see also SSH 535

see normal form, third

SELECT
see also SQL, SELECT
into QUEUE 395

SELECT INTO
see SQL, SELECT INTO

SET 96, 510
syntax 511

SetThread 471

Smart NAMEd Table Theory 383

Sorzano, Troy 383

SQL
see also DB2
see also ey

see also foreign key
see also Firebird
see also MS SQL
see also MySQL
see also Oracle
see also PROP, SQL
see also PROP, SQLFILTER
see also ts

see also constraints 157
ALTER TABLE 266
and CPCS Reporting Tools 193
and data DLL 371
and LSPack 193
and parent-child relationship 200
and Princen-IT Sendmail 193
and processes 200
and Sterling Data templates 193
and VIEW 217
autoincrementing values 202
batch inserts 269
BETWEEN 429

BINDCOLORDER driver string 259
BLOBs 201
book review 437, 441, 443
browse speed 211
CALL 192
converting DATE and TIME to DATETIME

186
converting memo 180
converting MEMO to STRING 186
converting to 175–181, 183–195
CREATE DATABASE 148, 232, 329
CREATE INDEX 287
CREATE TABLE 153, 264, 280, 285, 352
CREATE VIEW 313
CSTRING vs STRING 186
cursor 307
data conversion program 178
data integrity 144
data types 153, 201–202

Clarion equivalents 184
conversion 154
DATETIME 154
TIMESTAMP 154

database
creating 148
maintenance 151

date
converting from Clarion Standard 430

dates 154
dates and times 177, 202
DATETIME vs DATETIMESTAMP 186
default values in Clarion dictionary 331
DROP TABLE 282, 352
dummy table 379
execution plan 438
EXPLAIN 436, 444
FASTFIRSTROW 191
force uppercase 210
GATHERATOPEN 189
group in key 178
groups in 319

index
 5
and case sensitivity 198
date fields in 198
defining in dictionary 158

integer size 201
introduction 141
JOIN 161, 366

OUTER 161
key

autoincrement 197
case sensitivity 177, 187

key as relationship 157
key vs index 156
LIKE 199
locator

filtered 199
logging 151
logon procedure 193
LOGONSCREEN 189
mass update 368
mass updates 162, 198
memos 176
NOLOCK 191
NORESULTCALL 192
ORDER BY 158, 212
performance 5, 392
performance issues 198
primary key 155, 159

see key, primary
quick scan option 194
referential integrity 163
resources 194
SAVESTOREDPROC driver string 189
scalability 145
SELECT 160

into QUEUE 406
SELECT INTO 367
server hints 191
server-side autoincrement 162
speed advantages 143

standards 145, 202
stored procedure 191
stored procedures 164, 371–398
STRING vs CSTRING 176
subselects 147
support in Clarion 146
switching to/from TPS 159
table

close 382
open 382

times 154
triggers 164, 285
TRUSTEDCONNECTION 189
tuning 437
unique key 177
views

importing 191
vs flat file databases 142
vs non-SQL 159
WHERE 429

SQL Server
see MS SQL

SQL99 442

SQLTransact 261

SSH tunneling 535–542

sshd 536

standard date
see Clarion, standard date

standard time
see Clarion, standard time

STATIC 593

stored procedure
autonumbering 400
creating 392

stored procedures 371–398
and business logic 392
see SQL, stored procedures

Stupid Temp Table Theory 383

surragate key
621

622
see key
surrogate

Sybase 147
and Clarion 216
and symmetrical multiprocessing 215
converting data with DTS 342
trial edition 170
trigger 214
vs MS SQL 210

Sybase Central 150

synchronizer
see dictionary, synchronizer

T
temp table

see also dummy table 383
smart 383
stupid 383, 406

template
AyoMSSQSL 379
continuation symbols 560
language

#ADD 531
#ATSTART 559
#EXTENSION 559

APPLICATION 559
MULTI 559

#PROMPT 559
symbol

%File 560
%Primary 560

symbols
%CustomGlobalMapModule 531
%CustomGlobalMapProcedure 531
%CustomGlobalMapProcedureProto-

type 531
writing 558

third normal form

ThisWindow
see ABC, WindowManager

TopScan 585

total field 17

TPS
accessing via ASP 109–115
combined files 594
converting to SQL

see SQL
converting to

driver error codes 119–120, 136
file corruption 119, 125–127, 129–136
network redirector

detecting version 136
disable caching 135
installing patch 119

ODBC driver 344
ODBC driver, see ODBC, TPS driver
performance

multi-user 303
super files 594
using example files 117

TPS files
indexing 91
reading with Excel 100

TPSFix 117–118

transaction
and FileManager 312

transactions
Oracle 305–313

trigger
see also SQL, trigger
autonumbering 302
client-side 543–545
definition 416
MS SQL 214
see also SQL, trigger
server-side 543
Sybase 214

triggers 297
see also SQL, triggers 164
advantages 415

client-side 415
server-side vs client-side 415

TRUSTEDCONNECTION driver string 189

U
unique identifier 3

unique key 5, 321
see key, unique

UNTIL loop 468

user
identifying 86

USERINNERJOIN driver string 244

V
validation 473

VBScript 109
and DTS 353

VERIFYVIASELECT driver string 244

VIEW 158, 159, 580
and PUT 312
and SQL 217

view
Oracle 312
when to use 91

ViewManager
see ABC

ViewManager

W
WHAT 411, 464

WHERE
see SQL, WHERE

WHILE loop 468

WHO 412

Windows 95
installing DCOM updates 184

Y
YIELD 302

Z
zip code database 343

Zonkers, Screaming Yellow 51
623

624

	Editor: David Harms
	Clarion Databases & SQL
	Table of Contents
	Introduction to Databases
	Using Topspeed Files
	General SQL
	Open Source SQL
	Oracle
	MS SQL
	Book Reviews
	ABC Database Class Design Notes
	Database Tips & Techniques
	Appendices
	Introduction to Databases

	Designing Databases
	Begin At The Beginning
	A Student Tracking Application
	Relational Databases
	Avoiding Data Duplication
	Figure 1: The key properties Attribute tab for StudentIDKey in the Student file
	Figure 2: An application which browses the Student file.
	Figure 3: The Addresses tab on the UpdateStudent form.

	A Course, Of Course
	Source code
	See “Appendix A: Getting Support,” p. 601, for information on how to get the source accompanying this book.

	Handling Many-To-Many Relationships
	Adding Courses
	Figure 1: Fields for the Course file.
	Figure 2: Keys for the Course file.

	Linking Courses To Students
	Figure 3: A many-to-many relationship.
	Figure 4: An intermediary for managing the many-to-many relationship.
	Figure 5 shows the fields used in the linking file, and Figure 6 shows the keys.
	Figure 5: The Registration file fields.
	Figure 6: The Registration file keys.
	Figure 7: The relationship between Student and Registration.
	Figure 8: The relationship between Course and Registration
	Figure 9: Priming REG:CourseID on insert.
	Figure 10: Lookup settings for REG:StudentID.

	Bending The Rules
	Many-To-Many Redux
	Paranoid Anticipation
	Source code
	See “Appendix A: Getting Support,” p. 601, for information on how to get the source accompanying this book.

	Managing Complexity, Rule 1: Eliminate Repeating Fields
	Guideline 1
	Guideline 2
	Rule 1
	Problems With Reports
	What Good Are Arrays In Tables?
	Source code
	See “Appendix A: Getting Support,” p. 601, for information on how to get the source accompanying this book.

	Managing Complexity, Rule 2: Eliminate Redundant Data
	Guideline 3
	Rule 2
	Guideline 4
	Guideline 5

	Managing Complexity, Rule 3: Eliminate Columns That Don’t Belong
	Rule 3
	Guideline 5
	Guideline 6

	Managing Complexity, Rule 4: Isolate Independent Multiple Relationships
	Rule 4
	Guideline 8

	Managing Complexity, Rule 5: Isolate Semantically Related Multiple Relationships
	Guideline 9
	Guideline 10
	Rule 5
	Finally!

	Displaying Normalized Data
	How does autonumbering work?
	Figure 1: Review table “follows” employee table
	Figure 2: “Wizarded” child browse after parent selection
	Figure 3: Child update form
	Figure 4: Child browse with parent data
	I can even use this in the update form to display the employee name (Figure 5).
	Figure 5: Name display added to SysID

	A digression
	Figure 6: Standard validation

	Back to my story
	Figure 7: Form without “SysID”
	Figure 8: Pressing “...” with SysID field hidden
	Figure 9: A more user-friendly form

	Summary
	Source code
	See “Appendix A: Getting Support,” p. 601, for information on how to get the source accompanying this book.

	Displaying Many-To-Many Relationships
	Many-To-Many Basics
	The User Interface
	Form And Lookup
	Figure 1: Actions tab for the trick browse on the puppy form.
	Figure 2: File schematic for the puppy lookup form.
	Figure 3: Actions tab for the Look Up Trip button.
	Figure 4: Actions tab for the puppy browse on TrickLookup.

	Check List
	Figure 5: A check box list.
	Figure 6: File schematic for a check box list.
	Figure 7: A queue in the procedure’s data.
	Figure 8: The ThisWindow.Reset embed point.

	Selection Pool
	Figure 9: A selection pool browse.
	Figure 10: File schematic for a double browse form.

	Summary
	Source code

	True Confessions: A Tale of Two Users
	The Tale Of User 1
	The Saga Of User B
	Using Topspeed Files

	Using Dynamic Indexes With TPS Files
	Dynamic index basics
	Why use a dynamic index?
	Typical use
	Summary

	Using The TPS ODBC Driver
	Setting up the ODBC driver
	Figure 1: The ODBC Data Source Administrator, User DSN tab
	Figure 2: Creating a new data source
	Figure 3: Configuring the TPS data source

	Making the connection
	Figure 4: Choosing an ODBC data source in Excel
	Figure 5: Selecting fields to import
	Figure 6: External Data Range Properties dialog

	Summary

	Reading Tables With ADO
	The RecordSet object
	The sample application
	Source code

	Accessing TPS Files Via ASP
	ASP objects
	LISTCUST.ASP
	Source code
	See “Appendix A: Getting Support,” p. 601, for information on how to get the source accompanying this book.

	Using Example Files With TPSFix
	Figure 1: Specifying the source and destination files
	Figure 2: Setting the example file

	Topspeed Driver Error Codes
	Troubleshooting TPS File Corruption
	Questions to ask yourself
	Verifying network integrity
	1) Copy from the server to each station. Time it and see how long it takes, then make sure that all the data makes it. Right-cli...
	2) Next do the same from station to station.
	1) How much RAM is in the server and what type. The problem may be memory going bad.
	2) What type of hard drives are in the server and what configuration. If they are mirrored are they healthy? If RAID 5, are they optimal?
	3) Is the swap file size adequate? It should be twice the size of the physical RAM if you are sharing data files on it. That is not the default setting by the way. So if they have 256 meg of RAM, then it should be 512 meg minimum, with a 768 meg ceiling.

	Resolving Network And Other File Problems
	Drivers up to date?
	Windows NT users
	Is your network slow when using a mapped drive letter?
	Is your network slow when using a mapped drive letter? (Part 2)
	Windows 98 networking
	Windows ME (Millennium) networking
	Windows 2000 networking
	Windows XP networking
	Need Netbeui on your XP systems and can't find it?
	Workstation drive letters “getting the red X” (disconnecting from the main computer)
	Windows 2000 or Windows XP mapped drives disconnecting for no apparent reason? (showing the red X over the drive in explorer)
	Novell Netware problems?
	Performance issues are often caused by network protocol “bindings”
	Does the system work on some machines, but seems to think about it and then do nothing on others?
	Power management
	Database corruptions, timeouts and other troubles
	Database corruptions, timeouts and other troubles, Part 2
	Win9x/Me users - Turn off write caching
	Windows 2000 and Windows XP users - Turn off write caching
	Opportunistic locking (oplocks) and performance
	Tune up your network
	Another NT issue
	Fix that leaky hose
	Getting a TPSBT 1477 and/or 2172?
	Just one more
	General SQL

	An Introduction To SQL
	What is SQL?
	Relational vs. flat file databases
	Client/server and relational databases
	The need for speed
	Data integrity
	Compatibility
	Ease of administration
	Scalability
	Clarion and SQL
	Choosing a driver
	Choosing a SQL database
	Installing the server
	Creating a database
	Creating a database with SQL
	Figure 1: Creating a database with a direct SQL statement

	Creating a database with a database administration utility
	Figure 2: The Sybase Central database administrator

	Modifying database space
	Database log files
	Backing up a database
	Database replication
	Creating tables
	Dates and times
	Primary keys
	Keys and indexes
	SQL indexes
	Keys and indexes
	I don’t care if it’s SQL
	Figure 3: The browse file schematic

	Tuning for SQL
	Mass updates
	Server-side autoincrementing
	Enforcing referential integrity
	Figure 4: Choosing a server-side RI constraint

	Stored procedures and triggers
	Which way do I go?
	Resources

	Getting Into SQL On The Cheap
	Microsoft SQL Server 7
	Resources

	Microsoft Data Engine (MSDE)
	Resources

	Sybase SQL (SQL Anywhere Studio and Adaptive Server)
	Resources

	Oracle
	Resources

	IBM DB2 Universal Database
	Resources

	Pervasive SQL
	Resources

	Last Words On Licenses, Memberships, etc.

	How To Convert Your Database To SQL
	Converting the Data Definitions (Creating a new DCT)
	Driver Name
	OWNER
	Key Component STRING => CSTRING
	MEMO => STRING
	LONG => DATE and TIME (sometimes)
	No RECLAIM attribute
	Remove NOCASE
	Change Referential Integrity to Server based
	Make Sure All Files Have A Unique Key
	Do Not Use GROUP IDs In Keys
	Converting The Data Definitions (Create an SQL Script)
	Run The Dictionary Synchronizer To Create An SQL Script
	Run the script

	Converting The Data
	Create the Conversion Program
	Choosing your dictionaries
	Edit the Conversion Program
	Standard SQL Code Additions To Conversion Program
	Setting the OWNER
	Set Tasks
	Convert Does Not Handle MEMO=>STRING
	Modifying Your Applications
	Doing This For Client Data

	Converting TPS To MS-SQL
	Which MS-SQL?
	Changes To The Dictionary
	Global And Local Data Definitions
	STRING To CSTRING
	MEMO To STRING
	DATE - TIME To DATETIME

	Field Names And Definitions
	Of Keys And Indexes
	Referential Integrity
	File Relationships
	MS-SQL Driver Properties and Settings
	1) /TRUSTEDCONNECTION = your choice, based on your situation. I did not use NT security, instead opting for SQL Server security.
	2) /LOGONSCREEN = your choice, based on your situation. See OWNER Attribute.
	3) /GATHERATOPEN - Not used with MS-SQL Accelerator. This is for ODBC use only.
	Driver Options
	RECLAIM attribute
	Enable Field Binding Option
	Enable File Creation Option
	OWNER Attribute

	Create a SQL Script Using The Synchronizer
	How To Migrate Existing Data
	Views
	PROP:SQL And Stored Procedures
	1) NOLOCK - Please read MS-SQL online documentation for description.
	2) FASTFIRSTROW - Please read MS SQL online documentation for description.
	3) INDEX - Sometimes MS SQL will not pick the correct Unique Constraint or primary key. Hinting will force MS SQL to use the specified PK or UC.
	4) Don’t use the RECORDS(TableName) on large tables to find the record count. Use a PROP:SQL with a SELECT Count(1) FROM TableNa...
	5) For batch processes you may use BEGIN TRAN and COMMIT. Works like a charm, but monitor the transaction log for sizing (this is not a big issue with SQL 7).
	6) NORESULTCALL - If the stored procedure is not going to return a result set then use the prefix NORESULTCALL. For example: MyTable{PROP:SQL} = 'NOTRESULTCALL SP_UpdateWhatEver (1234)'.
	7) CALL - If the stored procedure is going to return a result set via a SELECT statement then use CALL. Prefix is used. For example: MyTable{PROP:SQL} = Call('SP_SecuritySelectMembers (''FL0021002'')').
	8) The data returned via a SELECT within the stored procedure needs to match the structure of MyTable. C5 only supports returnin...

	Special Notes on PROP:SQL
	Issue a BUFFER(TableName, #) before the PROP:SQL.
	Changes To The Application

	Third Party Books And Reference For MS-SQL 7.0
	Summation

	Avoid My SQL Mistakes!
	Slow browses
	Sending commands to the server
	Date Fields
	Filtered locators
	Refresh the window
	Process
	Parent-child relationships

	SQL Data Types Comparison
	The SQL Answer Cowboy
	Question: AS-400
	Answer
	Question: Capitalization
	Answer
	Question: Sybase, MS SQL, Oracle & Informix
	Answer
	Question: Browse Speed
	Answer:
	Question
	Answer
	1) Does any Clarion program run on SoftWindows 95?
	2) Can I load and operate MSDE on the same platform?

	Question: MS SQL on Windows 95
	Answer
	Question: PROP:SQL
	Answer
	Question: Devcon 98 Examples
	Answer
	Question: SQL Anywhere vs. MS SQL
	Answer
	Question: PROP:SQL on Reports and Lookups
	Answer
	Question: Views
	Answer
	Question: SELECT
	Answer
	Open Source SQL

	Using Clarion With MySQL
	Installing Linux
	Partitions, Directories And Mount Points
	Window Managers
	Security Issues
	Getting To Know The Penguin
	Installing MySQL
	Figure 1: Download options for MySQL on Linux
	Figure 2: The MySQL command-line client

	Last Resorts
	Administering MySQL
	Getting Started
	Controlling Access
	The root User
	The db And hosts Tables
	Messing With The Data
	Using ODBC
	Figure 3: The ODBC setup program
	Figure 4: Select the MySQL driver
	Figure 5: The ODBC Administrator

	Data Sources
	Figure 6: Configuring a MySQL ODBC connection

	Importing Tables
	Figure 7: File properties for a MySQL table

	Creating Tables
	Some Basics
	Summary

	MySQL/MyODBC Notes
	Errata
	Comparisons
	Miscellaneous
	MyODBC
	Other Driver Strings
	Other Resources
	Summary

	MySQL: InnoDB Tables And Transactions
	Atomic operations
	Table types
	MyISAM tables
	ISAM tables
	MERGE tables
	HEAP tables
	Gemini tables
	BDB tables
	InnoDB tables

	Choosing a table type
	Installing an InnoDB-capable MySQL
	Creating the tables
	Creating tables
	Setting up a data source
	Figure 1: The ODBC Administrator User DSN tab
	Figure 2: Selecting the MySQL driver
	Figure 3: MySQL configuration settings

	Importing the table definitions
	Using transactions
	Figure 4: The transaction test application

	Testing transactions
	Which do I choose?
	Source code

	Large Table Performance in MySQL
	Moving tables around
	The test table
	Testing a large MySQL table
	Summary

	Getting Started With PostgreSQL
	Installing the PostgreSQL Windows beta
	Setting up the database
	Connecting
	Creating tables
	Figure 1: The Surveys database diagram

	The SurveyChoices table
	The SurveyData table
	Security basics
	Summary
	Oracle

	Referential Integrity In Oracle
	Referential integrity

	AutoNumbering In Oracle
	Autonumbering
	Testing the theory
	Source code

	Transactions In Oracle
	Concurrency control
	Getting more complex
	Summary
	MS SQL

	Migrating The Inventory Application To SQL Server
	Existing resources
	Getting Started
	1) Dictionary/Application Changes
	2) Create a copy of INVNTORY.DCT, INVNTORY.APP.
	3) Change the Table driver, properties.
	4) Add Identity fields.
	5) Change Data types (if needed. E.g. LONG to DATE).
	6) Remove Initial Values from Clarion dictionary. If TODAY() is used and is needed, remember to define a DEFAULT in SQL Server as explained under the DEFAULT section in this chapter.
	7) Remove GROUPs if used (in SQL tables you will only use GROUPs to translate the SQL DATE/DATETIME/TIMESTAMP data types to their Clarion equivalents).
	8) You will also need to change STRINGs and MEMOs to CSTRINGs. Remember to add 1 to the size of your field when using CSTRINGs. Do not use the LONG data type for date fields; use DATE instead.
	9) Delete procedures in APP file.
	10) Template/Classes
	11) Auto Incrementing - The Jim Kane Solution
	12) Connections
	13) Connection String
	14) Database Creation
	15) RI in Clarion Dictionary Fields
	16) Default values in Fields
	17) Script generation (Synchronizer)

	Step 1 - Dictionary /application changes
	Figure 1: Changing the InvHist table settings

	System IDs and identity columns
	Figure 2: The Inventory tables without identity fields
	Figure 3: The Inventory fields with identity fields added

	Deleting the application procedures
	Figure 4: Deleted procedures

	Auto Incrementing
	1) Copy SQLAN.TPL to the template directory and register SQLAN.TPL
	2) Copy SQLAN.CLW and SQLAN.INC into the Clarion Libsrc directory
	3) In ABFile.inc add two methods: SetAutoIncDone Procedure(BYTE pAutoIncDone) GetAutoIncDone Procedure(),BYTE
	4) In ABFile.CLW, add the code for the two methods mentioned in 3 above. The source code is in ABFix.CLW.
	5) Add the Global Extension to your application.
	6) You are to create a table called ‘dummy’ in SQL Server. (The script to do this has been added to the example SQL Script.) CREATE TABLE DBO."Dummy" ("dummy_col" INT)

	Connection String
	Figure 5: Embed point for connection string

	SQL scripts
	Generating scripts with Geoff’s templates
	Figure 6: Generating scripts with the utility template

	Generating scripts with the clarion synchronizer
	Creating a blank database
	Figure 7: Creating the inventory database using Query Analyzer

	RI in Clarion dictionary fields
	Figure 8: Clarion RI enforcement in the VENDOR table

	Default value in fields
	Script generation
	Tools of the trade
	Figure 9: The Database Designer

	Date discrepancies
	Running scripts
	Figure 10: Running script to create tables
	Figure 11: Setting Date defaults as dbo.TODAY

	Data conversion and the role of constraints
	Figure 12: Constraint statements in SQL script

	The application
	Figure 13: A breakpoint exception exiting the SQL application

	Which way to go
	Source code

	Using SQL Server’s Data Transformation Services
	Using DTS
	Improving the database
	Updating the ZipCodes file
	Connecting to data sources
	Data conversion options
	TopSpeed ODBC Driver
	Figure 1: Adding a DSN, step 1
	Figure 2: Adding a DSN, step 2
	Figure 3: Adding a DSN, step 3

	Understanding DTS
	Figure 4: The DTS Designer

	Creating a package
	Figure 5: Choosing a Data Source
	Figure 6: Choosing a Destination
	Figure 7: Specifying Data selection method
	Figure 8: Mapping tables
	Figure 9: Pre-update Actions
	Figure 10: Save and Run
	Figure 11: DTS Completed
	1) Save Package (The package is saved in your SQL database) - This is always executed except when disk space is insufficient, or if you do not have the required database permission to save DTS packages.
	2) Drop Table [Table Name]
	3) Create Table [Table Name] - This task might not execute if you do not have the permission to CREATE tables, or if you have run out of disk space.
	4) Copy Data
	Figure 12: DROP Error in DTS Package

	A VB Script example
	Figure 13: Modifying column mappings, step 1
	Figure 14: Modifying column mappings step 2

	Summary

	Converting Data With Linked Servers
	A new database schema
	Figure 1: New Schema for Normalization (1st Stage)

	Zipcodes
	Figure 2: Original Zip Code file
	Figure 3: Downloaded Zip Code file

	Linked servers
	The Excel spreadsheet
	Figure 4: Excel Spreadsheet

	Creating the Linked Server
	Figure 5: Creating a Linked Server
	Figure 6: Created Linked Server in Enterprise Manager

	Updating the STATE table
	Moving zipcode data to SQL Server
	Figure 7: Naming destination table

	Updating the CITY table
	1) Create a VIEW that combines dbo.ZIPCODES and dbo.ZIPS into one result set. This view will contain the same rows expected to b...
	2) Create a JOIN combining the ALLZIP view with dbo.STATE. This will be used for populating dbo.CITY. Cut and paste the code below into Query Analyzer, and run to update the CITY table.
	3) Export the contents of ALLZIP to a temporary file. This is necessary because the ALLZIP view is built by combining two tables...
	4) The next thing to do is to delete all records from dbo.ZIPCODES, and fill it with rows from #temp_zip. I also need to correct the length of one of the columns in dbo.ZIPCODES.
	5) After dbo.ZIPCODES has been modified, the next thing to do is import rows from #temp_zip .
	6) After this I need to map the IDs in dbo.CITY to dbo.ZIPCODES and update dbo.ZIPCODES accordingly. If you are coming from a pr...

	Clarion dictionary changes
	Summary
	Source code

	Converting The Inventory Example - Calling Stored Procedures
	Data access and update layers
	Figure 1: Data Access Logic
	Figure 2: Creating a DLL - Application Properties
	Figure 3: Creating a DLL - Global Options
	Figure 4: Setting Global Properties - General
	Figure 5: Setting Global Properties - File Control

	Modifying your EXE
	Figure 6: Selecting Module Type
	Figure 7: Module Name
	Figure 8: Global Properties - General (EXE)
	Figure 9: Global Properties - File Control (EXE)
	Figure 10: Unresolved external symbol compile error
	Figure 11: Adding MS SQL Driver

	The AyoMSSQL Template
	1) It allows you to choose the method of data access from Clarion to SQL Server. (See Step 3).
	2) It generates the connection string. You can define the variables without embedding any code.
	3) It generates SQL code for creating a “Dummy” table.
	4) It generates code to save your connection string settings in an INI file.
	Figure 12: Global Extension
	Figure 13: Global Extension - Properties
	Figure 14: Table Properties
	Figure 15: Global Extension - Database

	Stupid Temp Table Theory
	Smart NAMEd Table Theory
	Figure 16: Extension Template - Initialization Code
	Figure 17: Extension Template - Connector
	Figure 18: ExecuteSQL - PROP:SQL encoding
	Figure 19: Removing Tables from File Schematic
	Figure 20: Adding MSSQLConnector to embed

	TRACE.EXE
	Figure 21: Setting Trace Properties

	MS SQL Profiler
	Figure 22: Calling Profiler from Enterprise Manager
	Figure 23: Calling Profiler from Program Menu
	Figure 24: Viewing Trace from Profiler

	Why stored procedures?
	The ProcessPrices procedure
	Figure 25: Error after conversion
	Figure 26: Process Template - Properties

	The ProcessPrices stored procedure
	Linking INV_ProcessPrices to Clarion
	Figure 27: Adding Stored Procedure Template

	LinkStoredProcOrSQL Extension Template
	Figure 28: Stored procedure extension template

	Adding INV_ProcessPrices to (INV_SQL.APP)
	Figure 29: Adding INV_ProcessPrices
	Figure 30: Calling New Price Increase Procedure

	Summary
	Source code

	SQL Identity: Another Approach
	Creating the sysIDs
	The stored procedure call
	The jgNextID Stored Procedure
	Management stored procedure
	Extension Template
	Summary

	Creating Utilities For MS SQL 2000
	How it works
	1) It frees me from having to manually type (sometimes very lengthy) SELECT statements.
	2) It returns the results of a query directly into a Clarion Queue, so that I can check this result set more than once, sort it ...
	3) It lets me use a column name in my code, as if I was using PROP:SQL on my dumb file. Ordinarily I would have to write somethi...

	The dictionary
	Figure 1: The necessary tables
	Figure 2: The SqlFile structure
	Figure 3: The login dialog box

	Send_Query
	Query_from_Queue
	Main procedure
	Summary
	Source code

	Generating MS SQL Server Side Triggers
	1) Ability to monitor and audit updates no matter how the database is modified. This means even if a table is updated outside of...
	2) Centralized management of data integrity, and in some cases referential integrity.
	What are Triggers?
	The Template
	Figure 1: Selecting the template
	Figure 2: Selecting Tables to Audit
	Tables to Audit
	Drop/Re-Create Audit Objects
	Audit Labels
	Figure 3: Audit Labels & Fields
	Figure 4: Representation of Audit Labels

	Audit Fields
	1) Audit Identifier - Here you store a text that describes the update action you just performed which you are auditing.
	2) Timestamp - Records the date and time the update action was performed. This is updated with the Transact-SQL GETDATE() function.
	3) Login Identifier - Records the user that performed the update action. This is updated by the Transact-SQL SUSER_SNAME() function.

	Script Destination
	Figure 5: Script Destination

	Running the script
	Figure 6: Executing the generated script
	Figure 7: Audit fields in audit table
	Figure 8: Generated Triggers

	How it works
	Figure 9: Jobs browse (before update)
	Figure 10: Jobs browse (after update)
	Figure 11: Audit table results (update from Clarion app)
	Figure 12: Updating jobs table from Enterprise Manager
	Figure 13: Audit table results (update from Enterprise Manager)

	Summary
	Source code

	Date Filtering with MS SQL
	Book Reviews

	Book Review: PostgreSQL Developer’s Handbook
	Book Review: SQL Tuning
	Book Review: SQL In A Nutshell
	Book Review: Managing & Using MySQL
	ABC Database Class Design Notes

	Inside ABC: FieldPairsClass and BufferedPairsClass
	Example 1 : Updating a link field
	Listing 1. Code to cascade RI updates.
	Listing 2. Code to cascade RI updates with common code in blue.
	Listing 3. Method to call RI virtuals.
	Listing 4. Parameterized and base class code in green.
	Listing 5. Parameterized method to handle RI update.
	Listing 6. A general UpdateSecondary procedure.

	Example 2 : Formatting a browse line
	What’s the real requirement?
	1) Single field. This is a list of fields with no partner. In fact the components of a key are stored this way which makes it possible to bring the CLEAR(keycomponent) into the base class as well!
	2) Single field, buffered. These are fields which have to have a snapshot of their values taken without changing and “real” program variables so the variables can be later compared to those values.
	3) Two fields. Two sets of fields, either of which can be assigned to and from the other.
	4) Two fields, buffered. This is the most complex case of two sets of fields where either one may need snap-shotting.

	The implementation - any ideas?
	Listing 7. Using ANYs to store values and references.
	FieldPairsClass.AddPair PROCEDURE(*? Left,*? Right)
	FieldPairsClass.AssignLeftToRight PROCEDURE
	FieldPairsClass.AssignRightToLeft PROCEDURE
	FieldPairsClass.ClearRight PROCEDURE
	EqualLeftRight PROCEDURE

	Listing 8. A single exit point alternative to EqualLeftRight.
	FieldPairsClass.Equal PROCEDURE
	FieldPairsClass.Kill PROCEDURE

	BufferedPairsClass
	Queue Derivation
	BufferedPairsClass.Init PROCEDURE
	BufferedPairsClass.AddPair PROCEDURE(*? Left,*? Right)

	Finally

	Inside ABC: The FileManager
	1) They deal with files. At the template level Clarion files are uniquely gifted with all sorts of useful information supplied b...
	2) They are a black box. A potential beauty of the Clarion language is the way that the grunge of file access is hidden, thereby...
	Future Proofing
	Static Usage
	Aims & Issues
	1) Structure Storage. To provide services to return the keys of a file, fields of a file, number of components of a key etc.
	2) File Snapshotting. A problem of having global buffers is that when some other procedure wants to use a file buffer it tends t...
	3) Auto-Increment. The manager is to provide support for automatically incrementing key components.
	4) Retrieval and Update of records. This is fairly obvious.
	5) Initialization and validation. Whilst this is again fairly easy to specify it is one of the key capabilities of the Clarion data dictionary. FileManager must exploit these capabilities.

	Initialization
	FileManager.Init PROCEDURE(File File,ErrorClass E)
	FileManager.AddKey PROCEDURE(KEY k,STRING Desc,BYTE AutoInc)
	FileManager.Kill PROCEDURE
	FileManager.SetThread PROCEDURE

	Administration
	ClearKey PROCEDURE(KEY K,BYTE LowComp,BYTE HighComp|
	,BYTE High)
	GetEOF PROCEDURE,BYTE
	GetField PROCEDURE(KEY K,BYTE Component),*?
	GetFieldName PROCEDURE(KEY K,BYTE Component),STRING
	GetName PROCEDURE,STRING
	KeyToOrder PROCEDURE(KEY K,BYTE MajorComp),STRING
	SetKey PROCEDURE(KEY K),PROTECTED
	SetName PROCEDURE(STRING Text)

	Error Handling
	GetError PROCEDURE,SIGNED
	SetError PROCEDURE(USHORT Number)
	Throw PROCEDURE(USHORT ErrorNumber),BYTE,PROC,VIRTUAL
	Throw PROCEDURE,BYTE,PROC,VIRTUAL
	ThrowMessage PROCEDURE(USHORT ErrorNumber,|
	STRING Text),BYTE,PROC,VIRTUAL

	Snapshots
	EqualBuffer PROCEDURE(*USHORT Handle),BYTE,VIRTUAL
	RestoreBuffer PROCEDURE(*USHORT Handle,BYTE DoRestore=1)
	RestoreBuffer PROCEDURE(*USHORT Handle,|
	FileManager FM,BYTE DoRestore = 1),PRIVATE
	RestoreFile PROCEDURE(*USHORT Handle)
	RestoreFile PROCEDURE(*USHORT Handle,FileManager FM),PRIVATE
	SaveBuffer PROCEDURE,USHORT
	SaveFile PROCEDURE,USHORT

	A Thought
	Record Initialization and Validation
	CancelAutoInc PROCEDURE(<RelationManager RM>)|
	,VIRTUAL,BYTE,PROC
	PrimeAutoIncServer PROCEDURE(BYTE HandleErrors),|
	BYTE,PROC,PRIVATE,
	PrimeFields PROCEDURE,PROC,VIRTUAL
	PrimeRecord PROCEDURE(BYTE SuppressClear = 0),| BYTE,PROC,VIRTUAL
	ValidateField PROCEDURE(UNSIGNED Id),BYTE,PROC,VIRTUAL
	ValidateFields PROCEDURE(UNSIGNED Low,UNSIGNED High,
	<*UNSIGNED Failed>),BYTE,PROTECTED,PROC,VIRTUAL
	ValidateRecord PROCEDURE(<*UNSIGNED Failed>),BYTE,VIRTUAL

	File Driver Replacements
	BindFields PROCEDURE,VIRTUAL
	Close PROCEDURE,BYTE,PROC,VIRTUAL
	Fetch PROCEDURE(KEY K),BYTE,PROC
	Insert PROCEDURE(BYTE HandleError),BYTE,PRIVATE
	1) No autoincrement keys. In this instance the record will not already exist so a new one can be added
	2) There are autoincrement keys and the autoincrement has been pre-primed. In this case the record does exist resulting in a PUT rather than ADD.
	3) There are autoincrement keys but they have not been pre-primed. Call the autoincrement logic to ADD the record (remember PrimeAutoIncrementdoes not corrupt the record buffer other than the autoinc components themselves).
	1) NoError. In this case simply note that any previously primed autoincrementing has now been used and return. (Note this code a...
	2) DupKey. This is the only error the method attempts to recover from gracefully, stepping through the keys and alerting the end user of any duplications that this record causes.
	3) Everything else. Post a general (cryptic) error message to the user and return.

	NextServer PROCEDURE(BYTE HandleError,BYTE Prev)|
	,BYTE,PRIVATE
	Open PROCEDURE(BYTE HandleError,BYTE IncrementUsage=True,|
	BYTE ForceOpen=False),BYTE,PROC,PRIVATE
	1) NoError or FileOpen. Both treated as a success, internal state variables cleared (on this thread).
	2) RecordLimitError. This code is just there for the evaluation edition. An attempt has been made to open the file in read/write...
	3) NoAccessError. Read-write access could not be acquired so the system tries to open the file in read-only mode (having first warned the end user)
	4) NoFile. Provided the create mode has been set the routine will attempt to create the file, if that fails a fatal error is thrown.
	5) BadKeyErr. For those file drivers with independent key files (notably Clarion) a corrupt key is non-fatal and the system will try to rebuild the keys so that processing can continue.

	Position PROCEDURE(),STRING
	TryFetch PROCEDURE(KEY K),BYTE,PROC
	TryGet PROCEDURE(STRING Position),BYTE,PROC
	UpdateServer PROCEDURE(BYTE HandleError),BYTE,PROC,PRIVATE
	UseFile PROCEDURE(),BYTE,PROC

	Conclusion

	Inside ABC: The RelationManager
	Considerations
	Initialization
	AddRelation PROCEDURE(RelationManager RM),PROTECTED
	AddRelation PROCEDURE(RelationManager RM,BYTE UpdateMode,| BYTE DeleteMode, KEY His),PROTECTED
	AddRelationLink PROCEDURE(*? Left,*? Right),PROTECTED
	Relate:File1.AddRelationLink(File1.KeyField1,| File2.KeyField1)
	Init PROCEDURE(FileManager FM,BYTE UseLogout=0)
	Kill PROCEDURE,VIRTUAL
	SetAlias PROCEDURE(RelationManager RM)

	FileManager Replacements
	CancelAutoInc PROCEDURE(),BYTE,PROC,VIRTUAL
	Close PROCEDURE(BYTE Cascading=0),BYTE,PROC,VIRTUAL
	Open PROCEDURE(BYTE Cascading=0),BYTE,PROC,VIRTUAL
	Delete PROCEDURE(BYTE Query=1),BYTE,VIRTUAL,PROC
	Update PROCEDURE(BYTE FromForm=0),BYTE,VIRTUAL,PROC

	Services
	ListLinkingFields PROCEDURE(RelationManager Him,| FieldPairsClass Trgt, BYTE RightFirst = 0)
	LogoutPrime PROCEDURE,BYTE,PRIVATE
	Save PROCEDURE,VIRTUAL
	SetQuickScan PROCEDURE(BYTE On,|
	BYTE Propagate=Propagate:None),VIRTUAL

	The Plug-Uglies
	CascadeUpdates PROCEDURE,BYTE,PRIVATE
	DeleteSecondary PROCEDURE(KEY MyKey,|
	BufferedPairsClass Links,BYTE Mode),BYTE,PRIVATE,VIRTUAL
	LogoutDelete PROCEDURE,BYTE,PRIVATE
	LogoutUpdate PROCEDURE,BYTE,PRIVATE
	UpdateSecondary PROCEDURE(KEY MyKey,| BufferedPairsClass Links,BYTE Mode),BYTE,PRIVATE,VIRTUAL

	Summary

	Inside ABC: The ViewManager
	Room With A View
	1) Range Limits: The ABC and legacy template chains have the notion of a range limit, which is the ability to restrict the recor...
	2) Multiple Sort Orders: A Clarion view structure only supports a single sort order (although the current sort order can be changed at will). The ViewManager is to support multiple sort orders (simply).
	3) Flexible filters: The Clarion view structure has one assignable filter. The ViewManager provides for multiple filters active at once.
	4) Attitude: A key requirement of ABC was that we wanted optimal (or near optimal) browse performance. It was felt that an essen...

	Initialization
	AddRange PROCEDURE(*? Field,RelationManager
	MyFile,RelationManager RelatedFile)
	AddSortOrder PROCEDURE(<KEY K>),BYTE,PROC
	AppendOrder PROCEDURE(STRING Order)
	Init PROCEDURE(VIEW V,RelationManager RM,<SortOrder SO>)
	Kill PROCEDURE,VIRTUAL
	UseView PROCEDURE,PROTECTED

	Application and Attitude
	ApplyFilter PROCEDURE,VIRTUAL
	ApplyOrder PROCEDURE,VIRTUAL
	ApplyRange PROCEDURE,VIRTUAL,BYTE,PROC

	Lights, Cameras ... Action
	PrimeRecord PROCEDURE(BYTE SuppressClear = 0),|
	BYTE,PROC,VIRTUAL
	1) Each file buffer connected to the view is cleared. his is done by quizzing the view driver for what the files are and then simply calling Clear for each record.
	2) Next comes a bit of intelligence. Suppose you have a browse that is range- limited to only display addresses in Florida. Then...
	3) Finally any remaining “blank bits” from the primary record are filled in (such as any auto-increment key components). This is done by a call down into the PrimeRecord method of the underlying file manager.

	Close PROCEDURE,VIRTUAL Open PROCEDURE,VIRTUAL
	SetSort PROCEDURE(BYTE OrderNumber),BYTE,VIRTUAL,PROC
	Reset PROCEDURE(BYTE Locate),VIRTUAL
	Reset PROCEDURE,VIRTUAL
	Next PROCEDURE,VIRTUAL,BYTE
	Previous PROCEDURE,VIRTUAL,BYTE
	ValidateRecord PROCEDURE,BYTE,VIRTUAL

	HouseKeeping
	GetFreeElementPosition PROCEDURE,BYTE,PROTECTED,VIRTUAL
	GetFreeElementName PROCEDURE,STRING,VIRTUAL
	SetOrder PROCEDURE(STRING Order),VIRTUAL
	SetFilter PROCEDURE(STRING Filter),VIRTUAL
	SetFilter PROCEDURE(STRING Filter,STRING Id),VIRTUAL

	Summary
	Database Tips & Techniques

	Clarion File Access Basics
	File Drivers And Caveats
	Creating Files
	Opening And Closing Files
	Accessing Data
	Retrieving Records With NEXT And PREVIOUS
	Using GET
	POINTER vs. POSITION
	REGET and RESET

	Summary

	Managing Table Opens In ABC
	1) How many times was the table opened in total?
	2) Does the table show no use when the thread is closed?
	3) What is the use count of the related tables?
	4) What procedures were executed, and in what order?
	Supplementing the base classes
	Reviewing the debug file
	Analyzing the results
	Summary

	Creating ODBC Data Sources At Runtime
	The problem
	1) Build a .lib file for the ODBCINST.DLL (which you will find in Windows\system (or system32))
	2) Use Application|Insert Module|External DLL to add the .lib file you just created to your application
	3) Add a Procedure to your application called SQLConfigDataSource. Specify that it is an external procedure, and type in the prototype as given above (starting with the first parenthesis)
	4) In the procedure where you want to set up your new DSN create two local data fields, say DriverString and AttribString, as CSTRINGs. The DriverString should be 33 characters, while the AttribString should be 255 characters.
	5) Write the values you desire into your two CSTRINGs. In the driver string you should put the driver name exactly as it appears...
	6) Write a call in source, e.g. retval =SQLConfigDataSource(0,1,DriverString,| AttribString)
	7) Open your file (which has the DSN and any other needed values in the OWNER attribute) and use normally.
	1) Adds the ODBC library to the project
	2) Adds the prototypes for CDSWrapper and all of the ODBC procedures to be used to the map
	3) Declares a bunch of EQUATEs
	4) Generates the code for the CDSWrapper procedure
	1) Display the dialog box or not
	2) Type of action (add, delete, user DSN or system DSN)
	3) The driver string
	4) The attribute string
	Figure 1: The SetupDataSource prompts

	Summary
	Source code

	Securing Remote Database Connections With SSH Tunneling
	The protocol
	Tunneling through SSH
	Figure 1: The MyODBC configuration dialog

	EnTunnel
	Figure 2: The EnTunnel Connections window, with one connection listed
	Figure 3: The Create a New Session dialog

	Forwarding ports
	Figure 4: Forwarding a port
	Figure 5: Configuring a MyODBC DSN for tunneling

	Summary

	Using Client-Side Triggers In Clarion 6
	Figure 1: The Triggers tab
	Figure 2: Trigger properties

	Working With Control Files
	What Is A Control File? And Why Should I Use One?
	The Issues
	Accessing Control Files
	Maintaining Control Files
	Figure 1: The Init method embed points

	Nik and Steve’s correspondence
	Nik Johnson's reply
	Defining The Problem
	This Wheel Has Already Been Invented ... Almost
	Building A Skeleton
	Putting Meat On The Bones
	Adding The New Class To The ABC Library
	Have Hammer, Need Nail
	Building A Wrapper
	Applying The Tool
	A Correction
	Source code

	Changing Dictionaries
	1) Ensure that all of the files, keys, fields, and relationships in the application are also in the target dictionary. If the di...
	2) Open the application and export it to a text file. File|Export Text creates a AppName.TXA file.
	3) Compile the DeleteIDENTS program, shown below (which you can also obtain from the source zip). If you create your own project...
	4) Create a new application. Select the target dictionary (Dictionary File) and delete the MAIN (first procedure).
	5) Import the new .TXA file. (File|Import Text) the AppName_NoIdents.TXA. When the IDENTs are missing, the import uses the file, field, and key names to match the same names in the dictionary. You now have a new application with a new dictionary.
	Source code

	Alias - Who Was That Masked File?
	Why Aliases?
	Figure 1: The Go To Lunch Batch Compiler showing an aliased browse (”member” apps)

	Creating An Alias
	Figure 2: Creating an alias in the dictionary editor
	Figure 3: The File Alias worksheet
	Figure 4: Completing the NAME() attribute for the file being aliased
	Figure 5: The completed dictionary worksheet

	What Is An Alias?
	Figure 6: Automatically generated procedures both “files.”

	Built On The Basics
	Buffers
	Using An Alias
	Caveats
	Summary
	Source code

	Propitious Memory Corruption
	Clarion Legacy Application Paradigm
	The Cost
	The Kids
	The Rope
	The Call Tree
	Then ABC Came Along And It All Stopped Working!
	1) Inefficiency due to multiple usages of a variable within a procedure, especially the browse. This has been tackled in ABC by ...
	2) Unexpected record corruption due to automatic file validation and RI. ABC has eliminated these problems using save/restore file technology. There usually isn’t a down-side unless someone was using one of these corruptions to good effect.
	3) Use of a file twice within a procedure. This is the one people don’t like. In legacy this will usually appear to work, even w...
	4) Up until C5B ABC treated case 4 much like case 3. If the user dug far enough down the procedure tree to cause an unintended c...

	Automatic Aliases
	In Conclusion

	Detecting Duplicate Records
	The Requirement
	The Solution Overview
	1) Rebuild all keys (this is essential, as keys must be up to date to enable location of clashing records).
	2) Loop through each record in file sequence.
	3) For each record use the DUPLICATE(FILE) function to see if it is a duplicate.
	4) For each duplicate record, loop through all the keys to find which ones are reporting clashes (remembering that it can be more than one key causing the error).
	5) For each duplicate key, find the one valid record and associate the current (error) record with it.
	1) APPEND: Since APPEND doesn’t update any keys it is probably the easiest way to create duplicate records.
	2) File conversion (common type A): If the conversion utility simply creates a new empty file and appends all the records from the “before” file, then this will be the same as 1.
	3) File conversion (Common type B): It is possible in some file drivers to modify a key structure (remove a DUP attribute for ex...

	The Solution
	BuildKeys method
	The FindDup method
	The calcDupInfo method
	1) Save the current pointer and position for the current record.
	2) Check each key to find the ones reporting the error.
	3) For each duplicate record there will be one valid entry. This is located using GET(SELF.F,K) procedure. Since the current record buffer for the “error” record “matches” the one valid record, when the GET is called it will return the one valid record!
	4) For each duplicate AddResult is called twice (Note: AddResult will only add records to the result queue if they haven’t already been added):
	5) To add the valid record to the result.
	6) To append the duplicate record to its associated valid record.

	AddResult Method
	Summary
	Source code

	NAME() Comes Of Age
	Of Syntax and Semantics
	Multiple Files, One Declaration
	Figure 1: Global Data Properties

	SetName
	Rules for Name-ing
	1) Always use the file Label as declared on the Edit File Properties worksheet in Clarion language statements;
	2) When using a variable in the Name attribute, initialize it before any attempt to open the file;
	3) A variable used as a file Name may contain any O/S-valid string;
	4) To use a variable, prepend the Full Pathname entry on the File Properties worksheet with an exclamation point;
	5) The variable name must be unique (of course);
	6) Declare the variable in your data application, before the file declaration.

	Super Files
	Multiple Locations
	Figure 2: Setting an initial value for a file name variable

	Multiple Files
	Multiple DLLs
	Figure 3: Dictionary Editor Global Data settings.

	Summary
	Source code
	Appendices

	Appendix A: Getting Support
	Getting the source code
	Errata

	Appendix B: Related Articles
	Author Index
	B
	D
	F
	G
	H
	J
	M
	N
	O
	P
	R
	S
	V
	W

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

